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Abstract: Thermal treatments are the main route to achieve improvements in mechanical properties
of B-metastable titanium alloys developed for structural applications in automotive and aerospace
industries. Therefore, it is of vital importance to determine phase transformation kinetics and
mechanisms of nucleation and precipitation during heat treatment of these alloys. In this context,
the present paper focuses on the assessment of solid-state transformations in a 3-water-quenched
Ti-5A1-5Mo-5V-3Cr-1Zr alloy during the early stages of ageing treatment at 500 °C. In situ tracking of
transformations was performed using high-energy synchrotron X-ray diffraction. The transformation
sequence 3 + w — & + &”jso + B is proposed to take place during this stage. Results show that
isothermal «” phase precipitates from w and from spinodal decomposition domains of the 3 phase,
whereas « nucleates from w, 3 and also from «” with different morphologies. Isothermal «” is
considered to be the regulator of transformation kinetics. Hardness measurements confirm the
presence of w, although this phase was not detected by X-ray diffraction during the in situ treatment.

Keywords: high-energy X-ray diffraction; near-beta titanium alloys; ageing; Rietveld refinement;
spinodal decomposition; metastable phases; Ti-55531

1. Introduction

The search for structural materials and products with advanced technology and quality has
increasingly taken into consideration characteristics such as strength-to-weight ratio, corrosion
resistance, machining cost, and absence of toxic elements. Several materials comply with these
requirements in service, including many titanium-based alloys. In medical (e.g., in orthopedic
implants) and in aerospace applications, beta ($3) titanium alloys are intensively used due to their low
elastic modulus, good formability, high fatigue strength, and resistance to crack propagation [1].

The near-beta alloy Ti-10V-2Fe-3Al (Ti-10-2-3) is the leading structural material in terms of
mechanical strength. However, its application is limited by its complex processing requirements,
with a considerable number of variables, and by its sensitivity to slight composition and temperature
variations [1]. In this context, the metastable (3 alloy Ti-5Al-5Mo-5V-3Cr-1Zr (Ti-55531) was developed
based on the pioneering VT-22 (Ti-6Al-5V-5Mo-1Cr-1Fe) Russian alloy [2]. Its relevance relies on its
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wide thermomechanical processing window, through which considerable improvements in mechanical
properties can be achieved [3-5]. In comparison with Ti-10-2-3, the alloy is less sensitive to thermal
variations and to deformation rates [3].

Microstructural evolution of Ti-55531 alloy in the 3-quenched condition during continuous
heating under different rates was studied by Barriobero-Vila et al. [3]. Their work evidenced the
influence of the heating rate on the phase transformation kinetics. During slow heating (5 °C/min),
martensitic orthorhombic o” phase precipitates from omega (w) phase in the temperature range of
400-450 °C. When the heating rate increases, this precipitation is retarded. Subsequently, «” phase
transforms into « phase between 600 and 650 °C influenced by the diffusion of 3-stabilizing elements
from o” to the 3 matrix; this explains the metastability of « during its early stages in the alloy. In the
aforementioned work, the alloy exhibited direct precipitation of « from 3 phase above 650 °C when
a heating rate of 100 °C/min was employed, since the fast heating rate inhibits the formation of
metastable phases. Other studies of phase transformations in as-quenched (3-metastable alloys during
heating have shown that increasingly higher rates make the distribution of &” and « phase more
homogeneous within the 3 matrix [4,6-9], apart from minimizing precipitation. Ivasishin et al. have
outlined that microstructural morphology, distribution, and resulting precipitation sequences during
ageing treatments are intimately connected to the initial conditions of the alloy and to the heating rate
up to the treatment temperature [6]. They established that (3 alloys with fine-grained initial condition
have a faster aging response due to residual defects and/or stresses, since this leads to the acceleration
of the nucleation of precipitates and the diffusion of alloying elements. In addition, the role of w in
the precipitation of « phase was clarified, leading to the conclusion that inducing w precipitation by
means of slow heating or intermediate ageing steps at lower temperatures is desirable to provide the
precipitation of fine «, thus enhancing mechanical properties.

Although important studies focused on the solid-state phase transformation sequences in
titanium alloys have already been conducted, knowledge of the real basis of governing mechanisms
responsible for formation and decomposition of both stable and metastable phases is still considerably
limited. Most works on microstructural evolution make use of conventional techniques such as
dilatometry, differential scanning calorimetry, electrical resistivity, and X-ray diffraction to characterize
phase transformation kinetics [10-12]. Analyses using these techniques are not always complete
or easily carried out and interpreted. However, the development of high-energy X-ray diffraction
(HEXRD) using synchrotron radiation allows real-time (in situ) observation of microstructural evolution
and phase transformations [3,6,10,11,13,14]. HEXRD presents the advantage of short acquisition times
and high resolution, and for this reason has gained momentum in the metallurgy area for providing
the possibility of precisely elucidating phase transformation phenomena [11,12,15].

The present paper aims to investigate the kinetics and mechanisms of precipitation and
decomposition of stable and metastable phases in a Ti-5A1-5Mo-5V-3Cr-1Zr alloy with a starting
-quenched microstructure during ageing using in situ high-energy X-ray diffraction as the main tool
to keep track of such transformations. A typical ageing temperature of 500 °C was chosen for the
investigation, which focuses on the early stages of transformations during heat treatment, when the
formation and decomposition of metastable phases mainly takes place.

2. Materials and Methods

The investigated material was a -metastable alloy, Ti-5A1-5Mo-5V-3Cr-1Zr (Ti-55531), with
the following chemical composition in wt%: 5.51Al, 5.01Mo, 5.04V, 2.85Ct, 1.125Zr, 0.32Fe, 0.06650,
0.0085N, 0.0045C and balance Ti. The [Mo]eq for this alloy is 8.36 [16] and the 3-transus temperature
of the alloy is 803 °C, as reported in [3]. Solution treatment in the {3 field was carried out at 900 °C
for 20 min in dynamic argon atmosphere followed by quenching in water at room temperature.
This 3-quenched condition represents the initial condition for heating and subsequent aging.

