
A Bulk-Parallel Priority Queue
in External Memory with STXXL?

Timo Bingmann, Thomas Keh, and Peter Sanders

Karlsruhe Institute of Technology, Karlsruhe, Germany
{bingmann,sanders}@kit.edu

Abstract. We propose the design and an implementation of a bulk-
parallel external memory priority queue to take advantage of both shared-
memory parallelism and high external memory transfer speeds to parallel
disks. To achieve higher performance by decoupling item insertions and
extractions, we offer two parallelization interfaces: one using “bulk” se-
quences, the other by defining “limit” items. In the design, we discuss
how to parallelize insertions using multiple heaps, and how to calculate
a dynamic prediction sequence to prefetch blocks and apply parallel
multiway merge for extraction. Our experimental results show that in the
selected benchmarks the priority queue reaches 64% of the full parallel
I/O bandwidth of SSDs and 49% of rotational disks, or the speed of
sorting in external memory when bounded by computation.

1 Introduction

Priority queues (PQs) are fundamental data structures which have numerous
applications like job scheduling, graph algorithms, time forward processing [8],
discrete event simulation, and many greedy algorithms or heuristics. They manage
a dynamic set of items, and support operations for inserting new items (push),
and reading and deleting (top/pop) the item smallest w.r.t. some order.

Since the performance of such applications usually heavily depends on the
PQ, it is unavoidable to consider parallelized variants of PQs as parallelism is
today the only way to get further performance out of Moore’s law. However,
even the basic semantics of a parallel priority queue (PPQ) are unclear, since PQ
operations inherently sequentialize and synchronize algorithms. Researchers have
previously focused on parallelizing main memory PQs which provide lock-free
concurrent access, and/or relaxed operations delivering some small item.

In this work we propose a PPQ for applications where data does not fit
into internal memory and thus requires efficient external memory techniques.
Parallelizing external memory algorithms is one of the main algorithmic challenges
termed as “Big Data”. We propose a “bulk” and a “limit” parallelization interface
for PQs, since the requirements of external memory applications are different
from those working on smaller PQ instances. One application of these interfaces
is bulk-parallel time forward processing, where one uses the graph’s structure to

? This paper is a short version of the technical report [6].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197532174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

identify layers of nodes that can be processed independently. For example, the
inducing process of an external memory suffix sorting algorithm [5] follows this
pattern. This paper continues work started in Thomas Keh’s bachelor thesis [13].

We implemented our PPQ design in C++ with OpenMP and STXXL [9],
and compare it using four benchmarks against the fastest EM priority queue
implementations available. In our experiments we achieve 49% of the full I/O
throughput of parallel rotational disks and 64% of four parallel solid-state-
disks (SSDs) with about 2.0/1.6 GiB/s read/write performance. We reach these
percentages in all experiments except when internal work is clearly the limitation,
where our PPQ performs equally well as a highly tuned sorter. For smaller bulk
sequences, the PPQ’s performance gradually degrades, however, already for bulks
larger than 20 K or 80 K 64-bit integers (depending on the platform) our PPQ
outperforms the best existing parallelized external memory PQ.

After preliminaries and related work, we discuss our parallelization interfaces
in Section 2. Central is our PPQ design in Section 3 where we deal with parallel
insertion and extraction. Details of our implementation, the rationale of our
experiments, and their results are discussed in Section 4.

1.1 Preliminaries

A PQ is a data structure holding a set of items, which can be ordered w.r.t some
relation. All PQs support two operations: insert or push to add an item, and
deleteMin or top and pop to retrieve and remove the smallest item from the set.
In this paper we use the push, top, pop notation, since our implementation’s
interface aims to be compatible to the C++ Standard Template Library (STL).
Addressable PQs additionally provide a decreaseKey operation, but we omit this
function since it is difficult to provide efficiently in external memory.

