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Abstract
Operating systems theory primar-
ily concentrates on the optimal 
use of computing resources. This 
paper presents an alternative ap-
proach to teaching and studying 
operating systems design and 
concepts by way of parametrically 
optimizing critical operating sys-
tem functions. Detailed examples 
of two critical operating systems 
functions using the presented ped-
agogical approach are included.

1. Introduction
	 The	focus	of	this	paper	is	to	present	a	new	
approach	 to	 teaching	 and	 studying	 operating	
systems	design	and	concepts	by	way	of	para-
metrically	optimizing	critical	operating	systems	
functions.	By	using	parametric	optimization,	the	
students	 get	 an	 opportunity	 to	 build	 a	 strong	
understanding	 of	 critical	 operating	 systems	
functions	 and	 design	 without	 implementing	 a	
real	 system.	 Moreover,	 the	 use	 of	 simulation	
gives	them	a	chance	to	hone	their	programming	
skills	and	data	structure	skills	as	 they	develop	
a	 model	 of	 the	 real	 system.	 Specifically,	 CPU	
scheduling,	 memory	 management,	 deadlock/
synchronization	 primitives	 and	 disc	 schedul-
ing	are	the	four	specific	functions	studied	in	the	
course.	This	paper	presents	the	general	organi-
zation	of	the	course	with	in-depth	discussion	of	
two	of	the	critical	operating	system	functions.	All	
the	concerned	parameters	are	elaborated	upon,	
focusing	on	their	effect	on	system	performance	
as	well	as	interaction	with	other	parameters.	

2. Background
	 The	 operating	 system	 is	 an	 essential	 part	
of	any	computer	system,	the	operating	system	
being	the	program	that	acts	as	an	intermediary	
between	a	user	of	the	computer	and	the	com-
puter	hardware	 [1].	O’Gorman	 [2]	 in	his	paper	
provides	 a	 comprehensive	 list	 of	 reasons	 for	
why	 operating	 systems	 should	 be	 part	 of	 any	
computer	science	curriculum.	These	include:

•	 Knowledge	 of	 how	 an	 operating	 system	
does	what	it	does

•	 Making	 an	 informed	 decision	 about	 selec-
tion	of	an	operating	system

•	 Improving	 the	performance	of	an	operating	
system	 by	 adjusting	 values	 of	 associated	
parameters

•	 Operating	systems	being	the	largest	pieces	
of	software	written	provide	many	ideas	and	
techniques	 that	can	be	applied	 in	software	
development

O’Gorman	[2],	Yun-Lin	[3]	and	Leach	[4]	in	their	
respective	papers	have	presented	the	three	tra-
ditional	approaches	followed	in	the	study	of	op-
erating	systems.	These	can	be	enumerated	as:

a)	High	 level	 discussion	 with	 most	 program-
ming	done	in	a	high	level	language

b)	General	 theoretical	 approach	 with	 several	
real	systems	added	as	case	studies

c)	Use	 of	 emulator	 programs	 which	 emulate	
special	architectures

	 Krishnamoorthy	 [5]	 in	 his	 paper	 describes	
a	 course	 using	 the	 first	 approach.	 He	 reports	
several	 advantages	 of	 involving	 programming	
projects	 such	 as	 valuable	 implementation	 ex-
perience	 of	 essential	 features	 of	 an	 operating	
system,	testing	and	debugging	a	large	program	
and	validation	of	principles	of	operating	systems	
learnt	in	theory.	
	 Authors	 of	 several	 textbooks	 including	 Sil-
berschatz	 and	 Galvin	 [1]	 and	 Tanenbaum	 [6]	
take	the	second	approach	in	their	presentation	
of	the	material.	While	it	 is	certainly	a	tried	and	
tested	 approach,	 O’Gorman	 [2]	 elaborates	 on	
potential	difficulties	in	integrating	the	case	stud-
ies	with	the	theoretical	material.
	 Case	studies	of	 the	 third	approach	can	be	
found	 in	 the	 works	 of	 Oh	 and	 Mossé	 [7]	 and	
Wear	et	al	[8].	The	latter	enlist	direct	experimen-
tation	with	an	operating	system	by	varying	basic	
characteristics	of	the	system	and	the	job	mix	as	
an	effective	method	to	study	operating	system	
design.	They	further	state	that,	“It	is	prohibitively	
expensive,	difficult	and	hazardous	to	allow	stu-
dents	 to	perform	such	experiments	directly	on	
a	functional	system	already	allocated	for	other	
computing	uses”.	These	factors	have	been	stat-
ed	as	the	primary	motivation	behind	designing	
their	operating	system	simulator	by	Wear	et	al	[8].	
	 Each	 of	 the	 above	 methods	 has	 its	 own	
merits.	 The	 approach	 of	 parametric	 optimiza-
tion	presented	in	this	paper	provides	a	healthy	
balance	 of	 the	 advantages	 of	 each	 method.	
Moreover,	much	of	the	operating-system	theory	
concentrates	on	 the	optimal	use	of	computing	
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resources.	 The	 general	 outline	 of	 the	 course	
is	 presented	 first	 followed	 by	 two	 detailed	 ex-
amples	of	using	parametric	optimization	in	CPU	
scheduling	and	memory	management.

3. General Outline of the Course
	 The	 course	 described	 here	 is	 an	 imple-
mentation-oriented	course	in	the	structure	and	
design	of	operating	systems.	The	prerequisites	
include	 courses	 in	 data	 structures	 and	 com-
puter	architecture	as	well	as	a	good	knowledge	
of	C++.	The	students	are	free	to	use	other	high	
level	languages	like	Java	and	C#	(C++	is	stated	
as	a	prerequisite	as	 the	 introductory	program-
ming	courses	use	C++	 in	 the	curriculum).	The	
course	is	open	to	both	undergraduate	and	grad-
uate	 students	 with	 course	 deliverables	 being	
more	 rigorous	 for	 the	 graduate	 audience.	The	
students	 are	 proficient	 in	 programming	 by	 the	
time	they	take	this	course	in	either	case.	
	 The	underlying	goal	of	the	course	is	to	pro-
vide	practical	experience	for	the	theoretical	con-
cepts	of	the	subject.	This	is	done	by	way	of	both	
case	 studies	 of	 real	 operating	 systems;	 and	
programming	projects	simulating	 the	concepts	
and	 experimenting	 with	 them.	 Furthermore,	
laboratories	assignments	on	both	Windows	NT	
and	Unix	environments	provide	breadth	 to	 the	
experience	with	real	operating	systems.	These	
include	topics	such	as	inter-process	communi-
cation	on	the	two	platforms.	The	paper	does	not	
discuss	this	part	of	the	course	in	detail	as	stan-
dard	lab	manuals	are	used	for	this	part.	It	suf-
fices	to	state	that	these	labs	bring	in	the	merits	
of	the	second	approach	(outlined	in	section	2	of	
this	paper)	to	the	course.	
	 The	 focus	 of	 this	 paper	 is	 the	 part	 of	 the	
course	 that	 integrates	 the	 first	 and	 third	 ap-
proach	 (outlined	 in	 section	 2	 of	 this	 paper)	 in	
form	of	programming	assignments	that	simulate	
critical	 operating	 system	 functions	 and	 para-
metrically	optimize	them.	

4.  Parametric Optimization of 
     Operating Systems Modules
	 In	the	next	three	subsections,	the	essential	
components	 are	 elaborated	 upon.	 Section	 4.1	
discusses	 the	 process	 control	 block,	 Section	
4.2	elaborates	on	the	performance	parameters	
and	Section	4.3	introduces	the	different	evalua-
tion	techniques.

4.1. Processes and Process Control Block

	 At	 the	heart	of	 the	operating	system	 is	 the	
process	mix.	A	process	is	a	program	in	execu-
tion.	 As	a	process	executes,	 it	 changes	 state,	

which	is	defined	by	that	process’s	current	activ-
ity.	A	process	may	be	in	a	new,	ready,	running,	
waiting	 or	 terminated	 state.	 Each	 process	 is	
represented	in	the	operating	system	by	its	own	
process	control	block	(PCB)	[9].	Figure	1	shows	
typical	 process	 mix	 and	Table	 1	 illustrates	 an	
instance	of	a	process	mix.

A	PCB	includes	the	following	fields:
•	 Process	ID	(PID):	The	unique	identifier	used	

by	other	processes	for	scheduling,	commu-
nication	and	any	other	purpose.

•	 Arrival	Time:	The	time	at	which	the	process	
enters	 the	 process	 queue	 for	 scheduling	
purposes.

•	 Estimated	Execution	Time:	Used	by	sched-
uling	 algorithms	 that	 order	 processes	 by	
execution	time.

•	 Priority	/	Process	Type:	Used	by	scheduling	
algorithms	that	follow	priority-based	criterion.

•	 Size:	The	size	of	the	process	in	bytes.

•	 Location:	The	memory	location	of	a	process.

•	 Program	 Counter	 Value:	 The	 address	 of	
next	instruction	to	be	executed.

•	 Registers	 /	Threads:	The	 state	 of	 different	
registers	used	by	processes

•	 Needed	 Resources:	 Indicates	 the	 quanti-
ties/types	 of	 system	 resources	 needed	 by	
a	process.

In	 other	 words,	 a	 Process	 Control	 Block	 is	 a	
data	 structure	 that	 stores	 certain	 information	
about	each	process	[9].	

4.2. Performance Parameters

	 Quantifying	performance	is	essential	to	op-
timization.	Following	are	some	of	 the	common	

ÿ Process ID (PID)
ÿ Arrival Time
ÿ Execution Time
ÿ Priority
ÿ Size
ÿ Location
ÿ Program Counter

Value
ÿ Registers / Threads
ÿ Needed Resources

Process ID Arrival T ime Priority E xecution
T ime

1 0 20 10

2 2 10 1

3 4 58 2

4 8 40 4

5 12 30 3

Figure 1.  A Typical PCB

Table 1. A Sample Process Mix
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parameters	used	to	benchmark	performance.

•	 CPU	 Utilization:	The	 ratio	 of	 time	 that	 the	
CPU	 is	 doing	 actual	 processing	 to	 the	 to-
tal	CPU	time	observed.	This	is	a	true	mea-
sure	of	performance	since	it	measures	the	
efficiency	of	 the	 system.	An	 idle	CPU	has	
0%	CPU	utilization	since	 it	offers	null	per-
formance	per	unit	cost.	The	higher	the	CPU	
utilization,	 the	 better	 the	 efficiency	 of	 the	
system.

