
I/O-Efficient Dynamic Planar Range Skyline Queries

Casper Kejlberg-Rasmussen
MADALGO∗

Department of Computer Science
Aarhus University, Denmark

ckr@madalgo.au.dk

Konstantinos Tsakalidis
Computer Engineering and

Informatics Department
University of Patras, Greece
tsakalid@ceid.upatras.gr

Kostas Tsichlas
Computer Science Department

Aristotle University
of Thessaloniki, Greece
tsichlas@csd.auth.gr

Abstract

We present the first fully dynamic worst case I/O-efficient data structures that support planar orthogonal
3-sided range skyline reporting queries in O(log2Bε n+ t

B1−ε) I/Os and updates in O(log2Bε n) I/Os, using
O(n

B1−ε) blocks of space, for n input planar points, t reported points, and parameter 0 ≤ ε ≤ 1. We obtain
the result by extending Sundar’s priority queues with attrition to support the operations DeleteMin
and CatenateAndAttrite in O(1) worst case I/Os, and in O(1/B) amortized I/Os given that a
constant number of blocks is already loaded in main memory. Finally, we show that any pointer-based
static data structure that supports dominated maxima reporting queries, namely the difficult special case
of 4-sided skyline queries, in O(logO(1) n+t) worst case time must occupy Ω(n logn

log logn
) space, by adapting

a similar lower bounding argument for planar 4-sided range reporting queries.

1 Introduction

We study the problem of maintaining a set of planar points in external memory subject to insertions and
deletions of points in order to support planar orthogonal 3-sided range skyline reporting queries efficiently
in the worst case. For two points p, q ∈ Rd, we say that p dominates q, if and only if all the coordinates of p
are greater than those of q. The skyline of a pointset P consists of the maximal points of P , which are the
points in P that are not dominated by any other point in P . Planar 3-sided range skyline reporting queries
that report the maximal points among the points that lie

Skyline computation has been receiving increasing attention in the field of databases since the introduction
of the skyline operator for SQL [3]. Skyline points correspond to the“interesting” entries of a relational
database as they are optimal simultaneously over all attributes. The considered variant of planar skyline
queries adds the capability of reporting the interesting entries among those input entries whose attribute
values belong to a given 3-sided range. Databases used in practical applications usually process massive
amounts of data in dynamic environments, where the data can be modified by update operations. Therefore
we analyze our algorithms in the I/O model [1], which is commonly used to capture the complexity of massive
data computation. It assumes that the input data resides in the disk (external memory) divided in blocks
of B consecutive words, and that computation occurs for free in the internal memory of size M words. An
I/O-operation (I/O) reads a block of data from the disk into the internal memory, or writes a block of data

∗Center for Massive Data Algorithmics - a Center of the Danish National Research Foundation

1

ar
X

iv
:1

20
7.

23
41

v1
 [

cs
.D

S]
 1

0
Ju

l 2
01

2
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/186329390?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to the disk. Time complexity is expressed in number of I/Os, and space complexity in the number of blocks
that the input data occupies on the disk.

Previous Results Different approaches have been proposed for maintaining the d-dimensional skyline in
external memory under update operations, assuming for example offline updates over data streams [19, 13],
only online deletions [20], online average case updates [16], arbitrary online updates [8] and online updates
over moving input points [9]. The efficiency of all previous approaches is measured experimentally in terms
of disk usage over average case data. However, even for the planar case, no I/O-efficient structure exists that
supports both arbitrary insertions and deletions in sublinear worst case I/Os. Regarding internal memory,
Brodal and Tsakalidis [4] present two linear space dynamic data structures that support 3-sided range skyline
reporting queries in O(log n+ t) and O(logn

log logn + t) worst case time, and updates in O(log n) and O(logn
log logn)

worst case time in the pointer machine and the RAM model, respectively, where n is the input size and t is
the output size. They also present an O(n log n) space dynamic pointer-based data structure that supports
4-sided range skyline reporting queries in O(log2 n+ t) worst case time and updates in O(log2 n) worst case

time. Adapting these structures to the I/O model attains O(log
O(1)
B n + t) query I/Os, which is undesired

since O(1) I/Os are spent per reported point.
Regarding the static variant of the problem, Sheng and Tao [17] obtain an I/O-efficient algorithm that

computes the skyline of a static d-dimensional pointset in O(nB logd−2M
B

n
B) worst case I/Os, for d ≥ 3, by

adapting the internal memory algorithms of [12, 2] to external memory. O(nB logM
B

n
B) I/Os can be achieved

for the planar case. There exist two O(n log n) and O(n logn
log logn) space static data structures that support

planar 4-sided range skyline reporting queries in O(log n + t) and O(logn
log logn + t) worst case time, for the

pointer machine and the RAM, respectively [10, 7].

Our Results In Section 3 we present the basic building block of the structures for dynamic planar range
skyline reporting queries that we present in Section 4. That is pointer-based I/O-efficient catenable priority
queues with attrition (I/O-CPQAs) that support the operations DeleteMin and CatenateAndAttrite
inO(1/B) amortized I/Os and inO(1) worst case I/Os, usingO(n−mB) disk blocks, after n calls to Catenate-
AndAttrite and m calls to DeleteMin. The result is obtained by modifying appropriately a proposed
implementation for priority queues with attrition of Sundar [18].

In Section 4 we present our main result, namely I/O-efficient dynamic data structures that support 3-
sided range skyline reporting queries in O(log2Bε n+ t

B1−ε) worst case I/Os and updates in O(log2Bε n) worst
case I/Os, using O(n

B1−ε) blocks, for a parameter 0 ≤ ε ≤ 1. These are the first fully dynamic skyline data
structures for external memory that support all operations in polylogarithmic worst case time. The results
are obtained by following the approach of Overmars and van Leeuwen [14] for planar skyline maintainance and
utilizing confluently persistent I/O-CPQAs (implemented with functional catenable deques [11]). Applying
the same methodology to internal memory pointer-based CPQAs yields alternative implementations for
dynamic 3-sided reporting in the pointer machine in the same bounds as in [4].

Finally, in Section 5 we prove that any pointer-based static data structure that supports reporting the
maximal points among the points that are dominated by a given query point in O(logO(1) n) worst case
time must occupy Ω(n logn

log logn) space, by adapting the similar lower bounding argument of Chazelle [5] for
planar 4-sided range reporting queries to the considered dominated skyline reporting queries. These queries
are termed as dominating minima reporting queries. The symmetric case of dominated maxima reporting
queries is equivalent and comprises a special case of rectangular visibilty queries [15] and 4-sided range
skyline reporting queries [4, 10]. The result shows that the space usage of the pointer-based structures
in [15, 4, 10] is optimal within a O(log log n) factor, for the attained query time.

