9,139 research outputs found

    I/O-Efficient Dynamic Planar Range Skyline Queries

    Get PDF
    We present the first fully dynamic worst case I/O-efficient data structures that support planar orthogonal \textit{3-sided range skyline reporting queries} in \bigO (\log_{2B^\epsilon} n + \frac{t}{B^{1-\epsilon}}) I/Os and updates in \bigO (\log_{2B^\epsilon} n) I/Os, using \bigO (\frac{n}{B^{1-\epsilon}}) blocks of space, for nn input planar points, tt reported points, and parameter 0ϵ10 \leq \epsilon \leq 1. We obtain the result by extending Sundar's priority queues with attrition to support the operations \textsc{DeleteMin} and \textsc{CatenateAndAttrite} in \bigO (1) worst case I/Os, and in \bigO(1/B) amortized I/Os given that a constant number of blocks is already loaded in main memory. Finally, we show that any pointer-based static data structure that supports \textit{dominated maxima reporting queries}, namely the difficult special case of 4-sided skyline queries, in \bigO(\log^{\bigO(1)}n +t) worst case time must occupy Ω(nlognloglogn)\Omega(n \frac{\log n}{\log \log n}) space, by adapting a similar lower bounding argument for planar 4-sided range reporting queries.Comment: Submitted to SODA 201

    The Lock-free kk-LSM Relaxed Priority Queue

    Full text link
    Priority queues are data structures which store keys in an ordered fashion to allow efficient access to the minimal (maximal) key. Priority queues are essential for many applications, e.g., Dijkstra's single-source shortest path algorithm, branch-and-bound algorithms, and prioritized schedulers. Efficient multiprocessor computing requires implementations of basic data structures that can be used concurrently and scale to large numbers of threads and cores. Lock-free data structures promise superior scalability by avoiding blocking synchronization primitives, but the \emph{delete-min} operation is an inherent scalability bottleneck in concurrent priority queues. Recent work has focused on alleviating this obstacle either by batching operations, or by relaxing the requirements to the \emph{delete-min} operation. We present a new, lock-free priority queue that relaxes the \emph{delete-min} operation so that it is allowed to delete \emph{any} of the ρ+1\rho+1 smallest keys, where ρ\rho is a runtime configurable parameter. Additionally, the behavior is identical to a non-relaxed priority queue for items added and removed by the same thread. The priority queue is built from a logarithmic number of sorted arrays in a way similar to log-structured merge-trees. We experimentally compare our priority queue to recent state-of-the-art lock-free priority queues, both with relaxed and non-relaxed semantics, showing high performance and good scalability of our approach.Comment: Short version as ACM PPoPP'15 poste

    I/O-Efficient Planar Range Skyline and Attrition Priority Queues

    Full text link
    In the planar range skyline reporting problem, we store a set P of n 2D points in a structure such that, given a query rectangle Q = [a_1, a_2] x [b_1, b_2], the maxima (a.k.a. skyline) of P \cap Q can be reported efficiently. The query is 3-sided if an edge of Q is grounded, giving rise to two variants: top-open (b_2 = \infty) and left-open (a_1 = -\infty) queries. All our results are in external memory under the O(n/B) space budget, for both the static and dynamic settings: * For static P, we give structures that answer top-open queries in O(log_B n + k/B), O(loglog_B U + k/B), and O(1 + k/B) I/Os when the universe is R^2, a U x U grid, and a rank space grid [O(n)]^2, respectively (where k is the number of reported points). The query complexity is optimal in all cases. * We show that the left-open case is harder, such that any linear-size structure must incur \Omega((n/B)^e + k/B) I/Os for a query. We show that this case is as difficult as the general 4-sided queries, for which we give a static structure with the optimal query cost O((n/B)^e + k/B). * We give a dynamic structure that supports top-open queries in O(log_2B^e (n/B) + k/B^1-e) I/Os, and updates in O(log_2B^e (n/B)) I/Os, for any e satisfying 0 \le e \le 1. This leads to a dynamic structure for 4-sided queries with optimal query cost O((n/B)^e + k/B), and amortized update cost O(log (n/B)). As a contribution of independent interest, we propose an I/O-efficient version of the fundamental structure priority queue with attrition (PQA). Our PQA supports FindMin, DeleteMin, and InsertAndAttrite all in O(1) worst case I/Os, and O(1/B) amortized I/Os per operation. We also add the new CatenateAndAttrite operation that catenates two PQAs in O(1) worst case and O(1/B) amortized I/Os. This operation is a non-trivial extension to the classic PQA of Sundar, even in internal memory.Comment: Appeared at PODS 2013, New York, 19 pages, 10 figures. arXiv admin note: text overlap with arXiv:1208.4511, arXiv:1207.234