In situ high-energy X-ray diffraction was carried out at the ID15B beamline of the European
Synchrotron Radiation Facility (ESRF), in Grenoble, France. The experiments were performed in
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transmission mode with energy E = 87 keV (A = 0.0142 nm) and a slit aperture size of 300 x 300 pm?.
The diffraction images were collected in a in a Pixium® Image Plate detector, with an acquisition
time set to 5 s and a readout time of 1 s. The sample-detector distance was set to 1252 mm and the
instrumental broadening was calibrated with a LaBg capillary placed at the same distance. Samples
with dimensions of 4 X 4 x 20 mm? were cut from the quenched alloy and heat treated in the beamline
by means of a radiant furnace with argon atmosphere. The isothermal heat treatment was carried out at
500 °C for 3600 s, after heating at 300 °C/min from room temperature (RT). The selected temperature of
analysis is based on the processing of components made from metastable 3 titanium alloys (e.g., Ti-17,
Ti-10V-2Fe-3Al, Ti-5553 family) [1] and on previous works with fast cooling from the beta region [4,17].
In general, the window of ageing treatment temperatures is between 500 and 600 °C to prevent the
presence of isothermal w (hard and brittle phase) in the final condition. In this work, the lowest
commercial temperature was used to analyze the first 3600 s of ageing treatment after fast heating from
a 3-metastable condition. The use of a fast heating rate aims to avoid the formation of the isothermal
w phase during heating.

Sequences of complete Debye—Scherrer rings from the bulk of the sample were acquired in
transmission mode using a 2D image plate detector, and the temperature was controlled by a
spot-welded thermocouple located close to the probed spot in the sample. Instrumental calibration
was carried out using a LaBg powder standard. Data were processed using FIT2D software [18]. Image
sequences of Debye-Scherrer rings were analyzed qualitatively using Image] software [19]. Resulting
diffraction patterns were refined via Rietveld’s method using Materials Analysis Using Diffraction
(MAUD) software [20] for extraction of quantitative information about phase transformations, such as
lattice parameters and phase fractions. Table 1 presents crystallographic data of the phases considered
in this paper for Rietveld refinement.

Table 1. Crystallographic data of phases considered for Rietveld refinement.

Phase A Q) B (A) CA) Structure éf;:l; Atomic Positions (x, y, z) Reference
o4 2.93 - 4.60 Hexagonal P63/mmc (1/3,2/3,1/4) (2/3, 1/3, 3/4) [21]
B 3.23 - - Cubic Im3m 0,0,0) (1/2,1/2,1/2) [21]
w 4.55 - 2.78 Hexagonal =~ P6/mmm 0.0,0) (1/3,2/3, 13 + zw0) (2/3, [22]

1/3,2/3-zw); zw = 1/6

P , 0,y 1/4) (0, 1-y, 3/4) (1/2, § +,
o 3.00 4.97 4.56 Orthorhombic Cmcem 1/4) (112, 1/2-, 3/4); yo = 0.18 [23]

Treated samples were metallographically prepared for optical and scanning electron microscopies
by grinding, polishing, and etching with Kroll’s reagent (2% HF + 4% HNO3 + 94% H;0). Optical
microscopy was carried out using a AxioScope microscope (Zeiss, Oberkochen, Germany) with an
ERC 5s camera, and SEM was performed on a Inspect F50 microscope (FEI, Hillsboro, OR, USA) at
10 kV. TEM-thin lamellae of the 3-water-quenched sample and of the sample aged at 500 °C during
1500 s were prepared by Focused Ion Beam (FIB) using a lift-out technique in a dual beam SEM/FIB
Helios NanoLab 600 (FEI, Hillsboro, OR, USA). STEM and point quantitative chemical analyses by
energy dispersive spectroscopy (EDS) were carried out in the lamellae using the same equipment.
TEM analysis was performed in a TECNAI G2-F20 microscope (FEI, Hillsboro, OR, USA) with field
emission gun operated at 200 kV.

Aged samples were subjected to Vickers micro-hardness testing in a PB1000 Mechanical Tester
(Nanovea, Irvine, CA, USA). The load employed was 100 mN and the spacing between each indentation
was 200 um. In total, each sample was indented nine times.
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3. Results

3.1. Initial Condition

Figure la reveals, by SEM, the microstructure of the 3-water-quenched samples of the Ti-55531
alloy. One can notice equiaxed 3-grains with a size in the range of 97 + 55 um. Figure 1b depicts a
High-Angle Annular Dark-Field (HAADF) STEM image of the initial microstructure, in which bright
and dark areas indicate the occurrence of spinodal decomposition (composition contrast). Table 2
presents the results of spot EDS analyses in each of these areas. It shows that the bright area is richer in
[3-stabilizing elements than the dark area. The evident variation in Mo content was also observed by
Li et al. in a near-3 alloy [24]. They have observed that w formation kinetics is directly determined by
coherent spinodal decomposition within the 3 phase, and that Mo compositional modulation directly
influences the degree of plane collapse along <111> direction. During the displacive transformation,
w inherits the composition of (3 lean regions. Hence, metastable (3-grains with the presence of spinodal
decomposition and athermal w (or w,,) phases compose the initial condition, as observed in the
electron diffraction pattern of the [113] 3 zone (Figure 1c). For a deeper analysis of the initial condition,
the reader is referred to the work of Barriobero-Vila et al. [3], since the material employed in both
studies came from the same batch and same heat treatment procedure.

o (110)P

(113]p

1 2.00 1/Gm

Figure 1. (a) Scanning electron microscopy image of the water-quenched microstructure and (b)
High-Angle Annular Dark-Field (HAADF) STEM image of the initial microstructure showing evidence
of spinodal decomposition, given by the contrast between bright and dark areas and (c) electron
diffraction pattern of the (113)3 zone axis showing spots of athermal w.

Table 2. Results of EDS analyses in Figure 1 for the initial water-quenched condition of Ti-55531 alloy.

Area Composition (wt %)
Ti Al Mo V Cr Zr
Dark 826 52 43 45 24 1.0
Bright 799 55 56 50 29 1.1
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3.2. In Situ Measurements

3.2.1. Influence of Heating Up to 500 °C

Figure 2 depicts two portions of the Debye-Scherrer rings converted to Cartesian coordinates
corresponding to room temperature (RT) and 500 °C. One can notice the spots belonging to (110)43,
(200)3, and (211)f3 reflections in both portions, as well as no visible changes on these during the heating
step. In addition, no new reflections of phases such as «, «”, or w were found. Thus, it can be stated
that during the heating stage phase transformation might be hindered. It is in agreement with the
findings of Barriobero-Villa, where a heating rate of 100 °C/min suppressed the transformation of the
present alloy in the same starting condition up to 650 °C [3].

. (110)p Qo0)p  @11p
g 110 -{ R o ?
_g . 2 255
< 100 4 .
% Q 191 g
- =
90 ) 1 ! ) ! ) Yl ! ' ) |. ! = 5.
500 °C ! ! . é‘ 128 (—:';
Z 110+ ' : - - & 2
£ 5 "2 64 Q
2
X 1004 ? o=y
90 " - . : - -
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20(°)
Figure 2. 2D plots of portions of Debye-Scherrer rings converted into Cartesian coordinates showing
the behavior of spots corresponding to Bragg reflections for RT and 500 °C.

