
A Comprehensive Approach in Performance Evaluation for Modern Real-Time
Operating Systems

Alberto Garcia-Martinez, .Jestis F. Conde and Angel Viiia

CESAT, Open Real-Time Systems Center
Universidaid de Ida Coruiia

La Cor-uiia (Spain)
E-mail: [alberto, ‘jconde, avc] @cesat.es

Abstract

In real-time computing is essential the accurate
characterization of the performance and determinism that
a particular real-time operating systehardware
combination can provide for real-time applications. This
issue is not properly addressed by existing performance
metrics, mainly due to the lack of completeness and
generalization. In this paper we present a set of
comprehensive, easy-to-implement and useful metrics
covering three basic real-time operating system features:
response to external events, intertask synchronization and
resource sharing, and intertask data transferring. The
evaluation of real-time operating systems using a set of
fine-grained metrics is fundamental to guarantee that we
can reach the required determinism in real-world
applications.

1. Introduction

RTOSs play a key role in most real-time systems. A
RTOS must be able to respond to internayexternal events in
a deterministic timeframe, incorporating features and
primitives for multitasking with preemptive priority
scheduling, efficient interprocess communication and
synchronization, and predictable interrupt response.

A comprehensive performance evaluation of a RTOS
may provide useful information in order to obtain the
following benefits:

Choice of the most adequate RTOS to meet the
performance and determinism needed by a specific real-
time application

Precise selection of the underlying hardware platform

Optimal implementation and tuning of the real-time
application

In this paper we present a comprehensive methodology
and its related metrics for quantitatively measuring real-
time performance and determinism of present-day RTOSs.
The next section addresses an overview of performance
evaluation for RTOSs, presenting a comprehensive
approach. Performance measures are discussed in three
different sections: response to external events (section 3),
intertask synchronization and resource sharing (section 4)
and intertask data transferring (section 5). We will end with
the conclusions.

2. Performance evaluation for real-time
operating systems

There is a growing need for performance measures
specifically intended for real-time computer systems.
Researchers have attempted to gain insight in RTOSs
performance by means of two main approaches:

Fine-grained benchmarks: they investigate a RTOS
at a low level, evaluating the efficiency of the hardware
and software interaction for the most frequently used
services.

Rhealstone [5] is the best known fine-grained real-
time benchmark. The Rhealstone metric is used to obtain
a figure of merit from six quantitative measurements:
task switching time, task preemption time, interrupt
latency time, semaphore shuffling time, deadlock
breaking time and datagram throughput time.

Application-oriented benchmarks: they take a
much higher level look at a RTOS, usually in terms of
the number of deadlines kept or missed and the
utilization point at which the system begins to break
down. They are often implemented as synthetic

1089-6503/96 $5.00 0 1996 IEEE
Proceedings of EUROMICRO-22

61

applications running on top of the real-time executive.
Hartstone [8] is the best known application-oriented

real-time benchmark suite. It consists of five series of
tests that mix periodic and aperiodic tasks, with
increasingly frequency requirements. The results are
based on the number of missed deadlines.

However, the two benchmarks mentioned above are not
adequate for real-time applications that demand a deep
knowledge of the underlying RTOS predictability to
guarantee that they will meet their requirements.

Rhealstone is not complete. There are situations not
considered in its metrics (e.g., time for priority inversion
management for a given resource) that can be of special
relevance for many present-day real-time applications.

In addition, Rhealstone has serious drawbacks:
- It is not focused on providing accurate worst-case

measures. It only pretends to compare the average
performance of typical real-time operations in different
RTOSs.

- The six measurement categories are somewhat ad-
hoc. The metrics leave uncovered particular situations
commonly found in real-time applications, that may
cause severe predictability lacking.

- A single figure may not be obtainable for
preemption time, since preemption can be quite
complicated in a multitasking real-time system due to
priority inversion, etc.

- The deadlock breaking criterion loses importance in
the face of algorithms that avoid priority inversion
(priority inheritance or priority ceiling) used by well-
designed schedulers.

Hartstone is excessively generic. It gives an
estimation of the interaction of different scheduling
techniques, but lacks details such as response to external
events, intertask data transferring, etc. It seems to be a
useful test for a very specific type of applications, but
not a broadly-oriented benchmark. Hartstone is not
satisfactory in predicting the behaviour of a RTOS.

