
An occam style communications system for unix networks

Kevin J� Vella

Computing Laboratory Dept� of Computer Science � A�I�
University of Kent at Canterbury University of Malta

Canterbury� Kent CT� �NF� U�K� Msida MSD��� Malta
E	mail
 kv��ukc�ac�uk E	mail
 kvel�cs�unimt�mt
Tel

�� ���� ������ Tel

��� ���� ����
Fax

�� ���� ������ Fax

��� ������

December �� ����

Abstract

This document describes the design of a communications system which provides occam style com�
munications primitives under a unix environment� using tcp�ip protocols� and any number of other
protocols deemed suitable as underlying transport layers� The system will integrate with a low overhead
scheduler�kernel without incurring signi�cant costs to the execution of processes within the run time
environment� A survey of relevant occam and occam� features and related research is followed by a
look at the unix and tcp�ip facilities which determine our working constraints� and a description of
the T�			 transputer
s Virtual Channel Processor� which was instrumental in our formulation� Drawing
from the information presented here� a design for the communications system is subsequently proposed�
Finally� a preliminary investigation of methods for lightweight access control to shared resources in an
environment which does not provide support for critical sections� semaphores� or busy waiting� is made�
This is presented with relevance to mutual exclusion problems which arise within the proposed design�
Future directions for the evolution of this project are discussed in conclusion�

� Scenario

An environment for executing parallel programs expressed in a safe� pure parallel language on a wide variety
of architectures is a desirable tool� Various parallel programming environments exist in the form of libraries
used in conjunction with a sequential language such as C or Fortran� Parallel Virtual Machine �PVM� ���	
and Message Passing Interface �MPI� �
�� ��	 are two instances of this approach� the latter only specifying
a standard programming interface� abstracting away from implementation decisions� Such combinations�
however� make both formal and intuitive reasoning about a parallel program as a single entity rather di
cult�
since the semantics of parallelism are not part and parcel of the language� but stuck on as an afterthought
in such a manner that communicating processes cannot readily be thought of as part of the same program
�as described in ���	�� Additionally� the coarse grain parallelism imposed as the basis of many such libraries
limits the amount of readily identi�able parallelism at �ne grain algorithmic level which can be exploited on
suitable architectural platforms� and used as extra parallel slackness ���	 to hide latency in other situations�
On the other hand� the occam language ���� �	 o�ers parallelism as an integral part of the language� and a

stable formal basis for reasoning about parallel algorithms ���� ���

	� based on CSP ���	� or related process
algebrae ���	� The �ne level of granularity expressible through this programming model exposes su
cient
parallelism for exploitation both by parallel execution� and for latency hiding ��� �	� Sadly� a practical
execution environment which also meets the requirements just laid down has not yet been implemented for
occam� or indeed� any language possessing the same desirable properties�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An occam style communications system for unix networks �

� Aims and Requirements

The aim of this project is the construction of a software communications system which e
ciently implements
the occam model of communication across interconnected computers� principally running unix ���	� though
not exclusively so� on top of tcp�ip ��
	� while including su
cient �exibility to add on support for whatever
communications protocol is deemed suitable as an underlying transport layer� This scenario hints strongly
at ethernet�connected workstation networks� which are in fact the initial target for this system� though no
strings are attached to this particular case in the design�
Implementing a run time system �process scheduler and internal communications kernel� for occam pro�

grams as part of the project immediately binds the system to a particular occam compiler and single processor
run time system� This is undesirable� as it limits the applicability of our system� so a strict dividing line is
drawn as an interface between the single processor run time system� and the communications system� Our
scope is limited to enabling the run time system to perform external communications� without interfering
with the way in which processes are scheduled� internal communications are implemented� and memory is
laid out� The only alterations needed to adapt an existing uniprocessor runtime system are�

� the addition of a simple comparison in the kernel routines for communications� by which the channel
is identi�ed as internal �so that the normal course of action is taken� or external �in which case the
communication system is invoked accordingly�� and

� the provision of a routine which is called by the communication system when an external communication
is completed� so that the appropriate process is rescheduled as desired by the run time system�

Necessary for complete system operation are a network description language ���	� and a corresponding
software con�guration language ���	 for mapping programs onto distributed machines� One can envisage
the extension of this system to heterogenous processor architectures� and heterogenous interconnects� which
would necessitate the inclusion of relevant directives in the network description language regarding processor
types� and underlying network protocols for which communications drivers have been included� While the
former �heterogenous processor architectures� can be set aside for the time being� the case for support for
heterogenous links is strong� as machines on the network can be interconnected in various ways �such as
tcp�ip over practically anything� and raw devices like serial ports�� and various connection types can be
o�ered even over a single link type �for example� a tcp�ip link can be o�ered as a TCP stream� a UDP
packet multiplexing service� or a packet multiplexing service built over TCP�� In this vein� ATM networks
���� ��� ��	 introduce a wide range of parameters to characterise a connection� which specify properties such
as quality of service and guaranteed bandwidth� It is desirable to expose these in the network description
language so that the quality and capacity of individual links can be decided by the author of the description�
possibly on the basis of the anticipated loading on each link�
The software con�guration language� together with software for loading executable code to processors

on the network� depend heavily on the particular compiler and run time system� However� it is expected
to be possible to provide a partial solution to this problem� which may be extended in a modular fashion
to match particular systems� requirements by de�ning an interface similar to that between run time system
and communication system� through which system speci�c extensions for loading and con�guring code can
be included�
It is a fundamental requirement that the interface o�ered to the run time system presents a direct means

of implementing the occam channel communication primitives � and �� for normal communication under
PAR� as guards in nondeterministic choice ALT� and as shared resources in the occam� CALL channel and
SHARED channel types� Interruptions of the occam computational engine must be shorn to the minimum
possible� the internals of the communication system executing asynchronously with respect to the former�
Optimisations pertaining to particular underlying communications protocols can be conveniently isolated in
the protocol�s driver�

� occam and occam�

The occam language de�nes three primitive processes� analogous to statements in a sequential imperative
language� assignment� input and output� Both parallel and sequential composition are presented as �rst class
constructs to be used at the same level of granularity� The parallel construct PAR contains an implicit barrier
synchronisation between its components at their termination� Message passing is through point to point�
synchronous channels connecting pairs of processes� Consequently� communication is deterministic� since

An occam style communications system for unix networks �

contention does not occur for normal occam channels� Strict usage rules which can be statically checked are
enforced for variables and channels in parallel processes� excluding the possibility of any form of contention�
and consequently nondeterminism which could be casually overlooked by programmers�

occam programmers can willingly introduce nondeterminismusing the ALT choice construct ���� ��� ��� �
	�
which creates contention on a process on the recieving end of multiple channels� used as input guards� rather
than on a channel� Only a weak form of fairness is guaranteed� so starvation can be observed which is peculiar
to the particular occam implementation� By allowing the introduction of nondeterminism only explicitly�
groups of processes can be guaranteed to be safe from nondeterminism� and the points which act as a source
of nondeterministic execution can be pinpointed statically� thus allowing the partitioning of a program into
deterministic groups of processes with nondeterminism at the boundaries� Priority choice can be expressed
using the PRI ALT construct ��	�
The proposed occam� de�nition ��	 augments the language with the introduction of shared channel

resources ���	� shifting the focus of contention� and consequently� the source of nondeterminism� to the
channel� This time� a strong notion of fairness is guaranteed in the �rst in� �rst out management of access
to the channel resource� One instance of this new concept is in the SHARED channel type� where any number
of parallel client processes CLAIM the channel in question� and the single server process at the other end
GRANTs exclusive channel access to the client whose request was �rst registered at the server end� The other
instance of resource sharing in occam� manifests itself in the CALL declaration� which provides a high level
client�server construct� analogous to RPC �Remote Procedure Call�� A process� with a single entry point� is
explicitly and permanently bound to the server end of an implied �CALL channel�� which acts as a medium
for sending parameters and receiving results� Client processes e�ect calls to the server and are serviced one
at a time� in a �rst in� �rst out manner�

��� Mapping programs onto parallel architectures

occam does not provide directives for placement of processes and channels on machine architectures� since
this would tie down program code to that particular machine� Rather� a separate con�guration language
���	� de�nes the mapping� The con�guration language needs a machine description� which is speci�ed in a
separate language known as the network description language ���	� This arrangement assumes the machine
to be a message passing� distributed memory architecture� but one could well imagine a similar con�guration
language using a shared memory machine speci�cation generated by a corresponding description language�
With the development of appropriate tools which model channel loading and process execution patterns�
optimising the mapping of critical paths in the process graph ���	� the mapping could be automated to
obtain con�gurations with reasonable performance� Another possible solution� for applications with dy�
namic execution patterns� is the use of a run time load balancing system ���� ��� �	� However� it must be
noted that with recent developments in communications technology ���� ��� �	� the importance of locality
in communicating processes has diminished� Moving a step further� in a scenario where a processor farm
can service processes from a single� shared pool without major performance penalties� the mapping problem
is dissolved away ���	� However� such an scheme on a shared memory machine with a cache hierarchy may
induce thrashing on cache pages unless scheduling hierarchies echoing the cache hierarchies are established
to keep cache footprints rather small and static �i�e� processes should be scheduled in such a way so that the
same set of processes has a greater a
nity for the processor most recently used� thus keeping multiple copies
of the same process code in di�erent caches to a minimum�� �
�	 discusses the problem in the context of the
extremely �ne grain parallelism in data�ow architectures� In retrospect� with the introduction of scheduling
hierarchies� this becomes reminiscent of the situation where processes are dynamically mapped to processors
and migrate periodically� only that the migration process is supported by hardware�

��� Processor utilisation and performance

Traditionally� synchronous communication is considered to be ine
cient� in the sense that communications
latency is left exposed and consequently� the participating processes are suspended� Even worse� the party
that arrives �rst at the synchronisation point has to wait for the other party to catch up� at which point the
communication can start� On the other hand� asynchronous communication hides such latency by allowing
the participating processes to proceed in the meantime� thus decreasing the amount of time for which the
process waits� though only to the extent allowed by the underlying algorithm� However� the behaviour
of asynchronous programs can be counterintuitive� in that an obscure but possible scheduling of events
can �ll up a queue �now necessary for managing communications�� resulting in either program failure or
a return to synchronous communications until the queue is emptied� The latter can result in obscure and