2 Preliminaries

Priority Queues with Attrition Sundar [18] introduces pointer-based priority queues with attrition
(PQAs) that support the following operations in O(1) worst case time on a set of elements drawn from a total

2

order: DeleteMin deletes and returns the minimum element from the PQA, and InsertAndAttrite(e)
inserts element e into the PQA and removes all elements larger than e from the PQA. PQAs use space linear
to the number of inserted elements minus the number of elements removed by DeleteMin.

Functional Catenable Deques A dynamic data structure is persistent when it maintains its previous
versions as update operations are performed on it. It is fully persistent when it permits accessing and
updating the previous versions. In turn, it is called confluently persistent when it is fully persistent, and
moreover it allows for two versions to be combined into a new version, by use of an update operation that
merges the two versions. In this case, the versions form a directed acyclic version graph. A catenable deque
is a list that stores a set of elements from a total order, and supports the operations Push and Inject that
insert an element to the head and tail of the list respectively, Pop and Eject that remove the element from
the head and tail of the list respectively, and Catenate that concatenates two lists into one. Kaplan and
Tarjan [11] present purely functional catenable deques that are confluently persistent and support the above
operations in O(1) worst case time.

Searching Lower Bound in the Pointer Machine In the pointer machine model a data structure that
stores a data set S and supports range reporting queries for a query set Q, can be modelled as a directed
graph G of bounded out-degree. In particular, every node in G may be assigned an element of S or may
contain some other useful information. For a query range Qi ∈ Q, the algorithm navigates over the edges of
G in order to locate all nodes that contain the answer to the query. The algorithm may also traverse other
nodes. The time complexity of reporting the output of Qi is at least equal to the number of nodes accessed
in graph G for Qi. To prove a lower bound we need to construct hard instances with particular properties,
as discussed by Chazelle and Liu [5, 6]. In particular, they define the graph G to be (α, ω)-effective, if a
query is supported in α(t + ω) time, where t is the output size, α is a multiplicative factor for the output
size (α = O(1) for our purposes) and ω is the additive factor. They also define a query set Q to be (m,ω)-
favorable for a data set S, if |S ∩ Qi| ≥ ω,∀Qi ∈ Q and |S ∩ Qi1 ∩ · · · ∩ Qim | = O(1),∀i1 < i2 · · · < im.
Intuitively, the first part of this property requires that the size of the output is large enough (at least ω) so
that it dominates the additive factor of ω in the time complexity. The second part requires that the query
outputs have minimum overlap, in order to force G to be large without many nodes containing the output
of many queries. The following lemma exploits these properties to provide a lower bound on the minimum
size of G.

Lemma 2.1. [6, Lemma 2.3] For an (m,ω)-favorable graph G for the data set S, and for an (α, ω)-effective
set of queries Q, G contains Ω(|Q|ω/m) nodes, for constant α and for any large enough ω.

3 I/O-Efficient Catenable Priority Queues with Attrition

In this Section, we present I/O-efficient catenable priority queues with attrition (I/O-CPQAs) that store a
set of elements from a total order in external memory, and support the following operations:

FindMin(Q) returns the minimum element in I/O-CPQA Q.

DeleteMin(Q) removes the minimum element e from I/O-CPQA Q and returns element e and the new
I/O-CPQA Q′ = Q\{e}.

CatenateAndAttrite(Q1, Q2) concatenates I/O-CPQA Q2 to the end of I/O-CPQA Q1, removes all
elements in Q1 that are larger than the minimum element in Q2, and returns a new I/O-CPQA
Q′1 = {e ∈ Q1|e < min(Q2)} ∪Q2. We say that the removed elements have been attrited.

InsertAndAttrite(Q, e) inserts element e at the end of Q and attrites all elements in Q that are larger
than the value of e.

3

All operations take O(1) worst case I/Os and O(1/b) amortized I/Os, given that a constant number of
blocks is already loaded into main memory, for a parameter 1 ≤ b ≤ B. To achieve the result, we modify an
implementation for the PQAs of Sundar [18].

An I/O-CPQA Q consists of kQ+2 deques of records, called the clean deque C(Q), the buffer deque B(Q)
and the dirty deques D1(Q), . . . , DkQ(Q), where kQ ≥ 0. A record r = (l, p) consists of a buffer l of [b, 4b]
elements of strictly increasing value and a pointer p to an I/O-CPQA. The ordering of r is; first all elements
of l and then all elements of the I/O-CPQA pointed to by p. We define the queue order of Q to be C(Q), B(Q)
and D1(Q), . . . , DkQ(Q). A record is simple when its pointer p is null. The clean deque and the buffer deque
only contains simple records. See Figure 1 for an overview of the structure.

. . .

C(Q)

. . .

B(Q)

. . .

D1(Q)

. . .

DkQ−1(Q)

. . .

DkQ(Q)

. . .

Figure 1: A I/O CPQA Q consists of kQ+2 deques of records; C(Q), B(Q), D1(Q), . . . , DkQ(Q). The records
in C(Q) and B(Q) are simple, the records of D1(Q), . . . , DkQ(Q) may contain pointers to other I/O CPQA’s.
Gray recordsare always loaded in memory.

Given a record r = (l, p) the minimum and maximum elements in the buffers of r, are denoted by min(r) =
min(l) and max(r) = max(l), respectively. They appear respectively first and last in the queue order of l,
since the buffer of r is sorted by value. Henceforth, we do not distinguish between an element and its value.
Given a deque q the first and the last record is denoted by first(q) and last(q), respectively. Also rest(q)
denotes all records of the deque q excluding the record first(q). Similarly, front(q) denotes all records for
the deque q excluding the record last(q). The size |r| of a record r is defined to be the number of elements
in its buffer. The size |q| of a deque q is defined to be the number of records it contains. The size |Q| of
the I/O-CPQA Q is defined to be the number of elements that Q contains. For an I/O-CPQA Q we denote
by first(Q) and last(Q), the first and last of the records in C(Q), B(Q), D1(Q), . . . , DkQ(Q) that exists,
respectively. By middle(Q) we denote all records in Q and the records in the I/O-CPQAs pointed by Q,
except for records first(Q) and last(Q) and the I/O-CPQAs they point to. We call an I/O-CPQA Q large
if |Q| ≥ b and small otherwise. The minimum value of all elements stored in the I/O-CPQA Q is denote
by min(Q). For an I/O-CPQA Q we maintain the following invariants:

I.1) For every record r = (l, p) where pointer p points to I/O-CPQA Q′, max(l) < min(Q′) holds.