The metrics proposed in the following sections are
intended to be comprehensive, useful and easy to
implement, thus leading to a fine-grained evaluation of the
following essential features of modem RTOSs kernels:

0 Response to external events (interrupts)

0 Intertask synchronization and resource sharing
(object synchronization)

Intertask data transfemng (message passing)

An exhaustive analysis of all the possibilities involved in
the use of this features, along with the use of worst-case
measurements, will improve understanding and prediction
of real-time systems.

3. Response to external events

Response to external events by means of hardware
interrupt handling has been deemed as a foremost issue for
real-time systems. Not only fast and predictable response is
required; a RTOS must also optimize the interaction
between application processes and external events, acting
in a timely manner and reducing the time consumed to a
minimum.

We will first describe the behaviour of a system as a
consequence of an interrupt occurrence, continuing with
the exposition of the metrics proposed for the
characterization of this issue.

3.1. Interrupt processing

Whenever an external device wants to inform of an
event occurrence, it sends a signal to the CPU. The signal
received is only transformed into an interrupt if the
interrupt mask is set to an enabled state for the considered
request. The mask is automatically altered when an
interrupt arrives, although it can also be modified by the
operating system, in order to protect critical code segments
(e.g., those involved in context switches). The interval in
which interrupts cannot be acknowledged is frequently
known as Interrupt Disable Time [6] . The time elapsed until
the processor sends an acknowledge signal to the device
that caused the interrupt is called Interrupt Latency Time.

Once the interrupt is accepted, the processor has to
complete the instruction currently in process, time that can
be considerably long for complex CISC instructions. After
the instruction has been processed, the processor’s state has
to be preserved in order to continue with the execution of
the application code after the completion of the interrupt
service. In modem microprocessors, with sophisticated
pipelined and superscalar architectures, storing the state it
is not an straightforward issue [7]. The processor’s state
will be restored after the interrupt code fetches the retum
instruction. Then, a start-up time must be considered,
involving the refilling of the pipeline. This interval is
normally short and occurs in a non-critical timeframe.

Subsequently the Interrupt Service Routine (henceforth
ISR) is vectored. The RTOS ordinarily requires the
provision of a sufficient context for the execution of the
ISR, and the preservation of the state of the task that was
running when the interrupt arrived. We can call this period
the Preprocessing Time for the ISR. The time consumed in
this operation may be minimized by limiting the size of the

62

context needed for the execution of the ISR in the RTOS.
There is a compromise between the complexity of the state
structure provided for the ISR and the variety of the
operations callable inside the interrupt framework (for
example, generally the ISR context is not large enough to
allow operations leading to block itself).

At this point, the system is ready for performing useful
work either for an application waiting for the interrupt, or
for the device that caused it. The period elapsed until the
first instruction of the responding task begins its execution
is known as ISR Dispatch Latency Time.

Finally, when the ISR returns, the processor will execute
kernel code that will undo the state changes made in the
preprocessing phase. The Interrupt Service Time is the time
taken by the ISR to service the interrupt, including this
Post-processing Time. It heavily depends on the device
serviced, and the application considered. This Post-
processing phase is essential for determining the minimum
time needed to repeat the execution of the interrupt service.

The Interrupt Service Time should be kept as small as
possible, in order not to interfere with the service of other
interrupts and with the scheduling of real-time processes,
that are handled at a lower scheduling priority. Thus,
maintaining the interrupts disabled for a long time, due to
an incorrect kernel design or excessively long ISRs, should
be avoided. The work related to the external event serviced
in the ISR will be limited to a minimum, and the remaining
job will be deferred to task context code. The time span up
to the beginning of the execution of the first instruction of
the task code running in a schedulable context is of
paramount concern. In the following paragraphs we will
consider several approaches found in modem RTOSs for
the switch from an ISR to a schedulable context. The usage
of the different options depends on the facilities offered by
the operating system and how the designer has conceptually
outlined the application.

It is reckoned as basic to ease the synchronization
between normal-flow application tasks and external events.
Tasks may want to be aware of the occurrence of an event
and perhaps perform kernel-mode operations (accessing to
the hardware or memory, executing processor’s privileged
instructions). Although in simple RTOSs this relation can
be established using semaphores, sometimes the
communication between interrupt level code and
schedulable code is restricted. In this case a valuable
parameter is the User Task Dispatch Latency Time, that
accounts for the time span from the activation of the
external event to the execution of the first instruction within
the responding task.

