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Abstract 

In real-time computing is essential the accurate 
characterization of the performance and determinism that 
a particular real-time operating systehardware 
combination can provide for real-time applications. This 
issue is not properly addressed by existing performance 
metrics, mainly due to the lack of completeness and 
generalization. In this paper we present a set of 
comprehensive, easy-to-implement and useful metrics 
covering three basic real-time operating system features: 
response to external events, intertask synchronization and 
resource sharing, and intertask data transferring. The 
evaluation of real-time operating systems using a set of 
fine-grained metrics is fundamental to guarantee that we 
can reach the required determinism in real-world 
applications. 

1. Introduction 

RTOSs play a key role in most real-time systems. A 
RTOS must be able to respond to internayexternal events in 
a deterministic timeframe, incorporating features and 
primitives for multitasking with preemptive priority 
scheduling, efficient interprocess communication and 
synchronization, and predictable interrupt response. 

A comprehensive performance evaluation of a RTOS 
may provide useful information in order to obtain the 
following benefits: 

Choice of the most adequate RTOS to meet the 
performance and determinism needed by a specific real- 
time application 

Precise selection of the underlying hardware platform 

Optimal implementation and tuning of the real-time 
application 

In this paper we present a comprehensive methodology 
and its related metrics for quantitatively measuring real- 
time performance and determinism of present-day RTOSs. 
The next section addresses an overview of performance 
evaluation for RTOSs, presenting a comprehensive 
approach. Performance measures are discussed in three 
different sections: response to external events (section 3), 
intertask synchronization and resource sharing (section 4) 
and intertask data transferring (section 5). We will end with 
the conclusions. 

2. Performance evaluation for real-time 
operating systems 

There is a growing need for performance measures 
specifically intended for real-time computer systems. 
Researchers have attempted to gain insight in RTOSs 
performance by means of two main approaches: 

Fine-grained benchmarks: they investigate a RTOS 
at a low level, evaluating the efficiency of the hardware 
and software interaction for the most frequently used 
services. 

Rhealstone [5 ]  is the best known fine-grained real- 
time benchmark. The Rhealstone metric is used to obtain 
a figure of merit from six quantitative measurements: 
task switching time, task preemption time, interrupt 
latency time, semaphore shuffling time, deadlock 
breaking time and datagram throughput time. 

Application-oriented benchmarks: they take a 
much higher level look at a RTOS, usually in terms of 
the number of deadlines kept or missed and the 
utilization point at which the system begins to break 
down. They are often implemented as synthetic 
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applications running on top of the real-time executive. 
Hartstone [8] is the best known application-oriented 

real-time benchmark suite. It consists of five series of 
tests that mix periodic and aperiodic tasks, with 
increasingly frequency requirements. The results are 
based on the number of missed deadlines. 

However, the two benchmarks mentioned above are not 
adequate for real-time applications that demand a deep 
knowledge of the underlying RTOS predictability to 
guarantee that they will meet their requirements. 

Rhealstone is not complete. There are situations not 
considered in its metrics (e.g., time for priority inversion 
management for a given resource) that can be of special 
relevance for many present-day real-time applications. 

In addition, Rhealstone has serious drawbacks: 
- It is not focused on providing accurate worst-case 

measures. It only pretends to compare the average 
performance of typical real-time operations in different 
RTOSs. 

- The six measurement categories are somewhat ad- 
hoc. The metrics leave uncovered particular situations 
commonly found in real-time applications, that may 
cause severe predictability lacking. 

- A single figure may not be obtainable for 
preemption time, since preemption can be quite 
complicated in a multitasking real-time system due to 
priority inversion, etc. 

- The deadlock breaking criterion loses importance in 
the face of algorithms that avoid priority inversion 
(priority inheritance or priority ceiling) used by well- 
designed schedulers. 

Hartstone is excessively generic. It gives an 
estimation of the interaction of different scheduling 
techniques, but lacks details such as response to external 
events, intertask data transferring, etc. It seems to be a 
useful test for a very specific type of applications, but 
not a broadly-oriented benchmark. Hartstone is not 
satisfactory in predicting the behaviour of a RTOS. 

