2,778 research outputs found

    A `bright zone' in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity

    Get PDF
    Eyes of the hoverfly Eristalis tenax are sexually dimorphic such that males have a fronto-dorsal region of large facets. In contrast to other large flies in which large facets are associated with a decreased interommatidial angle to form a dorsal `acute zone' of increased spatial resolution, we show that a dorsal region of large facets in males appears to form a `bright zone' of increased light capture without substantially increased spatial resolution. Theoretically, more light allows for increased performance in tasks such as motion detection. To determine the effect of the bright zone on motion detection, local properties of wide field motion detecting neurons were investigated using localized sinusoidal gratings. The pattern of local preferred directions of one class of these cells, the HS cells, in Eristalis is similar to that reported for the blowfly Calliphora. The bright zone seems to contribute to local contrast sensitivity; high contrast sensitivity exists in portions of the receptive field served by large diameter facet lenses of males and is not observed in females. Finally, temporal frequency tuning is also significantly faster in this frontal portion of the world, particularly in males, where it overcompensates for the higher spatial-frequency tuning and shifts the predicted local velocity optimum to higher speeds. These results indicate that increased retinal illuminance due to the bright zone of males is used to enhance contrast sensitivity and speed motion detector responses. Additionally, local neural properties vary across the visual world in a way not expected if HS cells serve purely as matched filters to measure yaw-induced visual motion

    Visuomotor Transformation in the Fly Gaze Stabilization System

    Get PDF
    For sensory signals to control an animal's behavior, they must first be transformed into a format appropriate for use by its motor systems. This fundamental problem is faced by all animals, including humans. Beyond simple reflexes, little is known about how such sensorimotor transformations take place. Here we describe how the outputs of a well-characterized population of fly visual interneurons, lobula plate tangential cells (LPTCs), are used by the animal's gaze-stabilizing neck motor system. The LPTCs respond to visual input arising from both self-rotations and translations of the fly. The neck motor system however is involved in gaze stabilization and thus mainly controls compensatory head rotations. We investigated how the neck motor system is able to selectively extract rotation information from the mixed responses of the LPTCs. We recorded extracellularly from fly neck motor neurons (NMNs) and mapped the directional preferences across their extended visual receptive fields. Our results suggest that—like the tangential cells—NMNs are tuned to panoramic retinal image shifts, or optic flow fields, which occur when the fly rotates about particular body axes. In many cases, tangential cells and motor neurons appear to be tuned to similar axes of rotation, resulting in a correlation between the coordinate systems the two neural populations employ. However, in contrast to the primarily monocular receptive fields of the tangential cells, most NMNs are sensitive to visual motion presented to either eye. This results in the NMNs being more selective for rotation than the LPTCs. Thus, the neck motor system increases its rotation selectivity by a comparatively simple mechanism: the integration of binocular visual motion information

    Neuronal processing of translational optic flow in the visual system of the shore crab Carcinus maenas

    Get PDF
    This paper describes a search for neurones sensitive to optic flow in the visual system of the shore crab Carcinus maenas using a procedure developed from that of Krapp and Hengstenberg. This involved determining local motion sensitivity and its directional selectivity at many points within the neurone's receptive field and plotting the results on a map. Our results showed that local preferred directions of motion are independent of velocity, stimulus shape and type of motion (circular or linear). Global response maps thus clearly represent real properties of the neurones' receptive fields. Using this method, we have discovered two families of interneurones sensitive to translational optic flow. The first family has its terminal arborisations in the lobula of the optic lobe, the second family in the medulla. The response maps of the lobula neurones (which appear to be monostratified lobular giant neurones) show a clear focus of expansion centred on or just above the horizon, but at significantly different azimuth angles. Response maps such as these, consisting of patterns of movement vectors radiating from a pole, would be expected of neurones responding to self-motion in a particular direction. They would be stimulated when the crab moves towards the pole of the neurone's receptive field. The response maps of the medulla neurones show a focus of contraction, approximately centred on the horizon, but at significantly different azimuth angles. Such neurones would be stimulated when the crab walked away from the pole of the neurone's receptive field. We hypothesise that both the lobula and the medulla interneurones are representatives of arrays of cells, each of which would be optimally activated by self-motion in a different direction. The lobula neurones would be stimulated by the approaching scene and the medulla neurones by the receding scene. Neurones tuned to translational optic flow provide information on the three-dimensional layout of the environment and are thought to play a role in the judgment of heading

    The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster

    Get PDF
    To study the visual cues that control steering behavior in the fruit fly Drosophila melanogaster, we reconstructed three-dimensional trajectories from images taken by stereo infrared video cameras during free flight within structured visual landscapes. Flies move through their environment using a series of straight flight segments separated by rapid turns, termed saccades, during which the fly alters course by approximately 90° in less than 100 ms. Altering the amount of background visual contrast caused significant changes in the fly’s translational velocity and saccade frequency. Between saccades, asymmetries in the estimates of optic flow induce gradual turns away from the side experiencing a greater motion stimulus, a behavior opposite to that predicted by a flight control model based upon optomotor equilibrium. To determine which features of visual motion trigger saccades, we reconstructed the visual environment from the fly’s perspective for each position in the flight trajectory. From these reconstructions, we modeled the fly’s estimation of optic flow on the basis of a two-dimensional array of Hassenstein–Reichardt elementary motion detectors and, through spatial summation, the large-field motion stimuli experienced by the fly during the course of its flight. Event-triggered averages of the large-field motion preceding each saccade suggest that image expansion is the signal that triggers each saccade. The asymmetry in output of the local motion detector array prior to each saccade influences the direction (left versus right) but not the magnitude of the rapid turn. Once initiated, visual feedback does not appear to influence saccade kinematics further. The total expansion experienced before a saccade was similar for flight within both uniform and visually textured backgrounds. In summary, our data suggest that complex behavioral patterns seen during free flight emerge from interactions between the flight control system and the visual environment

    Binocular interactions underlying the classic optomotor responses of flying flies.