3.2.2. Phase Evolution during Ageing at 500 °C

Figure 3 presents representative quarters of Debye—Scherrer rings acquired during ageing at
500 °C in four moments: t = 0, 600, 1800, and 3600 s, clearly showing the phase evolution during
treatment. At first glance one can notice the spotty aspect of rings at t = 0 s, indicating a coarse-grained
initial microstructure that persists until t = 600 s. Between t = 600 s and t = 1800 s, these isolated
spots align with each other as a consequence of microstructural evolution. At the same time, double
rings start to appear close to (110)p corresponding to the precipitation of isothermal «” («x”is,) and
« [4,6]. Att=3600 s, the width of the rings increased as result of the rise in the amount of "5, and ox.
It is important to highlight that at t = 600 s one can observe weak reflections located close to {110}
(indicated by blue arrows), evidencing the precipitate-matrix orientation relationship [25].

Figure 4 presents a more clear and detailed evolution of {110}§ spots and of the diffuse streaks.
(3 spots experienced a decrease in intensity between t = 0 s and t = 140 s followed by an elongation
from t = 196 s onwards. One may visualize different diffuse streaks in the Debye-Scherrer rings, where
white arrows at t = 140 s point out the first signals of their appearance. At t =265 and 377 s, the streaks
are delimited by the U-shaped curves in order to improve the visualization; white dashed lines at
t = 442 s indicate the direction of their growth. With regards to the reflections of /", these become
visible at t = 265 s and are shown in the red box. As reflections evolve (contoured by the U-shaped
curves from t = 540 to 755 s), they assume aspects of double lines and they are indicated by the red
double-dashed lines at t = 1192 s.
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Figure 3. Representative quarters of Debye-Scherrer rings obtained during ageing for instants t =0's,
t=600s,t=1800s, and t = 3600 s and respective phases observed, magnified 10 times in the respective
boxes corresponding to each period of time. The diffuse inner ring observed corresponds to the
scattering of a quartz capsule.

(110)B

Peak intensity

Figure 4. Sections extracted from the same areas of Debye-Scherrer rings depicting evolution of diffuse
streaks (white arrows), their characteristic inclination (white dashed lines), and the appearance of
double rings close to {110} resulting from & and o”jg,.
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Morphologically, the streaks from 3 — o/x”js, directions present themselves as thin, angularly
similar, and continuous, expressing gradual and coherent evolution of lattice parameters of precipitating
phases during ageing [25]. The distinction between « and «”js, spots in Figures 3 and 4 is difficult,
since these phases precipitate within a considerably small 20 interval (<0.5°). Furthermore, the chosen
ageing temperature allows for precipitation of both phases, increasing the possibility of simultaneous
precipitation onset or, at least, with too short a time difference for any distinction [3-5,26,27]. Therefore,
it is plausible to propose that « and isothermal «” have their first signs of reflection at t = 140 s, and
that from this instant on diffusive f — « + «”jso transformation becomes active [4,25-28]. For this
reason (and for refinement purposes), it is assumed that both phases begin to precipitate at the same
instant. Lastly, at t = 3600 s, the dashed o/x”-2 red line in Figure 4 indicates duplicity, showing that the
material may still contain o”g.

Figure 5 depicts 2D color-coded time vs. 20 plots in the 20 intervals 3.1-3.9°and 4.5-5.8° of the
azimuthally integrated Debye-Scherrer rings aiming to improve the distinction between o and «”js,.
In both intervals, it is possible to observe reflections corresponding to o”js, from t = ~300 s and on.
As mentioned before, these o”js, reflections (double peaks) also involve « reflections (single peak).
Nonetheless, as the ageing progresses, these double peaks converge to single ones indicating the
decomposition of «”js, to o [3,9,29,30]. In Figure 5a, at t = 2080 s (black arrow) the single {101} peak
becomes distinguishable from the set of reflections composed by {111}«”/{101}/{021} .

3600 3600

l {100} {110} - {101} {110}a = ! {200} {102)a — = Intensity (a.u.)
= . 1850
3000 3000 z 1600
{002}a 1350
1100
2400 2400 [~ 850
C 2 e
@ 1800 @ 1800
€ E
= = - 350
1200 1200
600 600
4 > »
« N (110} =\ {112}a" 100
o {110}a" {020}a” {110}w + {101}0 11" {021}a" 0 {200}a” {103}a" P& {200+ (2000  (ozp)q"
3,2 34 3,6 3,8 46 438 50 52 54 56 56
2-Theta (°) 2-Theta (°)
a) b)

Figure 5. Color-coded plots showing the evolution of diffraction patterns as function of time during
ageing for 20 intervals between (a) 3.1 and 3.9° and (b) 4.5 and 5.8°. The evident appearance of {101}«
reflection is indicated by the isolated black arrow.

One has to highlight that w phase reflections were not directly observed in any of the images
analyzed in this work. It could be due to (i) the superposition of the most intense w peaks with more
intense 3 peaks or (ii) to the weak and broad reflections resulting from its distorted crystal lattice [31,32]
and/or to its low volume fraction. Likewise, w phase is also located along dislocations formed between
domains associated with 3 spinodal decomposition. The formation of such dislocations results in the
distortion of 3 matrix lattice, hence its contribution is more significant to peak broadening, i.e., to the
FWHM [33]. The difficulties for detection of w phase are also reported for HEXRD studies [33,34];
nevertheless, recent observations carried out by high-energy small angle X-ray scattering during ageing
in single crystals of metastable {3 titanium alloys could determine the presence and evolution of this
phase [35-37].

3.2.3. Microhardness

Figure 6 shows the hardness evolution during ageing. Three distinct behaviors can be observed:
(1) a slight increase up to t = 150 s, (2) a decrease up to t = 2300 s during «”js, precipitation, and (3)



Quantum Beam Sci. 2020, 4, 12 8 of 16

a noticeable increase related to o phase precipitation. The slight increase in hardness at t = 150 s is
most probably resulting from wjg, precipitation. This subtle change in hardness might be related to a
small volume fraction of the aforementioned phase, negligible if compared to the one observed by
Williams et al. [38], where the volume fraction of 25% of wjg, influences considerably the mechanical
properties of titanium alloys. For that reason and because no single visible w peak was detected during
the analysis of the X-ray diffraction data, w was not considered for refinement to avoid misleading
results. Nonetheless, the presence of w phase is considered to explain the mechanisms involved in
precipitation and phase transformation observed henceforth.