We use the external memory (EM) model [21], which assumes an internal
memory (called RAM) containing up to M items, and D disks containing space for
N items, used for input, output and temporary data. Transfer of B items between
disks and internal memory costs one I/O operation, whereas internal computation
is free. While the EM model is good to describe asymptotically optimal I/O
efficient algorithms, omitting computation time makes the model less and less
practical as I/O throughput increases. For example, data transfer to a single
modern SSD reaches more than 450 MiB/s (MiB = 220 bytes), while sorting 1 GiB
of random 64-bit integers sequentially reaches only about 85 MiB/s on a current
machine. Thus exploiting parallelism in modern machines is unavoidable to achieve
good performance with I/O efficient algorithms. For this experimental paper,
we assume a shared memory system with p processors or threads, which have a
simple set of explicit synchronization primitives. In future, one could consider a
detailed theoretical analysis using the parallel external memory model [3].

1.2 Related Work

There has been significant work on bulk-parallel PQs in an internal memory
setting [15,11,17]. We owe to the earlier of these results [15,11] the idea to replace

Listing 1. Bulk Pop/Push Loop

vector<item> work;
while (!ppq.empty()) {

ppq.bulk pop(work, max size);
ppq.bulk push begin(approx bulk size);

#pragma omp parallel for
for (i = 0; i < work.size(); ++i) {

// process work[i], maybe bulk push()
}
ppq.bulk push end();
}

Listing 2. Bulk-Limit Loop

for (...) {
ppq.limit begin(L, bulk size);
while (ppq.limit top() < L) {

top = ppq.limit top();
ppq.limit pop();
// maybe use limit push()
}
ppq.limit end();
}

elements in a heap by sorted sequence and the basic operations on heap nodes by
sorting and merging. Previous work on external sequential PQs [2,7,18] reduced
the number of times an element moves between heap nodes from O(log2N) to
O(logM/B N/M) by increasing the degree of the involved tree structures.

There has also been a lot of work on concurrent PQs that allow asynchronous
insertion and deletion by independent threads. Since this is not scalable with
strict PQ semantics, there has recently been interest in concurrent PQs with
relaxed semantics. Bulk-parallel PQs can be viewed as synchronous relaxed PQs
with simple and clear semantics. We refer to recent work for details [1,16].

We parallelize the external sequence heap [18]. At the bottom level, a sequence
heap consists of R groups of k = O(M/B) sorted external arrays. This PQ
design was implemented for external memory in STXXL [9], and later also in
TPIE [14], so it is probably the most widely used today. Beckmann, Dementiev
and Singler [4] have partially parallelized sequence heaps without touching the
sequential semantics. However, this gives only little opportunity for parallelization
– mostly for merging in groups with large external arrays.

The most sophisticated parallelization tool we use in our PPQ is the parallel
k-way merge algorithm first proposed by Varman et al. [20], and engineered
by Singler et al. in the MCSTL [19] and later the GNU Parallel Mode library.
Since this algorithm’s details and implementation are important for our PPQ
design, we briefly describe it: given p processors and k sorted arrays with in
total n items and of maximum length m, each array is split into p range-disjoint
parts where the sum of each processor’s parts are of equal size. The partition is
calculated by running p intertwined multisequence selection algorithms, which
take O(k ·log k ·logm). After partitioning, the work of merging the p disjoint areas
can be done independently by the processors, e.g., using a k-way tournament tree
in time O(np log k). For our EM setting it is important that the output is generated
as p equal-sized parts in parallel, with each part being written in sequence. We
also note that the multisequence selection is implemented sequentially.

2 Bulk-Parallel Interface and Limit Items

Before we discuss our PPQ design, we focus on the proposed application interface.
As suggested by the related work on PQs, substantial performance gains from

larger items
L

lower limit
for insertions

future
extractions

extract

insert

causes ...

