552,604 research outputs found

    Holographic imaging of antiferromagnetic domains with in-situ magnetic field

    Full text link
    Lensless coherent x-ray imaging techniques have great potential for high-resolution imaging of magnetic systems with a variety of in-situ perturbations. Despite many investigations of ferromagnets, extending these techniques to the study of other magnetic materials, primarily antiferromagnets, is lacking. Here, we demonstrate the first (to our knowledge) study of an antiferromagnet using holographic imaging through the "holography with extended reference by autocorrelation linear differential operation" technique. Energy-dependent contrast with both linearly and circularly polarised x-rays are demonstrated. Antiferromagnetic domains and topological textures are studied in the presence of applied magnetic fields, demonstrating quasi-cyclic domain reconfiguration up to 500 mT.Comment: 14 pages, 6 figure

    Structural, photocatalytic and electroconductive properties of bismuth-substituted CaMoO4

    Get PDF
    The Ca1−3xBi2xФxMoO4 system (0.025 ​≤ ​x ​≤ ​0.30, where Ф represents cation vacancies) was synthesized and studied. The 0.025 ​= ​x ​≤ ​0.15 compositions show a tetragonal defect scheelite structure. Powder X-ray and neutron diffraction patterns for compositions with 0.15 ​< ​x ​≤ ​0.225 exhibit a tetragonal supercell with asup ​≈ ​√5a, csup ​≈ ​c where a and c are the tetragonal scheelite cell parameters. Transmission electron microscopy shows that Ca0.4Bi0.4MoO4, crystals consist of three crystallographic domains: (1) defect scheelite; (2) tetragonal superlattice and (3) incommensurately modulated. Photocatalytic properties were studied using Rhodamine B water solutions under UV light. Catalytic activity increases with increasing Bi content. The conductivity of 0.15 ​< ​x ​≤ ​0.225 compositions is 10−7 to 10−8 ​S ​cm−1 in the range 500–650 ​°C, while compositions in the range 0.025 ​= ​x ​≤ ​0.15 show conductivity values from 10−3 to 10−8 ​S ​cm−1 from 500 to 800 ​°C. © 2020 Elsevier Inc.The study was done with a support of RSF, projects № 20-73-10048. The travel grant for neutron diffraction work was given by Act 211 Government of the Russian Federation, contract № 02.A03.21.0006. The authors are grateful to the Science and Technology Facilities Council STFC for neutron beam time at the ISIS facility, Rutherford Appleton Laboratory, award No. RB1910306. Dr Ron Smith at ISIS is thanked for his help in neutron data collection

    Annealing Effect on the phase Transformation in

    Get PDF
    This work describes the effect of temperature on the phase transformation of titanium dioxide (TiO2) prepared using metal organic precursors as starting materials. X-ray diffraction (XRD) was used to investigate the structural properties of TiO2 gels calcined at different temperatures (300, 500, 700) ?C. the results showed that the samples have typical peaks of TiO2 polycrystalline brookite nanopowders after calcined at (300 ?C), which confirmed by (111), (121), (200), (012), (131), (220), (040), (231), (132) and (232) diffraction peaks. Also, XRD diffraction spectra showed the presence of crystallites of anatase with low proportion of rutile phase where calcined at (500 ?C), while rutile phase domains at (700 ?C). The crystallite size of TiO2 nanopowders was calculated by Scherer's formula and showed that the crystallite size decreased and then increased with increasing the annealing temperature

    Urban segregation with cheap and expensive residences

    Get PDF
    In this paper we study urban segregation of two different communities A and B, poor and rich, distributed randomly on finite samples, to check cheap and expensive residences. For this purpose we avoid the complications of the Schelling model which are not necessary and instead we use the Ising model on 500 x 500 square lattice, which give similar results, with random magnetic field at lower and higher temperatures (kT/J = 2.0, 99.0) in finite times equal to 40, 400, 4000 and 40,000. This random-field Ising magnet is a suitable model, where each site of the square lattice carries a magnetic field h which is randomly up (expensive) or down (cheap). The resulting addition to the energy prefers up spins on the expensive and down spins on the cheap sites. Our simulations were carried out using a 50-lines FORTRAN program. We present at a lower temperature (2.0) a time series of pictures, separating growing from non-growing domains. A small random field (h = +- 0.1) allows for large domains, while a large random field (h = +- 0.9) allows only small clusters. At higher temperature (99.0) we could not obtain growing domains.Comment: 11 pages, large figures, shortened version will be prepared for IJMP

    Tuning anatase-rutile phase transition temperature : TiO2/SiO2 nanoparticles applied in dye-sensitized solar cells

    Get PDF
    TiO2/SiO2 nanoparticles with 3, 5, and 10 molar percent of silica, were synthesized by hydrothermal method and characterized by SEM, TEM, N2 adsorption-desorption isotherms, X-ray diffraction, and Raman and UV-Vis spectroscopy. While pristine TiO2 thermally treated at 500°C presents a surface area of 36 m2g-1(±10 m2g-1), TiO2/SiO2 containing 3, 5, and 10 molar percent of silica present surface areas of 93, 124, and 150 m2g-1(±10 m2g-1), respectively. SiO2is found to form very small amorphous domains well dispersed in the TiO2 matrix. X-ray diffraction and Raman spectroscopy data show that anatase-to-rutile phase transition temperature is delayed by the presence of SiO2, enabling single-anatase phase photoanodes for DSSCs. According to the I×V measurements, photoanodes with 3% of SiO2 result in improved efficiency, which is mainly related to increasedsurface area and dye loading. In addition, the results suggest a gain in photocurrent related to the passivation of defects by SiO

    Multi‐Method Characterization of the High‐Entropy Spinel Oxide Mn0.2_{0.2}Co0.2_{0.2}Ni0.2_{0.2}Cu0.2_{0.2}Zn0.2_{0.2}Fe2_{2}O4_{4}: Entropy Evidence, Microstructure, and Magnetic Properties

    Get PDF
    The novel spinel Cu0.2Co0.2Mn0.2Ni0.2Zn0.2Fe2O4 comprising six transition metal cations was successfully prepared by a solution-combustion method followed by distinct thermal treatments. The entropic stabilization of this hexa-metallic material is demonstrated using in situ high temperature powder X-ray diffraction (PXRD) and directed removal of some of the constituting elements. Thorough evaluation of the PXRD data yields sizes of coherently scattering domains in the nanometre-range. Transmission electron microscopy based methods support this finding and indicate a homogeneous distribution of the elements in the samples. The combination of 57Fe Mössbauer spectroscopy with X-ray absorption near edge spectroscopy allowed determination of the cation occupancy on the tetrahedral and octahedral sites in the cubic spinel structure. Magnetic studies show long-range magnetic exchange interactions which are of ferri- or ferromagnetic nature with an exceptionally high saturation magnetization in the range of 92–108 emu g−1 at low temperature, but also an anomaly in the hysteresis of a sample calcined at 500 °C

    In Situ Analysis of the Phase Transformation Kinetics in the β-Water-Quenched Ti-5Al-5Mo-5V-3Cr-1Zr Alloy during Ageing after Fast Heating

    Get PDF
    Thermal treatments are the main route to achieve improvements in mechanical properties of β-metastable titanium alloys developed for structural applications in automotive and aerospace industries. Therefore, it is of vital importance to determine phase transformation kinetics and mechanisms of nucleation and precipitation during heat treatment of these alloys. In this context, the present paper focuses on the assessment of solid-state transformations in a β-water-quenched Ti-5Al-5Mo-5V-3Cr-1Zr alloy during the early stages of ageing treatment at 500 ◦C. In situ tracking of transformations was performed using high-energy synchrotron X-ray diffraction. The transformation sequence β + ω → α + α”iso + β is proposed to take place during this stage. Results show that isothermal α” phase precipitates from ω and from spinodal decomposition domains of the β phase, whereas α nucleates from ω, β and also from α” with different morphologies. Isothermal α” is considered to be the regulator of transformation kinetics. Hardness measurements confirm the presence of ω, although this phase was not detected by X-ray diffraction during the in situ treatment

    Structural Characterization of the DEP Domains of P-Rex1

    Get PDF
    P-Rex1 is a guanine nucleotide exchange factor for Rho-GTPases, which is indirectly involved in the regulation of cell migration and proliferation. It contains a tandem DH/PH domain archetypal of the Dbl family of GEFs, two DEP and two PDZ domains, and a C-terminal end with weak homology to inositol polyphosphate 4-phosphatase. P-Rex1 is regulated by both intra-domain interactions and interactions with other proteins such as G-protein beta gamma, PKA and phosphatidylinositol (3,4,5)-trisphosphate. Upregulation of P-Rex1 has been found in multiple human cancers, making it a potential target for anti-cancer drug therapies. Therefore, structural characterization of P-Rex1 is critical. Currently, only the structures of the DH/PH tandem and PDZ1 domains of P-Rex1 have been determined. The goal of this project is to determine the structures of the DEP1 and DEP2 domains using X-Ray crystallography. P-Rex1-DEP1 (409-499 aa) protein was expressed in Escherichia coli and purified using affinity and size exclusion chromatography. The purified protein was then concentrated and used to set various crystallization screens. Small, well defined needles were observed and showed UV absorption, indicating that they consist of protein, and thus represent promising leads for a future structure determination. Optimization is in progress to grow bigger crystals or establish new conditions. Attempts are still being made to purify P-Rex1-DEP2 (500-602 aa), which thus far shows tendencies to aggregate

    Implementing Pair Distribution Function analysis to rationalize the water-splitting activity of Co-phosphonate-derived electrocatalysts.

    Get PDF
    Pair Distribution Function analysis (PDF) is a total X-ray scattering technique, including the diffuse scattering and the Bragg diffraction. Thus, PDF can be used to characterize structural domains of amorphous solids to investigate local order/properties correlations [1]. Herein, a follow-up of the chemical evolution of pyrophosphate- or phosphide-based Fe/Co electrocatalysts is carried out by synchrotron PDF analysis. The catalysts were prepared from the metal (R,S) 2-hydroxyphosphonoacetates by pyrolysis in N2 (500 ºC and 700 ºC) or 5%-H2/Ar (800 ºC) and studied toward the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Comparison of PDF patterns of the amorphous (500 ºC) and the semicrystalline Fe/Co pyrophosphates (700 ºC) showed that the local order of the amorphous solid is composed of nanoclusters of ~ 7 Å (Figure 1). In contrast, the PDF pattern of the Fe/Co phosphide (800 ºC) is formed by a mixed of the crystalline phases o-Co2P and o-CoP. Differential PDF (d-PDF) analysis of the spent catalysts revealed that, irrespectively of the amorphous or crystalline nature, all pyrolyzed solids transformed under OER operation into biphasic CoO(OH), composed of discrete clusters with size ≤ 20 ÅUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Study on the Microstructure of Polyester Polyurethane Irradiated in Air and Water

    Get PDF
    The gamma irradiation induced aging of thermoplastic polymer Estane 5703 in air and water environments was studied by small-angle neutron scattering (SANS), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and X-ray diffraction (XRD). The degree of phase mixing was increased after irradiation, accompanied by the increase of domain distance and decrease of domain size. The hard domain distance increased from 9.8 to 11.2 nm and 14.4 nm for the samples irradiated in air and water with a dose up to 500 kGy, respectively. The GPC results indicated progressive formation of larger linked structures with very high molar mass with increasing absorbed doses. The samples irradiated in water exhibited a stronger aging effect than those irradiated in air. The FTIR results suggested that the cross-linking occurred among the secondary alkyl radicals, and the interactions in hard domains weakened because of the loss of inter-urethane H-bonds. The volume fraction of well-ordered soft segments in Estane increased upon irradiation
    corecore