An occam style communications system for unix networks �

unpredictable deadlock� which cannot be reasoned about from the the language�s semantics alone �that is�
without knowledge of the particular run time implementation�s queue sizes��
Alternatively� when multiple parallel processes coexist at each locality� synchronous communication can

hide arbitrary amounts of latency just as easily� without mandating alterations to programs� assuming enough
parallelism is available� The processor time during which one process is participating in a synchronous
communication can be used to execute another process� Assuming enough processes are available to �ll in
the gaps introduced by synchronous communication� and that they do not perform communication themselves
too frequently� all gaps can be covered� Though per�process waiting time �or �virtual processor� idle time�
is not decreased� processor idle time is eliminated� and consequently� processor utilisation is maximised on
all components of the parallel machine� Thus multithreading can be seen as an alternative form of latency
tolerance to asynchronous communications� extensive caching� or instruction level parallelism�
The number of processes mapped to a single processor measures the degree of parallel slackness ���	

available� The ratio of communication to computation in a process is known as the grain size of that
process� A well thought out combination of the program�s average grain size �this is also subject to the
mapping�� the mapping�s parallel slackness� the network�s latency� and the machine�s minimum tolerable
grain size can maximise machine utilisation� Keeping latency and machine grain size constant and as low as
possible� programs can be written to match or exceed the machine�s grain size� and mapped onto a variety
of like� or �ner�grain architectures with varying latencies by changing the mapping to obtain the required
degree of parallel slackness ��� �	�
This still does not solve the mapping problem� since the decision as to which processes map best onto a

particular processor is still open� Two opposing trends are both popular� either ignore all locality concerns
during mapping� map out processes randomly� and guarantee a performance derived from the worst case� or
carefully place processes which communicate frequently on adjacent processors� The former is seen as a step
in the direction of general purpose parallel computing ���	 as algorithmic structure can be separated from
network topology� However� for e�ective results the hardware must qualify as a general purpose parallel
computer ���� �	 by guaranteeing certain performance �computation and communication� and scalability
characteristics� Regarding data locality� the occam programming model clearly speci�es the data which
should be placed on the same processor as a process�

��� Performance prediction of occam programs

It is di
cult to predict the performance of unrestricted communicating process programs on real parallel
computers� While it is possible to obtain best� worst� and average case measures for occam programs
combinatorially through the underlying traces �interleaving or non�interleaving�� these do not take into
account contention for network links� and other overheads present in real execution on parallel computers�
Moreover� even if this were satisfactory� it would be computationally unfeasible for all but tiny programs�
unless substantial state space reduction is performed� This approach has been considered in recent work
�
�� ���
�	� modelling the underlying network operation stochastically using Stochastic Timed Petri Nets�
which are then converted to Markov chains�
The method mentioned in the previous section ��	 for maximising processor utilisation in communicating

process programs assumes an upper limit for values of latency and machine granularity� One can imagine
that an extension of this simpli�ed model can be used to loosely predict worst case performance�
Alternatively� restricting the model of parallel computation can simplify the task of performance pre�

diction� This is the thesis underlying Valiant�s BSP ���� ��� ���
�� ��� ��	� which presents a simple but
realisable model of parallel computation as a generalisation of the idealised PRAM ���	� This work is remi�
niscent of von Neumann�s sequential model� in that it can also act as a bridge between software design� so a
variety of parallel architectures can all be considered as BSP machines with di�ering parameters� A simple
equation can predict the performance of a BSP program on a BSP machine� The BSP model of computation
stipulates that communicating parallel processes synchronise at barriers� periodically� The computational
portion is known as a superstep� during which processes may send or receive data asynchronously or perform
local computation� However� the outcomes of communications performed during a particular superstep are
only visible at the start of the subsequent superstep� The barrier enforces a �dead� period during which all
outstanding communications pertaining to the previous superstep are completed�
At least two attempts of extending occam with barrier synchronisation constructs for BSP computing

have been made ���� �	� However� it has also been noted ���	 that occam performs barrier synchronisation
implicitly at the end of a PAR construct� Moreover� between subsequent PARs� variables whose scope extend
across the whole sequence of PARs are reassigned exclusively to individual components of the PARs every

An occam style communications system for unix networks �

time a PAR ends and another one commences� This instance of �shared� memory� combined with the implicit
barrier synchronisation� induces one to view a SEQ of PARs as a BSP program respecting occam usage rules�
with the BSP communications being e�ected through the exchange of exclusive variable ownership� No
alterations to the occam language de�nition need be made� However� current implementations disallow
the distribution across processors of all but PARs at the topmost level� so that the single resultant barrier
synchronisation can be ignored without serious consequences� Granted� distributing lower level PARs across
processors would imply a barrier synchronisation across a part of the network� during which implicit message
passing to exchange the updated values of the �shared� variables has to be made� This can weaken the real
time aspect of occam� On the other hand� one can argue that such techniques can be avoided by an aware
programmer in critical sections �though this would stain occam�s transparency�� and� more convincingly� that
an upperbound on the delay can be �xed for a particular architecture� Communications to exchange the
values can be inserted by the compiler as early as possible before the actual barrier in the code� by statically
analysing processes� dependence graphs�
The bene�ts to be gained from the use of a SEQ of PARs within the restrictions speci�ed by BSP in

the computational kernel of an application are mainly due to the simplicity of performance prediction on a
variety of architectures� Program segments outside the computational kernel can be designed with liberal
amounts of communication� as required� It would be interesting to investigate to which extent it is possible
to have parallel processes communicating liberally within single BSP processes� without breaking the BSP
requirements�
It has been argued that satisfactory degrees of portability can be obtained from less restrictive models�

such as that described in the previous section� and the LogP model �
��
	� One wonders whether this would
leave BSP with its straightforward performance prediction as its only unique virtue�

� unix and tcp�ip networking

This section contains an overview of lightweight and heavyweight process scheduling� interprocess com�
munication techniques� and networking facilities under the unix operating system� While occam process
scheduling is beyond our scope� it is instructive to survey the techniques used by various run time systems in
existance� Moreover� we have already speci�ed it as our aim to detach our communications process from the
occam execution engine to as great an extent as possible� and unix may provide a suitable way to implement
this� with its various process management and interprocess communication facilities� The communications
process will ultimately translate communication requests to unix communications calls� through the driver
which implements the particular link� be it through tcp�ip� a raw driver for a physical device� another
communication package such as PVM� or any other medium�

��� unix process management

unix processes are designed for multiprogramming support with little interprocess communication� at a
coarse grain� Process creation and context switches are very expensive� since a very large� generic state has
to be maintained for each process� Full protection is provided between process memory spaces� Various
interprocess communication facilities are provided� which all carry substantial overhead in suspending pro�
cesses and communicating� These will be discussed in the next section� Process creation using the fork
system call which replicates the current process image� or by loading a new executable from the �le system
using one of the exec family of system calls� are both prohibitively expensive� In general� unix processes
are considered inadequate for application level parallelism� except at a very coarse grain� as in PVM�
Induced by the drive towards application multithreading� which is in part due to the event driven nature

of GUI based applications� many unix vendors now provide a �lightweight� process library� usually compliant
with the POSIX Threads standard� Typically� these libraries work within the context of a single unix process�
thus escaping the weight of saving and restoring a unix process� state� Consequently� context switch times
are in the order of a few tens of microseconds on current architectures �this is still too heavy for occam
processes�� The memory space belonging to the unix process is shared between all lightweight processes �or
threads�� and the lightweight scheduler works in user mode� Alternative means of synchronising lightweight
processes have to be provided� since normal interprocess communications mechanisms act on the whole of
a unix process� Also� a lightweight process making a blocking call will suspend the whole unix process�
and thus all other lightweight processes within it� More recently� unix schedulers have been implemented
which integrate normal �heavyweight� process scheduling with lightweight process scheduling �and possibly
real time process scheduling� under one scheduling policy� solving the above limitations while maintaining

An occam style communications system for unix networks �

their original motivating properties� The context switch time remains too expensive for occam�s �ne grain
parallelism�
As all the above facilities for multithreading do not satisfy occam�s granularity requirements� implementors

turned to implementing their own schedulers within the environment of a single unix process �
�� �
�
�	�
occam process state is minimal� bringing down the cost of a context switch down to under one microsecond
on current architectures� if the scheduling state is permanently kept in selected machine registers ��
	�
Obviously� this ties down the code generated by a compiler to comply to a particular run time system
in restrictions on register usage� analogous to the hardware providing special support for multithreading�
Various other techniques to keep context switch time low within a unix process can be exploited� such
as switching between multiple stacks within a process� using the setjmp system call� Placing the onus of
scheduling on the occam processes themselves by inserting switching instructions at prespeci�ed descheduling
points in the code� besides being in itself e
cient� has the advantage of eliminating the shared resource access
synchronisation problem� since processes will never be interrupted in critical sections� In such frameworks�
communication between occam processes� and occam process creation both bene�t from low cost� in the
order of microseconds�
Notwithstanding these e�orts to reduce overheads� ulterior measures have to be taken to ensure minimal

interruptions to the unix process which contains the occam processes� in the event of external communica�
tion� both locally �for console input�output�� and remotely �through external network links�� Unnecessary
interruptions to the occam computational engine will eat away from the available scheduled timeslices for
that unix process� thus it is desirable to avoid performing system calls from within that process� Though
nonblocking versions of many calls exist� the overhead for polling for completion� is still taken from that
process� timeslice� It may be advantageous to separate all forms of communication into a separate unix
process from the one performing occam computations� in such a way that communication requests from the
occam computational process is relayed to this communication system process without consuming much time
from the occam computational process� The communication system process performs all system calls� every
single communication request may involve several system calls and several interruptions which are avoided
from the occam computational process� but su�ered by the communication system�
It can be argued that since both these processes will typically share a single processor between them�

the extra delays su�ered by the communication process through performing system calls �both blocking
and nonblocking� will still be propagated to the occam computational process� Ultimately� it is a unique�
shared processor resource which is being held up to perform these costly operations� and consequently will
be unavailable to the occam computational process anyway� A counterargument to this counts on the fact
that out of the total amount of time assigned by the unix scheduler to the occam computational process�
a higher percentage is being used to perform useful computation� The communication process absorbs all
other work within its own timeslice� Integrating both these tasks into one unix process could mean that less
overall processor time would be shared between both tasks� though extra switching overheads are avoided�
In a tightly coupled multiprocessor unix machine� it is expected that this arrangement demonstrates its
advantages more convincingly� Another compelling motivation for splitting up the two arises from our desire
to decouple the communications system from any particular run time system implementation� and avoid
recompilation of the communications system with the occam program and vice versa�

��� Interprocess communication mechanisms

In the design of the communications system a low cost means of coordinating with the occam computational
engine� which will be hosted in separate unix processes� is desirable� This brief survey of interprocess
communication methods is included with the intension of identifying a suitable alternative for this purpose�
A detailed description of IPC mechanisms may be found in ���	� the Solaris manuals ���	 were also referred
to�
Modern System V unix interprocess communications �IPC� mechanisms fall into three categories� Each

created IPC resource has a unique identi�er� and is managed through an interface consistent across all three
categories� The IPC resource categories are�

Messages� A message resource consists of a message queue to which a process may append messages
�ASCIIZ strings� and a message type identi�er �which can be used to receive messages selectively��
The maximum message size depends on the machine�s memory page size� The maximum number of
active message queues and the maximumnumber of messages in a message queue are two limits imposed
on the use of message passing� however� the latter can be increased dynamically by the superuser�

An occam style communications system for unix networks �

Semaphores� Semaphore resources are allocated in arrays of semaphores� each of which has a non�negative
integer value� and on which operations to read� increment and decrement are de�ned through the
semop call� A decrement which would result in a negative semaphore value suspends the whole unix
process until the eventual change in situation� Further such processes are queued� to be reenabled
in the original order of suspension� The maximum number of semaphores in an array is limited by
processor page size and the maximum number of semaphore resources at any one time is a system
constant� Semaphores can be used to synchronise access to shared memory by di�erent processes� thus
emulating message passing through shared memory�

Shared memory� The shmget call accepts a key� which can either identify an existing shared memory
segment� in which case the memory is attached to the calling process� address space� or it can be an
unused key� in which case a new memory segment is allocated and attached to the process� address
space� Thus multiple unix processes can read and write a single memory segment in an uncoordinated
manner� The shared memory segment can be made to appear anywhere in the process� address space�
Various methods may be used to control access to parts of the memory�

For the purposes of this discussion� decidedly coarser grain communication and sychronisation methods such
as lock �les and pipes will not be considered� One �ner grain means of interprocess communication� with a
particularly long history� was not originally intended for such applications�

Signals� Every process can issue signals of a variety of types to any other process in the system� provided
the user identi�er is common� or the sender has a superuser identi�er� Amongst the common signals are
SIGQUIT� SIGKILL� SIGHUP� SIGTERM �terminate the process with varying degrees of forcefulness��
SIGSTOP �suspend the process�� SIGCONT �reenable the suspended process�� SIGIO �sent by the
system to notify application processes of the completion of I�O operations�� SIGUSR
 and SIGUSR�
�user de�nable signals�� Each process has a default signal handler for all signals� whose default actions
�some of which are mentioned above� depend on the particular signal� Nearly all signal handlers may
be replaced by user de�ned ones� of particular interest are SIGUSR
 and SIGUSR�� to which user
handlers may be attached without consequence to process behaviour� this way signals may be used
to provide synchronisation between processes� The SIGIO signal will be vital in the communications
system drivers which utilise nonblocking sockets�

Note that the signal handler operates asynchronously to the rest of process execution� so care must
be taken to ensure that the two threads do not interfere with each other when accessing the process�
memory space� Signals are a kernel level feature� and vary signi�cantly in details between unix dialects�
Originally the reception of signals was an unreliable procedure� though subsequently reliable signals
were introduced� albeit with incompatibilities between System V and BSD releases� and requiring a
hatful of tricks to use them e�ectively�

Both semaphores and messages have been measured to incur costs in the order of milliseconds to the par�
ticipating processes� and must be avoided where possible for our purposes� Reading and writing to shared
memory� however� is a machine level operation which lies in the order of microsecond cost� Coordinating
shared memory read and writes can turn out to be expensive� especially if encoded using semaphores or
messages� Issuing signals is known to be a less expensive operation� and can be used e�ectively� though it is
di
cult to guarantee reliability� An alternative would be to avoid descheduling processes which are synchro�
nising for a shared memory read or write� by using a method based on atomic machine code instructions for
mutual exclusion�

Test�and�set instructions� A set of inline assembly language functions for performing atomic bit manipu�
lation operations is not supplied with unix based C development systems� thus forcing one to resort to
architecture dependent methods for ensuring microsecond cost mutual exclusion to shared resources�
This facility would be well suited to synchronising shared memory access between unix processes where
semaphores are too expensive� and between asynchronous �threads� within a single unix process� for
instance between a user de�ned signal handler and the main execution thread� In both cases� the
problem of busy waiting must be handled� and may well be avoided� The unix scheduler ensures that
each full blown unix process gets its own timeslice� enabling the use of busy waiting� this does not
make it acceptable� since the technique is wasteful of system resources� especially with such coarse
grain scheduling� Also� if one of the unix processes contains many user level processes �for example�
occam processes�� only one of which is interested in the synchronisation� the busy waiting would stop

An occam style communications system for unix networks 	

all the user level processes� Within a unix process� the lack of timeslicing between �threads� prevents
the use of busy waiting for internal synchronisation� since a thread attempting to busy wait would
proceed forever without being interrupted� It is thus evident that naive use of test�and�set instructions
is unsatisfactory� luckily it turns out to be the case that for our intended use� a combination of test�
and�set instructions and multiple queues su
ce� The algorithm will be described in the design of the
communications system�

��� tcp�ip communications

The de facto standard for unix networking is the tcp�ip protocol suite ���� �
	� The corresponding pro�
gramming interface is the sockets interface ���	� which supports not only tcp�ip communications �Internet
domain sockets�� but also across unix domain sockets �within a single host� uniformly� The intended re�
placement� TLI �Transport Level Interface� never managed to oust sockets� con�rming this� the Solaris �
manuals ���	 no more include a statement to the e�ect that the sockets interface should not be used in new
applications� as was originally recommended in Solaris
 �SunOS �� manuals ���	�
Through the sockets interface� one can send UDP �datagram� packets� wait on a port �as a server� to

receive UDP packets from a particular source address� or from any address on a particular UDP port� actively
open �as a client� a TCP �stream� connection to a particular port on which a server is waiting� and wait on
a port �as a server� to receive TCP connection requests� and accept or refuse on the basis of source address�
An established TCP connection exhibits a bidirectional stream abstraction to both ends� across which they
may send and receive arbitrarily sized messages� provided a suitable bu�er is allocated at the receiving end�
Waiting for a connection at the server end and waiting for a message� are synchronous operations which

can block the process in question until they are completed in their entirety� Other operations such as sending
messages can also block the process if they cannot be completed immediately� Two approaches to overcoming
these problems can be used and combined� nonblocking sockets and asynchronous sockets� Operations on a
nonblocking socket do not complete if doing so would suspend the process� but return immediately with an
appropriate indication� System calls on an asynchronous socket complete immediately� while the operation
proceeds in the background� thus eliminating the blocking problem� Completion of the operation is noti�ed
through the SIGIO signal� whose handler can then identify the correct socket using a nonblocking select
system call� Although some references state that asynchronous sockets must be of stream type� asynchronous
datagram sockets seem to function well on the systems which were tested� The general idea is to have many
communications over multiple sockets proceeding concurrently with each other and with the unix process�
notifying their completion through an asynchronous thread �driven by a signal��

tcp�ip carries considerable baggage� and is known to bring about poor utilisation of available bandwidth�
In its favour are its popularity� portability across platforms� medium independence� and transparent routing�
To improve its performance� knowledge of the particular implementation may be exploited� such as padding
messages to the right size to force TCP to �ush its bu�ers� and sizing UDP datagrams to the native packet
size of the medium ��
	� Using sockets for internal communications is ridiculously expensive� and a direct
means is preferred� Though sockets provide a nondeterministic choice �the select system call� and a resource
channel�like mechanism for queueing messages or connections to a port� these similarities cannot easily be
exploited due to the impracticality of integrating internal channels� implemented di�erently� into the scheme�

��� Underlying networking technology

Ethernet�based networks currently dominate as the prevalent local area network technology� Packets ap�
proximately
��� bytes long are sent and received over an ethernet segment� This shared medium introduces
contention for the available bandwidth� resolved by collision detection and backo�� which has an substantial
impact on latency and bandwidth under heavy loading� At such low speeds� one rarely has to worry about
computational overheads such as protocol processing� as the computation speed to communication speed
ratio is very high� The problem with using ethernet as an interconnect parallel processing is the fact that
bandwidth does not scale with the number of processors� and latency increases suddenly and signi�cantly as
the number of processors� and thus packets� increases�
Recently�
�� megabit�second ethernet has become available� Of equal signi�cance� new intelligent switch�

ing hubs connecting hosts in a star topology can route packets between any number of pairs of hosts at the
full ethernet bandwidth without propagating the packets across all the connected segments� and thus with
accordingly reduced contention� The host�network and operating system�protocol processing overheads may
increase in signi�cance as ethernet speeds are elevated�

An occam style communications system for unix networks

Hailed as the future of telecommunications� ATM�s �Asynchronous Transmission Mode� ���� �	 main
breakthrough is in the negotiation for� and control over assigned user bandwidth and quality of service�
At speeds starting in excess of
�� megabits�second and projected to �gures in gigabits�second� the host�
network interface and protocol processing overheads dominate� Though negotiating for bandwidth does not
actually create any of the precious resource� one can guarantee good performance even over non�dedicated�
loaded networks� tcp�ip over ATM ���	 can change our workstation network scenario signi�cantly� shifting
the focus from maximising network usage to reducing operating system and protocol processing overheads
while still operating under a heavyweight unix�like system�

� Implementation of occam communications on T�����C��� networks

The INMOS T���� microprocessor ��
� ��� ��� ��	 provides a programming interface for multithreading�
and both internal and external communications which �ts closely around the occam model� A scheduler
interleaves between processes� which correspond closely to occam processes� with sub�microsecond cost�
Instructions for communications hide the location �local or remote� of the communications channel� In�
structions are included for directly implementing synchronous point�to�point input and output� alternation�
and shared channels� With the help of the VCP �Virtual Channel Processor� integrated in the T���� each
of its four links can multiplex a large number of reliable virtual links� Each virtual link hosts a pair of
virtual channels� one in each direction� every one of which corresponds to an external occam channel� and
is handled transparently in exactly the same way as an internal channel would be� Used in conjunction
with a network of C
�� routers ���� ��	� �the INMOS C
�� implements a �� � �� full crossbar in VLSI
with minimal delay� every virtual link emerging from a T���� can be connected to any other T���� in the
network� The scheduler incorporates two priority levels� and a prioritised choice �alternation� mechanism is
provided� The parallelism within the T���� between the processing unit and the VCP allows communication
to proceed without interrupting computation� while the very tight coupling between them enables the VCP
to reschedule suspended processes itself on the completion of communication�
The main T���� facilities for multithreading and communications �internal and external� are summarised

below� A direct mapping between occam concurrency and communications primitives and the machine code
instructions can easily be made�

��� Processes

An occam process can either be active or inactive� An active process can be executing� or waiting for
execution� while an inactive process can be ready for input or output� waiting on a timer� or on a semaphore�
A process consists of a workspace containing information pertinent to the process state� such as a pointer
to its executable code� storage for machine registers and the instruction pointer �when not executing�� the
channel identi�er on which the process is waiting �inactive � ready for input or output�� and a control word
for the alternation mechanism� A single word is shared between several of these� A process is uniquely
identi�ed within its host processor by its workspace pointer� which also indicates its priority� Processes are
descheduled at communication instructions� and at �xed points in the code as determined by the instruction
type�

��� Channels

A channel consists of a word in memory� uniquely identi�ed by its address� Channels are classi�ed into
internal and external by their address �a machine register delimits their ranges��

Internal� The channel word may contain either the value notprocess� or the workspace pointer of a ready
process� The pointed�to workspace contains further information about the type of communication
being e�ected�

External� External channels can either be virtual channels� or stream channels �only four of which can
be used� each of which takes over an external link completely�� Virtual channels with consecutive
addresses are grouped in pairs� forming virtual links� which have to pass through a single external link�
Each virtual channel address is a logical address which is translated by the hardware to the physical
address of its virtual link�s VLCB �Virtual Link Control Block�� VLCBs come in pairs� one on each
of the T����s at both ends of the virtual link� A VLCB contains information about the status of
the virtual link� and thus about both its virtual channels �which face opposite directions�� such as the

An occam style communications system for unix networks ��

current state of communications on both virtual channels� the workspace pointers of �up to two� one
in each direction� local processes ready to communicate on the channels� and the external link over
which the virtual link passes� VLCBs with pending data packets� and with pending acknowledgement
packets are linked into corresponding queues� possibly into both�

��� Input and output

The variable length input and output instructions vin and vout �and their �xed length versions in and out�
send or recieve a message from or to a memory bu�er� over a channel speci�ed by its address� Whether the
channel is an external one is determined by the hardware from the channel address and a special machine
register which delimits external channel addresses� The two cases are handled accordingly�

Internal� The �rst process to execute a communication instruction on that channel �say P�� �nds the
value notprocess in the channel word� P��s workspace pointer is stored in the channel word� and
a pointer to the message bu�er �whether it is a send bu�er containing data� or an empty receive
bu�er�� together with the length of the message� are stored in P��s workspace� P��s workspace is
unlinked from the active process queue� The other process participating in the communication �say P���
eventually executes the communication instruction �the channel address is recognised to be internal�
and �nds the address of P��s workspace in the channel word� From P��s workspace� the message
bu�er address and message length are recovered� and a block copy is made to�from the bu�er address
speci�ed in P��s communication instruction� copying min�length speci�ed by P�� length speci�ed by P��
bytes across� Finally� P��s workspace is reinserted into the active process queue� and the channel word
is cleared to the value notprocess�

External� External communication requests are passed on from the T�����s processing unit to the VCP�
External channel addresses speci�ed in communication instructions are converted to the address of the
corresponding virtual link�s VLCB� One of the two processes �say P�� participating in the external
communication� executes the communication instruction� and noti�es the VCP� which examines the
VLCB� The outputing process �say P�� in the external communication executes the communication
instruction and noti�es the VCP� The VCP in turn sets the send bu�er and limiting address� resets
the send count� stores P��s workspace pointer� all of which are in the VLCB� Finally it sends the �rst
data packet� and P��s workspace is removed from the active process queue� The receiving side�s VCP
stores the data packet in a �xed size bu�er within it� until a process �say P�� eventually executes an
input instruction on the channel� Then the recieve bu�er contents are emptied into the speci�ed input
address� an acknowledge packet is sent to the original VCP� and the receiving �elds of this VLCB
are updated accordingly� P��s workspace is removed from the active process queue� On receiving
the acknowledge packet� the VCP on P��s side updates the corresponding VLCB and sends the next
data packet� and so forth until completion� Finally the VCPs clear the VLCBs and place P� and P��s
workspaces onto the respective processors� active process queues �on the sending side� completionmeans
receiving the last acknowledgement packet� on the receiving side� completion means receiving the last
data packet�� If P� had executed the input instruction before receiving the �rst data packet� it would
have been already made inactive� the VLCB would have been �lled with its workspace pointer and
recieve address and the acknowledge packet would have been sent immediately� Note that although
the initiation of input and output is stimulated by the processor �by signalling to the VCP�� the
remainder of the procedure is handled independently and asynchronously from the processor by the
VCP� Completion is also handled by the VCP� which reinserts processes onto active process queues
without the processor�s intervention�

��� Alternative input

A number of instructions are provided which together implement nondeterministic choice of inputting on one
of a set of channels� In reality� the transputer implementation of alternative is unfair� favouring channels over
others� but is still very usable� A word in the workspace of the process performing the alternative is reserved
for storing the operation�s current state � this happens to be the same word which contains a pointer to
the message bu�er during normal communication � which will be referred to as WSp� The procedure is as
follows�

� execute an alternative start instruction� which sets WSp to enabling�

An occam style communications system for unix networks ��

�� enable every participating channel using the enable channel instruction specifying the channel address
�whether internal or external� in the latter case� the VCP noti�es the enabled state in the corresponding
VLCB�� If the channel is ready at the time of enabling �that is� the channel word either contains the
workspace pointer of another process� or� in the case of a virtual channel� the VLCB�s receive bu�er
contains a packet�� WSp is set to the value ready�

�� execute the alternative wait instruction� which sets WSp to waiting� disables the process� and indicates
in the process� workspace �call the word WS�� that it is suspended due to an alternative wait� rather
than a normal input�

�� when a process eventually outputs on an enabled internal channel one of the values enabling� waiting
or ready is found in the process� WSp workspace word� if enabling� it is changed to ready� if waiting�
it is changed to ready� and the alternating process is reactivated� if ready� no further action is taken
�at the end of this instruction� it is guaranteed that at least one of the processes on the opposite ends
of the channels is ready for output�� On an external channel� the output operation proceeds as usual�
indeed� the outputting end is not aware of the alternative at the receiving end� though the receiving
end�s VCP� on receiving the �rst data packet� notes whether the channel is enabled� and in such an
eventuality� directs the scheduler to proceed as for an internal channel�

�� disable every participating channel using the disable channel instruction� which checks whether the
channel is ready for output� and if so� writes a jump destination speci�ed in the instruction to WS��
provided that a preceding disable channel instruction had not previously �lledWS� with another jump
destination� This actually makes the whole alternation operation unfair� since channels which are
disabled earlier on in the code are at an advantage�

�� execute the alternative end instruction� which �nds the jump destination pertaining to the selected
channel in WS�� and jumps to that location within the same process� which typically contains a
normal input instruction hardcoded to the corresponding channel�

��� Resource channels

In the T���� implementation� the contention is moved from the resource channel� to the RDS �Resource
Data Structure�� In fact� every process �sharing� the resource channel on the user �client� end is given its own�
uncontended�for �resource� channel� sharing a RDS at the server end instead� The RDS� itself containing
a synchronisation word and queue pointers� owns a queue of resource channels� each of which consists of a
normal channel word and queue pointers�

� A resource channel may be used as a normal channel �the queue pointers are then ignored�� unless it
is included as part of a resource �that is� linked into a RDS queue� using the mark resource channel
instruction� This must be issued on the transputer hosting the server� specifying the RDS� the resource
channel address �used to access the server end VLCB for an external channel�� and a channel �identi�er��
which may be the channel address� or some other word �this is the identi�cation returned when a channel
is �nally selected�� If the resource channel has not been output yet� the value reschan is written to
the channel word if it is internal and the speci�ed identi�er and a pointer to the RDS are written in
its other words� a similar annotation is written to the VLCB if it is external� If the resource channel
already contains a workspace pointer� or its VLCB�s bu�er contains a packet� the resource channel is
linked into the RDS queue instead� with the speci�ed identi�er stored in the resource channel as well�

� The server process issues a grant instruction specifying the RDS� and the location where to store
the identi�er for the selected resource channel� If the queue is nonempty� the top resource channel
is unqueued and the identi�er it contains is written to the speci�ed location� Otherwise� the server
process� workspace pointer is written to the RDS�s synchronisation word� and the server process is
deactivated� The resource channel is unmarked automatically� and can subsequently be used as a
normal channel�

� An output operation on a marked internal resource channel �nds the value reschan in its normal
channel word and subsequently retrieves a pointer to the RDS from one of its other words� If the
RDS�s synchronisation word points to the server process� workspace� the channel word is set to point
to the workspace pointer of the outputting process� the server process is rescheduled� and the channel
identi�er in the resource channel is written to the location speci�ed in the RDS �originally stored there

An occam style communications system for unix networks ��

by the grant instruction which had stalled the server process�� Otherwise� the resource channel is
queued on the RDS queue�

On a virtual �external� resource channel� the remote end outputs as usual� with no indication that
the channel is a resource channel� on the receiving end� the VCP will notice that the receiving VLCB
is a marked resource channel upon receiving the �rst data packet� and noti�es the scheduler� which
proceeds as for an output on an internal marked resource channel�

��� Rationale

It can be seen that the design rationale behind the VCP is to decouple computation and communication
to the largest extent possible� Message startup costs su�ered by the computational engine are kept at
a minimum by delegating such jobs to the VCP� which runs in parallel� Message sending and receiving
proceeds independently� Completion of communication involves only reinserting the process in question on
the active process queue� This can either be done by the VCP itself� through careful mutual exclusion to
access of queue registers� or delegated by the VCP to the main processor� to avoid possible contention�
Though no such details are speci�ed in the T���� documentation� it seems that the former situation is the
case� This is only feasible as the VCP will always work with the same scheduler� portability between di�erent
run time systems and schedulers is not an issue here� so the VCP can be exposed to the internals of the
computational engine�
The resulting situation enables multiple external channels to connect transputers� without any concerns

about locality in�uencing the program designer� In fact� the same program code can be redistributed across
transputer networks in an arbitrary manner� changing the status of channels from internal to external and
vice versa in the process� without having to alter a line of code� When used in conjunction with a network
of C
�� routers� all packet routing concerns are delegated to the routers� so proximity of transputers is of no
importance� The C
�� routers provide hardware support for randomised� or two phase routing �in the form
of header deletion�� so that all packets are routed �using a deterministic protocol guaranteeing deadlock
freedom� to a random intermediate C
��� which then strips the outer header from the packet� exposing
the �nal destination� and routes it deterministically to the destination T���� link� The e�ect of this is to
reduce hot spots on the network� Still� particular links on a transputer can still manifest themselves as hot
spots which cannot be removed in this manner� A suggested solution is to randomly distribute memory
locations across transputers using a fast good hash function� thus reducing the possibility of contention for
a transputer�s link� Alternatively� one can resort to careful placement �possibly automated through the
use of heuristics� of processes and virtual channels on processors and links to eliminate these problems� In
our case� all routing decisions will be taken by the underlying system software �such as IP�� and are not a
concern of ours� Our focus will be on designing a counterpart to the T�����s VCP for handling external
communications�

	 The Design of an occam communications system for unixworkstation networks

The selected design for the communications system borrows heavily from the T���� VCP in its decoupling
from the occam computational engine� Following the arguments presented in section �� it was decided to
isolate the communications system and the computational engine into two separate unix processes� The main
di�erence is that while the T���� VCP handles the scheduler registers directly� here this is not desirable� to
ensure portability of the communication system across di�erent schedulers� and therefore the adapter of the
run time system provides a routine to be called from the communication system to carry out the scheduler�
dependent work� The overhead for synchronising the communications process and the computational process
is kept low through the use of shared memory and the direct embedding of test�and�set instructions� Busy
waiting is avoided through the use of a synchronisation algorithm described later in this text�
Another similarity is in the provision of a packet driven communications facility built on the lines of

the VCP� This enables the use of a reliable packet driven link to send multiple messages of unlimited size
in the same way as the VCP multiplexes its packet driven links� Together with this facility� dedicated
stream communications is allowed over reliable continuous stream links� These two methods may be used
concurrently over di�erent links� depending on the links� characteristics� Figure � gives an overall view of
the system structure�

An occam style communications system for unix networks ��

send recv send recv
readyinit

send recv send recv
readyinit

S
E

N
D

/R
E

C
V

 L
O

G
IC

D
R

IV
E

R
S

S
T

R
E

A
M

/V
C

P
S

H
M

E
M

 S
T

U
B

S
H

M
E

M
 S

T
U

B
K

E
R

N
E

L

STREAM

initsend

initrecv

initsend

initrecv

recvpkt

recvdata recvack

recvready sendready

send recv send recv send recv
pkt pkt pkt pkt pkt pkt

send
msg

recv
msg

send
msg

recv
msg

send
msg

recv
msg

recvreadysendready

send first data packet

send next data packet

send next ack packet

kernel calls
occam process workspaces
and local variable space

other kernel calls . . .

