
Yavaa
Supporting Data Workflows from Discovery to Visualization

Dissertation
zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

vorgelegt dem Rat der Fakultät für Mathematik und
Informatik der Friedrich-Schiller-Universität Jena

von
SIRKO SCHINDLER

geboren am 1983-05-04 in Ilmenau, Germany





Gutachter:

1. Prof. Dr. Birgitta König-Ries
Friedrich-Schiller-Universität Jena, 07743 Jena, Germany

2. Prof. Dr. Paul Groth
Universiteit van Amsterdam, 1012 WX Amsterdam, Netherlands

3. Prof. Dr. Axel Polleres
Wirtschaftsuniversität Wien, 1020 Wien, Austria

Tag der öffentlichen Verteidigung: 06. September 2022, Jena

i





DEDICATION

To those that paved the way

and

those that will follow after.

iii





ZUSAMMENFASSUNG

ÜBER die letzten Jahre war zu beobachten, dass immer mehr Datensilos aufgebrochen
werden, um die darin enthaltenen Daten der eigenen Organisation oder sogar der breiten

Öffentlichkeit zur Verfügung zu stellen. Dieser Trend ist dabei nicht auf einzelne, progressive
Bereiche beschränkt, sondern erfährt Unterstützung aus einer breiten Masse an Beteiligten.
Bei diesen setzt sich zunehmend die Erkenntnis über die Vorteile durch, die sich aus der
Bereitstellung und Integration Daten verschiedenster Quellen ergeben: In der Wissenschaft
werden Rohdaten als Teil regulärer Artikel oder sogar als eigenständige Publikationen ver-
öffentlicht. Dadurch können Arbeiten verifiziert werden und es wird anderen möglich diese
weiterzuführen. Regierungen erlassen Gesetze, die vormals interne Datenschätze öffentlich
zugänglich machen. Dies soll sowohl eigene Transparenz fördern als auch den Boden für neue
Geschäftsideen bereiten. Selbst Unternehmen teilen strukturierte Daten über ihre Angebote und
Produkte, um deren Verbreitung zu fördern und so letztlich den eigenen Gewinn zu steigern.

Bevor Nutzer diesen Reichtum an Informationen anzapfen können, gilt es für sie aber noch
einige Herausforderungen zu bewältigen: Daten sind oft nur in Form schier endloser Tabellen
verfügbar, die so für die meisten Menschen kaum handhabbar sind. Zwar kann Informations-
visualisierung hier Abhilfe schaffen, bestehende Systeme sind aber häufig auf eine geringe Zahl
von Visualisierungen beschränkt und lassen Nutzer bei der Auswahl und Nutzung derer weit-
gehend allein. Ähnliches gilt für die Bearbeitung der Daten, wo oft nur sehr wenige Möglichkeiten
angeboten werden, um Datensätze an die eigenen Bedürfnisse anzupassen. Hilfestellungen, um
gängige Fehlerquellen zu vermeiden, sind ebenfalls spärlich gesät. Die Situation wird weiter
erschwert, sollten die gewünschten Daten über mehrere Anbieter verteilt sein. Erst kürzlich
wurden Werkzeuge verfügbar, die sinnvoll auch über die Grenzen einzelner Anbieter hinweg
nach Daten suchen lassen. Einfache Wege diese Datensätze auch miteinander zu verknüpfen
fehlen allerdings weiterhin. Selbst wenn schlussendlich alle diese Hürden überwunden wurden,
fehlen den Ergebnissen meist Informationen zu Herkunft und Bearbeitung. Ohne diese werden
aber selbst ansonsten überzeugende Visualisierungen schnell in Zweifel gezogen.