Fig. 1. Decoupling insertion and extraction operations with a limit item L.

parallelization are only achievable when loosening some semantics of the PQ. Put
plainly, an alternating sequence of dependent push/pop s is inherently sequential.
Since we focus on large amounts of data, the more natural relaxation of a PQ is
to require insertion and extraction of multiple items, or “bulks” of items. This
looser semantic decouples insert and delete operations both among themselves
(i.e., items within a bulk) as well as the operation phases from another. This
enables us to apply parallel algorithms on larger amounts of items, and our
experiments in Section 4 show how speedup depends on the bulk sizes.

Thus the primary interface of our EM PPQ is bulk insertion and extraction
(see Listing 1). A bulk insertion phase is started with bulk push begin(k), where
k is an estimate of the bulk size. Thereafter, the application may insert a bulk of
items using bulk push, possibly concurrently from multiple threads, and terminate
the sequence with bulk push end. There are two bulk extraction primitives:
bulk pop(v, k) which extracts up to k items into v, and bulk pop limit(v, L, k),
which extracts at most k items strictly smaller than a limit item L. The limit
extraction also indicates whether more items smaller than L are available.

Beyond the primary bulk interface, we also propose a second interface (see
Listing 2), which is geared towards the canonical processing loop found in most
sequential applications using a PQ: extract an item, inspect it, and reinsert zero
or more items into the PQ. To decouple insertions and extractions in this loop,
we let the application define a “limit item” L, and require that all insertions
thereafter are larger or equal to L (see Figure 1). By defining this limit, all
extractions of items less than L become decoupled from insertions. The drawback
of this second interface is that the application does not process items in parallel,
however, this can easily be accomplished by using bulk pop limit.

3 Design of a Bulk-Parallel Priority Queue

Our PPQ design (see Figure 2) is based on Sanders’ sequence heap [18], but
we have to reevaluate the implicit assumptions, duplicate data structures for
independent parallel operations and apply parallel algorithms where possible.
After briefly following the lifetime of an item in the PPQ, we first discuss
separately how insertions and extractions can be processed in parallel, and then
focus on the difficulty of balancing both.

An item is first inserted into an insertion heap, which is kept in heap order.
As simple binary heaps are not particularly cache-efficient, they are given a fixed

p insertion
heaps

...< < <

internal
arrays

extract
buffer

< ...

external
arrays re

a
d
/
w

ri
te

b
u
ff

er
s

hierarchy of tournament trees

Fig. 2. Components of our PPQ. All lightly shaded parts are in internal memory.

maximum size. When full, an insertion heap is sorted and transformed into an
internal array. To limit the number of internal arrays, they may be merged with
others to form longer internal arrays. When memory is exhausted, all internal
arrays and the extract buffer are merged into one sorted external array which
is written to disk. Again, shorter external arrays may also be merged together.
Extracts from the set of external arrays are amortized using the extract buffer.

Insertion, Multilevel Merging, and External Writing. To accelerate
parallel push operations, the first obvious step is to have p insertion heaps,
one for each processor. This decouples insertions on different processors and
parallelizes the work of maintaining the heaps. Once a heap is full, the processor
can independently sort the heap using a general sorter. Remarkably, these initial
steps are among the most time consuming in a sequence heap, and can be
parallelized well. In our PPQ design, we then use a critical section primitive to
synchronize adding the new internal array to the common list. This was never a
bottleneck, since such operations happen only when an insertion heap is full.

In bulk push sequences, we can accelerate individual push operations much
further. While pushing, no items from the insertion heap can be extracted, thus
we can postpone reestablishing heap order to bulk push end ; a bulk push just
appends to the insertion heap’s array. If the heap overflows, then the array is
sorted anyway. In our experiments, this turned out to be the best option, probably
because the loop sifting items up the heap becomes very tight and cache efficient.
For larger bulk operations (as indicated by the user’s estimation) we even let the
insertion heap’s array grow beyond the usual limit to fill up the available RAM,
since sorting is more cache efficient than keeping a heap.