•	 Turnaround	 Time:	 The	 time	 between	 a	
process’s	 arrival	 into	 the	 system	 and	 its	
completion.	 Two	 related	 parameters	 that	
can	 be	 studied	 include	 the	 average	 turn-
around	time	and	maximum	turnaround	time.	
The	 turnaround	 time	 includes	 the	 context	
switching	 times	 and	 execution	 times.	 The	
turnaround	 time	 is	 inversely	 related	 to	 the	
system	performance,	 i.e.	 lower	 turnaround	
times	imply	better	system	performance.

•	 Waiting	Time:	Waiting	time	is	the	sum	of	the	
periods	 spent	 waiting	 in	 the	 ready	 queue.	
The	 CPU	 scheduling	 algorithm	 does	 not	
affect	 the	 execution	 time	 of	 a	 process	 but	
surely	 determines	 the	 waiting	 time.	 Math-
ematically,	 it	 is	 the	difference	between	 the	
turnaround	 time	 and	 execution	 time.	 Like	
turnaround	 time,	 it	 inversely	 affects	 the	
system	 performance	 and	 has	 two	 related	
forms:	average	waiting	 time	and	maximum	
waiting	time.

•	 Throughput:	 The	 average	 number	 of	 pro-
cesses	 completed	 per	 unit	 time.	 Even	
though	 this	 is	 a	 reasonable	 measure	 of	
operating	 system	 performance,	 it	 should	
not	be	the	sole	performance	criterion	taken	
into	account.	This	is	so	because	throughput	
does	 not	 take	 into	 account	 loss	 of	 perfor-
mance	caused	by	starvation.	In	the	case	of	
starvation,	the	CPU	might	be	churning	out	
completed	 processes	 at	 a	 very	 high	 rate	
but	 there	 might	 be	 a	 process	 stuck	 in	 the	
scheduler	with	an	 infinite	wait	 time.	Higher	
throughput	 is	 generally	 considered	 as	 in-
dicative	of	increased	performance.

•	 Response	 Time:	 The	 time	 difference	 be-
tween	 submission	 of	 the	 process	 and	 the	
first	 I/O	 operation.	 It	 affects	 performance	
inversely.	However,	it	is	not	considered	to	be	
a	good	measure	and	is	rarely	used.

4.3. Evaluation Technique

	 When	developing	an	operating	system	or	the	
modules	thereof,	evaluation	of	its	performance	
is	 needed	 before	 it	 is	 installed	 for	 real	 usage.	

Evaluation	 provides	 useful	 clues	 to	 which	 al-
gorithms	 would	 best	 serve	 different	 cases	 of	
application	 [10].	 There	 are	 several	 evaluation	
techniques.	Lucas	(1971,	as	cited	in	[10])	sum-
marized	 and	 compared	 some	 frequently	 used	
techniques,	 including	cycle	and	 times,	 instruc-
tion	mixes,	kernels,	models,	benchmarks,	syn-
thetic	 programs,	 simulation,	 and	 monitor.	 All	
techniques	can	be	basically	classified	into	three	
types:	 the	 analytic	 method,	 implementation	 in	
real	time	systems,	and	the	simulation	method.	
	 In	the	analytic	method,	a	mathematical	for-
mula	 is	 developed	 to	 represent	 a	 computing	
system.	This	method	provides	clear	and	intuitive	
evaluation	of	system	performance,	and	is	most	
useful	to	a	specific	algorithm.	However,	it	is	too	
simple	to	examine	a	complex	and	real	system.	
	 Another	 technique	 is	 to	 implement	 an	 op-
erating	system	in	a	real	machine.	This	method	
produces	a	complete	and	accurate	evaluation.	
One	of	 the	disadvantages	of	 this	 technique	 is	
the	 dramatic	 cost	 associated	 with	 the	 imple-
mentation.	In	addition,	evaluation	is	dependent	
on	the	environment	of	the	machine	in	which	the	
evaluation	is	carried	out.
	 Simulation	 is	a	method	 that	uses	program-
ming	 technique	 to	 develop	 a	 model	 of	 a	 real	
system.	Implementation	of	the	model	with	pre-
scribed	jobs	shows	how	the	system	works.	Fur-
thermore,	 the	model	 contains	a	number	of	al-
gorithms,	variables,	and	parameters.	By	chang-
ing	these	factors	in	the	simulation,	one	is	able	
to	 know	 how	 the	 system	 performance	 would	
be	 affected	 and,	 therefore,	 to	 predict	 possible	
changes	in	the	performance	of	the	real	system.	
This	method	has	a	reasonable	complexity	and	
cost.	It	was	viewed	as	the	most	potentially	pow-
erful	 and	 flexible	 of	 the	 evaluation	 techniques	
(Lucas,	1971	as	cited	in	[10]).
	 The	model	 for	a	 full	 simulation	of	an	oper-
ating	 system	 contains	 numerous	 parameters.	
Identification	of	the	most	important	parameters	
in	terms	of	system	performance	is	useful	for	a	
complete	evaluation	and	 for	a	 fair	 design	of	a	
real	system	[10].	
	 The	four	programming	projects	in	the	course	
simulate	and	parametrically	optimize	the	tasks	
of	CPU	scheduling,	synchronization	and	dead-
lock	 handling,	 memory	 management	 and	 disc	
scheduling	in	terms	of	the	involved	parameters.	
The	 simulation	 technique	 is	 used	 to	 analyze	
some	of	the	stated	parameters	in	their	respec-
tive	modules:

•	 CPU	scheduling:	round	robin	time	quantum,	
aging	parameters,	a-values	and	initial	exe-
cution	time	estimates,	preemption	switches,	
context	switching	time.	
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•	 Synchronization	 and	 Deadlock	 Handling:	
total	number	of	processes,	total	number	of	
available	 resources,	 maximum	 number	 of	
resources	required	by	the	processes,	rejec-
tion	rate	over	time.

•	 Memory	Management:	memory	size,	RAM	
and	disc	access	times,	compaction	thresh-
olds,	 memory	 placement	 algorithms,	 page	
size,	 page	 replacement	 algorithms,	 time	
quantum	 value,	 fragmentation	 percentage	
in	time	windows	over	time.

•	 Disc	 scheduling:	 disc	 configuration/size,	
disc	 access	 time,	 disc	 scheduling	 algo-
rithms,	disc	writing	mechanisms	and	all	the	
above	 mentioned	 memory	 management	
parameters.

	 System	 performance	 is	 judged	 by	 many	
measures,	 including:	average	turnaround	time,	
average	waiting	 time,	 throughput,	CPU	utiliza-
tion,	fragmentation,	response	time,	and	several	
other	module	specific	performance	measures.	
	 Every	 simulated	 module	 generates	 a	 ran-
dom	process	mix.	Assuming	that	 there	are	six	
parameters	 in	a	specific	module	and	each	pa-
rameter	can	take	ten	possible	values,	the	total	
number	of	possible	permutations	becomes	one	
million	 (10x10x10x10x10x10).	 Furthermore,	
these	one	million	permutations	are	applicable	to	
the	particular	process	mix	only.	Therefore,	each	
run	 of	 a	 specific	 simulated	 module	 uses	 the	
same	 process	 mix.	This	 enables	 the	 analysis	
of	 the	 studied	 parameter	 versus	 performance	
measures	to	have	a	uniform	base	for	compari-
sons.	 An	 exhaustive	 study	 of	 all	 possible	 per-
mutations	 is	 beyond	 the	 scope	 of	 the	 course.	
Hence,	 	 optimization	 of	 some	 parameters	 in	
each	module	is	performed	to	serve	as	a	model	
example.
	 The	 independent	 variables	 in	 the	 modules	
include	 the	studied	parameters	 in	each	of	 the	
operating	 system	 functions	 while	 the	 perfor-
mance	measures	 like	percentage	CPU	utiliza-
tion,	average	turnaround	time,	average	waiting	
time,	 throughput,	 fragmentation	 percentage,	
rejection/denial	rate,	percentage	seek	time	and	
percentage	 latency	 time	constitute	 the	depen-
dent	variables.
	 The	simulation	 technique	 is	used	 to	evalu-
ate	system	performance	in	all	the	modules.	It	is	
specifically	used	to	explore	the	effect	of	param-
eters	whose	relation	with	system	performance	
is	not	proportional.	Evaluation	of	system	perfor-
mance	against	these	parameters	is	conducted	
by	 analyzing	 a	 number	 of	 sample	 runs	 of	 the	
respective	simulated	modules.	The	parameters	

are	discussed	in	terms	of	their	interaction	with	
the	operating	system	function	under	study	and	
their	 resultant	 effect	 on	 the	 system	 perfor-
mance.	 Sub-sections	 4.4	 and	 4.5	 present	 two	
of	 the	 programming	 projects,	 CPU	 scheduling	
and	memory	management,	 in	details	to	exem-
plify	 the	 approach.	 Section	 4.6	 discusses	 the	
programming	 projects	 from	 an	 integrated	 per-
spective.

4.4. CPU Scheduling

	 An	operating	system	must	select	processes	
(programs	 in	execution)	 for	execution	 in	 some	
order.	The	selection	process	is	carried	out	by	an	
appropriate	scheduling	algorithm.	CPU	sched-
uling	deals	with	the	problem	of	deciding	which	
of	the	processes	in	the	ready	queue	is	to	be	al-
located	the	CPU.	There	are	many	different	CPU	
scheduling	algorithms,	 for	example,	first	come	
first	 served,	 shortest	 job	 first,	 priority,	 round-
robin	schemes.
	 Another	class	of	scheduling	algorithms	has	
been	created	for	situations	in	which	processes	
are	easily	classified	into	different	groups/types.	
A	 multilevel	 queue-scheduling	 algorithm	 (see	
Figure	2)	partitions	the	ready	queue	into	several	
separate	queues.	The	processes	are	assigned	
to	a	queue,	generally	based	on	some	property	
of	the	process.	Each	queue	has	its	own	sched-
uling	algorithm.	
	 Processes	are	assigned	to	a	queue	depend-
ing	 on	 their	 type,	 characteristics	 and	 priority.	
Queue	1	gets	processes	with	maximum	priority	
such	as	 system	 tasks	and	Queue	4	gets	pro-
cesses	with	the	lowest	priority	such	as	non-criti-
cal	audio/visual	 tasks.	The	 idea	 is	 to	separate	
processes	with	different	CPU-burst	characteristics.	
	 Each	 queue	 has	 a	 different	 scheduling	
algorithm	 that	 schedules	 processes	 for	 the	
queue.	 Processes	 in	 Queue	 2	 get	 CPU	 time	
only	if	Queue	1	is	empty.	Similarly,	processes	in	
Queue	3	receive	CPU	attention	only	if	Queue	1	
and	Queue	2	are	empty	and	so	forth.	