Die Voraussetzungen für lebendigen Austausch und Nutzung von offenen Daten sind also
vorhanden. Die Zugangshürden bleiben aber gerade für Nutzer ohne einen entsprechenden
Hintergrund unverhältnismäßig hoch. Das Ziel dieser Arbeit ist es diese Hemmnisse abzubauen.
Durch geeignete Werkzeuge und Hilfestellungen soll das Maß an notwendigen Vorkenntnissen
und Fähigkeiten soweit reduziert werden, dass einer breiteren Öffentlichkeit ein einfacher
Zugang zu bereits verfügbaren Daten ermöglicht wird. Die Arbeit umfasst dabei den gesamten
Prozess beginnend bei der Identifikation passender Datensätze, über notwendige Anpassungen,
bis hin zur Erstellung geeigneter Visualisierungen. Die wesentlichen Beiträge können dabei wie
folgt zusammengefasst werden:

v



• Semantisches Metadatenmodell zur Beschreibung tabellarischer Daten. Bestehende
Ontologien zu Metadaten tabellarischer Datensätze wurden erweitert, um eine
Beschreibung der Primärdaten zu ermöglichen. Dadurch können einzelne Spalten bspw.
mit einem Wertebereich oder einem semantischen Konzept näher beschrieben werden.
Weiterhin lassen sich, so notwendig, Informationen zu verwendeten Codelisten oder
Maßeinheiten für eine korrekte Interpretation der Inhalte hinterlegen.

• Kombination von Datensätzen. Neben herkömmlichen Stichwortsuchen lassen sich
Anfragen auch als strukturelle Beschreibung des gewünschten Datensatzes formulieren.
Ergebnisse breschränken sich hierbei nicht auf einzelne Datensätze, sondern umfassen ggf.
auch die Kombination mehrerer Datensätze. Dabei enthalten sie nicht nur die benötigten
Datensätze sondern auch Anweisungen, wie diese durch Verkettungen von Union-, Join-,
Filter- und Aggregationsschritten umzusetzen sind.

• Konsistente Operationen. Während der Ausführung von Operationen, insbesondere direkt
von Nutzern formulierter Anweisungen, wird die Konsistenz der Ergebnisse sicher gestellt.
Ein Schwerpunkt liegt dabei auf Maßeinheiten, die auch ohne weitere Nutzerinteraktionen
stets korrekt angewendet werden, was u.U. auch automatische Umrechnungen mit
einschließt. Sollten mehrere Umrechnungen in einer Anweisung nötig werden, so wird
diese im Hinblick auf eine Minimierung der notwendigen Umrechnungen umstrukturiert.
Dies beschleunigt die Ausführung und erhöht die numerische Stabilität der Ergebnisse.

• Empfehlung von Visualisierungen. Auf Basis des aktuellen Datensatzes werden geeignete
Visualisierungen vorgeschlagen. Selbige sind anhand ihrer Anforderungen an
zugrunde liegende Datensätze beschrieben, was u.a. die Anzahl der Spalten bzw. deren
Datentyp und Rolle einschließt. Statt statischer Grenzwerte werden hierbei Funktionen
genutzt, die den Übergang zwischen erlaubten und nicht unterstützen Werten beschreiben.
Falls keine Visualisierung für den gesamten Datensatz verfügbar sein sollte, werden auch
Empfehlungen gemacht, die Veränderungen am Datensatz selbst enthalten.

• Sammeln von Provenienzinformationen. Alle Schritte, die zur Erstellung eines Daten-
satzes oder einer Visualisierung beitragen, werden automatisch erfasst. Dies ermöglicht
es einerseits die Herkunft eines spezifischen Ergebnisses zu dokumentieren, um dessen
Glaubwürdigkeit zu steigern. Andererseits lässt sich damit der entsprechende Prozess
auch auf aktualisierten Daten erneut ausführen. Das zugrunde liegende Modell sammelt
Informationen auf Ebene einzelner Spalten, um so eine Balance zwischen Kompaktheit
und Ausdrucksmächtigkeit zu finden.