The metrics proposed in the following sections are 
intended to be comprehensive, useful and easy to 
implement, thus leading to a fine-grained evaluation of the 
following essential features of modem RTOSs kernels: 

0 Response to external events (interrupts) 

0 Intertask synchronization and resource sharing 
(object synchronization) 

Intertask data transfemng (message passing) 

An exhaustive analysis of all the possibilities involved in 
the use of this features, along with the use of worst-case 
measurements, will improve understanding and prediction 
of real-time systems. 

3. Response to external events 

Response to external events by means of hardware 
interrupt handling has been deemed as a foremost issue for 
real-time systems. Not only fast and predictable response is 
required; a RTOS must also optimize the interaction 
between application processes and external events, acting 
in a timely manner and reducing the time consumed to a 
minimum. 

We will first describe the behaviour of a system as a 
consequence of an interrupt occurrence, continuing with 
the exposition of the metrics proposed for the 
characterization of this issue. 

3.1. Interrupt processing 

Whenever an external device wants to inform of an 
event occurrence, it sends a signal to the CPU. The signal 
received is only transformed into an interrupt if the 
interrupt mask is set to an enabled state for the considered 
request. The mask is automatically altered when an 
interrupt arrives, although it can also be modified by the 
operating system, in order to protect critical code segments 
(e.g., those involved in context switches). The interval in 
which interrupts cannot be acknowledged is frequently 
known as Interrupt Disable Time [6] .  The time elapsed until 
the processor sends an acknowledge signal to the device 
that caused the interrupt is called Interrupt Latency Time. 

Once the interrupt is accepted, the processor has to 
complete the instruction currently in process, time that can 
be considerably long for complex CISC instructions. After 
the instruction has been processed, the processor’s state has 
to be preserved in order to continue with the execution of 
the application code after the completion of the interrupt 
service. In modem microprocessors, with sophisticated 
pipelined and superscalar architectures, storing the state it 
is not an straightforward issue [7].  The processor’s state 
will be restored after the interrupt code fetches the retum 
instruction. Then, a start-up time must be considered, 
involving the refilling of the pipeline. This interval is 
normally short and occurs in a non-critical timeframe. 

Subsequently the Interrupt Service Routine (henceforth 
ISR) is vectored. The RTOS ordinarily requires the 
provision of a sufficient context for the execution of the 
ISR, and the preservation of the state of the task that was 
running when the interrupt arrived. We can call this period 
the Preprocessing Time for the ISR. The time consumed in 
this operation may be minimized by limiting the size of the 
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context needed for the execution of the ISR in the RTOS. 
There is a compromise between the complexity of the state 
structure provided for the ISR and the variety of the 
operations callable inside the interrupt framework (for 
example, generally the ISR context is not large enough to 
allow operations leading to block itself). 

At this point, the system is ready for performing useful 
work either for an application waiting for the interrupt, or 
for the device that caused it. The period elapsed until the 
first instruction of the responding task begins its execution 
is known as ISR Dispatch Latency Time. 

Finally, when the ISR returns, the processor will execute 
kernel code that will undo the state changes made in the 
preprocessing phase. The Interrupt Service Time is the time 
taken by the ISR to service the interrupt, including this 
Post-processing Time. It heavily depends on the device 
serviced, and the application considered. This Post- 
processing phase is essential for determining the minimum 
time needed to repeat the execution of the interrupt service. 

The Interrupt Service Time should be kept as small as 
possible, in order not to interfere with the service of other 
interrupts and with the scheduling of real-time processes, 
that are handled at a lower scheduling priority. Thus, 
maintaining the interrupts disabled for a long time, due to 
an incorrect kernel design or excessively long ISRs, should 
be avoided. The work related to the external event serviced 
in the ISR will be limited to a minimum, and the remaining 
job will be deferred to task context code. The time span up 
to the beginning of the execution of the first instruction of 
the task code running in a schedulable context is of 
paramount concern. In the following paragraphs we will 
consider several approaches found in modem RTOSs for 
the switch from an ISR to a schedulable context. The usage 
of the different options depends on the facilities offered by 
the operating system and how the designer has conceptually 
outlined the application. 

It is reckoned as basic to ease the synchronization 
between normal-flow application tasks and external events. 
Tasks may want to be aware of the occurrence of an event 
and perhaps perform kernel-mode operations (accessing to 
the hardware or memory, executing processor’s privileged 
instructions). Although in simple RTOSs this relation can 
be established using semaphores, sometimes the 
communication between interrupt level code and 
schedulable code is restricted. In this case a valuable 
parameter is the User Task Dispatch Latency Time, that 
accounts for the time span from the activation of the 
external event to the execution of the first instruction within 
the responding task. 

