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Abstract

This document describes the design of a communications system which provides occam style com�
munications primitives under a unix environment� using tcp�ip protocols� and any number of other
protocols deemed suitable as underlying transport layers� The system will integrate with a low overhead
scheduler�kernel without incurring signi�cant costs to the execution of processes within the run time
environment� A survey of relevant occam and occam� features and related research is followed by a
look at the unix and tcp�ip facilities which determine our working constraints� and a description of
the T�			 transputer
s Virtual Channel Processor� which was instrumental in our formulation� Drawing
from the information presented here� a design for the communications system is subsequently proposed�
Finally� a preliminary investigation of methods for lightweight access control to shared resources in an
environment which does not provide support for critical sections� semaphores� or busy waiting� is made�
This is presented with relevance to mutual exclusion problems which arise within the proposed design�
Future directions for the evolution of this project are discussed in conclusion�

� Scenario

An environment for executing parallel programs expressed in a safe� pure parallel language on a wide variety
of architectures is a desirable tool� Various parallel programming environments exist in the form of libraries
used in conjunction with a sequential language such as C or Fortran� Parallel Virtual Machine �PVM� ���	
and Message Passing Interface �MPI� �
�� ��	 are two instances of this approach� the latter only specifying
a standard programming interface� abstracting away from implementation decisions� Such combinations�
however� make both formal and intuitive reasoning about a parallel program as a single entity rather di
cult�
since the semantics of parallelism are not part and parcel of the language� but stuck on as an afterthought
in such a manner that communicating processes cannot readily be thought of as part of the same program
�as described in ���	�� Additionally� the coarse grain parallelism imposed as the basis of many such libraries
limits the amount of readily identi�able parallelism at �ne grain algorithmic level which can be exploited on
suitable architectural platforms� and used as extra parallel slackness ���	 to hide latency in other situations�
On the other hand� the occam language ���� �	 o�ers parallelism as an integral part of the language� and a

stable formal basis for reasoning about parallel algorithms ���� ��� 

	� based on CSP ���	� or related process
algebrae ���	� The �ne level of granularity expressible through this programming model exposes su
cient
parallelism for exploitation both by parallel execution� and for latency hiding ��� �	� Sadly� a practical
execution environment which also meets the requirements just laid down has not yet been implemented for
occam� or indeed� any language possessing the same desirable properties�
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� Aims and Requirements

The aim of this project is the construction of a software communications system which e
ciently implements
the occam model of communication across interconnected computers� principally running unix ���	� though
not exclusively so� on top of tcp�ip ��
	� while including su
cient �exibility to add on support for whatever
communications protocol is deemed suitable as an underlying transport layer� This scenario hints strongly
at ethernet�connected workstation networks� which are in fact the initial target for this system� though no
strings are attached to this particular case in the design�
Implementing a run time system �process scheduler and internal communications kernel� for occam pro�

grams as part of the project immediately binds the system to a particular occam compiler and single processor
run time system� This is undesirable� as it limits the applicability of our system� so a strict dividing line is
drawn as an interface between the single processor run time system� and the communications system� Our
scope is limited to enabling the run time system to perform external communications� without interfering
with the way in which processes are scheduled� internal communications are implemented� and memory is
laid out� The only alterations needed to adapt an existing uniprocessor runtime system are�

� the addition of a simple comparison in the kernel routines for communications� by which the channel
is identi�ed as internal �so that the normal course of action is taken� or external �in which case the
communication system is invoked accordingly�� and

� the provision of a routine which is called by the communication system when an external communication
is completed� so that the appropriate process is rescheduled as desired by the run time system�

Necessary for complete system operation are a network description language ���	� and a corresponding
software con�guration language ���	 for mapping programs onto distributed machines� One can envisage
the extension of this system to heterogenous processor architectures� and heterogenous interconnects� which
would necessitate the inclusion of relevant directives in the network description language regarding processor
types� and underlying network protocols for which communications drivers have been included� While the
former �heterogenous processor architectures� can be set aside for the time being� the case for support for
heterogenous links is strong� as machines on the network can be interconnected in various ways �such as
tcp�ip over practically anything� and raw devices like serial ports�� and various connection types can be
o�ered even over a single link type �for example� a tcp�ip link can be o�ered as a TCP stream� a UDP
packet multiplexing service� or a packet multiplexing service built over TCP�� In this vein� ATM networks
���� ��� ��	 introduce a wide range of parameters to characterise a connection� which specify properties such
as quality of service and guaranteed bandwidth� It is desirable to expose these in the network description
language so that the quality and capacity of individual links can be decided by the author of the description�
possibly on the basis of the anticipated loading on each link�
The software con�guration language� together with software for loading executable code to processors

on the network� depend heavily on the particular compiler and run time system� However� it is expected
to be possible to provide a partial solution to this problem� which may be extended in a modular fashion
to match particular systems� requirements by de�ning an interface similar to that between run time system
and communication system� through which system speci�c extensions for loading and con�guring code can
be included�
It is a fundamental requirement that the interface o�ered to the run time system presents a direct means

of implementing the occam channel communication primitives � and �� for normal communication under
PAR� as guards in nondeterministic choice ALT� and as shared resources in the occam� CALL channel and
SHARED channel types� Interruptions of the occam computational engine must be shorn to the minimum
possible� the internals of the communication system executing asynchronously with respect to the former�
Optimisations pertaining to particular underlying communications protocols can be conveniently isolated in
the protocol�s driver�

� occam and occam�

The occam language de�nes three primitive processes� analogous to statements in a sequential imperative
language� assignment� input and output� Both parallel and sequential composition are presented as �rst class
constructs to be used at the same level of granularity� The parallel construct PAR contains an implicit barrier
synchronisation between its components at their termination� Message passing is through point to point�
synchronous channels connecting pairs of processes� Consequently� communication is deterministic� since
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contention does not occur for normal occam channels� Strict usage rules which can be statically checked are
enforced for variables and channels in parallel processes� excluding the possibility of any form of contention�
and consequently nondeterminism which could be casually overlooked by programmers�

occam programmers can willingly introduce nondeterminismusing the ALT choice construct ���� ��� ��� �
	�
which creates contention on a process on the recieving end of multiple channels� used as input guards� rather
than on a channel� Only a weak form of fairness is guaranteed� so starvation can be observed which is peculiar
to the particular occam implementation� By allowing the introduction of nondeterminism only explicitly�
groups of processes can be guaranteed to be safe from nondeterminism� and the points which act as a source
of nondeterministic execution can be pinpointed statically� thus allowing the partitioning of a program into
deterministic groups of processes with nondeterminism at the boundaries� Priority choice can be expressed
using the PRI ALT construct ��	�
The proposed occam� de�nition ��	 augments the language with the introduction of shared channel

resources ���	� shifting the focus of contention� and consequently� the source of nondeterminism� to the
channel� This time� a strong notion of fairness is guaranteed in the �rst in� �rst out management of access
to the channel resource� One instance of this new concept is in the SHARED channel type� where any number
of parallel client processes CLAIM the channel in question� and the single server process at the other end
GRANTs exclusive channel access to the client whose request was �rst registered at the server end� The other
instance of resource sharing in occam� manifests itself in the CALL declaration� which provides a high level
client�server construct� analogous to RPC �Remote Procedure Call�� A process� with a single entry point� is
explicitly and permanently bound to the server end of an implied �CALL channel�� which acts as a medium
for sending parameters and receiving results� Client processes e�ect calls to the server and are serviced one
at a time� in a �rst in� �rst out manner�

��� Mapping programs onto parallel architectures

occam does not provide directives for placement of processes and channels on machine architectures� since
this would tie down program code to that particular machine� Rather� a separate con�guration language
���	� de�nes the mapping� The con�guration language needs a machine description� which is speci�ed in a
separate language known as the network description language ���	� This arrangement assumes the machine
to be a message passing� distributed memory architecture� but one could well imagine a similar con�guration
language using a shared memory machine speci�cation generated by a corresponding description language�
With the development of appropriate tools which model channel loading and process execution patterns�
optimising the mapping of critical paths in the process graph ���	� the mapping could be automated to
obtain con�gurations with reasonable performance� Another possible solution� for applications with dy�
namic execution patterns� is the use of a run time load balancing system ���� ��� �	� However� it must be
noted that with recent developments in communications technology ���� ��� �	� the importance of locality
in communicating processes has diminished� Moving a step further� in a scenario where a processor farm
can service processes from a single� shared pool without major performance penalties� the mapping problem
is dissolved away ���	� However� such an scheme on a shared memory machine with a cache hierarchy may
induce thrashing on cache pages unless scheduling hierarchies echoing the cache hierarchies are established
to keep cache footprints rather small and static �i�e� processes should be scheduled in such a way so that the
same set of processes has a greater a
nity for the processor most recently used� thus keeping multiple copies
of the same process code in di�erent caches to a minimum�� �
�	 discusses the problem in the context of the
extremely �ne grain parallelism in data�ow architectures� In retrospect� with the introduction of scheduling
hierarchies� this becomes reminiscent of the situation where processes are dynamically mapped to processors
and migrate periodically� only that the migration process is supported by hardware�

��� Processor utilisation and performance

Traditionally� synchronous communication is considered to be ine
cient� in the sense that communications
latency is left exposed and consequently� the participating processes are suspended� Even worse� the party
that arrives �rst at the synchronisation point has to wait for the other party to catch up� at which point the
communication can start� On the other hand� asynchronous communication hides such latency by allowing
the participating processes to proceed in the meantime� thus decreasing the amount of time for which the
process waits� though only to the extent allowed by the underlying algorithm� However� the behaviour
of asynchronous programs can be counterintuitive� in that an obscure but possible scheduling of events
can �ll up a queue �now necessary for managing communications�� resulting in either program failure or
a return to synchronous communications until the queue is emptied� The latter can result in obscure and
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unpredictable deadlock� which cannot be reasoned about from the the language�s semantics alone �that is�
without knowledge of the particular run time implementation�s queue sizes��
Alternatively� when multiple parallel processes coexist at each locality� synchronous communication can

hide arbitrary amounts of latency just as easily� without mandating alterations to programs� assuming enough
parallelism is available� The processor time during which one process is participating in a synchronous
communication can be used to execute another process� Assuming enough processes are available to �ll in
the gaps introduced by synchronous communication� and that they do not perform communication themselves
too frequently� all gaps can be covered� Though per�process waiting time �or �virtual processor� idle time�
is not decreased� processor idle time is eliminated� and consequently� processor utilisation is maximised on
all components of the parallel machine� Thus multithreading can be seen as an alternative form of latency
tolerance to asynchronous communications� extensive caching� or instruction level parallelism�
The number of processes mapped to a single processor measures the degree of parallel slackness ���	

available� The ratio of communication to computation in a process is known as the grain size of that
process� A well thought out combination of the program�s average grain size �this is also subject to the
mapping�� the mapping�s parallel slackness� the network�s latency� and the machine�s minimum tolerable
grain size can maximise machine utilisation� Keeping latency and machine grain size constant and as low as
possible� programs can be written to match or exceed the machine�s grain size� and mapped onto a variety
of like� or �ner�grain architectures with varying latencies by changing the mapping to obtain the required
degree of parallel slackness ��� �	�
This still does not solve the mapping problem� since the decision as to which processes map best onto a

particular processor is still open� Two opposing trends are both popular� either ignore all locality concerns
during mapping� map out processes randomly� and guarantee a performance derived from the worst case� or
carefully place processes which communicate frequently on adjacent processors� The former is seen as a step
in the direction of general purpose parallel computing ���	 as algorithmic structure can be separated from
network topology� However� for e�ective results the hardware must qualify as a general purpose parallel
computer ���� �	 by guaranteeing certain performance �computation and communication� and scalability
characteristics� Regarding data locality� the occam programming model clearly speci�es the data which
should be placed on the same processor as a process�

��� Performance prediction of occam programs

It is di
cult to predict the performance of unrestricted communicating process programs on real parallel
computers� While it is possible to obtain best� worst� and average case measures for occam programs
combinatorially through the underlying traces �interleaving or non�interleaving�� these do not take into
account contention for network links� and other overheads present in real execution on parallel computers�
Moreover� even if this were satisfactory� it would be computationally unfeasible for all but tiny programs�
unless substantial state space reduction is performed� This approach has been considered in recent work
�
�� ��� 
�	� modelling the underlying network operation stochastically using Stochastic Timed Petri Nets�
which are then converted to Markov chains�
The method mentioned in the previous section ��	 for maximising processor utilisation in communicating

process programs assumes an upper limit for values of latency and machine granularity� One can imagine
that an extension of this simpli�ed model can be used to loosely predict worst case performance�
Alternatively� restricting the model of parallel computation can simplify the task of performance pre�

diction� This is the thesis underlying Valiant�s BSP ���� ��� ��� 
�� ��� ��	� which presents a simple but
realisable model of parallel computation as a generalisation of the idealised PRAM ���	� This work is remi�
niscent of von Neumann�s sequential model� in that it can also act as a bridge between software design� so a
variety of parallel architectures can all be considered as BSP machines with di�ering parameters� A simple
equation can predict the performance of a BSP program on a BSP machine� The BSP model of computation
stipulates that communicating parallel processes synchronise at barriers� periodically� The computational
portion is known as a superstep� during which processes may send or receive data asynchronously or perform
local computation� However� the outcomes of communications performed during a particular superstep are
only visible at the start of the subsequent superstep� The barrier enforces a �dead� period during which all
outstanding communications pertaining to the previous superstep are completed�
At least two attempts of extending occam with barrier synchronisation constructs for BSP computing

have been made ���� �	� However� it has also been noted ���	 that occam performs barrier synchronisation
implicitly at the end of a PAR construct� Moreover� between subsequent PARs� variables whose scope extend
across the whole sequence of PARs are reassigned exclusively to individual components of the PARs every
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time a PAR ends and another one commences� This instance of �shared� memory� combined with the implicit
barrier synchronisation� induces one to view a SEQ of PARs as a BSP program respecting occam usage rules�
with the BSP communications being e�ected through the exchange of exclusive variable ownership� No
alterations to the occam language de�nition need be made� However� current implementations disallow
the distribution across processors of all but PARs at the topmost level� so that the single resultant barrier
synchronisation can be ignored without serious consequences� Granted� distributing lower level PARs across
processors would imply a barrier synchronisation across a part of the network� during which implicit message
passing to exchange the updated values of the �shared� variables has to be made� This can weaken the real
time aspect of occam� On the other hand� one can argue that such techniques can be avoided by an aware
programmer in critical sections �though this would stain occam�s transparency�� and� more convincingly� that
an upperbound on the delay can be �xed for a particular architecture� Communications to exchange the
values can be inserted by the compiler as early as possible before the actual barrier in the code� by statically
analysing processes� dependence graphs�
The bene�ts to be gained from the use of a SEQ of PARs within the restrictions speci�ed by BSP in

the computational kernel of an application are mainly due to the simplicity of performance prediction on a
variety of architectures� Program segments outside the computational kernel can be designed with liberal
amounts of communication� as required� It would be interesting to investigate to which extent it is possible
to have parallel processes communicating liberally within single BSP processes� without breaking the BSP
requirements�
It has been argued that satisfactory degrees of portability can be obtained from less restrictive models�

such as that described in the previous section� and the LogP model �
�� 
	� One wonders whether this would
leave BSP with its straightforward performance prediction as its only unique virtue�

� unix and tcp�ip networking

This section contains an overview of lightweight and heavyweight process scheduling� interprocess com�
munication techniques� and networking facilities under the unix operating system� While occam process
scheduling is beyond our scope� it is instructive to survey the techniques used by various run time systems in
existance� Moreover� we have already speci�ed it as our aim to detach our communications process from the
occam execution engine to as great an extent as possible� and unix may provide a suitable way to implement
this� with its various process management and interprocess communication facilities� The communications
process will ultimately translate communication requests to unix communications calls� through the driver
which implements the particular link� be it through tcp�ip� a raw driver for a physical device� another
communication package such as PVM� or any other medium�

��� unix process management

unix processes are designed for multiprogramming support with little interprocess communication� at a
coarse grain� Process creation and context switches are very expensive� since a very large� generic state has
to be maintained for each process� Full protection is provided between process memory spaces� Various
interprocess communication facilities are provided� which all carry substantial overhead in suspending pro�
cesses and communicating� These will be discussed in the next section� Process creation using the fork
system call which replicates the current process image� or by loading a new executable from the �le system
using one of the exec family of system calls� are both prohibitively expensive� In general� unix processes
are considered inadequate for application level parallelism� except at a very coarse grain� as in PVM�
Induced by the drive towards application multithreading� which is in part due to the event driven nature

of GUI based applications� many unix vendors now provide a �lightweight� process library� usually compliant
with the POSIX Threads standard� Typically� these libraries work within the context of a single unix process�
thus escaping the weight of saving and restoring a unix process� state� Consequently� context switch times
are in the order of a few tens of microseconds on current architectures �this is still too heavy for occam
processes�� The memory space belonging to the unix process is shared between all lightweight processes �or
threads�� and the lightweight scheduler works in user mode� Alternative means of synchronising lightweight
processes have to be provided� since normal interprocess communications mechanisms act on the whole of
a unix process� Also� a lightweight process making a blocking call will suspend the whole unix process�
and thus all other lightweight processes within it� More recently� unix schedulers have been implemented
which integrate normal �heavyweight� process scheduling with lightweight process scheduling �and possibly
real time process scheduling� under one scheduling policy� solving the above limitations while maintaining
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their original motivating properties� The context switch time remains too expensive for occam�s �ne grain
parallelism�
As all the above facilities for multithreading do not satisfy occam�s granularity requirements� implementors

turned to implementing their own schedulers within the environment of a single unix process �
�� �
� 
�	�
occam process state is minimal� bringing down the cost of a context switch down to under one microsecond
on current architectures� if the scheduling state is permanently kept in selected machine registers ��
	�
Obviously� this ties down the code generated by a compiler to comply to a particular run time system
in restrictions on register usage� analogous to the hardware providing special support for multithreading�
Various other techniques to keep context switch time low within a unix process can be exploited� such
as switching between multiple stacks within a process� using the setjmp system call� Placing the onus of
scheduling on the occam processes themselves by inserting switching instructions at prespeci�ed descheduling
points in the code� besides being in itself e
cient� has the advantage of eliminating the shared resource access
synchronisation problem� since processes will never be interrupted in critical sections� In such frameworks�
communication between occam processes� and occam process creation both bene�t from low cost� in the
order of microseconds�
Notwithstanding these e�orts to reduce overheads� ulterior measures have to be taken to ensure minimal