Die Machbarkeit der vorgeschlagenen Konzepte und Algorithmen wurde anhand einer
prototypischen Umsetzung, Yavaa, demonstriert. Diese stellt eine einheitliche Oberfläche zur
Verfügung, die Nutzer unabhängig ihrer Vorkenntnisse auf dem Weg vom Finden passender
Datensätze bis zur Erstellung passender Visualisierungen begleitet. Auf Basis der von
Eurostat [web1] angebotenen Datensätzen wurde daraufhin eine Nutzerstudie durchgeführt. Die
Ergebnisse belegen den Mehrwerts eines solchen integrierten Systems. Im Vergleich zu anderen
Systemen, konnte hier nicht nur die Nutzererfahrung sondern auch die Qualität der erstellten
Ergebnisse verbessert werden. Die Dissertation schließt mit einer Zusammenfassung und dem
Ausblick auf mögliche Fortführungen der hier vorgestellten Konzepte.

vi



ABSTRACT

RECENT years have witnessed an increasing number of data silos being opened up both within
organizations and to the general public. This trend is not limited to some progressive niches,

but a great variety of actors embraces the chances arising from sharing and integrating data:
Scientists publish their raw data as supplements to articles or even standalone artifacts to enable
others to verify and extend their work. Governments pass laws to open up formerly protected data
treasures to improve accountability and transparency as well as to enable new business ideas
based on this public good. Even companies share structured information about their products
and services to advertise their use and thus increase revenue.

Exploiting this wealth of information holds many challenges for users, though. Oftentimes
data is provided as tables whose sheer endless rows of daunting numbers are barely accessible to
most humans. Information Visualization can mitigate this gap. However, offered visualization
options are generally very limited and next to no support is given in applying any of them. The
same holds true for data wrangling. Only very few options to adjust the data to the current
needs and barely any protection are in place to prevent even the most obvious mistakes. When it
comes to data from multiple providers, the situation gets even bleaker. Only very recently tools
became available to search for datasets across institutional borders reasonably. Easy-to-use ways
to combine these datasets are still missing, though. Finally, even if all obstacles can be overcome,
results generally lack proper documentation of their provenance. So even the most compelling
visualizations can be called into question when their coming about remains unclear.

As outlined in the previous paragraphs, the foundations for a vivid exchange and exploitation
of open data are set, but the barrier of entry remains relatively high, especially for non-expert
users. This thesis aims to lower that barrier by providing tools and assistance, reducing the
amount of prior experience and skills required. It covers the whole workflow ranging from
identifying proper datasets, over possible transformations, up until the export of the result in the
form of suitable visualizations. The main contributions can be summarized as follows:

• Semantic metadata description for tabular data. Existing ontologies for metadata of (not
only) tabular datasets have been extended to account for details on the primary data
included. In particular, this allows augmenting individual columns, among other properties,
with a concept to describe their contents and a range of values. Further if applicable, a link
to the corresponding codelist for abbreviations or the unit of measurement used is attached
to interpret the provided values correctly.

• Dataset combinations. Going beyond mere keyword search, queries can be posed as struc-
tural descriptions of a target dataset. Queries will be answered not necessarily from a
single dataset but might involve the combination of multiple ones. Combinations include
not only the datasets required but consist of instructions on how these datasets have to be
integrated by use of possible union-, join-, filter-, and aggregate-operations.

vii



• Consistency of operations. Throughout operations triggered, especially, those authored
directly by a human user, the consistency of the resulting datasets is ensured. In particular,
unit consistency will be maintained without further user intervention required. If any
conversion becomes necessary during an operation, it will be applied automatically. Further,
if multiple conversions are required due to more complex formulae, the respective formulae
will be restructured to minimize conversions applied and thus to improve the accuracy of
results as well as overall performance.

• Visualization recommendation. Suitable visualizations will be proposed based on a given
dataset’s characteristics. Visualizations are described by constraints on possible input
datasets, such as the number of columns or their datatype and role. Instead of using fixed
thresholds to separate matching inputs from unsuitable ones, this relies on transition
functions to provide a range of accepted values. Further, recommendations may include
suggestions for modified versions of the given dataset if no suitable visualization can be
found that encompasses the dataset as a whole.