I.2) In all deques of Q, where record r1 = (l1, p1) precedes record r2 = (l2, p2), max(l1) < min(l2) holds.

I.3) For the deques C(Q), B(Q) and D1(Q), max(last(C(Q))) < min(first(B(Q))) < min(first(D1(Q)))
holds.

I.4) Element min(first(D1(Q))) has the minimum value among all the elements in the dirty dequesD1(Q), . . . , Dk(Q).

I.5) All records in the deques C(Q) and B(Q) are simple.

I.6) |C(Q)| ≥
∑kQ
i=1 |Di(Q)|+ kQ − 1.

I.7) |first(C(Q))| < b holds, if and only if |Q| < b holds.

I.8) |last(DkQ(Q))| < b holds, if and only if record last(DkQ(Q)) is simple. In this case |r| ∈ [b, 5b] holds.

From Invariants I.2, I.3 and I.4, we have that the minimum element min(Q) stored in the I/O-CPQA Q is
element min(first(C(Q))). We say that an operation improves or aggravates by a parameter c the inequality

of invariant I.6 for I/O-CPQA Q, when the operation increases or decreases ∆(Q) = |C(Q)|−
∑kQ
i=1 |Di(Q)|−

kQ+1 by c, respectively. To argue about the O(1/b) amortized I/O bounds we define the following potential

4

functions for large and small I/O-CPQAs. In particular, for large I/O-CPQAs Q, the potential Φ(Q) is
defined as

Φ(Q) = ΦF (|first(Q)|) + |middle(Q)|+ ΦL(|last(Q)|),

where

ΦF (x) =

 3− x
b , b ≤ x < 2b

1, 2b ≤ x < 3b
2x
b − 5, 3b ≤ x ≤ 4b

and ΦL(x) =

{
0, 0 ≤ x < 4b

3x
b − 12, 4b ≤ x ≤ 5b

For small I/O-CPQAs Q, the potential Φ(Q) is defined as

Φ(Q) =
3|Q|
b

The total potential ΦT is defined as

ΦT =
∑
Q

Φ(Q) +
∑

Q|b≤|Q|

1,

where the first sum is over all I/O-CPQAs Q and the second sum is only over all large I/O-CPQAs Q.

3.1 Operations

In the following, we describe the algorithms that implement the operations supported by the I/O-CPQA Q.
The operations call the auxiliary operation Bias(Q), which will be described last, that improves the inequality
of invariant I.6 for Q by at least 1. All operations take O(1) worst case I/Os. We also show that every
operation takes O(1/b) amortized I/Os, where 1 ≤ b ≤ B.

FindMin(Q) returns the value min(first(C(Q))).

DeleteMin(Q) removes element e = min(first(C(Q))) from record (l, p) = first(C(Q)). After the removal,
if |l| < b and |Q| ≥ b hold, we do the following. If b ≤ |first(rest(C(Q)))| ≤ 2b, then we merge first(C(Q))
with first(rest(C(Q))) into one record which is the new first record. Else if 2b < |first(rest(C(Q)))| ≤ 3b
then we take b elements out of first(rest(C(Q))) and put them into first(C(Q)). Else we have that 3b <
|first(rest(C(Q)))|, and as a result we take 2b elements out of first(rest(C(Q))) and put them into first(C(Q)).
If the inequality for Q is aggravated by 1 we call Bias(Q) once. Finally, element e is returned.
Amortization: Only if the size of first(C(Q)) becomes |first(C(Q))| = b − 1 do we incur any I/Os. In this
case r = first(Q) has a potential of ΦF (|r|) = 2, and since we increase the number of elements in r by b to 2b
elements, the potential of r will then only be ΦF (|r|) = 1. Thus, the total potential decreases by 1, which
also pays for any I/Os including those incurred if Bias(Q) is invoked.

CatenateAndAttrite(Q1, Q2) concatenates Q2 to the end of Q1 and removes the elements from Q1 with
value larger than min(Q2). To do so, it creates a new I/O-CPQA Q′1 by modifying Q1 and Q2, and by
calling Bias(Q′1) and Bias(Q2).

If |Q1| < b, then Q1 is only one record (l1, ·), and so we prepend it into the first record (l2, ·) = first(Q2)
of Q2. Let l′1 be the non-attrited elements of l1. We perform the prepend as follows. If |l′1|+ |l2| ≤ 4b, then
we prepend l′1 into l2. Else, we take 2b− |l′1| elements out of l2, and make them along with l′1 the new first
record of Q2.
Amortization: If we simply prepend l′1 into l2, then the potential ΦS(|l1|) pays for the increase in potential
of ΦF (|first(C(Q2))|). Else, we take 2b−|l′1| elements out of l2, and these elements along with l′1 become the
new first record of Q2 of size 2b. Thus, ΦF (2b) = 1 and the potential drops by 1, which is enough to pay for
the I/Os used to flush the old first record of C(Q2) to disk.
If |Q2| < b, then Q2 only consists of one record. We have two cases, depending on how much of Q1 is attrited
by Q2. Let r1 be the second last record for Q1 and let r2 = last(Q1) be the last record. If e attrites all of

5

r1, then we just pick the appropriate case among (1–4) below. Else if e attrites partially r1, but not all of it,
then we delete r2 and we merge r1 and Q2 into the new last record of Q1, which cannot be larger than 5b.
Otherwise if e attrites partially r2, but not all of it, then we simply append the single record of Q2 into r2,
which will be the new last record of Q1 and it cannot be larger than 5b.
Amortization: If e attrites all of r1, then we release at least 1 in potential, so all costs in any of the cases
(1–4) are paid for. If e attrites partially r1, then the new record cannot contain more than 5b elements,
and thus any increase in potential is paid for by the potential of Q2. Thus, the I/O cost is covered by the
decrease of 1 in potential, caused by r1. If e attrites partially r2, any increase in potential is paid for by the
potential of Q2.
We have now dealt with the case where Q1 is a small queue, so in the following we assume that Q1 is large.
Let e = min(Q2).

1) If e ≤ min(first(C(Q1))), we discard I/O-CPQA Q1 and set Q′1 = Q2.

2) Else if e ≤ max(last(C(Q1))), we remove the simple record (l, ·) = first(C(Q2)) from C(Q2), we set
C(Q′1) = ∅, B(Q′1) = C(Q1) and D1(Q′1) = (l, p), where p points to Q2, if it exists. This aggravates the
inequality for Q2 by at most 1, and gives ∆(Q′1) = −1. Thus, we call Bias(Q2) once and Bias(Q′1) once.