Instead of separating internal arrays into groups, as in a sequence heap, we
label them using a level number starting at zero. If the number of internal arrays
on one level grows larger than a tuning parameter (about 64) and there is enough
RAM available, then all internal arrays of one level are merged together and
added to the next higher level. The decisive difference of parallel multiway merge
over sequentially merging sorted arrays is that no state is kept to amortize
operations. Hence, in our PPQ design the indicated tournament trees over the

insertion heaps and arrays are useless for parallel operations. When applying
parallel multiway merge, we want to have the total number of items as large as
possible, however, at the same time the number of sequences should be kept as
small as possible.

When the PPQ’s alloted memory is exhausted, one large parallel multiway
merge is performed directly into EM. This is possible without an extra copy
buffer, by using just Θ(p) write buffers and overlapping I/O and computation,
since parallel multiway merge outputs p sorted sub-sequences. We use ≥ 2p
write buffer blocks to keep the merge boundaries in memory; thus avoiding any
rereading of blocks from disk during the merge.

An item may travel multiple times to disk and back, since the extract buffer
is included while merging into EM. However, as in the sequence heap structure,
this only occurs when internal memory is exhausted and all items are written to
disk; thus we can amortize the extra I/Os for the extract buffer with the Θ(M/B)
I/Os needed to flush main memory.

Extraction, Prediction, and Minimum of Minima. To support fast
non-bulk pop operations, we keep a hierarchy of tournament trees to save results
of pairwise comparisons of items. The trees are built over the insertion heaps,
internal arrays, and extract buffer. External arrays need not be included, since
extraction from them is buffered using the extract buffer. The tournament trees
need to be updated each time an insertion heap’s minimum element changes, or
a heap is flushed into an internal array. In bulk push operations these actions
are obviously postponed until the bulk’s end.

When merging external arrays with parallel multiway merge we are posed
(again) with the discrepancy between parallelism, which requires large item counts
for efficiency, and relatively small disk blocks (by default 2–8 MiB). To alleviate
the problem, we increase the number of read buffers and calculate an optimal
block prediction sequence, as also done for sorting [12], which contains the order
in which the EM blocks are needed during merging and fetch as many as fit
into RAM. In sorting, the prediction sequence is fixed and can be determined by
sorting the smallest items of each block as a representative (also called “trigger”
element). In the parallel disk model, the independent disks need to be considered
as well. In our PPQ setting, the prediction sequence becomes a dynamic problem,
since external arrays may be added. We define four states for an external block:
in external memory, hinted for prefetching, loaded in RAM, and finished (see
Figure 3). To limit the main memory usage of the PPQ, the number of prefetched
and blocks loaded in RAM must be restricted.

Since the next k external blocks needed for merging are determined by the k
smallest block minima, we keep track of these items in a tournament tree over
the block minima sequences of the external arrays (see items hi in Figure 3).
This allows fast calculation of the next block when another can be prefetched.
However, when a new external array is added, the dynamic prediction sequence
changes, and we may have to cancel prefetch hints. This is done by resetting the
tournament tree back to the first block minima merely hinted for prefetching, but
not loaded in RAM, and replaying it till the new k smallest block minima are

m0 m1 m2

tree of next
loadable
minima

h0 ∞ h2

tree of next
hintable
minima

m0 h0

m1

m2 h2merge limit

finished

in RAM

prefetched

external

Fig. 3. Establishing the dynamic prefetching sequence and upper merge limit.

determined. This costs less than k + k logS comparisons, where S is the number
of sequences. We then compare the new predictions with the old by checking how
many blocks are to be prefetched in each array, and cancel or add hints.

