20 research outputs found

    Building Logic Toolboxes

    Get PDF

    Conflict-driven learning in AI planning state-space search

    Get PDF
    Many combinatorial computation problems in computer science can be cast as a reachability problem in an implicitly described, potentially huge, graph: the state space. State-space search is a versatile and widespread method to solve such reachability problems, but it requires some form of guidance to prevent exploring that combinatorial space exhaustively. Conflict-driven learning is an indispensable search ingredient for solving constraint satisfaction problems (most prominently, Boolean satisfiability). It guides search towards solutions by identifying conflicts during the search, i.e., search branches not leading to any solution, learning from them knowledge to avoid similar conflicts in the remainder of the search. This thesis adapts the conflict-driven learning methodology to more general classes of reachability problems. Specifically, our work is placed in AI planning. We consider goal-reachability objectives in classical planning and in planning under uncertainty. The canonical form of "conflicts" in this context are dead-end states, i.e., states from which the desired goal property cannot be reached. We pioneer methods for learning sound and generalizable dead-end knowledge from conflicts encountered during forward state-space search. This embraces the following core contributions: When acting under uncertainty, the presence of dead-end states may make it impossible to satisfy the goal property with absolute certainty. The natural planning objective then is MaxProb, maximizing the probability of reaching the goal. However, algorithms for MaxProb probabilistic planning are severely underexplored. We close this gap by developing a large design space of probabilistic state-space search methods, contributing new search algorithms, admissible state-space reduction techniques, and goal-probability bounds suitable for heuristic state-space search. We systematically explore this design space through an extensive empirical evaluation. The key to our conflict-driven learning algorithm adaptation are unsolvability detectors, i.e., goal-reachability overapproximations. We design three complementary families of such unsolvability detectors, building upon known techniques: critical-path heuristics, linear-programming-based heuristics, and dead-end traps. We develop search methods to identify conflicts in deterministic and probabilistic state spaces, and we develop suitable refinement methods for the different unsolvability detectors so to recognize these states. Arranged in a depth-first search, our techniques approach the elegance of conflict-driven learning in constraint satisfaction, featuring the ability to learn to refute search subtrees, and intelligent backjumping to the root cause of a conflict. We provide a comprehensive experimental evaluation, demonstrating that the proposed techniques yield state-of-the-art performance for finding plans for solvable classical planning tasks, proving classical planning tasks unsolvable, and solving MaxProb in probabilistic planning, on benchmarks where dead-end states abound.Viele kombinatorisch komplexe Berechnungsprobleme in der Informatik lassen sich als Erreichbarkeitsprobleme in einem implizit dargestellten, potenziell riesigen, Graphen - dem Zustandsraum - verstehen. Die Zustandsraumsuche ist eine weit verbreitete Methode, um solche Erreichbarkeitsprobleme zu lösen. Die Effizienz dieser Methode hängt aber maßgeblich von der Verwendung strikter Suchkontrollmechanismen ab. Das konfliktgesteuerte Lernen ist eine essenzielle Suchkomponente für das Lösen von Constraint-Satisfaction-Problemen (wie dem Erfüllbarkeitsproblem der Aussagenlogik), welches von Konflikten, also Fehlern in der Suche, neue Kontrollregeln lernt, die ähnliche Konflikte zukünftig vermeiden. In dieser Arbeit erweitern wir die zugrundeliegende Methodik auf Zielerreichbarkeitsfragen, wie sie im klassischen und probabilistischen Planen, einem Teilbereich der Künstlichen Intelligenz, auftauchen. Die kanonische Form von „Konflikten“ in diesem Kontext sind sog. Sackgassen, Zustände, von denen aus die Zielbedingung nicht erreicht werden kann. Wir präsentieren Methoden, die es ermöglichen, während der Zustandsraumsuche von solchen Konflikten korrektes und verallgemeinerbares Wissen über Sackgassen zu erlernen. Unsere Arbeit umfasst folgende Beiträge: Wenn der Effekt des Handelns mit Unsicherheiten behaftet ist, dann kann die Existenz von Sackgassen dazu führen, dass die Zielbedingung nicht unter allen Umständen erfüllt werden kann. Die naheliegendste Planungsbedingung in diesem Fall ist MaxProb, das Maximieren der Wahrscheinlichkeit, dass die Zielbedingung erreicht wird. Planungsalgorithmen für MaxProb sind jedoch wenig erforscht. Um diese Lücke zu schließen, erstellen wir einen umfangreichen Bausatz für Suchmethoden in probabilistischen Zustandsräumen, und entwickeln dabei neue Suchalgorithmen, Zustandsraumreduktionsmethoden, und Abschätzungen der Zielerreichbarkeitswahrscheinlichkeit, wie sie für heuristische Suchalgorithmen gebraucht werden. Wir explorieren den resultierenden Gestaltungsraum systematisch in einer breit angelegten empirischen Studie. Die Grundlage unserer Adaption des konfliktgesteuerten Lernens bilden Unerreichbarkeitsdetektoren. Wir konzipieren drei Familien solcher Detektoren basierend auf bereits bekannten Techniken: Kritische-Pfad Heuristiken, Heuristiken basierend auf linearer Optimierung, und Sackgassen-Fallen. Wir entwickeln Suchmethoden, um Konflikte in deterministischen und probabilistischen Zustandsräumen zu erkennen, sowie Methoden, um die verschiedenen Unerreichbarkeitsdetektoren basierend auf den erkannten Konflikten zu verfeinern. Instanziiert als Tiefensuche weisen unsere Techniken ähnliche Eigenschaften auf wie das konfliktgesteuerte Lernen für Constraint-Satisfaction-Problemen. Wir evaluieren die entwickelten Methoden empirisch, und zeigen dabei, dass das konfliktgesteuerte Lernen unter gewissen Voraussetzungen zu signifikanten Suchreduktionen beim Finden von Plänen in lösbaren klassischen Planungsproblemen, Beweisen der Unlösbarkeit von klassischen Planungsproblemen, und Lösen von MaxProb im probabilistischen Planen, führen kann