Most commonly, drivers are required. A driver, or
device controller, is code that encapsulates in a standard
and popular interface all the functions needed for the
interaction with a device. The usage of drivers combines
several advantages: uniform access to different devices,

code reusability for similar devices, structured concurrent
access management, code modularity, and an appropriate
framework for encouraging portability.

For systems in which user tasks do not possess the same
privileges as kernel tasks, drivers are the only means for the
user level to request kernel features. Driver-related metrics
are relevant in order to characterize the operating system’s
behaviour when performing control issues. One metric that
should be considered is the Driver Dispatch Latency Time,
defined as the time interval from the instant when the
interruption was raised until the first instruction of the
driver’s code waiting for the occurrence of the event is
executed. The synchronization with the interrupt thread
should be accomplished in the fastest possible way (usually
by means of semaphores). The User Task Dispatch Latency
Time (the driver may activate user task code) takes into
account the overhead included in the driver facility. Some
KTOSs offer kernel-level threads that gather thread benefits
with kernel-level features for driver code.

In the evaluation of the time consumed in the switch
from the ISR to the newly activated task, we have to note
that the change to the schedulable code (supposed of higher
priority than all the currently active tasks) can be delayed
for RTOSs built upon non-preemptable kernels. If the
system were interrupted while servicing a system call, it
would need to conclude its related work prior to being able
to reschedule the processor.

Additional delays can be found in special situations.
Qome operations, without being so restrictive to require
interrupt disabling, may demand certain degree of privacy
that is usually obtained by applying mutual exclusion for
the access to common data structures. If an ISR asks for a
service that must be accessed in a mutual exclusion fashion,
and the task interrupted was making use of the shared
resource, the ISR will be forced to stop until the task exits
the critical section. Two context switches will be added. We
want to stress that this situation will only happen if the
operating system provides the ISR with an appropriate
context to allow blocking. If the RTOS does not allow
blocking operations, some calls like the ones related to
object creation (tasks, semaphores, queues) or memory
allocation will be forbidden.

3.2. Metrics proposed

The measures will be based on an interrupt-generator
device specially adapted for our needs: one of the timers
commonly found in hardware platforms. We perform the
measure by substracting the value read from the initial
interrupt time. Analogous measures have been carried out
in [61 and [21, and they are easily portable.

Since the metrics are aimed to offer complete
information to the designer/programmer of real-time
applications, all the possible situations must be considered,

63

including driver processing and the defemng of the
execution to the activated task. Most of the tests carried out
[6, 21 deal exclusively with ISR Latency Dispatch Time,
ignoring the subsequent driver and task defemng. While
achieving determinism in the ISR response is almost
straightforward, maintaining it after the transition to the
schedulable context is not as simple, as we have pointed out
before.

The underlying software nature of the measures should
not be considered as a disadvantage. It should be noted that
it reflects what developers can expect from their systems
running real-world software applications.

The tests identified, with their corresponding measures
are:

e Intermpt-1. We will first consider the case in which
the RTOS allows the synchronization between a task and
an ISR without using the driver’s interface, directly
awakening a waiting task with a semaphore. In all the
tests, the ISR execution code is exclusively devoted to
the measure of the times considered, causing a small
overhead that can be easily estimated. We distinguish
two important values: the ISR Dispatch Latency Time,
and the User Task Dispatch Latency Time.

Intermpt-2. In the second test (see Figure 1) we
include the usage of a driver. Task A performs a
read () call, and the corresponding driver routine
blocks in a semaphore. After an interrupt arrival, the
corresponding ISR is activated and relinquish the
semaphore, awakening the driver code. Finally, control
is returned to the calling task. To completely
characterize the influence of the driver’s mechanism,
time employed in the read () call should be measured.
ISR Dispatch Latency Time will be the same for the two
tests performed.

primitive

Task A

Task B

Driver

ISR

Kernel

state>O state<=O

4. Intertask synchronization and resource
sharing

request

Synchronization objects are RTOSs services used to
control access to shared resources and to signal
synchronous events among tasks. Since these objects are
frequently used in real-time programming, the impact of its
execution times may be determinant for the achievement of
the performance required.

decrement state decrement state and
(request-deer) block task

(request-block)

4.1. Synchronization objects

The most frequently implemented synchronization
objects (counting semaphores, mutexes and condition
variables) possess a similar structure consisting of an
integer (indicating a state), a task queue, and the necessary
primitives to perform adequate actions depending on the
state.