For parallel merging, we need to solve another problem: the merge ranges
within the blocks in RAM must be limited to items smaller than the smallest
item still in EM, since otherwise the PQ invariant may be violated. To determine
the smallest item in EM we reuse the block minima sequences, and build a second
tournament tree over them containing the smallest items of the next “loadable”
block, not guaranteed to be in RAM (items mi in Figure 3). When performing a
parallel multiway merge into the extract buffer, all hinted external blocks are
first checked (in order) whether the prefetch is complete, and the tournament
tree containing the smallest external items is updated. The tip then contains
m = minimi, the overall smallest external item, which serves as merge limit. We
then use binary search within the loaded blocks of each array and find the largest
items smaller than m. We thus limit the multisequence selection and merge range
on each array by m. Additionally, by using smaller selection ranks during parallel
multiway merging one can adapt the total number of elements merged. These
rank limits enable us to efficiently limit the extract buffer’s size and the output
size of bulk pop(v, k) and bulk pop limit(v, L, k) operations. To limit extraction
up to L, we simply use min(L,m) as merge limit.

As with internal arrays, the number of external arrays should be kept small
for multiway merge to be efficient. One may suspect that merging from EM
is I/O bound, however, if the merge output buffers are smaller than the read
buffers, then this is obviously not the case. Thus, the parallelization bottleneck
of refilling the extract buffer or of bulk pop operations largely depends on the
number of arrays. We also adapt the number of read buffers (both for prefetching
and holding blocks in RAM) dynamically to the number of external arrays. Each
newly added external array requires at least one additional read buffer.

As with internal arrays, instead of keeping external arrays in separate groups,
we label them with a level number, and merge levels when the contained number
grows too large. This enables more dynamic memory pooling than in the rigid
sequence heap data structure, while maintaining the optimal I/O complexity.

Trade-Offs between Insertion and Extraction. As already discussed, to
enable non-bulk pop operations we keep a hierarchy of tournament trees. Using
this hierarchy instead of one large tournament tree skews the depth of nodes

in the tree, making replays after pops from the extract buffer and the insertion
heaps cheaper than from internal arrays.

When a new external array is created, then the read prediction sequence may
change and previous prefetch requests need to be canceled and new ones issued.
In long bulk push sequences (as the ascending sequence in our experiments),
this can amount to many superfluous prefetch reads of blocks. Thus we disable
prefetching during bulk push operations and issue all hints at the end. This
suggests that bulk push sequences should be as long as possible, and that they
are interleaved with bulk pop operations.

4 Implementation in STXXL and Experimental Results

We implemented our PPQ design in C++ with OpenMP and the STXXL li-
brary [9], since it provides a well-designed interface to asynchronous I/O, and
allowing easy overlapping of I/O and computation. It also contains two other PQ
implementations that we compare our implementation to. Our implementation
will be available as part of the next STXXL release 1.4.2, which will be publicly
available under the liberal Boost software license. At the time of submission it is
available in the public development repository.

Other PQ Implementations. In these experiments we compare our PPQ
implementation (PPQ) with the sequential sequence heap [18] (SPQS) contained
in the STXXL, a partially parallelized version [4] of it (SPQP), which uses parallel
multiway merging only when merging external arrays, and with the STXXL’s
highly tuned stream sorting implementation [10] (Sorter) as a baseline.

Experimental Platforms. We run the experiments on two platforms. Plat-
form A-Rot is an Intel Xeon X5550 from 2009 with 2 sockets, 4 cores and
4 Hyperthreading cores per socket at 2.66 GHz clock speed and 48 GiB RAM,
and eight rotational Western Digital Blue disks with 1 TB capacity and about
127 MiB/s transfer speed each, which are attached via an Adaptec ASR-5805
RAID controller. Platform B-SSD is an Intel Xenon E5-2650 v2 from 2014 with
2 sockets, 8 cores and 8 Hyperthreading cores per socket at 2.6 GHz clock speed
with 128 GiB RAM. There are four Samsung SSD 840 EVO disks with 1 TB each
attached via an Adaptec ASA-7805H Host adapter, yielding together 2 GiB/s
read and 1.6 GiB/s write transfer speed to/from EM. The platforms run Ubuntu
Linux 12.04 and 14.04, respectively, and all our programs were compiled with
gcc 4.6.4 and 4.8.2 in Release performance mode using STXXL’s CMake build
system.