• Provenance tracking. All actions involved in creating a dataset or its visualization will
be recorded automatically. On the one hand, this provenance information documents the
origins for a specific result and thus may support its credibility. On the other hand, it can
re-execute the respective workflow with possibly updated data later on. The underlying
provenance model is able to capture relationships on a per column level in order to balance
between conciseness and descriptivity needed.

The feasibility of these proposed approaches and algorithms has been demonstrated in a
prototypical implementation: Yavaa. It provides a uniform interface to support non-expert users
in their way from fetching datasets to match their task up until displaying them using proper
visualizations. Using this prototype and the data offerings of Eurostat [web1], a user study has
been conducted. Its results support the claim that such an integrated system spanning the whole
workflow and including proper recommender systems improves the user experience and quality
of created visualizations compared to commonly used applications. The thesis concludes with a
summary and an outlook of future research directions to extend the proposed concepts.

viii



ACKNOWLEDGMENTS

Over the course of my PhD work, many people have accompanied me on my path and supported
the thesis – be it directly or indirectly. Completing such a task would not have been possible
without their assistance, encouragement, and, more often than not, patience. I want to thank all
of them for their continuous support.

First and foremost, I am grateful to Prof. Dr. Birgitta König-Ries, who supervised the thesis.
She provided me with the opportunity and has been a constant source of inspiration and feedback
ever since. In numerous discussions, she challenged my assumptions, supported my ideas, or
pointed out new directions – whatever was needed at the time. Above all, I want to thank her for
her almost stoic patience throughout all the delays throughout the thesis work.

I would also like to thank Manfred Hauswirth, who made my stay in Galway possible and
planted the seeds that grew into this thesis. My thanks also go to Prof. Dr. Paul Groth and Prof.
Dr. Axel Polleres, who agreed to serve as external reviewers. I appreciate them taking the time to
assess this thesis despite their numerous other responsibilities.

I also owe gratitude to all the colleagues that were a part of the Fusion group during my
time there. Alsayed, Andreas, Andreas, Carola, David, Elli, Fedor, Frank, Felicitas, Franziska,
Friederike, Jan Martin, Javad, Jesus, Jitendra, Kob, Leila, Martin, Michael, Nora, Roman,
Samira, Sheeba, Steffen, Sven, and many more - you all create the great environment that Fusion
is. Special thanks go to Jan Martin Keil with whom I had the pleasure to dive deep into the abyss
of unit ontologies – the ever longer answer to “what would you suggest?”

Further, I want to thank all the students I had the pleasure of working with either during
courses or their theses. Not least because of teaching and explaining, you truly understand the
ins and outs of your domain. There is no such thing as a stupid question; sometimes asking is the
best way of finding gaps and inspiring new directions. In particular, I want to thank Maximilian
Stiede, who improved the (meta)data collection required for the evaluation. Similarly, I want to
thank Markus Steinberg for his participation in the journey through units and quantities.

The final study would never have been possible with Christoph Bergmann and Christian
Streubel. Their feedback and pedantry on the prototype pushed it to the play where it is now.
Thanks also have to go to all the survey participants, who contributed their time and effort during
the early time of a global pandemic.

Last but not least, I am in great debt to my family and friends. They have unconditionally
supported me over many (and even more) years. You enabled this long journey! Even though
some may have doubted, this thesis has finally been finished.

ix





EHRENWÖRTLICHE ERKLÄRUNG

Hiermit erkläre ich,

• dass mir die Promotionsordnung der Fakultät bekannt ist,

• dass ich die Dissertation selbst angefertigt habe, keine Textabschnitte oder
Ergebnisse eines Dritten oder eigenen Prüfungsarbeiten ohne Kennzeichnung
übernommen und alle von mir benutzten Hilfsmittel, persönliche Mitteilungen
und Quellen in meiner Arbeit angegeben habe,

• dass ich die Hilfe eines Promotionsberaters nicht in Anspruch genommen habe
und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von
mir für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der
vorgelegten Dissertation stehen,

• dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche oder
andere wissenschaftliche Prüfung eingereicht habe.

Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des
Manuskripts haben mich folgende Personen unterstützt:

• Prof. Dr. Birgitta König-Ries

Ich habe die gleiche, eine in wesentlichen Teilen ähnliche bzw. eine andere
Abhandlung bereits bei einer anderen Hochschule als Dissertation eingereicht:
Ja / Nein.

Jena, 17. Oktober 2022
[ Sirko Schindler ]

xi





TABLE OF CONTENTS

Table of Contents 1

I Prolog 7

1 Overview 9

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Requirements 19

2.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Common Strategies 27

3.1 Eurostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Spreadsheet Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Google Fusion Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Tableau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Jupyter Notebooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Taverna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 VisTrails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1



TABLE OF CONTENTS

II Dialog 59

4 Approach 61
4.1 Overall System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Provenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Final Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Datamodel - Data Types 71
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Datamodel - Tables 77
6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Visualization Description 87
7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 Dataset Description 111
8.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9 Handling of units 129
9.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.3.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.3.3 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

2



TABLE OF CONTENTS

10 Dataset combinations 153

10.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

10.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.3.1 Searching dataset descriptions . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.3.2 Ranking Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

10.3.3 Splitting Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.3.4 Assembling Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

10.3.5 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

10.3.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

11 Selection of Visualization 185

11.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

11.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

11.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

11.3.1 Weighted Bipartite Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 202

11.3.2 Scoring Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

11.3.3 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

11.3.4 Special Case: Nested Visualizations . . . . . . . . . . . . . . . . . . . . . . 209

11.3.5 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

11.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

12 Provenance Management 213

12.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

12.1.1 Database Provenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

12.1.2 Script Provenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

12.1.3 Documenting Provenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

12.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

12.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

3



TABLE OF CONTENTS

IIIGenesis & Analysis 233

13 Implementation 235

13.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

13.2 Data Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

13.3 Computation Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

13.3.1 Simple Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

13.3.2 Aggregations and Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . 244

13.3.3 Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

13.4 Unit Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

13.5 Graphical Workflow Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

13.6 Communication Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

13.7 Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

13.8 Provenance and Reenactment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

13.9 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

13.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

14 Evaluation 271

14.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

14.2 User Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

14.3 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

14.4 Technical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

14.4.1 Search Strategies Performance . . . . . . . . . . . . . . . . . . . . . . . . . 298

14.4.2 Compute Engine Performance . . . . . . . . . . . . . . . . . . . . . . . . . 299

4



TABLE OF CONTENTS

IV Epilogue 303

15 Retrospective 305

16 Conclusion 313

17 Future Work 315
17.1 Conceptual Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

17.2 Software Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

List of Tables 323

List of Figures 325

List of Code-listings 331

Bibliography 333
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Web Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Dataset Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Author’s Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Appendices 375

A RDF Namespaces 377

B Testing Software for Unit-Support 379

C Added Units and Dimensions 387

D Yavaa: List of Supported Messages 391

E Formula Parsing Grammar 399

F Supported Visualizations 401

G User Evaluation 403

H Yavaa User Interface 417

5





Part I

Prolog

7





C
H

A
P

T
E

R

1
OVERVIEW

In his 1886 novel Fathers and Sons [1], Turgenev wrote: “The drawing shows me at one glance

what might be spread over ten pages in a book.”1 Those “ten pages” might not be enough to

cover even a tiny fraction of the data available today, but the key message has lost none of its

relevance. Encoding intractable, barely accessible datasets in concise, easily understandable

graphic representations is still considered the prime solution to communicating complex ideas

and relations. The systematic study of designing and creating useful graphs is the main topic

of Information Visualization (InfoVis). Its origins can be traced back at least 150 years to the

works of Snow [2] and Minard [3]. More formally, InfoVis “is the static or dynamic presentation

of information in an external representation such that the information can be processed by

efficient human visual mechanisms. [...] The key idea of information visualization is to make use

of people’s powerful visual system to efficiently process information that otherwise requires more

cognitive effort” [4]. At the crossroads of computer science, graphics, behavioral sciences, and

cognitive science, the focus is on visual representations and interaction patterns that aid the

understanding of abstract data2.