interruptions to the unix process which contains the occam processes� in the event of external communica�
tion� both locally �for console input�output�� and remotely �through external network links�� Unnecessary
interruptions to the occam computational engine will eat away from the available scheduled timeslices for
that unix process� thus it is desirable to avoid performing system calls from within that process� Though
nonblocking versions of many calls exist� the overhead for polling for completion� is still taken from that
process� timeslice� It may be advantageous to separate all forms of communication into a separate unix
process from the one performing occam computations� in such a way that communication requests from the
occam computational process is relayed to this communication system process without consuming much time
from the occam computational process� The communication system process performs all system calls� every
single communication request may involve several system calls and several interruptions which are avoided
from the occam computational process� but su�ered by the communication system�
It can be argued that since both these processes will typically share a single processor between them�

the extra delays su�ered by the communication process through performing system calls �both blocking
and nonblocking� will still be propagated to the occam computational process� Ultimately� it is a unique�
shared processor resource which is being held up to perform these costly operations� and consequently will
be unavailable to the occam computational process anyway� A counterargument to this counts on the fact
that out of the total amount of time assigned by the unix scheduler to the occam computational process�
a higher percentage is being used to perform useful computation� The communication process absorbs all
other work within its own timeslice� Integrating both these tasks into one unix process could mean that less
overall processor time would be shared between both tasks� though extra switching overheads are avoided�
In a tightly coupled multiprocessor unix machine� it is expected that this arrangement demonstrates its
advantages more convincingly� Another compelling motivation for splitting up the two arises from our desire
to decouple the communications system from any particular run time system implementation� and avoid
recompilation of the communications system with the occam program and vice versa�

��� Interprocess communication mechanisms

In the design of the communications system a low cost means of coordinating with the occam computational
engine� which will be hosted in separate unix processes� is desirable� This brief survey of interprocess
communication methods is included with the intension of identifying a suitable alternative for this purpose�
A detailed description of IPC mechanisms may be found in ���	� the Solaris manuals ���	 were also referred
to�
Modern System V unix interprocess communications �IPC� mechanisms fall into three categories� Each

created IPC resource has a unique identi�er� and is managed through an interface consistent across all three
categories� The IPC resource categories are�

Messages� A message resource consists of a message queue to which a process may append messages
�ASCIIZ strings� and a message type identi�er �which can be used to receive messages selectively��
The maximum message size depends on the machine�s memory page size� The maximum number of
active message queues and the maximumnumber of messages in a message queue are two limits imposed
on the use of message passing� however� the latter can be increased dynamically by the superuser�
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Semaphores� Semaphore resources are allocated in arrays of semaphores� each of which has a non�negative
integer value� and on which operations to read� increment and decrement are de�ned through the
semop call� A decrement which would result in a negative semaphore value suspends the whole unix
process until the eventual change in situation� Further such processes are queued� to be reenabled
in the original order of suspension� The maximum number of semaphores in an array is limited by
processor page size and the maximum number of semaphore resources at any one time is a system
constant� Semaphores can be used to synchronise access to shared memory by di�erent processes� thus
emulating message passing through shared memory�

Shared memory� The shmget call accepts a key� which can either identify an existing shared memory
segment� in which case the memory is attached to the calling process� address space� or it can be an
unused key� in which case a new memory segment is allocated and attached to the process� address
space� Thus multiple unix processes can read and write a single memory segment in an uncoordinated
manner� The shared memory segment can be made to appear anywhere in the process� address space�
Various methods may be used to control access to parts of the memory�

For the purposes of this discussion� decidedly coarser grain communication and sychronisation methods such
as lock �les and pipes will not be considered� One �ner grain means of interprocess communication� with a
particularly long history� was not originally intended for such applications�

Signals� Every process can issue signals of a variety of types to any other process in the system� provided
the user identi�er is common� or the sender has a superuser identi�er� Amongst the common signals are
SIGQUIT� SIGKILL� SIGHUP� SIGTERM �terminate the process with varying degrees of forcefulness��
SIGSTOP �suspend the process�� SIGCONT �reenable the suspended process�� SIGIO �sent by the
system to notify application processes of the completion of I�O operations�� SIGUSR
 and SIGUSR�
�user de�nable signals�� Each process has a default signal handler for all signals� whose default actions
�some of which are mentioned above� depend on the particular signal� Nearly all signal handlers may
be replaced by user de�ned ones� of particular interest are SIGUSR
 and SIGUSR�� to which user
handlers may be attached without consequence to process behaviour� this way signals may be used
to provide synchronisation between processes� The SIGIO signal will be vital in the communications
system drivers which utilise nonblocking sockets�

Note that the signal handler operates asynchronously to the rest of process execution� so care must
be taken to ensure that the two threads do not interfere with each other when accessing the process�
memory space� Signals are a kernel level feature� and vary signi�cantly in details between unix dialects�
Originally the reception of signals was an unreliable procedure� though subsequently reliable signals
were introduced� albeit with incompatibilities between System V and BSD releases� and requiring a
hatful of tricks to use them e�ectively�

Both semaphores and messages have been measured to incur costs in the order of milliseconds to the par�
ticipating processes� and must be avoided where possible for our purposes� Reading and writing to shared
memory� however� is a machine level operation which lies in the order of microsecond cost� Coordinating
shared memory read and writes can turn out to be expensive� especially if encoded using semaphores or
messages� Issuing signals is known to be a less expensive operation� and can be used e�ectively� though it is
di
cult to guarantee reliability� An alternative would be to avoid descheduling processes which are synchro�
nising for a shared memory read or write� by using a method based on atomic machine code instructions for
mutual exclusion�

Test�and�set instructions� A set of inline assembly language functions for performing atomic bit manipu�
lation operations is not supplied with unix based C development systems� thus forcing one to resort to
architecture dependent methods for ensuring microsecond cost mutual exclusion to shared resources�
This facility would be well suited to synchronising shared memory access between unix processes where
semaphores are too expensive� and between asynchronous �threads� within a single unix process� for
instance between a user de�ned signal handler and the main execution thread� In both cases� the
problem of busy waiting must be handled� and may well be avoided� The unix scheduler ensures that
each full blown unix process gets its own timeslice� enabling the use of busy waiting� this does not
make it acceptable� since the technique is wasteful of system resources� especially with such coarse
grain scheduling� Also� if one of the unix processes contains many user level processes �for example�
occam processes�� only one of which is interested in the synchronisation� the busy waiting would stop
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all the user level processes� Within a unix process� the lack of timeslicing between �threads� prevents
the use of busy waiting for internal synchronisation� since a thread attempting to busy wait would
proceed forever without being interrupted� It is thus evident that naive use of test�and�set instructions
is unsatisfactory� luckily it turns out to be the case that for our intended use� a combination of test�
and�set instructions and multiple queues su
ce� The algorithm will be described in the design of the
communications system�

��� tcp�ip communications

The de facto standard for unix networking is the tcp�ip protocol suite ���� �
	� The corresponding pro�
gramming interface is the sockets interface ���	� which supports not only tcp�ip communications �Internet
domain sockets�� but also across unix domain sockets �within a single host� uniformly� The intended re�
placement� TLI �Transport Level Interface� never managed to oust sockets� con�rming this� the Solaris �
manuals ���	 no more include a statement to the e�ect that the sockets interface should not be used in new
applications� as was originally recommended in Solaris 
 �SunOS �� manuals ���	�
Through the sockets interface� one can send UDP �datagram� packets� wait on a port �as a server� to

receive UDP packets from a particular source address� or from any address on a particular UDP port� actively
open �as a client� a TCP �stream� connection to a particular port on which a server is waiting� and wait on
a port �as a server� to receive TCP connection requests� and accept or refuse on the basis of source address�
An established TCP connection exhibits a bidirectional stream abstraction to both ends� across which they
may send and receive arbitrarily sized messages� provided a suitable bu�er is allocated at the receiving end�
Waiting for a connection at the server end and waiting for a message� are synchronous operations which

can block the process in question until they are completed in their entirety� Other operations such as sending
messages can also block the process if they cannot be completed immediately� Two approaches to overcoming
these problems can be used and combined� nonblocking sockets and asynchronous sockets� Operations on a
nonblocking socket do not complete if doing so would suspend the process� but return immediately with an
appropriate indication� System calls on an asynchronous socket complete immediately� while the operation
proceeds in the background� thus eliminating the blocking problem� Completion of the operation is noti�ed
through the SIGIO signal� whose handler can then identify the correct socket using a nonblocking select
system call� Although some references state that asynchronous sockets must be of stream type� asynchronous
datagram sockets seem to function well on the systems which were tested� The general idea is to have many
communications over multiple sockets proceeding concurrently with each other and with the unix process�
notifying their completion through an asynchronous thread �driven by a signal��

tcp�ip carries considerable baggage� and is known to bring about poor utilisation of available bandwidth�
In its favour are its popularity� portability across platforms� medium independence� and transparent routing�
To improve its performance� knowledge of the particular implementation may be exploited� such as padding
messages to the right size to force TCP to �ush its bu�ers� and sizing UDP datagrams to the native packet
size of the medium ��
	� Using sockets for internal communications is ridiculously expensive� and a direct
means is preferred� Though sockets provide a nondeterministic choice �the select system call� and a resource
channel�like mechanism for queueing messages or connections to a port� these similarities cannot easily be
exploited due to the impracticality of integrating internal channels� implemented di�erently� into the scheme�

��� Underlying networking technology

Ethernet�based networks currently dominate as the prevalent local area network technology� Packets ap�
proximately 
��� bytes long are sent and received over an ethernet segment� This shared medium introduces
contention for the available bandwidth� resolved by collision detection and backo�� which has an substantial
impact on latency and bandwidth under heavy loading� At such low speeds� one rarely has to worry about
computational overheads such as protocol processing� as the computation speed to communication speed
ratio is very high� The problem with using ethernet as an interconnect parallel processing is the fact that
bandwidth does not scale with the number of processors� and latency increases suddenly and signi�cantly as
the number of processors� and thus packets� increases�
Recently� 
�� megabit�second ethernet has become available� Of equal signi�cance� new intelligent switch�

ing hubs connecting hosts in a star topology can route packets between any number of pairs of hosts at the
full ethernet bandwidth without propagating the packets across all the connected segments� and thus with
accordingly reduced contention� The host�network and operating system�protocol processing overheads may
increase in signi�cance as ethernet speeds are elevated�
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Hailed as the future of telecommunications� ATM�s �Asynchronous Transmission Mode� ���� �	 main
breakthrough is in the negotiation for� and control over assigned user bandwidth and quality of service�
At speeds starting in excess of 
�� megabits�second and projected to �gures in gigabits�second� the host�
network interface and protocol processing overheads dominate� Though negotiating for bandwidth does not
actually create any of the precious resource� one can guarantee good performance even over non�dedicated�
loaded networks� tcp�ip over ATM ���	 can change our workstation network scenario signi�cantly� shifting
the focus from maximising network usage to reducing operating system and protocol processing overheads
while still operating under a heavyweight unix�like system�

� Implementation of occam communications on T�����C��� networks

The INMOS T���� microprocessor ��
� ��� ��� ��	 provides a programming interface for multithreading�
and both internal and external communications which �ts closely around the occam model� A scheduler
interleaves between processes� which correspond closely to occam processes� with sub�microsecond cost�
Instructions for communications hide the location �local or remote� of the communications channel� In�
structions are included for directly implementing synchronous point�to�point input and output� alternation�
and shared channels� With the help of the VCP �Virtual Channel Processor� integrated in the T���� each
of its four links can multiplex a large number of reliable virtual links� Each virtual link hosts a pair of
virtual channels� one in each direction� every one of which corresponds to an external occam channel� and
is handled transparently in exactly the same way as an internal channel would be� Used in conjunction
with a network of C
�� routers ���� ��	� �the INMOS C
�� implements a �� � �� full crossbar in VLSI
with minimal delay� every virtual link emerging from a T���� can be connected to any other T���� in the
network� The scheduler incorporates two priority levels� and a prioritised choice �alternation� mechanism is
provided� The parallelism within the T���� between the processing unit and the VCP allows communication
to proceed without interrupting computation� while the very tight coupling between them enables the VCP
to reschedule suspended processes itself on the completion of communication�
The main T���� facilities for multithreading and communications �internal and external� are summarised

below� A direct mapping between occam concurrency and communications primitives and the machine code
instructions can easily be made�

��� Processes

An occam process can either be active or inactive� An active process can be executing� or waiting for
execution� while an inactive process can be ready for input or output� waiting on a timer� or on a semaphore�
A process consists of a workspace containing information pertinent to the process state� such as a pointer
to its executable code� storage for machine registers and the instruction pointer �when not executing�� the
channel identi�er on which the process is waiting �inactive � ready for input or output�� and a control word
for the alternation mechanism� A single word is shared between several of these� A process is uniquely
identi�ed within its host processor by its workspace pointer� which also indicates its priority� Processes are
descheduled at communication instructions� and at �xed points in the code as determined by the instruction
type�

��� Channels

A channel consists of a word in memory� uniquely identi�ed by its address� Channels are classi�ed into
internal and external by their address �a machine register delimits their ranges��

Internal� The channel word may contain either the value notprocess� or the workspace pointer of a ready
process� The pointed�to workspace contains further information about the type of communication
being e�ected�

External� External channels can either be virtual channels� or stream channels �only four of which can
be used� each of which takes over an external link completely�� Virtual channels with consecutive
addresses are grouped in pairs� forming virtual links� which have to pass through a single external link�
Each virtual channel address is a logical address which is translated by the hardware to the physical
address of its virtual link�s VLCB �Virtual Link Control Block�� VLCBs come in pairs� one on each
of the T����s at both ends of the virtual link� A VLCB contains information about the status of
the virtual link� and thus about both its virtual channels �which face opposite directions�� such as the
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current state of communications on both virtual channels� the workspace pointers of �up to two� one
in each direction� local processes ready to communicate on the channels� and the external link over
which the virtual link passes� VLCBs with pending data packets� and with pending acknowledgement
packets are linked into corresponding queues� possibly into both�

��� Input and output

The variable length input and output instructions vin and vout �and their �xed length versions in and out�
send or recieve a message from or to a memory bu�er� over a channel speci�ed by its address� Whether the
channel is an external one is determined by the hardware from the channel address and a special machine
register which delimits external channel addresses� The two cases are handled accordingly�

Internal� The �rst process to execute a communication instruction on that channel �say P�� �nds the
value notprocess in the channel word� P��s workspace pointer is stored in the channel word� and
a pointer to the message bu�er �whether it is a send bu�er containing data� or an empty receive
bu�er�� together with the length of the message� are stored in P��s workspace� P��s workspace is
unlinked from the active process queue� The other process participating in the communication �say P���
eventually executes the communication instruction �the channel address is recognised to be internal�
and �nds the address of P��s workspace in the channel word� From P��s workspace� the message
bu�er address and message length are recovered� and a block copy is made to�from the bu�er address
speci�ed in P��s communication instruction� copying min�length speci�ed by P�� length speci�ed by P��
bytes across� Finally� P��s workspace is reinserted into the active process queue� and the channel word
is cleared to the value notprocess�

External� External communication requests are passed on from the T�����s processing unit to the VCP�
External channel addresses speci�ed in communication instructions are converted to the address of the
corresponding virtual link�s VLCB� One of the two processes �say P�� participating in the external
communication� executes the communication instruction� and noti�es the VCP� which examines the
VLCB� The outputing process �say P�� in the external communication executes the communication
instruction and noti�es the VCP� The VCP in turn sets the send bu�er and limiting address� resets
the send count� stores P��s workspace pointer� all of which are in the VLCB� Finally it sends the �rst
data packet� and P��s workspace is removed from the active process queue� The receiving side�s VCP
stores the data packet in a �xed size bu�er within it� until a process �say P�� eventually executes an
input instruction on the channel� Then the recieve bu�er contents are emptied into the speci�ed input
address� an acknowledge packet is sent to the original VCP� and the receiving �elds of this VLCB
are updated accordingly� P��s workspace is removed from the active process queue� On receiving
the acknowledge packet� the VCP on P��s side updates the corresponding VLCB and sends the next
data packet� and so forth until completion� Finally the VCPs clear the VLCBs and place P� and P��s
workspaces onto the respective processors� active process queues �on the sending side� completionmeans
receiving the last acknowledgement packet� on the receiving side� completion means receiving the last
data packet�� If P� had executed the input instruction before receiving the �rst data packet� it would
have been already made inactive� the VLCB would have been �lled with its workspace pointer and
recieve address and the acknowledge packet would have been sent immediately� Note that although
the initiation of input and output is stimulated by the processor �by signalling to the VCP�� the
remainder of the procedure is handled independently and asynchronously from the processor by the
VCP� Completion is also handled by the VCP� which reinserts processes onto active process queues
without the processor�s intervention�

��� Alternative input

A number of instructions are provided which together implement nondeterministic choice of inputting on one
of a set of channels� In reality� the transputer implementation of alternative is unfair� favouring channels over
others� but is still very usable� A word in the workspace of the process performing the alternative is reserved
for storing the operation�s current state � this happens to be the same word which contains a pointer to
the message bu�er during normal communication � which will be referred to as WSp� The procedure is as
follows�


� execute an alternative start instruction� which sets WSp to enabling�
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�� enable every participating channel using the enable channel instruction specifying the channel address
�whether internal or external� in the latter case� the VCP noti�es the enabled state in the corresponding
VLCB�� If the channel is ready at the time of enabling �that is� the channel word either contains the
workspace pointer of another process� or� in the case of a virtual channel� the VLCB�s receive bu�er
contains a packet�� WSp is set to the value ready�

�� execute the alternative wait instruction� which sets WSp to waiting� disables the process� and indicates
in the process� workspace �call the word WS�� that it is suspended due to an alternative wait� rather
than a normal input�

�� when a process eventually outputs on an enabled internal channel one of the values enabling� waiting
or ready is found in the process� WSp workspace word� if enabling� it is changed to ready� if waiting�
it is changed to ready� and the alternating process is reactivated� if ready� no further action is taken
�at the end of this instruction� it is guaranteed that at least one of the processes on the opposite ends
of the channels is ready for output�� On an external channel� the output operation proceeds as usual�
indeed� the outputting end is not aware of the alternative at the receiving end� though the receiving
end�s VCP� on receiving the �rst data packet� notes whether the channel is enabled� and in such an
eventuality� directs the scheduler to proceed as for an internal channel�

�� disable every participating channel using the disable channel instruction� which checks whether the
channel is ready for output� and if so� writes a jump destination speci�ed in the instruction to WS��
provided that a preceding disable channel instruction had not previously �lledWS� with another jump
destination� This actually makes the whole alternation operation unfair� since channels which are
disabled earlier on in the code are at an advantage�

�� execute the alternative end instruction� which �nds the jump destination pertaining to the selected
channel in WS�� and jumps to that location within the same process� which typically contains a
normal input instruction hardcoded to the corresponding channel�

��� Resource channels

In the T���� implementation� the contention is moved from the resource channel� to the RDS �Resource
Data Structure�� In fact� every process �sharing� the resource channel on the user �client� end is given its own�
uncontended�for �resource� channel� sharing a RDS at the server end instead� The RDS� itself containing
a synchronisation word and queue pointers� owns a queue of resource channels� each of which consists of a
normal channel word and queue pointers�

� A resource channel may be used as a normal channel �the queue pointers are then ignored�� unless it
is included as part of a resource �that is� linked into a RDS queue� using the mark resource channel
instruction� This must be issued on the transputer hosting the server� specifying the RDS� the resource
channel address �used to access the server end VLCB for an external channel�� and a channel �identi�er��
which may be the channel address� or some other word �this is the identi�cation returned when a channel
is �nally selected�� If the resource channel has not been output yet� the value reschan is written to
the channel word if it is internal and the speci�ed identi�er and a pointer to the RDS are written in
its other words� a similar annotation is written to the VLCB if it is external� If the resource channel
already contains a workspace pointer� or its VLCB�s bu�er contains a packet� the resource channel is
linked into the RDS queue instead� with the speci�ed identi�er stored in the resource channel as well�

� The server process issues a grant instruction specifying the RDS� and the location where to store
the identi�er for the selected resource channel� If the queue is nonempty� the top resource channel
is unqueued and the identi�er it contains is written to the speci�ed location� Otherwise� the server
process� workspace pointer is written to the RDS�s synchronisation word� and the server process is
deactivated� The resource channel is unmarked automatically� and can subsequently be used as a
normal channel�

� An output operation on a marked internal resource channel �nds the value reschan in its normal
channel word and subsequently retrieves a pointer to the RDS from one of its other words� If the
RDS�s synchronisation word points to the server process� workspace� the channel word is set to point
to the workspace pointer of the outputting process� the server process is rescheduled� and the channel
identi�er in the resource channel is written to the location speci�ed in the RDS �originally stored there
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by the grant instruction which had stalled the server process�� Otherwise� the resource channel is
queued on the RDS queue�

On a virtual �external� resource channel� the remote end outputs as usual� with no indication that
the channel is a resource channel� on the receiving end� the VCP will notice that the receiving VLCB
is a marked resource channel upon receiving the �rst data packet� and noti�es the scheduler� which
proceeds as for an output on an internal marked resource channel�

��� Rationale

It can be seen that the design rationale behind the VCP is to decouple computation and communication
to the largest extent possible� Message startup costs su�ered by the computational engine are kept at
a minimum by delegating such jobs to the VCP� which runs in parallel� Message sending and receiving
proceeds independently� Completion of communication involves only reinserting the process in question on
the active process queue� This can either be done by the VCP itself� through careful mutual exclusion to
access of queue registers� or delegated by the VCP to the main processor� to avoid possible contention�
Though no such details are speci�ed in the T���� documentation� it seems that the former situation is the
case� This is only feasible as the VCP will always work with the same scheduler� portability between di�erent
run time systems and schedulers is not an issue here� so the VCP can be exposed to the internals of the
computational engine�
The resulting situation enables multiple external channels to connect transputers� without any concerns

about locality in�uencing the program designer� In fact� the same program code can be redistributed across
transputer networks in an arbitrary manner� changing the status of channels from internal to external and
vice versa in the process� without having to alter a line of code� When used in conjunction with a network
of C
�� routers� all packet routing concerns are delegated to the routers� so proximity of transputers is of no
importance� The C
�� routers provide hardware support for randomised� or two phase routing �in the form
of header deletion�� so that all packets are routed �using a deterministic protocol guaranteeing deadlock
freedom� to a random intermediate C
��� which then strips the outer header from the packet� exposing
the �nal destination� and routes it deterministically to the destination T���� link� The e�ect of this is to
reduce hot spots on the network� Still� particular links on a transputer can still manifest themselves as hot
spots which cannot be removed in this manner� A suggested solution is to randomly distribute memory
locations across transputers using a fast good hash function� thus reducing the possibility of contention for
a transputer�s link� Alternatively� one can resort to careful placement �possibly automated through the
use of heuristics� of processes and virtual channels on processors and links to eliminate these problems� In
our case� all routing decisions will be taken by the underlying system software �such as IP�� and are not a
concern of ours� Our focus will be on designing a counterpart to the T�����s VCP for handling external
communications�

	 The Design of an occam communications system for unixworkstation networks

The selected design for the communications system borrows heavily from the T���� VCP in its decoupling
from the occam computational engine� Following the arguments presented in section �� it was decided to
isolate the communications system and the computational engine into two separate unix processes� The main
di�erence is that while the T���� VCP handles the scheduler registers directly� here this is not desirable� to
ensure portability of the communication system across di�erent schedulers� and therefore the adapter of the
run time system provides a routine to be called from the communication system to carry out the scheduler�
dependent work� The overhead for synchronising the communications process and the computational process
is kept low through the use of shared memory and the direct embedding of test�and�set instructions� Busy
waiting is avoided through the use of a synchronisation algorithm described later in this text�
Another similarity is in the provision of a packet driven communications facility built on the lines of

the VCP� This enables the use of a reliable packet driven link to send multiple messages of unlimited size
in the same way as the VCP multiplexes its packet driven links� Together with this facility� dedicated
stream communications is allowed over reliable continuous stream links� These two methods may be used
concurrently over di�erent links� depending on the links� characteristics� Figure � gives an overall view of
the system structure�
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��� The network	 links and drivers

Two classes of links are envisaged to be available in a typical operating environment� reliable streams� and
�reliable or unreliable� packet driven links� The former can also be multiplexed to provide multiple reliable
packet driven links over the single stream� Support for both stream and packet driven communications is
included in the communications system design� correspondingly� two classes of driver are de�ned� one for
sending and receiving packets� and another for sending and receiving unsegmented messages� Third party
drivers for alternative transport mechanisms may be linked to the communications system through standard
interfaces� by recompiling the communications system alone� The everchanging suite of drivers prompts the
need for a means of identifying the range of link types which they introduce� in a suitable network description
language� A table of currently available link types will have to be maintained for the program linker or loader
to refer to�
Underlying routing mechanisms are hidden from the communications system� Usually� the drivers them�

selves will utilise the routing mechanism provided by their transport protocol� For instance� TCP� UDP and
raw IP based drivers will rely on IP routing� Thus the function which is performed by networks of C
��
routers in T���� systems is hidden from our concern�

��� Packet driven communications

The packet driven communications facility in the communications system will identify over which link an
external channel lies� from the associated VLCB�like structure� identify the link�s driver �obviously a packet
driver�� and send data or acknowledge packets through the driver�s standard interface� which should never
block� An asynchronous thread �ows in the reverse direction� activated by the reception of packets over
various packet drivers �this will� in most cases� be a SIGIO signal handler which noti�es completion of I�O
operations�� This thread� immediately dispatched to the appropriate packet driver� will then move to the
communications system routine for handling received packets� which usually sends a data or acknowledgement
packet in response except at the end of a message �in which case the occam run time system is noti�ed�� The
VCP logic for sending and receiving messages is drawn on heavily in the design of this facility� This method
has the advantage of requiring only a small� �xed size bu�er �speci�ed by the particular driver� for storing
initial packets of received messages� subsequent packets are only received once the relevant acknowlege packet
is sent�
It is inevitable that the speed of unreliable packet driven links such as those provided by UDP� and

special access to raw IP will make them attractive� It is risky to use packet drivers directly built on these
protocols without provision for guaranteeing reliable and correctly sequenced reception of packets� One
solution is to delegate all such concerns to the packet driver� alternatively� one may include a third facility
in the communications system for handling unreliable packet driven links�

��� Stream communications

The stream communications facility is relatively simple� the link for a particular external channel is identi�ed
from an appropriate stream channel structure� and the link�s stream driver determined� Messages to be sent
are expedited through a single driver call� which should never block� Received messages� and completed
sends invoke an asynchronous thread �usually through a signal handler�� dispatched to the appropriate
stream driver and propagated to the communications system routine for receiving unsegmented messages�
which will notify the occam run time system� Limitations on the number of simultaneous connections for
the transport protocol on which stream drivers are based may restrict the use of stream links� Since whole
messages of any length are received irrespective of whether the receiving process has issued a receive and a
destination bu�er� intermediate bu�ers of arbitrary size may have to be allocated to store incoming messages
on a stream channel�

��� Example drivers and their use

Drivers can be built upon various transport mechanisms� utilising their features in a wide variety of manners�
The following list of possible drivers which may be implemented is based on speculation rather than de�nite
results�

TCP Socket 
Stream� pre�established connection� TCP connections are established at load time be�
tween machines� as speci�ed in the network description by links with the appropriate driver type� A
send message causes the data to be sent on the stream connection� as a non blocking call� Completion
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is noti�ed by a SIGIO signal� and delegated to the driver for appropriate handling �causing reactiva�
tion of the occam process�� Message reception is similarly noti�ed� A TCP socket is dedicated to a
link throughout the running time of the occam program� so this driver type should be used sparingly�
Connections can be maintained between executions of programs running on the same network con�g�
uration� so the cost of establishing connections is minimised� It is necessary to use knowledge of TCP
protocol implementation to overcome its ine
ciencies� Results presented in ��
	 give an idea of the
tricks which a driver implementation may have to resort to�

TCP Socket 
Stream� connection at run time� There are many variants on this theme� where TCP
connections are established at run time� resulting in an overall performance degradation but better
utilisation of the limited number of simultaneous TCP connections� Connections can be opened and
closed on a per�message basis� alternatively� one can maintain the maximum number of simultaneous
open connections possible� and on subsequent requests� discard connections on a least recently used
basis� It is expected that not enough information would be available to the driver to open and close
connections on the basis of a channel�s lifetime in the occam program�

UDP Socket 
Packet�� The packet driven nature of the UDP protocol lends it to a natural packet driver
implementation� Packets associated with a link of this type are immediately output through the UDP
socket to the destination end� The overheads associated with TCP are not encountered� though it
is possible that other hidden ine
ciencies manifest themselves� according to the results presented in
�
�	� The connection establishment phase is eliminated� though at load time� implicit �connections�
may be made between pairs of client and server UDP sockets on machines between which such a
link is speci�ed� An alternative driver may share a single UDP socket between all its links� It must
be kept in mind that UDP packet delivery is not guaranteed to be reliable� or in sending order� so
a mechanism must be introduced into the driver for guaranteeing these properties� Alternatively� a
generic communications facility for driving unreliable packet links may be used� if provided in the
communications system� However� on a single ethernet segment operating in a reasonable environment
�that is� without physical disconnection� power failures� or interference�� packet collision detection is
handled by the ethernet card� and packets do arrive in order of transmission� thus a UDP mechanism
on this medium can be expected to operate without problems� though it would be very unwise to
guarantee faultless operation to users�

Raw IP Socket 
Packet�� Though the sockets interface does not usually o�er raw IP as a freely available
service� on a dedicated network of machines where security is not an issue one can create such a
service available to non�root processes� Potential bene�ts may be experienced from bypassing the
UDP protocol mechanisms and any associated bu�ering� Similar arguments to those mentioned in the
discussion on reliability of UDP packet drivers operating on an ethernet medium apply�

TCP Socket 
Packet�� A single TCP socket between two hosts may be multiplexed between many virtual
links by de�ning a packet format to be transmitted on top of the stream abstraction� While this may
seem to be terribly ine
cient� it overcomes the limit on maximum simultaneous connections� moreover�
if the size of packets is tuned to match the TCP implementation�s bu�er size and the IP packet size�
the amount of extra packets generated by this method can be kept to a minimum�

Character device 
Stream�� Unix character devices� such as serial and parallel ports on a workstation�
can be exploited as links to other workstations� or as links to external devices to be controlled� Of
the drivers discussed� this is the �rst which does not have IP routing support� thus exposing physical
network structure restrictions in the network description and the mapping of processes and channels
onto links� Program loading across such links� and their con�guration� has to be delegated to adjacent
nodes�

Character device 
Packet�� A packet passing abstraction may be built on top of a character device
stream� similar to the TCP socket packet driver� Thus multiple channels may pass across a single
serial line� connecting processes residing on the physically connected machines�

Raw Ethernet 
Packet�� Provided a unix driver provides unrestricted direct user access to the ethernet
interface �which is not usually the case in a general purpose workstation cluster� a packet driver may
be built to send packets directly through the ethernet card�s packet driver� IP�s routing capabilities
are obviously not available� and such packets are restricted to the current ethernet segment� However�
it is expected that this would be the most e�ective means of utilising an ethernet segment�
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PVM messages 
Stream�� Although all the potential driver implementations mentioned above target
operating system services directly for communicating� it is possible to make use of a driver to send
messages through higher level message passing software such as PVM� The communications system�s
scope changes to that of providing a uniform interface to the occam run time system� isolating the
emulation of occam primitives such as alternation and resource channels in PVM to the appropriate
driver ���	� and reducing the impact of PVM�s high delays in initiating a communication�

DS�links 
Stream�� SGS Thomson Microelectronics� DS�links protocol has been made an IEEE standard
�IEEE 
����� This is essentially the same communications technology on which the T���� and C
�� are
based� Third party products based on DS�links are expected to emerge shortly� In particular� a PCI bus
based DS�link interface for PCs is imminent ���	� It can be expected that similar interfaces for various
workstations will be available� While providing a fast� low latency and scalable interconnect suitable
for parallel processing with workstations� this option provides a clean way of interfacing workstations
with existing parallel computers� more so if DS�links are to be used in a wide range of parallel systems�
In our system� DS�link virtual links can be exposed through a stream driver�

��� Alternation and resource channels on external channels

Though the discussion up to this point caters for straightforward unconditional and uncontended�for message
passing between pairs of processes� it is equally important that the implementation of alternation and
a resource channel mechanism to handle a mix of internal and external channels is straightforward and
inexpensive�
Alternation logic has to be based in the occam run time system� so that purely internal alternation is

inexpensive� Introducing an external channel into an alternation requires an addition to the communications
system� in particular� for enabling the external channel �enable channel instruction�� The run time system� on
being instructed to enable an external channel noti�es the communications system� which marks the enabled
status in the VLCB of a virtual channel� and in some suitable way for a stream channel� The communications
system� on receiving a packet on the channel� or an entire message in the case of a stream channel� noti�es
the run time system� which then proceeds as for an internal channel� reenabling the alternating process if
it was already waiting� The alternating process proceeds by disabling channels as usual� at which point it
may turn out to be necessary to notify the communications process of the disabling of any external channels�
The vital property is that the performance of alternation is not degraded by the use of external channels�
Similarly� most of the resource channel logic will be handled in the run time system� so as to keep

overheads low� especially for wholly internal operations� The RDS �Resource Data Structure� together with
its associated resource channel queue is held by the run time system� It is expected that the marking of
external resource channels be propagated to the communications system� though the way in which the run
time system would handle a resource queue containing external channels� without su�ering major alterations�
has not yet been decided�

��� Interfacing with the occam computational process

The interface between the occam computational process and the communications system process is crucial for
maintaining low message startup times� at least within the occam computational process� A particularly low
cost interprocess communicationmechanism is vital� From the discussion conducted in section �� conventional
means were judged to be too expensive� An alternative which was brie�y mentioned based itself on the
utilisation of shared memory �a standard unix System V IPC facility� for passing data� and test�and�set
instructions or signals for synchronisation� The exact technique is still to be decided upon�
It is important that internal communications remains as inexpensive as originally intended by the occam

run time system� External channels can be distinguished from internal ones using a method chosen for the
particular run time system� at best consisting of a single comparison of the channel address with a bounding
address� thus increasing the execution time of an internal channel operation by only a few cycles� On
recognising an external channel� the run time system calls a stub� which in turn communicates the request to
the communications system process in a manner hidden from the rest of the run time system� Notifying the
occam run time system of the completion of an external communication requires the provision of a routine
which runs as part of the run time system �asynchronously to the rest of the system if called by a signal
handler� or as part of the same thread of control if activated by polling a shared memory �ag�� to reschedule
the relevant process� This cannot be included as part of the communications system process� as the latter
would be rendered run time system dependent� Notifying the receipt of a message �or the receipt of the
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initial packet in the case of packet communications� is handled in the same way� It is thus hoped that as
little as possible of the occam computational process� allocated timeslices are spent on handling external
communications� and that the process never performs system calls itself �though it is not clear whether this
will gain more processor time for the occam computational process � after all� the communications process
is stealing time from the same processor resource � except maybe in the case of a multiprocessor unix
scheduler� where it might also be feasible to introduce more than one occam computational process on a
machine��
It is equally important to allow absolute freedom to the occam compiler and run time system over the

assignment of external channel addresses� The compiler�run time system pair should aim for a fast way of
separating internal and external channel addresses� Besides� the code which a compiler generates and the
corresponding run time system supports� may be retargetted from a transputer�like architecture� Thus the
communications system must be able to help the run time system to emulate various memory maps� such
as the T����s eight external channel address structure� and the T�����s variable number of external channel
addresses delimited by a register� and translated from the virtual address they represent to a physical VLCB
address �pairs of virtual channel addresses map to the same VLCB address�� In the latter case� the mapping
from external channel addresses �which the run time system recognises� to the VLCB address has to be
performed by the communications system� This will be implemented using a look up table mapping each
external channel address to the address of its VLCB� or the corresponding structure representing a stream
channel� When setting up external channels at load time� the entries are inserted by making calls to the
communications system� specifying the channel address� and optionally� a pointer to the VLCB address� If
the latter is not supplied� the communication system �xes up its own memory area for VLCBs� It is planned
that in this way� even straightforward translated T��� code may have its eight external channels passing
over packet driven links represented by VLCBs�

��� Rationale for the proposed design

A well known way of hiding communications delays to obtain high resource utilisation is by overlapping
communication and computation� A remaining source of underutilisation is the message startup cost� which
is inevitable� but can be pushed downwards� In our case� this corresponds to the noti�cation of the commu�
nications system by the occam computational process of the sending of a message over an external channel�
This is kept to a minimum through the use of shared memory and lightweight synchronisation mechanisms
such as signals and test�and�set instructions� In our system� an analogous price is also paid on completion
of external communication�
Overlapping communication with computation still procures considerable gains� The time for protocol

processing can be handled in parallel �as in the T�����s VCP�� though in our case separating the task
in a separate process still steals away time from computation in a uniprocessor system where the single
processor resource is shared by all� The system may bene�t from the use of a multiprocessor� since the
occam computational process may be scheduled in parallel with the communications system and associated
system calls� This time often pales into insigni�cance when compared with the time taken for packets to
travel across current networks �luckily unaided by the processor�� Hiding this delay is where overlapping
becomes indispensable� Our system exploits overlapping of computation and communication in two ways�
by separating the occam computational engine and communications system into two unix processes� and
by performing all communications in the communications system as non blocking calls� Though it may
be argued that the latter duplicates the function of the former� separating them into two unix processes
has other advantages �in the multiprocessor case� and for compiling in new drivers in the communications
system without recompiling occam executables�� One can formulate a simple model to represent the cost of
communication�

s � message startup�completion cost �time spent on notifying communications system�

p � protocol processing cost �time spent in communications system and system calls�

d � network communications delay �time spent waiting for packets�message to be delivered�

p� d ��s� � total communications cost without overlapping

p� s � total communications cost with overlapping� protocol processing using same processor

s � total communications cost with overlapping� protocol processing using a separate processor
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A universal property of distributed memory message passing systems is that d� the network communica�
tions delay �or remote memory access time�� is much higher than that for local operations� p is incurred by
local operations and should be dwarfed by d �although high speed networks can change this� improvements
in scheduling might more or less keep the balance� however� this point is debatable�� Finally� s is kept as
low as possible through the use of shared memory and lightweight synchronisation mechanisms� The use of
multiprocessor workstations and suitable scheduling algorithms would place the total communications cost
somewhere between s and p� s� obscuring d completely as long as su
cient parallel slackness is available in
the occam program� In a T�����C
�� system� s is negligible �an onchip synchronisation�� and p is met by
the VCP�

��
 Implementation considerations

Various issues have arisen during the implementation of the communications system� which is currently in
progress� Many problems are caused by the lack of standardisation in the unix programming interface�
Other di
culties can be traced back to the inadequacy of the tcp�ip and ethernet implementation for such
applications� and the need for detachment from the occam run time system�
Early signal mechanisms were unreliable� which meant that signals were prone to getting lost� Also�

system calls interrupted by signals did not regain control� While such implementations are virtually nonex�
istent today� and reliable signals prevail� there are still signi�cant variations in signal semantics between
unix dialects� These must be catered for in our implementation� as signals play a vital part in our imple�
mentation strategy� In particular� SIGIO signals in conjunction with asynchronous socket I�O are crucial�
It is important to establish to what extent datagram sockets can be used if asynchronous support for them
cannot be guaranteed across all platforms� A rather frustrating experience with socket libraries in various
unix implementations is due to their nonreentrancy� Though various new releases make socket calls �multi
thread safe�� or reentrant� one must cater for existing nonreentrant libraries in common use� Our application
makes it necessary to make socket calls from within signal handlers� which may interrupt the main process
�ow at any time�
The importance of performance in our application forces us to resort to �ne tuning our tcp�ip based

driver implementations� Through padding TCP messages to multiples of a particular size� one can force the
immediate �ushing of a bu�er which attempts to combine smaller sends together� This bu�er often introduces
send delays in the order of hundreds of milliseconds� all for the sake of better bandwidth utilisation� and
may be detrimental to our overall performance ��
	�
The socket interface requires the user to point to the start of the message to be sent� In a packet driven

scheme� the message must start with a VCP�like header specifying the destination VLCB address and other
necessary information� To construct this message structure� it is necessary to introduce memory to memory
copying for each and every packet to be sent� This was found to be inevitable� as even the strict occam
usage rules do not permit the construction of packets in place within the message �by displacing header�sized
segments from the message temporarily� without potential interference� It may be presumed that the same
situation occurs within the IP to ethernet interface� where IP� in constructing ethernet packets� may have
to perform memory to memory copies again� On the other hand� it can be argued that the cost of a block
copy is minimal compared to the amount of processor time spent inside the unix system internals�
Certainly� it is desirable to minimise the amount of work the occam computational process spends on

work related to external communications� One would like to avoid copying messages to be sent over an
external channel from process workspaces to some bu�er area in shared memory� also accessible by the
communications system process� For this reason� it is preferable to place the occam workspaces and data
areas in shared memory as well� so that the communications system can access directly messages to be sent
without involving the occam computational process� However� as some run time systems would not �t well
within such requirements� this must not be enforced� but be included as an option which can be refuted� As
a penalty� noncompliant run time systems will have to perform copying of messages from workspaces to the
separate shared memory area�


 Lightweight asynchronous access control to a shared resource without relying
on critical sections� semaphores� or busy waiting

We would like to share a resource between a �xed number of asynchronous processes� while guaranteeing
mutually exclusive access� However� the Draconian restrictions which are imposed complicate our task
considerably�
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� no scheduling support can be relied upon� which implies that a process cannot wait on a semaphore�
however� a process may be interrupted by other processes at any time during its execution�

� the only synchronisation mechanism allowed is an atomic test�and�set instruction� together with other
typical atomic bit twiddling instructions�

� busy waiting is not allowed for two reasons� we cannot rely on scheduling support to timeslice between
processes� thus a busy waiting process may proceed inde�nitely� moreover� busy waiting is wasteful of
precious processor time�

� critical sections cannot be guaranteed to be uninterruptible� as no lightweight implementation such as
disabling interrupts� or using busy waiting and test�and�set instructions can be utilised�

It is evident that these restrictions prevent a solution from being reached� Fortunately� we can relax our
requirements to arrive at a less taxing formulation� When an access request is made� the access can be carried
out at a later time� not necessarily by the requesting process itself� provided that su
cient information is
supplied about the request� No acknowlegement of satisfaction of the request is expected by the requesting
process� whose subsequent computations do not use any results from the request� These concessions turn the
seemingly impossible problem into a more reasonable version� which we will attempt to solve� A progression
of attempts towards a solution will be described� until a seemingly satisfactory algorithm is arrived at� No
formal claims are made regarding its correctness� though empirical tests have sustained the guarantee�

��� Intended applications

The need for such an algorithm arises at various points during the design of the communications system�

� The SunOS�Solaris sockets library is nonreentrant �at least up to Solaris ���� ���	� This may cause
problems� in that initial message packets are sent from the main communications system thread of
control� while subsequent packets are sent from a signal handler� which may interrupt the main thread
in the middle of a socket system call� Socket calls may be considered a resource to be shared using such
a mechanism� since no proper scheduling support exists between these two threads� and busy waiting
would give rise to an in�nite loop� Results from these socket calls may need to be handled centrally�
rather than by the invoking thread�

� We expect synchronisation and communication between the communications system process and the
occam computational process �for invoking message sending and receiving and notifying completion of
these operations� to be least expensive through shared memory� using a similar� possibly altered� tech�
nique to synchronise access to the shared memory resource� Though unix interprocess communcations
facilities and signals are available� our technique could give rise to much smaller delays� Busy waiting
can be used in this case� depending on unix scheduler timeslicing� but the coarse granularity would
result in large amounts of processor time being wasted�

� If the noti�cation of external communications operations is done through signals to the occam com�
putational process instead� the signal thread needs to access occam process queues� and may interfere
with the main thread� Our technique may be applied directly towards a solution�

��� A series of unsatisfactory solutions

Unsuccessful attempt ��	 Single queue
In an environment with adequate scheduling support� processes claiming access to the resource may be
queued� and reenabled on being granted access� In our case� a process claiming access cannot be suspended
for later reenabling� but has to proceed immediately� Also� busy waiting on an access bit is disallowed� since
a process may wait forever� A critical section� during which interruptions by other processes are disabled�
cannot be implemented� We are led to a situation where an access request must be got rid of without delay�
One way of doing this is by queueing requests instead of processes� A process Pi claiming access queues a
request on queue Q ��gure �� and proceeds as though the request has been carried out �we are assuming
that results from the access are not needed�� The resource handler RH� through which accesses are made� is
protected by a locking bit� lock�RH� which is tested and set atomically by processes after queueing a request�
If unlocked� RH is entered� using processor time allocated to Pi� If already locked� Pi proceeds as usual� In
the latter case� queued requests must be serviced by RH as soon as it is ready� Thus� once RH is active� it
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Figure �� Attempt at mutual exclusion with one queue�

must check Q for requests added while lock�RH was on and service them� every time before exiting� Such
subsequent requests are serviced as part of the process which itself had originally managed to lock RH�
rather than the requesting process�

Unsuccessful attempt ��	 Multiple queues
The previous solution is satisfactory so long as queue access is atomic� This is unfortunately not usually
the case� unless critical sections are allowed �in which case we could do away with the queue altogether��
In locking queue access� a locking bit lock�Q would have to be added� on which the same mutual exclusion
problem initially tackled arises� To solve the problem of contention for queue access� assuming that a constant
number n of processes are contending for access� n queues Q� � � �Qn can be introduced� each with a locking
bit lock�Q� � � � lock�Qn� as shown in �gure �� At any time in which a process needs to queue a request� at
least one queue will be unlocked� and the process may scan for that queue� Once found� the request is added
to that queue� and the queue is again unlocked� and an attempt is made to lock and enter RH� which may�
or may not be successful� RH� once active� will scan for an unlocked� non�empty queue� lock it and service
all requests� and repeat this until a scan through the queues results in locked or empty queues exclusively�
in which case� RH exits� allowing its host process to continue execution� In doing this� however� we have
pushed the atomicity problem to the scan for unlocked queues� Both cases �a process looking for a free
queue� and RH looking for a free� non�empty queue� introduce new problems�

� Suppose a process Pi scans through the queues� adopting an arbitrary deterministic strategy �say from
left to right in the visual representation�� looking for an unset lock�Qi using a test�and�set instruction�
It is possible that it scans from Q� through to Qk� 
 � k � n� �nding every one locked� It is guaranteed
that at least one is free� so that one must be between Qk and Qn� say Qj� k � j � n� However� at
that point� a queue is freed between Q� and Qk� and Qj is locked� The scan proceeds and Pi does not
manage to �nd a free queue� Eventually� one could argue� a free one is found after an arbitrary amount
of rescans� but a situation could be constructed �using a particular scheduling pattern� where this
iterates forever� A possible solution is the adoption of a nondeterministic scanning algorithm� where
the queue to be checked is selected randomly� This will guarantee an eventuality condition� though no
upperbound on the number of retries can be �xed�
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� Upon completing a request� RH scans the queues for any further pending requests� A deterministic
scan has to be made here with a �xed upperbound� since it is important that RH exits as early as
possible� A deterministic scan introduces the same problem which we have just encountered� only that
changing to a nondeterministic scan causes RH to proceed even while no requests are pending� until a
request is submitted�

Although the mutual exclusion condition is satis�ed� and we can consider this to be a satisfactory solution�
requests may be left pending for an inde�nite period� left waiting on a queue by an unaware RH which has
since exited� until its next invokation� Though we have not set any hard and fast constraints on response time�
we choose to view this situation where no upperbound on servicing time can be guaranteed as unsatisfactory�

Unsuccessful attempt ��	 Multiple queues with �ag
One can state our latest problem as having to detect requests queued without the knowledge ofRH� Enclosing
the scan routine in a critical section would be �ne� but� making use of critical sections� we could have done
without the queues in the �rst place� Alternatively� adding a �ag bit f ��gure �� alongside the queue locks�
which would be set exactly before� or after� unlocking a queue� could act as a noti�er for RH� prompting
it to rescan the queue� At the start of a scan� RH would reset f � If at the end of the scan� f is set� this
means that a request has been queued in the meantime� and the whole routine is repeated� This seems to
work �ne in both cases� probably in a very high percentage of executions� but not quite always� Consider
the sequence of events in �gure �� By following the sequence� it is evident that P��s request remains queued�
and is not serviced until the next call to RH� This alteration has not solved our problem� though it reduces
its occurance frequency substantially� This technique has been described here as it leads the way to our
current best solutions�

��� Two 
hopefully� correct solutions

The unsuccesful attempts just described strongly indicate that it is not possible to solve the problem with
the available tools� In fact� the solutions which we shall now supply twist the conditions subtly in our favour�
though to an extent which is acceptable for our application� The problem with attempt  � is that if an
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interruption occurs in between setting the �ag f and clearing the queue lock �during which f is cleared�� the
same process is rescheduled while lock�RH is still set� Consequently its latest request is ignored� This calls
for uniting the setting of f and the unlocking of the queue into a single� atomic operation� Alternatively�
restricting possible schedules to a subset of those originally possible� in which interrupted processes cannot be
rescheduled by interrupting another process� will prevent the occurance of such an event� We shall investigate
the impact and practicality of these restrictions in turn�

Solution ��	 Atomic clear �ag and unlock queue combined operation
One way of preventing residue requests accumulating until the next execution of RH is the use of an atomic
instruction which clears f and lock�Qi� How practical is this � does it require the provision of specialised
hardware� or is it implementable using conventional processors! Provided n� the number of threads� is
less than the machine word size� one can store lock�Q� � � � lock�Qn in bits 
 to n � 
� and reserve bit � for
f � Test�and�set instructions usually operate on a selected bit of a machine word� so this is an acceptable
arrangement� Now� bits from a word can be set and cleared atomically using machine instructions for AND�
OR and XOR� An XOR with a word whose bits are all zeros except for the relevant queue bit� lock�Qi and the
�ag bit f fails in the eventuality that f is already set at the time� However� if f is inverted� that is� set to �
and cleared to 
 instead� an AND with a word whose bits are all set to one except for the �ag bit f and the
relevant queue bit lock�Qi should satisfy our requirements� setting f and clearing lock�Qi atomically� This is
achieved using standard hardware� with the restriction that the number of processes must be less than the
machine word length�

Solution ��	 Restricted scheduling order
The sequence of events in the counterexample given in attempt  � invalidate our requirements because
P� �the process whose request will eventually remain unserviced� after being interrupted regains control by
in turn interrupting P�� which is in RH at the time� about to clear lock�RH� By enforcing the following
condition�

An interrupted process may not regain control before the process which had caused the interrup�
tion terminates
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P� �scans queues�
P� test�and�set lock�Q� �successful�
P� queue a request in Q� �now it is the exclusive owner�
P� set f
P� �scans queues�
P� test�and�set lock�Q� �successful�
P� queue a request in Q� �now it is the exclusive owner�
P� set f
P� clear lock�Q�

P� test�and�set lock�RH �successful�
P��RH� �scans queues�
P��RH� test�and�set lock�Q� �successful�
P��RH� unqueue a request from Q�

P��RH� service the request
P� �scans queues�
P� test�and�set lock�Q� �successful�
P� queue a request in Q� �now it is the exclusive owner�
P� set f
P� clear lock�Q�

P� test�and�set lock�RH �unsuccessful�
P� �proceeds with execution�
P��RH� clear lock�Q�

P��RH� test f �it is set� so rescan�
P��RH� clear f
P��RH� �scans queues� �unsuccessful�
P��RH� test f �it is not set� so prepare to exit�
P� clear lock�Q�

P� test�and�set lock�RH �unsuccessful�
P� �proceeds with execution�
P��RH� clear lock�RH
P��RH� �exits� returning to P��
P� �proceeds with execution�

Figure �� A scheduling sequence which leaves a residue in queues�
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an ordering on the rescheduling of suspended processes is enforced� Though this ordering could possibly
be relaxed to a partial order of scheduling constraints� as yet this has not been determined� The crucial
point is whether maintaining this ordering is unnatural to the system in question� Luckily� it turns out
that this condition is kept by an interrupt driven system� as exempli�ed by signal interruptions� since return
addresses are often stored on a stack� to be popped o�� naturally conserving the order� With such a scheduling
restriction� P� in particular can never barge in when P� in RH is about to clear lock�RH� Subsequently� RH
is made available before P� resumes� lock�RH is test�and�set successfully�
As yet� no veri�cation of the correctness of these algorithms has been carried out� the only tests performed

being empirical in nature� Still� at the time of writing no counterexample has been found which demonstrates
the invalidity of these solutions�

� Future Directions

To date� various parts of the communications system have been implemented� mainly pertaining to packet
driven communications� A variant of the shared resource access algorithm described has been implemented as
part of a separate project� Diverse issues have been exposed as this project proceeded� o�ering opportunities
for ulterior research� Openings which may be investigated further in future include�

� implementation of the communications system in its completion� and integration with a compiler and
run time system such as KROC ��
	� initially� tcp�ip�based drivers will be constructed�

� design and execution of tests for the measurement of overall system performance over an ethernet�based
workstation network� it is hoped that the results compare favourably with those for existing message
passing implementations� isolation of costs pertaining to particular sections of system operation� such
as message startup cost�

� implementation of further drivers� performance testing and evaluation�

� investigation of issues in the design of a network description language to model the �possibly virtual�
topology of a heterogenous system� and the driver type used for each link� the corresponding software
con�guration language will be in line with current designs� it would be desirable to automatically
generate software con�gurations� although this may fall outside the project�s subject area�

� examination of abstract models such as BSP and LogP which attempt to mould a model of parallel
computation that enables straightforward performance prediction� and the extent to which it is possible
to obtain similar bene�ts with occam�s freely communicating CSP�like model� to what extent is it
possible to automatically determine the optimal amount of occam process distribution across a network
�with suitable performance characteristics� to maximise e
ciency� using only parameters such as the
machine�s granularity and latency!

� alongside with the above line of thought� investigate the possibility of enforcing restrictions similar to
those imposed by the BSP model into the computational kernels of occam programs� in order to ease
performance prediction for computation intensive routines� correspondingly� a novel implementation of
distributed occam can be investigated and optimised towards such use� if possible without changing the
syntax or semantics of the language� otherwise� investigate relevant language extensions or restrictions�
their performance� and ease of performance prediction on real parallel architectures�
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