Experiments and Parameters. To compare the three PQs we report results
of four sets of experiments. In all experiments the PQ’s items are plain 64-bit
integer keys (8 bytes), which places the spotlight on internal comparison work as
payload only increases I/O volume. (See our report [6] for additional results with
24 byte items.) The PQs are allotted 16 GiB of RAM on both platforms, since
in a real EM application multiple data structures exist simultaneously and thus
have to share RAM.

In the first two experiments, called a) push-rand-pop and b) push-asc-pop, the
PQ is filled a) with n uniformly random generated integer items, or b) with n
ascending integers, and then the n items are extracted again. In these canonical
benchmarks, the PQ is used to just sort the items, but it enables us to compare
the PQs against the highly optimized sorting implementation, which also employs
parallelism where possible. In the ascending sequence, the first items inserted are
removed first, forcing the PQs to cycle items. Considering the amount of internal
work, the push-asc-pop benchmark is an easy case, since all buffers are sorted
and merging is skewed. Thus the focus of this benchmark is on I/O overlapping.
On the other hand, in the push-rand-pop benchmark the internal work to sort
and merge the random numbers is very high, which makes it a test of internal
processing speed. We ran the experiments for n = 227, . . . , 235, which is an item
volume of 1 GiB, . . . , 256 GiB.

The third and forth experiments, asc-rbulk-rewrite and bulk-rewrite, fully
rewrite the PQ in bulks: the PQ is filled with n ascending items, then the n items
are extracted in bulks of random or fixed size v, and after each bulk extraction v
items are pushed again. During the rewrite, in total n items are extracted and
n items inserted with higher ids. We measure only the bulk pop/push cycles as
these experiments are designed to emulate traversing a graph for time forward
processing. We use bulk rewriting in two different experiment scenarios: in the
first, we select the bulk size uniformly at random from 0 to 640 000, and let n
increase as in the first two experiments. For the second, n = 4 · 230 items (32 GiB)
is fixed and the bulk size v is varied from 5 000 to 5 120 000.

All experiments were run only once due to long execution times and little
variation in the results over large ranges of input size. During the runs we pinned
the OpenMP threads to cores, which is important since it keeps the insertion
heaps local. Due to the large I/O bandwidth of the SSDs, we increased the
number of write buffers of the PPQ to 2 GiB on B-SDD to better overlap I/O
and computation. Likewise, we allotted 128 MiB read buffers per external array.
On A-Rot we set only 256 MiB write buffers and 32 MiB read buffers per array.
For the STXXL PQ, of the 16 GiB of RAM one fourth is allocated for read and
one fourth for write buffers. We used in all experiments the new “linuxaio” I/O
interface of STXXL 1.4.1, which uses system calls to Linux’s asynchronous I/O
interface with native command queuing (NCQ) and bypasses system disk cache.

Results and Interpretation. The results measured in our experiments are
shown in Figure 4 as throughput in items per second. We measured “throughput”
at the PQ interface, and this is not necessarily the I/O throughput to/from disk,
since the PQs may keep items in RAM. In all four experiments, items are read
or written twice, so throughput is two times item size divided by time. If one
assumes that a container writes and reads all items once to/from disk (as the
sorter does), then on A-Rot at most 39 million items/s and on B-SSD at most
106 million item/s could be processed, considering the maximum I/O bandwidth
as measured using stxxl tool.

In all our experiments, except the bulk size benchmark, our PPQ is faster
than the parallelized and sequential STXXL PQ. Assuming the PQs use 12 GiB