3) Else if e ≤ min(first(B(Q1))) or e ≤ min(first(D1(Q1))) holds, we remove the simple record (l, ·) =
first(C(Q2)) from C(Q2), setD1(Q′1) = (l, p), and make p point toQ2, if it exists. If e ≤ min(first(B(Q1))),
we set B(Q′1) = ∅. This aggravates the inequality for Q2 by at most 1, and aggravates the inequality
for Q1 by at most 1. Thus, we call Bias(Q2) once and Bias(Q′1) once.

4) Else, let (l1, ·) = last(DkQ1
). We remove (l2, ·) = first(C(Q2)) from C(Q2). If |l1| < b, then remove

the record (l1, ·) from DkQ1
. Let l′1 be the non-attrited elements under attrition by e = min(l2). If

|l′1| + |l2| ≤ 4b, then we prepend l′1 into l2 of record r2 = (l2, p2), where p2 points to Q2. Otherwise.
we make a new simple record r1 with l′1 and 2b elements taken out of r2 = (l2, p2). Finally, we put the
resulting one or two records r1 and r2 into a new deque DkQ1

+1(Q1). This aggravates the inequality
for Q2 by at most 1, and the inequality for Q1 by at most 2. Thus, we call Bias(Q2) once and Bias(Q′1)
twice.

Amortization: In all the cases (1–4) both Q1 and Q2 are large, hence when we concatenate them we decrease
the potential by at least 1, as the number of large I/O-CPQA’s decrease by one which is enough to pay for
any Bias operations.

InsertAndAttrite(Q, e) inserts an element e into I/O-CPQA Q and attrites the elements in Q with value
larger than e. This is a special case of operation CatenateAndAttrite(Q1,Q2), where Q1 = Q and Q2 is
an I/O-CPQA that only contains one record with the single element e.
Amortization: Since creating a new I/O-CPQA with only one element and calling CatenateAndAttrite
only costs O(1/b) I/Os amortized, the operation InsertAndAttrite also costs O(1/b) I/Os amortized.

. . .

C(Q)

. . .

D1(Q)

. . .

C(Q′)

. . .

B(Q′)

. . .

D1(Q′)

. . .

DkQ′ (Q
′)

. . .

Figure 2: In the case of Bias(Q), where B(Q) = ∅ and kQ = 1, we need to follow the pointer p of (l, p) =
first(D1(Q)) that may point to an I/O-CPQA Q′. If so, we merge it into Q, taking into account attrition
of Q′ by e = min(first(D1(Q))).

6

Bias(Q) improves the inequality in I.6 for Q by at least 1.
Amortization: Since all I/Os incurred by Bias(Q) are already paid for by the operation that called Bias(Q),
we only need to argue that the potential of Q does not increase due to the changes that Bias(Q) makes
to Q.

1) |B(Q)| > 0: We remove the first record first(B(Q)) = (l1, ·) from B(Q) and let (l2, p2) = first(D1(Q)).
Let l′1 be the non-attrited elements of l1 under attrition from e = min(l2).

1) 0 ≤ |l′1| < b: If |l2| ≤ 2b, then we just prepend l′1 onto l2. Else, we take b elements out of l2 and
append them to l′1.

2) b ≤ |l′1| < 2b: If |l2| ≤ 2b, and if furthermore |l′1| + |l2| ≤ 3b holds, then we merge l′1 and l2.
Else |l′1| + |l2| > 3b holds, so we take 2b elements out of l′1 and l2 and put them into l′1, leaving the
rest in l2.

Else |l2| > 2b holds, so we take b elements out of l2 and put them into l′1.

If we did not prepend l′1 onto l2, we insert l′1 along with any elements taken out of l2 at the end of C(Q)
instead. If |l′1| < |l1|, we set B(Q) = ∅. Else, we did prepend l′1 onto l2, and then we just recursively
call Bias. Since |B(Q)| = 0 we will not end up in this case again. As a result, in all cases the inequality
of Q is improved by 1.

Amortization: If l1 = first(Q), then after calling Bias we ensure that 2b ≤ |first(Q)| ≤ 3b, and so the
that potential of Q does not increase.

2) |B(Q)| = 0: When |B(Q)| = 0 holds, we have two cases depending on the number of dirty queues, namely
cases kQ > 1 and kQ = 1.

1) kQ > 1: Let e = min(first(DkQ(Q))). If e ≤ min(last(DkQ−1(Q))) holds, we remove the record
last(DkQ−1(Q)) from DkQ−1(Q). This improves the inequality of Q by 1.

Else, if min(last(DkQ−1(Q))) < e ≤ max(last(DkQ−1(Q))) holds, we remove record r1 = (l1, p1) =
last(DkQ−1(Q)) from DkQ−1(Q) and let r2 = (l2, p2) = first(DkQ(Q)). We delete any elements in l1
that are attrited by e, and let l′1 denote the non-attrited elements.

1) 0 ≤ |l′1| < b: If |l2| ≤ 2b, then we just prepend l′1 onto l2. Otherwise, we take b elements out of l2
and append them to l′1.

2) If b ≤ |l′1| < 2b: If |l2| ≤ 2b and |l′1|+ |l2| ≤ 3b, then we merge l′1 and l2. Else, |l′1|+ |l2| > 3b holds,
so we take 2b elements out of l′1 and l2 and put them into l′1, leaving the rest in l2.
Else |l2| > 2b, so we take b elements out of l2 and put them into l′1.

If r1 still exists, we insert it in the front of DkQ(Q). Finally, we concatenate DkQ−1(Q) and DkQ(Q)
into one deque. This improves the inequality of Q by at least 1.

Else max(last(DkQ−1(Q))) < e holds, and we just concatenate the deques DkQ−1(Q) and DkQ(Q),
which improves the inequality for Q by 1.

Amortization: If not all of l1 is attrited then we ensure that its record r1 has size between 2b and 3b.
Thus, if r1 = first(Q) holds, we will not have increased the potential of Q. In the cases where all or
none of l1 is attrited, the potential of Q can only be decreased by at least 0.

2) kQ = 1: In this case Q contains only deques C(Q) and D1(Q). We remove the record r = (l, p) =
first(D1(Q)) and insert l into a new record at the end of C(Q). This improves the inequality of Q
by at least 1. If r is not simple, let r’s pointer p point to I/O-CPQA Q′. We restore I.5 for Q by
merging I/O-CPQAs Q and Q′ into one I/O-CPQA. See Figure 2 for this case of operation Bias. In
particular, let e = min(first(D1(Q))), we now proceed as follows:

If e ≤ min(Q′), we discard Q′. The inequality for Q remains unaffected.