Most commonly, drivers are required. A driver, or 
device controller, is code that encapsulates in a standard 
and popular interface all the functions needed for the 
interaction with a device. The usage of drivers combines 
several advantages: uniform access to different devices, 

code reusability for similar devices, structured concurrent 
access management, code modularity, and an appropriate 
framework for encouraging portability. 

For systems in which user tasks do not possess the same 
privileges as kernel tasks, drivers are the only means for the 
user level to request kernel features. Driver-related metrics 
are relevant in order to characterize the operating system’s 
behaviour when performing control issues. One metric that 
should be considered is the Driver Dispatch Latency Time, 
defined as the time interval from the instant when the 
interruption was raised until the first instruction of the 
driver’s code waiting for the occurrence of the event is 
executed. The synchronization with the interrupt thread 
should be accomplished in the fastest possible way (usually 
by means of semaphores). The User Task Dispatch Latency 
Time (the driver may activate user task code) takes into 
account the overhead included in the driver facility. Some 
KTOSs offer kernel-level threads that gather thread benefits 
with kernel-level features for driver code. 

In the evaluation of the time consumed in the switch 
from the ISR to the newly activated task, we have to note 
that the change to the schedulable code (supposed of higher 
priority than all the currently active tasks) can be delayed 
for RTOSs built upon non-preemptable kernels. If the 
system were interrupted while servicing a system call, it 
would need to conclude its related work prior to being able 
to reschedule the processor. 

Additional delays can be found in special situations. 
Qome operations, without being so restrictive to require 
interrupt disabling, may demand certain degree of privacy 
that is usually obtained by applying mutual exclusion for 
the access to common data structures. If an ISR asks for a 
service that must be accessed in a mutual exclusion fashion, 
and the task interrupted was making use of the shared 
resource, the ISR will be forced to stop until the task exits 
the critical section. Two context switches will be added. We 
want to stress that this situation will only happen if the 
operating system provides the ISR with an appropriate 
context to allow blocking. If the RTOS does not allow 
blocking operations, some calls like the ones related to 
object creation (tasks, semaphores, queues) or memory 
allocation will be forbidden. 

3.2. Metrics proposed 

The measures will be based on an interrupt-generator 
device specially adapted for our needs: one of the timers 
commonly found in hardware platforms. We perform the 
measure by substracting the value read from the initial 
interrupt time. Analogous measures have been carried out 
in [61 and [21, and they are easily portable. 

Since the metrics are aimed to offer complete 
information to the designer/programmer of real-time 
applications, all the possible situations must be considered, 
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including driver processing and the defemng of the 
execution to the activated task. Most of the tests carried out 
[6, 21 deal exclusively with ISR Latency Dispatch Time, 
ignoring the subsequent driver and task defemng. While 
achieving determinism in the ISR response is almost 
straightforward, maintaining it after the transition to the 
schedulable context is not as simple, as we have pointed out 
before. 

The underlying software nature of the measures should 
not be considered as a disadvantage. It should be noted that 
it reflects what developers can expect from their systems 
running real-world software applications. 

The tests identified, with their corresponding measures 
are: 

e Intermpt-1. We will first consider the case in which 
the RTOS allows the synchronization between a task and 
an ISR without using the driver’s interface, directly 
awakening a waiting task with a semaphore. In all the 
tests, the ISR execution code is exclusively devoted to 
the measure of the times considered, causing a small 
overhead that can be easily estimated. We distinguish 
two important values: the ISR Dispatch Latency Time, 
and the User Task Dispatch Latency Time. 

Intermpt-2. In the second test (see Figure 1) we 
include the usage of a driver. Task A performs a 
read ( ) call, and the corresponding driver routine 
blocks in a semaphore. After an interrupt arrival, the 
corresponding ISR is activated and relinquish the 
semaphore, awakening the driver code. Finally, control 
is returned to the calling task. To completely 
characterize the influence of the driver’s mechanism, 
time employed in the read ( ) call should be measured. 
ISR Dispatch Latency Time will be the same for the two 
tests performed. 

primitive 

Task A 

Task B 

Driver 

ISR 

Kernel 

state>O state<=O 

4. Intertask synchronization and resource 
sharing 

request 

Synchronization objects are RTOSs services used to 
control access to shared resources and to signal 
synchronous events among tasks. Since these objects are 
frequently used in real-time programming, the impact of its 
execution times may be determinant for the achievement of 
the performance required. 

decrement state decrement state and 
(request-deer) block task 

(request-block) 

4.1. Synchronization objects 

The most frequently implemented synchronization 
objects (counting semaphores, mutexes and condition 
variables) possess a similar structure consisting of an 
integer (indicating a state), a task queue, and the necessary 
primitives to perform adequate actions depending on the 
state. 