of the 16 GiB RAM for storing items, then the containers only need EM for about
n ≥ 230.5 (indicated by dashed horizontal line in plots). In Table 1 we show
the average execution time speedups of our PPQ for the available competitors,
averaged over all inputs where the input cannot fit into RAM. Remarkably,
on both platforms the PPQ is faster than the sorter for both inputs except
random on A-Rot, which indicates that I/O overlaps computation work very well,
often even better than the sorter. Comparing to SPQS, we achieved speedups of
3.6 – 4.7 on A-Rot (which has 8 real cores), and speedups of 3.4–6.7 on B-SSD
(16 real cores). Compared to the previously parallelized SPQP, we only gain
1.4 –1.9 on A-Rot and 2.2 – 4.3 speedup on B-SSD. While this relative comparison
may not seem much, by comparing the PPQ’s throughput to the sorter and the
absolute I/O bandwidth of the disks, one can see that the PPQ reaches 64% of
the available I/O bandwidth in push-asc-pop on B-SSD, and 49% on A-Rot. For
asc-rbulk-rewrite the PQ-throughput is naturally higher than the possible I/O
bandwidth, since the PQs keep items in RAM. In push-rand-pop, the PPQ is
limited by compute time of sorting random integers, just as the STXXL sorter is.
For asc-rbulk-rewrite, which is a main focus of the PPQ, we achieve a speedup
of 1.9 on A-Rot and 2.7 on B-SSD for bulk sizes of on average 320 000 items.
Considering the increasing bulk sizes in bulk-rewrite, we see that larger bulks
yield better performance up to a certain sweet spot, but the break even of the
PPQ over the SPQP is quite low: 20 K items for A-Rot and 80 K items for B-SSD.

5 Conclusions and Future Work

We presented a PPQ design and implementation for EM, and successfully demon-
strated that for specific benchmarks the high I/O bandwidth of parallel disks
and even SSDs can be utilized. By relaxing semantics, our bulk-parallel interface
enables parallelized processing of larger amounts of items in the PPQ. In the
future, we want to apply our PPQ’s bulk-parallel processing to the eSAIS external
suffix and LCP sorting algorithm [5], where in the largest recursion level each
alphabet character (and repetition count) is a bulk.

During our work on the PPQ two important issues remained untouched: how
does one balance work in an EM algorithm library when the user application, the
EM containers, and I/O overlapping require parallel work? We left this to the
operating system scheduler and block the user application during parallel merging,

Platform A-Rot Platform B-SSD
Experiment SPQP SPQS Sorter SPQP SPQS Sorter

push-rand-pop 1.39 3.58 0.87 2.25 4.83 0.83
push-asc-pop 1.81 3.40 1.37 4.29 6.71 1.20

asc-rbulk-rewrite 1.89 4.70 2.91 3.43

Table 1. Speedup of PPQ over parallelized STXXL PQ (SPQP), sequential STXXL
PQ (SPQS), and STXXL Sorter for 64-bit integers, averaged for experiments n ≥ 230.5.

28 30 32 34
0

10

20

number of items [log2(n)]

m
il
li
o
n

it
em

s
p

er
se

co
n
d

Platform A-Rot

28 30 32 34
0

10

20

30

p
u
sh

-ra
n
d
-p

o
p

number of items [log2(n)]

Platform B-SSD

28 30 32 34
0

20

40

60

number of items [log2(n)]

m
il
li
o
n

it
em

s
p

er
se

co
n
d

28 30 32 34
0

50

100 p
u
sh

-a
sc
-p

o
p

number of items [log2(n)]

28 30 32 34
0

50

100

150

number of items [log2(n)]

m
il
li
o
n

it
em

s
p

er
se

co
n
d

28 30 32 34
0

50

100

150

200 a
sc
-rb

u
lk
-re

w
rite

number of items [log2(n)]

12 14 16 18 20 22
0

20

40

60

items in bulk sequences [log2(v)]

m
il
li
o
n

it
em

s
p

er
se

co
n
d

12 14 16 18 20 22
0

50

100

150

200

250

300

b
u
lk
-re

w
rite

items in bulk sequences [log2(v)]

Our PPQ Sequential STXXL PQ

Parallelized STXXL PQ STXXL Sorter

Fig. 4. Experimental results of our four benchmarks with 64-bit integer items.

which is not desirable. As indicated by theory and experiments, bulk pop limit
requires large bulks to work efficiently, however, the PPQ cannot know the
resulting bulk sizes without performing a costly multisequence selection. One
could require the user application to provide an estimate of the resulting size, or
develop an online oracle. Finally, experiments with other internal memory PPQs
and d-ary heaps may improve performance by using larger insertion heaps.