380 T T T T T T T
—M®-— Hardness
0\ —e— R phase fraction [ 100
360 o
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340 >
—~ ° I 3
S \ F80 &
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=~ 320 s
2 =i ; 3
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5 300 | ’ =
© . \
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2804 ™ S
b . . Lso <
1 — I~
260 - D
L 40
O —> Wigo
240 T T T T T T T
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Time (s)
Figure 6. Hardness and (3 phase fraction evolution along the ageing treatment.

4. Discussion

4.1. Quantitative Analysis of Phase Transformation during Isothermal Treatment

The Rietveld refinement of diffraction patterns was carried out to quantify the present phases
during the isothermal treatment. Phase identification was as follows:

1. Fromt=0s 3 was considered;

2. Fromt=300s aand «”js, volume fraction were considered together. The deconvolution of both
phases during refinement was not possible due to presented difficulties; thus, it is not possible to
assure that the fraction provided by the refinement for each one of these phases individually is
correct, so the summed values were used. The o”4, lattice parameter was taken into account
fromt =300 s;

3.  From t = 2080 s, the « phase lattice parameter evolution started to be evaluated following the
increment of the intensity of {101}« reflections from {111}” and {021}cc”.

Figure 7 illustrates the refinement as a function of the time for the volume fraction of phases
(Figure 7a), the lattice parameter (Figure 7b), and the unit cell volume (Figure 7c). In all three plots, the
time (1) refers to the 3 decomposition onset and the onset of & + «”js, precipitation initiation, time (2)
corresponds to the start of «”;s, decomposition, and time (3) to the end of the heat treatment. Between
t =300 s and t = 2000 s, the fraction of & + «”;s, reaches its maximum value, 59.9%, and then the
decomposition of &”js, into o and 3 begins, raising the volume fraction of 3 from 40.1% to 66.6% until
the end of treatment.
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Figure 7. Evolution of (a) volume fractions, (b) lattice parameters, and (c) unit cell volume of phases
during ageing at 500 °C for 3600 s of Ti-55531 alloy.

4.2. Behavior of B during Ageing

The volume fraction of 3 phase decreases continuously during the first 1950 s, reaching a minimum
volume of 40.1%. Full width at half maximum (FWHM) values of {110} and {200} reflections were
calculated and depicted in Figure 8, together with the variation of 3 phase lattice parameter, dag.
The increase of the FWHM s for {200} and {110}z during the heat treatment can be attributed to the
precipitation and growth of & and «”js, particles, since it leads to the introduction of microstrains and
distortion of the P lattice, and FWHM is rather sensitive to such features [6,10,38].
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Figure 8. Influence of ageing time on the FWHM of {110}g and {200} peaks and on the variation of
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The decrease of the 3 unit cell volume (Figure 7c) is more pronounced from t = 2100 s. It is evident
that the variation of the cell volume is a direct consequence of the progressive change in the solute
content of BCC {3 lattice, which leads to compositional differences between the matrix and the adjacent
areas where precipitates grow, as reported in [38—41]. In addition to this, the change of FWHM can
also indicate lattice distortion due to solid solution, i.e., precipitation and growth not only cause the
increase in lattice stress but also contribute to the chemical gradient, both of which reflect directly in
FWHM rising [10,38]. In this work, the increase in FWHM may result from « phase precipitation and
the beginning of isothermal «”;s, decomposition, as seen in Figure 7a,c, respectively. Dissolution of
«”js0 leads to the incorporation of 3 stabilizers into the matrix at a higher rate, since these elements
are barely aggregated by « [42—45]. Therefore, FWHM variations may be an indicator of how the
precipitation is evolving and the role of oc and o”js, precipitation in the behavior of  during ageing
is discernible.

4.3. Precipitation and Decomposition of a”s,

The precipitation of « + o”jso reaches 59.9% of maximum volume at t = ~1950 s, then decreases and
reaches 33.4% at t = 3600 s. In Figure 7c it is noted that between the instants t =400 s and t = 1470 s o”js,
unitary cell volume barely increases from 67.4 to 67.7 A3. Nonetheless, between t = 1580 s and t = 2200 s,
this scenario changes given the substantial increase of such value, from 67.7 to 69.3 A3. This increment
in volume (hence in b~ and ¢, lattice parameters) is followed by the expansion of y~, or the atomic
coordinate y of the crystal structure of «”js, phase parallel to b axis, from 0.180 to 0.185. This positive
variation is indicative of solute transfer from the matrix to o”js, as discussed by Banumathy et al. [46]. It
is also important to highlight that the value of ¢~ lattice parameter at the onset of precipitation, ~4.56 A
(Figure 7b), is close to the a parameter of the w phase, a,, ~4.55 A (Table 1); this proximity is an indicator
that the formation of «”js, may be directly related to w decomposition [3,9,37,38]. This, together with
the fact that the volume fraction of o + &”jg, grows whilst 3 (with some presence of w) decomposes
(Figure 7a) may indicate that precipitation of « + o”js, occurs due to the homogenization of domains
resulting from spinodal decomposition of 3. This fact can be confirmed by STEM observation in Figure 9
for a sample aged for 1500 s, where the homogenization of spinodal domains can be observed along with
EDS results shown in Table 3. The differences in composition decreases especially for Mo, V, and Al if
compared to Table 2.

Figure 9. HAADF STEM image of the sample aged at 500 °C for 1500 s, showing homogenization of
spinodal domains.



Quantum Beam Sci. 2020, 4, 12 11 of 16

Table 3. Results of EDS analyses for Ti-55531 alloy aged at 500 °C during 1500 s.

Area Composition (wt %)

Ti Al Mo v Cr Zr
Dark 81.4 55 4.8 4.8 2.6 0.9
Bright 80.2 5.7 4.8 5.1 3.1 12

Based on observations of Barriobero-Vila et al. [3] during heating, it can be proposed that the
preferential sites for nucleation and growth of «”;s, phase are along dislocations, low angle grain
boundaries, and the interface of 3/” spinodal decomposition, where isothermal w precipitates are
located (f3/w interface). Furthermore, the crystal lattice provides favorable pathways to accelerated
atomic diffusion (such as distortions). The introduction of solute elements leads to the elimination
of stress caused in the lattice by distortions resulting from the dislocations found at /" interfaces.
Therefore, precipitation of isothermal «” in this place leads to the stabilization of 3 due to the coarsening
of /B’ domains by decreasing the compositional differences in 3 and 3’. Consequently, a decrease in
the compositional modulation amplitude takes place.

It is plausible to propose that along with the combined precipitation of « and «”js, phases up
to the point at which the {101} reflection stands out from {111}~ and {021}~ (Figure 5), the value
of a”jso volume fraction is higher than . The precipitation rate of «”js, may be promoted by the
spinodal decomposition, favored by the earlier precipitation via w — o”js, transformation at the 3/w
interface [47]. On the other hand, the value of the y-coordinate y~ increases to approach the ideal
value to form the BCC structure (y = 0.25), as was also observed for Ti-10V-2Fe-3Al [9]. This means that
a possible o”js, — B transformation also occurs and «”js, has a significant role in the homogenization of
spinodal decomposition domains, and thus in the precipitation of «. Therefore, o”js, can be attributed
as a “moderator” of transformation kinetics since it is fundamental to the homogenization of spinodal
decomposition domains and to the precipitation of «.

4.4. Precipitation and Morphology of a

Regarding the evolution of « lattice parameters, Figure 7b, it is possible to observe a tendency for
convergence of a”js, parameters to those of «. Until the end of treatment, by~ and a \3 completely
coincide and the ay/ay pair indicates the same tendency if a longer treatment time is employed.
This evolution indicates the gradual transformation of the metastable «”js, phase into the stable «
phase assisted by diffusive activity, as reported in literature for Ti-17 and Ti-5553 [5], Ti-10-2-3 [9], and
TC21 [48] alloys. With respect to the cell volume of x, Figure 7c, at t = 2100 s when o”;5, begins to
decompose, both phases have great structural similarity, since b~ and a, V3 are already close to each
other. This leads one to believe that « is in or very close to chemical equilibrium. Hence, depletion
of solute from o, is aggregated mainly by 3 phase, since the decrease of 3 cell volume is more
accentuated than that of «.

SEM images shown in Figure 10 illustrate some characteristic morphologies of « at instants
t =1500, 2300 and 3600 s in 3 grains. In Figure 10a, the 3 grains are barely occupied by the intragranular
o precipitates, and most of the « is located at the grain boundaries. 3 grain boundaries are preferred
and dominant sites for « nucleation, and despite already precipitating in the early stages of ageing,
its volume fraction is still relatively low if compared to the volume of 3. When o grows within the
[ matrix, the strain inherent to this misfit increases and accumulates in the volume of the material.
Thus, when stress reaches a critical value, o« plates can nucleate and grow intragranularly, increasing
its volumetric fraction and evolving as seen in Figure 10d [27].
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Figure 10. SEM images in SE mode showing (a) a 3 grain at t = 1500 s, (b) « phase precipitated from
subgrain boundary (x-SGB) and with triangular morphology (x-T) and star-like morphology (x-S),
(c) a grain boundary with Widmanstitten o« (x-WGB), grain boundary « (x-GB), and a mixture of both
(-WGB + o-GB) or the side plates [1] at t =2300 s, and (d) a § grain at t = 3600 s (adapted from [49]).

Figure 10b shows an example of precipitation of & along {3 subgrain boundaries (x-SGB), isolated
triangular («-T) and star-shaped precipitates («-S) within the grain. «-T was found by Dehghan-Manshadi
and Dippenaar [27] in Ti-5553 alloy aged at 400 °C. According to Balachandran et al. [50], they correspond
to the tendency of variant selection of « with respect to 3 at the moment of precipitation, where « has
3 common <110 >« directions parallel to <111>[3 arranged in 60° from each other, leading, therefore,
to the triangular arrangement. The o stars correspond to the grouping of very thin individual lamellar
a-Widmanstatten plates which nucleated and grew from a single nucleus, probably a w precipitate [27].
On the other hand, Aaronson et al. [51] propose the formation of these plates by the “edge-face” model
of sympathetic nucleation, where larger plates form first, followed by the nucleation and growth of the
smaller plates from the faces of each other. TEM observations would be necessary to verify which of these
models is appropriate for the present case. Recent publications have reported similar microstructural
features for Ti-7333 [52] and Ti-5553 [53] under aging conditions.

Figure 10c shows the grain boundary consisting of «-GB, an x-WGB plate, and the set x-WGB
+ «-GB. The triple-grain boundary is a favorable site to the heterogeneous nucleation of «, since the
activation energy in this case is low if compared to other mechanisms found in the matrix. Thus, «
finds the ideal site to precipitate and form «-GB, whose morphology consists of a nearly continuous
film of this phase. The x-WGB + «-GB colonies are formed from the interface («-GB/f3), consisting of
x-WGB plates arranged side by side separated by the remaining (3 plates, enriched with 3-stabilizing
elements. Each colony needs a grain containing «GB to form, so they never form directly from the 3/’
interface [54].

4.5. Hardness

In Figure 6, as stated before in Section 3.2.2, three main stages of the hardness during the isothermal
treatment can be observed. In (1), a slight increment in hardness due to the precipitation of wjs,.
In (2) the o”j4, precipitation is related to the shearing elastic constant parallel to (110) planes in o4,
lower than in 3 phase; for this reason, o”is, is more prone to indentation than 3 [1]. Hence, as «”
precipitation advances, the softening of the material is observed. In (3), the hardness increases by ~35%
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from t = 2300 to 3600 s, which is directly related to the acceleration of « precipitation. It is the expected
behavior, since o phase plays a fundamental role as a reinforcing element in consequence of its HCP
crystal structure. The value obtained after 3600 s of ageing at 500 °C, 350 + 30 HV, is comparable to the
one measured by Jones et al. [4] for Ti-5553 alloy (~380 HV) after 1800 s of ageing at 570 °C, and is
related mainly to the morphology and distribution of the fine alpha within the beta grains.

5. Conclusions

Microstructural evolution of Ti-55531 alloy during the early stages of ageing treatment at 500 °C
was analyzed by means of in situ high-energy X-ray diffraction. The following conclusions can be
drawn regarding this analysis:

e The use of fast heating suppresses any change in the microstructure, restricting the phase
transformations to the ageing period.

e  During the ageing treatment, the phase transformation follows the sequence  + w — 3 + wjgo +
w — o+ &”jg0+ B. The presence of the diffuse streaks is indicative of a transient state.

e  The presence of w phase is confirmed by hardness measurements. The w phase reflections are not
observed in this work and this might be related to the low volume fraction and the superposition
of broader and intense {3 peaks over the w peaks.

e  Theisothermal x” («¢”iso) phase may precipitate from the w phase and mainly from the domains
of spinodal decomposition of the 3 phase, given its role in the homogenization of these domains.
This phase is considered to regulate the transformation throughout the studied ageing.

e Based on the evolution of the {111}«”/{021}x " reflection to {101}c, the & phase may nucleate
from «”iso, w phase and 3 phases. SEM analysis allows the observation of some characteristic
morphologies of sympathetic nucleation (x-S) and groups with a tendency to choose preferred
directions («-T), in addition to the preferential precipitation of « along grain boundaries (x-GB),
and the Widmanstitten « («-WGB) formed near to «-GB.

Author Contributions: Conceptualization, RPM.G., EW. and H.C.P,; methodology, RPM.G., EW,, B.C., KA, ES,
EM. and H.C.P; validation, R PM.G. and B.C.; formal analysis, RP>.M.G. and B.C.; investigation, RPM.G., EW.,
B.C. and H.C.P,; writing—original draft preparation, RPM.G., EW,, B.C., K.A. and H.C.P;; writing—review and
editing, RPM.G., EW,, B.C,, K.A,, ES., EM. and H.C.P; supervision, H.C.P. project administration, H.C.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Council for Scientific and Technological Development (CNPq)
with the grants 407399/2013-5, 130674/2015-0 and 161959/2015-6 and by the Coordination for the Improvement of
Higher Education Personnel (CAPES) under the project PROBRAL 88881.143948/2017-01.

Acknowledgments: The European Synchrotron Radiation Facility (ESRF) is acknowledged for the provision of
synchrotron radiation facilities in the framework of the MA1268 proposal. RPM.G. and EW. would like to thank
T. Buslap, P. Barriobero-Vila, G. Requena and D. Canelo-Yubero for the help on the synchrotron experiments
and guidance for processing the Data. R PM.G. is financially supported by the Austrian Aeronautics Program
“TAKE OFF” and the BMVIT-Austrian Ministry for Transport, Innovation, and Technology. In addition, B. C. N.
M. de Castilho and N. Colmenares are acknowledged for helping with hardness measurements and discussions,
and W. R. Correr is acknowledged for his support and guidance during the heat treatments and microstructural
characterization. J.J.C. Pereira is acknowledged for his support on the language corrections.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Litjering, G.; Williams, J.C. Titanium, 2nd ed.; Springer-Verlag Berlin and Heidelberg GmbH & Co. K: Berlin,
Germany, 2007.

2. Moiseyev, V.N. Titanium Alloys: Russian Aircraft and Aerospace Applications; CRC Press: Boca Raton, FL,
USA, 2006.

3. Barriobero-Vila, P; Requena, G.; Schwarz, S.; Warchomicka, E; Buslaps, T. Influence of phase transformation
kinetics on the formation of « in a -quenched Ti-5Al-5Mo-5V-3Cr-1Zr alloy. Acta Mater. 2015, 95, 90-101.
[CrossRef]


http://dx.doi.org/10.1016/j.actamat.2015.05.008

Quantum Beam Sci. 2020, 4, 12 14 of 16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

Jones, N.G.; Dashwood, R.J.; Jackson, M.; Dye, D. 3 Phase decomposition in Ti-5Al-5Mo-5V-3Cr. Acta Mater.
2009, 57, 3830-3839. [CrossRef]

Aeby-Gautier, E.; Settefrati, A.; Bruneseaux, F.; Appolaire, B.; Denand, B.; Dehmas, M.; Geandier, G.; Boulet, P.
Isothermal «” formation in 3 metastable titanium alloys. J. Alloys Compd. 2013, 577, S439-5443. [CrossRef]
Ivasishin, O.; Markovsky, P.; Semiatin, S.; Ward, C. Aging response of coarse- and fine-grained 3 titanium
alloys. Mater. Sci. Eng. A 2005, 405, 296-305. [CrossRef]

Ivasishin, O.M.; Markovsky, PE.; Matviychuk, Y.V.; Semiatin, S.L. Precipitation and recrystallization behavior
of beta titanium alloys during continuous heat treatment. Met. Mater. Trans. A 2003, 34, 147-158. [CrossRef]
Settefrati, A.; Aeby-Gautier, E.; Dehmas, M.; Geandier, G.; Appolaire, B.; Audion, S.; Delfosse, J. Precipitation
in a near Beta Titanium Alloy on Ageing: Influence of Heating Rate and Chemical Composition of the
Beta-Metastable Phase. Solid State Phenom. 2011, 172, 760-765. [CrossRef]

Barriobero-Vila, P.; Requena, G.; Warchomicka, F; Stark, A.; Schell, N.; Buslaps, T. Phase transformation
kinetics during continuous heating of a 3-quenched Ti-10V-2Fe-3Al alloy. J. Mater. Sci. 2015, 50, 1412-1426.
[CrossRef]

Aeby-Gautier, E.; Bruneseaux, E; Teixeira, ].D.C.; Appolaire, B.; Geandier, G.; Denis, S. Microstructural
formation in Ti alloys: In-situ characterization of phase transformation kinetics. JOM 2007, 59, 54-58.
[CrossRef]

Liss, K.-D.; Bartels, A.; Schreyer, A.; Clemens, H. High-Energy X-Rays: A tool for Advanced Bulk
Investigations in Materials Science and Physics. Textures Microstruct. 2003, 35, 219-252. [CrossRef]

Liss, K.-D.; Yan, K. Thermo-mechanical processing in a synchrotron beam. Mater. Sci. Eng. A 2010, 528,
11-27. [CrossRef]

Liss, K.D. Thermo-Mechanical Processing in a Synchrotron Beam—From Simple Metals To Multiphase Alloys
and Intermetallics. World |. Eng. 2010, 7, 438.

Warchomicka, F.; Yubero, C.-; Zehetner, E.; Requena, G.; Stark, A.; Canelo-Yubero, D.; Poletti, C. In-Situ
Synchrotron X-Ray Diffraction of Ti-6Al-4V During Thermomechanical Treatment in the Beta Field. Met.
2019, 9, 862. [CrossRef]

Liss, K.-D.; Whitfield, R.E.; Xu, W.; Buslaps, T.; Yeoh, L.A.; Wu, X.; Zhang, D.; Xia, K. In situsynchrotron
high-energy X-ray diffraction analysis on phase transformations in Ti-Al alloys processed by equal-channel
angular pressing. J. Synchrotron Radiat. 2009, 16, 825-834. [CrossRef] [PubMed]

Bania, PJ. Beta titanium alloys and their role in the titanium industry. JOM 1994, 46, 16-19. [CrossRef]
Nag, S.; Zheng, Y.; Williams, R.; Devaraj, A.; Boyne, A.; Wang, Y.; Collins, P; Viswanathan, G.; Tiley, J.;
Muddle, B.; et al. Non-classical homogeneous precipitation mediated by compositional fluctuations in
titanium alloys. Acta Mater. 2012, 60, 6247-6256. [CrossRef]

The FIT2D Home Page. Available online: http://www.esrf.eu/computing/scientific/FIT2D/ (accessed on 20
October 2019).