Else, if min(first(C(Q′))) < e ≤ max(last(C(Q′)), we set B(Q) = C(Q′) and discard the rest of Q′.
The inequality for Q remains unaffected.

7

Else if max(last(C(Q′)) < e ≤ min(first(D1(Q′))), we concatenate the deque C(Q′) at the end of C(Q).
If moreover min(first(B(Q′))) < e holds, we set B(Q) = B(Q′). Finally, we discard the rest of Q′.
This improves the inequality for Q by |C(Q′)|.
Else min(first(D1(Q′))) < e holds. We concatenate the deque C(Q′) at the end of C(Q), we set B(Q) =
B(Q′), we set D1(Q′), . . . , DkQ′ (Q

′) as the first kQ′ dirty queues of Q and we set D1(Q) as the last
dirty queue of Q. This improves the inequality for Q by ∆(Q′) ≥ 0, since Q′ satisfied I.6 before the
operation.

If r = first(Q) and |l| ≤ 2b, then we remove r and run Bias recursively. Let r′ = (l′, p′) = first(Q).
If |l| + |l′| > 3b, then we take the 2b first elements out and make them the new first record of C(Q).
Else we merge l into l′, so that r is removed and r′ is now first(Q).

Amortization: Since first(Q) is either untouched or left with 2b to 3b elements, in which case its
potential is 1, and since all other changes decrease the potential by at least 0, we have that Bias does
not increase the potential of Q.

Theorem 3.1. A set of ` I/O-CPQA’s can be maintained supporting the operations FindMin, DeleteMin,
CatenateAndAttrite and InsertAndAttrite in O(1/b) I/Os amortized and O(1) worst case I/Os per
operation. The space usage is O(n−mb) blocks after calling CatenateAndAttrite and InsertAndAt-
trite n times and DeleteMin m times, respectively. We require that M ≥ `b for 1 ≤ b ≤ B, where M is
the main memory size and B is the block size.

Proof. The correctness follows by closely noticing that we maintain invariants I.1–I.8, and from those we
have that DeleteMin(Q) and FindMin(Q) always returns the minimum element of Q.

The worst case I/O bound of O(1) is trivial as every operation only touches O(1) records. Although Bias
is recursive, we notice that in the case where |B(Q)| > 0, Bias only calls itself after making |B(Q)| = 0, so
it will not end up in this case again. Similarly, if |B(Q)| = 0 and kQ > 1 there might also be a recursive
call to Bias. However, before the call at least b elements have been taken out of Q, and thus the following
recursive call to Bias will ensure at least b more are taken out. This is enough to stop the recursion, which
will have depth at most 3.

The O(1/b) amortized I/O bounds, follows from the potential analysis made throughout the description
of each operation.

3.2 Concatenating a Sequence of I/O-CPQAs

We describe how to CatenateAndAttrite I/O-CPQAs Q1, Q2, . . . , Q` into a single I/O-CPQA in O(1)
worst case I/Os, given that DeleteMin is not called in the sequence of operations. We moreover im-
pose two more assumptions. In particular, we say that I/O-CPQA Q is in state x ∈ Z, if |C(Q)| =∑kQ
i=1 |Di(Q)| + kQ − 1 + x holds. Positive x implies that Bias(Q) will be called after the inequality for Q

is aggravated by x + 1. Negative x implies that Bias(Q) need to be called x operations times in order to
restore inequality for Q. So, we moreover assume that I/O-CPQAs Qi, i ∈ [1, `] are at state at least +2,
unless Qi contains only one record in which case it may be in state +1. We call a record r = (l, p) in an
I/O-CPQA Qi critical, if r is accessed at some time during the sequence of operations. In particular, the criti-
cal records for Qi are first(C(Qi)),first(rest(C(Qi))), last(C(Qi)),first(B(Qi)),first(D1(Qi)), last(DkQi

(Qi)),
and last(front(DkQi

(Qi))) if it exists. Otherwise, record last(DkQi−1(Qi)) is critical. So, we moreover assume
that the critical records for I/O-CPQAs Qi, i ∈ [1, `] are loaded into memory.

The algorithm considers I/O-CPQAs Qi in decreasing index i (from right to left). It sets Qi = Q` and
constructs the temporary I/O-CPQA Qi−1 by calling CatenateAndAttrite(Qi−1,Qi). This yields the
final I/O-CPQA Q1.

Lemma 3.1. I/O-CPQAs Qi, i ∈ [1, `] can be CatenateAndAttrited into a single I/O-CPQA without
any access to external memory, provided that:

1. Qi is in state at least +2, unless it contains only one record, in which case its state is at least +1,

8

2. all critical records of all Qi reside in main memory.

Proof. To avoid any I/Os during the sequence of CatenateAndAttrites, we ensure that Bias is not
called, and that the critical records are sufficient, and thus no more records need to be loaded into memory.

To avoid calling Bias we prove by induction the invariant that the temporary I/O-CPQAs Qi, i ∈ [1, `]
constructed during the sequence are in state at least +1. Let the invariant hold of Qi+1 and let Qi be
constructed by CatenateAndAttrite(Qi,Q

i+1). If Qi contains at most two records, which both reside
in dequeue C(Qi), we only need to access record first(C(Qi+1)) and the at most two records of Qi. The
invariant holds for Qi, since it holds inductively for Qi+1 and the new records were added at C(Qi+1). As a
result, the inequality of I.6 for Qi+1 can only be improved. If Qi+1 consists of only one record, then either
one of the following cases apply or we follow the steps described in operation CatenateAndAttrite. In
the second case, there is no aggravation for the inequality of 6 and only critical records are used.

In the following, we can safely assume that Qi has at least three records and its state is at least +2. We
parse the cases of the CatenateAndAttrite algorithm assumming that e = min(Qi+1).

Case 1 The invariant holds trivially since Qi is discarded and no change happens to Qi = Qi+1. Bias is not
called.

Cases 2,3 The algorithm checks whether the first two records of C(Qi) are attrited by e. If this is the case, we
continue as denoted at the start of this proof. Otherwise, case 2 of CatenateAndAttrite is applied
as is. Qi+1 is in state 0 after the concatenation and Qi is in state +1. Thus the invariant holds, and
Bias is not. Note that all changes take place at the critical records of Qi and Qi+1.

Case 4 The algorithm works exactly as in case 4 of CatenateAndAttrite, with the following exception. At
the end, Qi will be in state 0, since we added the deque DkQi+1+1 with a new record and the inequality

of I.6 is aggrevated by 2. To restore the invariant we apply case 2(1) of Bias. This step requires access
to records last(DkQi−1) and first(DkQi

). These records are both critical, since the former corresponds

to last(DkQi+1) and the latter to firstC(Qi+1). In addition, Bias(Qi+1) need not be called, since by

the invariant, Qi+1 was in state +1 before the removal of firstC(Qi+1). In this way, we improve the
inequality for Qi by 1 and invariant holds.