References

1. Alistarh, D., Kopinsky, J., Li, J., Shavit, N.: The SprayList: A scalable relaxed
priority queue. Tech. Rep. MSR-TR-2014-16, Microsoft Research (September 2014)

2. Arge, L.: The buffer tree: A technique for designing batched external data struc-
tures. Algorithmica 37(1), 1–24 (2003)

3. Arge, L., Goodrich, M.T., Nelson, M., Sitchinava, N.: Fundamental parallel algo-
rithms for private-cache chip multiprocessors. In: SPAA. pp. 197–206. ACM (2008)

4. Beckmann, A., Dementiev, R., Singler, J.: Building a parallel pipelined external
memory algorithm library. In: IPDPS’09. pp. 1–10. IEEE (2009)

5. Bingmann, T., Fischer, J., Osipov, V.: Inducing suffix and LCP arrays in external
memory. In: ALENEX’13. pp. 88–102. SIAM (2013)

6. Bingmann, T., Keh, T., Sanders, P.: A bulk-parallel priority queue in external
memory with STXXL (Apr 2015), see ArXiv e-print arXiv:1504.00545

7. Brodal, G.S., Katajainen, J.: Worst-case efficient external-memory priority queues.
In: SWAT’98. LNCS, vol. 1432, pp. 107–118. Springer (1998)

8. Chiang, Y.J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter,
J.S.: External-memory graph algorithms. In: SODA’95. pp. 139–149. SIAM (1995)

9. Dementiev, R., Kettner, L., Sanders, P.: STXXL: Standard template library for
XXL data sets. Software & Practice and Experience 38(6), 589—-637 (2008)

10. Dementiev, R., Sanders, P.: Asynchronous parallel disk sorting. In: SPAA’03. pp.
138–148. ACM (2003)

11. Deo, N., Prasad, S.: Parallel heap: An optimal parallel priority queue. The Journal
of Supercomputing 6(1), 87–98 (1992)

12. Hutchinson, D.A., Sanders, P., Vitter, J.S.: Duality between prefetching and
queued writing with parallel disks. SIAM Journal on Computing 34(6) (2005)

13. Keh, T.: Bulk-parallel priority queue in external memory (2014), Bachelor Thesis,
Karlsruhe Institute of Technology, Germany

14. Petersen, L.H.: External Priority Queues in Practice. Master’s thesis, Aarhus Uni-
versitet, Datalogisk Institut, Denmark (2007)

15. Pinotti, M.C., Pucci, G.: Parallel priority queues. IPL 40(1), 33–40 (1991)
16. Rihani, H., Sanders, P., Dementiev, R.: Multiqueues: Simpler, faster, and better

relaxed concurrent priority queues. arXiv preprint arXiv:1411.1209 (2014)
17. Sanders, P.: Randomized priority queues for fast parallel access. Journal of Parallel

and Distributed Computing 49(1), 86–97 (1998)
18. Sanders, P.: Fast priority queues for cached memory. JEA 5, 7 (2000)
19. Singler, J., Sanders, P., Putze, F.: MCSTL: The multi-core standard template

library. In: Euro-Par 2007 Parallel Processing, pp. 682–694. Springer (Jan 2007)
20. Varman, P.J., Scheufler, S.D., Iyer, B.R., Ricard, G.R.: Merging multiple lists on

hierarchical-memory multiprocessors. Journal of Parallel and Distributed Comput-
ing 12(2), 171–177 (1991)

21. Vitter, J.S., Shriver, E.A.: Algorithms for parallel memory, i: Two-level memories.
Algorithmica 12(2-3), 110–147 (1994)

	A Bulk-Parallel Priority Queue in External Memory with STXXL