    Get PDF
    In response to imposed course deviations, the optomotor reactions of animals reduce motion blur and facilitate the maintenance of stable body posture. In flies, many anatomical and electrophysiological studies suggest that disparate motion cues stimulating the left and right eyes are not processed in isolation but rather are integrated in the brain to produce a cohesive panoramic percept. To investigate the strength of such inter-ocular interactions and their role in compensatory sensory-motor transformations, we utilize a virtual reality flight simulator to record wing and head optomotor reactions by tethered flying flies in response to imposed binocular rotation and monocular front-to-back and back-to-front motion. Within a narrow range of stimulus parameters that generates large contrast insensitive optomotor responses to binocular rotation, we find that responses to monocular front-to-back motion are larger than those to panoramic rotation, but are contrast sensitive. Conversely, responses to monocular back-to-front motion are slower than those to rotation and peak at the lowest tested contrast. Together our results suggest that optomotor responses to binocular rotation result from the influence of non-additive contralateral inhibitory as well as excitatory circuit interactions that serve to confer contrast insensitivity to flight behaviors influenced by rotatory optic flow

    Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action

    Get PDF
    Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP. Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action. Frontiers in Neural Circuits. 2012;6:108.Insects such as flies or bees, with their miniature brains, are able to control highly aerobatic flight maneuvres and to solve spatial vision tasks, such as avoiding collisions with obstacles, landing on objects, or even localizing a previously learnt inconspicuous goal on the basis of environmental cues. With regard to solving such spatial tasks, these insects still outperform man-made autonomous flying systems. To accomplish their extraordinary performance, flies and bees have been shown by their characteristic behavioral actions to actively shape the dynamics of the image flow on their eyes ("optic flow"). The neural processing of information about the spatial layout of the environment is greatly facilitated by segregating the rotational from the translational optic flow component through a saccadic flight and gaze strategy. This active vision strategy thus enables the nervous system to solve apparently complex spatial vision tasks in a particularly efficient and parsimonious way. The key idea of this review is that biological agents, such as flies or bees, acquire at least part of their strength as autonomous systems through active interactions with their environment and not by simply processing passively gained information about the world. These agent-environment interactions lead to adaptive behavior in surroundings of a wide range of complexity. Animals with even tiny brains, such as insects, are capable of performing extraordinarily well in their behavioral contexts by making optimal use of the closed action-perception loop. Model simulations and robotic implementations show that the smart biological mechanisms of motion computation and visually-guided flight control might be helpful to find technical solutions, for example, when designing micro air vehicles carrying a miniaturized, low-weight on-board processor

    Spatial organization of visuomotor reflexes in Drosophila

    Get PDF
    In most animals, the visual system plays a central role in locomotor guidance. Here, we examined the functional organization of visuomotor reflexes in the fruit fly, Drosophila, using an electronic flight simulator. Flies exhibit powerful avoidance responses to visual expansion centered laterally. The amplitude of these expansion responses is three times larger than those generated by image rotation. Avoidance of a laterally positioned focus of expansion emerges from an inversion of the optomotor response when motion is restricted to the rear visual hemisphere. Furthermore, motion restricted to rear quarter-fields elicits turning responses that are independent of the direction of image motion about the animal's yaw axis. The spatial heterogeneity of visuomotor responses explains a seemingly peculiar behavior in which flies robustly fixate the contracting pole of a translating flow field

    Bioinspired symmetry detection on resource limited embedded platforms

    Get PDF
    This work is inspired by the vision of flying insects which enables them to detect and locate a set of relevant objects with remarkable effectiveness despite very limited brainpower. The bioinspired approach worked out here focuses on detection of symmetric objects to be performed by resource-limited embedded platforms such as micro air vehicles. Symmetry detection is posed as a pattern matching problem which is solved by an approach based on the use of composite correlation filters. Two variants of the approach are proposed, analysed and tested in which symmetry detection is cast as 1) static and 2) dynamic pattern matching problems. In the static variant, images of objects are input to two dimentional spatial composite correlation filters. In the dynamic variant, a video (resulting from platform motion) is input to a composite correlation filter of which its peak response is used to define symmetry. In both cases, a novel method is used for designing the composite filter templates for symmetry detection. This method significantly reduces the level of detail which needs to be matched to achieve good detection performance. The resulting performance is systematically quantified using the ROC analysis; it is demonstrated that the bioinspired detection approach is better and with a lower computational cost compared to the best state-of-the-art solution hitherto available
    corecore