4 Dynamic Planar Range Skyline Reporting

In this Section we present dynamic I/O-efficient data structures that support 3-sided planar orthogonal range
skyline reporting queries.

3-Sided Skyline Reporting We describe how to utilize I/O-CPQAs in order to obtain dynamic data
structures that support 3-sided range skyline reporting queries and arbitrary insertions and deletions of
points, by modifying the approach of [14] for the pointer machine model. In particular, let P be a set of n
points in the plane, sorted by x-coordinate. To access the points, we store their x-coordinates in an (a, 2a)-
tree T with branching parameter a ≥ 2 and leaf parameter k ≥ 1. In particular, every node has degree
within [a, 2a] and every leaf contains at most k consecutive by x-coordinate input points. Every internal
node u of T is associated with an I/O-CPQA whose non-attrited elements correspond to the maximal points
among the points stored in the subtree of u. Moreover, u contains a representative block with the critical
records of condition 2 in Lemma 3.1 for the I/O-CPQAs associated with its children nodes.

To construct the structure, we proceed in a bottom up manner. First, we compute the maximal points
among the points contained in every leaf of T . In particular for every leaf, we initialize an I/O-CPQA Q.
We consider the points (px, py) stored in the block in increasing x-coordinate, and call InsertAndAt-
trite(Q,−py). In this way, a point p in the block that is dominated by another point q in the block, is
inserted before q in Q and has value −py > −qy. Therefore, the dominated points in the block correspond
to the attrited elements in Q.

9

We construct the I/O-CPQA for an internal node u of T by concatenating the already constructed
I/O-CPQAs Qi at its children nodes ui of u, for i ∈ [1, a] in Section 3. Then we call Bias to the resulting
I/O-CPQA appropriately many times in order to satisfy condition 1 in Lemma 3.1. The procedure ends when
the I/O-CPQA is constructed for the root of T . Notice that the order of concatenations follows implicitly
the structure of the tree T . To insert (resp. delete) a point p = (px, py) to the structure, we first insert (resp.
delete) px to T . This identifies the leaf with the I/O-CPQA that contains p. We discard all I/O-CPQAs
from the leaf to the root of T , and recompute them in a bottom up manner, as described above.

To report the skyline among the points that lie within a given 3-sided query rectangle [x`, xr]× [yb,+∞),
it is necessary to obtain the maximal points in a subtree of a node u of T by querying the I/O-CPQA stored
in u. Notice, however, that computing the I/O-CPQA of an internal node of T modifies the I/O-CPQAs of
its children nodes. Therefore, we can only report the skyline of all points stored in T , by calling DeleteMin
at the I/O-CPQA stored in the root of T . The rest of the I/O-CPQAs in T are not queriable in this way,
since the corresponding nodes do not contain the version of their I/O-CPQA, before it is modified by the
construction of the I/O-CPQA for their parent nodes. For this reason we render the involved I/O-CPQAs
confluently persistent, by implementing their clean, buffer and dirty deques as purely functional catenable
deques [11]. In fact, T encodes implicity the directed acyclic version graph of the confluently persistent I/O-
CPQAs, by associating every node of T with the version of the I/O-CPQA at the time of its construction.
Every internal node of T stores a representative block with the critical records for the versions of the I/O-
CPQAs associated with its children nodes. Finally, the update operation discards the I/O-CPQA of a node
in T , by performing in reverse the operations on the purely functional catenable deques involved in the
construction of the I/O-CPQA (undo operation).

With the above modification it suffices for the query operation to identify the two paths p`, pr from the
root to the leaves of T that contain the x-successor point of x` and the x-predecessor point of xr, respectively.
Let R be the children nodes of the nodes on the paths p` and pr that do not belong to the paths themselves,
and also lie within the query x-range. The subtrees of R divide the query x-range into disjoint x-ranges.
We consider the nodes of R from left to right. In particular, for every non-leaf node in p` ∪ pr, we load into
memory the representative blocks of the versions of the I/O-CPQAs in its children nodes that belong to
R. We call CatenateAndAttrite on the loaded I/O-CPQAs and on the resulting I/O-CPQAs for every
node in p` ∪ pr, as decribed in Section 3. The non-attrited elements in the resulting auxiliary I/O-CPQA
correspond to the skyline of the points in the query x-range, that are not stored in the leaves of p` and pr. To
report the output points of the query in increasing x-coordinate, we first report the maximal points within
the query range among the points stored in the leaf of p`. Then we call DeleteMin to the auxiliary I/O-
CPQA that returns the maximal points in increasing x-coordinate, and thus also in decreasing y-coordinate,
and thus we terminate the reporting as soon as a skyline point with y-coordinate smaller than yb is returned.
If the reporting has not terminated, we also report the rest of the maximal points within the query range
that are contained in the leaf of pr.

Theorem 4.1. There exist I/O-efficient dynamic data structures that store a set of n planar points and
support reporting the t skyline points within a given 3-sided orthogonal range unbounded by the positive
y-dimension in O(log2Bε n + t/B1−ε) worst case I/Os, and updates in O(log2Bε n) worst case I/Os, us-
ing O(n/B1−ε) disk blocks, for a parameter 0 ≤ ε ≤ 1.

Proof. We set the buffer size parameter b of the I/O-CPQAs equal to the leaf parameter k of T , and we set
the parameters a = 2Bε and k = B1−ε for 0 ≤ ε ≤ 1. In this way, for a node of T , the representative blocks
for all of its children nodes can be loaded into memory in O(1) I/Os. Since every operation supported by
an I/O-CPQA involves a O(1) number of deque operations, I/O-CPQAs can be made confluently persistent
without deteriorating their I/O and space complexity. Moreover, the undo operation takes O(1) worst case
I/Os, since the purely functional catenable deques are worst case efficient.

Therefore by Theorem 3.1, an update operation takes O(log2Bε
n

B1−ε) = O(log2Bε n) worst case I/Os.
Lemma 3.1 takes O(1) I/Os to construct the temporary I/O-CPQAs for every node in the search paths,

since they satisfy both of its conditions. Moreover, by Theorem 3.1, it takes O(log2Bε n
B1−ε) I/Os to catenate

them together. Thus, the construction of the auxiliary query I/O-CPQA takes O(log2Bε n) worst case I/Os

10

in total. Moreover, it takes O(1 + t/B1−ε) worst case I/Os to report the output points. There are O(n
B1−ε)

internal nodes in T , and every internal node contains O(1) blocks.