Fi gure 2. A Mu lti-L evel F eedback Queue

Queue 1System Jobs Round Robin

Queue 2Computation Intense SJF with preemption

Queue 3Less intense calculation Priority-based

Queue 4Multimedia Tasks FIFO 

Figure 2. A Multi-Level Feedback Queue
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	 However,	 if	 the	 above-described	 method	
is	 implemented	 as	 is,	 processes	 in	 queues	 2,	
3	and	4	have	a	potential	of	starvation	 in	case	
Queue	 1	 receives	 processes	 constantly.	 To	
avoid	this	problem,	aging	parameters	are	taken	
into	account.	Aging	means	 that	processes	are	
upgraded	 to	 the	 next	 queue	 after	 they	 spend	
a	pre-determined	amount	of	time	in	their	origi-
nal	 queue.	 For	 example,	 a	 process	 spends	 a	
pre-determined	 amount	 of	 time	 unattended	 in	
Queue	4	will	be	moved	to	Queue	3.	Processes	
keep	 moving	 upwards	 until	 they	 reach	 Queue	
1	 where	 they	 are	 guaranteed	 to	 receive	 CPU	
time	(or	execute	in	other	queues	before	reach-
ing	Queue	1).
	 In	 general,	 a	 multilevel	 feedback	 queue	
scheduler	is	defined	by	the	number	of	queues,	
the	 scheduling	 algorithm	 for	 each	 queue,	 the	
method	used	to	assign	the	entering	processes	
to	the	queues	and	the	aging	parameters.
	 Although	a	multilevel	feedback	queue	is	the	
most	general	scheme,	it	is	also	the	most	com-
plex	and	has	the	potential	disadvantage	of	high	
context	switching	time.
	 Many	of	 the	scheduling	algorithms	use	ex-
ecution	time	of	a	process	to	determine	what	job	
is	processed	next.	Since	it	is	impossible	to	know	
the	execution	time	of	a	process	before	it	begins	
execution,	this	value	has	to	be	estimated.	a,	a	
first	degree	filter,	is	used	to	estimate	the	execu-
tion	time	of	a	process	as	follows:
zn		=	azn-1	+	(1	-	a)	tn-1

where,	z	is	estimated	execution	time
	 t	is	the	actual	time	
	 a	is	the	first	degree	filter	and	0	≤	a	≤	1
The	 following	 example	 provides	 a	 deeper	 un-
derstanding	of	the	issue	at	hand.
	 Thus,	 an	 estimated	 execution	 time	 for	 the	
first	 process	 is	 assumed	 and	 then	 the	 filter	 is	
used	to	make	further	estimations	(see	Table	2).	
However,	the	choice	of	the	value	of	a	affects	the	
estimation	 process.	 Following	 is	 the	 scenario	
when	a	takes	the	extreme	values:

•	 a	=	0	means	that	zn	does	not	depend	on	zn-1	
and	is	equal	to	tn-1

•	 a	=	1	means	that	zn	does	not	depend	on	tn-1	
and	is	equal	to	zn-1

Consequently,	a	symbolic	value	of	a	is	chosen	
as	a	starting	point	 to	obtain	 f	 (a)	 i.e.	 the	sum	
of	square	difference	(see	Table	3).	Further,	dif-
ferentiation	of	this	and	equating	it	to	zero	gives	
the	value	of	a	for	which	the	difference	between	
the	actual	time	and	estimated	time	is	minimum.	
The	following	exemplifies	a-update	in	the	above	
example.
	 In	the	above	example,	at	the	time	of	estimat-
ing	execution	time	of	P3,	a	is	updated	as	follows.

The	sum	of	square	differences	is	given	by,
SSD	=	(2+4a)2	+	(4a2+2a-2)2	=	16a4	+	16a3	+	
4a2	+	8a	+	8
And,	d/dx	[SSD]	=	0	gives	us,
	8a3	+	6a2	+	a	+	1	=	0		 (Equation	1)
Solving	Equation	1,	one	gets	a	=	0.7916.
Now,		
z3	=az2	+	(1-a)	t2

Substituting	values,	one	gets
z3	=	(0.7916)	6	+	(1-0.7916)	6	
				=	6
Next,	the	parameters	involved	in	a	CPU	sched-
uler	using	 the	multilevel	 feedback	queue	algo-
rithm	are	discussed.		

4.4.1. Parameters Involved

Parameters	 that	 influence	 the	 system	 perfor-
mance	are	hereby	enumerated:

•	 Time	slot	for	the	round	robin	queue	(Queue	1)

•	 Aging	time	for	 transitions	from	Queue	4	to	
Queue	3,	Queue	3	to	Queue	2	and	Queue	
2	 to	Queue	1,	 i.e.	 the	aging	 thresholds	 for	
FIFO,	priority-based	and	SJF	queues	

•	 a-values	 and	 initial	 execution	 time	 esti-
mates	for	the	FIFO,	SJF	and	priority-based	

Processes zn tn

P0 10 6

P1 8 4
P2 6 6
P3 6 4

P4 5 17
P5 11 13
P6 12 ….

Here,
a = 0.5
z0 = 10

Then by formula,
z1 = a z0 + (1-a) t0

     = (0.5) (10) + (1-0.5) (6)
     = 8

and similarly z2, z3….z6 are calculated.

zn tn Sq uare  Difference

10 6

(a) 1 0 + (1-a) 6  =

6 + 4a

4 [(6+4a)  – 4] 2 = (2+4a) 2

(6+4a)a  +  (1-a)  4

= 4a2+2a+4

6 [(4a2+2a+4) – 6]2 =

(4a2+2a-2)2

Table 2. Calculating Execution Time Estimates

Table 3. a-updating scheme
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queues.

•	 Choice	of	preemption	for	the	SJF	and	Prior-
ity	based	queues.

•	 Context	switching	time

Effect	 of	 Round	 Robin	Time	 Slot:	The	 choice	
of	the	round	robin	queue	can	make	the	perfor-
mance	vary	widely.	For	example,	a	 small	 time	
quantum	 results	 in	 higher	 context	 switching	
time,	 which	 in	 turn	 translates	 to	 low	 system	
performance	 in	 form	 of	 low	 CPU	 utilization,	
high	 turnaround	 times	and	high	waiting	 times.	
On	the	other	hand,	a	big	time	quantum	results	
in	FIFO	behavior	with	effective	CPU	utilization,	
lower	turnaround	and	waiting	times	but	with	the	
potential	of	starvation.	Thus,	finding	an	optimal	
time	 slot	 value	 becomes	 imperative	 for	 maxi-
mum	 CPU	 utilization	 with	 lowered	 starvation	
problem.

Effect	of	Aging	Thresholds:	A	very	 large	value	
for	 the	 aging	 thresholds	 makes	 the	 waiting	
and	 turnaround	 times	 unacceptable.	 These	
are	signs	of	processes	nearing	starvation.	On	
the	 other	 hand,	 a	 very	 small	 value	 makes	 it	
equivalent	to	one	round	robin	queue.	Zhao	[11]	
enumerates	the	aging	parameters	of	5,	10	and	
25	for	the	SJF,	Priority-based	and	FIFO	queues	
respectively	as	the	optimal	aging	thresholds	for	
the	specified	process	mix.	Some	of	the	process	
mix	specifications	being:	process	size	vary	from	
100KB	to	3MB;	estimated	execution	time	range	
from	5	to	35ms;	priority	values	vary	from	1	to	4;	
memory	size	 is	16MB;	disc	drive	configuration	
is	8	surfaces,	64	sectors	and	1000	tracks.

Effect	of	a-values	and	initial	execution	time	es-
timates:	Su	 [10]	has	studied	 the	effect	of	 pre-
diction	 of	 burst	 time	 on	 system	 performance	
of	a	simulated	operating	system	as	part	of	her	
study.	She	has	used	an	a	 update	 scheme	as	
was	previously	discussed.	For	her	specified	pro-
cess	mix,	she	reports	that	the	turnaround	time	
obtained	 from	 predicted	 burst	 time	 is	 signifi-
cantly	lower	than	the	one	obtained	by	randomly	
generated	burst	time	estimates.	The	a	value	is	
recomputed/updated	after	a	fixed	number	of	it-
erations.

Effect	 of	 choice	 of	 preemption:	 Preemption	
undoubtedly	 increases	 the	 number	 of	 context	
switches,	 and	 increased	 number	 of	 context	
switches	 inversely	affects	 the	efficiency	of	 the	
system.	 However,	 preemptive	 scheduling	 has	
been	shown	to	decrease	waiting	and	turnaround	
time	 measures	 in	 certain	 instances	 [1].	There	
are	 two	 preemption	 switches	 involved	 in	 this	
module,	one	for	the	SJF	queue	(Queue	2)	and	
the	other	for	the	priority-base	queue	(Queue	3).	

In	SJF	scheduling,	 the	advantage	of	choosing	
preemption	over	non-preemption	is	 largely	de-
pendent	on	the	CPU	burst	time	predictions,	but	
that	is	a	difficult	proposition	in	itself.

Effect	 of	 Context	 Switching	Time:	 An	 increas-
ing	 value	 of	 context	 switching	 time	 inversely	
affects	 the	 system	 performance	 in	 an	 almost	
linear	fashion.	The	context	switching	time	tends	
to	affect	system	performance	 inversely.	As	 the	
context	 switching	 time	 increases,	 so	 does	 the	
average	 turnaround	and	average	waiting	 time.	
The	increase	of	the	context	switching	time	pulls	
down	the	CPU	utilization.

In	keeping	with	the	above	discussion,	the	simu-
lation	of	the	above	module	and	the	analysis	of	
the	 collected	 data	 focus	 on	 the	 optimal	 round	
robin	time	quantum	and	effect	of	 the	a-updat-
ing	scheme.

4.4.2. Simulation Specifications and Method 
of Data Collection

	 The	implemented	multi-level	feedback	queue	
scheduler	consists	of	four	linear	queues,	the	first	
is	FIFO,	the	second	queue	is	priority-based,	the	
third	one	is	SJF	and	the	fourth	(highest	priority)	
is	round	robin.	Feedback	occurs	through	aging;	
aging	parameters	differ,	i.e.,	each	queue	has	a	
different	aging	threshold	before	a	process	can	
migrate	 to	 a	 higher	 priority	 queue.	 Processes	
are	assigned	to	one	of	the	queues	upon	entry.	
A	 process	 can	 migrate	 between	 the	 various	
scheduling	queues	based	on	the	aging	param-
eter	of	the	queue	it	was	initially	assigned.	
	 Round	robin	time	quantum,	the	preemptive	
switches	for	the	SJF	and	priority-based	queues,	
aging	 parameters	 for	 the	 SJF,	 priority-based	
and	FIFO	queues,	context	switching	time,	initial	
execution	 time	estimates	and	a	values	 for	 the	
FIFO,	SJF	and	priority	queues	are	some	of	the	
independent	 variables	 in	 this	 module.	To	 opti-
mize	 any	 one	 of	 them,	 every	 other	 parameter	
is	kept	fixed	and	the	studied	parameter	varied.	
Optimization	 of	 the	 round	 robin	 time	 and	 the	
effect	of	the	a	update	scheme	is	attempted	to	
serve	 as	 a	 model.	Thus,	 the	 round	 robin	 time	
was	 the	 variable	 parameter	 in	 this	 case	 and	
all	 other	 parameters	 were	 fixed	 parameters.	
The	dependent	variables	of	the	module	are	the	
performance	 measures:	 average	 turnaround	
time,	average	waiting	time,	CPU	utilization	and	
throughput.	
	 Data	 was	 collected	 by	 means	 of	 multiple	
sample	 runs.	The	 output	 from	 the	 sample	 run	
indicates	 a	 timeline,	 i.e.	 at	 every	 time	 step,	 it	
indicates	which	processes	are	created	(if	any),	
which	ones	are	 completed	 (if	 any),	 processes	
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which	 aged	 in	 different	 queues.	The	 following	
excerpts	 from	 an	 output	 file	 (see	 Figure	 3)	 il-
lustrate	the	aging	of	process	1	from	the	priority	
based	queue	to	the	SJF	queue	(the	aging	pa-
rameter	for	Queue	3	was	set	to	be	3	in	this	run).	
Figure	3,	part	(a)	shows	process	mix	snapshot	
at	 time	 step	 1.	 Five	 processes	 are	 created	 at	
this	instance	and	the	PCB	parameters	for	pro-
cess	number	1	are	displayed.	Part	(b)	illustrates	
the	 contents	 of	 the	 queue	 at	 this	 time	 step.	
Process	 1	 is	 assigned	 to	 the	 priority	 queue.	
Given	an	aging	parameter	of	3	 for	 the	priority	
queue,	 process	 1	 should	 migrate	 to	 the	 SJF	
queue	at	 time	step	4	unless	 it	 finishes	execu-
tion	before	that.	Snapshots	at	time	step	2	(part	
(c))	and	time	step	3	(part	(d))	show	that	process	
2	and	process	6	get	CPU	attention	since	 they	
are	in	the	round	robin	queue	(queue	with	high-
est	priority).	Therefore,	process	1	does	not	get	
the	opportunity	to	execute	and	migrates	to	the	
SJF	queue	at	 time	step	4	(part	(e)).	Part	(f)	 il-
lustrates	the	completion	of	process	8	and	inclu-
sion	of	the	same	in	the	done	queue.	A	complete	
walkthrough	of	this	sample	run	for	this	module	
is	included	in	Appendix	A.

4.4.3. Simulation Results and Discussion

	 Table	4	and	the	corresponding	charts	(Fig-
ure	 4	 (a)	 –	 (d))	 illustrate	 the	 effect	 of	 varying	
the	round	robin	quantum	time	over	the	various	
performance	parameters.	This	parameter	plays	
a	critical	role	as,	whenever	present,	it	is	the	pro-
cesses	in	this	queue	that	are	being	scheduled	
for	execution.	

Figure 3. Snapshot of process mix at time steps 1-5

R R TimeSl ot Av.Turnaround Time Av. Waiting Time CPU Utilization Throughput
2 19.75 17 66.67 % 0.026
3 22.67 20 75.19 % 0.023
4 43.67 41 80.00 % 0.024
5 26.5 25 83.33 % 0.017
6 38.5 37 86.21 % 0.017

Table 4. Effect of Round Robin Time Slot on the Performance Parameters
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Figure 4. Charts illustrating effect of round
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Figure 4.   Charts illustrating effect of round robin quantum 
                  over performance measures
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	 It	can	be	clearly	seen	from	the	Table	4	how	
the	 time	 slot	 of	 the	 round	 robin	queue	affects	
the	various	performance	parameters.	While	the	
throughput	is	observed	to	be	inversely	propor-
tional,	 the	 other	 three	 performance	 measures	
seem	to	be	directly	proportional.	In	other	words,	
with	 increasing	 the	 time	 slot	 the	 round	 robin	
queue	moves	 towards	 the	behavior	of	a	FIFO	
queue	with	high	average	turnaround	times	and	
average	waiting	times.	The	throughput	decreas-
es	but	the	percentage	CPU	utilization	improves	
at	a	steady	rate.
	 Since	 the	 round	 robin	 is	 the	 highest	 prior-
ity	 queue	 in	 the	 multilevel	 feedback	 queue	
scheduler,	it	has	the	greatest	influence	over	the	
scheduler	performance.	With	CPU	utilization	of	
80%	and	throughput	of	0.024,	time	slot	value	of	
4	time	units	comes	out	to	be	the	optimal	value	
in	this	simulation	for	the	specific	process	mix.
	 Next	the	effect	of	a	updating	on	the	system	
performance	is	illustrated.	Table	5	compares	the	
performance	 measures	 as	 the	 value	 of	 round	
robin	time	slot	is	varied	with	a	updated	at	regu-
lar	 intervals.	The	performance	measure	values	
in	 the	 bracket	 are	 the	 corresponding	 values	
when	 the	 a	 updating	 scheme	 was	 not	 imple-
mented.
	 As	is	evident	from	Table	5,	a	updating	did	not	
affect	system	performance	in	this	case.	Again,	
the	result	 is	specific	for	 this	particular	process	
mix.
	 To	summarize,	it	is	the	optimal	value	of	the	
round	 robin	quantum	along	with	smallest	pos-
sible	context	switching	time	that	tends	to	maxi-
mize	performance	in	context	of	CPU	scheduling	
in	this	simulation,	a-updating	did	not	tend	to	af-
fect	performance.

4.5. Memory Management

	 Memory	is	an	important	resource	that	must	
be	carefully	managed.	The	part	of	 the	operat-
ing	 system	 that	 manages	 memory	 is	 called	
the	 memory	 manager.	 Memory	 management	
primarily	deals	with	space	multiplexing.	All	 the	
processes	need	to	be	scheduled	in	such	a	way	
that	all	the	users	get	the	illusion	that	their	pro-
cesses	 reside	 on	 the	 RAM.	 Spooling	 enables	
the	transfer	of	a	process	while	another	process	
is	in	execution.	The	job	of	the	memory	manager	
is	to	keep	track	of	which	parts	of	memory	are	in	
use	and	which	parts	are	not	in	use,	to	allocate	
memory	 to	 processes	 when	 they	 need	 it	 and	
deallocate	it	when	they	are	done,	and	to	man-
age	swapping	between	main	memory	and	disc	
when	main	memory	is	not	big	enough	to	hold	all	
the	processes.	
	 Three	 disadvantages	 related	 to	 memory	

management	are:

•	 the	synchronization	problem

•	 the	redundancy	problem	

•	 the	fragmentation	problem

The	first	two	are	discussed	below	and	the	frag-
mentation	 problem	 is	 elaborated	 upon	 a	 little	
later.
	 Spooling,	 as	 stated	 above,	 enables	 the	
transfer	of	one	or	more	processes	while	another	
process	is	in	execution.	It	aims	at	preventing	the	
CPU	from	being	idle,	thus,	managing	CPU	uti-
lization	more	efficiently.	The	processes	that	are	
being	 transferred	 to	 the	main	memory	can	be	
of	different	sizes.	When	trying	to	transfer	a	very	
big	process,	it	is	possible	that	the	transfer	time	
exceeds	 the	 combined	 execution	 time	 of	 the	
processes	in	the	RAM.	This	results	in	the	CPU	
being	 idle	 which	 was	 the	 problem	 for	 which	
spooling	was	invented.	This	problem	is	termed	
as	 the	synchronization problem.	The	reason	
behind	 it	 is	 that	 the	 variance	 in	 process	 size	
does	not	guarantee	synchronization.
	 The	combined	size	of	all	processes	is	usu-
ally	much	bigger	than	the	RAM	size	and	for	this	
very	reason	processes	are	swapped	in	and	out	
continuously.	 The	 issue	 regarding	 this	 is	 the	
transfer	of	the	entire	process	when	only	part	of	
the	code	 is	executed	 in	a	given	time	slot.	This	
problem	 is	 termed	 as	 the	 redundancy prob-
lem.
	 There	are	many	different	memory	manage-
ment	 schemes.	 Memory	 management	 algo-
rithms	 for	 operating	 systems	 range	 from	 the	
single	 user	 approach	 to	 paged	 segmentation.	
Some	important	considerations	that	should	be	
used	 in	 comparing	different	memory	manage-
ment	strategies	include	hardware	support,	per-
formance,	fragmentation,	relocation,	swapping,	
sharing	 and	 protection.	The	 greatest	 determi-
nant	of	any	method	in	a	particular	system	is	the	
hardware	provided.
	 Fragmentation,	 Compaction	 and	 Paging:	
Fragmentation	 is	 encountered	 when	 the	 free	
memory	 space	 is	 broken	 into	 little	 pieces	 as	

R R TimeSl ot Av.Turnaround Time Av. Waiting Time CPU Utilization Throughput
2 19.75 (19.75) 17 (17) 66.67 (66.67) % 0.026 (0.026)
3 22.67 (22.67) 20 (20) 75.19 (75.19)% 0.023 (0.023)
4 43.67 (43.67) 41 (41) 80.00 (80.00)% 0.024 (0.024)
5 26.5 (26.5) 25 (25) 83.33 (83.33)% 0.017 (0.017)
6 38.5 (38.5) 37 (37) 86.21 (86.21)% 0.017 (0.017)

Table 5.  Comparing performance measures of a CPU scheduler with 
               a-update and one with no a-update (the values for the scheduler       
               with no a-update is in brackets)
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processes	are	loaded	and	removed	from	mem-
ory.	Fragmentation	can	be	internal	or	external.
	 Consider	a	hole	of	18,464	bytes	as	shown	
in	Figure	5.	Suppose	that	the	next	process	re-
quests	 18,462	 bytes.	 If	 exactly	 the	 requested	
block	 is	 allocated,	 one	 is	 left	 with	 a	 hole	 of	 2	
bytes.	The	overhead	 to	keep	 track	of	 this	hole	
will	 be	substantially	 larger	 than	 the	hole	 itself.	
The	general	approach	is	to	allocate	very	small	
holes	 as	 part	 of	 the	 larger	 request.	Thus,	 the	
allocated	 memory	 may	 be	 slightly	 larger	 then	
the	requested	memory.	The	difference	between	
these	two	numbers	is	internal fragmentation	–	
memory	that	is	internal	to	a	partition,	but	is	not	
being	used	[1].	In	other	words,	unused	memory	
within	allocated	memory	is	called	internal	frag-
mentation	[12].
	 External fragmentation	exists	when	enough	
total	memory	space	exists	to	satisfy	a	request,	
but	 it	 is	not	contiguous;	storage	 is	 fragmented	
into	a	large	number	of	small	holes.	In	Figure	6	
two	 such	 cases	 can	 be	 observed.	 In	 part	 (a),	
there	is	a	total	external	fragmentation	of	260K,	
a	space	that	is	too	small	to	satisfy	the	requests	
of	either	of	the	two	remaining	processes,	P4	and	
P5.	In	part	(c),	however,	there	is	a	total	external	
fragmentation	 of	 560K.	 This	 space	 would	 be	
large	enough	to	run	process	P5,	except	that	this	
free	memory	is	not	contiguous.	It	is	fragmented	
into	 two	 pieces,	 neither	 one	 of	 which	 is	 large	
enough,	by	itself,	to	satisfy	the	memory	request	
of	process	P5.	This	fragmentation	problem	can	
be	severe.	In	the	worst	case,	there	could	be	a	
block	of	 free	 (wasted)	memory	between	every	
two	processes.	 If	all	 this	memory	were	 in	one	
big	free	block,	a	few	more	processes	could	be	
run.	Depending	on	the	total	amount	of	memory	
storage	and	the	average	process	size,	external	
fragmentation	may	be	either	a	minor	or	major	
problem.	
	 One	solution	to	the	problem	of	external	frag-
mentation	is	compaction.	The	goal	is	to	shuffle	
the	memory	contents	to	place	all	free	memory	
together	in	one	large	block.	The	simplest	com-
paction	algorithm	 is	 to	move	all	processes	 to-
ward	one	end	of	 the	memory,	and	all	holes	 in	
the	 other	 direction,	 producing	 one	 large	 hole	
of	 available	 memory.	 Figure	 7	 shows	 different	
ways	to	compact	memory.	Selecting	an	optimal	
compaction	strategy	is	quite	difficult.
	 Compaction	is	an	expensive	scheme.	Given	
a	128	MB	RAM	and	an	access	speed	of	10ns	
per	byte	of	RAM,	the	compaction	time	becomes	
twice	the	product	of	the	two,	in	this	case,	2.56	
seconds	(2	x	10	x	10-9	x	128	x	106).	Supposing,	
a	round	robin	scheduling	algorithm	were	used	
with	a	time	quantum	of	2ms,	the	above	compac-

tion	time	turns	out	to	be	equivalent	to	1280	time	
slots.
	 Compaction	is	usually	defined	by	the	follow-
ing	two	thresholds:

•	 Memory	hole	size	threshold:	If	the	sizes	of	
all	the	holes	are	at	most	a	predefined	hole	
size,	 then	 the	 main	 memory	 undergoes	
compaction.	 This	 predefined	 hole	 size	 is	
termed	as	 the	hole	size	 threshold.	For	ex-
ample,	if	there	are	two	holes	of	size	‘x’	and	
size	‘y’	 respectively	and	 the	hole	 threshold	
is	4KB,	then	compaction	is	done	provided	x	
<=	4KB	and	y<=4KB.

•	 Total	 hole	 percentage:	The	 total	 hole	 per-
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centage	 refers	 to	 the	 percentage	 of	 total	
hole	 size	 over	 memory	 size.	 Only	 if	 it	 ex-
ceeds	 the	 designated	 threshold,	 compac-
tion	is	undertaken.	Taking	the	two	holes	with	
size	 ‘x’	 and	 size	 ‘y’	 respectively,	 total	 hole	
percentage	threshold	equal	to	6%,	then	for	
a	RAM	size	of	32MB,	compaction	 is	done	
only	if	(x	+	y)>	=	6%	of	32MB.

	 Another	 possible	 solution	 to	 the	 external	
fragmentation	 problem	 is	 to	 permit	 the	 physi-
cal	address	space	of	a	process	to	be	noncon-
tiguous,	thus	allowing	a	process	to	be	allocated	
physical	 memory	 wherever	 the	 latter	 is	 avail-
able.	One	way	of	 implementing	 this	solution	 is	
through	the	use	of	a	paging	scheme.	Paging	is	
discussed	in	greater	details	a	 little	 later	 in	this	
section.
	 Memory	Placement	Algorithms:	A	fitting	al-
gorithm	determines	the	selection	of	a	free	hole	
from	the	set	of	available	holes.	First-fit,	best-fit,	
and	 worst-fit	 are	 the	 most	 common	 strategies	
used	to	select	a	free	hole.

•	 First-fit:	 Allocate	 the	 first	 hole	 that	 is	 big	
enough.	 Searching	 can	 start	 either	 at	 the	
beginning	of	the	set	of	holes	or	where	the	
previous	first-fit	search	is	ended.	Searching	
stops	as	soon	as	a	large	enough	free	hole	
is	found.

•	 Best-fit:	 Allocate	 the	 smallest	 hole	 that	
is	 big	 enough.	The	 entire	 list	 needs	 to	 be	
searched,	unless	the	list	is	kept	ordered	by	
size.	 This	 strategy	 produces	 the	 smallest	
leftover	hole.

•	 Worst-fit:	 Allocate	 the	 largest	 hole.	 Again,	
the	entire	list	has	to	be	searched,	unless	it	
is	sorted	by	size.	This	strategy	produces	the	
largest	 leftover	 hole,	 which	 may	 be	 more	
useful	than	the	smaller	leftover	hole	from	a	
best-fit	approach.

	 If	memory	is	lost	due	to	internal	fragmenta-
tion,	the	choice	is	between	first	fit	and	best	fit.	A	
worst	fit	strategy	truly	makes	internal	fragmen-
tation	worse.	 If	memory	 is	 lost	due	to	external	
fragmentation,	careful	consideration	should	be	
given	to	a	worst-fit	strategy	[12].

4.5.1.  Continuous Memory Allocation  
           Scheme

	 The	continuous	memory	allocation	scheme	
entails	 loading	of	processes	 into	memory	 in	a	
sequential	 order.	When	 a	 process	 is	 removed	
from	main	memory,	new	processes	are	loaded	
if	there	is	a	hole	big	enough	to	hold	it.	This	algo-
rithm	 is	easy	 to	 implement,	however,	 it	suffers	
from	 the	 drawback	 of	 external	 fragmentation.	

Compaction,	 consequently,	 becomes	 an	 inevi-
table	part	of	the	scheme.

4.5.1.1. Parameters Involved

Some	of	the	parameters	that	influence	the	sys-
tem	performance	in	terms	of	memory	manage-
ment	are	hereby	enumerated:

•	 Memory	size	

•	 RAM	access	time	

•	 Disc	access	time	

•	 Compaction	algorithms

•	 Compaction	thresholds	–	Memory	hole-size	
threshold	and	total	hole	percentage

•	 Memory	placement	algorithms	

•	 Round	 robin	 time	 slot	 (in	 case	 of	 a	 pure	
round	robin	scheduling	algorithm)

Effect	 of	 Memory	 Size:	 As	 anticipated,	 the	
greater	 the	 amount	 of	 memory	 available,	 the	
higher	would	be	the	system	performance.		

Effect	of	RAM	and	Disc	access	time:	The	higher	
the	 values	 of	 the	 access	 times,	 the	 lower	 the	
time	it	would	take	to	move	processes	from	main	
memory	to	secondary	memory	and	vice-versa	
thus	 increasing	 the	efficiency	of	 the	operating	
system.	Disc	access	time	is	composed	of	three	
parts	seek	time,	latency	time	and	transfer	rate.	
The	RAM	access	time	plays	a	crucial	role	in	the	
cost	of	compaction.	Compaction	entails	access-
ing	 each	 byte	 of	 the	 memory	 twice,	 thus,	 the	
faster	the	RAM	access,	the	lower	would	be	the	
compaction	times.

Effect	of	Compaction	Algorithms:	Choosing	an	
optimal	compaction	algorithm	is	critical	in	mini-
mizing	compaction	cost.	However,	selecting	an	
optimal	compaction	strategy	is	quite	difficult.		

Effect	of	the	Compaction	Thresholds:	The	effect	
of	 compaction	 thresholds	 on	 system	 perfor-
mance	is	not	as	straightforward	and	has	seldom	
been	 the	 focus	of	studies	 in	 this	field.	Optimal	
values	of	hole	size	threshold	largely	depend	on	
the	size	of	the	processes	since	it	is	these	pro-
cesses	that	have	to	be	fit	in	the	holes.	Thresh-
olds	that	lead	to	frequent	compaction	can	bring	
down	performance	at	an	accelerating	rate	since	
compaction	is	quite	expensive	in	terms	of	time.

Effect	of	Memory	Placement	Algorithms	Silber-
schatz	and	Galvin	 in	 [1]	state	 that	simulations	
have	 shown	 that	 both	 first-fit	 and	 best-fit	 are	
better	than	worst-fit	in	terms	of	decreasing	both	
time	and	storage	utilization.	Neither	first-fit	nor	
best	fit	is	clearly	best	in	terms	of	storage	utiliza-
tion,	but	first-fit	is	generally	faster.
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Effect	of	Round	Robin	Time	Slot:	Best	choice	for	
the	value	of	time	slot	would	be	corresponding	to	
transfer	time	for	a	single	process	(see	Figure	8).	
For	example,	if	most	of	the	processes	required	
2ms	to	be	transferred,	then	a	time	slot	of	2ms	
would	be	ideal.	Hence,	while	one	process	com-
pletes	execution,	another	has	been	transferred.	
However,	the	transfer	times	for	the	processes	in	
consideration	are	seldom	a	normal	or	uniform	
distribution.	The	reason	for	the	non-uniform	dis-
tribution	is	that	there	are	many	different	types	of	
processes	in	a	system.	The	variance	as	depict-
ed	in	Figure	8	is	too	much	in	a	real	system	and	
makes	the	choice	of	time	slot	a	difficult	proposi-
tion	to	decide	upon.

	 In	 keeping	 with	 the	 above	 discussion,	 the	
simulation	of	the	above	module	and	the	analy-
sis	 of	 the	 collected	 data	 focus	 on	 the	 optimal	
round	robin	 time	quantum,	the	memory	place-
ment	algorithms	and	fragmentation	percentage	
as	a	function	of	time.

4.5.1.2. Simulation Specifications and Meth-
od of Data Collection

The	attempted	simulation	 implements	a	mem-
ory	manager	system.	The	implemented	system	
uses	a	continuous	memory	allocation	scheme.	
This	simulation	uses	no	concept	of	paging	what-
soever.	Round	robin	mechanism	is	the	scheme	
for	process	scheduling.

Following	 are	 the	 details	 of	 the	 involved	 inde-
pendent	variables:
Fixed	parameters:

•	 Memory	Size	(32	MB)
•	 Disc	 access	 time	 (1ms	 (estimate	 for	 la-

tency	 and	 seek	 times)	 +	 (job	 size	 (in	
bytes)/500000)	ms)

•	 Compaction	threshold	(6%	and	hole	size	=	
50KB)

•	 RAM	Access	Time	(14ns)
	 Variable	parameters:
•	 Fitting	 algorithm	 (a	 variable	 parameter	

–	First	Fit,	Best	Fit,	Worst	Fit)
•	 Round	Robin	Time	Slot	(a	variable	param-

eter,	multiple	of	1ms)

	 In	 addition	 to	 the	 above	 enumerated	 pa-
rameters,	 the	 process	 sizes	 range	 from	 20KB	
to	 2MB	 (multiple	 of	 10KB)	 and	 the	 process	
execution	times	vary	from	between	2	ms	to	10	
ms	(multiple	of	1ms).	The	disc	size	is	taken	as	
500MB	and	is	half	filled	with	jobs	at	the	begin-
ning	of	the	simulation.
	 In	 context	 of	 memory	 management,	 com-
paction	 is	 the	solution	 for	 fragmentation.	How-
ever,	compaction	comes	at	its	own	cost.	Moving	
all	holes	to	one	end	is	an	expensive	operation.	

To	quantify	this	parameter,	percentage	of	com-
paction	time	against	total	time	is	a	performance	
measure	 that	has	been	added	 in	 this	module.	
This	 measure	 along	 with	 all	 the	 other	 perfor-
mance	 measures	 constitutes	 the	 dependent	
variables	in	this	module.
	 Data	 was	 collected	 by	 means	 of	 multiple	
sample	runs.	A	walkthrough	of	a	sample	run	for	
this	module	is	included	in	Appendix	B.

Ideal Process Si ze Graph R ealistic Process Si ze Graph

                     Time  slot corresponding to this size  transfer time

Figure 8. Ideal Process Size Graph and Realistic Process Size Graph

Process size Process size

Numb er of processes Numb er of processes

Figure 8. Ideal Process Size Graph and Realistic Process Size Graph
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4.5.1.3. Simulation Results and Discussion

The	round	robin	time	quantum	is	one	of	the	two	
variable	parameters	studied	in	this	simulation.	
	 Table	6	and	Figure	9	 illustrate	 the	effect	of	
varying	the	round	robin	quantum	time	over	the	
various	 performance	 parameters	 in	 context	 of	
the	first	fit	algorithm.
	 The	 trends	 of	 increasing	 throughput	 and	
increasing	 turnaround	 and	 waiting	 times	 are	
in	 keeping	 with	 round	 robin	 scheduling	 mov-
ing	towards	FIFO	behavior	with	increased	time	
quantum.	However,	one	observes	that	the	CPU	
utilization	is	declining	with	increase	in	time	slot	
values.	This	can	be	attributed	to	the	expense	of	
compaction.	 Analyzing	 the	 fragmentation	 per-
centage,	it	looks	like	a	time	slot	value	of	2	time	
units	is	particularly	favorable	to	the	same.

The	simulation	data	collected	to	compare	the	
three	memory	placement	algorithms	by	study-
ing	the	effect	of	varying	round	robin	time	slot	
over	the	performance	measures	for	each	of	the	
algorithms	is	given	in	Table	7	and	Figure	10	
((a)	to	(e)).
	 For	this	particular	process	mix,	best-fit	and	
worst-fit	 memory	 placement	 algorithms	 gave	
identical	results.	None	of	the	memory	placement	
algorithms	emerged	as	a	clear	winner.	However,	
best-fit	and	worst-fit	algorithms	seemed	to	give	
more	 stable	 fragmentation	 percentage	 in	 the	
simulations.	The	 aspect	 of	 first-fit	 being	 faster	
did	not	surface	in	the	results	due	to	the	nature	of	
the	implementation.	In	the	implementation,	the	
worst-fit	 and	 best-fit	 algorithms	 scan	 the	 hole	
list	 in	 one	 simulated	 time	 unit	 itself.	 In	 reality,	
however,	scanning	entire	hole	list	by	best-fit	and	
worst-fit	 would	 make	 them	 slower	 that	 first-fit,	
which	needs	to	scan	the	hole	list	only	as	far	as	it	
takes	to	find	the	first	hole	that	is	large	enough.
	 Fragmentation	 percentage	 in	 a	 given	 time	
window	over	the	entire	length	of	the	simulation	
was	also	studied.	The	entire	simulation	was	di-
vided	 into	 twenty	equal	 time	windows	and	 the	
fragmentation	percentage	computed	for	each	of	

ever,	as	is	illustrated	later,	paging	requires	more	
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Table 7. Comparing Memory Placement Algorithms

Table 6. Round Robin Time Quantum vs. Performance Measures 
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%Fragmentation

Time  Window Time  Slot = 2 Time  Slot = 3 Time  Slot = 4 Time  Slot = 5

1 0.34 0.30 0.27 0.27

2 0.79 0.45 0.45 0.41

3 3.70 0.85 0.73 0.45

4 4.00 3.00 1.90 0.79

5 8.90 5.20 3.60 2.40

6 8.10 7.70 7.70 4.40

7 8.30 6.40 7.70 9.10

8 8.30 3.60 5.60 2.20

9 9.00 3.60 3.60 3.60

10 8.40 3.60 3.60 5.50

11 8.40 3.60 3.60 6.70

12 8.40 3.60 3.60 6.70

13 8.40 3.60 3.60 7.20

14 8.40 3.60 3.60 7.10

15 8.40 3.60 3.60 10.00

16 8.40 3.60 3.60 11.00

17 8.40 3.60 3.60 10.00

18 8.40 3.60 3.60 9.50

19 8.40 3.60 3.60 7.30

20 8.40 3.60 3.60 7.30

Figure 10. Comparing Memory Placement Algorithms

Table 8. Fragmentation percentage over time

the	time	windows.	The	trend	was	studied	for	four	
different	values	of	 round	robin	 time	slot.	Since	
the	 total	 hole	 size	 percentage	 threshold	 was	
specified	 as	 6%,	 time	 frames	 with	 fragmenta-
tion	 percentage	 values	 higher	 than	 that	 were	
candidates	for	compaction	[see	Table	8	and	Fig-
ure	11].	However,	compaction	was	undertaken	
in	any	of	the	above	candidate	frames	only	if	the	
hole	size	threshold	specification	was	also	met.	
	 Looking	at	Figure	11,	one	can	say	that	while	
compaction	 (if	 done)	 for	 time	 slot	 values	 of	 3	
and	4	was	done	in	time	frames	6	and	7,	that	for	
time	slot	value	of	5	was	undertaken	in	the	latter	
half	of	the	simulation.	
	 To	 summarize,	 two	 time	 units	 emerged	 as	
the	optimal	time	quantum	value	but	none	of	the	
memory	placement	algorithms	could	be	termed	
as	optimal.	Studying	the	fragmentation	percent-
age	over	 time	gave	us	 the	probable	 time	win-
dows	where	compaction	was	undertaken.

4.5.2. Paging Scheme

	 Paging	entails	division	of	physical	memory	
into	 many	 small	 equal-sized	 frames.	 Logical	
memory	is	also	broken	into	blocks	of	the	same	
size	called	pages.	When	a	process	is	to	be	ex-
ecuted,	its	pages	are	loaded	into	any	available	
memory	 frames.	 In	a	paging	scheme,	external	
fragmentation	 can	 be	 totally	 eliminated.	 How-
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than	 one	 memory	 access	 to	 get	 to	 the	 data.	
Also,	 there	 is	 the	overhead	of	storing	and	up-
dating	page	tables.
	 In	paging,	every	address	generated	by	 the	
CPU	is	divided	 into	 two	parts:	a	page	number	
and	a	page	offset.	The	page	number	is	used	as	
an	index	into	a	page	table.	The	page	table	con-
tains	the	base	address	of	each	page	in	physical	
memory.	This	 base	 address	 is	 combined	 with	
memory	 address.	Two	 of	 the	 more	 significant	
parameters	in	a	paging	scheme	are:	page	size	
and	page	replacement	algorithms.	
	 Hereby,	 a	 paging	 example	 with	 a	 64MB	
RAM	 and	 2KB	 page	 size	 is	 discussed.	 64MB	
(226)	 memory	 size	 can	 be	 represented	 by	 26	
bits.	Likewise,	a	2KB	page	can	be	represented	
by	11	bits.	Thus,	for	the	page	table	[see	Figure	
12],	 15	 bits	 are	 needed	 for	 the	 page	 number	
and	11	bits	for	the	page	offset.	Since	there	are	
215	pages,	there	shall	be	215	entries	in	the	page	
table.	Therefore,

Size	of	page	table	=	215	x	30	bits	≈	123KB
In	 the	 above	 example,	 if	 the	 page	 size	 were	
1KB,	 then	 a	 16	 bit	 page	 number	 and	 10	 bit	
offset	 would	 be	 needed	 to	 address	 the	 64MB	
RAM.	In	this	case,
Size	of	page	table	=	216	x	32	bits	=	256KB

Consequently,	it	can	be	said	that	a	smaller	page	
size	results	in	larger	sized	page	tables	and	the	
page	table	size	becomes	an	overhead	itself.
	 Fragmentation,	 synchronization	and	 redun-
dancy	 as	 discussed	 in	 the	 previous	 section	
are	three	problems	that	need	to	be	addressed	
in	a	memory	management	setting.	In	a	paging	
scheme,	 there	 is	 no	 external	 fragmentation.	
However,	internal	fragmentation	exists.	Suppos-
ing	the	page	size	is	2KB	and	there	exists	a	pro-
cess	with	size	72,700	bytes.	Then,	the	process	
needs	35	pages	and	1020	bytes.	It	is	allocated	
36	pages	with	an	internal	fragmentation	of	1028	
bytes	(2048	–	1020).	If	the	page	size	were	1KB,	
the	 same	 process	 would	 need	 70	 pages	 and	
1020	bytes.	In	this	case,	the	process	is	allocat-
ed	71	pages	with	an	internal	fragmentation	of	4	
bytes	(1024	–	1020).	Thus,	a	smaller	page	size	
is	more	favorable	for	reduced	internal	fragmen-
tation.	
	 In	the	worst	case	scenario,	a	process	needs	
‘n’	pages	and	1	byte,	which	results	in	an	internal	
fragmentation	of	almost	an	entire	frame.	If	pro-
cess	size	is	independent	of	page	size,	then	
	 Average	internal	fragmentation	=	½		x		page	
size		x		number	of	processes
	 Hence,	it	can	be	observed	that	a	large	page	
size	causes	a	lot	of	 internal	fragmentation.	On	
the	 other	 hand,	 a	 small	 page	 size	 requires	 a	

large	 amount	 of	 memory	 space	 to	 be	 allocat-
ed	 for	page	 tables.	One	simple	solution	 to	 the	
problem	 of	 large	 size	 page	 tables	 is	 to	 divide	
the	page	table	into	smaller	pieces.	One	way	is	
to	use	a	two-level	paging	scheme,	in	which	the	
page	table	itself	is	also	paged.	However,	multi-
level	paging	comes	with	its	own	cost	–	an	added	
memory	access	for	each	added	level	of	paging.
	 Anticipation	 and	 page	 replacement	 deals	
with	 algorithms	 to	 determine	 the	 logic	 behind	
replacing	pages	in	main	memory.	A	good	page	
replacement	 algorithm	 has	 a	 low	 page-fault	
rate.	 Some	 common	 page	 replacement	 algo-
rithms	are	as	follows.

Time	Stamp	Algorithms
•	 FIFO:	A	FIFO	replacement	algorithm	asso-

ciates	with	each	page	 the	 time	when	 that	
page	 was	 brought	 into	 memory.	 When	 a	
page	must	be	replaced,	the	oldest	is	chosen.

•	 LRU:	Least	Recently	Used	(LRU)	algorithm	
associates	with	each	page	the	time	of	that	
page’s	 last	use.	When	a	page	must	be	re-
placed,	LRU	chooses	the	page	that	has	not	
been	used	for	the	longest	time.	

Count	based	Algorithms
•	 LFU:	 The	 least	 frequently	 used	 (LFU)	 al-

gorithm	 requires	 that	 the	 page	 with	 the	
smallest	count	be	replaced.	The	reason	for	
this	selection	is	that	an	actively	used	page	
should	have	a	large	reference	count.

•	 MFU:	The	most	 frequently	used	 (MFU)	al-
gorithm	requires	that	the	page	with	the	larg-
est	count	be	 replaced.	The	 reason	 for	 this	
selection	is	that	the	page	with	the	smallest	
count	was	probably	just	brought	in	and	has	
yet	to	be	used.		
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Continuous	 Memory	 Allocation	 versus	 Paging	
Allocation

Table	 9	 gives	 a	 comparison	 between	 the	 two	
studied	memory	management	schemes.	

4.5.2.1. Parameters Involved

	 The	new	parameters	involved	in	this	memo-
ry	management	scheme	are:

•	 Page	Size	

•	 Page	Replacement	Algorithms

Effect	of	Page	Size:	A	 large	page	size	causes	
a	lot	of	internal	fragmentation.	This	means	that,	
with	 a	 large	 page	 size,	 the	 paging	 scheme	
tends	 to	 degenerate	 to	 a	 continuous	 memory	
allocation	scheme.	On	the	other	hand,	a	small	
page	 size	 requires	 large	 amounts	 of	 memory	
space	 to	be	allocated	 for	page	 tables.	Finding	
an	optimal	page	size	for	a	system	is	not	easy	as	
it	 is	very	subjective	dependent	on	the	process	
mix	and	the	pattern	of	access.

Effect	of	Page	Replacement	Algorithms:	Least-
recently	 used,	 first-in-first-out,	 least-frequently	
used	and	 random	replacement	are	 four	of	 the	
more	common	schemes	in	use.	The	LRU	is	of-
ten	used	as	a	page-replacement	algorithm	and	
is	 considered	 to	 be	 quite	 good.	 However,	 an	
LRU	 page-replacement	 algorithm	 may	 require	
substantial	hardware	assistance.
To	 study	 the	 effects	 of	 the	 above	 parameters	
on	 system	 performance,	 a	 new	 performance	
measure,	 namely	 replacement	 ratio	 percent-
age,	 is	added	 to	 the	usual	 list	of	performance	
measures.	 The	 replacement	 ratio	 percentage	
quantifies	page	replacements.	 It	 is	 the	 ratio	of	
the	number	of	 page	 replacements	 to	 the	 total	
number	of	page	accesses.

3.3.2.2. Implementation Specifics

	 Though	 paging	 was	 not	 attempted	 as	 part	
of	 this	 study,	 the	 implementation	 specifics	 of	
Zhao’s	study	[11]	are	included	here	to	illustrate	
one	sample	implementation.
	 Zhao,	 in	 his	 study,	 simulated	 an	 operating	
system	with	a	multilevel	feedback	queue	sched-
uler,	demand	paging	scheme	for	memory	man-
agement	and	a	disc	scheduler.	A	set	of	generic	
processes	was	created	by	a	random	generator.	
Ranges	were	 set	 for	 various	PCB	parameters	
as	follows:

•	 Process	size:	100KB	to	3MB

•	 Estimated	execution	time:	5	to	35ms

•	 Priority:	1	to	4

A	single	level	paging	scheme	was	implemented.	

Continuous Memory A llocation Scheme Paged A llocation Scheme

Advantages:

• An easy algorithm for implementation
purposes.

Advantages:

• No external fragmentation, therefore,
no compaction scheme is required.

Disadvantages:
• Fragmentation problem makes

compaction an i nevitable part.
Compaction in itself is an e xpensive

proposition in terms of time.

Disadvantages:
• Storage for page tables.
• Addressing a memory location in

paging scheme needs more than one

access depending on the levels of
paging.

A	memory	 size	of	 16MB	was	chosen	and	 the	
disc	driver	configuration:	8	surfaces,	64	sectors	
and	1000	tracks	was	used.
	 Four	 page	 replacement	 algorithms:	 LRU,	
LFU,	FIFO,	random	replacement	and	page	size	
were	 chosen	 as	 the	 independent	 variables	 in	
context	to	paging.	The	dependent	variables	for	
the	study	were	average	turnaround	time	and	re-
placement	percentage.

4.5.2.3. Implementation Results

	 The	 data	 in	 Table	 10	 (taken	 from	 Zhao’s	
study	[11])	show	the	effect	of	replacement	algo-
rithms	on	the	replacement	ratio.
	 After	 having	 found	 the	 optimal	 values	 of	
all	studied	parameters	except	page	size	 in	his	
work,	Zhao	used	those	optimal	values	for	1000	
simulations	 each	 for	 a	 page	 size	 of	 4KB	 and	
8KB.	The	latter	emerged	as	a	better	choice.
	 In	his	work,	Zhao	concludes	that	8KB	page	
size	and	the	LRU	replacement	algorithms	con-
stitute	the	parametric	optimization	in	context	to	
paging	 parameters	 for	 the	 specified	 process	
mix.

4.6. Integrated Perspective

	 The	first	programming	project	in	the	course	
starts	 with	 CPU	 scheduling,	 as	 it	 is	 the	 most	
elementary	and	closest	 to	 the	concept	of	pro-
cess	 and	 process-mix.	 Next,	 the	 topic	 of	 pro-

Scheme FIFO L RU L FU R andom

R eplacement R atio % 31 30 37 31

Table 9. Comparing continuous memory allocation scheme with paged allocation

Table 10. Page Replacement Scheme vs. Replacement Ratio percentage
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cess	 synchronization	 and	 deadlock	 handling	
is	 undertaken.	The	 class	 then	 implements	 the	
memory	management	module,	where	the	simu-
lation	integrates	CPU	scheduling	with	memory	
management.	 The	 CPU	 scheduling	 algorithm	
chosen,	 however,	 is	 round	 robin	 algorithm	 in-
stead	 of	 the	 multi-level	 feedback	 queue.	 The	
final	programming	project	is	built	on	the	imple-
mentation	of	memory	management	module	by	
integrating	 disc	 scheduling	 into	 the	 same.	 In	
other	words,	the	implementation	under	the	disc	
scheduling	 module	 can	 also	 be	 viewed	 as	 an	
operating	 system	 that	 uses	 round	 robin	 algo-
rithm	for	CPU	scheduling,	continuous	memory	
allocation	 scheme	 for	 memory	 management	
and	has	a	disc	scheduling	mechanism.

The	parameters	of	 this	 integrated	system	are,	
hereby,	enumerated:

•	 Time	slot	for	the	round	robin	queue	

•	 Aging	time	for	 transitions	from	Queue	4	to	
Queue	3,	Queue	3	to	Queue	2	and	Queue	
2	 to	 Queue	 1	 i.e.	 the	 aging	 thresholds	 for	
FIFO,	priority-based	and	SJF	queues	

•	 a-values	 and	 initial	 execution	 time	 esti-
mates	for	the	FIFO,	SJF	and	priority-based	
queues.

•	 Choice	of	preemption	for	the	SJF	and	Prior-
ity	based	queues.

•	 Context	switching	time

•	 Memory	size

•	 RAM	access	time

•	 Compaction	algorithm

•	 Compaction	thresholds	–	Memory	hole-size	
threshold	and	total	hole	percentage

•	 Memory	 placement	 algorithms	 –	 first-fit,	
best-fit,	worst-fit

•	 Disc	 access	 time	 (seek	 time,	 latency	 time	
and	transfer	time)

•	 Disc	configuration

•	 Disc	 scheduling	 algorithm	 –	 FIFO,	 SSTF,	
LOOK,	C-LOOK,	SCAN,	C-SCAN

•	 Disc	writing	mechanism

	 Next	comes	the	issue	of	optimizing	the	sys-
tem	and	coming	up	with	the	right	permutation	of	
design	parameters	to	achieve	excellent	perfor-
mance	measures.	As	was	discussed	earlier	 in	
the	paper,	 even	 if	 six	of	 the	above	mentioned	
parameters	 have	 ten	 possible	 values,	 then	 a	
million	permutations	are	possible.	Furthermore,	
the	 results	 obtained	 from	 these	 permutations	
are	applicable	to	one	particular	process	mix	only.	

	 Thus,	only	the	optimal	values	for	the	param-
eters	 that	have	been	studied	as	variable	 inde-
pendent	 parameters	 in	 the	 individual	modules	
are	 enumerated.	 Such	 a	 set	 would	 include:	
round	 robin	 time	 –	 4ms,	 a-updating	 scheme	
–	no	effect,	memory	placement	algorithm	–	best	
fit	from	the	two	modules	presented	here	as	well	
as	optimal	values	for	disc	scheduling	algorithm,	
average	 seek	 time,	 average	 latency	 time	 and	
sector	 size	 from	 the	 disc	 scheduling	 module.	
The	values	of	the	fixed	independent	variables	of	
the	four	modules	are:	RAM	size	–	32MB,	Com-
paction	thresholds	–	6%	and	hole	size	=	50KB,	
RAM	access	time	–	14ns,	Disc	configuration	–	8	
surfaces,	300	 tracks/surface,	disc	access	 time	
–	 (seek	+	 latency	+	 job	size	 (in	bytes)/50000)	
ms.	The	above	stated	optimal	values	are	perti-
nent	to	a	particular	process	mix	only.

5. Conclusion
	 The	 format	 of	 teaching	 operating	 systems	
described	in	this	paper	has	been	followed	in	the	
department	 for	 several	 years	now.	While	stan-
dard	lab	exercises	enable	students	to	gain	ex-
perience	with	Windows	NT	and	UNIX	systems,	
parametric	optimization	of	major	operating	sys-
tem	 functions	provide	 implementation-oriented	
analytic	insight	into	operating	system	essentials	
such	 as	 CPU	 scheduling,	 deadlock	 handling,	
memory	management	and	disc	scheduling.
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7. Appendices

APPENDIX A

NOTE: Simulation time of 7 has been chosen to show the functioning of aging parameters especially as also other parameters. A 
simulation time of 7 means that the CPU works for those 7ms and the number of context switches are kept track of separately. This is 
used when CPU utilization and throughput are calculated where these performance parameters are calculated not on simulation time 
but simulation time plus total context switches.

INITIALIZING	SCHEDULER
Please	enter	the	following:
Total	simulation	time:	7
Maximum	allowable	processes:	5
Maximum	allowable	process	execution	time:	3
Maximum	allowable	process	priority:	5
SETTING	AGING	PARAMETERS
Please	enter	aging	parameters	for	each	Q	type:
SJFQ:	1
PriorityQ:	2
FifoQ:	2
SETTING	PREEMPTION	FLAGS
Please	set	the	preemption	flags	for	each	Q	type:
SJFQ	(1/0):0
PriorityQ(1/0):0
SETTING	ALPHA	PARAMETERS
Enter	alpha	values	for	the	following:
SJFQ:1
PriorityQ:1
FifoQ:1
SETTING	INITIAL	TIME	ESTIMATES
Enter	execution	time	estimates	for	the	following:
SJFQ:2
PriorityQ:3
FifoQ:5
SETTING	QUANTUM	TIME	FOR	ROUNDROBINQ:
Enter	quantum	time		slot	for	rrq:1
SETTING	CONTEXT	SWITCH:
Enter	context	switch:	1
SETTING	MODE:
Step	through	Each	Process	or	just	Output	[1/0]:1

SCHEDULING STARTED
Scheduling	Started

Total	Process	Created	=	5

Process	Number	=	1
Queue	Number			=	2
Execution	Time	=	1
Priority							=	3
Arrival	Time			=	1

Process	Number	=	2
Queue	Number			=	4
Execution	Time	=	3
Priority							=	1
Arrival	Time			=	1

Process	Number	=	3
Queue	Number			=	3
Execution	Time	=	3
Priority							=	4
Arrival	Time			=	1

Process	Number	=	4
Queue	Number			=	2
Execution	Time	=	1
Priority							=	3
Arrival	Time			=	1

Process	Number	=	5
Queue	Number			=	1
Execution	Time	=	3
Priority							=	5
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Queue	Number			=	4
Execution	Time	=	2
Priority							=	4
Arrival	Time			=	3

FifoQ Content : 5 7 9
PriorityQ Content : 1 4
SJFQ  Content :
RRQ   Content : 6 8 2 3 10
DoneQ Content :
Process# 6 is executing.

Total	Process	Created	=	4
Process	Number	=	11
Queue	Number			=	2
Execution	Time	=	2
Priority							=	2
Arrival	Time			=	4

Process	Number	=	12
Queue	Number			=	4
Execution	Time	=	1
Priority							=	1
Arrival	Time			=	4

Process	Number	=	13
Queue	Number			=	2
Execution	Time	=	1
Priority							=	2
Arrival	Time			=	4

Process	Number	=	14
Queue	Number			=	1
Execution	Time	=	1
Priority							=	4
Arrival	Time			=	4

FifoQ Content : 7 9 14
PriorityQ Content : 5 11 13
SJFQ  Content : 1 4
RRQ   Content : 8 2 3 10 6 12
DoneQ Content :
Process# 8 is executing.

Arrival	Time	=	1

FifoQ Content : 5
PriorityQ Content : 1 4
SJFQ  Content : 3
RRQ   Content : 2
DoneQ Content :
Process# 2 is executing.

Total	Process	Created	=	3
Process	Number	=	6
Queue	Number			=	4
Execution	Time	=	3
Priority							=	1
Arrival	Time			=	2

Process	Number	=	7
Queue	Number			=	1
Execution	Time	=	3
Priority							=	4
Arrival	Time			=	2

Process	Number	=	8
Queue	Number			=	4
Execution	Time	=	1
Priority							=	1
Arrival	Time			=	2

FifoQ Content : 5 7
PriorityQ Content : 1 4
SJFQ  Content : 3
RRQ   Content : 2 6 8
DoneQ Content :
Process# 2 is executing.

Total	Process	Created	=	2
Process	Number	=	9
Queue	Number			=	1
Execution	Time	=	2
Priority							=	3
Arrival	Time			=	3

Process	Number	=	10
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FifoQ Content : 14 19
PriorityQ Content : 5 11 13 7 15 9 16 17
SJFQ  Content : 1 4
RRQ   Content : 3 10 6 12 18
DoneQ Content : 8 2
Process# 3 is executing.

Total	Process	Created	=	0
FifoQ Content : 19
PriorityQ Content : 5 11 13 7 15 9 16 17 14
SJFQ  Content : 1 4
RRQ   Content : 10 6 12 18 3
DoneQ Content : 8 2
Process# 10 is executing.

SCHEDULING FINISHED
Total Processes Created in the system: 19
Total Processes Finished Execution in system: 
2
Total Context Switches: 5
Maximum TurnAround Time in the system: 5
Maximum Waiting Time in the system: 2
TotalWaitingTime:4
Average Waiting Time in the system: 2
TotalTurnaroundTime:8
Average TurnAround Time in the system: 4
CPU Throughput for this  sample run: 0.1667
CPU Utilization for this sample run: 58.33%

Number of Processes Executed from Round 
Robin Queue: 2
Number of Processes Executed from Shortest 
Job Queue: 0
Number of Processes Executed from Priority 
Queue: 0

Total	Process	Created	=	1
Process	Number	=	15
Queue	Number			=	2
Execution	Time	=	2
Priority							=	2
Arrival	Time			=	5

FifoQ Content : 9 14
PriorityQ Content : 5 11 13 7 15
SJFQ  Content : 1 4
RRQ   Content : 2 3 10 6 12
DoneQ Content : 8
Process# 2 is executing.

Total	Process	Created	=	4
Process	Number	=	16
Queue	Number			=	2
Execution	Time	=	2
Priority							=	1
Arrival	Time			=	6

Process	Number	=	17
Queue	Number			=	2
Execution	Time	=	1
Priority							=	4
Arrival	Time			=	6

Process	Number	=	18
Queue	Number			=	4
Execution	Time	=	1
Priority							=	4
Arrival	Time			=	6

Process	Number	=	19
Queue	Number			=	1
Execution	Time	=	3
Priority							=	2
Arrival	Time			=	6
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 APPENDIX B

Walk	through	a	sample	run	of	memory	manager	module	simulation

1.	 Setting	variable	parameters

2.	 Initial	Hard	Disc	Configuration

3.	 Initial	RAM	Configuration
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4.	 In	the	midst	of	execution.	The	first	column	shows	simulated	time	instance,	the	second	one	shows	the	action	in	the	CPU	at	that	instance	and	
the	third	one	shows	the	action	in	the	Memory	at	that	instance.	In	addition	the	total	hole	size	is	output	at	each	instance.

5.	 Compaction	Scenario											The	first	set	shows	the	processes	in	the	RAM	prior	to	compaction	and	the	second	one	shows	the	processes	in			
	 the	RAM	after	compaction.	The	format	is:	Process	number	(starting	address)	(end	address).	

Note	that	after	compaction	the	first	process	has	a	starting	address	of	one	and	each	subsequent	process	has	a	starting	address	consecutive	to	
the	previous	process’s	end	address.	In	other	words,	all	the	holes	are	compacted	to	a	large	one	at	the	end	of	the	RAM.

6.	 Final	Performance	Measures	For	The	Run