Image]. Available online: https://imagej.nih.gov/ij/ (accessed on 20 October 2019).

MAUD—Material Analys Using Diffraction. Available online: http://maud.radiographema.eu/ (accessed on
20 October 2019).

Banerjee, S.; Mukhopadhyay, P. Phase Transformations: Examples from Titanium and Zirconium Alloys; Elsevier:
Amsterdam, The Netherlands, 2007; Volume 1.

Basak, C.B.; Neogy, S.; Srivastava, D.; Dey, G.; Banerjee, S. Disordered bcc y-phase to d-phase transformation
in Zr-rich U-Zr alloy. Philos. Mag. 2011, 91, 3290-3306. [CrossRef]

Obbard, E.G.; Hao, Y.L,; Talling, R.J.; Li, S.J.; Zhang, YW.; Dye, D.; Yang, R. The effect of oxygen on «”
martensite and superelasticity in Ti-24Nb-4Zr-85n. Acta Mater. 2011, 59, 112-125. [CrossRef]

Li, T.; Kent, D.; Sha, G.; Stephenson, L.T.; Ceguerra, A.V.; Ringer, S.P.; Dargusch, M.S.; Cairney, ]. M. New
insights into the phase transformations to isothermal w and w-assisted « in near 3-Ti alloys. Acta Mater.
2016, 106, 353-366. [CrossRef]

Liss, K.-D.; Stark, A.; Bartels, A.; Clemens, H.; Buslaps, T.; Phelan, D.; Yeoh, L.A. Directional Atomic
Rearrangements During Transformations Between the «- and y-Phases in Titanium Aluminides. Adv. Eng.
Mater. 2008, 10, 389-392. [CrossRef]

Settefrati, A.; Dehmas, M.; Geandier, G.; Denand, B.; Aeby-Gautier, E.; Appolaire, B.; Khelifati, G.; Delfosse, J.
Precipitation sequences in beta metastable phase of Ti-5553 alloy during ageing. Ti-2011; Science Press Beijing:
Beijing, China, 2011; pp. 468—472.


http://dx.doi.org/10.1016/j.actamat.2009.04.031
http://dx.doi.org/10.1016/j.jallcom.2012.02.046
http://dx.doi.org/10.1016/j.msea.2005.06.027
http://dx.doi.org/10.1007/s11661-003-0216-8
http://dx.doi.org/10.4028/www.scientific.net/SSP.172-174.760
http://dx.doi.org/10.1007/s10853-014-8701-6
http://dx.doi.org/10.1007/s11837-007-0011-x
http://dx.doi.org/10.1080/07303300310001634952
http://dx.doi.org/10.1016/j.msea.2010.06.017
http://dx.doi.org/10.3390/met9080862
http://dx.doi.org/10.1107/S090904950903711X
http://www.ncbi.nlm.nih.gov/pubmed/19844020
http://dx.doi.org/10.1007/BF03220742
http://dx.doi.org/10.1016/j.actamat.2012.07.033
http://www.esrf.eu/computing/scientific/FIT2D/
https://imagej.nih.gov/ij/
http://maud.radiographema.eu/
http://dx.doi.org/10.1080/14786435.2011.577756
http://dx.doi.org/10.1016/j.actamat.2010.09.015
http://dx.doi.org/10.1016/j.actamat.2015.12.046
http://dx.doi.org/10.1002/adem.200700322

Quantum Beam Sci. 2020, 4, 12 15 of 16

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Dehghan-Manshadi, A.; Dippenaar, R.J. Development of «-phase morphologies during low temperature
isothermal heat treatment of a Ti-5A1-5Mo-5V-3Cr alloy. Mater. Sci. Eng. A 2011, 528, 1833-1839. [CrossRef]
Porter, D.A.; Easterling, K.E.; Sherif, M. Phase Transformations in Metals and Alloys; CRC Press: Boca Raton, FL,
USA, 2009.

Zheng, Y.; Sosa, ].M.; Fraser, H.L. On the Influence of Athermal w and « Phase Instabilities on the Scale of
Precipitation of the & Phase in Metastable 3-Ti Alloys. JOM 2016, 68, 1343-1349. [CrossRef]

Contrepois, Q.; Carton, M.; Lecomte-Beckers, J. Characterization of the 3 Phase Decomposition in
Ti-5A1-5Mo-5V-3Cr at Slow Heating Rates. Open J. Met. 2011, 1, 1-11. [CrossRef]

Ramsteiner, I.; Shchyglo, O.; Mezger, M.; Udyansky, A.; Bugaev, V.; Schoder, S.; Reichert, H.; Dosch, H.
Omega-like diffuse X-ray scattering in Ti-V caused by static lattice distortions. Acta Mater. 2008, 56, 1298-1305.
[CrossRef]

Banerjee, S.; Tewari, R.; Dey, G.K. Omega phase transformation-morphologies and mechanisms. Int. |. Mater.
Res. 2006, 97,963-977. [CrossRef]

Mittemeijer, E.J.; Scardi, P. Diffraction Analysis of the Microstructure of Materials; Springer: New York, NY, USA,
2013.

Settefrati, A.; Aeby-Gautier, E.; Appolaire, B.; Dehmas, M.; Geandier, G.; Khelifati, G. Low temperature
transformation in the (3-metastable Ti 5553 alloy. Mater. Sci. Forum 2013, 738-739, 97-102. [CrossRef]
Sabeena, M.; Murugesan, S.; Mythili, R.; Sinha, A.K.; Singh, M.N.; Vijayalakshmi, M.; Deb, S.K. Studies on w
Phase Formation in Ti-Mo Alloys Using Synchrotron XRD. Trans. Indian Inst. Met. 2014, 68, 1-6. [CrossRef]
Smilauerova, J.; Harcuba, P; Kriegner, D.; Janecek, M.; Holy, V. Growth kinetics of w particles in (3-Ti matrix
studied by in-situ small-angle x-ray scattering. Acta Mater. 2015, 100, 126-134. [CrossRef]

Nejezchlebova, J.; Janovskd, M.; Seiner, H.; Sedlak, P.; Landa, M.; Smilauerova, J.; Strasky, J.; Harcuba, P.;
Janecek, M. The effect of athermal and isothermal w phase particles on elasticity of 3-Ti single crystals. Acta
Mater. 2016, 110, 185-191. [CrossRef]

Williams, J.C.; Hickman, B.S.; Marcus, H.L. The effect of omega phase on the mechanical properties of
titanium alloys. Metall. Trans. 1971, 2, 1913-1919. [CrossRef]