4-Sided Skyline Reporting Dynamic I/O-efficient data structures for 4-sided range skyline reporting
queries can be obtained by following the approach of Overmars and Wood for dynamic rectangular visibility

queries [15]. In particular, 4-sided range skyline reporting queries are supported in O(a log2 n
log a log 2Bε + t/B1−ε)

worst case I/Os, using O(n
B1−ε loga n) blocks, by employing our structure for 3-sided range skyline reporting

as a secondary structure on a dynamic range tree with branching parameter a, built over the y-dimension.

Updates are supported in O(log2 n
log a log 2Bε) worst case I/Os, since the secondary structures can be split or

merged in O(log2Bε n) worst case I/Os.

Remark 4.1. In the pointer machine, the above constructions attains the same complexities as the existing
structures for dynamic 3-sided and 4-sided range maxima reporting [4], by setting the buffer size, branching
and leaf parameter to O(1).

5 Lower Bound for Dominating Minima Reporting

Let S be a set of n points in R2. Let Q = {Qi} be a set of m orthogonal 2-sided query ranges Qi ∈ R2.
Range Qi is the subspace of R2 that dominates a given point qi ∈ R2 in the positive x- and y- direction (the
“upper-right” quadrant defined by qi). Let Si = S ∩Qi be the set of all points in S that lie in the range Qi.
A dominating minima reporting query Qi contains the points min(Si) ∈ Si that do not dominate any other
point in Si. In this section we prove that any pointer-based data structure that supports dominating minima
queries in O(logO(1) n + t) time, must use superlinear space. This separates the problem from the easier
problem of supporting dominating maxima queries and the more general 3-sided range skyline reporting
queries. The same trade-off also holds for the symmetric dominated maxima reporting queries that are the
simplest special case of 4-sided range skyline reporting queries that demands superlinear space. Moreover,
the lower bound holds trivially for the I/O model, if no address arithmetic is being used. In particular, for

a query time of O(logO(1) n
B + t

B) the data structure must definitely use Ω(nB
logn

log logn) blocks of space. In the
following, we prove the lower bound for the dominating minima reporting queries.

Henceforth, we use the terminology presented in Section 2. Without loss of generality, we assume that
n = ωλ, since this restriction generates a countably infinite number of inputs and thus the lower bound is

general. In our case, ω = logγ n holds for some γ 0, m = 2 and λ =
⌊

logn
1+γ log logn

⌋
. Let ρω(i) be the integer

obtained by writing 0 ≤ i < n using λ digits in base ω, by first reversing the digits and then taking their

complement with respect to ω. In particular, if i = i
(ω)
0 i

(ω)
1 . . . i

(ω)
λ−1 holds, then

ρω(i) = (ω − i(ω)λ−1 − 1)(ω − i(ω)λ−2 − 1) . . . (ω − i(ω)1 − 1)(ω − i(ω)0 − 1)

where i
(ω)
j is the j-th digit of number i in base ω. We define the points of S to be the set {(i, ρω(i))|0 ≤ i < n}.

Figure 3 shows an example with ω = 4, λ = 2.
To define the query set Q, we encode the set of points {ρω(i)|0 ≤ i < n} in a full trie structure of depth λ.

Recall that n = ωλ. Notice that the trie structure is implicit and it is used only for presentation purposes.
Input points correspond to the leaves of the trie and their y value is their label at the edges of the trie.
Let v be an internal node at depth d (namely, v has d ancestors), whose prefix v0, v1, . . . , vd−1 corresponds
to the path from v to the root r of the trie. We take all points in its subtree and sort them by y. From
this sorted list we construct groups of size ω by always picking each ωλ−d−1-th element starting from the
smallest non-picked element. Each such group corresponds to the output of each query. See Figure 3 for an
example. In this case, we say that the query is associated to node v.

A node of with depth d has n
ωd

points in its subtree and thus it defines at most n
ωd−1 queries. Thus, the

11

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2

1

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 3: An example for ω = 4 and λ = 2. Two examples of queries are shown, out of the 8 possible queries
with different output. Connecting lines represent points whose L1 distance is ωk, 1 ≤ k ≤ λ. All 8 possible
queries can be generated by translating the blue lines horizontally so that the answers of all 4 queries are
disjoint. Similarly for the red lines with the exception that we translate them vertically.

total number of queries is:

|Q| =
λ−1∑
d=0

ωd
n

ωd+1
=

λ−1∑
d=0

n

ω
=
λn

ω

This means that the total number of queries is

|Q| = λn

ω
=

log n

1 + γ log log n

1

logγ n
n =

n

logγ−1 n(1 + γ log log n)

The following lemma states that Q is appropriate for our purposes.

Lemma 5.1. Q is (2, logγ n)-favorable.

Proof. First we prove that we can construct the queries so that they have output size ω = logγ n. Assume
that we take a group of ω consecutive points in the sorted order of points with respect to the y-coordinate
at the subtree of node v at depth d. These have common prefix of length d. Let the y-coordinates of
these points be ρω(i1), ρω(i2), . . . , ρω(iω) in increasing order, where ρω(ij)− ρω(ij−1) = ωλ−d−1, 1 < j ≤ ω.
This means that these numbers differ only at the λ − d − 1-th digit. This is because they have a common
prefix of length d since all points lie in the subtree of v. At the same time they have a common suffix of
length λ − d − 1 because of the property that ρω(ij) − ρω(ij−1) = ωλ−d−1, 1 < j ≤ ω which comes as a
result from the way we chose these points. By inversing the procedure to construct these y-coordinates,
the corresponding x-coordinates ij , 1 ≤ j ≤ ω are determined. By complementing we take the increasing
sequence ρ̄ω(iω), . . . , ρ̄ω(i2), ρ̄ω(i1), where ρ̄ω(ij) = ωλ−ρω(ij)−1 and ρ̄ω(ij−1)−ρ̄ω(ij) = ωλ−d−1, 1 < j ≤ ω.
By reversing the digits we finally get the increasing sequence of x-coordinates iω, . . . , i2, i1, since the numbers
differ at only one digit. Thus, the group of ω points are decreasing as the x-coordinates increase, and as
a result a query q whose horizontal line is just below ρω(i1) and the vertical line just to the left of ρω(iω)
will certainly contain this set of points in the query. In addition, there cannot be any other points between
this sequence and the horizontal or vertical lines defining query q. This is because all points in the subtree
of v have been sorted with respect to y, while the horizontal line is positioned just below ρω(i1), so that no
other element lies in between. In the same manner, no points to the left of ρω(iω) exist, when positioning
the vertical line of q appropriately. Thus, for each query q ∈ Q, it holds that |S ∩ q| = ω = logγ n.