A semaphore is the lower level mechanism that a RTOS 
provides for synchronization purposes between several 
tasks. The actions carried out by the kernel whenever a 
semaphore primitive is called are summarized in the 
following two tables: 

A mutex is a variation of the semaphore scheme, 
modified to address the particular problem of serialization 
in accessing shared resources. Its main characteristic 
resides in the concept of ownership: the task that acquires 

Figure 1 Interrupt-2. 
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primitive 
relinquish increment state increment state and 

(relinquish-incr) unblock blocked 1 1 tasks 
(relinquish-unblock) 

state>=O stateCO 

the mutex is the only allowed to release it. This feature 
allows the implementation of protection and error 
recovering mechanisms, while providing additional 
services (implementation of control algorithms, e.g. Basic 
Priority Inheritance) in order to prevent priority inversion. 

Condition variables are useful to solve a problem 
frequently found in intertask synchronization in a neat and 
efficient way: the access to a shared resource only when a 
given condition is satisfied. Condition variables are closely 
related to mutexes. 

4.2. Metrics proposed 

In order to account for all the potential interactions 
among the actions exposed, we propose the following 
measurements: 

* Semaphore-1 provides an estimation of the time 
employed by the RTOS in request-decr and relinquish- 
incr. Task A requests the semaphore (state>O) and then 
relinquishes the semaphore (state>=O). 

Semaphore-2 measures the time employed by the 
RTOS in request-block and relinquish-unblock (figure 
2). Task A (higher priority) requests the semaphore 
(state=O) and gets blocked in an empty queue. Task B 
(lower priority) relinquishes the semaphore (state<O) 
and the kernel unblocks Task A. 

Task A 

Task B 

Kernel 
I Requesf-block . Relinquish-unblock - time --A - time - -4  

I I I 

Figure 2: Semaphore-2 

* Semaphore-3 evaluates request-block and 
relinquish-unblock, taking into account the effect of the 
task's relative priorities (figure 3). Task A (higher 

priority) requests an auxiliary semaphore (state=O) and 
gets blocked in an empty queue. Task B (medium 
priority) requests the semaphore (state=O) and gets 
blocked in another empty queue. Task C activates and 
relinquishes the auxiliary semaphore, and consequently 
Task A becomes active. Task A relinquishes the 
semaphore, and the kernel acts similarly to the 
relinquish-unblock in Semaphore-2 except in that no 
context switch is made. Finally Task A resumes 
execution. 

Task A 

Task B 

Task C 

Kernel 
I Relinquish-unblock 
I+ - time - 

(no context switch) 
*I 

Figure 3. Semaphore-3. 

Commercial RTOSs may behave in different ways in 

1 .  Non-deferred unblocking: as shown in figure 3, 
when Task A relinquishes the semaphore, the kernel 
unblocks Task B (although Task A keeps executing). 
This approach is more intuitive. 

2. Deferred unblocking: after Task A has relinquished 
the semaphore, the kernel unblocks Task B only if its 
priority is higher than priority of Task A. If this is 
not true, the unblocking of Task B is deferred until 
the context switch for Task B becomes necessary. 
This implementation diminishes relinquish-unblock 
time, but it increases context switch time. 

this measurement: 

Figure 4. Semaphore-4. 
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Semaphore-4. This test is similar to Semaphore-2, 
but now the influence of several queued requests is 
considered. Figure 4 shows it graphically. 

0 Semaphore4 is analogous to Semaphore-3, 
considering the influence of the different queue 
management policies. Figure 5 shows it graphically. 

Task 5, 

Task C 

Kernel I--- I Relinquish-unblock I 
+I 

e-- time- - 
(no context switch) 

Figure 5. Semaphore-5. 