    I/O-optimal algorithms on grid graphs

    Full text link
    Given a graph of which the n vertices form a regular two-dimensional grid, and in which each (possibly weighted and/or directed) edge connects a vertex to one of its eight neighbours, the following can be done in O(scan(n)) I/Os, provided M = Omega(B^2): computation of shortest paths with non-negative edge weights from a single source, breadth-first traversal, computation of a minimum spanning tree, topological sorting, time-forward processing (if the input is a plane graph), and an Euler tour (if the input graph is a tree). The minimum-spanning tree algorithm is cache-oblivious. The best previously published algorithms for these problems need Theta(sort(n)) I/Os. Estimates of the actual I/O volume show that the new algorithms may often be very efficient in practice.Comment: 12 pages' extended abstract plus 12 pages' appendix with details, proofs and calculations. Has not been published in and is currently not under review of any conference or journa

    A Bulk-Parallel Priority Queue in External Memory with STXXL

    Get PDF
    We propose the design and an implementation of a bulk-parallel external memory priority queue to take advantage of both shared-memory parallelism and high external memory transfer speeds to parallel disks. To achieve higher performance by decoupling item insertions and extractions, we offer two parallelization interfaces: one using "bulk" sequences, the other by defining "limit" items. In the design, we discuss how to parallelize insertions using multiple heaps, and how to calculate a dynamic prediction sequence to prefetch blocks and apply parallel multiway merge for extraction. Our experimental results show that in the selected benchmarks the priority queue reaches 75% of the full parallel I/O bandwidth of rotational disks and and 65% of SSDs, or the speed of sorting in external memory when bounded by computation.Comment: extended version of SEA'15 conference pape

    A comprehensive approach in performance evaluation for modernreal-time operating systems

    Get PDF
    In real-time computing the accurate characterization of the performance and determinism that a particular real-time operating system/hardware combination can provide for real-time applications is essential. This issue is not properly addressed by existing performance metrics mainly due to the lack of completeness and generalization. In this paper we present a set of comprehensive, easy-to-implement and useful metrics covering three basic real-time operating system features: response to external events, intertask synchronization and resource sharing, and intertask data transferring. The evaluation of real-time operating systems using a set of fine-grained metrics is fundamental to guarantee that we can reach the required determinism in real-world applications.Publicad

    An occam Style Communications System for UNIX Networks

    Get PDF
    This document describes the design of a communications system which provides occam style communications primitives under a Unix environment, using TCP/IP protocols, and any number of other protocols deemed suitable as underlying transport layers. The system will integrate with a low overhead scheduler/kernel without incurring significant costs to the execution of processes within the run time environment. A survey of relevant occam and occam3 features and related research is followed by a look at the Unix and TCP/IP facilities which determine our working constraints, and a description of the T9000 transputer's Virtual Channel Processor, which was instrumental in our formulation. Drawing from the information presented here, a design for the communications system is subsequently proposed. Finally, a preliminary investigation of methods for lightweight access control to shared resources in an environment which does not provide support for critical sections, semaphores, or busy waiting, is made. This is presented with relevance to mutual exclusion problems which arise within the proposed design. Future directions for the evolution of this project are discussed in conclusion

    Parametric Optimization Of Some Critical Operating System Functions - An Alternate Approach To The Study Of Operating Systems Design

    Get PDF
    Operating systems theory primarily concentrates on the optimal use of computing resources. This paper presents an alternative approach to teaching and studying operating systems design and concepts by way of parametrically optimizing critical operating system functions. Detailed examples of two critical operating systems functions using the presented pedagogical approach are included.http://ojs.jstem.org/index.php?journal=JSTEM&page=article&op=view&path%5b%5d=1326&path%5b%5d=117
    corecore