12

It is enough to prove that for any two query ranges p, q ∈ Q, |S ∩ q ∩ p| ≤ 1 holds. Assume that p and q
are associated to nodes v and u, respectively, and that their subtrees are disjoint. That is, u is not a proper
ancestor or descendant of v. In this case, p and q share no common point, since each point is used only once
in the trie. For the other case, assume without loss of generality that u is a proper ancestor of v (u 6= v).
By the discussion in the previous paragraph, each query contains ω numbers that differ at one and only one
digit. Since u is a proper ancestor of v, the corresponding digits will be different for the queries defined in u
and for the queries defined in v. This implies that there can be at most one common point between these
sequences, since the digit that changes for one query range is always set to a particular value for the other
query range. The lemma follows.

Lemma 5.1 allows us to apply Lemma 2.1, and thus the query time of O(logγ n + t), for output size t,

can only be achieved at a space cost of Ω
(
n logn

log logn

)
. The following theorem summarizes the result of this

section.

Theorem 5.1. The dominating minima reporting problem can be solved with Ω
(
n logn

log logn

)
space, if the query

is supported in O(logγ n+ t) time, where t is the size of the answer to the query and parameter γ = O(1).

6 Conclusion

We presented the first dynamic I/O-efficient data structures for 3-sided planar orthogonal range skyline
reporting queries with worst case polylogarithmic update and query complexity. We also showed that the
space usage of the existing structures for 4-sided range skyline reporting in pointer machine is optimal within
doubly logarithmic factors.

It remains open to devise a dynamic I/O-efficient data structure that supports reporting all m planar
skyline points in O(m/B) worst case I/Os and updatess in O(logB n) worst case I/Os. It seems that the
hardness for reporting the skyline in optimal time is derived from the fact that the problem is dynamic.
The dynamic indexability model of Yi [21] may be useful to prove a lower bound towards the direction of
rendering our structure for 3-sided range skyline reporting I/O-optimal, as defined by Papadias et al.[16].
Finally it remains open to obtain a O(nB logB n) space dynamic I/O-efficient data structures for 4-sided range

skyline reporting with O(log2
B n) worst case query and update I/Os, regardless of the I/O-complexity per

reported point.

13

References

[1] Alok Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting and related problems.
Commun. ACM, 31(9):1116–1127, 1988.

[2] Jon Louis Bentley. Multidimensional divide-and-conquer. Commun. ACM, 23(4):214–229, April 1980.

[3] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline operator. In ICDE, pages
421–430, 2001.

[4] Gerth Brodal and Konstantinos Tsakalidis. Dynamic planar range maxima queries. In Luca Aceto,
Monika Henzinger, and Jir Sgall, editors, Automata, Languages and Programming, volume 6755 of
Lecture Notes in Computer Science, pages 256–267. Springer Berlin / Heidelberg, 2011. 10.1007/978-3-
642-22006-7 22.

[5] Bernard Chazelle. Lower bounds for orthogonal range searching: I. the reporting case. J. ACM,
37(2):200–212, April 1990.

[6] Bernard Chazelle and Ding Liu. Lower bounds for intersection searching and fractional cascading in
higher dimension. Journal of Computer and System Sciences, 68(2):269 – 284, 2004. ¡ce:title¿Special
Issue on STOC 2001¡/ce:title¿.

[7] Ananda Das, Prosenjit Gupta, Anil Kalavagattu, Jatin Agarwal, Kannan Srinathan, and Kishore Kotha-
palli. Range aggregate maximal points in the plane. In Md. Rahman and Shin-ichi Nakano, editors,
WALCOM: Algorithms and Computation, volume 7157 of Lecture Notes in Computer Science, pages
52–63. Springer Berlin / Heidelberg, 2012. 10.1007/978-3-642-28076-4 8.

[8] Yu-Ling Hsueh, Roger Zimmermann, and Wei-Shinn Ku. Efficient updates for continuous skyline com-
putations. In DEXA, pages 419–433, 2008.

[9] Zhiyong Huang, Hua Lu, Beng Chin Ooi, and Anthony K. H. Tung. Continuous skyline queries for
moving objects. IEEE Trans. Knowl. Data Eng., 18(12):1645–1658, 2006.

[10] Anil Kishore Kalavagattu, Ananda Swarup Das, Kishore Kothapalli, and Kannan Srinathan. On finding
skyline points for range queries in plane. In CCCG, 2011.

[11] Haim Kaplan and Robert E. Tarjan. Purely functional, real-time deques with catenation. J. ACM,
46(5):577–603, September 1999.

[12] H. T. Kung, Fabrizio Luccio, and Franco P. Preparata. On finding the maxima of a set of vectors. J.
ACM, 22(4):469–476, 1975.

[13] Michael D. Morse, Jignesh M. Patel, and William I. Grosky. Efficient continuous skyline computation.
Inf. Sci., 177(17):3411–3437, 2007.

[14] Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. Journal of
Computer and System Sciences, 23(2):166 – 204, 1981.

[15] Mark H. Overmars and Derick Wood. On rectangular visibility. J. Algorithms, 9(3):372–390, September
1988.

[16] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. Progressive skyline computation in
database systems. ACM Trans. Database Syst., 30(1):41–82, 2005.

[17] Cheng Sheng and Yufei Tao. On finding skylines in external memory. In Proceedings of the thirtieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, PODS ’11, pages 107–116,
New York, NY, USA, 2011. ACM.

14

[18] Rajamani Sundar. Worst-case data structures for the priority queue with attrition. Inf. Process. Lett.,
31:69–75, April 1989.

[19] Yufei Tao and Dimitris Papadias. Maintaining sliding window skylines on data streams. IEEE Trans.
on Knowl. and Data Eng., 18(3):377–391, 2006.

[20] Ping Wu, Divyakant Agrawal, Ömer Egecioglu, and Amr El Abbadi. Deltasky: Optimal maintenance
of skyline deletions without exclusive dominance region generation. In ICDE, pages 486–495, 2007.

[21] Ke Yi. Dynamic indexability and lower bounds for dynamic one-dimensional range query indexes. In Pro-
ceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, PODS ’09, pages 187–196, New York, NY, USA, 2009. ACM.

15

	1 Introduction
	2 Preliminaries
	3 I/O-Efficient Catenable Priority Queues with Attrition
	3.1 Operations
	3.2 Concatenating a Sequence of I/O-CPQAs

	4 Dynamic Planar Range Skyline Reporting
	5 Lower Bound for Dominating Minima Reporting
	6 Conclusion