external
send

external
receive send ready

external external
receive ready

send receive

internal send

internal receive

Shared control memory

request to stream or packet driver communication handler
Through link type identification decide whether to delegate

send recv send recv
readyinit

O
C

C
A

M
 C

O
M

P
U

T
A

T
IO

N
A

L
 P

R
O

C
E

S
S

O
C

C
A

M
 P

R
O

C
E

S
S

E
S

PACKET

Kernel and scheduler
data structures

Ideally these structures are shared to avoid copying data from
 w

orkspaces to com
m

unication system
 m

em
ory

C
O

M
M

U
N

IC
A

T
IO

N
S

 S
Y

S
T

E
M

 P
R

O
C

E
S

S

Figure
� A visual representation of the system�s structure�

An occam style communications system for unix networks ��

��� The network	 links and drivers

Two classes of links are envisaged to be available in a typical operating environment� reliable streams� and
�reliable or unreliable� packet driven links� The former can also be multiplexed to provide multiple reliable
packet driven links over the single stream� Support for both stream and packet driven communications is
included in the communications system design� correspondingly� two classes of driver are de�ned� one for
sending and receiving packets� and another for sending and receiving unsegmented messages� Third party
drivers for alternative transport mechanisms may be linked to the communications system through standard
interfaces� by recompiling the communications system alone� The everchanging suite of drivers prompts the
need for a means of identifying the range of link types which they introduce� in a suitable network description
language� A table of currently available link types will have to be maintained for the program linker or loader
to refer to�
Underlying routing mechanisms are hidden from the communications system� Usually� the drivers them�

selves will utilise the routing mechanism provided by their transport protocol� For instance� TCP� UDP and
raw IP based drivers will rely on IP routing� Thus the function which is performed by networks of C
��
routers in T���� systems is hidden from our concern�

��� Packet driven communications

The packet driven communications facility in the communications system will identify over which link an
external channel lies� from the associated VLCB�like structure� identify the link�s driver �obviously a packet
driver�� and send data or acknowledge packets through the driver�s standard interface� which should never
block� An asynchronous thread �ows in the reverse direction� activated by the reception of packets over
various packet drivers �this will� in most cases� be a SIGIO signal handler which noti�es completion of I�O
operations�� This thread� immediately dispatched to the appropriate packet driver� will then move to the
communications system routine for handling received packets� which usually sends a data or acknowledgement
packet in response except at the end of a message �in which case the occam run time system is noti�ed�� The
VCP logic for sending and receiving messages is drawn on heavily in the design of this facility� This method
has the advantage of requiring only a small� �xed size bu�er �speci�ed by the particular driver� for storing
initial packets of received messages� subsequent packets are only received once the relevant acknowlege packet
is sent�
It is inevitable that the speed of unreliable packet driven links such as those provided by UDP� and

special access to raw IP will make them attractive� It is risky to use packet drivers directly built on these
protocols without provision for guaranteeing reliable and correctly sequenced reception of packets� One
solution is to delegate all such concerns to the packet driver� alternatively� one may include a third facility
in the communications system for handling unreliable packet driven links�

��� Stream communications

The stream communications facility is relatively simple� the link for a particular external channel is identi�ed
from an appropriate stream channel structure� and the link�s stream driver determined� Messages to be sent
are expedited through a single driver call� which should never block� Received messages� and completed
sends invoke an asynchronous thread �usually through a signal handler�� dispatched to the appropriate
stream driver and propagated to the communications system routine for receiving unsegmented messages�
which will notify the occam run time system� Limitations on the number of simultaneous connections for
the transport protocol on which stream drivers are based may restrict the use of stream links� Since whole
messages of any length are received irrespective of whether the receiving process has issued a receive and a
destination bu�er� intermediate bu�ers of arbitrary size may have to be allocated to store incoming messages
on a stream channel�

��� Example drivers and their use

Drivers can be built upon various transport mechanisms� utilising their features in a wide variety of manners�
The following list of possible drivers which may be implemented is based on speculation rather than de�nite
results�

TCP Socket
Stream� pre�established connection� TCP connections are established at load time be�
tween machines� as speci�ed in the network description by links with the appropriate driver type� A
send message causes the data to be sent on the stream connection� as a non blocking call� Completion

An occam style communications system for unix networks ��

is noti�ed by a SIGIO signal� and delegated to the driver for appropriate handling �causing reactiva�
tion of the occam process�� Message reception is similarly noti�ed� A TCP socket is dedicated to a
link throughout the running time of the occam program� so this driver type should be used sparingly�
Connections can be maintained between executions of programs running on the same network con�g�
uration� so the cost of establishing connections is minimised� It is necessary to use knowledge of TCP
protocol implementation to overcome its ine
ciencies� Results presented in ��
	 give an idea of the
tricks which a driver implementation may have to resort to�

TCP Socket
Stream� connection at run time� There are many variants on this theme� where TCP
connections are established at run time� resulting in an overall performance degradation but better
utilisation of the limited number of simultaneous TCP connections� Connections can be opened and
closed on a per�message basis� alternatively� one can maintain the maximum number of simultaneous
open connections possible� and on subsequent requests� discard connections on a least recently used
basis� It is expected that not enough information would be available to the driver to open and close
connections on the basis of a channel�s lifetime in the occam program�

UDP Socket
Packet�� The packet driven nature of the UDP protocol lends it to a natural packet driver
implementation� Packets associated with a link of this type are immediately output through the UDP
socket to the destination end� The overheads associated with TCP are not encountered� though it
is possible that other hidden ine
ciencies manifest themselves� according to the results presented in
�
�	� The connection establishment phase is eliminated� though at load time� implicit �connections�
may be made between pairs of client and server UDP sockets on machines between which such a
link is speci�ed� An alternative driver may share a single UDP socket between all its links� It must
be kept in mind that UDP packet delivery is not guaranteed to be reliable� or in sending order� so
a mechanism must be introduced into the driver for guaranteeing these properties� Alternatively� a
generic communications facility for driving unreliable packet links may be used� if provided in the
communications system� However� on a single ethernet segment operating in a reasonable environment
�that is� without physical disconnection� power failures� or interference�� packet collision detection is
handled by the ethernet card� and packets do arrive in order of transmission� thus a UDP mechanism
on this medium can be expected to operate without problems� though it would be very unwise to
guarantee faultless operation to users�

Raw IP Socket
Packet�� Though the sockets interface does not usually o�er raw IP as a freely available
service� on a dedicated network of machines where security is not an issue one can create such a
service available to non�root processes� Potential bene�ts may be experienced from bypassing the
UDP protocol mechanisms and any associated bu�ering� Similar arguments to those mentioned in the
discussion on reliability of UDP packet drivers operating on an ethernet medium apply�

TCP Socket
Packet�� A single TCP socket between two hosts may be multiplexed between many virtual
links by de�ning a packet format to be transmitted on top of the stream abstraction� While this may
seem to be terribly ine
cient� it overcomes the limit on maximum simultaneous connections� moreover�
if the size of packets is tuned to match the TCP implementation�s bu�er size and the IP packet size�
the amount of extra packets generated by this method can be kept to a minimum�

Character device
Stream�� Unix character devices� such as serial and parallel ports on a workstation�
can be exploited as links to other workstations� or as links to external devices to be controlled� Of
the drivers discussed� this is the �rst which does not have IP routing support� thus exposing physical
network structure restrictions in the network description and the mapping of processes and channels
onto links� Program loading across such links� and their con�guration� has to be delegated to adjacent
nodes�

Character device
Packet�� A packet passing abstraction may be built on top of a character device
stream� similar to the TCP socket packet driver� Thus multiple channels may pass across a single
serial line� connecting processes residing on the physically connected machines�

Raw Ethernet
Packet�� Provided a unix driver provides unrestricted direct user access to the ethernet
interface �which is not usually the case in a general purpose workstation cluster� a packet driver may
be built to send packets directly through the ethernet card�s packet driver� IP�s routing capabilities
are obviously not available� and such packets are restricted to the current ethernet segment� However�
it is expected that this would be the most e�ective means of utilising an ethernet segment�

An occam style communications system for unix networks ��

PVM messages
Stream�� Although all the potential driver implementations mentioned above target
operating system services directly for communicating� it is possible to make use of a driver to send
messages through higher level message passing software such as PVM� The communications system�s
scope changes to that of providing a uniform interface to the occam run time system� isolating the
emulation of occam primitives such as alternation and resource channels in PVM to the appropriate
driver ���	� and reducing the impact of PVM�s high delays in initiating a communication�

DS�links
Stream�� SGS Thomson Microelectronics� DS�links protocol has been made an IEEE standard
�IEEE
����� This is essentially the same communications technology on which the T���� and C
�� are
based� Third party products based on DS�links are expected to emerge shortly� In particular� a PCI bus
based DS�link interface for PCs is imminent ���	� It can be expected that similar interfaces for various
workstations will be available� While providing a fast� low latency and scalable interconnect suitable
for parallel processing with workstations� this option provides a clean way of interfacing workstations
with existing parallel computers� more so if DS�links are to be used in a wide range of parallel systems�
In our system� DS�link virtual links can be exposed through a stream driver�

��� Alternation and resource channels on external channels

Though the discussion up to this point caters for straightforward unconditional and uncontended�for message
passing between pairs of processes� it is equally important that the implementation of alternation and
a resource channel mechanism to handle a mix of internal and external channels is straightforward and
inexpensive�
Alternation logic has to be based in the occam run time system� so that purely internal alternation is

inexpensive� Introducing an external channel into an alternation requires an addition to the communications
system� in particular� for enabling the external channel �enable channel instruction�� The run time system� on
being instructed to enable an external channel noti�es the communications system� which marks the enabled
status in the VLCB of a virtual channel� and in some suitable way for a stream channel� The communications
system� on receiving a packet on the channel� or an entire message in the case of a stream channel� noti�es
the run time system� which then proceeds as for an internal channel� reenabling the alternating process if
it was already waiting� The alternating process proceeds by disabling channels as usual� at which point it
may turn out to be necessary to notify the communications process of the disabling of any external channels�
The vital property is that the performance of alternation is not degraded by the use of external channels�
Similarly� most of the resource channel logic will be handled in the run time system� so as to keep

overheads low� especially for wholly internal operations� The RDS �Resource Data Structure� together with
its associated resource channel queue is held by the run time system� It is expected that the marking of
external resource channels be propagated to the communications system� though the way in which the run
time system would handle a resource queue containing external channels� without su�ering major alterations�
has not yet been decided�

��� Interfacing with the occam computational process

The interface between the occam computational process and the communications system process is crucial for
maintaining low message startup times� at least within the occam computational process� A particularly low
cost interprocess communicationmechanism is vital� From the discussion conducted in section �� conventional
means were judged to be too expensive� An alternative which was brie�y mentioned based itself on the
utilisation of shared memory �a standard unix System V IPC facility� for passing data� and test�and�set
instructions or signals for synchronisation� The exact technique is still to be decided upon�
It is important that internal communications remains as inexpensive as originally intended by the occam

run time system� External channels can be distinguished from internal ones using a method chosen for the
particular run time system� at best consisting of a single comparison of the channel address with a bounding
address� thus increasing the execution time of an internal channel operation by only a few cycles� On
recognising an external channel� the run time system calls a stub� which in turn communicates the request to
the communications system process in a manner hidden from the rest of the run time system� Notifying the
occam run time system of the completion of an external communication requires the provision of a routine
which runs as part of the run time system �asynchronously to the rest of the system if called by a signal
handler� or as part of the same thread of control if activated by polling a shared memory �ag�� to reschedule
the relevant process� This cannot be included as part of the communications system process� as the latter
would be rendered run time system dependent� Notifying the receipt of a message �or the receipt of the

