


Implementing Pair Distribution Function analysis to rationalize the watersplitting activity of Co-phosphonate-derived electrocatalysts.

<u>Rosario M. P. Colodrero</u>^a, Álvaro Vílchez-Cózar^a, Montse Bazaga-García^a, Fernando Cañamero-Cebrián^a, Pascual Olivera-Pastor^a and Aurelio Cabeza^a

^aUniversidad de Málaga, Dpto Química Inorgánica, Facultad de Ciencias, Campus de Teatinos s/n, 29071, Málaga, Spain E-mail: <u>colodrero@uma.es</u>

Pair Distribution Function analysis (PDF) is a total X-ray scattering technique, including the diffuse scattering and the Bragg diffraction. Thus, PDF can be used to characterize structural domains of amorphous solids to investigate local order/properties correlations [1].

Herein, a follow-up of the chemical evolution of pyrophosphate- or phosphide-based Fe/Co electrocatalysts is carried out by synchrotron PDF analysis. The catalysts were prepared from the metal (R,S) 2-hydroxyphosphonoacetates by pyrolysis in N₂ (500 °C and 700 °C) or 5%-H₂/Ar (800 °C) and studied toward the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Comparison of PDF patterns of the amorphous (500 °C) and the semicrystalline Fe/Co pyrophosphates (700 °C) showed that the local order of the amorphous solid is composed of nanoclusters of ~ 7 Å (Figure 1). In contrast, the PDF pattern of the Fe/Co phosphide (800 °C) is formed by a mixed of the crystalline phases *o*-Co₂P and *o*-CoP. Differential PDF (d-PDF) analysis of the spent catalysts revealed that, irrespectively of the amorphous or crystalline nature, all pyrolyzed solids transformed under OER operation into biphasic CoO(OH), composed of discrete clusters with size \leq 20 Å (Figure 1) [2].

Figure 1. (a) PDF patterns of cobalt pyrophosphates. (b) Post-OER d-PDF patterns of two Fe/Co electrocatalysts. (c) d-PDF fits to R -3m and $P6_3/mmc$ CoO(OH) polymorphs.

References

[1] Farrow, C.L.; Bediako, D.K.; Surendranath, Y.; Nocera, D.G.; Billinge, S.J.L. *J. Am. Chem. Soc.* **2013**, 135, 6403–6406.

[2] Vílchez-Cózar, A.; Colodrero, R.M.P.; Bazaga-García, M.; Marrero-López, D.; El-refaei, S.M.; Russo, P.A.; Pinna, N.; Olivera-Pastor, P.; Cabeza, A. *Appl. Catal. B: Environmental* **2023**, 337, 122963.