A semaphore is the lower level mechanism that a RTOS
provides for synchronization purposes between several
tasks. The actions carried out by the kernel whenever a
semaphore primitive is called are summarized in the
following two tables:

A mutex is a variation of the semaphore scheme,
modified to address the particular problem of serialization
in accessing shared resources. Its main characteristic
resides in the concept of ownership: the task that acquires

Figure 1 Interrupt-2.

64

primitive
relinquish increment state increment state and

(relinquish-incr) unblock blocked 1 1 tasks
(relinquish-unblock)

state>=O stateCO

the mutex is the only allowed to release it. This feature
allows the implementation of protection and error
recovering mechanisms, while providing additional
services (implementation of control algorithms, e.g. Basic
Priority Inheritance) in order to prevent priority inversion.

Condition variables are useful to solve a problem
frequently found in intertask synchronization in a neat and
efficient way: the access to a shared resource only when a
given condition is satisfied. Condition variables are closely
related to mutexes.

4.2. Metrics proposed

In order to account for all the potential interactions
among the actions exposed, we propose the following
measurements:

* Semaphore-1 provides an estimation of the time
employed by the RTOS in request-decr and relinquish-
incr. Task A requests the semaphore (state>O) and then
relinquishes the semaphore (state>=O).

Semaphore-2 measures the time employed by the
RTOS in request-block and relinquish-unblock (figure
2). Task A (higher priority) requests the semaphore
(state=O) and gets blocked in an empty queue. Task B
(lower priority) relinquishes the semaphore (state<O)
and the kernel unblocks Task A.

Task A

Task B

Kernel
I Requesf-block . Relinquish-unblock - time --A - time - -4

I I I

Figure 2: Semaphore-2

* Semaphore-3 evaluates request-block and
relinquish-unblock, taking into account the effect of the
task's relative priorities (figure 3). Task A (higher

priority) requests an auxiliary semaphore (state=O) and
gets blocked in an empty queue. Task B (medium
priority) requests the semaphore (state=O) and gets
blocked in another empty queue. Task C activates and
relinquishes the auxiliary semaphore, and consequently
Task A becomes active. Task A relinquishes the
semaphore, and the kernel acts similarly to the
relinquish-unblock in Semaphore-2 except in that no
context switch is made. Finally Task A resumes
execution.

Task A

Task B

Task C

Kernel
I Relinquish-unblock
I+ - time -

(no context switch)
*I

Figure 3. Semaphore-3.

Commercial RTOSs may behave in different ways in

1 . Non-deferred unblocking: as shown in figure 3,
when Task A relinquishes the semaphore, the kernel
unblocks Task B (although Task A keeps executing).
This approach is more intuitive.

2. Deferred unblocking: after Task A has relinquished
the semaphore, the kernel unblocks Task B only if its
priority is higher than priority of Task A. If this is
not true, the unblocking of Task B is deferred until
the context switch for Task B becomes necessary.
This implementation diminishes relinquish-unblock
time, but it increases context switch time.

this measurement:

Figure 4. Semaphore-4.

65

Semaphore-4. This test is similar to Semaphore-2,
but now the influence of several queued requests is
considered. Figure 4 shows it graphically.

0 Semaphore4 is analogous to Semaphore-3,
considering the influence of the different queue
management policies. Figure 5 shows it graphically.

Task 5,

Task C

Kernel I--- I Relinquish-unblock I
+I

e-- time- -
(no context switch)

Figure 5. Semaphore-5.

The five former tests can be easily adapted to the
corresponding ones for mutexes. One additional test is
needed to reflect the influence of a priority inversion
control mechanism, usually based in a Basic Priority
Inheritance algorithm.

0 Mutexd. This measure evaluates the cost of priority
inheritance (BPI algorithm). Figure 6 shows it
graphically.

I Request-block I I Relinquish-unblock I
, 4 - - t i m e - - t + - - t i m e --t

(with5PI) ' I fwithBPI) I

I

Figure 6. Mutex-6.

with mutexes. The metrics are analogous to the exposed
above, presenting the following differences:

Condition-variable-1. For this test we will only
perform a relinquish operation, that does not cause an
increment (as there is no state). If there are no blocked
tasks, this relinquish will not produce any profitable
action. In this case we can name this action as null-
relinquish. We want to stress that a mutex operation is
always implicit in condition-variable operations, and
hence the mutex operation times will be included in the
measures.