The five former tests can be easily adapted to the 
corresponding ones for mutexes. One additional test is 
needed to reflect the influence of a priority inversion 
control mechanism, usually based in a Basic Priority 
Inheritance algorithm. 

0 Mutexd. This measure evaluates the cost of priority 
inheritance (BPI algorithm). Figure 6 shows it 
graphically. 

I Request-block I I Relinquish-unblock I 
, 4 - - t i m e - - t  + - - t i m e  --t 

(with5PI) ' I fwithBPI) I 

I 

Figure 6. Mutex-6. 

with mutexes. The metrics are analogous to the exposed 
above, presenting the following differences: 

Condition-variable-1. For this test we will only 
perform a relinquish operation, that does not cause an 
increment (as there is no state). If there are no blocked 
tasks, this relinquish will not produce any profitable 
action. In this case we can name this action as null- 
relinquish. We want to stress that a mutex operation is 
always implicit in condition-variable operations, and 
hence the mutex operation times will be included in the 
measures. 

0 Condition-variable-2. In this test we will deal with 
blocking and unblocking operations. The request 
operation is always blocking (request-block). The 
relinquish-unblock operation acts in a more subtle way, 
unblocking a previously blocked task, but delaying a 
possible context switch until the releasing of the related 
mutex. Consequently, the time measured in the 
unblocking operation should embody the relinquish- 
unblock and the mutex release operations. 

Condition-variable-3. We will measure in this test 
the time elapsed in the activation of a lower priority task 
by a higher priority task. This time we will only need to 
measure the relinquish-unblock operation, without 
including the subsequent mutex operation. 

In the application of all the measurements just presented, 
is advisable to consider factors such as: time-outs, model of 
tasks (processes, threads), total RTOS workload, etc. A 
complete test would show how the results vary when the 
factors mentioned above are modified. 

5. Intertask data transferring 

Message passing is a widely extended mechanism for 
the interchange of formatted data streams among arbitrary 
tasks, providing simultaneously synchronization facilities. 

5.1. Message passing 

The key structures involved in message passing are: a 
queue, that may contain sent messages waiting for a 
destination, and two additional task queues (one for sender 
tasks and another for receiver tasks). 

As it happened in the previous section for request and 
relinquish operations, send and receive operations result in 
different actions and therefore different measured times, 
depending on the state of the element. The six basic actions 
identified are: 

The tests just explained can be also applied to condition 
variables, after the appropriate adaptations in order to take 
into account its stateless condition and its special relation 
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send-data. A task delivers a message to a queue with 
space enough to store it. Data is copied from the task 
space to the kernel buffer. 

receive-data. When a receive operation is signalled 
and there were previously stored messages, the kernel 
copies a message from his memory zone to the user's 
one. 

send-block. If a task performs a send operation while 
the message queue is full, it is blocked and the CPU is 
granted to another active task. 

receive-block. If the running task that asks for a 
message finds the message queue empty, it is blocked on 
the receiver's queue. 

send-unblock. A message is sent to a queue, with 
blocked tasks waiting for new messages. One of the 
waiting tasks is awakened, and data is copied directly 
from sender to receiver. Once the data has been 
transmitted, the kernel seeks for the next task to execute, 
switching contexts if necessary. 

receive-unblock. In this case, when a task performs a 
receive operation, enough space may be released and 
one (or more) of the tasks that were blocked when trying 
to send data can be unblocked. Data is copied from the 
first stored message of the message queue to the 
receiving task. Afterwards, a sending task is unblocked 
and the message data is copied into the message queue 
structure. This last step may be repeated several times, 
until the message queue is refilled. Some systems may 
follow different policies (for example, by directly 
passing a message from a blocked task to the receiver, 
avoiding unnecessary operations by means of not 
preserving FIFO posting). The task unblocking may lead 
to a context switch. 

The transference of a message between two tasks always 
involves costly operations. On one hand, if the send-datal 
receive-data sequence is performed, the same information 
is copied twice. On the other hand, with blocking1 
unblocking operations, only one copy is made, but the 
transmission is burdened with expensive task management 
procedures. 

A remarkable property is the duality found between send 
and receive: there is a symmetry between both 
functionalities, although the way the unblocking process is 
implemented may vary substantially, as we have pointed 
out above. Some advantages may be obtained by working 
with a queue offering empty slots (and in consequence 
without blocked sender tasks), and commercial RTOSs are 
usually tuned under these premises. 