Laughlin, D.E.; Cahn, ].W. Spinodal decomposition in age hardening copper-titanium alloys. Acta Met. 1975,
23,329-339. [CrossRef]

Geandier, G.; Aeby-Gautier, E.; Settefrati, A.; Dehmas, M.; Appolaire, B. Study of diffusive transformations
by high energy X-ray diffraction. Comptes Rendus Phys. 2012, 13, 257-267. [CrossRef]

Barriobero-Vila, P.; Requena, G.; Buslaps, T.; Alfeld, M.; Boesenberg, U. Role of element partitioning on the
a—[3 phase transformation kinetics of a bi-modal Ti-6Al-6V-2Sn alloy during continuous heating. J. Alloy.
Compd. 2015, 626, 330-339. [CrossRef]

Chen, F; Xu, G.; Zhou, K.; Zhang, X. Exploring the Phase Transformation in 3-Quenched Ti-55531 Alloy
During Continuous Heating via Dilatometric Measurement, Microstructure Characterization, and Diffusion
Analysis. Met. Mater. Trans. A 2016, 47, 5383-5394. [CrossRef]

Elmer, J.; Palmer, T.; Babu, S.; Specht, E. In situ observations of lattice expansion and transformation rates of
o and (3 phases in Ti-6A1-4V. Mater. Sci. Eng. A 2005, 391, 104-113. [CrossRef]

Mantani, Y.; Tajima, M. Phase transformation of quenched o martensite by aging in Ti-Nb alloys. Mater. Sci.
Eng. A 2006, 438-440, 315-319. [CrossRef]

Mantani, Y.; Takemoto, Y.; Hida, M.; Sakakibara, A.; Tajima, M. Phase Transformation of «” Martensite
Structure by Aging in Ti-8 mass%Mo Alloy. Mater. Trans. 2004, 45, 1629-1634. [CrossRef]

Banumathy, S.; Mandal, R K.; Singh, A K. Structure of orthorhombic martensitic phase in binary Ti-Nb alloys.
J. Appl. Phys. 2009, 106, 093518. [CrossRef]

Ohmori, Y.; Ogo, T.; Nakai, K.; Kobayashi, S. Effects of w-phase precipitation on f — o, «” transformations
in a metastable (3 titanium alloy. Mater. Sci. Eng. A 2001, 312, 182-188. [CrossRef]

Tang, B.; Kou, H.C.; Wang, YH.; Zhu, ZS.; Zhang, FS.; Li, ].S. Kinetics of orthorhombic martensite
decomposition in TC21 alloy under isothermal conditions. J. Mater. Sci. 2012, 47, 521-529. [CrossRef]
Guimaraes, RPM. Estudo in situ da solubilizagao e do envelhecimento da liga [-metaestavel
Ti-5A1-5Mo-5V-3Cr-1Zr usando difracao de raio-X com luz sincrotron de alta energia. Master’s Dissertation,
Escola de Engenharia de Sao Carlos, University of Sao Paulo, Sao Carlos, Brazil, 2018. [CrossRef]


http://dx.doi.org/10.1016/j.msea.2010.09.061
http://dx.doi.org/10.1007/s11837-016-1860-y
http://dx.doi.org/10.4236/ojmetal.2011.11001
http://dx.doi.org/10.1016/j.actamat.2007.11.015
http://dx.doi.org/10.3139/146.101327
http://dx.doi.org/10.4028/www.scientific.net/MSF.738-739.97
http://dx.doi.org/10.1007/s12666-014-0426-3
http://dx.doi.org/10.1016/j.actamat.2015.08.014
http://dx.doi.org/10.1016/j.actamat.2016.03.033
http://dx.doi.org/10.1007/BF02913423
http://dx.doi.org/10.1016/0001-6160(75)90125-X
http://dx.doi.org/10.1016/j.crhy.2011.12.001
http://dx.doi.org/10.1016/j.jallcom.2014.11.176
http://dx.doi.org/10.1007/s11661-016-3714-1
http://dx.doi.org/10.1016/j.msea.2004.08.084
http://dx.doi.org/10.1016/j.msea.2006.02.180
http://dx.doi.org/10.2320/matertrans.45.1629
http://dx.doi.org/10.1063/1.3255966
http://dx.doi.org/10.1016/S0921-5093(00)01891-8
http://dx.doi.org/10.1007/s10853-011-5829-5
http://dx.doi.org/10.11606/D.18.2018.tde-15032018-082818

Quantum Beam Sci. 2020, 4, 12 16 of 16

50.

51.

52.

53.

54.

Balachandran, S.; Kashiwar, A.; Choudhury, A.; Banerjee, D.; Shi, R.; Wang, Y. On variant distribution
and coarsening behavior of the « phase in a metastable § titanium alloy. Acta Mater. 2016, 106, 374-387.
[CrossRef]

Aaronson, H.; Spanos, G.; Masamura, R.; Vardiman, R.; Moon, D.; Menon, E.; Hall, M. Sympathetic nucleation:
An overview. Mater. Sci. Eng. B 1995, 32, 107-123. [CrossRef]

Dong, R.; Li, J.; Kou, H.; Fan, J.; Tang, B.; Sun, M. Precipitation behavior of « phase during aging treatment in
a B-quenched Ti-7333. Mater. Charact. 2018, 140, 275-280. [CrossRef]

Manda, P; Singh, V.; Chakkingal, U.; Singh, A. Development of « precipitates in metastable Ti-5A1-5Mo-5V-3Cr
and similar alloys. Mater. Charact. 2016, 120, 220-228. [CrossRef]

Salib, M.; Teixeira, J.; Germain, L.; Lamielle, E.; Gey, N.; Aeby-Gautier, E. Influence of transformation
temperature on microtexture formation associated with « precipitation at 3 grain boundaries in a
metastable titanium alloy. Acta Mater. 2013, 61, 3758-3768. [CrossRef]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.actamat.2016.01.023
http://dx.doi.org/10.1016/0921-5107(95)80022-0
http://dx.doi.org/10.1016/j.matchar.2018.04.008
http://dx.doi.org/10.1016/j.matchar.2016.09.005
http://dx.doi.org/10.1016/j.actamat.2013.03.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results 
	Initial Condition 
	In Situ Measurements 
	Influence of Heating Up to 500 C 
	Phase Evolution during Ageing at 500 C 
	Microhardness 


	Discussion 
	Quantitative Analysis of Phase Transformation during Isothermal Treatment 
	Behavior of  during Ageing 
	Precipitation and Decomposition of ”iso 
	Precipitation and Morphology of  
	Hardness 

	Conclusions 
	References