0 Condition-variable-2. In this test we will deal with
blocking and unblocking operations. The request
operation is always blocking (request-block). The
relinquish-unblock operation acts in a more subtle way,
unblocking a previously blocked task, but delaying a
possible context switch until the releasing of the related
mutex. Consequently, the time measured in the
unblocking operation should embody the relinquish-
unblock and the mutex release operations.

Condition-variable-3. We will measure in this test
the time elapsed in the activation of a lower priority task
by a higher priority task. This time we will only need to
measure the relinquish-unblock operation, without
including the subsequent mutex operation.

In the application of all the measurements just presented,
is advisable to consider factors such as: time-outs, model of
tasks (processes, threads), total RTOS workload, etc. A
complete test would show how the results vary when the
factors mentioned above are modified.

5. Intertask data transferring

Message passing is a widely extended mechanism for
the interchange of formatted data streams among arbitrary
tasks, providing simultaneously synchronization facilities.

5.1. Message passing

The key structures involved in message passing are: a
queue, that may contain sent messages waiting for a
destination, and two additional task queues (one for sender
tasks and another for receiver tasks).

As it happened in the previous section for request and
relinquish operations, send and receive operations result in
different actions and therefore different measured times,
depending on the state of the element. The six basic actions
identified are:

The tests just explained can be also applied to condition
variables, after the appropriate adaptations in order to take
into account its stateless condition and its special relation

66

send-data. A task delivers a message to a queue with
space enough to store it. Data is copied from the task
space to the kernel buffer.

receive-data. When a receive operation is signalled
and there were previously stored messages, the kernel
copies a message from his memory zone to the user's
one.

send-block. If a task performs a send operation while
the message queue is full, it is blocked and the CPU is
granted to another active task.

receive-block. If the running task that asks for a
message finds the message queue empty, it is blocked on
the receiver's queue.

send-unblock. A message is sent to a queue, with
blocked tasks waiting for new messages. One of the
waiting tasks is awakened, and data is copied directly
from sender to receiver. Once the data has been
transmitted, the kernel seeks for the next task to execute,
switching contexts if necessary.

receive-unblock. In this case, when a task performs a
receive operation, enough space may be released and
one (or more) of the tasks that were blocked when trying
to send data can be unblocked. Data is copied from the
first stored message of the message queue to the
receiving task. Afterwards, a sending task is unblocked
and the message data is copied into the message queue
structure. This last step may be repeated several times,
until the message queue is refilled. Some systems may
follow different policies (for example, by directly
passing a message from a blocked task to the receiver,
avoiding unnecessary operations by means of not
preserving FIFO posting). The task unblocking may lead
to a context switch.

The transference of a message between two tasks always
involves costly operations. On one hand, if the send-datal
receive-data sequence is performed, the same information
is copied twice. On the other hand, with blocking1
unblocking operations, only one copy is made, but the
transmission is burdened with expensive task management
procedures.

A remarkable property is the duality found between send
and receive: there is a symmetry between both
functionalities, although the way the unblocking process is
implemented may vary substantially, as we have pointed
out above. Some advantages may be obtained by working
with a queue offering empty slots (and in consequence
without blocked sender tasks), and commercial RTOSs are
usually tuned under these premises.

5.2. Metrics proposed

As we did for synchronization objects, we will present
several tests constructed with the building blocks described
in the previous section.

Message-passing-1 will account for the send-data
and receive-data functionalities. Task A sends a
message to an empty queue; another task receives it. The
test can be executed using a single task (fig. 7).

Kernel
I

-1
' Send-data- A Receive-data
I* - time I time

Figure 7. Message-Passing-l .

Message-passing-2. The test previously described
may be affected by the number of messages already
present in the queue. This second test is similar to the
previous one, but the queue is filled with a variable
number of messages, for a complete characterization of
this effect.

The next tests are devoted to the evaluation of blocking

Message-passing-3. We will consider here the time
span consumed by Task A when asking for a message in
an empty queue, and the amount of time passed when a
lower priority task (Task B) unblocks Task A by sending
a message (see Figure 8).

and unblocking operations.

@* 4
we

Task A

1 :+ - - Receive-block - - Send-unblock - - +:
time time

Figure 8. Message-Passing-3.

Message-passing-4. The test is similar to Message-
Passing-3, but now Task B (lower priority) is previously
blocked (it asked for a message in an empty queue), and
it is unblocked by Task A (sending a message). This test
(shown in figure 9) will be held with the use of an
auxiliary semaphore. As we stated in synchronization
objects, there are alternative behaviours that can be

67

observed for different RTOSs. As the context switch
does not take place in the send command, but when a
later service is asked, either the unblocking of the task or
the copy of the data (or both) can be deferred to the
context switch. However, this behaviour is more
infrequent in present-day RTOSs than the equivalent one
described for semaphores.

Task B

Task C

Kernel
I Send-unblock I - - time --t,
‘*(without context switch)

Figure 9. Message-Passing-4.

Due to the symmetry found in the message passing
mechanism between send and receive, each test proposed
for the evaluation of blocking and unblocking operations
will have its corresponding dual counterpart. However, the
conceptual duality will not necessarily be transformed into
performance duality. Thus, two more metrics (Message-
passing4 and Message-passing-6) are added simply by
swapping the words “send’ and “receive” for Message-
passing-3 and Message-passing-4. In these latter
measures, the queue will be pre-filled with the appropriate
number of messages.

When blocking and unblocking operations are involved,
additional tests should be executed in order to reflect that
the number of tasks in the blocking queues may affect the
performance measured. Therefore a new set of tests is
proposed, adapting Message-passing-3, -4, -5 and -6 to the
presence of a certain number (that should be variable) of
blocked tasks, resulting in Message-passing-7, -8, -9
and -10.

Another key factor in message passing is the number of
transmitted bytes. A complete quantitative description of
the message passing mechanism in a RTOS will include
results for a wide range of transfer sizes for the ten
measures explained above. The comparison of these
experimental results with the results obtained via a simple
copy primitive will be helpful in evaluating the mechanism.
We should recall a principle stating that for large quantities
of data the usage of shared memory policies is more
suitable than message passing, because the copying phase
arises as the major drawback in the message passing
process. A thorough discussion on this issue, and an
example for a commercial RTOS, can be found in [4].

6. Conclusions

In this paper we have presented several metrics in order
to address the comprehensive evaluation of the essential
services provided by a RTOS: response to external events,
intertask communications and resource sharing, and
intertask data transferring. For each of the former features
we have described several fine-grained tests, covering all
the possibilities that may arise while implementing a real-
time application. We want to stress the attainment of a set
of tests that pretend to be complete, general, easy to
implement, neatly exposed, and last but not least, useful.

The theoretical work presented in this paper has been
applied to two of the most popular RTOSs, namely
VxWorks and Solaris [3]. The different approaches taken in
the implementation of the two RTOSs have contributed to
validate the metrics shown. In the application of the tests,
useful information (advantages in certain programming
strategies, operating system bugs, performance guidelines)
concerning the behaviour of the two systems has outcome.
The knowledge obtained from the application of the tests to
Solaris has been of capital importance in the development
of a real-world application [11.

7. References

1

2

3

4

5

6

7

8

68

Conde, J. and Viiia, A. A Distributed Real-Time Architecture
to SatisfL Hard I/O Throughput Requirements. Proceedings of
the 21st IEEE Euromicro Conference on Design of Hardware/
Software Systems. Como (Italy), 1995.
Faller, N. Measuring the Latency lime of Real-lime Unix-like
Operating Systems. Technical Report TR-92-037. Berkeley
University. Junio 1992.
Garcia-Martinez, A. Banco de Pruebas de Sistemas
Operativos de liempo Real. Technical Report CESAT-TR-95-
06.

Garcia-Martinez, A., Juanes R., and Viiia, A. A Fixed-Eme
Shred Memory Based Solution for Different Size Interprocess
Data Transferring. Technical Report CESAT-TR-95-02.
Kar, R. P., and Porter, K. Rhealstone - A Real-lime
Benchmarking Proposal. Dr. Dobb’s Joumal, February, 1989.
Maechtel, M., and Rzehak, H. On realtime operating systems:
How to compare performance. 1994 Workshop on Real-Time
Programming, Lake Constance. June 1994.
Walker, W., and Cragon, H. G. Interrupt Processing in
Concurrent Processors. Computer, Vol28, no 6, June 1995.
Weiderman, N. Hartstone: Synthetic Benchmark
Requirements for Hard Real-lime Applications. Technical
Report CMU/SEI-89-TR-23. Carnegie Mellon University,
June 1989.