The importance of InfoVis becomes even more apparent in the face of the wealth of information

that is constantly published. The current situation of the information landscape is driven by at

least two different factors: First, the volume of data being created is increasing at an ever-growing

rate [7]. This is not only caused by the increasing capabilities of employed hardware [8], but

also by the prevalence of digitization of more and more processes [9]. Second, this growth is not

confined to a specific area but can be seen across almost all aspects of human life. An easily

1The more recent and commonly referred to proverb reads, “a picture is worth a thousand words.”
2In contrast, Scientific Visualization (SciVis) is based on datasets with a given spatial structure like wind flows or

medical examinations. However, the exact border between both areas, if it exists at all, is subject to extensive
discussions [5, 6].

9



CHAPTER 1. OVERVIEW

Data Visual Form

Data
Pool

Raw
Data

Data
Tables

Visual
Structures Views Resource

Task

Data
Retrieval

Data
Transformations

Visual
Mappings

View
Transformations

Result
Publication

Human Interactions

Data Pool: varying content
Raw Data: idiosyncratic formats
Data Tables: relations (cases by variables) + metadata
Visual Structures: spatial substrates + marks + graphical properties
Views: graphical parameters (position, scaling, clipping, ...)

Figure 1.1: Visualization Reference Model (extended from [19]).

observable witness to this trend is the number of publicly available datasets from sources as

diverse as Open Government Initiatives [10, 11, 12], science [13, 14], or businesses [web2, web3].

In some areas like public administration, access to documents and thus data is even mandated by

international conventions like the Tromsø Convention [15]. This publicly available data can only

give a glimpse of what is created and processed within closed systems, though. Nevertheless, the

core challenge remains the same in all scenarios: how can this wealth of data and information be

made accessible to humans – be it the general public or a restricted audience?

The selection of a fitting visualization is but the final step in a more extensive workflow in

order to communicate one’s ideas. The overall process starts far earlier, as depicted in Figure 1.1.

It begins with a task or idea that should be conveyed with the final result [16]. This is followed

by multiple steps of data preparation. In particular, it involves a data retrieval step to acquire

the required raw data out of the available data pool. This source is then subjected to a series of

data transformations that harmonize its structures and possibly add new, derived information

to it. The resulting so-called data tables form the input to visual mappings creating the visual

structures of a visualization. If the respective environment permits it — e.g., the visualization is

presented in the context of an interactive website —, users may apply view transformations to

adapt the visualization to their specific need. The control elements for these views oftentimes

follow established interaction paradigms like Shneiderman’s “overview first, zoom and filter,

then details-on-demand” [17] or so-called Magic Lenses [18]. Regardless of whether the visual-

ization is interactive or not, a static snapshot may be exported. This snapshot can then be used

independently of the previously used tools as a resource to support the initial idea.

10



For a novice user, each of these steps bears its own perils3. After conceiving the idea about

a visualization project, acquiring appropriate data oftentimes proves to be the first obstacle

[22]. With the shift towards publishing data, also the number of providers of data has increased

tremendously [14]. There are some, mostly domain-specific efforts to provide an aggregated

catalog of datasets like GFBio for the (German) biological and environmental research community