An occam style communications system for unix networks ��

initial packet in the case of packet communications� is handled in the same way� It is thus hoped that as
little as possible of the occam computational process� allocated timeslices are spent on handling external
communications� and that the process never performs system calls itself �though it is not clear whether this
will gain more processor time for the occam computational process � after all� the communications process
is stealing time from the same processor resource � except maybe in the case of a multiprocessor unix
scheduler� where it might also be feasible to introduce more than one occam computational process on a
machine��
It is equally important to allow absolute freedom to the occam compiler and run time system over the

assignment of external channel addresses� The compiler�run time system pair should aim for a fast way of
separating internal and external channel addresses� Besides� the code which a compiler generates and the
corresponding run time system supports� may be retargetted from a transputer�like architecture� Thus the
communications system must be able to help the run time system to emulate various memory maps� such
as the T����s eight external channel address structure� and the T�����s variable number of external channel
addresses delimited by a register� and translated from the virtual address they represent to a physical VLCB
address �pairs of virtual channel addresses map to the same VLCB address�� In the latter case� the mapping
from external channel addresses �which the run time system recognises� to the VLCB address has to be
performed by the communications system� This will be implemented using a look up table mapping each
external channel address to the address of its VLCB� or the corresponding structure representing a stream
channel� When setting up external channels at load time� the entries are inserted by making calls to the
communications system� specifying the channel address� and optionally� a pointer to the VLCB address� If
the latter is not supplied� the communication system �xes up its own memory area for VLCBs� It is planned
that in this way� even straightforward translated T��� code may have its eight external channels passing
over packet driven links represented by VLCBs�

��� Rationale for the proposed design

A well known way of hiding communications delays to obtain high resource utilisation is by overlapping
communication and computation� A remaining source of underutilisation is the message startup cost� which
is inevitable� but can be pushed downwards� In our case� this corresponds to the noti�cation of the commu�
nications system by the occam computational process of the sending of a message over an external channel�
This is kept to a minimum through the use of shared memory and lightweight synchronisation mechanisms
such as signals and test�and�set instructions� In our system� an analogous price is also paid on completion
of external communication�
Overlapping communication with computation still procures considerable gains� The time for protocol

processing can be handled in parallel �as in the T�����s VCP�� though in our case separating the task
in a separate process still steals away time from computation in a uniprocessor system where the single
processor resource is shared by all� The system may bene�t from the use of a multiprocessor� since the
occam computational process may be scheduled in parallel with the communications system and associated
system calls� This time often pales into insigni�cance when compared with the time taken for packets to
travel across current networks �luckily unaided by the processor�� Hiding this delay is where overlapping
becomes indispensable� Our system exploits overlapping of computation and communication in two ways�
by separating the occam computational engine and communications system into two unix processes� and
by performing all communications in the communications system as non blocking calls� Though it may
be argued that the latter duplicates the function of the former� separating them into two unix processes
has other advantages �in the multiprocessor case� and for compiling in new drivers in the communications
system without recompiling occam executables�� One can formulate a simple model to represent the cost of
communication�

s � message startup�completion cost �time spent on notifying communications system�

p � protocol processing cost �time spent in communications system and system calls�

d � network communications delay �time spent waiting for packets�message to be delivered�

p� d ��s� � total communications cost without overlapping

p� s � total communications cost with overlapping� protocol processing using same processor

s � total communications cost with overlapping� protocol processing using a separate processor

An occam style communications system for unix networks �	

A universal property of distributed memory message passing systems is that d� the network communica�
tions delay �or remote memory access time�� is much higher than that for local operations� p is incurred by
local operations and should be dwarfed by d �although high speed networks can change this� improvements
in scheduling might more or less keep the balance� however� this point is debatable�� Finally� s is kept as
low as possible through the use of shared memory and lightweight synchronisation mechanisms� The use of
multiprocessor workstations and suitable scheduling algorithms would place the total communications cost
somewhere between s and p� s� obscuring d completely as long as su
cient parallel slackness is available in
the occam program� In a T�����C
�� system� s is negligible �an onchip synchronisation�� and p is met by
the VCP�

��
 Implementation considerations

Various issues have arisen during the implementation of the communications system� which is currently in
progress� Many problems are caused by the lack of standardisation in the unix programming interface�
Other di
culties can be traced back to the inadequacy of the tcp�ip and ethernet implementation for such
applications� and the need for detachment from the occam run time system�
Early signal mechanisms were unreliable� which meant that signals were prone to getting lost� Also�

system calls interrupted by signals did not regain control� While such implementations are virtually nonex�
istent today� and reliable signals prevail� there are still signi�cant variations in signal semantics between
unix dialects� These must be catered for in our implementation� as signals play a vital part in our imple�
mentation strategy� In particular� SIGIO signals in conjunction with asynchronous socket I�O are crucial�
It is important to establish to what extent datagram sockets can be used if asynchronous support for them
cannot be guaranteed across all platforms� A rather frustrating experience with socket libraries in various
unix implementations is due to their nonreentrancy� Though various new releases make socket calls �multi
thread safe�� or reentrant� one must cater for existing nonreentrant libraries in common use� Our application
makes it necessary to make socket calls from within signal handlers� which may interrupt the main process
�ow at any time�
The importance of performance in our application forces us to resort to �ne tuning our tcp�ip based

driver implementations� Through padding TCP messages to multiples of a particular size� one can force the
immediate �ushing of a bu�er which attempts to combine smaller sends together� This bu�er often introduces
send delays in the order of hundreds of milliseconds� all for the sake of better bandwidth utilisation� and
may be detrimental to our overall performance ��
	�
The socket interface requires the user to point to the start of the message to be sent� In a packet driven

scheme� the message must start with a VCP�like header specifying the destination VLCB address and other
necessary information� To construct this message structure� it is necessary to introduce memory to memory
copying for each and every packet to be sent� This was found to be inevitable� as even the strict occam
usage rules do not permit the construction of packets in place within the message �by displacing header�sized
segments from the message temporarily� without potential interference� It may be presumed that the same
situation occurs within the IP to ethernet interface� where IP� in constructing ethernet packets� may have
to perform memory to memory copies again� On the other hand� it can be argued that the cost of a block
copy is minimal compared to the amount of processor time spent inside the unix system internals�
Certainly� it is desirable to minimise the amount of work the occam computational process spends on

work related to external communications� One would like to avoid copying messages to be sent over an
external channel from process workspaces to some bu�er area in shared memory� also accessible by the
communications system process� For this reason� it is preferable to place the occam workspaces and data
areas in shared memory as well� so that the communications system can access directly messages to be sent
without involving the occam computational process� However� as some run time systems would not �t well
within such requirements� this must not be enforced� but be included as an option which can be refuted� As
a penalty� noncompliant run time systems will have to perform copying of messages from workspaces to the
separate shared memory area�

 Lightweight asynchronous access control to a shared resource without relying
on critical sections� semaphores� or busy waiting

We would like to share a resource between a �xed number of asynchronous processes� while guaranteeing
mutually exclusive access� However� the Draconian restrictions which are imposed complicate our task
considerably�

An occam style communications system for unix networks �

� no scheduling support can be relied upon� which implies that a process cannot wait on a semaphore�
however� a process may be interrupted by other processes at any time during its execution�

� the only synchronisation mechanism allowed is an atomic test�and�set instruction� together with other
typical atomic bit twiddling instructions�

� busy waiting is not allowed for two reasons� we cannot rely on scheduling support to timeslice between
processes� thus a busy waiting process may proceed inde�nitely� moreover� busy waiting is wasteful of
precious processor time�

� critical sections cannot be guaranteed to be uninterruptible� as no lightweight implementation such as
disabling interrupts� or using busy waiting and test�and�set instructions can be utilised�

It is evident that these restrictions prevent a solution from being reached� Fortunately� we can relax our
requirements to arrive at a less taxing formulation� When an access request is made� the access can be carried
out at a later time� not necessarily by the requesting process itself� provided that su
cient information is
supplied about the request� No acknowlegement of satisfaction of the request is expected by the requesting
process� whose subsequent computations do not use any results from the request� These concessions turn the
seemingly impossible problem into a more reasonable version� which we will attempt to solve� A progression
of attempts towards a solution will be described� until a seemingly satisfactory algorithm is arrived at� No
formal claims are made regarding its correctness� though empirical tests have sustained the guarantee�

��� Intended applications

The need for such an algorithm arises at various points during the design of the communications system�

� The SunOS�Solaris sockets library is nonreentrant �at least up to Solaris ���� ���	� This may cause
problems� in that initial message packets are sent from the main communications system thread of
control� while subsequent packets are sent from a signal handler� which may interrupt the main thread
in the middle of a socket system call� Socket calls may be considered a resource to be shared using such
a mechanism� since no proper scheduling support exists between these two threads� and busy waiting
would give rise to an in�nite loop� Results from these socket calls may need to be handled centrally�
rather than by the invoking thread�

� We expect synchronisation and communication between the communications system process and the
occam computational process �for invoking message sending and receiving and notifying completion of
these operations� to be least expensive through shared memory� using a similar� possibly altered� tech�
nique to synchronise access to the shared memory resource� Though unix interprocess communcations
facilities and signals are available� our technique could give rise to much smaller delays� Busy waiting
can be used in this case� depending on unix scheduler timeslicing� but the coarse granularity would
result in large amounts of processor time being wasted�

� If the noti�cation of external communications operations is done through signals to the occam com�
putational process instead� the signal thread needs to access occam process queues� and may interfere
with the main thread� Our technique may be applied directly towards a solution�

��� A series of unsatisfactory solutions

Unsuccessful attempt ��	 Single queue
In an environment with adequate scheduling support� processes claiming access to the resource may be
queued� and reenabled on being granted access� In our case� a process claiming access cannot be suspended
for later reenabling� but has to proceed immediately� Also� busy waiting on an access bit is disallowed� since
a process may wait forever� A critical section� during which interruptions by other processes are disabled�
cannot be implemented� We are led to a situation where an access request must be got rid of without delay�
One way of doing this is by queueing requests instead of processes� A process Pi claiming access queues a
request on queue Q ��gure �� and proceeds as though the request has been carried out �we are assuming
that results from the access are not needed�� The resource handler RH� through which accesses are made� is
protected by a locking bit� lock�RH� which is tested and set atomically by processes after queueing a request�
If unlocked� RH is entered� using processor time allocated to Pi� If already locked� Pi proceeds as usual� In
the latter case� queued requests must be serviced by RH as soon as it is ready� Thus� once RH is active� it

An occam style communications system for unix networks ��

Shared Resource
R

Resource Access

RH

Lock-RH

Handler (mutex)

Thread 2 Thread nThread 1

Queue Access

QH
Handler (Reentrant)

Q2

Lock-Q

Figure �� Attempt at mutual exclusion with one queue�

must check Q for requests added while lock�RH was on and service them� every time before exiting� Such
subsequent requests are serviced as part of the process which itself had originally managed to lock RH�
rather than the requesting process�

Unsuccessful attempt ��	 Multiple queues
The previous solution is satisfactory so long as queue access is atomic� This is unfortunately not usually
the case� unless critical sections are allowed �in which case we could do away with the queue altogether��
In locking queue access� a locking bit lock�Q would have to be added� on which the same mutual exclusion
problem initially tackled arises� To solve the problem of contention for queue access� assuming that a constant
number n of processes are contending for access� n queues Q� � � �Qn can be introduced� each with a locking
bit lock�Q� � � � lock�Qn� as shown in �gure �� At any time in which a process needs to queue a request� at
least one queue will be unlocked� and the process may scan for that queue� Once found� the request is added
to that queue� and the queue is again unlocked� and an attempt is made to lock and enter RH� which may�
or may not be successful� RH� once active� will scan for an unlocked� non�empty queue� lock it and service
all requests� and repeat this until a scan through the queues results in locked or empty queues exclusively�
in which case� RH exits� allowing its host process to continue execution� In doing this� however� we have
pushed the atomicity problem to the scan for unlocked queues� Both cases �a process looking for a free
queue� and RH looking for a free� non�empty queue� introduce new problems�

� Suppose a process Pi scans through the queues� adopting an arbitrary deterministic strategy �say from
left to right in the visual representation�� looking for an unset lock�Qi using a test�and�set instruction�
It is possible that it scans from Q� through to Qk�
 � k � n� �nding every one locked� It is guaranteed
that at least one is free� so that one must be between Qk and Qn� say Qj� k � j � n� However� at
that point� a queue is freed between Q� and Qk� and Qj is locked� The scan proceeds and Pi does not
manage to �nd a free queue� Eventually� one could argue� a free one is found after an arbitrary amount
of rescans� but a situation could be constructed �using a particular scheduling pattern� where this
iterates forever� A possible solution is the adoption of a nondeterministic scanning algorithm� where
the queue to be checked is selected randomly� This will guarantee an eventuality condition� though no
upperbound on the number of retries can be �xed�

An occam style communications system for unix networks ��

Thread 2 Thread nThread 1

Queue Access

QH
Handler (Reentrant)

Shared Resource
R

Resource Access

RH

Lock-RH

Handler (mutex)

Lock-Q1 Lock-Q2 Lock-Qn

Q1 Q2 Qn

Figure �� Attempt at mutual exclusion with n queues�

� Upon completing a request� RH scans the queues for any further pending requests� A deterministic
scan has to be made here with a �xed upperbound� since it is important that RH exits as early as
possible� A deterministic scan introduces the same problem which we have just encountered� only that
changing to a nondeterministic scan causes RH to proceed even while no requests are pending� until a
request is submitted�

Although the mutual exclusion condition is satis�ed� and we can consider this to be a satisfactory solution�
requests may be left pending for an inde�nite period� left waiting on a queue by an unaware RH which has
since exited� until its next invokation� Though we have not set any hard and fast constraints on response time�
we choose to view this situation where no upperbound on servicing time can be guaranteed as unsatisfactory�

Unsuccessful attempt ��	 Multiple queues with �ag
One can state our latest problem as having to detect requests queued without the knowledge ofRH� Enclosing
the scan routine in a critical section would be �ne� but� making use of critical sections� we could have done
without the queues in the �rst place� Alternatively� adding a �ag bit f ��gure �� alongside the queue locks�
which would be set exactly before� or after� unlocking a queue� could act as a noti�er for RH� prompting
it to rescan the queue� At the start of a scan� RH would reset f � If at the end of the scan� f is set� this
means that a request has been queued in the meantime� and the whole routine is repeated� This seems to
work �ne in both cases� probably in a very high percentage of executions� but not quite always� Consider
the sequence of events in �gure �� By following the sequence� it is evident that P��s request remains queued�
and is not serviced until the next call to RH� This alteration has not solved our problem� though it reduces
its occurance frequency substantially� This technique has been described here as it leads the way to our
current best solutions�

��� Two
hopefully� correct solutions

The unsuccesful attempts just described strongly indicate that it is not possible to solve the problem with
the available tools� In fact� the solutions which we shall now supply twist the conditions subtly in our favour�
though to an extent which is acceptable for our application� The problem with attempt � is that if an

An occam style communications system for unix networks ��

Thread 2 Thread nThread 1

Queue Access

QH
Handler (Reentrant)

Lock-Q1 Lock-Q2 Lock-Qn

Q1 Q2 Qn

Lock-RH Flag f

Shared Resource
R

Resource Access

RH
Handler (mutex)

Figure �� Attempt at mutual exclusion with n queues and a �ag�

interruption occurs in between setting the �ag f and clearing the queue lock �during which f is cleared�� the
same process is rescheduled while lock�RH is still set� Consequently its latest request is ignored� This calls
for uniting the setting of f and the unlocking of the queue into a single� atomic operation� Alternatively�
restricting possible schedules to a subset of those originally possible� in which interrupted processes cannot be
rescheduled by interrupting another process� will prevent the occurance of such an event� We shall investigate
the impact and practicality of these restrictions in turn�

Solution ��	 Atomic clear �ag and unlock queue combined operation
One way of preventing residue requests accumulating until the next execution of RH is the use of an atomic
instruction which clears f and lock�Qi� How practical is this � does it require the provision of specialised
hardware� or is it implementable using conventional processors! Provided n� the number of threads� is
less than the machine word size� one can store lock�Q� � � � lock�Qn in bits
 to n �
� and reserve bit � for
f � Test�and�set instructions usually operate on a selected bit of a machine word� so this is an acceptable
arrangement� Now� bits from a word can be set and cleared atomically using machine instructions for AND�
OR and XOR� An XOR with a word whose bits are all zeros except for the relevant queue bit� lock�Qi and the
�ag bit f fails in the eventuality that f is already set at the time� However� if f is inverted� that is� set to �
and cleared to
 instead� an AND with a word whose bits are all set to one except for the �ag bit f and the
relevant queue bit lock�Qi should satisfy our requirements� setting f and clearing lock�Qi atomically� This is
achieved using standard hardware� with the restriction that the number of processes must be less than the
machine word length�

Solution ��	 Restricted scheduling order
The sequence of events in the counterexample given in attempt � invalidate our requirements because
P� �the process whose request will eventually remain unserviced� after being interrupted regains control by
in turn interrupting P�� which is in RH at the time� about to clear lock�RH� By enforcing the following
condition�

An interrupted process may not regain control before the process which had caused the interrup�
tion terminates

An occam style communications system for unix networks ��

P� �scans queues�
P� test�and�set lock�Q� �successful�
P� queue a request in Q� �now it is the exclusive owner�
P� set f
P� �scans queues�
P� test�and�set lock�Q� �successful�
P� queue a request in Q� �now it is the exclusive owner�
P� set f
P� clear lock�Q�

P� test�and�set lock�RH �successful�
P��RH� �scans queues�
P��RH� test�and�set lock�Q� �successful�
P��RH� unqueue a request from Q�

P��RH� service the request
P� �scans queues�
P� test�and�set lock�Q� �successful�
P� queue a request in Q� �now it is the exclusive owner�
P� set f
P� clear lock�Q�

P� test�and�set lock�RH �unsuccessful�
P� �proceeds with execution�
P��RH� clear lock�Q�

P��RH� test f �it is set� so rescan�
P��RH� clear f
P��RH� �scans queues� �unsuccessful�
P��RH� test f �it is not set� so prepare to exit�
P� clear lock�Q�

P� test�and�set lock�RH �unsuccessful�
P� �proceeds with execution�
P��RH� clear lock�RH
P��RH� �exits� returning to P��
P� �proceeds with execution�

Figure �� A scheduling sequence which leaves a residue in queues�

An occam style communications system for unix networks ��

an ordering on the rescheduling of suspended processes is enforced� Though this ordering could possibly
be relaxed to a partial order of scheduling constraints� as yet this has not been determined� The crucial
point is whether maintaining this ordering is unnatural to the system in question� Luckily� it turns out
that this condition is kept by an interrupt driven system� as exempli�ed by signal interruptions� since return
addresses are often stored on a stack� to be popped o�� naturally conserving the order� With such a scheduling
restriction� P� in particular can never barge in when P� in RH is about to clear lock�RH� Subsequently� RH
is made available before P� resumes� lock�RH is test�and�set successfully�
As yet� no veri�cation of the correctness of these algorithms has been carried out� the only tests performed

being empirical in nature� Still� at the time of writing no counterexample has been found which demonstrates
the invalidity of these solutions�

� Future Directions

To date� various parts of the communications system have been implemented� mainly pertaining to packet
driven communications� A variant of the shared resource access algorithm described has been implemented as
part of a separate project� Diverse issues have been exposed as this project proceeded� o�ering opportunities
for ulterior research� Openings which may be investigated further in future include�

� implementation of the communications system in its completion� and integration with a compiler and
run time system such as KROC ��
	� initially� tcp�ip�based drivers will be constructed�

� design and execution of tests for the measurement of overall system performance over an ethernet�based
workstation network� it is hoped that the results compare favourably with those for existing message
passing implementations� isolation of costs pertaining to particular sections of system operation� such
as message startup cost�

� implementation of further drivers� performance testing and evaluation�

� investigation of issues in the design of a network description language to model the �possibly virtual�
topology of a heterogenous system� and the driver type used for each link� the corresponding software
con�guration language will be in line with current designs� it would be desirable to automatically
generate software con�gurations� although this may fall outside the project�s subject area�

� examination of abstract models such as BSP and LogP which attempt to mould a model of parallel
computation that enables straightforward performance prediction� and the extent to which it is possible
to obtain similar bene�ts with occam�s freely communicating CSP�like model� to what extent is it
possible to automatically determine the optimal amount of occam process distribution across a network
�with suitable performance characteristics� to maximise e
ciency� using only parameters such as the
machine�s granularity and latency!

� alongside with the above line of thought� investigate the possibility of enforcing restrictions similar to
those imposed by the BSP model into the computational kernels of occam programs� in order to ease
performance prediction for computation intensive routines� correspondingly� a novel implementation of
distributed occam can be investigated and optimised towards such use� if possible without changing the
syntax or semantics of the language� otherwise� investigate relevant language extensions or restrictions�
their performance� and ease of performance prediction on real parallel architectures�

References

�
	 Albert Alexandrov� Mihai F� Ionescu� Klaus E� Schauser� and Chris Scheinman� LogGP� Incorporating
long messages into the LogP model � one step closer towards a realistic model for parallel computation�
Technical report� University of California� Santa Barbara�
����

��	 James Allwright� The WP� BSP�occam library� Technical report� University of Southampton� March

��
�

��	 S�A� Baker and K�R� Milner� A process migration harness for dynamic load balancing� In Janet Edwards�
editor�WoTUG��� occam and the Transputer � Current Developments� pages ��"�
� Amsterdam�
��
�
IOS Press�

An occam style communications system for unix networks ��

��	 C� Barnaby� M�D� May� and D�A� Nicole� General purpose parallel computers� In M�D� May� P�W�
Thompson� and P�H� Welch� editors� Networks� Routers and Transputers� chapter �� pages

�"
���
IOS Press� Amsterdam�
����

��	 C� Barnaby and N� Richards� A generic architecture for ATM systems� In M�D� May� P�W� Thompson�
and P�H� Welch� editors� Networks� Routers and Transputers� chapter
�� pages
�
"
��� IOS Press�
Amsterdam�
����

��	 G� Barrett� How to write a highly parallel program� In J�M� Kerridge� editor� Transputer and occam

Research � New Directions� pages ���"�
�� Amsterdam�
���� IOS Press�

��	 G� Barrett� E� Barton� T� Carden� D� Duval� and D� Nicole� General purpose parallel computers� a
standard architecture with a standard programming interface� In A� Allen� editor� Transputer Systems
� ongoing Research� pages
��"
��� Amsterdam�
���� IOS Press�

��	 G� Barrett� M� Goldsmith� G� Jones� and A� Kay� The meaning and implementation of PRI ALT in
occam� In Charlie Askew� editor� occam and the Transputer� Research and Applications OUG�	� pages
��"��� Amsterdam�
���� IOS Press�

��	 Geo� Barrett� occam� reference manual� Technical report� INMOS Limited� Bristol� BS
� �SQ� England�
March
����

�
�	 O� Botti and F� De Cindio� Comparison of occam program placements by a generalized stochastic petri
net model� In M� Becker� L� Litzler� � and M� Trehel� editors� Transputers
	� Advanced research and
Industrial applications� pages ��"��� Amsterdam�
���� IOS Press�

�

	 Juanito Camilleri� An operational semantics for occam� International Journal of Parallel Programming�

����� October
����

�
�	 Thomas Cheatham� Amr Fahmy� Dan C� Stefanescu� and Leslie G� Valiant� Bulk synchronous par�
allel computing � a paradigm for transportable software� In Proceedings of the ��th Annual Hawaii
International Conference on System Science� January
����

�
�	 B�M� Cook� A fast C kernel for portable occam compilers� In Proceedings of WoTUG���� Transputer
and occam Developments� volume �� of Transputer and occam Engineering� pages ��"��� Amsterdam�
April
���� IOS Press� ISBN �� �
�� ��� x�

�
�	 David Culler� Richard Karpt� David Patterson� Abhijit Sahay� Klaus Erik Schauser� Eunice Santos� Rar�
nesh Subrarnonian� and Thorsten von Eicken� LogP� Towards a realistic model of parallel computation�
Technical report� Computer Science Division� University of California� Berkeley�
����

�
�	 David E� Culler� Klaus Erik Schauser� and Thorsten von Eicken� Two fundamental limits on data�ow
multiprocessing� In Proceedings of the IFIP Working Group �
�� �Concurrent Systems�� Working Con�
ference on Architectures and Compilation Techniques for Fine and Medium Grain Parallelism� Elsevier
Science Publishers� January
����

�
�	 Neil James Davies� The performance and scalability of parallel systems� PhD thesis� University of
Bristol� December
����

�
�	 M� Debbage� M� Hill� S� Wykes� and D� Nicole� Southampton�s portable occam compiler �SPOC�� In
Roger Miles and Alan Chalmers� editors� Proceedings of WoTUG���� Progress in Transputer and occam
Research� volume �� of Transputer and occam Engineering� pages ��"��� Amsterdam� April
���� IOS
Press�

�
�	 J� J� Dongarra� R� Hempel� A� J� G� Hey� and D� W� Walker� A proposal for a user�level� message passing
interface in a distributed memory environment� Technical report� Oak Ridge National Laboratory� March

����

�
�	 Craig C� Douglas� Timothy G� Mattson� and Martin H� Schultz� Parallel programming systems for
workstation clusters� Technical report� Yale University� August
����

���	 C� Elamvazuthi and G�A� Manson� occam� PVM and the alternative construct� In Roger Miles and Alan
Chalmers� editors� Proceedings of WoTUG���� Progress in Transputer and occam Research� volume ��
of Transputer and occam Engineering� pages ��"��� Amsterdam� April
���� IOS Press�

An occam style communications system for unix networks ��

��
	 S� Feit� TCP�IP � Architecture� Protocols and Implementation� McGraw Hill Series on Computer
Communication� McGraw Hill�
����

���	 S� Fortune and J� Wyllie� Parallelism in random access machines� In Proceedings of the �
th Annual
Symposium on Theory of Computing� pages

�"

��
����

���	 Message Passing Interface Forum� MPI� A message�passing interface standard� Technical report� Uni�
versity of Tennessee� Knoxville� May
����

���	 Al Geist� Adam Beguelin� Jack Dongarra� and Weicheng Jiang� PVM� user�s guide and reference
manual� Technical Report ORNL�TM�
�
��� Oak Ridge National Laboratory� May
����

���	 D� Goodeve� Mapping revisited� In J�M� Kerridge� editor� Transputer and occam Research � New
Directions� pages ��"��� Amsterdam�
���� IOS Press�

���	 Jane Hillston� A compositional approach to performance modelling� PhD thesis� University of Edinburgh�

����

���	 Dennis N�M� Ho� Variations of alt implementation on Transputer� In T� L� Kunii and D� May� editors�
Transputer�occam Japan �� pages
��"���� Amsterdam�
���� IOS Press�

���	 C� A� R� Hoare� Communicating Sequential Processes� Prentice Hall�
����

���	 I�A� Horton and S�J� Turner� A virtual architecture for investigating dynamic load balancing on Trans�
puter networks� In A�S� Wagner� editor� Transputer Research and Applications �� pages ���"���� Ams�
terdam�
���� IOS Press�

���	 Chengchang Huang and Philip K� McKinley� Communication issues in parallel computing across ATM
networks� Technical report� Communications Research Group� Michigan State University� June
����

��
	 Geraint Jones� On guards� In Parallel Programming of Transputer Based Machines� IOS Press� Septem�
ber
����

���	 S B Jones and Goh Soon Liong� Load balancing evaluation for Transputer based systems� Technical
Report TR
����� SERC�
����

���	 S�W� Lau and F�C�M� Lau� An e�cient and �exible implementation of ALT� In A�S� Wagner� editor�
Transputer Research and Applications �� pages ���"���� Amsterdam�
���� IOS Press�

���	 INMOS Limited� occam� Reference Manual� Prentice Hall� London�
���� ISBN ��
������
����

���	 INMOS Limited� IMS C
�� packet routing switch �preliminary data�� June
����

���	 INMOS Limited� T	

 Transputer Hardware Reference Manual� SGS�ThomsonMicroelectronics�
����

���	 INMOS Limited� T	

 Transputer Instruction Set Manual� SGS�Thomson Microelectronics�
����

���	 INMOS Limited� T	

 Transputer Development Systems Manuals� Hardware Con�guration Manual�
May
����

���	 INMOS Limited� T	

 Transputer Development Systems Manuals� Toolset Reference Manual� May

����

���	 M�D� May� R�M� Shepherd� and P�W� Thompson� The T���� communications architecture� In M�D�
May� P�W� Thompson� and P�H� Welch� editors� Networks� Routers and Transputers� chapter �� pages

�"��� IOS Press� Amsterdam�
����

��
	 M�D� May and P�W� Thompson� Transputers and routers� Components for concurrent machines� In
M�D� May� P�W� Thompson� and P�H� Welch� editors� Networks� Routers and Transputers� chapter
�
pages
"
�� IOS Press� Amsterdam�
����

���	 W F McColl� General purpose parallel computing� In A M Gibbons and P Spirakis� editors� Lec�
tures on Parallel Computation� Proc� �		� ALCOM Spring School on Parallel Computation� Cambridge
International Series on Parallel Computation� pages ���"��
� Cambridge University Press�
����

An occam style communications system for unix networks ��

���	 W F McColl� The BSP approach to architecture independent parallel programming� Technical report�
Oxford University Computing Laboratory� December
����

���	 W F McColl� BSP programming� In G E Blelloch� K M Chandy� and S Jagannathan� editors� Spec�
i�cation of Parallel Algorithms� Proc� DIMACS Workshop� Princeton� May 	���� �		�� volume
� of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science� pages �
"���
����

���	 W F McColl� Scalable parallel computing� A grand uni�ed theory and its practical development� In
B Pehrson and I Simon� editors� Proc� ��th IFIP World Computer Congress� Volume I �Invited Paper��
pages ���"���� Elsevier�
����

���	 W� F� McColl� Bulk synchronous parallel computing� In John R� Davy and Peter M� Dew� editors�
Abstract Machine Models for Highly Parallel Parallel Computers� Oxford Science Publications� Oxford
University Press�
����

���	 Sun Microsystems� SunOS ����� Network Programming Guide� March
����

���	 Sun Microsystems� Solaris ��� Network Interfaces Programmer
s Guide� May
����

���	 Sun Microsystems� Solaris ��� System Services Manual� May
����

���	 R� Milner� Communication and Concurrency� Prentice Hall�
����

��
	 occam For All Group� KROC� Kent retargettable occam compiler�
���� Available at unix�hensa�ac�uk�

���	 Michael Perlo� and Kurt Reiss� Improvements to TCP performance in high�speed ATM networks�
Communications of the ACM� ��������"
��� February
����

���	 D� M� Ritchie and K� Thompson� The unix timesharing system� Communications of the ACM�

��������"���� July
����

���	 A W Roscoe� Denotational semantics for occam� In Proceedings of the NSF�SERC Workshop on
Concurrency� volume
�� of Springer Notes in Computer Science� pages
"��� July
����

���	 A WRoscoe and C A RHoare� The laws of occam programming� Technical Report Technical Monograph
PRG���� Oxford University Computing Laboratory Programming Research� Group� February
����

���	 K�M� Shea and F�C�M� Lau� On the performance of ALT in occam� In A�S� Wagner� editor� Transputer
Research and Applications �� pages ���"���� Amsterdam�
���� IOS Press�

���	 M� Simpson and P�W� Thompson� DS�Links and C
�� routers� In M�D� May� P�W� Thompson� and P�H�
Welch� editors� Networks� Routers and Transputers� chapter �� pages ��"��� IOS Press� Amsterdam�

����

���	 W� Richard Stevens� UNIX Network Programming� Prentice�Hall� N�J��
����

���	 W� Richard Stevens� Advanced programming in the UNIX environment� Addison�Wesley Publishing
Company�
����

���	 W� Richard Stevens� TCP�IP illustrated� volume �� the protocols� Addison�Wesley Publishing Company�

����

��
	 A� M� Tentner� R� N� Blomquist� T� R� Can�eld� P� L� Garner� E� M� Gelbard� K� C� Gross� M� Minko��
and R� A� Valentin� Advances in parallel computing for reactor analysis and safety� Communications
of the ACM� ������ April
����

���	 L� G� Valiant� A bridging model for parallel computation� Communications of the ACM� ������ August

����

���	 L� G� Valiant� General purpose parallel architectures� In Jan van Leeuwen� editor� Handbook of Theo�
retical Computer Science� volume A� pages ���"��
� Elsevier�
����

���	 Ronald J� Vetter� ATM concepts� architectures� and protocols� Communications of the ACM� ��������"
��� February
����

An occam style communications system for unix networks �	

���	 Alf Wachsmann and Friedrich Wichmann� occam�light � a multiparadigm programming language for
Transputer networks� Technical report� Universitat�GH Paderborn�
����

���	 S�W� Waithe and J�M� Kerridge� An appreciation of the subtleties of shared channels in occam�� In
J�M� Kerridge� editor� Transputer and occam Research � New Directions� pages ���"���� Amsterdam�

���� IOS Press�

���	 C� P� H� Walker� PCI
�����
�� PCI bus interface boards to IEEE
��� DS�DE links product outline�

����

���	 P� H� Welch� An occam approach to Transputer engineering� In Proceedings of the �rd Conference on
Hypercube Concurrent Computers and Applications� Pasadena� California� U�S�� January
����

���	 P� H� Welch� Shared�memory multi�processors and occam� Technical report� Computing Laboratory�
University of Kent at Canterbury� Canterbury� Kent CT� �NF� U�K��
����

