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Abstract

This work is inspired by the vision of flying insects which enables them to detect
and locate a set of relevant objects with remarkable effectiveness despite very lim-
ited brainpower. The bioinspired approach worked out here focuses on detection of
symmetric objects to be performed by resource-limited embedded platforms such as
micro air vehicles. Symmetry detection is posed as a pattern matching problem which
is solved by an approach based on the use of composite correlation filters. Two var-
iants of the approach are proposed, analysed and tested in which symmetry detection
is cast as 1) static and 2) dynamic pattern matching problems. In the static variant,
images of objects are input to two dimentional spatial composite correlation filters. In
the dynamic variant, a video (resulting from platform motion) is input to a composite
correlation filter of which its peak response is used to define symmetry. In both cases, a
novel method is used for designing the composite filter templates for symmetry detec-
tion. This method significantly reduces the level of detail which needs to be matched to
achieve good detection performance. The resulting performance is systematically quan-
tified using the ROC analysis; it is demonstrated that the bioinspired detection approach
is better and with a lower computational cost compared to the best state-of-the-art solu-
tion hitherto available.
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Preface

Motivation and Background

The appreciable computational demand (and limited performance) of many conventional
approaches to visual information processing is the main reason here for seeking alternative
algorithms. The need for efficient alternatives, motivating the work presented in this thesis,
has arisen in the context of indoor flight of micro air vehicles (MAVs). MAVs are defined as
autonomous flying machines with the size of six inches. The primary mission of the MAVs
is to detect man-made objects occurring in typical indoor environments; such objects often
exhibit symmetries. This indoor reconnaissance mission requires efficient, real-time image
processing to be performed with very limited on-board processing capabilities available to a
six-inch platform (whose main on-board resources must be devoted to powered flight). MAV
design for indoor reconnaissance includes the ability to hover so that the focus here is on
the detection of rotational symmetries in computer images without perspective (projective)
distortion.

The proficient flight of insects relies largely on their vision. The main aspect of the
insects ability to efficiently perceive the visual world is through the integration of both per-
ception of static cues (simple features like edges exhibiting symmetries or orientation), and
dynamic perception (tracking objects and estimating self-motion). The key to this efficient
processing is due to the highly specialised nature of visual information processing.

Another important aspect learned from insects is their integration of simultaneous static
and dynamic patterns with spherical perception. By matching simple patterns and their
orientation by comparing the perceived objects and their relative motion with a small number
of geometric and optic flow primitives, insects are able to fuse both dynamic and static
perception to efficiently locate, track objects while still using visual cues for stabilisation and
obstacle avoidance. The static and dynamic primitives are matched locally on small patches
of the sphere and then matched globally on overlapping hemispheres so that local and global
perception of objects and relative motion is achieved simultaneously. The integration of the
local and global overlapping imagery enables robust perception and aids disambiguation of
patterns, orientation and motion.

Using the insights from biological studies as a starting point, this thesis uses this in-
spiration to develop new and efficient approaches for both static and dynamic perception
of symmetric objects. Symmetry detection is posed as a pattern matching problem and is
solved with an approach based on the use of composite correlation filters. Such filters are
designed in a special way so that the patterns to be matched are as efficient as possible. It
should also be noted that methods presented in this thesis are not trying to mimic those used
by insects, but rather draws inspiration and key principals from them.

Thesis Outline

The focus on this work covers two main topics, that of static perception, and dynamic per-
ception. Chapter 1 provides an overview of the insect visual system which is the motivation
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for work presented in this Thesis. Chapter 2 covers the relevant engineering background
that the work presented in this thesis that is used in later chapters. Chapter 3 proposes a
method of using a pattern based approach for quickly recognising symmetries in images.
Chapter 4 extends the pattern based methods to improve symmetry detection through with
the use of motion. Later in this chapter a method to describe motion using spatio-temporal
filtering is presented along with a pattern based approach to recognise self-motion within
video sequences. Chapter 5 provides some closing remarks and discusses possible avenues
for future work.

Contributions
� Insect vision review from an engineering perspective (Chapter 1)

� Efficient symmetry detection using composite correlation filters, posed as a pattern
matching problem (Section 3.3).

� Composite correlation filter design using training images of varying levels of com-
plexity (Section 3.3).

� Performance comparison between the proposed symmetry detection method to the
state-of-the-art feature based symmetry detection algorithm (Section 3.4).

� Symmetry detection based on motion using linear filtering techniques (Section 4.2).

� Motion characterisation for each pixel using spatio-temporal filtering techniques (Sec-
tion 4.4).

� Ego motion recognition posed as a pattern matching problem using composite cor-
relation filters (Section 4.4).
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A. Elliott 1 Biological Background

1 Biological Background
This first Chapter of this thesis studies the visual system of flying insects. Looking at the
biological aspects from an engineering perspective allows for insights to be drawn and later
implemented in this thesis. Because computer hardware and flying insects are fundamentally
different, the aim here is not to mimic insects but rather collect some key insights. This first
chapter is divided into insect visual system from both a sensing and processing which forms
a nice parallel to an engineering implementation that relies on both specialist hardware and
software.

This chapter is laid out as follows:

� Section 1.1 looks at the visual sensors of flying insects, namely the compound eye.
Compound eyes are fundamentally different to how most cameras work.

� Section 1.2 looks at how insects process the visual information for both static and
dynamic perception.

1.1 Insect Visual Sensing
1.1.1 Brief Overview of the Insect Eye

All flying insects have two large compound eyes, that occupy most of their head [1]. Each
compound eye is made of many facets (hexagonal lenses) that fit together in a honeycomb-
like fashion, as shown in Figures 1 and 2. Light from only a small part of the total scene
is admitted by each lens of the eye which focuses light into a small tube underneath each
lens. This small tube called the rhabdom is a light-sensitive organ that contains several
photosensitive cells [2] and [3].

Each photosensitive cell within the rhabdom shares the same visual field but each cell re-
sponds to only certain spectrum of light (such as Ultraviolet, Blue, and Green). Most insects
have trichromatic colour vision, compared to human vision, the insect’s visible spectrum is
shifted more towards the shorter wavelengths.

The collection of lens and rhabdom (along with the crystalline cone) is called omma-
tidia. Each ommatidium in the compound eye points in a different direction and is arranged
in a spherical arrangement. Each ommatidium consists of a lens that focuses light onto the
rhabdom inside which contains several photosensitive cells. In many insects each omma-
tidium is a single sampling element with its own optical axis; only insect eyes with this type
of ommatidium will be discussed here. Light absorbed by the rhabdom transmits a signal to
the insect’s brain through an optic nerve.

Two angles are of prime importance in understanding the function of an insect eye, see
Figure 3:

� The first is the angle between the optical axes of two adjacent ommatidia. This is
called the inter-ommatidial angle, denoted by ��, and determines how densely the
compound eye samples the visual world.
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1.1 Insect Visual Sensing A. Elliott

Figure 1: The structure of a typical compound eye of flying insects. This Figure shows
how the eyes are made up of many hexagonal facets (lenses). The combination of the lens,
photoreceptor and crystalline cone makes up the ommatidium. The eye consists of many
ommatidia arranged radially around the eye [2].

� The second is the angle defining the field of view of a single ommatidium, denoted by
��.

The shape of the field of view is in effect the sensitivity of the ommatidium to a point
source of light as a function of angle from the optical axis. The sensitivity of the omma-
tidium is at its greatest along the optical axis and it decreases with the increase of the angle
from the axis. Compound eyes employ many apertures to construct a single overall image
of the environment.

Compared to the concave structure of single chamber eyes in humans (camera type eyes),
compound eyes are located on the outside of an insects head and are convex in structure.

Figure 2: A compound eye of the on a Calliphora vomitoria (bluebottle) fly [4].
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A. Elliott 1.1 Insect Visual Sensing

Figure 3: Structure of the insect eye determines how much detail the eye is capable of seeing.
Each ommatidium has a cornea that also serves as a lens focusing light through a transparent
cone onto a light-sensitive element: the rhabdom. The optical axis of the ommatidia is the
line extending through the centre of the lens to the rhabdom. The angle between the optical
axes of two adjacent ommatidia and is called the inter-ommatidial angle. The curves above
each ommatidium indicate how the sensitivity of the ommatidium decreases with angular
distance from the ommatidium optical axis. The field of view of each of the ommatidia is
defined as the angle subtended where the sensitivity has fallen to 50 percent of its maximum
value [1].
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1.1 Insect Visual Sensing A. Elliott

In spite of this major topological difference, the job of the two kinds of eye structure is
the same. That is to break up the incoming light according to its direction of origin (see
Figure 4). The other difference between the two kinds of eye is that compound eyes employ
multiple optical systems. In apposition eyes, such as those of most diurnal insects, each of
the lenses form a tiny inverted image, each with a small view of the entire scene (although
this is not what the insect actually sees). The similarities between an apposition eye, and a
camera type eye is shown in Figure 4.

The function of each ommatidium is to focus the inverted image captured by the lens
onto the tip of the rhabdom. The rhabdom acts like a light guide because it has a slightly
higher reflective index compared to the surroundings. This means that the rhabdom guides
the light to ensure it moves downwards, due to the internal reflections. In this process, due
to the multiple internal reflections, any spatial information is lost as it enters the rhabdom.
Because of this, the rhabdom acts like a photocell and averages any light that comes in.
Geometrically it’s field of view of is the angle on the tip that meets at the nodal point of the
cornea of the lens, this angle is known as the acceptance angle, ��. The inter-ommatidia
angle, �� is defined by the field of view of each ommatidium as shown in Figure 4. In
most apposition eyes, the inter-ommatidia angle, �� is about the same as the acceptance
angle,��. Due to the angle being similar and to the placement of the rhabdom and lens, each
rhabdom ’opposes’ the field of field of its neighbour, which produces an overall erect image.
This erect image consists of adjacent fields of view that have been mosaicked together.

There are three primary types of compound insect eyes found in nature, apposition eye,
and a neural or optical superposition eye. The fundamentals of each are all similar but the
key concept of insect vision is that insects brain process the information for all of the lenses
in parallel both simultaneously and sequentially. The simultaneous parallel processing is
used to detect simple features, largely based on symmetry while the sequential processing
to used for motion detection as a form of optic flow. The fundamentals of insect static
and dynamic perception are discussed in the following sections. A more detailed study of
the insect vision was conducted and that covers the types of compound eyes and optics in
more details is presented in an internal report submitted to the PhD sponsor [6]. This is not
included in this thesis as the focus here is not on hardware.

1.1.2 Organisation of the Visual System of a Fly

A description of the visual system of the fly can be seen in Figure 5A. The visual system can
be broken down into 3 main sections (known as ganglia) of neurons (lamina, medulla and
the lobula), that each corresponds to three vision processing centres, and is shown in Figure
5. The three neuron sections are briefly described below.

The Lamina The Lamina is the first layer of neurons after the receptor layer in the insect
eye. This layer takes the direct outputs from the photo receptors. One of the roles of these
neurons is to act as a gain control to quickly adapt to changes in background light intensities.
The lamina also acts like a high pass filter which amplifies the temporal changes.
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A. Elliott 1.1 Insect Visual Sensing

Figure 4: The underlying similarity of function in apposition and simple (camera-type) eyes.
The sampling angle �� (inter-ommatidial or inter-receptor angle) is D=r in an apposition
eye and s=f in a simple eye. D is the facet diameter, r the radius of curvature (centre C), f
the simple eye focal length and s the receptor separation. N is the nodal point of the simple
eye [5].
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1.1 Insect Visual Sensing A. Elliott

OPTIC FLOW PROCESSING IN SINGLE VISUAL INTERNEURONS 1905

FIG. 3. Visual system of the blowfly. A : schematic horizontal section showing the retina (R) and the 3 visual neuropils:
lamina (L), medulla (M), and the bipartite lobula complex with the anterior lobula (LO) and the posterior lobula plate
(LP). Fiber tracts (CHE, CHI) connecting the neuropils preserve the retinotopic arrangements of columns where local visual
signals are processed. Some wide-field output neurons of the lobula plate converge on descending neurons that transfer
signals through the cervical connective (CC) to motor neuropils of the thoracic compound ganglion (not shown) (modified
after Hausen 1984). B : retinotopic representation of the right visual hemisphere within the right lobula plate viewed from
anterior (modified after Hausen 1993) (f, frontal; c, caudal; d, dorsal; v, ventral) . C : 3 neurons constitute the ‘‘horizontal
system (HS).’’ Their dendritic arbors fill the anterior layers of the lobula plate, and each extends over roughly 1/3 of the
neuropil (from Hausen 1982a). D : the 10 neurons of the ‘‘vertical system’’ (VS) have their arborizations mainly in the
posterior layers of the neuropil. Their dendritic fields are vertically oriented stripes, stacked from the distal to the proximal
margin of the lobula plate and, taken together, cover again the whole retinotopic extent of the neuropil. E : individual dendritic
arbors of the 10 VS neurons drawn apart to reveal their distinct structures. The more fan-shaped dorsal branches of VS1 and
VS7–VS10 are located in the anterior layers of the lobula plate. Reconstructions were made after cobalt staining (C and D)
or procion yellow injections (E) . C – E modified after Hengstenberg et al. (1982).

These results suggested that the HS and VS neurons play compared with a variety of calculated optic flow fields. A
small part of this study has been published in a short commu-a significant role in the control of self-motion. The experi-

ments were, however, insufficient to specify the particular nication (Krapp and Hengstenberg 1996).
role of the individual neurons or to elucidate the functional
principles behind their design. We addressed these questions M E T H O D S
by mapping the local preferred direction (LPD) and the local

Preparationmotion sensitivity (LMS) using tiny stimuli (õ1% of the
unit sphere) presented successively at many positions in the One- to three-day-old female blowflies (Calliphora erythroceph-
receptive fields of VS and other neurons. The response maps ala , Meigen) were used for the experiments. The animals were
obtained for the different neurons, which were identified by briefly anesthesized with CO2; their legs and wings were removed

and the wounds closed with wax. The flies were mounted on afluorescent dye injection, can be quantitatively analyzed and

J060-7/ 9k27$$ap45 03-11-98 09:41:08 neupal LP-Neurophys

 on A
pril 11, 2010 

jn.physiology.org
D

ow
nloaded from

 

Figure 5: Visual system of the blowfly [7]. A: A horizontal section of the brain showing the
retina (R), 3 visual neuropiles: lamina (L), medulla (M), the lobula (LO,LP). B: Schematic
of the right visual hemisphere (f: front, c: back, d: top, v: bottom). C: Example of a
horizontal system HS neuron (there are three HS neurons out of 60 LPTCs; ‘horizontal’
refers to horizontal stripes of their dendrites); CoCC means that cobalt staining was used.
D: Example of a vertical system VS neuron (there are ten VS neurons out of 60 LPTCs;
‘vertical’ refers to vertical stripes of their dendrites); CoCC means that cobalt staining was
used. E: Dendritic fragments of each of the ten VS neurons; PROCION means that procion
yellow injections were used.
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A. Elliott 1.1 Insect Visual Sensing

The Medulla Due to the tiny size of the cells in the medulla, it is difficult to record read-
ings from them. The outputs from the lamina are fed into the medulla, but during this
movement between the two ganglia, the image is inverted during projection to the medulla
from front to back. The main function of the medulla is to perform local optic flow detec-
tion. There are about 50 such neurons for each ommatidium in the eye. The outputs from
the medulla are then sent to the lobula.

The Lobula The final optic neurons called the lobula, are responsible for combining all
the information from many thousands of receptor responses that have been pre-processed
by the previous two neurons (lamina and medulla). The lobula plate essentially integrates
the directional motion information from all the parts around the eye. In the lobula plate,
all of these responses are combined into just 60 cells, known as lobular plate tangential
cells (LPTCs). These LPTCs are in the form of broad dendritic trees which receive inputs
from very big regions of the medulla, which means that these have very large receptive
fields. Further down this information from the LPTCs are projected to other parts of the
brain which in turn are used for functions such as flight muscle control further down into the
insect’s thorax.

Furthermore, the LTPCs can be divided into two systems: A horizontal and a vertical
system. There are 10 vertical system cells (VS-cells), and 3 horizontal system cells (HS-
cells). The HS-cells combine the visual input from the bottom (HS-South), middle (HS-
Equatorial) or top(HS-North) regions of the visual fields of each eye and can be seen in
Figure 6). However, it is important to note that the HS-North and HS-South cells also
receive extra rotation specific signals from the visual field on the opposite side. As the name
suggests, the vertical system cells have the main dendrites orientated vertically.

which reduces the number of sodium channels contributing to the spikes
generated. The comparatively low input resistance causing the shallow
resting potential shortens the cells’ time constant and thus increases the
bandwidth of VS- and HS-neurons (Haag and Borst, 1996). The resulting
faster responses benefit the detection of rapid changes in attitude, but come
at the cost of higher energy consumption (Laughlin, 2001). The fact that
output LPTCs spend comparatively high amounts of energy to improve
their coding efficiency reflects the vital role of these cells in flight stabilisation
tasks which require high bandwidth and short response latencies.

The axon terminals of the VS- and HS-cells ramify in the ventrolateral
protocerebrum of the ipsilateral half of the brain, where they connect to
target neurons via mixed chemical-electrical synapses (Strausfeld, 1976;
Strausfeld and Bassemir, 1983; Gauck et al., 1997). Cells postsynaptic to
the LPTCs are mostly descending neurons (Gronenberg and Strausfeld,
1990; Strausfeld and Gronenberg, 1990) projecting to various motor

f c
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FIG. 6 Horizontal system cells of Calliphora indicate rotations around differently
inclined but near-vertical axes, and specific translation-related parameters. Upper
row of panels: reconstructions from intracellular stains of individually identified
tangential cells HSN, HSE, and HSS drawn in the contour of the lobula plate. The
main orientation of the HS-cell dendrites is horizontal. Lower row of panels: visual
receptive fields averaged across results obtained from at least 5 different flies for
HSN and HSE and 2 different flies for HSS. On average these cells prefer
horizontal front-to-back motion but show a gradual change in their directional
preferences reminiscent of translational optic flow. The distribution of sensitivity of
the HS cells is correlated with the extent of their dendritic arborisation and thus
reflects the retinotopic organisation of the visual system (redrawn from Krapp,
2000, Krapp unpublished results, and Hausen, 1993. Reconstructions of HS-cells
courtesy of Klaus Hausen).

SENSORY SYSTEMS AND FLIGHT STABILITY 249

Figure 6: Horizontal system of Calliphora LPTCs: HSN, HSE, HSS and optic flow patterns
they detect [8]; the patterns are reminiscent of those for pure translation.

Holger Krapp et al , conducted experiments by applying visual stimulation to a fly and
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the local directional tuning curve of individually identified LPTCs were measured [7]. When
their axes of sensitivity are plotted on a cylindrical projection of the visual field, (see Figure
7) the axes of eight of the ten VS-cells (VS3–VS10) fall along a straight line with a slope of
about 12ı with respect to the horizontal (linear regression: p < 0:05;R2 D 0:93). Hence,
while the neuron at the start of this line (VS6) is sensitive to pure roll motions, the remaining
neurons along the line are sensitive to combinations of roll, pitch, and yaw. The other two
VS-cells (VS1–VS2) are each sensitive to rotations about transverse axes tilted slightly with
respect to the horizontal, so are sensitive to a combination of pitch, and to a lesser extent,
yaw. The structure of this arrangement is striking: rather than being spread out across the
visual field so as to sample as wide a range of rotations as possible, the ten VS-neurons are
concentrated in a very specific manner. This arrangement may be specialised for a particular
manoeuvre.

Figure 7: The preferred axis of rotation of the VS neurons. The preferred axis of VS6
coincides with the body axis (roll) and the preferred axis of VS1 and VS2 close below and
above the transverse body axis (pitch) [9].

Holger Krapp et al [7] showed that the LPTCs do the following:

� Each LPTC covers approximately one hemisphere;

� Each LPTC responds most strongly (is matched to) a specific global pattern of the
optic flow on the sphere S2;

� Each of the patterns corresponds either to a pure translation or a pure rotation about
an axis;

� Each axis (preferred direction) is different and the axes are arranged non-orthogonally.

To summarise, The VS and HS neurons in the visual system convey key information
about vertical and horizontal motion. Rotational components are unavoidable during the
flight of an insect. But the rotational optic flow component does not contain any information
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about the 3-D environment. The translational component only has information about the
3-D environment. So for tasks such as long or short range distance estimation, an optic
flow field that is purely translational is required. Something that could aid this is to reduce
the rotational component in the optic flow, which can be achieved by compensating for
it by controlling the steering manoeuvres and/or stabilising the head motion of the insect.
Evidence of reducing the rotational component is present not only in insects when flying,
or vision stabilisation, but also in other animals and humans. Of course, to generate the
compensatory actions, the respective rotational self-motion needs to be determined by the
sensory systems and transformed into an adequate motor control signal. It is conceivable
that HS neurons are utilised to sense both translation and rotation as well.

1.2 Insect Visual Processing

1.2.1 Insect Static Perception of Symmetries

Honeybees are commercially important pollinators and can be trained in controlled condi-
tions. As a result, they have commonly been used for experiments. Recently, Horridge
reappraised the real meaning of honeybee symmetry perception and pointed out its remark-
able simplicity [10]. That simple perception is based on detection of elementary geomet-
rical cues together with the spatial placement of the cues and has been shown through several
studies and experiments [11], [12]. Based on the accumulated evidence from such carefully-
conducted experiments, the current understanding of the honeybee symmetry perception
involves three elements:

� feature detectors for edge/contrast which is generated from responses of local recept-
ors;

� cues which are generated from responses of the feature detectors within a local region
of the eye;

� landmarks which are generated from relative orientation of the cues. Only the cue
angles (not the actual shapes) are used for efficiency and scale invariance.

Feature Detectors Bees have trichromatic vision with receptors sensitive to the Blue,
Green and Ultraviolet wavelengths. Irrespective of the wavelength, each of the receptors
is able to detect edges by detecting changes in intensity across each receptor. Across an
edge there is a change/modulation in the receptor response. These responses are fed deeper
inside the brain to the lamina of the brain (see Section 1.1.2). The modulated responses are
fed into feature detector arrays which are able to detect relative contrast changes at edges but
are not affected by overall changes brightness in large areas of the eye. An edge and mod-
ulation feature is detected when local neighbouring receptors detect a change in intensity
response, an example of this is can be seen in Figure 8.
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Figure 8: The main types of feature detectors in the honeybee detected by intensity responses
from local neighborhoods of 7 receptors (see Figure 1). These responses are not sensitive to
widespread intensity changes. (A) A modulation detector is a radial symmetry of receptor
responses around a central receptor. (B,C,D) Show feature detectors with bilateral symmetry
can detect edge orientation. The arrangement of the receptors used for this type of feature
means that edge orientation detectors are green sensitive and colour blind. The numbers
shown represent the relative excitation (C) and inhibition (�) response of the receptors due
to light. Image adapted from [11].
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Modulation Detectors Researchers measured the angular resolution modulation de-
tectors by training bees to tell the difference between black grating patterns that were ver-
tically and horizontally orientated [12]. It was found that the smallest grating period that
was able to be detected by the bee was 2ı. Because the field of view of a receptor in the eye
of the bee is about 2:5ı, the modulation detectors in bees have a resolution limit of a single
receptor. The modulation detector in bees is able to detect spots in the scene as shown in
Figure 8. A single receptor with a strong response is surrounded by neighbouring receptors
with little or no response.

Edge Detectors Experiments on bees showed that bees use edge detectors in addition
to modulation detectors [11]. This was shown in experiments where bees were trained to
associate food with certain types of edges (dark edge on a light background, and light edge
on dark background). However, experiments showed that bees could not recognise which
side of an edge is light or dark, which means that they are able to detect local edge orient-
ations of fuzzy or sharp images based on receptor responses in a local neighbourhood as
shown in Figure 8. Each edge detector is symmetrical about the axis of orientation. Another
aspect of the bee edge detectors is that they are not like edges detectors of computer vision
algorithms (Canny edge detector). Rather than detecting the entire edge, each edge detector
of the bee acts independently and does not give a single response along an entire edge, rather
at points along it. Furthermore, the edge detectors used by bees can only detect edges in just
3 orientations due to the fact that each edge detector consists of only 7 receptors.

Cues from Feature Detectors

Cues from Edge Detectors The bee forms cues based on the sum of the number of
responses from each of its feature detectors within a local region of the eye as shown in
Figure 9. This summation of features to form cues has 4 main aspects:

� Edges detected in black areas are summed separately from edges detected in colour
regions of the eye.

� Edge detectors consist of a local neighbourhood of receptors and are not able to detect
the entire shape of edges. They act independently. So a series of edges along the same
direction is indistinguishable to a single continuous edge along the same direction in
terms of bee vision.

� Edge detector responses are summed in a specific way that effectively allows the bee
to disregard features in a scene that are not relevant. Edge detectors that are at right
angles to each other are summed to cancel each other out; this is shown in Figure 9.
As an example, bees are not able to tell the difference between a square cross at 40ı,
and the same square cross that is rotated by 45ı. Because of the way the edge features
are summed, the orientation will be lost for a 45ı line that is made of steps.
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� Edge detectors are added together in a special way that allows detection of regions of
radial or circular symmetry, or hubs in each local region (Figure 9E,F). An interesting
aspect of this type of cue is that the location of the radial pattern/hub is remembered.
However, the actual layout of the edge detectors around it are lost when they are all
summed together.

Figure 9: Cues are formed by the summation of edge orientation feature detectors. (A)
Edge Detectors of vertical axes orientation. (B) A line of oblique orientation edge detectors.
(C) A combination of mixed edge orientation cancel out, but the modulation of the edge is
maintained, along with the position. (D) Perpendicular edge orientations cancel out along
the edges of a square. However, weak hubs are still detected along the corners. (E,F) Radial
and tangential symmetry cues are formed from hubs of edge detectors [11].

A key to the efficient processing of insect vision is the ability to reduce or filter the
information of the scene to only extract what is relevant to the specific task. This is achieved
through the special summation of cues to form features as described above. The individual
feature detectors are summed together in local regions of the eye that are approximately
25ı across, where each region only contains a few cues. Because of this simplicity, bees
recognise the cues with no prior information about the pattern that forms them. This results
in trained bees recognising wrong patterns that have the same cues the bees were trained on,
assuming there are not any unexpected cues in the pattern. Bees are highly generalised in
the sense that they learn cues for specific objects, not a library of cues that will describe any
object. A summary of the types of cues a bee detects can be shown in Figure 10 in order of
preference.
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Figure 10: This table shows a visual approximation of the 7 types of cues that a bee can de-
tect. The table is listed in order of preference that bees learn/recall cues with most preferable
at the top [11].

Cues from Receptors (Area Cues) Another important cue that bees detect are area
cues. Rather than small groups of 7 neighbouring receptors, area cues are collected over
larger regions in the eye that have a similar response in terms of colour, and intensity. Ex-
periments showed that bees learn areas with preference related to the number of receptor re-
sponses � receptor brightness. The centroid of the area is also stored. Experiments showed
that other things like the actual shape of the area are ignored, making this very efficient in
terms of computation. Bees do, however, also encode some edge features for smaller areas
which allow them to discriminate between some smaller areas, but this is using the edge
features and not the actual area cues. If there are two areas that are both small enough to fit
into a local region of the eye, the total area will be stored along with the common centre. An
example of local areas around the bee vision panorama can be seen in Figure 11.

Landmarks from Cues Just as feature detectors are grouped together to form cues, cues
are combined in local regions of the eye to form landmark labels as shown in Figure 11.
This overall process of how landmarks are formed can be seen in Figure 12. These labels
for landmarks are detected whether just one landmark or many are detected in a region of
the eye. More specifically, the bees remember the coincidence of the cue responses to form
a landmark. Bees are only interested in the angles between each landmark, not the actual
shapes they see in the panorama of their vision. The way this is done starts with features,
where each one has a position with an associated quality and class. The type of feature
could be modulation, vertical edge etc. Cues also have a position, quality and identity, but
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Figure 11: This image shows a representation of the panorama that the bee would detect
around its field of view. It is divided into local areas of about 30ı. Not more than one cue
of each type is detected in each local region. The bee will store the coincidences of cues
between each local region in the eye to form landmarks, that allow the bee to recognise
familiar locations or targets with a small amount of error [11].

have an added parameter of quantity (sum of receptor responses for each cue). Similarly,
landmarks also have a corresponding position and are associated with a particular place the
bee needs to remember and is made up of the coincidence of cues. This entire process of
how the bee detects landmarks from the receptors is shown in Figure 12. The positions of
the features, cues, and landmarks are related to the position of the head and body axis of
the bee. Essentially, the bee will look at a scene horizontally while flying and will move its
body and head to detect landmarks which will guide it to the goal location.

Importance of Symmetry Symmetry as a concept presents itself in a variety of forms
in both biological systems, such as flowers, birds, butterflies, humans, and also man-made
systems such as architecture, and vehicles. Symmetry has been a design principle for both
natural and human design since the beginning of time. Insects use symmetry cues (see Fig-
ure 10) as a form of relevance filtering or an attentional cue in their visual system. This
allows insects to efficiently filter out any unnecessary visual information and only focus
on symmetrical regions that may indicate the presence of a flower, which is vital to hon-
eybees. Furthermore rather than remembering the spatial appearance of landmarks, insects
only remember the cues to recognise familiar locations. This allows honeybees to efficiently
process the visual information.

Based on this, a bioinspired approach of using pattern matching and relevance filtering of
any symmetries was used as the foundation for work conducted in Chapter 3. It should also
be noted that the concept of symmetry itself is intrinsically dynamic. In the case of rotational
symmetry in images, when part of a symmetric object is moved about the symmetry axis,
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the object will repeat itself for each axis of symmetry. This concept that there are both static
and dynamic aspects of symmetry is explored in Chapter 4.

1.2.2 Dynamic Perception in Insects

Detection of Local Motion in Insect Eyes The primary visual cue for insect navigation
and control is widely recognised to be the due to optic flow, but the details of mechanisms of
the neurons that detect the optic flow inside the brain are not fully understood. Honeybees,
being commercially important insects, have been studied to show that they rely on optical
flow for landing [13], visual odometry [14], and obstacle avoidance [15]. The best-known
neuron model for detecting optic flow is known as the correlation type elementary motion
detectors (EMDs). These EMDs correlate changes in intensity between neighbouring om-
matidia. This model was first proposed in [16], to account for the optomotor response in the
insect which was observed experientially. The optomotor response is linked to the EMDs
(optic flow) to help stabilise the insect in response to the changes to an apparent motion in
the environment.

The way that correlation EMDs work is based on a multiplication of the two input signals
that the EMD receives from two adjacent ommatidia (photoreceptor). See Figure 13. One of
the signals that enters the multiplication unit is slightly delayed using a first order low pass
temporal filter. The other signal is unchanged. This results in the multiplication unit in the
EMD having a preferred direction, dependant on which receptor has the delay. However,
by joining two EMDs together that each has an opposite directional sensitivity, they can act
together as a bi-directional EMD, where the high or low responses from both are integrated
to produce an output. This is a popular model that is successful in emulating the electro-
physiological response a due to the visual motion of these EMD tangential cells. In particular
the Hassenstein-Reichardt EMD (shown in Figure 13) is the most famous type of correlation-
based motion detector.

An important aspect of an EMD is that both the responses are processed through band-
pass filters to remove any unsteady illumination (does not contain any motion information).
One of these responses is then processed through another first order low-pass filter which
exploits the phase lag in this type of filter causing a slight delay. This delayed response is
now correlated with a response from a neighbouring receptor that has not been delayed (via
a multiplier). This means that as an image moves across the eye, the EMD will produce a
strong response as it passes the receptor that has a delay applied to the signal, and then over
the receptor with no delay.

The response of the EMD is strongest when the time between the two signals from each
receptor is the same as the time delay of the EMD. So this means that in addition to an EMD
having a preferred direction, it also has a preferred velocity (dictated by EMD delay), if the
image moves faster or slower than this time delay, the response will be weaker. The actual
units that cause the delay and correlate the signals are only mildly directionally selective.
After the correlation of the two photoreceptor responses, the outputs are then subtracted
from one another. This final output is very directionally selective. Using this correlation
type EMD model, the final value is positive for motion towards the left and negative for
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motion towards to the right.
An important aspect of EMDs is their directional selectivity. This selectivity depends

on the spatial arrangement of their sampling bases in the eye as shown in Figure 14. The
optical axis (sampling stations) of the ommatidia in the compound eyes are arranged in an
orderly hexagonal lattice. Since EMDs receive input from neighbouring sampling stations,
there are three directional types with preferred directions. The entire assembly of EMDs is
duplicated so that there is a pair of detectors for each of the three directions. The members of
each pair have opposite preferred directions. Further to this, studies have shown that EMDs
with small sampling bases are dominant in the motion detection system of the fly only in
good lighting situations. Under darker situations, there are contributions of additional EMDs
with sampling bases up to eight times the interommatidial angle1 [18]. Hence under scotopic
conditions, the sensitivity of the motion detection system is increased at the cost of visual
acuity.

Studies have shown that insects use large-field motion for course stabilisation and small
field motion for finer tasks like fixation and tracking of objects [18]. For large field motion, a
specific combination of detector fields is used to control the activity of particular sub-units of
the motor system. The predominant preferred directions of the detector field combinations
are generally horizontal and vertical with respect to the eye or head axis. This corresponds
to typical flight manoeuvres of flying insects.

Matched Filters in Insects Holger Krapp et al also proposed an interpretation of the
function of LPTCs (see Section 1.1.2) by postulating that the preferred directions are a
manifestation of neural versions of matched filters [19]. The derivation of the proposed
Franz-Krapp filter [9] is described in Section 1.2.2. Before looking at the derivation, it is
worthwhile to examine how matched filters have been employed by biologists, most notably
in the influential work by Wehner [20].

The matched filter concept is a well-established topic and was originally proposed in the
field of signal processing (detection theory) as discussed later in Section 2.2. The concept
of matched filters was later applied in biological systems by Wehner [20]. By correlating a
known signal, or pattern (know what you are looking for) with an unknown signal one can
find the pattern signal in the presence of noise. A matched filter is the optimal linear filter
for maximising the signal to noise ratio (SNR) in the presence of additive stochastic noise
as defined in [21].

Wehner used the notion of matched filters as a metaphor, even employing inverted com-
mas (the title of his paper is ‘Matched filters’ – neural models of the external world) but he
offered no mathematical derivations of the filters corresponding to the biological examples
he considered. However, his qualitative remarks are insightful and important, because they
offer a link between the remarkable efficiency of animal sensor-motor function and a well-
understood engineering paradigm.

Wehner emphasised that animals possess highly specialised sensor-motor solutions to
motion problems. This is quite different to many engineering systems that are broadly ap-
plicable. Indeed, the problems faced by animals are often highly specific and thus admit

1The interommatidial angle is the angle between each receptor in the insect eye.
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one-off solutions where specialisation of the solution entails approximations, short-cuts and
simple tricks. Hence, it is important to appreciate not only the utility but also the limitations
of such solutions, because animal’s specialisation is often restricted to a narrow range of
stimuli and situations. Moreover, sensory maps (neural models of the world) are not what
we think of as photographs projected onto a special inner screen inside the neurons, but are
devices shaped by a special selection of pressures to pre-process sensory information in a
way readily translatable into the necessary motor commands.

Franz-Krapp Filter While Wehner’s examples were qualitative and his invocation of the
notion of matched filter was metaphorical, Franz and Krapp [9] assigned a more technical
meaning to their filter and expressed it mathematically.

Because the field structure of certain VS and HS tangential cells revealed similarities
to some characteristic optic flow vector fields, they proposed that these LPTCs might be
extracting certain types of self-motion that result from flight behaviour from the optic flow
fields. They interpreted each LPTC as a piecewise linear detector with multiple inputs (the
outputs of the EMDs) and one output (the response of the LPTC). The inputs from vectors
of the optic flow observed by the spherical eye was compared with a prescribed vector field
pattern. This comparison was performed by projecting each input vector on the correspond-
ing vector of the pattern. This is shown in Figure 15. Then a weighted sum of the resulting
projections was formed to produce a scalar output.

The constant (non-adaptive) weights were optimised to minimise a constrained quadratic
error in the presence of noise and variability of the distance distribution from scene to scene.
In order to perform these calculations, knowledge about the EMD noise, self-motion, and
distance statistics of the environment was assumed, shown in Figure 16.

It was also noted that a few of the VS neurons are optimised for detecting the direction
of rotational optic flow about particular axes, but the neurons are unable to measure the
rotational rate. More details including the derivation of the Franz-Krapp Filter is discussed in
Appendix B, which relies on an understanding of optic flow discussed in 2.5, with spherical
optic flow discussed in Appendix A.

Finally, it should be mentioned that a standard theory of matched filtering was also used
in the context of insect vision by Srinivasan et al [22]. They investigated whether spatio-
temporal filters which detect moving edges or blobs would represent the function of certain
neurons in the lamina of the fly brain. The biological evidence for moving edges/blobs
detection by the neurons was strong, but not conclusive. For the purposes of the discussion
here, the most important aspect was that Srinivasan et al did use the standard theory of
matched filtering, thus being consistent with both Wehner’s metaphor and the engineering
understanding of the matched filter paradigm.

Importance of Motion We live in a dynamic world so motion is a very important aspect
in any visual system. The insect vision system through the EMDs is able to detect motion
which is again processed deeper inside the insect’s brain. As with static perception, relev-
ance filtering is used, where each EMD response is strongest when the motion corresponds
to its preferred direction and speed. Neurons further down the visual system process these
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local motion measurements to recognise global motion patterns using a form of matched
filtering. By combining both the insect visual system uses the local responses for fixation,
or tracking, and large field motions for stabilisation.

Due to the small size of flying insects and current technology, it is relatively difficult to
fully understand how the motion fields/patterns are generated. However, in terms of digital
applications, optic flow techniques are often employed. These are introduced in Section 2.5,
and further discussed in Appendix A. However, other biological studies suggest that many
animals employ spatio-temporal filtering as a form of optic flow to detect motion. This
is discussed in Section 2.6. Using this bioinspired approach, the problem of self-motion
detection is posed as a pattern matching problem in Section 4.4.
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Figure 12: A map of how interactions between different processing elements inside the
brain are used to form landmarks labels in each local region of the eye [11]. The entire
mechanism of this process is summarised in this diagram, showing how the responses from
the receptors are fed through to the lamina to form feature detectors. The responses from
the feature detectors are then summed to form different types of cues. A landmark is then
formed based on the relative coincidences of the cues. Each local region in the eye is usually
used for one task because a single region does not contain enough information to distinguish
between all patterns. The approximate fields of view are shown on the left of the diagram.
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Figure 13: The correlation-type elementary motion detector [17].

Figure 14: Elementary motion detectors in the visual system of the fly [18].
A EMDs of Drosophila. The arrangement of the sampling bases of six different directional
types of EMDs is shown with respect to the ommatidial mosaic of the eye. Preferred direc-
tions are shown by arrows.
B EMDs of Musca and Calliphora with enlarged sampling bases repsonding to selectively
to horizontal and vertical motion.
C Map of sampling the bases of EMDs of Calliphora contributing to the detection of hori-
zontal motion under scotopic (low levels of light) conditions. Only EMDs with the largest
contributions to the overall output is shown.
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Figure 15: The optic flow vectors (that are noisy) are projected onto a unit vector field ( a
pattern that corresponds to a specific LTPC). The response characteristic f of the EMD dis-
torts the projection, is these distortions are weighted according to local motion sensitivities
[9].
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Figure 16: Simplified ‘world model’ of blowfly’s environment with the insect flying at an
average height h over ground [9]. a) Anisotropic distribution of the average distances in the
visual field. The mean distance deviation �D is assumed to be independent of the viewing
direction. b) One thousand samples generated by two-dimensional von Mises distribution
of the translational directions. The forward direction is indicated by the arrow, and it also
represents the distribution maxima.
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2 Engineering Background
Now that the biological aspects have been studied, this Chapter covers all of the engineer-
ing background which provides the foundations of new work presented in this thesis. As
discussed in Chapter 1, symmetry is an important concept for insect vision, so the current
state of the art research in this area is presented. Matched filtering and its extension is also
presented. Other engineering background information is presented here which is referenced
later in this thesis such as ROC curve analysis, and optic flow. This chapter is presented as
follows:

� Section 2.1 provides an overview on the state of the art symmetry detection method.

� Section 2.2 introduces Matched Filters. The notion of matched filtering in insect vis-
ion is discussed in Section 1.2.2

� Section 2.3 extends the principle of Matched Filters to Composite Correlation Filters
for better distortion and noise tolerance.

� Section 2.4 provides a brief overview of ROC curve analysis, this is the main perform-
ance measure used in this thesis.

� Section 2.5 provides background information on dense optic flow methods along with
the main difficulties in solving.

� Section2.6 introduces the concept of Spatio-temporal filtering, which itself is a bio-
inspired approach to motion detection.

2.1 Loy-Eklundh Symmetry Detector
Imaging-based automatic analysis of regular objects is a fundamental problem in Machine
Vision [23] and such analysis often entails detection of symmetry, defined as object invari-
ance to a rigid-motion transformation [24], [25]. There has been an increasing interest lately
in the practical applications and the theoretical challenges of symmetry in image processing
[26], [27]. In particular, recent applications of symmetry detection include: engineering
analysis with CAD/CAE [28], cytology [29], astronomy [30] and urban planning [31]. The
practical significance of considering hierarchies of symmetries, i.e., a nested approach to
symmetry, has also been recognised [32].

The increased interest in the symmetry detection problem has led to the development of
several relevant image processing algorithms. A comparative evaluation of the algorithms
specialised for rotational symmetry detection has been given in [33] with focus on two ap-
proaches: 1) the Prasad-Davis approach of [34] based on diffusion and employing gradient-
vector flow, and 2) the Loy-Eklundh approach of [35] based on points of interest and em-
ploying SIFT [36]. Both the Prasad-Davis and the Loy-Eklundh approaches offer moderate
detection performance which is attained with an appreciable computational effort. Other ap-
proaches to rotational symmetry detection include the use of the pseudo-polar Fourier trans-
form [37], quadratic binary optimisation [38] and graph matching [39]. These approaches
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have computational requirements and performance characteristics similar those ones com-
pared in [33].

In this section, the Loy-Eklundh approach is studied in more details as it is later used to
compare with the new approach presented in this thesis (see Section 3.4).

Detecting and Describing Feature Points The first step is to detect feature points in
a given image. Loy and Eklundh used the SIFT feature point detector which is able to detect
distinctive rotation invariant feature points with good repeatability. In the implementation
developed in this thesis, the SURF detector was used which outputs similar feature vectors
but is significantly more efficient. Since the detector looks at points on the same image,
a scale invariant feature detector does not necessarily need to be used since scale does not
change in the same image.

For each detected feature point, a vector pi is constructed which stores the x; y coordin-
ates of them point, the angle � and scale s, where pi D .xi ; yi ; �i ; si/. The orientation of
this vector is the key value used when determining symmetry.

For each feature point, a descriptor ki is constructed. This descriptor characterises the
region around each point. In the case of the SIFT or SURF detectors, the descriptor is ex-
tracted around the area after being aligned with the given feature orientation. This descriptor
is stored as a 1 � n vector. In the case of the SIFT descriptor, it is a 128-element vector.

Detecting Bilateral (Mirror) Symmetry The concept behind the bilateral symmetry
detector is based on trying to see if you can match a given point descriptor, ki to another
point in the image that represents a reflection of that point in terms of the mirror descriptor,
mi . There are two ways to do this. The first and most efficient method would be to directly
modify the descriptors to obtain the equivalent mirror descriptor. An alternative would be
to simply mirror the image (the mirror axis does not matter as the descriptor is normalised
with respect to the feature orientation) and calculate the descriptor for the corresponding
mirror point, mi . Each point with a descriptor ki and its corresponding mirror descriptor,
mi are matched to other points form pairs of potentially symmetric features, .pi ;pj /. For
each potential symmetry pair, the symmetry is calculated based upon the orientations of the
points, and also the location and scale. The orientation symmetry weighting, Aij that Loy
and Eklundh use is actually adapted from that of Reisfeld [40]. This weighting is given by,

Aij D 1 � cos.�i C �j � 2�ij /; (1)

where � is defined in Figure 17.
The scale weighting Sij is also computed for the pair of points based on the scales and

is defined as

Sij D exp
�
�jsi � sj j

�s.si C sj /

�2
; (2)

where �s defines the scale variation accepted. In testing this was set to 1 as used by Loy
and Eklundh. The next step, although optional, is to apply a Gaussian distance weighting

PhD Thesis Page 23 of 132



2.1 Loy-Eklundh Symmetry Detector A. Elliott

Figure 17: A pair of point vectors pi ; pj being compared for mirror symmetry where � is
the descriptor orientation, adapted from [35].

function Dij . This essentially adds extra weighting to matched symmetric pairs that are
close to the symmetry axis and is given by

Dij D exp
�
�d 2

2�2s

�2
; (3)

where d is the distance between the matched pair of points and is used to specify the max-
imum distance between symmetry points. Loy and Eklundh set this parameter to 1 so that
there was no constraint on distance.

The next step of the bilateral mirror detector is to calculate the symmetry magnitudeMij

of each pair which is defined as

Mij D

�
AijSijDij if Aij > 0

0 otherwise (4)

Now that the symmetry magnitude for each symmetrical pair has been calculated, the
next step is to determine the dominant symmetries for the given image. This is achieved by
accumulating the symmetry magnitudes into a voting space. The axis of symmetry between
two matched points is perpendicular to the midpoint of the line that joins the two points (pi
and pj ). This is shown in Figure 17. This potential symmetry axis between the two matched
points can be represented using polar coordinates (r� ), defined as

rij D xc cos �ij C yc sin �ij ; (5)

where the image centre co-ordinates of the symmetry axis on the midpoint of the line that
joins the matched pair is .xc; yc/. The angle of the matched pair line relative to the x-axis
is represented by �ij .

In order to find the major symmetry axis of the given image, the final step is to apply a
linear Hough transform. Here, each potential symmetric pair .pi ;pj / is weighted based on
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the symmetry magnitude Mij of the point. This weighting represents a vote .rij ; �ij / in the
Hough voting space. Before the maxima is found, the Hough voting space is first blurred
by a Gaussian to smooth the results. The maxima indicates the dominant axis of symmetry.
The feature points in areas around the maxima are the points that appear symmetric

Detecting Rotational Symmetry Detecting rotational symmetry does not rely on hav-
ing mirrored descriptors, but is rather based on matching similar features at certain angles
(around an arc) in a single image. This means that features, ki , are matched against them-
selves in the current image. The orientations of each matched pair of features .pi ;pj / in the
image are considered. If the orientations are the same (parallel) then that pair of features will
not contribute towards rotational symmetry. However, if they are not the same then there is a
chance that they have rotational symmetry about a certain point in the image. This centre of
rotation point cij is located at some distance r from the feature points .pi ;pj /. If the feature
point pi was rotated around cij , at a certain angle, it would line up with the other matched
feature point pj exactly. This idea is shown in Figure 18. The centre of rotation is given by

cij D .xi/ Cr cos.ˇ C 
/
.yi/ Cr sin.ˇ C 
/; (6)

where xi and yi are the Cartesian coordinates of pi . The angle of the line joining pi with pj
is 
 .

Figure 18: A pair of point vectors pi ; pj being compared for rotational symmetry, where the
centre of rotation is cij , adapted from [35].

Using Pythagoras’ theorem, the radius r to the centre of rotation can be found by

r2 D

�
d

2

�2
C

�
d

2
tanˇ

�2
r D

d
p
1C tan2 ˇ
2

; (7)
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Now that the rotation centre of each potential symmetric pair has been found, the rota-
tional symmetry magnitude Rij must be calculated based on the scale weighting Sij and the
distance weighting Dij previously defined so that

Rij D SijDij : (8)

Given a collection of potentially symmetric points with a symmetry magnitude, the dom-
inant rotational symmetric points must be found. This is done by combining the rotation
centre points cij in a voting space where each point is weighted based on its symmetry mag-
nitude Rij where the maxima would represent the strongest rotational symmetry centres.
Again the voting space image is blurred with a Gaussian to reduce noise. Just like with the
mirror symmetry detection, the feature points in a neighbourhood around the maxima are
the feature points that are associated to that rotational symmetry.

2.2 Matched Filters
A matched filter is designed to find a known signal in a measured signal for the measurement
corrupted by noise. The matched-filter design [41], [42] is based on maximising the signal-
to-noise ratio (SNR) for additive Gaussian white noise; more complex noise models can also
be handled [21], [43]. For images, the required SNR maximisation means maximisation of
the correlation between the template image (known signal) and the input image (measured
signal).

An input image s is defined by an d1 � d2 array whose entries s.m; n/ are pixel values.
The input s is to be tested for the presence of a known template given by a w1 � w2 array
h with entries h.m; n/. The template h may be smaller than the input image, w1 6 d1 and
w2 6 d2, because the template is often present in a subregion, or window, of the input image.
Correlation g of the input image s with the template image h is performed by examining all
w1�w2 windows of the d1�d2 input image s or a “sliding-window” process. The correlation
g.m; n/ between the window and the template h.m; n/ is computed for each pixel .m; n/,
creating the correlation plane or the set fg.m; n/j 1 6 m 6 d1 and 1 6 n 6 d2g. See Figure
22. If the correlation value g.m; n/ is above a predefined threshold, then detection of the
template h.m; n/ in the .m; n/-indexed window is declared.

The correlation plane can be obtained from:

g.m; n/ D

Correlation with h.m;n/‚ …„ ƒ
s.m; n/˝ h.m; n/ (9)

D

w1X
kD1

w2X
lD1

s.mC k � bw1=2c; nC l � bw2=2c/ � h.k; l/

D

Convolution with h.�m;�n/‚ …„ ƒ
s.m; n/ ? h.�m;�n/ (10)
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D

w1X
kD1

w2X
lD1

s.m � k C bw1=2c; n � l C bw2=2c/ � h.�k;�l/

for all m 2 f1; : : : ; d1g and n 2 f1; : : : ; d2g�
where 1 6 w1 6 d1 and 1 6 w2 6 d2

�
;

but it is more efficient to implement equation (9) by two-dimensional convolution (equation
(10)) with the ‘flipped’ template h.�m;�n/ because linear-filtering theory [44] can then
be used. According to that theory, equation (10) can be interpreted as a two-dimensional
linear filter designed with the impulse response given by h.�m;�n/. Moreover, the two-
dimensional discrete Fourier transform (DFT) can be applied to equation (10) so that cor-
relation filtering (equation (9)) is efficiently performed in the (two-dimensional) frequency
domain [44, Chapter 4]. The frequency-domain equivalent of convolution (equation (10)) is
the product of the discrete Fourier transforms of the convolution terms. Defining:

S.k; l/ D DFTŒs.m; n/�
H.k; l/ D DFTŒh.m; n/�; (11)

where k and l are discrete frequencies, it follows that equation (10) can be equivalently
expressed as:

g.m; n/ D s.m; n/ ? h.�m;�n/

m

G.k; l/ D S.k; l/ �H �.k; l/; (12)

whereH �.k; l/ is the complex-conjugate ofH.k; l/ (see equation (11)). Replacing the DFT
with the fast Fourier transform (FFT) allows an computationally-efficient implementation
of the two-dimensional correlation in equation (9); the issue of zero-aliasing can also be
addressed [45] through zero padding to avoid circular correlation.

2.2.1 Distortion Tolerance

Matched filters are not a natural solution for target detection in images because matched
filters are not robust against target distortions (changes in orientation, illumination, or scale).
A robust solution would require a bank of matched filters with each filter corresponding to
a particular set of parameters describing predefined distortions, resulting in a rather large
filter bank (see Figure 19). The use of such filter bank would also necessitate a procedure to
decide which of the individual filters best matches the input (test) image. Such a complex
filter bank is not practical for use on a small system with limited processing power like an
MAV.

The matched filter is designed to produce a maximum SNR, but another consideration is
the peak sharpness (peak correlation energy, or PCE) which helps to discriminate the target
from the background. A maximal SNR does not usually produce a sharp peak. Typical
images contain most of their energy at low frequencies, and obtaining a filter that gives
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Figure 19: In order to detect a target from an image obtained in realistic conditions, a large
bank of matched filters is needed with each matched filter representing only one (of many)
possible orientations, illuminations, or scaling of the target.

maximal peak correlation energy (PCE) ends up suppressing the low frequencies and allows
the high frequency content which usually contains noise to pass through. Maximising the
signal to noise ratio generally suppresses the high frequency region of the image which
contains the noise. This is essentially opposite to maximising the peak energy. Maximising
both the SNR and PCE are conflicting requirements, so it is not possible to design a single
filter that maximises both. However, it is possible to design filters that find the best trade-off
between the two parameters, often referred to as composite correlation filters. Some of the
key composite correlation filters used in this thesis are discussed in greater detail in Section
2.3.
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2.2.2 Convolution and Correlation

As discussed the matched filter is implemented using correlation. However, it is also im-
portant to understand the difference between correlation and convolution.

� Convolution: Many linear image filtering tasks such as image blurring, sharpening,
noise removal and edge detection are implemented by convolving a kernel or mask
(typically 3x3 pixels) with the image to achieve the desired result (see equation (10)).
Image filtering via convolution is a local neighbourhood operation and the result is a
new filtered image.

� Correlation: On the other hand correlation is used for pattern recognition and is a
global operation as it looks for the pattern in the entire image, the size of the cor-
relation mask will depend on the size of the pattern to be found. The result is a
correlation map where the peaks indicate regions of greatest similarity between the
mask and the image as shown in equation (9).

Both 2D correlation and convolution can become rather computationally expensive when
the mask or image becomes large with a computational complexity of O.MNmn/ for an
image of size .M;N / pixels and a mask of size .m; n/ pixels.

For relatively small images or masks it is often more efficient to use separable filters
[46], where the computational complexity is reduced to O.2MNk/ where k is the 1D mask
size. This is possible because both convolution and correlation operations have associative
properties.

However, for larger images or masks it is far more efficient to perform correlation or
convolution in the Fourier domain due to the Fourier convolution theorem. Here convolution
becomes a simple multiplication in the Fourier domain. Similarly, correlation becomes a
multiplication by the complex conjugate of the mask in the Fourier Domain. Using the
Fourier domain for these operations are often far more computationally efficient. However,
both the image and the mask will need to be transformed into the Fourier domain. This
can be done using the fast Fourier transform (FFT) algorithm. Since the FFT itself has a
computational cost of O.MN.logMN//, it only becomes more efficient when the image
or mask both large. This is because the actual cost of computing the FFT for the mask and
image can be more expensive than the direct convolution which has a computational cost of
O.MNmn/.

2.3 Composite Correlation Filters
Composite correlation filters are a further generalisation of matched filtering in which a
bank of matched filters (see Figure 19) are replaced with a functionally-equivalent single
filter. This equivalent filter is designed with a single composite template (replaces a bank
of individual templates) and is a correlation filter (simultaneously maximises both SNR
and PCE). The composite template combines several versions of the pattern to be detected
(Figure 22) so the selection of the training images is an important part of the composite
correlation filter design [47].
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Correlation filters are typically implemented in either the optical domain, using lenses
in an optical correlator and spatial light modulators (SLM), or in the digital domain using
computers. Each of these approaches are summarised below.

Optical Correlation Filters Optical correlation involves the physical modulation of the
image in the Fourier domain. This is done by placing a spherical lens at its focal length
away from the image plane. At this point, a scaled version of a 2D Fourier transform is
formed. This process means that the Fourier transform is available at the speed of light with
no computation. The limiting factor of optical correlations is the speed of the sensing system
or photo-detectors which do not operate at the speed of light.

VanderLugt took advantage of this principle in his VanderLugt Correlator [48] as shown
in Figure 20. Here the first lens transforms the light of the scene from P1 and the 2D Fourier
transform is captured at the plane P2. At plane P2 a holographic complex transparency
image which is the correlation filter in the frequency domain is applied. The light that
passes through P2 is equivalent to applying the correlation between the filter and the test
image (see equation (9)). The last reverse lens (again at a focal distance away from the
image plane) then transforms the image back into the spatial domain which is captured at
plane P3, the peaks on this image represent the target location.

Figure 20: Example schematic of a VanderLugt Correlator [48]

The main advantage of optical correlators is the speed at which the can compute the
correlation (at the speed of light). The only limiting factor is the update rate of the SLM and
light sensors. This is currently around 1000Hz. However, despite the speed advantages, the
cost and size of these devices make them unsuitable for use on-board an MAV. Furthermore,
current computational power allows for fast digital implementations of correlation filtering.
Because of the size of optical correlators and the fact that there is sufficient computational
power available, this PhD project will focus on the digital implementation of correlation
filters.

Digital Correlation Filters As computation power improved in the 1990s, digital cor-
relation implementation filters become more popular [49]. Digital correlation filtering in-
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volves the use of the correlation theorem as discussed previously and shown in equation
(12). The main reason for the use of correlation is computational efficiency. The first step
with digital correlation is to compute the 2D discrete Fourier Transform of the input image
and the filter2. The use of the Fast Fourier Transform algorithm is advisable as it speeds up
the Fourier Transform computation by several orders of magnitude. Next, multiplying the
input image and the conjugate of the filter in the Fourier domain is equivalent to correlation
in the spatial domain. The last step is to apply an inverse 2D discrete Fourier transform to
get the result in the spatial domain, here the peaks on the correlation output represent the
possible target location. It is important to remember to zero pad the two DFT of the target
and filter to avoid circular correlation which causes aliasing. More advanced designs have
been developed beyond these three and they include: the minimum output sum of squared
error (MOSSE) filter, quadratic correlation filters and the maximum margin correlation filter
(MMCF). A key feature of the MOSSE filter [50] is that it adapts to real time changes of
the object due to motion, scaling, gradual deformation and lighting. Quadratic correlation
filters [51] are able to exploit higher order statistics of the data to potentially improve detec-
tion performance. The MMCF [52] combines the design principles of linear binary classi-
fiers and correlation filters, outperforming both. Since the focus here is on resource-limited
autonomous platforms, these more advanced approaches have not been used as they are
more computationally expensive than the standard modern designs based on the maximum
average correlation energy (MACE), unconstrained maximum average correlation energy
(UMACE), and maximum average correlation height(MACH) filters.

2.3.1 MACE composite correlation filter

As previously mentioned the matched filter does not cope well when the target image is
distorted, this could be due to rotation, lighting, or scale changes. in order to deal this
problem, one possible approach would be to have many matched filters to capture the various
distortions. These would be implemented into a filter bank, where several matched filters
are applied to a given test image and the filter with the strongest response is the selected
one. However, in order to capture the full range of distortions (rotation, lighting and scale
changes) many matched filters will be required for each target and this can very expensive
in terms of computational resources, as several hundred matched filters will be required to
capture the distortions for a given object.

In order to address this issue, developments lead to the composite correlation filter. These
filters are able to capture the various distortions that a target would undergo in real world
situations into a single filter as shown in Figure 21. A simplistic explanation of composite
filters would be to think of them as combining many matched filters into a single composite
filter. There are several variants of composite correlations filters starting with the first being
the synthetic discrimination function filter (SDF) [53]. For each of the training images, the
SDF filter is designed to produce a specific value on the correlation plane. This specific
value is usually 1 for target or object training images, and 0 for non-target images.

2For improved computational efficiency the DFT of the filter can be pre-computed if the same filter is
applied to each image in a video sequence.
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Figure 21: A single composite correlation filter is trained using a collection of training
images which represent the object under various distortions due to pose, variation and il-
lumination. This being able to capture all the variations of the training images in a single
filter.

The SDF filter was refined to form the MACE composite filter (Minimum Average Cor-
relation Energy) [54]. These composite filters fall into the category of constrained cor-
relation filters where the peak is controlled by hard constraints as shown later in equation
(16).

The MACE filter is designed to suppress the side-lobes of the correlation output to form
a distinct peak to make the target presence in the test image clear and distinguishable. The
MACE filter suppresses the side-lobes by minimising the average correlation energy (ACE)
in the correlation plane (see Figure 22) forN training images x1; x2; : : : ; xN to be combined
into a composite template:

ACE D
1

N

NX
iD1

d1X
mD1

d2X
nD1

jgi.m; n/j
2; 1 6 i 6 N; (13)

where gi.m; n/ D xi.m; n/ ˝ h.m; n/ is the correlation for the i th training image, see
equation (9), and d1; d2 are the dimensions of input images. Here, and in Sections 2.3.2–
2.3.3, a full-size window .w1; w2/ is used: w1 D d1 and w2 D d2.

In the frequency domain (13) becomes:

ACE D
1

d �N

NX
iD1

d1X
kD1

d2X
lD1

jG.k; l/j2 .with d D d1 � d2/

D
1

d �N

NX
iD1

d1X
kD1

d2X
lD1

jH.k; l/j2 � jXi.k; l/j
2; (14)
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(a) Target present (b) No target present

Figure 22: Example of a composite filter that is trained on a collection of training images to
produce a sharp peak if the target is present in the test image (a), or no distinct peak if the
target is not present in the image (b).

where H and Xi are the two-dimensional discrete Fourier transforms of the MACE filter
impulse response (still to be determined) and the i th training image, respectively.

Recalling that jH.k; l/j2 D H.k; l/ � H �.k; l/ and also jXi.k; l/j2 D Xi.k; l/ �

X�i .k; l/, the following conventions are introduced for notational and computational ease.
The d1 � d2 D d terms H.k; l/ in (14) are represented as a d � 1 column vector h. The
d1 � d2 D d terms Xi.k; l/ of i th training image are expressed as a d � d diagonal matrix
Xi . The d elements along the main diagonal of Xi are terms Xi.k; l/ lexicographically
ordered with respect to k and l . In this new matrix-vector notation, equation (14) becomes:

ACE D
1

d �N

NX
iD1

.h�Xi/.X
�
i h/

D h�

d�d diagonal matrix D‚ …„ ƒ"
1

d �N

NX
iD1

XiX
�
i

#
„ ƒ‚ …

average power spectrum
of all training images

h

D h�Dh; (15)

where the average power spectrum of all the training images is represented by a d � d
diagonal matrix D.

The ACE is minimised by applying the constraint

X�h D d � u; (16)

to equation (15), where u is a 1�N vector containing the desired correlation value for each
training image. Finally, X is a d � N matrix whose columns contain lexicographically-
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ordered elements of the discrete Fourier transform of each training image Xi . An applica-
tion of the Lagrange multipliers to minimising (15), subject to (16), yields [55] the optimal
solution in the form of the discrete Fourier transform of the MACE impulse response:

hMACE D D�1X.X�D�1X/�1u: (17)

Vector hMACE contains d terms of the filter impulse response in the frequency domain and
can be re-arranged into a d1 � d2 matrix with entries HMACE.k; l/ to be used in equation
(12).

2.3.2 UMACE composite correlation filter

The Unconstrained Minimum Average Correlation Energy composite filter (UMACE) is a
simplified [51] version of the MACE filter which also minimises the average correlation
energy defined in equation (15), in a similar way to MACE. Unlike the MACE approach, the
UMACE design does not constrain the correlation outputs at the origin to a specific value
(see equation (16)) but only maximises the peak height at the origin. Such a constraint-free
approach is not only computationally simpler but can exhibit better robustness against noise
[56]. However, a disadvantage of the UMACE filter is that the correlation-plane peak may
be less sharp (lower peak-to-sidelobe ratio) than in the MACE case because the UMACE
design relies only on the frequency-domain average of the training images. See equation
(19) below.

Computationally, the UMACE filter requires the average power spectrum D of the train-
ing images:

D D
1

d �N

NX
iD1

XiX
�
i ; (18)

and the vector average of the training images in the frequency domain:

Nx D
1

N

NX
iD1

xi ; (19)

where each xi is a lexicographically-ordered d � 1 vector obtained from the DFT of the
training image xi so that Nx effectively is the frequency-domain average of all training images
expressed in a vector form. Then the discrete Fourier transform of the MACE impulse
response is:

hUMACE D D�1 Nx; (20)

so that vector hUMACE contains d elements of the UMACE filter impulse response in the
frequency domain. The elements of vector hUMACE can be re-arranged into a d1 � d2 matrix
with entries HUMACE.k; l/ to be used in equation (12).

Comparing equation (20) with equation (17) shows that the UMACE filter is computa-
tionally simpler than the MACE filter.
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2.3.3 Optimal Trade-off MACH composite correlation filter

The Maximum Average Correlation Height (MACH) filter [51], [57], was introduced to
achieve a greater degree of noise and distortion tolerance than MACE and UMACE filters.
The MACE and UMACE filters are designed only with respect to one performance meas-
ure, namely the average correlation energy (ACE). The MACH filter not only minimises
ACE, but also minimises the average similarity measure (ASM) and the output noise vari-
ance (ONV), while maximising the average correlation height (ACH). An optimal trade-off
approach is used in order to best satisfy each of these three additional design criteria simul-
taneously.

The first optimisation criterion is the output noise variance (ONV) which is a measure
of the correlation-plane variance �2 due to additive noise. The ONV is defined as:

ONV D �2 D h�Ch; (21)

where h is a d � 1 vector as in (15) and C is the power spectral density of the additive input
noise. Gaussian white noise with unit variance is usually assumed so that C D .1=d/I ,
where I is the identity matrix.

The second optimisation criterion is the average similarity measure (ASM). This is an
average measure of the variation (or similarity) across the training images:

ASM D
1

N

NX
iD1

d1X
mD1

d2X
nD1

jgi.m; n/ � Ng.m; n/j
2

D h�

 
1

d �N

NX
iD1

.Xi �
NX/.Xi �

NX/�

!
„ ƒ‚ …

d�d diagonal similarity matrix S

h

D h�Sh; (22)

where Ng.m; n/ D .1=N /
PN
iD1 gi.m; n/ is the average across the correlation plane, h

and Xi have previously been defined in equation (15), and NX D .1=N /
PN
iD1 Xi is the

frequency-domain average training image expressed as a d � d diagonal matrix. See also
equation (19).

The third optimisation criterion is the average correlation height (ACH) whose maxim-
isation ensures that the filter produces a strong peak (on average) for all the training images
but without imposing a constraint as in the MACE filter design, (see equation (16)). The
ACH is given by:

ACH D
1

N

NX
iD1

x�i h D Nx�h; (23)

where Nx� is the conjugate transpose of the average training image Nx defined in equation
(19).

PhD Thesis Page 35 of 132



2.3 Composite Correlation Filters A. Elliott

Using equation (15) and equations (21)–(23), the combined performance criterion to be
minimised is:

E.h/ D ˛ � ONVC ˇ � ACEC 
 � ASM � ı � ACH
D ˛ � h�ChC ˇ � h�DhC 
 � h�Sh � ı � Nx�h; (24)

where user-provided design weights ˛, ˇ, 
 and ı are non-negative and normalised accord-
ing to:

˛2 C ˇ2 C 
2 C ı2 D 1 (25)

so that systematic trade-offs can be made for the four performance measures. Since (25)
means that not all weights are independent, minimisation of (24) results in a solution in-
volving three of the weights and the standard choice is:

hMACH D .˛C C ˇD C 
S /�1 Nx: (26)

Vector hMACH has d elements of the filter impulse response in the frequency domain which
can be re-arranged into a d1 � d2 matrix with entries HMACH.k; l/ to be used in (12).

Choosing specific values for ˛, ˇ and 
 in (26) means tuning the MACH filter to provide
the desired balance of noise tolerance, peak sharpness and distortion [51], [58]. For example,
a MACH filter can behave like a MACE filter (maximise peak sharpness but sensitive to
distortion) if ˛ and 
 are set to 0.

2.3.4 3D MACH Filters

In order to utilise a pattern based recognition approach to dynamic scenes (as used later in
Chapter 4), it is useful to extend the correlation filters to three dimensions. This enables
the use of pattern matching within a video sequence. Training a 3D correlation filter is very
similar to that of the 2D training process which is extended to three dimensions. The main
difference is the initial processing steps of converting the spatial 3D spatio-temporal volume
into the frequency domain as discussed in [59]. Rather than training on image data, video
data is used. Each training video sequence is stored as a spatio-temporal volume. Because
the MACH correlation filer is trained in the Fourier domain, a three dimensional fast Fourier
transform (3D FFT) is used:

F.u; v; w/ D

N�1X
tD0

M�1X
yD0

L�1X
xD0

f .x; y; t/ exp
�
� j 2�.

ux

L
C
vy

M
C
wt

N
/
�

(27)

where f .x; y; t/ is the spatio-temporal volume in the spatial domain, F.u; v; w/ is the same
spatio-temporal volume represented in the Fourier domain. L;M is the number of columns
and rows respectively in pixels. N is the number of frames or slices in the video sequence.

The separability of the Fourier transform is utilised to greatly increase efficiency of this
operation by computing the 1D FFT of each row for every slice in the volume h.x; y; t/,
along the x, y, and t axis sequentially as given in equations (28)–(30).
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F.u; y; t/ D

L�1X
xD0

f .x; y; t/ exp
�
� j 2�.

ux

L
/
�

(28)

F.u; v; t/ D

M�1X
yD0

F.u; y; t/ exp
�
� j 2�.

vy

M
/
�

(29)

F.u; v; w/ D

N�1X
tD0

F.u; v; t/ exp
�
� j 2�.

wt

N
/
�

(30)

Each scalar video volume is Lexicographically ordered into xi 1D column vectors of
size 1 � d where d D L �M �N . The number of training video sequences is represented
by subscript i 3. Now that the column vector representing each training sequence volume
has been obtained, this is the same input as with the 2D correlation filter, (all be it a bigger
1D column vector). Equation (26) is used to build the MACH filter, minimising the average
similarity measure, average correlation energy and the output noise variance while simul-
taneously maximising the average correlation height. The final step is to transform the 1D
MACH vector back into a volume to form hMACH3D.

Tuning Parameters of MACH As discussed in Section 2.3.3, there are a few per-
formance metrics that can be tuned during the training phase. In the case of self-motion
estimation, it is more important to classify the type of motion. The ˛ (ONV), 
 (ASM)
coefficients were tuned to be higher to make the filters more tolerant to noise and distortion.
This is desirable in this case due to the variation of pixel intensity across varying scenes. The
primary interest is in the patterns formed along the .y; t/-plane and .x; t/-plane. Lowering
these two coefficients would give the filter a greater discrimination ability (causing the filter
to behave more like a MACE filter). This would be more useful in object classification tasks
such as recognising a specific type of flower opposed to if an object is a flower or not.

Once a 3D MACH filter for a specific motion has been trained, it can be used to detect
the same motion in video sequence via a 3D correlation function as shown.

g.x; y; t/ D

N�1X
nD0

M�1X
mD0

L�1X
lD0

s.x C l; y Cm; t C n/h.l;m; n/ (31)

where s, is the test image. The MACH filter h is of size L columns, M rows, and N
slices. The range of the 3D sliding window along each axis is x D 0; 1; � � � ; X � L, y D
0; 1; � � � ; Y �M , and t D 0; 1; � � � ; T � N . This results in a correlation plane output c of
size .X �LC1/� .Y �M C1/� .T �N C1/ which assumes that the motion is contained
fully within the test video sequence.

The 2D correlation theorem for discrete Fourier transforms [60] can still be exploited for
increased efficiency. By extending to the 3D case:

3All the training video volumes must be all the same size in terms of L;M;N
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g.x; y; t/ D F�1
�
F
�
s.x; y; t/

�
F�
�
h.l;m; n/

��
; (32)

where F : represents the 3D discrete Fourier transform (DFT) as defined in equation (27) and
F�1 is the inverse discrete Fourier transform (IDFT). The complex conjugate is denoted as
superscript �.

To avoid noise and changing lighting conditions between the training and testing data
interfering with the correlation output, the correlation output is normalised.

gnorm.x; y; t/ D
g.x; y; t/p
EhEs.x; y; t/

(33)

where g.x; y; t/ is defined in equation (31). The energy scalar of the 3D MACH filter, Eh,
is defined in equation (34). The energy scalar of the test images, Es is defined in equation
(35).

Eh D

N�1X
nD0

M�1X
mD0

L�1X
lD0

h2.l; m; n/ (34)

Es.x; y; t/ D

N�1X
nD0

M�1X
mD0

L�1X
lD0

s2.x C l; y Cm; t C n/ (35)

This normalises the range of correlation response to be between 0 and 1. The existence of
the motion is detected in a test sequence if the peak value is above a threshold. Furthermore,
the correlation value at each peak also provides the certainty of the detection, with stronger
peaks being of a higher certainty. This value can be useful when combining two or more
motion detectors together. The threshold for each 3D MACH filter can be automatically
calculated during the training process by finding the minimum peak value when correlating
the 3D MACH filter with each of the training sequences whilst returning no false positives.

2.4 ROC curves
It is important to first define some performance measures in order to assess the perform-
ance of matched filters, and other object classification algorithms. The Receiver operating
characteristic (ROC) is a very useful performance measure that can be used to compare and
visualise the performance of various classifiers. ROC curves are an effective performance
measure that is used to visualise the trade-off between false alarm rates and true detection
rates. Spackman [61] was one of the first to demonstrate the usefulness of ROC analysis to
the area of machine learning relative to simple accuracy measures. Since then, ROC analysis
has become increasingly popular in the machine learning community.

2.4.1 Confusion Matrix

A classification problem is usually considered as a two class problem, a true class, and a
false class. Most classifiers fall into two instances, some that directly produce a binary label
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to indicate which class the test image belongs to, either the true class or false class. But
other classifiers (like correlation filters) produce a continuous output in the form of a score.
A threshold is applied to the score to define a true or false class membership.

Irrespective of the type of classifier, there are 4 outcomes that can be measured:

True Positive If the test image contains the target, and is classified correctly as positive.

True Negative If the test image does not contain the target and is classified correctly as
being negative.

False Positive If the test image does not contain the target and is misclassified as being
positive.

False Negative If the test image contains the target, and is misclassified as negative.

These 4 possible outcomes are tallied into a confusion matrix, an example of which is
shown in Figure 23 where the correct classification results are represented across the main
diagonal.

Figure 23: Confusion Matrix along with performance metrics calculated using it [62].

2.4.2 ROC Curve

The values from the confusion matrices for different thresholds can be used to graph the
ROC curve. The ROC curves are represented by 2D graphs which indicate the true positive
rate (shown in equation (36)) on the y-axis, the false positive rate (shown in equation (37))
along the x-axis. The ROC curve graphically depicts the tradeoff between the accuracy (true
positive rate) and the cost of this accuracy (false positive rate). These two parameters are
discussed below.
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True Positive Rate (tp rate) The true positive rate or tp rate, (also known as the recall, or
hit rate) can be calculated as:

True positive rate D
Positives correctly classified

Total positives
(36)

False Positive Rate (fp rate) The false positive rate or fp rate, (also known as false alarm
rate) can be estimated base on the number of negative test images which are incorrectly
classified as being part of the true class and is given as:

False positive rate D
Negatives incorrectly classified

Total negatives
(37)

The false positive rate and true positive rate are plotted against one another to form a
curve4 as shown in Figure 24.

Figure 24: An example ROC curve for a classifier. The True positive rate is plotted on the
Y-axis, and the false positive rate is plotted on the X-axis.

There are certain regions that are important to note on the ROC curve. The top left region
indicates the classifier performs almost perfectly, with the point .0; 1/ representing a perfect

4It should be noted that binary classifiers do not produce an ROC curve, but just a point on the ROC space.
Several runs a binary classifier using various parameters can be used to compare their performance by the
points on the ROC space with the top left region being the most desirable.
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classifier that is able to detect all of the targets with no misclassifications. The lower left
region means that the classifier does not have many false alarms, but does not detect very
many of the targets either. Regions close to the right are not desirable as this indicates a high
false alarm rate irrespective of the number of correctly classified targets.

2.4.3 Chance Line

A diagonal line of y D x is usually plotted on the ROC curve which indicates the perform-
ance if the labels were chosen by random chance. Anything above this line (in the upper
left triangle) means that the classifier is able to use the data to perform better than randomly
guessing. Anything below this line (lower right triangle) suggests that the classifier per-
forms worse than randomly. If the graph is located in the lower right triangle, the criteria of
the classifier could be reversed to improve performance, (negatives become positives) and
it would then appear above the chance line. There are however some cases where a single
ROC curve can appear both above and below the chance line. In this case it is not possible
to change the criteria to improve performance. In such situations by simply reversing the
output of the classifier for regions when it is below the chance line, it can still provide useful
information.

2.4.4 Area Under the ROC Curve (AUC)

Another characteristic to consider for a given ROC curve is the area underneath it, knows as
the AUC. The area under the curve allows us to summarise the performance of a classifier
by a single scalar value [62]. The AUC is calculated as a portion of the unit square area and
is a value between 0 and 1. A classifier that has a curve that is along the chance line, would
have an AUC of 0.5, and the closer to 1 the AUC is, the better classifier performance is. The
AUC can also be thought of as a value that is equivalent to the probability of the classifier
ranking a target image above a negative image. It is also important to note that although
one classifier could have a greater AUC than another, it does not necessarily mean it will
outperform a classifier with a lower AUC for specific ROC regions. However, as a baseline,
classifiers with an AUC higher than 0.8 are considered good [62].

2.5 Optic Flow
Biological studies suggest that insects dynamic perception is largely due to a form of optic
flow as discussed in Section 1.2.2. The visual processing inside an insects brain is tuned
to recognise specific patterns in the optic flow fields. It is important to be clear on what is
meant by optic flow (optical flow) and motion field (velocity field). Optic flow is defined
as the apparent motion of image intensities (brightness). In other words, optic flow is the
velocity field that represents the motion between two frames (images) in a video sequence.
However, the motion field is defined as the 2D projection of the relative 3D motion of scene
points onto a retina (or image sensor) and is a geometrical concept. The motion field is a
projection of the 3D motion vectors onto the image. It is also important to note that the optic
flow and the motion field are not always the same. An example of this could occur when
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regions have a lack of texture. Computing optic flow enables us to estimate the motion fields
which use the information for useful tasks such as navigation and obstacle avoidance.

There are two main directions for bioinspired optic flow implementations on hardware
[63]. The first uses standard high resolution camera hardware which is likened to single
chamber eyes on humans and mammals. The second uses simulated compound eyes as
found in flying insects. Here specialist custom camera hardware is used to simulate the
response of a single neuron sensor to motion following the EMD response models discussed
previously in Section 1.2.2.

In this thesis, differential methods are considered as a starting point as they are similar
to how the elementary motion detectors in insects function. Within the differential based
methods, there are two main approaches, local and global methods. However, all of the
algorithms share three core assumptions:

� Constant Brightness: The intensity of each pixel in the video frame is assumed to
remain constant from one frame to another

� Small Motion between frames: It is important that the sampling rate of the camera is
fast enough so that the motion of each pixel between frames is small.

� Smooth Reflectance: The motion of local neighbourhood of pixels between frames is
assumed to be constant.

The most prevalent local method is the Lokas-Kanade approach [64]. This method op-
timises a local energy function. Such local methods have an advantage of being more robust
to noise, however, the flow fields are sparse.

Global approaches, first proposed by Berthold Horn [65] attempts to minimise a global
energy function. These dense methods provide an advantage of providing a fully dense flow
field but are sensitive to noise. In this work, dense flow fields are considered as having a
dense flow field is important for locating object boundaries which can aid in the detection
of objects. Also, the optic flow fields obtained by flying insects is considered to be a dense
flow field [9].

Foundational papers published by Berthold Horn, and Brian Schunck [65][66] looked at
solving dense optic flow. Their methods introduce constraints that are not always realistic
on real world situations, but this work is still useful as a starting point and it also paved the
way for a variational approach to machine vision. Variational approaches are not feature
based and can take all parts of an image into account where feature based methods only look
at isolated pixels.

2.5.1 Image Flow Constraint Equation

Constraints are required in order to compute optic flow at a point in an image independently
to the neighbouring points. This situation arises as there are 2 motion components (motion
in x, and y) for a point in the velocity field of the image, whereas the actual change of
intensity (brightness) at that same point due to motion is represented as a single scalar value.
Therefore it is necessary to introduce extra constraints for this ill posed problem. These
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constraints were introduced by Horn in the image flow constraint equation are defined as
follows:

Constant Brightness
The brightness at a given point in the image plane is assumed to be constant. The only
change in terms brightness is only caused by the motion of the pixels.

Smooth Reflectance
As the pattern of image brightness translates across the image plane, it does so without
any distortion to the brightness pattern. The brightness pattern on a surface should be
smooth and constant, except at a finite number of discontinuities (along the edges).

The change of the image brightness is only due to motion, E.x; y; t/ at a point .x; y/ at
time t is captured in the image flow constraint equation. This image flow constraint equation
is derived by looking at a section of the image brightness pattern after it has been moved by
ıy in the y direction and by ıx in the x at a time ıt . Due to constraints mentioned before
we assume that the image brightness remains unchanged between displacements (brightness
at a particular point is constant) so:

E.x; y; t/ D E.x C ıx; y C ıy; t C ıt/ (38)

Using a Taylor Series we can expand the right-hand side of the equation about the point
.x; y; t/ to become:

E.x C ıx; y C ıy; t C ıt/ D E.x; y; t/C
@E

@x
ıx C

@E

@y
ıy C

@E

@t
ıt C � (39)

where the the second order and higher order terms in ıx; ıy and ıt are contained in �. If we
subtract E.x; y; t/ from both sides of equation (39) and then divide the result by ıt we get
the image constraint equation:

@E

@x

ıx

ıt
C
@E

@y

ıy

ıt
C
@E

@t
D A.ıt/ (40)

where A.ıt/ contains the first order and higher variations of x and y that depend on ıt .
In the limit of ıt ! 0 the equation becomes the more common form of the image flow
constraint equation as shown below.

ExuCEyvCEt D 0 (41)

where Ex D @E=@x, Ey D @E=@y and Et D @E=@t are the partial derivatives of image
brightness with respect to x, y and t , respectively, while u D dx=dt and v D dy=dt .

A line in the velocity space satisfying the image flow constraint equation at a given point
on the image plane at a specific time instant is shown in Figure 25.

The change in image brightness is a 1D value, but velocity field is 2D (x and y com-
ponents), this causes a problem when trying to find the velocity field as only the component
of the velocity field along the gradient direction can be computed. The component of the
motion in the direction of the brightness gradient rE is:
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Figure 25: Image Constraint Line
The displacement of the constraint line from the origin is represented by d ; The orientation

of the constraint line is represented by ˛ [66]

rE D
�Etq
E2x CE

2
y

(42)

However, we can only recover component of movement along the brightness gradient
locally without introducing extra constraints. See Figure 26.

For the condition of constant brightness

dE

dt
D Et CrE:v D 0 (43)

which can be rewritten as

Et C krEkv? D 0; (44)

where v? is the norm of v component of the motion field v along the direction of rE. Since
the brightness is constant (see equation (43)), but the brightness gradient is not constant
krEk ¤ 0,

v? D

v? from .44/‚ …„ ƒ
�

Et

krEk

rE

krEk„ƒ‚…
unit gradient

; (45)

where v? is the vector whose length is v?. Therefore, if equation (43) holds, the component
of the motion field along the direction of the gradient of the image brightness v? can be writ-
ten in terms of derivatives of E (which can be computed). Equation (45) can be interpreted
as an instance of the well-known aperture problem for the unknown v: that is, the inform-
ation available at each point of a sequence of frames is only the component of the motion
field along the direction of rE (brightness gradient) not along the brightness contour.
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Figure 26: Brightness contours
It is only possible to recover the component of movement along the brightness gradient
(red), It is not possible to recover movement along the iso-brightness contours without

additional constraints

In order to estimate the partial derivatives, Horn and Schunck introduced a smoothness
constraint to pose solving the derivatives as an optimisation problem. The assumption was
based on the fact that small regions of an object would move together since objects are rigid.
This would mean that neighbouring regions would have similar velocities. The optimisation
problem consists of two terms:

� A penalty on the deviation of the estimated velocity field from the image flow con-
straint equation.

� A penalty on the deviation of the velocity field component from that for a smooth
surface.

The optimisation criterion is given as:

Z Z
.Exu;CEyv;CEt/

2
C �2

�
.
@u

@x
/2 C .

@u

@y
/2 C .

@v
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/2 C .

@v

@y
/2
�
dxdy (46)

where the relative cost of deviations from velocity field of the image flow constraint and the
smoothness constraint are controlled by the term, �2. A coupled pair of partial differential
equations can be found using the calculus of variations:

�u D
Ex

�2
.ExuCEyv CEt/ (47a)

�v D
Ey

�2
.ExuCEyv CEt/ (47b)
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Horn and Schunck were able to estimate the image flow field by iteratively solving a
pair of partial differential equations for u and v as shown in equation 47. Horn and Schunck
found that this algorithm could only handle simple image flows, that did not have any dis-
continuities in the brightness or velocity field. This method was not ideal as it blurs sudden
or sharp changes in the velocity field and can not be used beyond simple flows with no
discontinuities in brightness or velocity.

2.5.2 Discontinuous Image Flows

Brian Schunck took the work of the image flow constraint equation further by dealing with
discontinuities through the introduction of an alternative derivation of the image flow con-
straint equation. Such discontinues arise when a scene is mapped onto the image plane.
These discontinuities separate the various surfaces in the scene. This means that in terms of
the velocity field, the projected surface on the image plane is represented by areas of smooth
motion, with boundaries along the edges. The previous image flow constraint equation
(shown in equation (41)) can not handle discontinuities as they are blurred by the smooth-
ing function. An alternative image constraint equation was presented by Schunck which
includes ı-functions.

Image Brightness Discontinuities Figure 27 shows a step change in image brightness.
The image is moving with a velocity, with brightness of I0 at point P0, and point P1 has a
brightness of I1.

Figure 27: Step change in image brightness [66].
Two points PŠ; P0 in the image plane on either side of a step change in brightness.

The line integral is used to calculate the brightness change along the line from P0 to P1,
and is given as:

I1 D

Z P1

P0

�E � dl C I0 (48)

This equation is valid only if the gradient is evaluated across a step change in image
brightness since the integral must surround any ı-functions.
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The integral that represents the change in brightness due to motion over point p1 is given
as:

I0 D

Z t1

t0

@E

@t
dt C I1 (49)

where the patch of brightness moves from its initial position,P0 at t0 to point P1 at time t1.
The overall change in brightness must be the same for both cases I1 � I0 D 0

�

Z t1

t0

@E

@t
dt D

Z P1

P0

�E � dl (50)

This equation (50) means that the change in brightness when you move from P0 to P1 not
considering time (right hand side) will equal the change in brightness if you stay at point P1
and the surface moves with time endng at point P0 (left hand side). The right hand side of
equation (50) is transformed to units of time. If .x; y/ � .u; v/t , then:

�

Z t1

t0

@E

@t
dt D

Z t1

t0

�E:.u; v/dt (51)

Since this equation is true for arbitrary units of time, and arbitrary points both sides of the
argument are equal, allowing us to obtain an alternative image flow constraint equation.

�E � .u � v/C
@E

@t
D ExuCEyv CEt D 0 (52)

Essentially equation (52) means that at a fixed point, the change over time must be
the same as the change over space at a fixed time. This means that the brightness change
detected over time at a point P in the image must equal the change in brightness detected in
the image by following the path the point would follow across the image. This assumes that
the motion is the only factory causing the brightness to change.

This alternative image flow constraint (see equation (52)) derivation is useful as it valid
for discontinuities in image brightness. It relies on restricted problem domains with limited
surface reflectance, constant illumination. The aperture problem cannot be avoided with
a limited field of view camera. Some of the assumptions mentioned at the start of this
section are not applicable to realistic situations, in particular constant brightness. The work
in this thesis ultimately makes use of an alternative approach to solving optic flow through
the use of spatio-temporal filtering (see Section 4.4) which is introduced in Section 2.6.
However, a detailed study was conducted on research to look at solving dense optic flow
from a global pattern like approach. This is discussed in Appendix A for both planar and
spherical systems. An important differentiator between common camera sensors and insect
eyes is that insect eyes are spherical, as discussed in Appendix A. This much wider field of
view reduces some ambiguities particularly the aperture problem, especially when coupled
with IMU sensor information.
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2.6 Spatio-Temporal Filtering

As discussed in Section 2.5, classical dense optic flow is rather difficult to establish unam-
biguously, even without the presence of noise.

An alternative approach to dynamic pattern recognition is through the use of spatio-
temporal filtering which is discussed in this section. Most of the research in this area is
based on the human visual system, but some research suggests the same thing happens in
insect vision to some extent [22]. The difficulty in studying this in insects is mainly a
function of current technology and the comparatively small size of an insects brain.

2.6.1 Gabor Pairs and Spatio-Temporal Energy

In 1985, a new bio inspired modelling approach to velocity computation in the Human
Visual System (HVS) was proposed in two papers: [67] and [68]. It was postulated that
HVS works in the spatio-temporal domain, i.e., that the images registered on the eye’s retina
in the spatial coordinates .x; y/ are stacked over time t in the short-term memory to form
a spatio-temporal volume represented by the coordinate triple .x; y; t/. Motion patterns
are detected by convolution (linear filtering) of the spatio-temporal volume with directional
filters. For example, a dot moving at a uniform speed from left to right in the .x; y/-plane
will result in a line in the .x; y; t/-volume and the slope of that line will correspond to the
speed of the dot. Similarly, a rectangular bar moving at a uniform speed from left to right in
the .x; y/-plane will result in a plane in the .x; y; t/-volume and the slope of that plane will
correspond to the speed of the bar. An example of this is shown in Figure 28.

Figure 28: A rectangular bar moving at a uniform speed from left to right in the .x; y/-plane
will result in a plane in the .x; y; t/-volume and the slope of that plane will correspond to
the speed of the bar.
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Hence, using a filter bank of directional filters, working in the spatio-temporal domain
(or the .x; y; t/-volume), uniform motions of simple objects can be detected at various
speeds by examining the outputs of the filters. At the same time, for a given time t , the
position .x; y/ of a given object on the retina is also available, thus giving an efficient solu-
tion to both spatial localisation and also the speed of the observed objects. Finally, the
processing based on a bank of directional, spatio-temporal filters is not limited to uniformly
moving, simple objects, as shown in [69].

Subsequent investigations [70] confirmed physiological plausibility of the spatio-temporal
processing model proposed in [67] and [68] and led to significant refinements of the model.
In particular, it was shown that the bank of directional, spatio-temporal filters is realised by
the use of three-dimensional (3-D) Gabor functions [71]. These 3-D Gabor functions optim-
ally [72] (in terms of the uncertainty principle) balance the extent of their action (concen-
tration) in the spatio-temporal domain .x; y; t/ and the corresponding frequency (Fourier)
domain .fx; fy; ft/. Three-dimensional spatio-temporal Gabor functions are given [71],
[73] in even/odd pairs:
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where .fx0
; fy0

; ft0/ is the centre frequency (the spatial and temporal frequency for which
Geven gives its greatest output) and .�x; �y; �t/ defines the spread of the spatio-temporal
Gaussian window. The directionality of the Gabor pair (see equation (53) and equation
(54)) expresses itself in the preferred spatio-temporal direction:

fx0
x C fy0

y C ft0t D 0: (55)

Along the line (equation (55)) in the spatio-temporal volume, the response of the Geven filter
in equation (53) is strongest; its response is zero in the direction orthogonal to equation (55)
and intermediate in-between. It is worth noting that the 3-D Gabor functions in equation
(53) and equation (54) form a family of multi-resolution steerable filters [46], [74].

A remarkable property of the Gabor pair (see equation (53) and equation (54)) is that
they form a quadrature pair [75], i.e., Geven andGodd contribute orthogonally5 to the oriented
spatio-temporal energy:

E.x; y; t/ D ŒGeven.x; y; t/ ? I.x; y; t/�
2
C ŒGodd.x; y; t/ ? I.x; y; t/�

2; (56)
5Note that G2even.x; y; t/ D G

2
odd.x; y; t/ for all .x; y; t/.
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where I is the input video in the form of a spatio-temporal volume and ? stands for three-
dimensional convolution. There seems to be plausible evidence [70] that the human visual
system indeed computes the motion energy according to equation (56). Furthermore, this
motion energy is simultaneously computed for two quadrature pairs, with the pairs tuned to
mutually orthogonal directions. These two motion energies are then subtracted from each
other to achieve noise reduction.

2.6.2 Speeding up the Spatio-Temporal Energy Equations

The spatio-temporal Gabor functions (given in equations (53)–(54)) that are used for the
motion calculations are not computationally efficient when they need to be applied at various
combinations of angles in the spatio-temporal volume. The human visual system as it is
designed for this as is able to this efficiently. The first step to speed this up is to take
advantage of the separability of 3D Garbor functions and implement it as a series of 1D
functions. To further increase the computational efficiency an approximation of the Gabor
functions [76] can be used. An example of this is shown in Figure 29. By approximating
the Gabor wavelet with rectangular regions of constant value, authors in [76] reported a 4.4
times speed improvement with similar levels of performance.

Figure 29: A 2D Gabor wavelet (left) is approximated by rectangular regions of constant
value (right) [76].

2.6.3 Wildes and Bergen Features

Wildes and Bergen made a fruitful observation [77] that the oriented spatio-temporal energy
(equation (56)) can be used to classify motion types by simple arithmetic combinations of
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only four filter responses. This approach was later extended to be able to classify surpris-
ingly complex motions [78]. They considered the .x; t/-slice and .y; t/-slice in the spatio-
temporal volume corresponding to, respectively, horizontal and vertical motion. They found
that, both for the horizontal .x; t/-slice and vertical .y; t/-slice, it is sufficient to perform
motion-energy detection along four Gabor directions: 0ı, 45ı, 90ı and 135ı to cover basic
types of motion. In this work, the angle calculation convention follows the original defini-
tion from [46] and is shown in Figure 30. This four-angle filtering can be done for different
scales, thus realizing multi-resolution analysis of oriented spatio-temporal energy.

Figure 30: Vectors of the basic motion types from the .x; y/-plane projected onto the .x; t/-
plane of a spatio-temporal volume. The corresponding second order Gaussian filter that is
used to detect each vector is also shown.

Each of these Gabor filters are oriented to detect a certain direction of motion along the
.x; t/-plane and .y; t/-plane. Wildes and Bergen used four filters on each plane to detect the
following basic motion types:

� Fx, Flicker - such as sudden illumination changes.

� R, Rightward Motion on .x; t/ (U , Upward Motion on .y; t/).

� L, Leftward Motion on .x; t/ (D, Downward Motion on .y; t/).

� Sx, Static.

Using these four basic features, the six main types of motion can be found in a spatio-
temporal volume as shown in Table 1. The top two rows show the types of motion on real
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Table 1: The six classifications of motion in a spatio-temporal volume as proposed by
Wildes and Bergen [77]. For simplicity this is shown for a .x; t/-slice of the spatio-temporal
volume.

world footage for a .x; y/-slice and .x; t/-slice. The third row then shows an idealised
pattern that each of these motion types would produce. When looking at the Fourier domain
indicated in the fourth row, these patterns focus energy at specific regions in the frequency
domain. The last four rows show that by using just approximate energy combinations of
the Gabor filter responses, the type of motion can be classified. By combining the various
energy responses, Wildes and Bergen were able to qualitatively recognise video regions
exhibiting these motions. For example, coherent motion occurs when regions contain a
moderate response from the difference of Gaussian jR �Lj and RCL, and a low response
of static and flicker filters.

Table 1 provides great insight into the spatio-temporal motion classifications and has lead
to several applications extending segmentation of video sequences [78], and for background
subtraction for CCTV surveillance videos [79]. However, none of these approaches truly use
three dimensions as only 2D Gabor filters are used along the .x; t/-plane and .y; t/-plane
across the volume. Furthermore, if the Gabor filter angles are spaced too far apart, situations
can occur where this approach will label regions as having both coherent and incoherent
motion coherent motions.
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3 Symmetry Detection for Static Patterns
In this chapter, symmetry detection is posed as a static pattern recognition problem. This
allows for the efficient detection of symmetries using composite correlation filters which
is one of the contributions of this thesis. Furthermore, methods discussed in this section
are shown to be considerably faster when compared to state-of-the-art symmetry detection
methods, this shown in Section 3.4. This chapter is presented in the following manner:

� Section 3.1 defines the problem setting of the work conducted in this chapter, this
relies on biological background information discussed previously in Chapter 1.

� Section 3.2 relies on engineering background in Sections 2.2 and 2.3 to implement the
pattern based symmetry detection method. This section also introduces the primary,
and abstracted datasets used for training and testing.

� Section 3.3 discusses the testing and ROC analysis of the symmetry detection method.
An understanding of ROC analysis discussed in Section 2.4 is useful here.

� Section 3.4 compares the pattern based symmetry detection method introduced in this
chapter to the current state-of-the-art method (see Section 2.1).

� Section 3.5 interprets the results and summarises the conclusions of this chapter.

3.1 Problem Setting
Detection of objects with regularities is successfully performed by flying insects which pos-
sess very limited brainpower and devote much of their neural processing to flight control
[3]. In particular, pollinating insects like honeybees are very effective in detecting flower
symmetries, a surprisingly challenging problem due to the great variety of such symmetries
[80], [81]. Hence, the work presented here is a bio-inspired approach to rotational symmetry
detection, motivated by the ability for honeybees to efficiently detect symmetry patterns with
limited processing power.

Horridge [82] has shown that honeybees can be readily trained to recall rotationally
symmetric patterns. Figure 31, left, shows the results of one of Horridge’s experiments
in which more than 80% of the trained honeybees successfully recognised a rotationally-
symmetric pattern. In the same experiment, when honeybees were trained on a pattern with
no symmetric properties (Figure 31, right), very few were able to correctly recognise it,
showing their clear preference for symmetric structures in the environment.

Flowers are food sources for honeybees and floral symmetry is an indicator of the quality
and/or quantity of nutrition [81]. Detection of symmetries in a feature-rich environment is
an efficient way of achieving relevance filtering, or focusing only on the relevant inform-
ation in the environment (e.g., nutrition potential) whilst ignoring the rest. The relevance
filtering principle of disregarding all but the absolutely essential details is of significant
interest for autonomous systems because it offers a potentially efficient use of Machine Vis-
ion in order to achieve well-defined situational awareness. In particular, small—and thus
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Figure 31: Honeybees have a clear preference for symmetric structures in their environment
(redrawn from [82]). After being trained on two kinds of new patterns (shown on the left and
right above), 83% of trained honeybees chose the symmetric pattern on the left as shown by
the experimental results from Horridge [82].

resource-limited—autonomous platforms (e.g., MAVs) would benefit from the inexpensive
processing of imagery in order to foster an artificial perception of their external environment.

The relevance filtering used by honeybees is illustrated in Figure 32 which shows, on the
left, simplified (abstracted) representations of flower symmetry proposed by Horridge [82].
These Horridge patterns are efficient abstractions of complex floral symmetries [80] which
represent the relevant floral symmetry structure and ignore the rest of the flower detail. In
Horridge’s experiments, rather than remembering the details such as texture, the number of
petals and species of flower, honeybees learnt a simplified (abstracted) representation of a
generic flower based on rotational symmetry. When presented with an unknown flower, the
visual system of a honeybee can be envisaged as performing relevance filtering by testing
the flower image for the symmetry type (and regularity) to inform a decision whether to
choose or ignore the flower.

The example Horridge patterns, shown on the left of Figure 32, are non-unique ab-
stractions of rotational symmetry of certain flowers from the Anthemideae tribe. This non-
uniqueness gives rise to two questions: 1) which of the patterns is the most efficient abstrac-
tion? and 2) which of the patterns leads to better detection performance? The first of these
questions needs a definition of image complexity and the second question requires defining a
detection performance measure. Here, abstraction efficiency is defined through the Haralick
image correlation [85], consistently with the use of correlation filters for detection.

3.2 Correlation Filter Training
3.2.1 Training Templates for Correlation Filters

The training image dataset used for synthesising composite correlation filters in an important
aspect which can impact the performance of the filter. In order to synthesise a plane rotation
invariant correlation filter, training images of the target at various rotations are used. Sim-
ilarly, for perspective distortion, the data should include images taken at various elevation
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Figure 32: Three images on the left show examples of symmetric patterns due to Horridge
(redrawn from [82]) which honeybees learn readily (see also Figure 31). These Horridge
patterns efficiently capture the high contrast between the petal boundaries in the Chrysan-
themum (image_06206 from [83]) on the right. Such simplified (abstracted) patterns are
compared by the honeybee visual system with the flower image thus enabling efficient de-
tection of floral symmetry. This pattern-based symmetry detection is applicable not only to
this example Chrysanthemum from the Anthemideae tribe, but also to other Anthemideae
flowers with a similar symmetry structure, e.g., Osmitopsis asteriscoides or Ismelia carinata,
see [84].

angles. For each elevation angle, a series of rotated versions of that object are used for train-
ing. One would assume that to train the best rotation invariant filter would require many
rotated versions of the object.

However, this is not the case, as the number of training images used has a direct impact
on the filters SNR performance in [86]. Increasing the number of training image rotations
reduces the best case SNR (poorer discrimination) while increasing the worst case SNR
(better distortion tolerance). There is a point at which adding more training images will not
increase the worst case SNR which is often dependant on the actual training data and object
properties.

This is shown in Figure 33, where the signal to noise ratio of five MACH correlation
filters were compared, each of which were trained using a different number of training im-
ages. A single flower image was used which was transformed into a new image for each
angle between 0ı and 179ı. The five filters were trained by synthesising a MACH filter at
various angular steps.

The first filter was trained using rotations at every 90ı, so only two images were used to
synthesise this filter. As shown by the green line, there is a clear best case SNR peak at 0ı

and 90ı, which corresponds to the rotations of the two training images.
As the number of training image rotations is increased, the angle spacing reduced between
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them, the best case SNR reduces while the worst case SNR increases. As indicated by a blue
line for a MACH filter trained on every rotated image, there is no clear best or worst case
SNR peaks, however, the overall worst case SNR is the highest compared to the other filters,
indicating good distortion tolerance. However, using training images spaced at approxim-
ately 5ı to 15ı (red and orange lines respectively) results in a higher best case SNR while
still achieving an acceptable worst case SNR. This worst case SNR is still high enough to be
able to easily recognise the target against background noise in the scene.

Figure 33: Signal to Noise comparison between different number of training images and
plane rotation angles used to train a MACH filter. Five correlation filters were compared,
where each uses a different number of rotations of a flower. When fewer rotations of the
training images are used, the maximum peak SNR is higher, with very low SNR at other
rotations, resulting in a filter that has poor distortion tolerance. When more training images
are used the peak SNR is lower, with an overall higher worst case SNR, resulting in better
distortion tolerance at the cost of poorer discrimination ability.

If too many training images are used, the best case SNR reduces, which could result
in the filter misclassifying similar looking objects rather than being able to discriminate
between them. Depending on the application it may be desirable to find an exact species of
flower, rather than detecting if an object is just a flower.

This agrees with [86] as there is a relationship between the number of training images
used and the discrimination and distortion tolerance of the correlation filter. For a given
training dataset, there is an ideal number of training images to give a good balance between
best and worst case SNR. This can also be used for efficient computation since only the
required number of training images need to be processed.

Additional research into the training dataset quality has also shown that detection results
are further improved when the centre of the target in all of the training images are exactly
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the same [87].

3.2.2 Scale, Rotation and Translation Invariance

As mentioned in Section 3.2.1, the type of training image used can synthesis a correlation
filter that is in-plane rotation invariant if a sufficient quantity of rotated versions of the target
are used. This can be extended to perspective effects by using a dataset of training images
of each object at a variety of azimuth elevations for all rotations. Then a bank of correlation
filters of the same object at different azimuth elevation angles will be correlated with the test
image to find the object. The correlation results would indicate the presence of the target.

The issue of scale is often resolved through the use of multiscale image pyramids as
shown in Figure 34. A multilevel Gaussian image pyramid can be used to resample the
test image from a top down approach, with each level gaining more details. However, an
alternative method would be to simply synthesise a correlation filter at multiple scales, where
each filter size will be dependant on the operating environment and the type of object.

Figure 34: Visual representation of an image pyramid with 5 levels [88].

The work on correlation filters conducted in this thesis, in-plane rotation invariance for
a given object is achieved through using multiple representations at each orientation during
the training phase. Scale invariance was achieved through the use of a 3 level Gaussian
pyramid. Translation invariance is solved through the use of the correlation sliding window
function as shown in equation (9). The issue of perspective changes or other distortions were
not studied in this work.
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3.2.3 Graded-abstraction Dataset for Training and Testing

The proposed approach to rotational symmetry detection in flowers has two elements. Both
are inspired by the honeybee vision. Firstly, symmetry detection is cast as a pattern matching
problem to be solved with modern composite correlation filters (see Section 2.3). Secondly,
the composite patterns to be detected are abstracted simplifications of the flowers to be
recognised in accordance with the relevance filtering principle of disregarding the inessential
details (see Figure 32).

The actual dataset used here was derived from a publicly-available Oxford flower dataset
(see Section 3.2.4). Modified images from the Oxford flower dataset were progressively
simplified to generate the graded-abstraction dataset actually used for training and testing
(see Section 3.2.5).

Figure 35: Example images derived from [83].

3.2.4 Enriched Normalised Dataset

The starting point for the dataset used in this work was the publicly-available Oxford flower
dataset [83] which contains 17 categories of flowers typically found in Europe. For consist-
ency, the Oxford flower dataset was normalised so that all the images contain only a single
flower in the centre without perspective distortion, (see Figure 35). All the images were
further resized to a 128 � 128-pixel size so that d1 D d2 D w1 D w2 D 128.

Additional images rotated by 90ı, 180ı and 270ı were generated in order to enrich the
dataset with more symmetry examples. The images in the enriched normalised dataset were
randomly split into two subsets: a training dataset (709 images) and a test dataset (105
images).
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3.2.5 Actual Dataset Used for Training and Testing

The actual realisation of the relevance filtering principle was achieved by generation of
training images with a varying degree of complexity. These progressively-simplified training
images were derived from the images in the enriched normalised dataset, defined in Section
3.2.4 above.

Table 2: Top row: Example flower image with detail reduction measured by correlation (see
equation (57)). Bottom row: Amplitude distribution for the DFT of the top row; note dimin-
ishing amplitude variety consistent with the ordering G < S < E < B and the correlation
value in the top row.

The initial step for generation of progressively-simplified training images was to convert
all images of the enriched normalised dataset from colour to greyscale, (see the top left of
Table 2). For the thus-obtained full-detail (G) greyscale images, progressive detail reduction
was then performed. The degree of progressive detail reduction for image x was measured
by the Haralick image correlation [85]:

� D

d1X
mD1

d2X
nD1

.m � �/.n � �/x.m; n/=�2; (57)

where � and � are the image mean and the standard deviation. The Haralick correlation �
in equation (57) is a measure of image complexity arising in the context of co-occurrence
statistics applied to image texture analysis [60, Chapter 16].

The first abstraction was reduction of each full-detail (G) greyscale image to its segmen-
ted (S) greyscale version; for the reference example in Table 2 this resulted in reduction
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from �G D 0:9640 to �S D 0:9103. The next abstracted category had only the greyscale
edge-magnitude (E) information resulting in complexity reduction from �S D 0:9103 to
�E D 0:8622 for the reference example. The last category was a binary (B) image with
edges only, having correlation �E D 0:4902, thus reducing complexity by a factor of two
when compared to the full-detail image with �G D 0:9640.

The graded-abstraction approach G < S < E < B allowed training the filters on varying
levels of detail with the richness of detail expressed by progressive reduction �G > �S >
�E > �B . An additional illustration of image-complexity reduction is provided by the DFT
of the G < S < E < B image sequence, (see the bottom row of Table 2) which shows clear
gradation of the DFT amplitude variety.

3.3 Graded-abstraction Testing and Performance Results

The experiments performed in this work used the graded-abstraction dataset described in
Section 3.2.5 both for the design and testing of the three kinds (MACE, UMACE or MACH)
of composite correlation filters defined in Section 2.3.

Four designs were made for a given kind of composite correlation filter (MACE, UMACE
or MACH), each design resulting in a different composite template for the given kind of
filter. Each of the composite templates, generated in the design, was based on the same
abstraction level (grade) of the images from the training dataset. Hence, the design based on
full-detail (G) greyscale training images generated the G-template, segmented (S) greyscale
training images generated the S-template, greyscale edge-magnitude (E) training images
generated the E-template and, finally, the binary (B) edge training images generated the B-
template. As a result of this design process, twelve filter designs were obtained: three filter
kinds (MACE, UMACE or MACH) with four templates (G, S, E and B) each.

The graded-abstraction filter design allowed, for each filter kind, testing the graded-
abstraction designs with respect to their generalisation and specialisation performance. In
generalisation tests, the filters trained on low-grade data were given high-grade input, detect-
ing symmetry of complex objects despite using simple templates; in specialisation tests, the
grading was reversed. This training/testing set-up is illustrated in the table shown in Table
3 where the main diagonal (blue) corresponds to the default training/testing set-up used in
correlation filter theory and practice [89]. The lower triangle of the table (green) represents
the generalisation region in which the correlation filter performance is assessed for the abil-
ity to detect targets which are the more complex than the training data. Good generalisation
capabilities are attractive due to the resulting design simplicity and operational efficiency.
The ideal situation is the B-G scenario: training on binary edge images (B-template) and
detection of the flower in the full-detail (G) greyscale test image (see Table 3). The upper
triangle of the table (pink) represents the specialisation region where the training data con-
tain more information than the testing data. Specialisation capabilities are less attractive in
practice but were also considered in this work for completeness.

Recalling from Section 3.2.4 that all test images have a flower centred in the middle of
the image, a correct detection was declared if the correlation peak was located within the
central region of the test image. In the remainder of this section, performance results of
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Table 3: Graded-abstraction testing set-up. For each of the three composite correlation filters
(MACE, UMACE or MACH), four composite templates were designed based on the graded-
abstraction training images with image-complexity gradation as in Table 2. Generalisation
testing (green) examined detection of targets which are more complex than the training data;
specialisation testing (pink) was the converse, with more image complexity in the training
data than the target.

the generalisation and specialisation experiments are presented using ROC curves and area-
under-curve (AUC) values [62]. The results are grouped by the type of training images used,
i.e., following the rows of the table in Table 3.

3.3.1 Testing of G-template Design: G-G, G-S, G-E and G-B

The results presented in Figure 36 correspond to the first row of the table in Table 3. The
corresponding area under curve table is shown in Table 4. Filter design was done using
the full-detail (G) greyscale training images only, generating G-templates for each of the
three composite correlation filters: MACE, UMACE or MACH. Testing of the resulting
G-template designs was done on test images with all complexity levels: full-detail (G) grey-
scale, segmented (S) greyscale, greyscale edge-magnitude (E) and binary (B) edge.

In the G-G test, the performance of all three composite correlation filters was high. This
means that all G-template designs are able to detect a large majority of the flowers under
default testing conditions (training and testing images of the same complexity). The MACH
and UMACE filters outperform the MACE filter, this is due to the performance limitation
imposed by the MACE constraint equation (16).

In the G-S test, despite the lower amount of information in segmented test images, all
three filters performed well. Although large regions of the image have a constant value,
the segmented region boundaries still coincide with the original images so the correlation
filters are able to detect the flowers. Interestingly, the MACH filter has the best performance
(AUC � 0:92). Due to the lower contrast between regions of the segmented regions, the
MACE filter has the worst performance (see Section 3.3.2).
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Figure 36: ROC curves using Greyscale training images for MACE, UMACE and MACH
filters. Tests G-S, G-E, G-B are examples of generalisation tests where the training data
contains more information than the testing data.

In the G-E test, the overall performance of all three filters is mediocre. Despite the edge-
magnitude images still containing all of the key edges in a flower image, some of the weaker
edges have little contrast. The limits of the MACE filter, due to equation (16), are clearly
evident in the results (blue curve). Interestingly at a false positive rate of � 0:55 the ROC
curve falls below the chance line. At this point, although the filter is actually performing
worse than random chance, it is still providing valuable feedback. By simply reversing the
output at this point, useful feedback can still be obtained since the MACE filter is more often
than not reporting the target to be present when it is actually not present. This is shown in
Figure 36 where the MACE ROC curve touches the chance line, the response is reversed,
effectively mirroring the ROC curve about the chance line.

In the G-B test, the ultimate specialisation case was examined. The G-B test results
in Figure 36 show that the performance for both the MACH and UMACE (AUC � 0:96)
filters are very close to that of the G-G tests with the same filters (AUC � 0:98). As with
the other tests, the MACE filter did not perform very well as shown by its peak true-positive
rate of about 0:5 until the false positive rate of � 0:5. This response from the MACE filter
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is mainly due to the fact that the key flower characteristics usually manifest themselves in
high-frequency regions corresponding to edges (present in both the greyscale and binary-
edge images). The AUC of the MACH and UMACE filters are similar in both the G-B and
G-G tests but the 100% true-positive rate for the G-B case occurs at a lower false-alarm rate
(� 0:5) in the G-B tests, compared to (� 0:7)the G-G test case. This improvement occurs
due to complexity reduction in binary (B) edge images (keeping the strongest edges only),
resulting in only the essential high-frequency content remaining in the image.

Table 4: AUC table for the MACE, UMACE and MACH correlation filters trained using
greyscale training images.

3.3.2 Testing of S-template Design: S-G, S-S, S-E and S-B

The results presented in Figure 37 correspond to the second row of the table in Table 3.
The AUC is presented in Table 5 Filter design was done using the segmented (S) greyscale
training images only, generating S-templates for each of the three composite correlation
filters: MACE, UMACE or MACH. Testing of the resulting S-template designs was done on
test images with all complexity levels: full-detail (G) greyscale, segmented (S) greyscale,
greyscale edge-magnitude (E) and binary (B) edge.

Most of the tests which involve using segmented images seem to have poor performance
in general, including the S-S case for the default training/testing set-up. The ROC curves
for all the segmentation tests are shown in Figure 37.

For the S-G test, there is a noticeable discrepancy between the MACH, UMACE, and
MACE filters. The MACH filter has the best performance (AUC � 0:96), while the MACE
filter only achieved AUC � 0:78. MACE filters are sensitive to noise and were trained
on segmented images, a greyscale test image can be considered to have much more noise
while still containing the same major edge information. Because of the extra noise due to
the greater pixel intensity variation in a greyscale image, the MACE filter performs poorly.
However, the unconstrained correlation filters (UMACE, MACH), are able to cope with
noise much more effectively (see Section 2.3), as evident from the better results.

One might expect the S-S test to produce the best results out of the four segmented data
tests as the training and test data is of the same complexity. The results are reasonable
but the MACH filter performed much better in the S-G and S-B tests. The main reason
for that better performance is due to the energy distribution in the testing images: when
designing/training the composite correlation filter, the high-frequency content is key for
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Figure 37: ROC curves using Segmented training images for MACE, UMACE and MACH
filters. Test S-G is a specialisation test, whereas S-E, and S-B are generalisation tests.

discrimination. During the segmentation preprocessing, the test flower image is segmented
into regions in only three colours. Sometimes the contrast between these regions is not
very high. This is more noticeable when testing on segmented images as there is not much
high-frequency content for the correlation filter to compare with. Hence, when the filter
is applied to the image, the resulting peak and clear discrimination is difficult. Compared
to the greyscale and binary testing images of flowers, most of the segmented images have
high-frequency content around the edges of petals.

In the S-E tests, the MACE filter performed poorly (AUC � 0:49), touching the chance
line, causing the filter response to be reversed due to inadequate noise tolerance, as discussed
previously. The MACH, UMACE filters performed better (AUC � 0:8), but the same
high-frequency content in the segmented training images is not always present in the edge-
magnitude images.

Surprisingly, the S-B tests for the unconstrained correlation filters perform very well
(AUC � 0:98) for both MACH, and UMACE. Although both the binary and segmented
images have the same high-frequency content, the binary edges are always at maximum
contrast (including some extra noise), whereas the segmented image boundaries do not al-
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ways have a high contrast, as discussed previously. The MACH and UMACE filters show
high performance but the MACE filter performs the worst out of these S-template tests
(AUC � 0:56) due to poor noise tolerance.

Table 5: AUC table for the MACE, UMACE and MACH correlation filters trained using
segmented training images.

3.3.3 Testing of E-template Design: E-G, E-S, E-E and E-B

The results presented in Figure 38 correspond to the third row of the table in Table 3. Filter
design was done using the greyscale edge-magnitude (E) training images only, generating
E-templates for each of the three composite correlation filters: MACE, UMACE or MACH.
Testing of the resulting E-template designs was done on test images with all complexity
levels: full-detail (G) greyscale, segmented (S) greyscale, greyscale edge-magnitude (E)
and binary (B) edge. The corresponding AUC table for these tests is shown in Table 6.

As shown in the ROC curve for the E-G case in Figure 38, the performance of training the
correlation filter based on edge-magnitude training images is relatively good (AUC � 0:91).
The reason for that good performance is that the greyscale test images still have all the high-
frequency content, particularly at the stronger edges.

The ROC curve for the E-S case is mediocre for similar reasons to those discussed in
Section 3.3.2. Since this is a reversed situation of the S-E test, the MACE filter still performs
well as the training edge-magnitude images only emphasise the strongest of edges.

In the E-B test, the MACE filter has very poor performance (AUC � 0:63), however,
the UMACE, and MACH filters have relatively good performance (AUC � 0:98). This is
due to some of the weaker edges in the magnitude image appearing as strong edges in the
binary edge image. Since the MACE filter is trained on the edge magnitude images, only the
strongest of edges are incorporated into the filter. When testing on the binary edge images,
some extra strong edges appear due to the thresholding (some of which are not necessarily
part of the flower) which confuses the MACE filter due to the constraint in equation (16).
The unconstrained filters (UMACE, and MACH) do not have this problem and are able to
handle extra noise and distortions.

3.3.4 Testing of B-template Design: B-G, B-S, B-E and B-B

The results presented in Figure 39 correspond to the last row of the table in Table 3 with
corresponding AUC in Table 7. Filter design was done using the binary (B) edge train-
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Figure 38: ROC curves using edge-magnitude training images for MACE, UMACE and
MACH filters. Tests E-G, and E-S are specialisation tests. Test E-B is a generalisation test.

ing images only, generating B-templates for each of the three composite correlation filters:
MACE, UMACE or MACH. Testing of the resulting B-template designs was done on test
images with all complexity levels: full-detail (G) greyscale, segmented (S) greyscale, grey-
scale edge-magnitude (E) and binary (B) edge.

In the B-G test, all three filters showed very similar performance with an AUC � 0:91,
see Figure 39. This test represents the greatest abstraction jump in the training/testing set-
up. The filter is trained using the simplest form of data (edges-only, binary image), and is
still able to detect flowers for the most complex input (full-detail, 8-bit greyscale image).
This is consistent with the research by Horridge [82] which showed that honeybees are able
to discriminate well using simplified patterns. These patterns can be thought of as skeletal
representations of flowers which honeybees store in memory (relevance filtering), as shown
in Figure 32.

In the B-S test, the ROC curves are similar (AUC � 0:75), see Figure 39. The reason
for the poor performance is the lower edge contrast in the segmented images.

In the B-E test, the MACE filter outperformed the MACH and UMACH filters. This is
because the binary training images usually have more high-energy content than the edge-
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Table 6: AUC table for the MACE, UMACE and MACH correlation filters trained using
greyscale edge-magnitude training images.

magnitude images. During training, the MACE filter puts a lot more emphasis is on the
high-frequency content, most of which is still present in the edge-magnitude image (the bin-
ary images are just threshold edge-magnitude images). Overall, the filters have reasonable
performance with an AUC of 0:91 for the MACE filter, and about 0:82 for the MACH filter.

In the B-B test, all three filters perform well, with unconstrained filters demonstrating
superior noise tolerance. The discrimination power of the MACE filter leads to better results
with a higher true positive rate at false positive rates less than 0:1; however, the true positive
rate is lower than the UMACE, and MACH for a false positive rate that plateaus between
0:1 and 0:8 with a true positive rate just under 0:88.

Table 7: AUC table for the MACE, UMACE and MACH correlation filters trained using
binary edge training images.
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Figure 39: ROC curves using binary edge training images for MACE, UMACE and MACH
filters. Tests B-G, B-S and B-E are specialisation tests, where the training data contains less
information content than the testing data.
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Table 8: Average performance comparison between the Loy-Eklundh method and the com-
posite correlation filter approach on the (normalised and enriched) dataset from Section
3.2.4. For detecting rotational symmetry in flowers the composite correlation filter approach
achieves better accuracy at a much lower computational cost.

3.3.5 Computational Performance

Efficient processing is a key advantage of using correlation filters. Digital correlation filters
for object detection have been shown to run very quickly, even as fast as 600 frames per
second [90] with optimisations. The tests performed in this thesis did not use any code
optimisations other than those already built into standard Matlab functions. Since the filter
is precomputed in the Fourier domain, the major computation required is to transform the
input image into the Fourier domain. Despite this, each filter took just 2 milliseconds on
average to run on each image on a laptop with an Intel core i7-4500U and 8GB of RAM,
utilising all four cores. This average time of 2 ms includes multiplication between the DFT
of the 128 square pixel image and the filter of the same size, and the IDFT back to the spatial
domain (using built-in Matlab functions) as well as locating the peak.

The attained speed of 2 ms is only representative of the overall system performance,
given that several filters and some other minor processing of the results is required in the
final system. Compared to other state of the art flower-detection methods based on features
(points of interest) (see Section 3.4), the correlation filter system proposed in this thesis is
an order of magnitude faster as shown in Table 8.

3.4 Comparison with Feature Based Symmetry Detection
The Loy-Eklundh symmetry detector [35] is among the current state-of-the-art methods to
detect symmetry in images [33] and is based on matching and grouping local feature points,
as opposed the the global pattern matching framework used in the correlation filter based
approach. Once a series of SIFT features [36] has been found in a given image, the algorithm
searches through them and matches them based on symmetrical properties in order to find
the dominant symmetries. The key attribute for matching symmetric features is the dominant
feature orientation.

3.4.1 Results

In the work presented here, the Loy-Eklund symmetry detector was implemented in Matlab
in two variants. The first variant corresponds to the original implementation in [35] which
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used SIFT features. The second variant is a faster version of the original algorithm in which
the SIFT part of the algorithm is replaced with the simpler SURF features [91] resulting
in an order-of-magnitude speed improvement with similar performance. In software im-
plementation, the freely available OpenSURF library [92] was used as it contains a Matlab
implementation of the SURF feature detector. Since the input to the Loy-Eklund symmetry
detector requires a feature point vector, the SURF feature vector was arranged to be in the
required form and processed the same way as SIFT features in the original algorithm.

A few examples of the results obtained for the symmetry detector are shown in Figure 40
showing that the Loy-Eklund algorithm is able to detect objects with bilateral or rotational
symmetry on a variety of flowers including simplified representations of these flowers.

Figure 40: Loy-Eklund symmetry detection results for example flower images and also sim-
plified representations of these flowers.

In order to directly compare the proposed composite correlation filter approach to the
Loy-Eklund method, both algorithms were tested on the same (normalised and enriched)
flower dataset, defined in Section 3.2.4. The average accuracy in terms of true and false
detection rates over the whole dataset are presented in Table 8.

The results in Table 8 show that the composite correlation filter approach to rotational
symmetry detection is considerably faster, achieving an average of 55 frames per second,
compared to just 1:6 for the Loy-Eklundh method.

3.5 Conclusions and Interpretation
The main purpose of this work on static perception was to develop a fast and effective al-
gorithm for rotational symmetry detection, suitable for realistic implementation and use on
resource-limited platforms, especially micro air vehicles (MAVs). MAVs are autonomous
flying machines, six inches in size, designed to detect symmetrical objects in indoor envir-
onments and cannot use computationally-intensive approaches. The bio-inspired algorithm
proposed here is based on a pattern-recognition approach to symmetry detection, realised
with composite correlation filters. Compared with a leading state-of-the-art symmetry de-
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tection method based on points of interest, the proposed approach shows better accuracy
in the ROC analysis sense and also results in an order of magnitude better computational
efficiency, (see Table 8).

The bio-inspired character of the proposed approach was motivated by honeybee vision
and has two aspects: 1) symmetry detection as pattern matching (detection with training
examples), and 2) the use of simplified training examples (relevance filtering). The first as-
pect led to the use of composite correlation filters whose design entails learning by example:
the gist of all training examples is expressed as a single composite template, and only this
template is matched against test inputs. The second aspect was a realisation of the relev-
ance filtering principle by giving the pattern-matching filters a generalisation capability at
the design stage through a systematic choice of the training examples. The generalisation
capability was defined here as the ability to detect a complex pattern in the test input after
learning a less complex version of that pattern in training. Since the filters used here per-
form pattern matching by maximising the input/template correlation, a natural measure of
complexity was the Haralick image correlation.

The algorithms defining composite correlation filters are optimised in the frequency do-
main and hence the analysis of the generalisation performance is most transparent in the
frequency domain as well. In particular, two questions were posed at the beginning of
this chapter: 1) which of the training patterns is the best abstraction of the full-complexity
patterns? and 2) which of the simplified training patterns leads to better generalisation per-
formance?

As for the first question, the answer is the binary (B) image with edges only as the
most efficient abstraction of the full-detail original greyscale (G) image. The filters are
trained with only the key information but are still able to reliably detect the targets in the
full greyscale images. The best results were obtained for the case with the strongest contrast
content corresponding to the binary edge training tests. See Section 3.3.4, especially the
B-G test.

As for the second question, the answer is less clear cut but there is a trend pointing
to the importance of the high-frequency content in the training and testing images. When
there is a low amount of high-frequency content in either the training or testing image, the
performance is reduced. This is clearly visible in all the filters that are tested on segmented
(S) images which have the weakest high-frequency content. Hence, it is important for the
high-frequency content to be available in the testing images, more so (to some extent) than
the training images. However, noise is present in the high-frequency content of images as
well and hence a design trade-off must be performed for which the MACH filter is well
suited. See Section 2.3.3 and equation (24) and equation (25) in particular.

In Section 3.4, the bioinspired pattern matching approach proposed in this work was
compared with a leading state-of-the-art symmetry detection method. The Loy-Eklundh
method is fundamentally different as it is a point of interest based method. Although robust
points of interest are used that are scale and translation invariant, the computational require-
ments for finding, and matching all of these features might not be suitable for a resource
limited embedded system. On the other hand, the proposed pattern matching method using
composite correlation filters are able to recognise the same symmetric objects with just a

PhD Thesis Page 71 of 132



3.5 Conclusions and Interpretation A. Elliott

single correlation operation, which offers a significant computational advantage (see Table
8).

Another advantage of the bioinspired approach is the existence of guidelines (see Section
3.2.1) on how many training images are required in order to build a correlation filter able to
adequately identify regions in an image. This was extended to the context of information
content in each image. By contrast, it is not clear how many local points of interest are
required in conventional symmetry detection methods employing SIFT/SURF features like
the Loy-Eklundh method discussed in Section 2.1.

Page 72 of 132 PhD Thesis



A. Elliott 4 Dynamic Patterns

4 Dynamic Pattern Recognition
In this chapter, a pattern based approach is applied to the problem of visual dynamic percep-
tion. The first contribution in this chapter looks at defining and recognising symmetry using
motion. By inferring motion on patterns, it is possible to detect and categorise the symmetry
in a given pattern. This method is shown to improve the detection performance of the static
pattern based symmetry detection method proposed in Chapter 3.

The second contribution in this chapter introduces a dynamic pattern based method for
recognising self-motion in a given video sequence. Using linear spatio-temporal filtering
techniques, a method for defining motion in a video sequence is presented. This method had
an advantage that it does not require explicit calculation of the optic flow field. Furthermore,
the results from the spatio-temporal filtering techniques are then combined with similar
pattern based methods (introduced in Chapter 3) to recognise self-motion in the video. This
chapter is laid out as follows:

� Section 4.1 introduces the problem setting for this chapter.

� Section 4.2 uses motion to recognise and define symmetry using linear filtering tech-
niques. This relies on an understanding of matched filters (see Section 2.2), and is an
extension of the pattern based symmetry detection method used in Section 3.3. This
method is also compared to a feature based symmetry detection method discussed in
Section 2.1.

� Section 4.3 extends the correlation filter pattern matching approach to three dimen-
sions in able to use video data. Instead of recognising objects, this method finds
motion patterns in a video sequence. This section relies on concepts introduced in
Chapter 3 and background information from Section 2.3.

� Section 4.4 utilises spatio-temporal filtering methods to describe motion in a video
sequence that does not require direct computation of optic flow. This section relies
of background information discussed in Section 2.5 and Section 2.6. Using three
dimensional correlation filters, it is shown that simply motion types can be detected in
a video sequence using a pattern based approach.

� Section 4.5 interprets the results and summarises the conclusions of this chapter.

4.1 Problem Setting
Symmetry as a concept is an intrinsically dynamic concept. For the case of rotational sym-
metry, as regions will match with one another as they are rotated about the axis of rotation.
Similarly, for bilateral symmetry, symmetric regions will line up with one another when
flipped about the mirror axis. The first section of this chapter looks at using motion to define
symmetry of a given object to improve detection performance of the pattern matching based
symmetry detection method used in Chapter 3. In this chapter, motion is applied to test
patterns to recognise and define symmetry for each pattern.
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Visual dynamic perception is a very important aspect for both flying insects and mobile
robotics. Visual dynamic perception facilitates navigation, obstacle avoidance and closed
loop motion control. Many visual dynamic perception problems are studied using differen-
tial optic flow techniques based on the temporal and spatial derivatives [63]. These methods
are divided into local or global approaches, where local methods such as the Lucas - Kanade
method [64] have the advantage of being robust to noise. Global approaches such as the
Horn and Schunck method [65] provide a dense flow field which where discontinuities can
be used to locate object boundaries. However these global methods are known to be sens-
itive to noise [93]. The second part of this chapter proposes an alternative pattern based
approach that uses spatio-temporal filtering techniques to estimate the optic flow field (see
Section 2.6). This method also has an advantage of providing a quality measure of each
flow vector. Furthermore, correlation filter techniques are used to recognise specific motion
patterns (see Section 4.3).

4.2 Symmetry Based on Motion

Approaches to symmetry detection for static patterns (as discussed in Section 3.4) be they
feature based or correlation based, are still limited in that they only look at a single frame,
however, the concept of symmetry itself is intrinsically dynamic. By considering the prob-
lem of detecting symmetry to be related to a systematic sequence of frames, where the object
under test is rotated, or flipped about its centre in each frame, not only can the symmetry of
an object be detected, but also defined. The approach presented in this section is able to re-
cognise both rotational and bilateral symmetry using a two-step matched filtering approach.

The core assumption of this approach is that the region under test needs to be known
prior. This assumption is met by using composite correlation filters (as discussed in Section
2.3) to locate regions of interest (due to symmetry) in a given scene that correlate highly to
the filter. However, any other object detection method could be used to locate a potential
region.

This approach for symmetry detection can improve the performance of a target detection
system, assuming the targets to be identified exhibit symmetrical properties. This assump-
tion is not unreasonable since symmetry is present in most objects, both natural and man-
made. By adding the symmetry detection step to an object detection method, the accuracy
can be improved as symmetry can be used as a sanity check to reduce false alarms. By
lowering the thresholds of an object detection method the chance of missing an object is re-
duced as the cost of more false alarms. But by testing each positive detection for symmetric
properties some of these regions can be ruled out (if no symmetry is present) reducing the
false alarm rate of the detector. The true positive results are unlikely to be filtered out by
this step since they will already exhibit strong symmetry based on the correlation filtering
step. This is achieved using some known symmetric properties of the object to be found. As
an example, if we are looking for dandelion flowers, but a sunflower region is returned by
the detector, a rotational symmetry test will show that there are many more axis of rotational
symmetry than one would expect for a dandelion (a dandelion typically has 6 petals whereas
a sunflower has approximately 34 petals).

Page 74 of 132 PhD Thesis



A. Elliott 4.2 Symmetry Based on Motion

4.2.1 Using Matched Filters to Define Symmetry

Once a potential region containing the object has been located using a correlation filter, the
region around the object is cropped to be the new test image, x. The size of this test image
will be the same size as the correlation filter template that was used to detect it. A series
of geometric transformations are applied to the test image to form a series of templates,
h. Transformations include rotation for rotational symmetry detection (detailed in Section
4.2.1), and a combination of rotation and flipping for bilateral symmetry detection (detailed
in Section 4.2.1). By finding the correlation peak between the test image and each tem-
plate, a correlation vector is used to compare the normalised correlation energy peak across
the various transformations. This allows the symmetric properties of the test region to be
detected efficiently. An illustration of this process can be found in Figure 41. There will
always be a peak at 0ı since the image and template will be identical, so this will always
be ignored. It should also be noted that in this work the motion is artificiality produced via
geometric image transformations. A similar approach can be implemented with the motion
of the camera itself. However, in this case, aspects such as illumination changes, or camera
perspective distortions will need to be addressed.

Rotational Symmetry By rotating the template, h, between 0ı� 180ı at a designed angle
step, a collection of hi templates of the same size6 at angles between 0ı � 180ı are created.
The test image x is correlated with each template hi , and recording the centre correlation
value for each angle in a 1 � i dimensional correlation vector. By looking along this cor-
relation vector a clear pattern of a stronger correlation values can be seen when the rotated
templates align best with the original image. The number of local peaks along this single
dimensional vector represents the order of rotational symmetry. Similarly, the angle separa-
tion between the peaks indicate the angle separation between each axis of radial symmetry
of the test image. An illustration of this process is shown in Figure 41, where the correlation
vector is plotted for each angle of rotation, the angle range has also been extended between
the range of 0ı � 360ı for illustration purposes.

Centre Cropped Average Correlation Energy When looking at the correlation val-
ues, ambiguous situations occur when either the test object circular, or exhibits no symmet-
rical properties. If only looking at the value associated with the correlation, both the circular
object, an a non-symmetric object will have no clear peaks (other than at 0ı) in the one
dimensional correlation value. This is particularly true for non-symmetric objects that have
large regions of smooth texture.

To obtain reliable results for symmetry detection, it is important to only consider the
maxima in the central region of the correlation plane. This is particularly applicable for
distinguishing between a circular object such as a flower, and an object with no symmetrical
properties. An example image where the object is not symmetric, but still possesses a large
average correlation energy is shown in Figure 42. If the maximum correlation value on the

6In the case of rotating the image, the image will be cropped to be the same size as the original image x.
To maintain the same image size, at certain rotations, extra zero values pixels are added
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Figure 41: Illustration of a symmetry test, where the region of interest is extracted, and
transformed to form new templates. Maximum correlation peaks are obtained when the
rotated/mirrored image closely matches the original image, indicating an axis of symmetry.
The total number of peaks in 0ı � 360ı indicate the order of rotational symmetry the object
exhibits.

entire correlation plane is considered there are some cases when certain regions of the tem-
plate will correlate with regions in the test image, giving false positive readings (see Figure
42 (left)). Similarly, depending on the object, the overall amount of energy in the correlation
plane might also be very high when large regions in the image and rotated template are sim-
ilar. By simply recording only the maxima located to be within the centre of the correlation
plane, a peak is only obtained when the object exhibits symmetrical patterns (see Figure 42
(right)).

It is also important to consider the correlation energy, or relative height of each of the
normalised correlation peaks to avoid false detections. In the case of rotationally symmet-
rical images, all the correctly identified peaks (representing an axis of symmetry) have the
strongest peaks with a similar correlation value. It was found that counting peaks within 20
percent of the maximum peak produced acceptable results. This value was obtained in an
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Figure 42: An example image where a false detection takes place because of the large re-
gions of smooth texture (left). No peak (other than at 0ı,360ı ) is formed when looking only
at the cropped central correlation plane indicating no rotational symmetry (right).

ad-hoc manner, based on testing on the flower dataset (see Section 3.2.4). The first peak (at
0ı) in the correlation vector is not included since this will always be high as the template
and test image are identical.

Bilateral Symmetry The process for finding bilateral symmetry is very similar to the pre-
vious method discussed for rotation symmetry. For each angle rotation, an additional step
is to horizontally flip/mirror the template array before correlating it with the test image.
Assuming an object that exhibits bilateral symmetry is centred in the image, there will be
a specific angle (reflection axis) between the rotations around 0ı,180ı where the mirrored
version of the original image will produce a correlation peak. An example of this for an im-
age with bilateral symmetry is shown in Figure 43. In this figure, the maximum correlation
value is plotted at each rotation step of the template. The angle on this plot is not the actual
angle of the axis of reflection, but rather the angle of the rotated template. To obtain the axis
of reflection this angle is subtracted from 180ı (because the template is mirrored).

For reasons explained previously it is important to only look at the energy in a central
region in the correlation plane. This avoids some ambiguities when an image has large
regions of smooth texture. Again it is important to also consider the the strength of the peak
in correlation to avoid false positives. Because the template is always mirrored, it is not
possible to achieve a perfect correlation value of 1 unless the object is perfectly symmetrical.
As the template is rotated, there will be a template angle that closely matches the test image,
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Figure 43: An example of the correlation peak vector for a bilateral symmetry test. Each
peak represents a possible axis of reflection. Notice that the peaks all have approximately
the same amplitude. Note that the y axis represents the angle of the template, not the angle
of the axis of reflection.

represented by a peak. This would indicate a possible axis of reflection. However it is also
important to consider the relative energy, or value of each correlation peak as some objects
might have partial symmetries as shown in Figure 44.

In Figure 44 the main peak is clearly visible at a template rotation of approximately
190ı, which would correspond to an axis of symmetry at 10ı. Two weaker peaks are found
at 90ı and 170ı due to the low aspect ratio of the wings, and the fuselage of the aircraft
causes the bilateral symmetry test produce these extra peaks. Across the tests it was found
that these weaker symmetries have significantly lower peaks. Likewise, all of the major
bilateral symmetry axes have the same stronger peaks on the correlation vector, so it is
easy to distinguish between them. As a general guide (based on ad-hoc testing), if the
correlation peaks are not within 30% of the strongest peak, they do not count towards a
bilateral symmetry axis.

4.2.2 Symmetry Recognition Results

In order to quantify and understand the performance of this symmetry detection method a
test was conducted using the flower dataset described in Section 3.2.3 which is a collection
of flower images with no perspective distortions. 100 of the images from this dataset were
manually selected as true class images as the flowers exhibit both approximate rotational
and bilateral symmetry. These images also represent the type of regions the flower sym-
metry composite correlation filters are expected to extract. 50 negative class images where
obtained from various public domain sources which do not exhibit any rotational symmetry
in the scene. These images were used for the rotational symmetry test. For the bilateral sym-
metry test another 50 negative class images that exhibited no symmetry were also obtained
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Figure 44: An example of the correlation peak vector for a bilateral symmetry test. Here
due to the weak symmetrical properties of the aircraft, low aspect ratio wings cause weak
peaks to form on the correlation vector.

from public domain sources. The number or true class and negative class images used was
chosen based on the available images at the time of the test. The results in terms of true
detection rates and false alarms are shown for both methods in Table 9.

When animals (including humans) look for a specific object in a scene, the first process
is to have a quick scan for potential matches before focusing on a specific area to decide if
it is the actual target object [94], [95]. By doing this, computation is focused on relevant
areas only. It is not important that the exact symmetry/symmetries are detected, but rather
that an object shows an appropriate level of symmetry or not. So the output is binary to test
if symmetry exists for a given object.

Table 9: True positive (TP) and false positive (FP) detection rate for the rotational and
bilateral symmetry detector

As can be seen in Table 9, this simple test shows that this method is able to recognise
rotational symmetry with a very low false alarm rate. The bilateral symmetry detector was
still able to correctly identify when there was bilateral symmetry in an image, however it is
more susceptible to false alarms. The reason high true detection rate is that this test was not
conducted to test if this detector would exactly locate all axis of symmetry, but rather if the
object exhibited symmetry or not. This is a more lenient test requirement and is also closer
related to biological methods [95].
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Improving correlation filter performance As mentioned at the start of this section, a
question is asked if this method of using motion to recognise symmetries can be used in
combination with an object detection method to increase performance.

This is based on the assumption that the objects to be located exhibit symmetrical prop-
erties. To answer this, the flower detection results from the MACH correlation filter (as used
in 3.3.1) are further processed by the symmetry recognition from motion method proposed
in this section (see Section 4.2.1).

Once a region has been found using the MACH correlation filter, this region is then
passed through the symmetry recognition test. If no symmetry is found for that region it is
no longer regarded as a true detection. This way the second step can potential prune out any
false alarms. The results are compared with the MACH filter on its own, and with symmetry
recognition step in Figure 45.

Figure 45: ROC Curve comparing a MACH correlation filter with and without symmetry
recognition post possessing. The symmetry recognition post processing is shown to increase
detection performance.

As can be seen in Figure 45, adding the extra symmetry recognition step is shown to
increase overall performance. The AUC for the standard MACH filter is 0:975, compared to
0:986 after the symmetry recognition step. The symmetry recognition post processing step
increases the accuracy to � 0:98 opposed to � 0:90 at a false positive rate of less than 0:1.
At lower false positive rates the improvement is

4.2.3 Conclusions and Interpretation

This section has shown that the simple paradigm of symmetry being dynamic, it is possible
to recognise both bilateral and rotational symmetry in objects using simple linear filtering
techniques. Although both methods are able to recognise if symmetry is present, the bilateral
symmetry detector still needs some refinements to decrease the false positive rate.
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Integration It has been demonstrated that this symmetry recognition test can be used
as a to improve detection performance. Since the type of object the correlation filter is look-
ing for is known (from training) the symmetrical properties of that object can be inferred.
Once the composite correlation filter finds a potential match, that region is further processed
with this symmetry recognition to rule out false positive results as shown in Figure 45.

Let us consider the example of detecting daffodil flowers which have clear rotational
symmetry via the petals distributed around the centre. The composite correlation filter will
locate symmetric regions that are likely to contain the flower, along with a certainty metric
(the value of the normalised correlation peak). Passing the less certain regions through the
rotational symmetry test will either confirm or deny the location as being a flower based on
its symmetry, improving the accuracy of the detection. As shown in Figure 46, the same two
images are considered where one of them has been blurred. From the correlation filter point
of view the second blurry image produces a weaker correlation filter response, so is more
uncertainty if that region is a flower or not. However, when it is passed through the rotational
symmetry recognition test, the blurry image is still recognised as exhibiting symmetry. This
allows us to use a lower threshold for object detection via the correlation filter to obtain a
higher true detection ratio while pruning the false alarms through additional processing.

Figure 46: An example of two regions detected by a composite correlation filter. The first
region (left) has a higher detection certainty than the second region (right), however, the
rotational symmetry test still produces the same peaks, allowing us to still confirm the second
region as being a correct detection.

Furthermore, from a biological point of view, the healthiest flowers typically exhibit the
highest levels of symmetry as no petals are missing or deformed. When bees react strongest
to symmetric objects, this is instinctively a way to collect pollen from the best flowers. A
honeybee does not necessarily care about what order of symmetry an object possesses, rather
if it has strong symmetrical properties or not. The symmetry recognition method proposed in
this section follows a similar principle of being able to recognise if a region exhibits strong
symmetry through the correlation value.
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Self Motion Corrections In addition to just detecting symmetries, this method can be
used to help improve self-motion estimations. As discussed in Section 2.5, a major difficulty
with optic flow is disentangling translational and rotational motion. By tracking a stationary
object and its symmetrical properties the problem can be resolved. Once a symmetric object
has been found, the peak correlation values from the rotational symmetry test can be tracked.
By comparing the angles between each peak, and the axis of symmetry of the object as the
camera (vehicle) rotates above it, the rotational motion of the camera (vehicle) in a single
direction can be estimated. However, this might not be entirely feasible to disentangle self-
motion from independent object motion.

Limitations The main limitation of this approach is perspective distortions have not
been explicitly addressed in this work. However given that if a specific composite correlation
filter has been trained to recognise an object at a specific azimuth elevation range, standard
perspective mapping and correction techniques can be used to correct this before passing the
image through the symmetry detection process. However further experimentation is required
to validate the situations when this is possible.

Due to the limited processing capacity of insects, it is doubtful that this approach is fully
utilised by insects to use a template for each possible angle. The test patterns used to study
symmetry in honeybee static perception was largely conducted using symmetries alighted to
the horizon [10], and discussed in Section 1.2.1. This could suggest that honeybees are only
able to recognise symmetrical axis at limited angles. In reality this is a reasonable assump-
tion, as in the case of bilateral symmetries the mirror axis is mostly aligned to perpendicular
to the horizon in the case of natural and man-made objects. So rather than using all possible
rotations to find the bilateral symmetry axis, the computations could be drastically reduced
to only look at an axis perpendicular to horizon, or along the direction of flight.

4.3 Pattern Based Motion Recognition
In this section, a pattern based method is proposed to classify self-motion using spatio-
temporal features. Extending the approach as used by Wildes and Bergen a new method is
for recognising types of motion in the spatio-temporal volume. This method does not require
the direct computation of optic flow as it uses linear spatio-temporal filtering techniques on
motion energy volumes to recognise motion. This approach is motivated by how the human
visual system recognises motion (see Section 2.6).

In Section 3.3, it was shown that composite correlation filters are effective at accurately
finding objects in a scene very quickly and efficiently. By training these filters to store an
abstracted representation of the desired object to lead to increased efficiency (see Section
3.3), motivated by how honeybees recognise patterns. However, the methods only consider
a single frame. This section investigates if these concepts can be used to detect dynamic
patterns for self-motion estimation, by extending correlation filters to the three dimensions
of the spatio-temporal volume.

In order to extend correlation filters to detect dynamic patterns, these correlation fil-
ters are applied to the spatio-temporal volume. As discussed in Section 2.3.3, a MACH
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correlation filter is trained from many instances of an object to create a single filter which
optimises various performance metrics (ACH, ACE, ASM and ONV). However, this creates
a two dimensional filter which, when correlated with a test image, will output a correlation
plane where the peaks indicate potential occurrences of the trained object in the given scene.
This concept can be extended to video sequences by treating the required motion to be de-
tected as a sequence of 2D correlations filters that occur one after another. This concept was
first used in [59], for human action recognition, and has proven to be an effective method us-
ing composite correlation filters to recognise human actions in video sequences. It has since
been extended to make use of integral images for real time computation [96]. This approach
for human action recognition on the spatio-temporal volume was motivated by [97], which
uses optic flow vectors to detect certain actions. However, by using correlation filters, the
limitation of requiring direct computation of the optic flow field can be addressed.

A Bioinspired Approach This idea of self-motion pattern recognition follows the concept
that insects use a form of matched filtering for motion detection from their receptors re-
sponse (EMD’s). Deeper inside the vision system, neurons are tuned to respond sequentially
to specific patterns to recognise specific types motions (as discussed in Section 1.2.2). 3D
correlation filters applied to video sequences can be likened to this concept where they are
tuned to respond strongly (through a strong correlation peak) when exposed to certain pat-
terns the filter has been trained on. In this case, the filter will be trained to recognise specific
motions, such as translational self-motion along a specific direction. This approach is highly
specialised, as the insect detects only certain types of motions that correspond to the typical
flight manoeuvres the insect will perform.

The problem of self-motion estimation is a widely studied field with a strong focus on
optic flow calculations [98], of which most rely on optic flow calculations [99]. There has
also been recent bio-inspired work on creating hardware that performs in a similar way to
how insect eyes work, with multiple lenses and motion detectors [100] [101]. However, in
this section, the problem is posed as utilising data from standard hardware cameras using
the spatio-temporal volume.

4.3.1 Motion Testing and Training Dataset

In order to train and test the composite correlation filters, a library needs to be constructed
of self-motion video sequences. To test this concept, a set of simplified motions were re-
corded from a canonical top down view at constant altitude (1 meter above ground level)
perpendicular to the ground. These motion sequences are similar to what downwards look-
ing stabilised MAV flight would look like. This data requirement is easily achievable with a
gimbal, or optically stabilised camera. Video sequences include translational motion along
8 cardinal directions at slow, and fast speeds. The slow speed corresponds to 1ms�1 which
is a slow walking speed for most people, and the fast speed corresponds to 3ms�1, which is
similar to a jogging speed. Both of these correspond to typical speeds a small indoor MAV
would travel at. Depending on the application a separate training dataset might be required
to closer match the dynamics of the vehicle. Similarly, a sequence of rotational motion se-
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quences were constructed for slow and fast rotations. Both clockwise and counter clockwise
rotations were considered. For both rotational and translational motions a variety of patterns
and textures were used. These included grass, sand, asphalt, concrete, leaves and others as
shown in Figure 47.

Obtaining controlled real world test footage can be difficult as controlling a flying vehicle
to fly at an exact altitude and speed can be challenging. So a computer game simulation
engine was used to generate the required training dataset of a camera flying through along
an exact path in 3D space. The ARMA3 game engine was used and a script was written
to move the camera at the pre-defined motion paths at specific speeds and distances. Using
these sequences 10 main motion categories were obtained, 8 for the cardinal directions, and
1 of each rotational direction. Each of these motion categories is further divided into fast
and slow motions.

Before the training the correlation filters, the videos were split into a set number of
frames. The length of the frame chunk can be adjusted depending on the type motion the
filter is being trained on. Within each category, the number of individual training clips is
dependent on how frames are used for each chunk. For each of the 10 motion categories, at
least 15 motion sequences at varying lengths were used.

Figure 47: Single frames of selected top down motion training sequences.

Sequence Resolution and Duration Because the composite correlation filter is im-
plemented as a sliding window function for translation invariance, the dimensions of the
filter are important factors to consider. However, for motion estimation, the .x; y/ resol-
ution of the filter will be the same for both the training video and testing video as global
motion needs to be detected. The filter resolution could be reduced to detect specific motion
patterns in local regions of a video. This could be used to detect specific regions of rotational
motion, indicating a potential area of interest.

4.3.2 Using Pixel Data for Motion Estimation

For action recognition, using scalar (grey-scale pixel) data has been shown to work well [59]
as each action can be broken down into a set of sequential poses of an object that needs to oc-
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cur in a certain order. This takes into account the spatial appearance of the object, and when
the correlation filter is trained using many training poses, it learns the spatial variations. The
reason for this is that the correlation filter on the .x; y/-slice behaves exactly like the 2D
composite correlation filter that was discussed in Section 2.3. That filter accurately locates
where the target is in the slice based on spatial appearance. However, in the case of trying
to estimate background motion using purely scalar intensity data, the standard filter trained
across a wide variety of textures can no longer distinguish between them. This means that
using pure pixel intensity scalar data, it is not possible to distinguish motion patterns in this
manner, as each frame (along the .x; y/-slice) looks almost the same. Only in some situ-
ations do the temporal slices (.y; t/ and .x; t/) provide the motion information. An example
of this is shown in Figure 48.

To explain this problem two applications are considered. In the first, a 3D MACH filter is
trained to recognise a person bending down to pick up an object. An example of the trained
3D correlation filter shown in Figure 48 left. The second is a 3D MACH filter trained on a
camera translating in an Easterly direction across a variety of textures (see Figure 48 right).
Both videos are pre-processed to only contain edges. This is aids in speeding up computation
as the MACH filter will contain many zero entries in the 3D Volume as discussed in Section
3.3. Because the edges on each frame of the east translational motion sequence never align
(due to variations in textures) the resulting 3D MACH filter has almost no structure. This
results in very poor discrimination ability. However, since the motion is consistent, for any
.x; t/-slice a pattern is visible as the pixels move from the right to the left of the video
sequence. Alternatively, for the bend action sequence (shown in 48 left). Training on a
specific object using spatial data provides a clear structure, looking at the .x; y/-slices the
target is visible.

Figure 48: Slices of a 3D composite correlation filter volume. (left) Filter trained to detect
human bending down motion. (right) Filter trained to detect translational motion towards
the Easterly direction.

The most obvious approach to solve this problem is to pre-process the spatio-temporal
volume to use motion vector data to train and test the 3D correlation filter. One approach
to find the motion would be to calculate the optic flow field as discussed in Section 2.5.
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However, for suitability for use onboard an MAV, simplicity and efficiency is important. The
need to explicitly calculate dense optic flow adds extra computation overhead. By slicing the
spatio-temporal volume along the temporal axis, this work tests if certain types of motion
can be found using only pixel data directly.

For coherent translation along a set direction, there will always be a regular pattern of
pixel motion formed on one of the temporal slices. For example, for motion along the North,
or South direction, the pixels form a line on the .y; t/-slice. For East and West motion, the
pixel motion forms a line on the .x; t/-slice. In order to recognise these motions only the
patterns on the .y; t/-slice and .x; t/-slice need to be considered. The .x; y/-slice of the
spatio-temporal volume can be ignored.

Translational Motion Along Cardinal Directions Due to how a pixel moves through the
spatio-temporal domain, the North, and South motions create patterns on the .y; t/-plane.
The East and West motions create patterns on the .x; t/-plane. However, in situations of
motion along other directions (not parallel to a slice) such as North West, coherent pixel
motion is not able to be found on a single .x; t/, or .y; t/ slice. Nonetheless assuming a
simplified case of a vehicle only being able to move along the 4 cardinal directions, a test
was conducted to see if a composite correlation filter is able to recognise these basic motion
patterns using pixel intensity values.

Rather than using the full volume to train a 3D MACH filter for each motion, only four
2D MACH filters are trained along the .x; t/-slice and .y; t/-slice:

� North and South MACH filter trained and tested on the .y; t/-plane

� East and West MACH filter trained and tested on the .x; t/-plane

Ten .y; t/, and .x; t/ spatio-temporal slices were extracted for each of the four motion
types. These slices were further split into training and testing datasets. The testing dataset
includes labelled slices of all motion types including extra slices that were added from other
motion sequences such as rotation, North West motion etc. . .

As shown in Figure 49, 2D MACH filters are able to recognise the patterns in the spatio-
temporal slices with an accuracy of around 80% while keeping false alarms less than 10%.
However, these test results are for a very limited set of situations. The testing motion se-
quences are the exact same two speeds as the training data (fast and slow sequence). Al-
though each correlation filter is able to distinguish between the two speeds, as more speeds
are introduced, extra confusion will occur. However, the most significant issue is that these
correlation filters can only recognise pure translational motion. This could be extended to
recognise non-linear motions such as acceleration. Rather than seeing straight lines on the
slices, curves would be formed.

Other Types of Motion As soon as the motion occurs outside of the 4 major cardinal
directions, the motion patterns are not visible on the .y; t/ and .x; t/ temporal slices alone.
This is because the motion of a given pixel is not perpendicular to the slices through the
volume, so for a given slice the motion of that pixel cannot be tracked in a single slice.
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Figure 49: ROC curve for translation motion recognition on the y; t-slice.

In the case of constant rotational motion, a single pixel will move in a helical motion
along the volume for each frame. At the centre of rotation, a vertical pattern occurs since the
centre pixels do not move. Although the pixels do move in a regular pattern along the slices
it is difficult to detect a pattern as the same pixel is not visible along every row of a temporal
slice. This is the case for translational motion perpendicular to the slice. An example of
rotational motion is shown in Figure 50, where the pattern varies through each slice in the
volume of rotational motion.

One solution to detecting motion not parallel to the .y; t/, or .x; t/ slices, is to slice the
spatio-temporal volume at non-arbitrary angles to detect motions. For example in the case
of North West translational motion, the motion of the pixel along a slice in the direction of
motion would form a straight line. However, due to the number of slices required to recog-
nise a wide range of motions, it is not computationally efficient. Other questions include
how many angled slices are required to effectively recognise motion patterns, and what are
the memory requirements to compute all of these extra slices? Also what happens when
there is motion due to other objects in the scene? This makes it rather difficult to practically
detect motions using just scalar data.

Using this approach of a 3D MACH filter with scalar data is best suited to locating de-
formable dynamic targets which can be defined by spatial appearance. For example, people
performing certain actions and not general background motion. However, by extending the
filter to use other higher level data (such as flow fields, or temporal energies) the recognition
of motions can be improved. This is possible because there is less variation in the spatial
plane in the data for a given motion sequence. This is discussed in the next section.
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Figure 50: Spatio-temporal slices spaced evenly along a the .y; t/-plane for a purely rota-
tional motion on a top down scene. The pattern of pixel motion is mirrored on either side of
the centre of rotation.

4.4 Spatio-Temporal Pattern Based Motion Detection

For motion detection, using vector data such as optic flow will help to generalise the cor-
relation filter. Matching vector data allows us to match motion vector patterns across each
slice of the video volume, not just pixel intensities. For the same motion sequence in various
scenes, the general optic flow pattern will remain relatively constant, variations will be due
to noise, and other ambiguities, such as lighting changes.

Fitting vector data directly into the correlation filter framework is not possible as the
standard Fourier transform is not generalised to use vector data, as associated with vec-
tor flow fields. Rodriguez [59] showed that MACH filters can be generalised to use optic
flow vector data through the employment of Clifford algebra in three dimensional Euclidean
space. This allows for a Clifford Fourier transform functions to be used on vector field
data. However, this involves a considerable amount of the extra computation not suited to
use onboard an MAV. This section will rather look at using spatio-temporal energy distribu-
tions along with 3D scalar composite filters applied to these energy distributions to identify
motion patterns in a video sequence.

4.4.1 Spatio-temporal Energy Volumes

To investigate the spatio-temporal volume the motion energies need to be calculated. To do
this, the training videos as described in Section 4.3.1 were used. Second order separable
steerable Gaussian filters based on the work in [74]. This method has seen extensive adop-
tion, specifically in the field of visual attention by [102], [103], [104]. These methods of
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using the spatio-temporal volume are inspired by recent advances in Neuroimaging [105]
and studies on the human visual system [106]. Which indicate that humans use models to
focus attention based on visual cues. Motion is an important aspect, but other features such
as colour and context are also important.

The spatio-temporal energies are found using equation (56) as separable 3D steerable
filters derived from [74] with a size of 6 � 6 pixels7:

E.�; �; x; y; t/ D ŒG�;�even.x; y; t/ ? I.x; y; t/�
2
C ŒG

�;�
odd .x; y; t/ ? I.x; y; t/�

2 (58)

with the following spatial Gabor directions in the .x; y/-plane:

� 2 f0ı; 45ı90ı; 135ıg (59)

and the following spatio-temporal Gabor directions in the .x; t/-plane:

� 2 f0ı; 45ı; 90ı; 135ıg: (60)

Angles � and � are defined consistently with (55). For a given time t (video frame number),
features calculated with (59) require only intra-frame data from the input video, i.e., the
.x; y/-plane data. On the other hand, features calculated with (60) are truly spatio-temporal,
i.e., they require inter-frame data from the .x; t/-plane and .y; t/-plane.

This filtering results in 13 spatio-temporal features8 in the volume. However, only 8 of
them contribute to motion. A description of each filter is given in Table 10. Each of these
volumes takes up a large amount of memory, so limiting the computation to only the critical
volumes required for the application is important. The convolution theorem of the Fourier
transform is exploited to improve computation depending on the size of filter and videos
used (see 2.2.2).

Using these features, the energy of each filter is recorded and stored in a histogram
which describes the type of motion in each region of the spatio-temporal volume. Since
motion is the primary interest, only the 8 motion energy filters will be considered. For
example, if we consider the case of a bar moving from left to right, the right and diagonal
right motion components of the histogram exhibit the most energy as shown in Figure 51.
This histogram for energy distributions shows that the motion in that region is clearly in a
rightwards direction. So using these energy histograms, a spatio-temporal volume can be
segmented into regions exhibiting similar types of motion. This example is for a simple
video of a rightward movement. For more complex scenes, the histogram does not always
provide a clear indication of the direction of motion, as indicated by incoherent motion in
Table 1.

7The filter size was empirically tested to produce the best results best response to larger smooth motion
patterns for the test video resolutions

8There are only 13 instead of 16, since the 0ı in (60) is only used for the 0ı in (59) to find the temporal
energy) in the volume (see Table 10).
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Table 10: Description of the spatio-temporal energy features calculated using a bank of
steerable Gabor filters as defined in equation (58).

Figure 51: Histogram (right) of oriented spatio-temporal motion responses for a bar moving
from left to right (left).

Spatio-Temporal Energy Distributions for Self Motion Recognition Once a video seg-
ment has been filtered using the spatio-temporal filters, each pixel in the spatio-temporal
volume can be characterised by 8 spatio-temporal motion features for each of the 8 cardinal
directions. By combining the responses from each of the 8 motion energy volumes for each
.x; t/-slice in the volume, certain types of motion can be recognised. A simplistic approach
to find which energy feature has the highest response to find the direction of travel. Although
this could work under ideal situations it is better to combine this with the location of each
motion. For example, in the case of plane rotational motion, the combination of motion
directions would be close to zero as each side of the image has opposite motion and no clear
direction can be found.

However, by splitting the volume into regions, more insight can be gained into the global
motion present. For clockwise rotational motion, the motion on the left region would always
be downwards, while in the right region the pixels would be moving upwards. An example of
this is given in Figure 52. The sub regions near to the quadrant boundaries are not included,
as the histograms in the border regions are often a combination of high energy from both
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quadrants. This can lead to incorrectly representing the motion in that quadrant, this is
specifically the case with rotational motion.

Figure 52: For constant motion, the energy histogram will show specific responses for each
oriented energy filter. The histograms are representative for a clockwise rotation motion.

For translational motion, all the responses in each quadrant will be similar along the
direction of motion. In the case of zooming in/out (change in altitude) all the quadrants
would have opposing motions inwards or outwards. And for rotational motion, each opposite
quadrant would have opposing motion with the top and bottom quadrants exhibiting strong
left/right motion and the side quadrants exhibiting strong up/down motion. By obtaining the
average of the histograms for each region, some understanding of self-motion of the camera
can be found.

This method is able to provide some heuristics of the motion in the scene. However,
it is largely qualitative information. For situations when there are large regions of smooth
texture, this approach breaks down. This is a situation that will confuse even the human
visual system. Also with situations such as rotational motion, near to the quadrant boundar-
ies the energy histograms will look quite similar. Looking at the average of each quadrant
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for rotational motion is not the best approach. Furthermore, there are some situations (eg.
incoherent motion, or scintillation) which do not produce conforming energy distribution
histograms. This is the main difficulty to overcome with this approach. For more complex
motion types, the quadrant boundaries would need to be changed dynamically for each type
of motion. This adds further complexity. Alternatively, this notion of certain motion types
producing particular patterns on the image plane can be looked at from a pattern matching
method using correlation filters can be used (see Section 2.3.4).

4.4.2 Minimising Spatio-Temporal Energies

As discussed in Section 2.6, the spatio-temporal energy vectors can be calculated across the
volume. To recognise global motion, only the motion components of the spatio-temporal
energy vectors are used. For each of the type of motion, the direction vectors will look
similar following reasons as discussed in Section 4.4.1, all-be-it at different magnitudes.

Using the spatio-temporal energy distributions alone to train the correlation filters will
not be ideal for two reasons. First, the spatio-temporal energy response volumes still rely
on the spatial appearance of edges. This is because the energy response is strongest along
edges. This in itself is very useful for locating targets. Secondly, and most importantly, due
to the number of volumes involved9, a large number of correlation filters will need to be
processed for each volume, for each motion type to be detected.

To solve both these issues, low-level spatio-temporal energy volumes are used to con-
struct three higher-level energy volumes. These three volumes characterise the essential
motion information: a direction volume, a dispersion volume and a temporal energy volume.

Spatio-temporal Direction Volume Since the angle of each steerable filter is known, it is
possible to work out the direction components of each pixel in the volume. This direction
will be between 0ı � 360ı. The average for each point across all volumes are obtained, to
include all contributions of motion energies. However, simple average is insufficient when
looking at angles. To calculate this, a circular average is applied across all of the n spatio-
temporal volumes (8 volumes in this work) using the following equation (61) from [107] to
find the prominent direction d :

d.x; y/ D arctan
Pn
i E sin.�i/Pn
i E cos.�i/

(61)

where � represents the angle of motion on the .x; t/-plane the oriented spatio-temporal
feature is detecting. E is the energy for the given energy volume for the pixel. d is the
direction for that pixel.

This is calculated for each frame across all the directional energy volumes to give a new
single direction volume. However, there are some situations of incoherent motion where
the sum of cos and sin of the energies cancel each other out, resulting in a non-prominent
direction. For this, the dispersion volume is used.

9At least 8 spatio-temporal motion energy volumes are required to cover basic motion directions (see
Section4.4.1)
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Spatio-temporal Dispersion Volume The dispersion volume is a measure of incoherent
motion for each pixel. The direction volume simply adds the energy cos and sin responses
together. By considering the distribution of energies through a dispersion value, it is possible
to define if the given region exhibits a strong single coherent motion, or rather a combination
of incoherent motion directions.

To find the dispersion ratio, the sum of energies for each orientation across the volume
is found, represented by the Oriented Energy Sum, or OES. By taking into account the
projected components of each energy for each orientation, the Component Energy Sum, or
CES is found. By dividing these two values, the dispersion ratio is obtained. This is shown
in equation (62) and illustrated in Figure 53.

0 < Dispersion D
CES
OES

< 1 (62)

Figure 53: The dispersion of each direction is found by comparing the sum of oriented
energies with the sum of component oriented energies as given in equation (62).

When this value is close to one, this means that both values are similar, and here is a
clear prominent direction. When this value is closer to zero, there is no prominent direction.
Therefore, this region has no clear motion structure, this similar to a situation scintillation
like motion. By applying a threshold to the dispersion, only the areas with a prominent
singular direction can be used. This effectively filters out regions of incoherent motion or
scintillation. In this work, for the motion video sequences, the threshold was manually set
such that coherent motion regions to have a dispersion value greater than 0:5.
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Temporal Energy Volume The temporal energy volume is simply the energy from the
temporal filter (see Table 10), giving a representation of which regions in the volume are
moving the most. In reality, there is almost never a situation of zero temporal energy as there
is always some residual energy caused by changes in illumination. By using this temporal
volume a threshold can be applied to segment regions that are stationary. This threshold is
usually dependent on the scene and in this work, it was manually tuned. Furthermore, this
temporal energy can be used to find the speed of motion. However, this will require camera
calibration and is something that future work could address (see Chapter 5).

Using Vector Components As previously discussed in this section, a correlation filter
cannot be used with vector data directly, and the Clifford Fourier transform is too compu-
tationally expensive [59]. An effective work around is to simply use the vector directional
components. To obtain the components, the direction volume is first pruned by removing
any vectors that a dispersion less than 0:5. The remaining direction volume is then scaled
with the temporal volume to produce a vector field volume. This volume is split into two
separate scalar volumes, one for the x, and another y components of the vectors. This al-
lows the standard 3D correlation filter to be used with each scalar component in parallel. A
detection is only considered if both components return a match. An overview of this process
can be seen in Figure 54.

Figure 54: The steps involved in using Spatio-Temporal 3D correlation filters to recognise
motion patterns.

It should also be noted that the extra computation of using a correlation filter for each
vector component is still significantly faster than performing a Clifford Fourier transform on
the volume.

Comparing Spatio-Temporal Vectors to Optic Flow Vectors As mentioned previously
this approach is not limited to only spatio-temporal flow vectors; other vectors such as optic
flow can also be considered. As a comparison, the same test was conducted with the flow
fields calculated using the classical Horn Schunk optic flow method as discussed in Sec-
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tion 2.5.2. This is shown in Figure 55, for a typical scene of rotational motion containing
relatively high contrast in the textures. Both vector fields are only showing the directions.

Figure 55: Comparison between motion direction vectors for in plane rotation. The spatio-
temporal motion direction vectors are shown on the left, while the Horn Schunk optic flow
field (Section 2.5) is shown on the right. The spatio-temporal flow vectors have been filtered
to exclude any vectors with high dispersion values (see Section 4.4.2). The magnitude of
both vector fields have been uniformly set to be the same for comparison purposes.

It is shown that for this basic scene of plane rotation, the directions of the optic flow
vector field and spatio-temporal vector fields are similar. There are also discontinuities in
both methods. For the optic flow method, these discontinuities are mainly due to the im-
age flow constraint imposed on the optic flow derivation in equation (52). The optic flow
vectors produced are perpendicular to the high contrast boundaries which do not necessarily
align with the actual motion. On the other hand, using the spatio-temporal filtering method
still produces some discontinuities. This is due to a function of the temporal size of the
steerable filters used, causing greater sensitivity to certain motion speeds. However, the
spatio-temporal dispersion allows us to filter out any uncertain regions due to incoherent
motion, scintillation or flickering. This results in vectors that are consistently in a single dir-
ection that are used to improve the accuracy relative to optic flow for self-motion estimation
vectors.

4.4.3 Testing and Results

In order to test the ability of 3D correlation filters to be trained to recognise simple motions,
a simple experiment was conducted using six categories of motion. Four for translational
motions along each cardinal direction and two in plane rotations were used. The motion
sequences from the motion dataset were used (see Section 4.3.1). Each training sequence
was limited to just six frames. This is the same size as the spatio-temporal oriented filters.
Both the testing and training video sequences had a resolution of 256 � 256 pixels. For
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testing, longer video sequences of three seconds were used. This corresponds to approxim-
ately 75 frames each, as not all test video sequences were exactly the same length. Each test
sequence only exhibited a single motion over a variety of natural and man-made textures as
recorded from the computer game simulation.

Spatio-temporal filtering was first conducted on the video sequence to obtain two com-
ponent volumes per video. One volume for the x vector components, and another for the y
vector components (see Section 4.4.2).

For each motion, the component MACH correlation was trained in parallel, resulting
in two MACH filters per motion, an x and y component MACH filter. The x component
MACH filter was correlated with the x vector components volume from the test video. Sim-
ilarly, the y component MACH filter was correlated with the y component volume from the
test video sequence.

Using the correlation thresholds obtained during the training phase of the MACH filters
(see Section 2.3.4), each component MACH correlation filter was applied to every motion
sequence. If the correlation was higher than the threshold, for both the x; y component, the
motion was considered to be detected.

Five of the motion sequences in each category included a small object that moved in-
dependently of the scene in the opposite direction to test the noise tolerance. The results
are presented in Table 11 as a positive classification confusion matrix for spatio-temporal
motion patterns.

Table 11: Confusion Matrix for motion classification. Mean accuracy is 83%.

The tests resulted in a mean accuracy of just over 80% with very few false alarms. There
are possibilities for the false alarm rate to increase when the motion directions are less
separated, or more complex motion patterns are included in the motion classification set.
However, this test fundamentally shows that by using 3D MACH correlation filters, it is
possible correctly and accurately classify simple self-motions in video sequences. Although
these tests are relatively controlled, they have shown the ability of the correlation filters to
recognize motion patterns through the spatio-temporal volume. Further work could look
into the limits on the robustness which will be a function of both the MACH correlation
filter training, but also the spatio-temporal Gabor filters used.

The results in table 11 show that the correlation filters are able to distinguish between
the different directions. This is because the motion vectors produced by the different motion
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directions each have fairly distinct vector components. For example, North motion results
in the x components being very small, while the y components are large. Comparing this to
an East motion will have large positive x components with small y components. A second
test was conducted to look at the ability to discriminate between fast and slow motions along
the same direction. Here the vectors will all have a similar direction but differ in magnitude
due to the speed difference. In this test, a correct detection is counted only when both the
direction and the speed are correctly identified. It is worth remembering that the motion
dataset includes a fast speed and a slow speed (see Section 4.3.1), so the correlation filters
are only recognising between these two classes. The results for both the North direction and
the Clockwise direction are shown in Figure 56.

The results presented in Figure 56 show that filters trained to detect slow and fast motions
are able to distinguish between the two, with both the slow filter and fast filter performing
well. Just as with the direction test (see Table 11), filters trained for translational motions
are more accurate. This is likely to be due to the fact that during a translational motion
most of the motion vectors are fairly constant across the entire volume both in terms of
direction and magnitude. This makes it easier to discriminate between other translational
motions. However, in the case of rotational motion, although the magnitude may be similar,
the directions form a circle around the centre of rotation (see Figure fig:ST-OF-Vectors), so
the direction of the vectors are only constant in certain regions.

Despite the attempts to correct the spatio-temporal flow field directions, there was still
additional noise in the vector fields produced. The composite correlation filters were still
able to produce positive results correctly identifying most of the motion patterns. Future
work can investigate this issue: some of the energy responses are influenced by both the
filter and the image itself. This means that a strong energy response for one of the spatio-
temporal filters could be due to motion, or clutter in the scene. A method of normalisation
as discussed in future work, (see Section 5.1.2) where the effects of spatial appearance are
limited, resulting in the direction vector only being influenced due to motion can be used to
improve the results.

An interesting aspect of this work is the computational efficiency. The method of using
vector components directly is compared to the state-of-the-art method proposed in [59] that
uses vector data directly through the use of the Clifford Fourier transform to build a vec-
torised MACH filter. The computational efficiency comparison here is only comparing the
extra cost of using vector components compared to performing a Clifford Fourier transform.
Both approaches can accept any flow vectors, so they could come from an established dense
optic flow method, or from the proposed spatio-temporal filtering approach in this thesis.
By using vector components the processing time to correlate both component MACH filters
with a 144�180�200 video sequence was 0:8 seconds. This is significantly faster than 2:32
seconds using the Clifford Fourier transform method. Both tests were computed within Mat-
lab, using an Intel core i7-4500U with 8GB of RAM, utilising all four cores. The Clifford
Fourier transform used functions included in the Clifford Multi-vector Toolbox[108].

PhD Thesis Page 97 of 132



4.5 Conclusions and Interpretation A. Elliott

Figure 56: ROC curves showing the discrimination between fast and slow motions for each
of the motion directions (North, East, South West, Clockwise, Counter Clockwise).
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4.5 Conclusions and Interpretation
The purpose of the work in this chapter was to develop a method for using motion cues to
aid in the detection of objects, and in visual self-motion estimation. The work presented in
this section has only touched the surface of this intricate and complex problem but shows
a possible path that future work can embark on to work towards a fully integrated solution
able to run on a resource-limited MAV platform.

The first part showed that motion cues can greatly aid in the detection of symmetries in
a scene. This approach utilises the same linear filtering techniques to reliably and quickly
classify symmetry of objects. This approach relies on two assumptions: 1) the symmetrical
properties of the object is known, and 2) the region of a potential object must first be found.
The first assumption is trivial since a system is designed to find a specific object. Given
that this method is designed to detect symmetry in an object, rather than finding the specific
object the second assumption is acceptable. This method was shown to successfully work
well alongside the object detection method proposed in chapter 3, where the algorithm can
be tuned to have a higher detection rate at the cost of an increase in false alarms. By applying
these symmetry cue tests to each potential region, the false alarm rates can drastically be
reduced.

Using the discussion of flying insects in Section 1.2.2, a new pattern matching method
has been developed using composite correlation filters for self-motion estimations. This ap-
proach relies on a directional flow field vector. This vector can be obtained using a number of
optic flow methods, or spatio-temporal filtering approaches such as the method suggested in
this chapter. Many optic flow methods do not provide any reliable confidence measure of the
vectors [93]. Using linear spatio-temporal filtering techniques, an alternative approach was
developed to construct motion flow fields. By combining several oriented energy volumes
to build 3 higher level feature vectors, it is possible to describe motion at each point in the
spatio-temporal volume. Using these features, the direction of motion at each point can be
described. At each point, a certainty measure of the direction is also described through the
dispersion value. This defines if the motion at each point is coherent in a particular direction
or not. This dispersion volume was used to filter to final flow vectors for a video sequence
before passing them through the correlation filter steps.

The initial testing has shown that simple motion patterns can be recognised using 3D
correlation filters with reasonable accuracy. With the appropriate training dataset, more
complex motions could also be detected. Furthermore, many optic flow methods only con-
sider two adjacent frames to build the motion patterns. However, using a 3D correlation
filter can combine many frames along the temporal axis to recognise longer term motions.
The same filter can also recognise combined flight manoeuvres that may occur over a longer
period of time.

At this stage, the computational performance has not been considered in detail. The
main reason for this is that no code optimisation has been implemented. There is still future
research to conduct for this approach to improve computational performance, one such start-
ing point. Together the approach of using spatio-temporal filtering and correlation filters fit
neatly into a framework of using correlation to recognise patterns for both static and dy-
namic patterns. These methods are well suited to parallelisation for significant performance
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improvements on specialised embedded hardware.
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5 Conclusions and Future Work
This thesis has investigated both static and dynamic perception using cues inspired by flying
insects. The work conducted in each of these areas were split into two parts being static
patterns and dynamic patterns.

The static patterns section of this thesis investigated how to efficiently recognise sym-
metries in static patterns. Motivated by honeybees, the proposed bio-inspired method uses
a pattern recognition approach to quickly recognise objects with rotational symmetry. This
method is not only an order of magnitude faster than the current state-of-the-art symmetry
detection method but is also able to achieve better accuracy in the ROC analysis sense. This
bio-inspired approach was also shown to realise a form of relevance filtering for further ef-
ficiency through the systematic choice of the training examples, with the algorithm being
able to recognise symmetrical objects in 256 bit greyscale patterns while being trained with
only binary patterns which contain less information than the greyscale test patterns.

The dynamic patterns section of this thesis investigated how to use dynamic patterns
to aid in object detection and self-motion estimation. In this part two algorithms were pro-
posed. The first algorithm can be considered as a bridge between static and dynamic percep-
tion, fusing together aspects of both. It was demonstrated that by incorporating motion cues
from the object itself, the accuracy of the static pattern based symmetry detection method
can be further improved. The second algorithm motivated by insect vision uses a pattern
based approach that is able to recognise motion cues in a video sequence. This method first
performs spatio-temporal filtering to estimate the motion energy in a given video sequence.
This alternative approach uses linear filtering techniques and does not require direct calcu-
lation of dense optic flow that many other motion estimation methods rely on. This spatio-
temporal method also has an advantage over traditional optic flow methods as it provides a
measure of certainty at each point. Using this spatio-temporal energy volume, it was shown
that three dimensional correlation filters can be trained to recognise motion types in the
video sequence with reasonable accuracy.

5.1 Future Work
The suggested future work is divided into three main topics: static patterns, dynamic pat-
terns, and integration of the two.

5.1.1 Static Patterns

A future work direction aimed at improving the design efficiency of composite correlation
filters could focus on further insights into relevance filtering, including a more in-depth
frequency-domain analysis of the Horridge patterns (as shown in Figure 32). The Horridge
patterns exhibit rotational symmetry of rectangular bars (or wedges) so further detection
efficiencies could be achieved by utilising the symmetry properties of the Fourier transform
[109] as shown in Figure 57.

Furthermore, the use of online training can be used to improve the tracking of objects.
If an object is detected and the correlation score is above a certain threshold, that image can

PhD Thesis Page 101 of 132



5.1 Future Work A. Elliott

Figure 57: Some simple Horridge like patterns and their corresponding discrete Fourier
transform magnitude representations

be added to the composite filter in order to make it more robust to the current scenario. This
has been demonstrated to improve performance in [110].

The reasons for the main focus on flowers for testing in this thesis is because it gives a
reference to the biological experiments for comparison. Future work can extend methods
presented in this thesis to other objects using symmetry hierarchies as discussed in [32]
for further efficiencies. For example, a flower can be generalised to a pattern of radial
bars. A computer keyboard could be generalised to a rectangular shape with many smaller
rectangular regions within. By recognising these lower level symmetry features they can
be combined to recognise different objects. This approach can be linked to how honeybees
build landmarks to recognise familiar places by combining simple features as discussed in
Section 1.2.1.

5.1.2 Dynamic Patterns

The work described in this thesis has shown that the use of spatio-temporal filtering for
motion perception is a promising avenue to follow. There are two main reasons for this,
the first being that it seems to be an effective alternative to optic flow which is backed
up by biologic research. The second reason for perusing this path is because it fits into a
framework of correlation filters. For static perception 2D correlation filters are used .x; y/,
and for dynamic perception, 3D correlation filters are used .x; y; t/.

Extending Motion Recognition to More Complex Motion Types Now that it has
been demonstrated that one can use a pattern matching approach to recognise simple mo-
tions, future work can extend this to more complex self-motion pattern types, such as out-
of-plane rotations. By using smaller filters on the .x; y/-plane, one can synthesise filters
to locate key motion pattern locations such as the focus of expansion, or centre of rotation.
These are important cues for obstacle avoidance and navigation. Future work can investigate
using a bank of composite correlation filters to recognise the core motion types along with
a certainty score, interpolation can be used to recognise variations between these motions.
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Spatio-Temporal Motion Normalisation As discussed in Section 4.4, a dispersion
measure was included to filter out regions of the volume that did not exhibit coherent motion.
However, due to the spatio-temporal filters used, the energy responses are still influenced by
contrast in the scene, not motion alone. Given two regions of different contrast that are
moving in the same direction, the region with more contrast will yield a slightly stronger
energy response even though the motion is technically the same. Future work can investigate
methods to ensure the spatio-temporal energy response is purely from motion. As a starting
point normalisation can be used that will take into account the contrast in the scene.

Computational Performance At this stage, the computational performance has not been
considered as no code optimisation has been performed. Future research can be conducted
to improve the performance. Together the approach of using spatio-temporal filtering and
correlation filters fit neatly into a framework of using correlation to recognise patterns for
both static and dynamic patterns. Which is well suited to parallelisation for significant
performance improvements.

5.1.3 Integration

In this thesis, a common theme of applying a pattern matching approach has been utilised
for the detection of symmetries, and motion. Using a framework of linear filters, both ap-
proaches can be combined into an integrated vision system. The correlation filters discussed
for static perception work in the .x; y/-plane. To deal with distortions of targets, composite
correlation filters are used in order to improve the detection rate. The same approach is used
on the motion flow vectors but extended to 3D. Similarly, the spatio-temporal methods dis-
cussed again use linear filtering techniques. Using a linear filtering framework for both static
and dynamic perception which can share some processes and information between them to
allow for efficient implementation. For example, once the dynamic pattern recognition has
recognised a self-motion type, this can be used to remove background motion in the scene
which can be subtracted from the flow field. The remaining vectors are either caused by
noise or other object motion in the scene. These regions can then be further investigated
using the static pattern methods to only search those regions. Future work will study the
feasibility of integrating the two approaches.

Using Spherical Sensors As shown in Appendix A, using spherical sensors can re-
move some of the ambiguities with flow vectors. Future work can extend the methods dis-
cussed in this thesis to utilise omnidirectional vision. Detections of certain targets around the
sphere (using composite filters) can be tracked in order to gain a knowledge of the vehicle’s
position relative to these targets. This is a concept that is used by honeybees for navigation
and is shown in Figure 11, where the detection and tracking of certain targets relative to one
another around the visual panorama can be used to recognise familiar places. This, in turn,
can be used for dynamic perception for self-motion tracking.
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A Appendix - Planar and Spherical Optic Flow
This Appendix is an introduction to optic flow for both planar and spherical retina. This
section is required as a basis for the equations used for the derivation of the Franz-Krapp
Filter shown in Appendix B.

A.1 Planar Case
This section will look at work conducted primarily by Fermüller and Aloimonos [111, 112,
113, 114, 115] who used a qualitative approach. Rather than looking at only parts of an
image, a more global approach was used by looking at the patterns that the velocity fields
form.

A.1.1 Problem Formulation (planar retina)

The mapping of scene points onto the image plane should be understood before continu-
ing. We consider rigid body motion of the observer (camera) and describe the relationship
between points in the real world (scene points) to the points the camera can see (image
points) via perspective projection. This can be shown in Figure 58.

Figure 58: Image formation using perspective projection on a planar retina [113]

We consider a coordinate system .X; Y;Z/ that is fixed to the observer (nodal point of
the camera). The observer moves with translation t D .U; V;W / and rotation ! D .˛; ˇ; 
/

in a stationary environment. Each scene point R D .X; Y;Z/ has the velocity component
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PR D �t �! �R: (63)

The image is formed on a plane parallel to the XY -plane at distance f from the nodal
point. We now consider a 3D point in the scene would be mapped onto the image plane as a
2D point, r using perspective projection,

r D
f

R � z0
R; (64)

where z0 is a unit vector in the direction of the Z-axis and a � b denotes the inner product of
vectors a and b. We now need to differentiate r with respect to time and substitute for PR to
obtain the 2D velocity of an image point.

Pr D �
1

Z
.z0 � .t � r//„ ƒ‚ …

translation

C
1

f
.z0 � .r � .! � r///„ ƒ‚ …

rotation

; (65)

where the translational component is .vtrr/=Z and the rotational flow component is vrot.
Only the translational component of equation (65) depends on the depth Z D R � z0, so it is
only possible to recover the scaled translational component t=Z. The rotational component
only depends on the three rotational components ˛; ˇ; 
 .

Translational Vectors If the observer moves only with translation, the 3D scene will
move along parallel lines, when viewed with perspective projection on the image plane, the
points will travel along a line that that passes through the vanishing point. The flow at that
point is zero. If the observer is moving towards the scene points, the points will emanate at
the vanishing point and move outwards, this point is called the Focus of Expansion (FOE).
Otherwise, if the observer is moving away from the scene points, the flow will move towards
the Focus of Contraction (FOC). This can be seen in Figure 59, where the vanishing point
(FOC/FOE) image coordinates .x; y/ are given as:

x0 D
Uf

W
(66a)

y0 D
Vf

W
(66b)

The direction of each of the translational flow vector is determined by the location of the
vanishing point.

Rotational Vectors In the case of purely rotational motion, every point in 3D moves
along a circle in a plane that is perpendicular to the axis of rotation. The view on the image
plane is the intersection of the image plane with a cone that originates at the origin and faces
the Axis of Rotation (AOR). The rotational motion at this point is zero (see Figure 60).
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Figure 59: Translational motion viewed under perspective projection [111]

Figure 60: Intersection of the image plane with the cone of projected rotational motion [111]

The rotation axis is given by the two parameters:

x D

�
˛




�
f (67a)

y D

�
ˇ




�
f (67b)

The axis of rotation defines the shape of the second order curves (ellipse, hyperbola,
parabola, or circles) on the image plane as shown in Figure 61. These field lines are the
lines along which the image points would move if the observer rotated around the axis of
rotation.

We will now continue work in component notation where Pr D . Pr1; Pr2; Pr3/. Because we
are using perspective projection, Pr3 is always zero. We will denote Pr1 as u and Pr2 as v,
so that Pr D .u; v/. Therefore we can re-write equation (65) in component notation where
t D .U; V;W / and ! D .˛; ˇ; 
/.
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Figure 61: Second order curves on the image plane from rotation

 -circles form when rotating around the Z-axis, ˛-circles form when rotating around the

X -axis, and ˇ-circles are formed when rotating around the Y -axis.

u D utrans C urot

D .�x0 C x/
W

Z
C ˛

xy

f
� ˇ

�
x2

f
C f

�
C 
y; (68)

v D vtrans C vrot

D .�y0 C y/
W

Z
C ˛

�
y2

f
C f

�
� ˇ

xy

f
� 
x: (69)

We can only compute the normal flow in an image along the gradient direction .nx; ny/
as only the component along the brightness gradient can be recovered (see Figure 26). This
normal flow vector, .u; v/n along the gradient direction, has a flow value un given by:

un D .u; v/ � .nx; ny/

D unx C vny

D

�
.�x0 C x/

W

Z
C ˛

xy

f
� ˇ

�
x2

f
C f

�
C 
y

�
nx

C

�
.�y0 C y/

W

Z
C ˛

�
y2

f
C f

�
� ˇ

xy

f
� 
x

�
ny; (70)

where .nx; ny/ are the normal vectors .nx; ny/ D .x=r; y=r/, r D
p
x2 C y2.

As shown in equation (70), there are five unknown motion parameters .˛; ˇ; 
; x; y/, and
one scaled depth component W=Z at every point for un. This is not easy to calculate since
we can not make any assumptions about the depth.

The motion vector consists of a rotational component which consists of three unknowns
.˛; ˇ; 
/, and a translational vector .x; y/ which is directed everywhere towards, or from
the vanishing point. We can only compute the estimates of the motion vectors projected
onto the gradient direction. Therefore it is useful to re-arrange equation (70) for each of the
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components:

un D
W

Z
Œ.�x0 C x/; .�y0 C y/�Œnx; ny�

C˛

�
xy

f
;

�
y2

f
C f

��
Œnx; ny�

�ˇ

��
x2

f
C f

�
;
xy

f

�
Œnx; ny�

C
Œy;�x�Œnx; ny�: (71)

If two vectors are perpendicular, their scalar products are zero. Therefore for certain
normal flow vectors, some of the components will disappear. This leads onto the idea of
˛; ˇ; 
 vectors as shown in Figure 62.

Figure 62: Positive ˛; ˇ; 
 vectors.
If the normal flow vectors are perpendicular to the circle, then there is no component due to

rotation for a certain axis.

If the normal flow vectors are perpendicular to the 
 -circles, the normal flow vector does
not contain a component due to rotation around the Z-axis. Similarly, if the normal vectors
are perpendicular to the ˛-circles, then there is no component due to rotation around the X -
axis. There is no component around the Y -axis if the normal flow vectors are perpendicular
to the ˇ-circles. In Section A.1.2 we will look at these vector field lines in more detail.

A.1.2 Copoint and Coaxis Vectors

There are two main types of normal flow vectors; the coaxis, and copoint vectors. Each of
these will be discussed in this section.

Coaxis Vectors We will now consider an imaginary line passing through the nodal
point with orientation vector .A;B; C /, where A2 C B2 C C 2 D 1. This line defines a
family of cones originating at the origin with axis .A;B; C /. As shown in Figure 60, the
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intersection of the cone with the image plane will lead to vector field lines or .˛; ˇ; 
/-
circles. We now look at the normal flow vectors that are perpendicular to the vector field
lines. The orientation perpendicular to the vector field lines is given by the vector M D

.Mx;My/whereMx D �A.y
2Cf 2/CBxyCCxf , andMy D Axy�B.x

2Cf 2/CCyf ,
and the unit vector is m DM=jM j. The normal vectors along the gradient .nx; ny/ is equal
to .mx; my/. This family of vectors that correspond to the .A;B; C / axis are called the
.A;B; C / coaxis vectors. Before we continue it is important to state the vector orientations.

� Positive orientation is when the .A;B; C / coaxis vector is pointing away from the axis
of rotation: .mx; my/ or .nx; ny/.

� Negative orientation is when the .A;B; C / coaxis vector is pointing towards the axis
of rotation: .�mx;�my/ or .�nx;�ny/.

Translational Coaxis Components The value tn is the translational component of the
normal flow vector, un at point .x; y/ in the direction .nx; ny/ and is given by the transla-
tional component from equation (71).

tn D

�
W

Z
.�x0 C x/; .�y0 C y/

�
� Œnx; ny�: (72)

Because we assume that the observer is approaching the scene,W=Z is positive, the sign
of tn is equal to the sign of

h.A;B;C; x0; y0I x; y/ D ..�x0 C x/; .�y0 C y//:.nx; ny/

D x2.Cf C By0/C y
2.Cf C Ax0/

�xy.Ay0 C Bx0/ � xf .Af C Cx0/

�yf .Bf C Cy0/C f
2.Ax0 C By0/: (73)

The equation h D 0 is a curve that separates the positive and negative components of the
.A;B; C / coaxis vectors. This curve passes through the Focus of Expansion and the point
.Af=C;Bf=C/.

When h.x; y/ > 0 the normal flow values are positive. When h.x; y/ < 0 the normal
flow values are negative; similarly, when h.x; y/ D 0 the normal flow values are zero. This
can be seen in Figure 63a. The curve h D 0 for a family of coaxis vectors is uniquely defined
by the FOE with coordinates x0; y0.

Rotational Coaxis Components The rotational components of the flow vectors are
defined by the three rotational components .˛; ˇ; 
/. The value rn is the rotational com-
ponent of the normal flow vector along the positive direction of the .A;B; C / coaxis vector.
From equation (71), the rotation component rn is:
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(a) Coaxis vectors due to
translation [112].

(b) Coaxis vectors due to rota-
tion [112].

(c) Coaxis vectors due to rota-
tion and translation [112].

Figure 63: (a)Vectors are negative if they lie within the second order curve h defined by the
FOE, and are positive at all other locations. (b) Signs of the vectors are separated by the half
plane g. (c)Rigid motion defines an area of positive and negative coaxis vectors.

rn D

��
˛
xy

f
� ˇ

�
x2

f
C f

�
C 
y

�
;

�
˛

�
y2

f
C f

�
� ˇ

xy

f
� 
x

��
� Œnx; ny�: (74a)

or

rn D Œy.˛C � 
A/ � x.ˇC � 
B/C ˇAf � ˛Bf � � Œx2 C y2 C f 2�: (74b)

In a similar to the translational coaxis vector, the sign of rn is equal to the sign of

g.A;B;C; ˛; ˇ; 
 I x; y/ D Œy.˛C � 
A/ � x.ˇC � 
B/

CˇAf � ˛Bf � � Œnx; ny�: (75)

A straight line g.A;B;C; ˛; ˇ; 
/ separates the rotational components of the .A;B; C /
coaxis vectors into positive and negative signs as shown in Figure 63b The straight line g
passes through the axis of rotation . f̨ =
; f̌ =
/ and the point .Af=C;Bf=C/.

Combined Translational and Rotational Coaxis Constraints To further investigate
the constraints for general motion, the geometrical relations due to translation and rotation
are both considered. This means that there is a line and a second order curve that separates
the plane into areas containing only positive and only negative normal flow vectors. This is
shown in Figure 63c. This gives an area on the image plane that contains only positive or
negative normal flow vectors. These areas are known as coaxis patterns and are defined by
the conic h and the straight line g. These depend on only 4 parameters, the FOE .x0; y0/ and
the AOR .˛=
; ˇ=
/, but every coaxis pattern is defined by only three parameters .A;B; C /.

Copoint Vectors The other type of normal flow vector are the copoint vectors, these
are perpendicular the lines emanating from a point .r; s/. Similar patterns to the coaxis
patterns are obtained. However, in this case second order curves separate the rotational
normal flow vector components, and a straight line separates the signs of the translational
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(a) Copoint vectors due to
translation [112]

(b) Copoint vectors due to ro-
tation [112]

(c) Copoint vectors due to ro-
tation [112]

Figure 64: Copoint vectors for (a) translation, (b) rotation and (c) combination of translation
and rotational motion

normal flow components. At a point .x; y/ a .r; s/ copoint vector of unit length in the
positive direction is defined as

.�y C s; x � r/p
.x � r/2 C .y � s/2

; (76)

where s; r is the origin of the lines.
In order to define the copoint patterns, we substitute the unit vector in equation( 76) for

.nx; ny/ into equation (71). Looking at the translational component defined in equation (72),
we obtain the the straight line k.r; s; x0; y0I x; y/ passing through .r; s/ for the translational
component as shown in Figure 64a.

k.r; s; x0; y0I x; y/ D y.x0 � r/ � x.y0 � s/ � x0s C y0r

D 0: (77)

We can then get the second order curve l.r; s; ˛; ˇ; 
 I x; y/ by looking at the rotational
component in equation (74) and substituting equation (76) for .nx; ny/. An example is
shown in Figure 64b:

l.r; s; ˛; ˇ; 
 I x; y// D �x2.ˇs C 
f / � y2.˛r C 
f /

Cxy.˛s C ˇr/C xf . f̨ C 
r/

Cyf . f̌ C 
s/ � f 2.˛r C ˇs/

D 0: (78)

As with the coaxis patterns, we superimpose both the translation and rotational compon-
ents that gives us an area of positive and negative values called the copoint patterns. This is
shown in Figure 64c.
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A.1.3 Motion Recognition

There are two primary methods for recognition of motion vectors. The first recognises the
motion vectors via global qualitative approach within the field of view and as discussed in
[111] and [112]. There are geometrical relations between the normal flow vectors in selected
regions (look at normal flow for a certain direction, and then find locations with the same
sign). This allows separation between translation and rotation which separate based on the
sign of the second order curve and a straight line. Only a small number of normal flow
vectors are used by choosing coaxis vectors that correspond to the orthogonal coordinate
axis .X; Y;Z/; this results in three ˛; ˇ; 
 vectors as shown in Figure 62. This method
can be considered as global because it uses all the information in the image and qualitative
because it uses the signs of the normal flow vectors for estimating the translational and
rotational axes. This method allows the optic flow to be computed in a robust way as the
data is used in a global and qualitative manner and is not affected as much by discontinuity,
or noise in the data.

The second alternative approach looks at the global structure of rigid motion fields [113].
It is shown that for a scene, the rigid motion vectors of certain values are constrained to lie
within certain regions, forming contours. This does not mean that within these conic regions
all the motion vectors will be a certain value, rather the motion vectors of a certain value will
lie within the corresponding conic region for that value. The motion field possesses a global
structure that is independent of the scene in view, but it does depend on the parameters of
the underlying 3D motion. By looking at the geometry of the iso-motion vectors and iso-
normal motion areas, each of which corresponds to the locations on the observer’s retina
where the motion would be a certain value. There are still some ambiguities due to the
nature of a planar imaging plane. However, by using a spherical imaging plane some of
these ambiguities are resolved. This is also more similar to how many insects perceive the
world.

A.2 Spherical Case

From a sequence of images, the rigid 3D motion between them can be estimated which can
be used to derive the structure of the scene using the image formation equations as discussed
in Section A.1.1. However, any errors in the 3D motion estimate results in a distorted version
of the scene structure which can possibly result in negative depth. Negative depth means that
the scene points are behind the image plane which is not correct. In terms of a planar retina,
when the rotational and translational component errors are perpendicular to one another on
the image plane, the optimal configuration is obtained. Spherical retina on the other hand
are much better for this. This section shows that if we know the rotational error, the correct
translation is the optimal one. Similarly, when we know the translational error, the optimal
rotational error depends on both the direction and the value of the actual and estimated
translation. This section will show that in general it is easier to estimate motion using a
spherical retina and is based on research conducted in [115] and [114].
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A.2.1 Problem Formulation (spherical retina)

The 2D motion field on the image surface is the projection of the 3D motion field of scene
points moving relative to the image surface. Again, we will assume rigid body motion of the
observer (camera) with instantaneous translation t D .U; V;W /, and instantaneous rotation
! D .˛; ˇ; 
/. Figure 65 illustrates the image formation.

Figure 65: Image formation under perspective projection on a spherical retina [115]

Each scene point R D .X; Y;Z/ is measured with respect to a coordinate systemOXYZ

fixed to the camera. Each scene point R moves relative to the camera with velocity PR where

PR D �t �! �R: (79)

The negative sign for translation accounts for the perceived direction of motion, the environ-
ment translates backwards when the observer is translating forwards. Similarly for rotation,
the environment is perceived to move in the opposite direction to the observers rotation. We
will now consider perspective projection of the scene points onto the spherical image plane.
The image is formed on a sphere of radius f (focal distance), where .r � r D f 2/, so we
can map the scene points R to a point on the image plane r D .x; y; z/.

r D
Rf

jRj
; (80)

where jRj is the norm of R. If we now differentiate equation (80) with respect to time, and
substitute for PR into equation (79) we obtain the formula for the optic flow on the sphere.
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Pr D vtrans.r/C vrot.r/

D
1

jRjf
..t � r/r � t/ �! � r

D �
1

jRjf
.r � .t � r//„ ƒ‚ …

translation

�! � r„ ƒ‚ …
rotation

: (81)

Alternatively, if we look at a unit sphere of radius f D 1, the projection will become
r D R=jRj which leads to equation (81) becoming

Pr D �
1

jRj
.r � .t � r//„ ƒ‚ …
translation

�! � r„ ƒ‚ …
rotation

: (82)

The translational component vtrans.r/ depends on the depth Z D jRj, the distance of
R to the centre of the sphere. The direction of vtrans.r/ is longitudinal (along great circles)
pointing away from the FOE .t/, or towards the FOC .�t/. This can be seen in Figure
66, left. The rotational component vrot.r/ does not depend on depth. Its direction is along
latitudes around the AOR (clockwise (!), and counter clockwise (�!)). This can be seen
in Figure 66, middle.

Figure 66: Optic Flow patterns on a spherical retina [114].
Left: Pure translation. Middle: Pure rotation. Right:combined translation and rotation.

As seen in Figure 66, there is an ambiguity as it is not possible to disentangle the effects
of t and jRj (translation motion vectors will depend on the distance of scene points, where
scene points close to the observer will move faster than those points further away). We are
only able to derive the direction of translation.

The component of the flow un in a specific direction n (normal to the gradient) is given
by

un D Pr � n D
vtrans

jRj
� nC vrot � n: (83)
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Distorted Space If the exact motion parameters have been computed, the depth can be
obtained from equation (83). It is more reasonable to expect some errors in the estimation
of the 5 motion parameters. Because there are errors in the motion parameters, there will
also be errors in the depth of the scene. The estimated parameters are represented with a
hat .Ot; O!; j ORj; OZ; Ovtrans; Ovrot/. Unmarked parameters represent the actual quantities. Errors
are denoted with the subscript �, the error is defined at the differance between the actual
and estimated quantity (! � O! D !�). Looking at equation (83), we find that an estimate of
depth is

j ORj D
Ovtrans � n

Pr � n � Ovrot � n
: (84)

Therefore on the image sphere, the estimated depth is

j ORj D jRj �

 
.r � .Ot � r// � n

.r � .r � t// � nC f jRj.!� � r/ � n

!
: (85)

We can express the depth estimate j ORj as a multiple of the actual depth jRj with a
distortion D

D D
.r � .Ot � r// � n

.r � .r � t// � nC f jRj.!� � r/ � n
: (86)

Equation (86) is a distortion factor for a fixed direction n which is a surface in space. This
distortion surface is a locus of points that are distorted in depth by the factor D. It is
important to note that there will be different distortions for different directions.

A.3 Advantages of a Spherical Retina
We will now look at coupling of motion errors on the sphere. The main focus is to look at
the points in space which the 3D motion estimates give a negative depth estimate. For every
direction, n, the points in space with negative depth are between 0 and the �1 distortion
surface. If we look at every direction we will get a distortion surface covering a certain
volume. The main interest is to minimise the negative depth volume. This is because the
solution that contains the smallest negative depth volume would most likely be the correct
solution for the scene.

Rotational Error If we already have an estimation of the rotation (from an inertial meas-
urement unit for example), the direction of translation that minimises the negative depth
volume is the correct one. This is similar to most insects that have some form of inertial
sensor which gives rotational information. This rotational information might not always be
correct, but it gives a basis to work from to estimate the remaining translation. This is done
by subtracting the rotational motion components from the entire flow field. This will result
in the translational flow.

Estimation of translational motion is simpler than the estimation of the complete 3D
motion when compared to that for a planar retina.

Page 124 of 132 PhD Thesis



A. Elliott A.3 Advantages of a Spherical Retina

Translation Error If we have estimation of translation with some error assumption, the
rotational error vector !� lies on different directions of the sphere. The exact value of the
vector depends on the actual and estimated translation as well as the depth of the scene in
view. Assuming there is an estimate of the translation (that depends on depth), the rotation
estimation (that does not depend on depth) is not meaningful as it depends on the translation.
This is not considered for the spherical retina case.

Analysis on the Sphere We will consider the case of a fixed rotational error. As shown in
Figure 67, the flow vector n D .s � r/=.js � rj/ defines a direction on the tangent plane of
the sphere, where s is a unit vector at each point r . The rotational component !� is parallel
to the x-axis, so that s is the set of unit vectors in the yz-plane where s D .0; sin�; cos�/
for � between Œ0 : : : ��. As the s varies along a half a great circle (longitude), vector
.s � r/=.js � rj/ takes on every possible orientation on the tangent plane for each point
r . When the set of points r are on the great circle of s, the direction is be zero. In Figure 67
s is chosen to be perpendicular to the rotational component error !�. It is important to note
that as s varies along the great circle constantly, the value s � r speeds up and slows down
as it moves around the circle.

Figure 67: Sphere with tangent vector n [115].
!� is parallel to the x-axis, s D .0; sin�; cos�/ for � between 0 and � .

Based on the estimates, we need to look at the points in space with negative depth
values j ORj. Looking at equation (85) for the negative depth on the sphere. Taking n D

.s � r/=.js � rj/, and s �!� D 0 (since s �!� are perpendicular) and setting f D 1 we
obtain the following inequality

j ORj D jRj
.Ot � s/ � r

.t � s/ � r � jRj.!� � r/.s � r/
< 0: (87)
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From the inequality in equation (87), the following constraint on jRj based on the sign
can be derived

sgn
�
.Ot � s/ � r

�
D �sgn

�
.t � s/ � r � jRj.!� � r/.s � r/

�
: (88)

This means that at a point r in the image, the constraint in equation (88) is either satisfied for
all depth values of jRj, or for an interval of values of jRj bounded from above or below. The
other case could mean that no values of jRj are satisfied. Equation (87), provides a way to
classify the points on the sphere in four areas (I, II, III, IV). These areas can be summarised
in the table on Table 12. The locations of each area is defined by the signs of the functions
.Ot � s/ � r , .t � s/ � r , and .!� � r/.s � r/.

Table 12: Using equation (87), the points on the sphere can be classified into four areas
using the constraint table [115].

For a direction n defined by a certain unit vector s we can obtain a volume of negative
depth values that consist of the volumes above areas I, II, and III. This is shown in Figure 68
for both hemispheres of a sphere. It can be seen that areas II, and III cover the same area. The
size of these regions is same as the area between the two great circles between the estimated
and actual values of t. These two circles are defined by .Ot � s/ � r and .t � s/ � r . Area I
covers the remaining area of the hemisphere subtracted by the area between .Ot � s/ � r and
.t � s/ � r

If the scene in view is unbounded (jRj 2 Œ0; ��), the range of depth values above any
point r in areas I and II that will result in negative depth estimates. We can consider the
lower bound jRminj 6D 0 and the upper bound jRmaxj 6D 1 to obtain additional curves Cmin

and Cmax where
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Figure 68: Classification of image points according to constraints on jRj [115]

Cmin D .t � s/ � r � jRminj.!� � r/.s � r/ D 0; (89a)
Cmax D .t � s/ � r � jRmaxj.!� � r/.s � r/ D 0: (89b)

These curves further bound the areas of negative depth values. It can also be seen that
the two curves Cmin D 0 and Cmax D 0 intersect that the same point as .t � s/ � r D 0 and
.!� � r/.s � r/ D 0. Further details about these bounds on the depth volume is discussed
below for areas I and III.

Area I We do not obtain any negative depth estimates for the points r between the curves
.!� � r/.s � r/ D 0 and Cmax D 0.

The volume for points r between Cmax D 0 and Cmin D 0 are bounded from below by
equation (90), and from above by jRmaxj:

jRj D
.t � s/ � r

.!� � r/.s � r/
: (90)

The volume for points r between Cmin D 0 and .t � s/ � r D 0 are bounded by jRminj

and jRmaxj.

Area III We do not obtain any negative depth estimates for the points r between the curves
.t � s/ � r D 0 and Cmin D 0.

Between Cmax D 0 and Cmin D 0 the volume is bounded from above by equation (91),
and from below by jRminj.

jRj D
.t � s/ � r

.!� � r/.s � r/
(91)
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The volume for points r between Cmax D 0. and .!� � r/.s � r/ D 0, are bounded
between jRminj and jRmaxj.

For any unit vector s, the corresponding negative depth volume becomes smallest if Ot is
on the same great circle of t and s, so .t � s/ � Ot D 0. Basically the negative depth volume
is smallest when the estimated value Ot is close to t.

Considering an unbounded scene where Cmin D .t � s/ � r D 0 and Cmax D .!� �

r/.s � r/ D 0. The estimate Ot does not lie on the great circle defined by t and s, so
.t � s/ � Ot 6D 0. In order to minimise the negative depth volume Ot is changed so that it
satisfies .t � s/ � Ot D 0. This change of Ot causes the area of type II becomes an area of
type IV, and the area of type III becomes an area of type I. This results in the negative depth
volume only consisting of values above the area of type I.

In this Appendix, it was argued why spherical sensors have advantages over the planar
retina. Furthermore, solving optic flow with spherical sensors is made much easier if the
system makes use of an inertial sensor to provide an estimate of rotation. Spherical sensors
do not have as many problems with ambiguities and are better for estimating self-motion,
which is probably why all flying insects have spherical vision systems.
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B Appendix - Franz-Krapp Filter Derivation
This section is a technical summary of the Franz-Krapp filter, full details can be found in [9]
and the derivation for a classical matched filter can be found in [48]. This Appendix requires
an understanding of spherical optic flow (see Appendix A).

The Franz-Krapp filter models the directional response characteristic (locally) of the
LTPC is as a projection of the image flow vector pi onto a unit vector, ui . So the linear
combination over the receptor field is shown in Figure 15 and given as:

e D

kX
iD1

wif .ui � v.ri/C ni/; (92)

where e is the scalar output of the modelled LPTC, wi are scalar weights (to be determ-
ined), f is a piecewise linear (or linear with saturation) scalar function modelling EMD
response, ui is the unit vector of the prescribed pattern at a point ri on the sphere S2, v.ri/

is the actual optic flow vector on S2 at ri given by equation (82)10, and ni is the scalar noise.
It is assumed that there are k measurement points (the ommatidia) on S2. Also a � b is the
inner product of a and b.

The unit vector ui of the given pattern at a point ri on the sphere which is defined as:

ui D

8̂̂<̂
:̂
�

a � ri

sin�i
for prescribed pure rotation around axis a;

�
ri � a � ri

sin�i
for prescribed pure translation along axis a;

(93)

where equation (82) was used again, because the optic flow pattern consists of both transla-
tional and rotational components. (see Figure 66). �i is the angle between the filter axis, a

and the unit vector at point, ri .
For simplicity, the EMD response model f in equation (92) was assumed to be linear in

the subsequent derivation, but it is important to mention Franz and Krapp also considered
the saturation of f . With this assumption of the linearity of the EMD response f , the
Franz-Krapp filter is now:

e D

kX
iD1

wi.ui � v.ri/C ni/; (94)

which is fully linear.

B.1 Output variance

There are distance variability effects which act only in the translational flow field, because
angular translation depends on distance. Because of this, for k points on S2, equation (82)
can be rewritten as:

10For an overview of spherical optic flow see Appendix A.2
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Pri D �
1

jRi j
.V � .V � ri/ri/ �! � ri ; i D 1; : : : ; k; (95)

and using equations (93) and (94), the translational part of the flow projection at a point
ri 2 S

2 is given by

�
1

jRi j
.V � .V � ri/ri/ � ui D �

1

jRi j
Vi ; (96)

with Vi D V � ui .
For confidence we denote,

�i
def
D

1

jRi j
; (97)

it can be observed that the same self-motion in a different environment would result in
a local flow projection that is different due to the local noise signal ni and different unit
vectors �i C��i at each point ri . The flow projection would change by:

��iVi C ni : (98)

For a linear model as in equation (94), would lead to the output variance given by:

�e2 D

* 
kX
iD1

wi.��iVi C ni/

!2+
; (99)

where h� � � i denotes the expectation over all trials.
It can be assumed that ��i and ni are statistically independent, so this expression can

be simplified:

�e2 D

kX
iD1

wi
2
�
�Vi

2
C�ni

2
�
; (100)

where �Vi 2 is the variance of the translational flow projection and is given by:

�Vi
2
D ��i

2
hVi

2
i: (101)

B.2 Minimisation of output variance

The optimal weights should minimise the variance�e2, which given by equation (100). It is
also required that without noise, the average filters output magnitude should be equal to the
magnitude of the rotational (or translational) vector ! (or V ). This determines the optical
flow component that is of interest. In the case of the rotational component !, the filter’s
output in the absence of noise ni is:
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kX
iD1

wi.ui � .�! � ri// D j!j

kX
iD1

wi sin�i ; (102)

where equations (93) and (95) were used with assumptions: a D ! (filter axis matched the
rotational vector) and v.ri/ D �! � ri , so that the additional requirement becomes:

j!j

kX
iD1

wi sin�i D j!j; (103)

or, equivalently:

kX
iD1

wi sin�i D 1: (104)

So by minimising equation (100), the optimal weights, wiR, i D 1; : : : ; k for the rota-
tional component detection can be found. But this is subject to the equality constraint of
equation (104), which can be solved using Lagrange multipliers. The fact that there is a
single constraint given by equation (104) means there is only one Lagrange multiplier �, so
that the Lagrangian becomes:

F.w1; : : : ; wk; �/ D

kX
iD1

wi
2
�
�Vi

2
C�ni

2
�
� �

� kX
iD1

wi sin�i � 1
�
; (105)

and the optimal solution for rotational component detection is:

wi
R
D NR

sin�i
�Vi

2
C�ni 2

; (106)

where NR is a suitable normalisation factor that satisfies
Pk
iD1wi sin�i D 1 so that:

NR D

� kX
iD1

sin2 �i
�Vi

2
C�ni 2

��1
: (107)

In an similar procedure, the constraint for a translational filter is:

kX
iD1

wih�ii sin�i D 1; (108)

which leads to the optimal weights wTi

wTi D NT
h�ii sin�i
�Vi

2
C�ni 2

(109)

with NT is a suitable normalisation factor that satisfies
Pk
iD1wih�ii sin�i D 1.
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As shown in equation (106) and equation (109), the optimal solution for both rotation
and translation detection is weighted by the local variance of the noise �ni 2 and the local
variance of the translational flow �Vi

2. Flow projections that contain high noise with large
translational variation components receive lower weight because they strongly contribute to
the variance of the filter output. In order to calculate the optimal weights, a prior know-
ledge the self-motion statistics, EMD noise �n2i , and the distance statistics of the habitat
are required. Because these parameters cannot be realistically known for the fly, they can be
substituted with guesstimates or treated as free parameters that are fitted to the data. Franz
and Krapp [9] adopted an approach based on a simplified world model, see Figure 16, which
yields a low-dimensional parameterisation of the weights. The model is comprised of as-
sumed distance statistics and flight statistics, but (although not implausible) it would change
with the environment and flight profile. Future work would look at improving upon this
model given research conducted in natural image statistics as discussed by work primarily
by van Hateren [116].

It is worthwhile to consider in what sense the Franz and Krapp derivation [9] results in
a matched filter. The input to the Franz-Krapp filter is a vector field on the unit sphere S2

which means that at every ‘pixel’ of S2 three data points are present, i.e. for a given image
plane r 2 S2 there is an optic flow vector v.r/. In the language of image processing, this
is a multi-dimensional image, because for each ‘pixel’ r there are three independent values
(components of v.r/), a situation not unlike processing of colour images(e.g. RGB) . Franz
and Krapp decided to convert the problem into a setting of scalar-valued pixels by taking the
inner product of the input vector field with the pattern vector field. On the other hand, one
could design three parallel filters (one for each component of v.r/) each of which would use
the fundamental theorem of matched filtering theory [41], [48], that matched filter performs
cross-correlation of the input with the pattern or, equivalently, that the Fourier transform
of the filter’s impulse response is the complex conjugate of the pattern. Franz and Krapp’s
use of scalar-valued pixels (by projecting the input vector field into the pattern) required a
new derivation of the filter and forfeited all information except the relative orientation of
the input and pattern vector fields. The main reason for using the scalar-values pixels in the
Franz-Krapp filter is because it made for easier detection detection Compared to the vector
approach (three parallel two-dimensional filters). Because with the vector approach there
would be three outputs of which a single decision would have to be made.
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