    Advanced reduction techniques for model checking

    Get PDF

    Proceedings of The Multi-Agent Logics, Languages, and Organisations Federated Workshops (MALLOW 2010)

    Get PDF
    http://ceur-ws.org/Vol-627/allproceedings.pdfInternational audienceMALLOW-2010 is a third edition of a series initiated in 2007 in Durham, and pursued in 2009 in Turin. The objective, as initially stated, is to "provide a venue where: the cost of participation was minimum; participants were able to attend various workshops, so fostering collaboration and cross-fertilization; there was a friendly atmosphere and plenty of time for networking, by maximizing the time participants spent together"

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 22nd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conference on Theory and Practice of Software, ETAPS 2019. The 29 papers presented in this volume were carefully reviewed and selected from 85 submissions. They deal with foundational research with a clear significance for software science

    Yavaa: supporting data workflows from discovery to visualization

    Get PDF
    Recent years have witness an increasing number of data silos being opened up both within organizations and to the general public: Scientists publish their raw data as supplements to articles or even standalone artifacts to enable others to verify and extend their work. Governments pass laws to open up formerly protected data treasures to improve accountability and transparency as well as to enable new business ideas based on this public good. Even companies share structured information about their products and services to advertise their use and thus increase revenue. Exploiting this wealth of information holds many challenges for users, though. Oftentimes data is provided as tables whose sheer endless rows of daunting numbers are barely accessible. InfoVis can mitigate this gap. However, offered visualization options are generally very limited and next to no support is given in applying any of them. The same holds true for data wrangling. Only very few options to adjust the data to the current needs and barely any protection are in place to prevent even the most obvious mistakes. When it comes to data from multiple providers, the situation gets even bleaker. Only recently tools emerged to search for datasets across institutional borders reasonably. Easy-to-use ways to combine these datasets are still missing, though. Finally, results generally lack proper documentation of their provenance. So even the most compelling visualizations can be called into question when their coming about remains unclear. The foundations for a vivid exchange and exploitation of open data are set, but the barrier of entry remains relatively high, especially for non-expert users. This thesis aims to lower that barrier by providing tools and assistance, reducing the amount of prior experience and skills required. It covers the whole workflow ranging from identifying proper datasets, over possible transformations, up until the export of the result in the form of suitable visualizations

    Logic and the Foundations of Game and Decision Theory (LOFT 7)

    Get PDF
    This volume collects together revised papers originally presented at the 7th Conference on Logic and the Foundations of Game and Decision Theory (LOFT 2006). LOFT is a key venue for presenting research at the intersection of logic, economics and computer science, and the present collection gives a lively and wide-ranging view of an exciting and rapidly growing area

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book
    corecore