5.2. Metrics proposed 

As we did for synchronization objects, we will present 
several tests constructed with the building blocks described 
in the previous section. 

Message-passing-1 will account for the send-data 
and receive-data functionalities. Task A sends a 
message to an empty queue; another task receives it. The 
test can be executed using a single task (fig. 7). 

Kernel 
I 

-1 
' Send-data- A Receive-data 
I* - time I time 

Figure 7. Message-Passing-l . 

Message-passing-2. The test previously described 
may be affected by the number of messages already 
present in the queue. This second test is similar to the 
previous one, but the queue is filled with a variable 
number of messages, for a complete characterization of 
this effect. 

The next tests are devoted to the evaluation of blocking 

Message-passing-3. We will consider here the time 
span consumed by Task A when asking for a message in 
an empty queue, and the amount of time passed when a 
lower priority task (Task B) unblocks Task A by sending 
a message (see Figure 8). 

and unblocking operations. 

@* 4 
we 

Task A 

1 :+ - - Receive-block - - Send-unblock - - +: 
time time 

Figure 8. Message-Passing-3. 

Message-passing-4. The test is similar to Message- 
Passing-3, but now Task B (lower priority) is previously 
blocked (it asked for a message in an empty queue), and 
it is unblocked by Task A (sending a message). This test 
(shown in figure 9) will be held with the use of an 
auxiliary semaphore. As we stated in synchronization 
objects, there are alternative behaviours that can be 
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observed for different RTOSs. As the context switch 
does not take place in the send command, but when a 
later service is asked, either the unblocking of the task or 
the copy of the data (or both) can be deferred to the 
context switch. However, this behaviour is more 
infrequent in present-day RTOSs than the equivalent one 
described for semaphores. 

Task B 

Task C 

Kernel 
I Send-unblock I - -  time --t, 
‘*(without context switch) 

Figure 9. Message-Passing-4. 

Due to the symmetry found in the message passing 
mechanism between send and receive, each test proposed 
for the evaluation of blocking and unblocking operations 
will have its corresponding dual counterpart. However, the 
conceptual duality will not necessarily be transformed into 
performance duality. Thus, two more metrics (Message- 
passing4 and Message-passing-6) are added simply by 
swapping the words “send’ and “receive” for Message- 
passing-3 and Message-passing-4. In these latter 
measures, the queue will be pre-filled with the appropriate 
number of messages. 

When blocking and unblocking operations are involved, 
additional tests should be executed in order to reflect that 
the number of tasks in the blocking queues may affect the 
performance measured. Therefore a new set of tests is 
proposed, adapting Message-passing-3, -4, -5 and -6 to the 
presence of a certain number (that should be variable) of 
blocked tasks, resulting in Message-passing-7, -8, -9 
and -10. 

Another key factor in message passing is the number of 
transmitted bytes. A complete quantitative description of 
the message passing mechanism in a RTOS will include 
results for a wide range of transfer sizes for the ten 
measures explained above. The comparison of these 
experimental results with the results obtained via a simple 
copy primitive will be helpful in evaluating the mechanism. 
We should recall a principle stating that for large quantities 
of data the usage of shared memory policies is more 
suitable than message passing, because the copying phase 
arises as the major drawback in the message passing 
process. A thorough discussion on this issue, and an 
example for a commercial RTOS, can be found in [4]. 

6. Conclusions 

In this paper we have presented several metrics in order 
to address the comprehensive evaluation of the essential 
services provided by a RTOS: response to external events, 
intertask communications and resource sharing, and 
intertask data transferring. For each of the former features 
we have described several fine-grained tests, covering all 
the possibilities that may arise while implementing a real- 
time application. We want to stress the attainment of a set 
of tests that pretend to be complete, general, easy to 
implement, neatly exposed, and last but not least, useful. 

The theoretical work presented in this paper has been 
applied to two of the most popular RTOSs, namely 
VxWorks and Solaris [3]. The different approaches taken in 
the implementation of the two RTOSs have contributed to 
validate the metrics shown. In the application of the tests, 
useful information (advantages in certain programming 
strategies, operating system bugs, performance guidelines) 
concerning the behaviour of the two systems has outcome. 
The knowledge obtained from the application of the tests to 
Solaris has been of capital importance in the development 
of a real-world application [ 11. 
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