[web4] or data.gov.uk for governmental data from the United Kingdom [web5]. The overall

landscape for structured data on the web still seems rather fragmented, though. This situation

resembles the state of the conventional world wide web in its early years, before the advent of

search engines. In the meantime, products like Bing [web6], Baidu [web7], or Google [web8]

have established themselves as the main portals to the general-purpose world wide web, offering

information access with little previous knowledge required. However, applying their techniques to

dataset retrieval does not yield the same effect. Search strategies for structured data differ from

conventional search requests and support for their particular requirements is currently limited in

traditional search engines [23, 24]. Apart from queries that target metadata descriptions, there is

also a need to query the contents of a dataset, its primary data. In particular, users are interested

in its spatial and temporal extent but also in the range of other covered values. Recent efforts like

Google’s Dataset Search [25] attempt to address this discrepancy but still focus on datasets as a

whole and do not allow for effective search within the primary data. Other approaches index the

entire table’s content, applying techniques from document-retrieval [26, 27]. However, such an

approach neglect most of the table’s inner structure. This loses not only the connection between

different fields of individual tuples but is also limited to categorical columns omitting all numeric

ones.

Another issue in dataset retrieval can be caused by differences in the terminology used to

describe a dataset or its contents. Knowing the domain and the dataset, data curators might use

different terms in the description compared to data consumers who might be less familiar with the

overall topic. This Semantic Gap [28] can greatly diminish search results when those are retrieved

by a plain keyword-based algorithm. Other approaches make use of the Semantic Web [29] and

knowledge graphs [30] to exploit connections between different terms, thus creating a semantic(ly

enhanced) search [31]. Here, the Semantic Web Graph is mostly used in one of two ways: On

the one hand, the graph can be used to either support the construction of a search request (e.g.,

[32, 33]) or extend the original search request by including synonyms, hyponyms, or hypernyms,

so-called query expansion (e.g., [34, 35]). These approaches can be used on top of keyword-based

technology stacks and thus require fewer changes to an existing search infrastructure. On the

other hand, search can be viewed as finding connected subgraphs connecting nodes matching

the search request with nodes that represent the search results (e.g., [36, 37]). Common to many

approaches is the fact that they almost exclusively focus on metadata descriptions of the datasets

3For a broader overview of challenges in using Open Government Data, kindly refer to [20, 21].

11

data.gov.uk


CHAPTER 1. OVERVIEW

and omit their primary data4. Again, a common understanding between data producers and

consumers is needed to a certain degree — this time not about the common use of terms, but about

what is considered useful metadata and as such should be included in a dataset’s description.

Once one or multiple suitable datasets are identified, the next step is to import them into

the tool of choice for further processing. The basic problem at this point seems to be widely

solved: Most commonly used tools support a wide range of file formats5 and thus are applicable

to many datasets. However, while adhering to common file formats some, data providers choose

file structures that are not commonly supported. Instead of a plain table format, a pivot-table

structure was chosen, e.g., at Eurostat [web1]. Converting pivot tables to flat table structures is

rarely supported by popular spreadsheet software and thus impedes the use of these datasets. For

similar reasons, web services of any kind (e.g., [web13] or [web14]) are exempted from support in

many tools. The variety in possible data structures returned by these services can not be tackled

by a one-size-fits-all solution. Then again, removing all these potential data sources from the

available data pool severely limits the range of possible analysis tasks.

After the dataset is imported into the tool of choice, users can freely engage with its contents

beyond the available metadata information6. However, many data providers make extensive

use of abbreviations throughout their datasets that might not be easily understandable to the

uninitiated. Consider the example of the European Nomenclature of territorial units for statistics

(NUTS) [41], which provides the codes for geographical regions in Eurostat’s datasets [web1]. The

codes for countries are rather understandable, as they are modeled after the respective countries’

names and are oftentimes similar to other standards such as ISO 3166-1 [42]: FR for France or

ES for Spain (Span. España). For further subdivisions, this system switches to a more abstract

scheme using alpha-numeric suffixes to the respective country code. This results in codes like

BG412 for Bulgaria’s capital Sofia or PL71 for the Polish region of Lódzkie. For novice users,

these codes are barely accessible and are not usable without proper code lists.

A similar discrepancy in terminologies can become apparent when working with datasets by

multiple providers. For different historical or legal reasons, these providers adhere to different

standards to encode their data values. Continuing the previous example of codifying geographical

regions, the National Institute of Standards and Technology (NIST) recommends the usage of the

ISO 3166-2 [43] since 2008 [web15]. Here, the respective codes for some countries’ subdivisions

4There are approaches like the RDF Data Cube Vocabulary [web9] that model entire datasets – both metadata as
well as primary data – in terms of a semantic graph. However, due to the overhead introduced by RDF models
[web10], this does not scale for materialized storage. Ontology-Based Data Access (OBDA) [38] techniques can
offer a solution to this, however, at the cost of limiting the semantic expressiveness of the models used.

5Notable exceptions can be found among XML [web11] or JSON-based [39] file formats. For example, SDMX [40,
web12] is an XML-based format commonly used in governmental statistics. It features a multidimensional data
model, which differs from the two-dimensional table layout that is usually supported. Consequently, additional
transformations would be required to translate between the data models. These transformations and the of-
tentimes rather specialized application area of these formats most likely prevented their support beyond their
traditional ecosystem.

6While some providers offer some means to interact with primary data, this is oftentimes limited to a very narrow set
of operations. Thus, for a fully interactive exploration and interaction with primary data, other tools are required.

12



might look similar to NUTS at a first glance. However, a closer inspection reveals that the

assignments differ substantially: Sofia is represented by BG-22, while Lódzkie is assigned the

code PL-10. With no general adoption of a single standard in sight, these differences in value

encoding can severely hamper data integration. Oftentimes, there is no reference mapping

between such encoding standards available, so users are left to manually map data entries to

each other. Besides being a rather tedious and error-prone task, this does also not scale beyond a

very limited number of data entries.

Available data is rarely in the form needed for a specific task. More often than not, users have

to apply multiple transformations before they can achieve their actual goal – a process called

data wrangling [44] similar to “Extract, Transform, Load” (ETL)-tasks in Data Warehousing

[45]. Besides the union- and join-operations used in the aforementioned data integration, this

also includes filtering the data by certain criteria or applying computations based on existing

columns. On a technical level, these operations are supported by most tools. However, ensuring

the consistency of these operations is left up to users. A significant source of errors is the handling

of units of measurement, in particular when integrating data from different providers. Here,

mistakes are often hard to spot and can slip by unnoticed. Nevertheless, the omission of a crucial

unit conversion can substantially alter the result [46, 47] or lead to catastrophic failure [48].

At some point, the dataset is ready and prepared: all relevant data is assembled, necessary

computations have been carried out, and superfluous parts have been removed. Now the decision

has to be made among a variety of available visualizations [web16]. All of them differ in their

technical requirements like number and type of columns in the dataset [49, 50] as well as the

type of message they are meant to convey [51, 52]. As the number of possible choices is huge,

most applications choose one of two strategies: A simplistic approach might restrict the selection

of visualizations offered. Popular spreadsheet software like LibreOffice [web17] serves as an

example here by offering just eight different visualizations to choose from [web18]. On the other

end of the spectrum, tools allow users to create basically every possible visualization imaginable

provided a sufficient level of expertise [web19, web20]. No matter the approach, most tools offer

little if any assistance in selecting a fitting visualization for the dataset at hand or mapping

columns to visual artifacts. Users have to rely solely on their own expertise, which might fail

them at times [web21]. This also extends to interactive visualizations, where there is no support

but individual users’ experience on what interactions patterns exist and can be applied to the

chosen visualization type.

An often neglected but nevertheless vital part of any data-driven workflow is the documen-

tation of individual steps, also called provenance or lineage of the final data product. At a time

when the validity of statements is more and more questioned [53] and rumors spread quickly

regardless of their veracity [54], the ability to trace back to the origins of a visualization or dataset

is essential in (re-)establishing trust. Instead of relying exclusively on the assurances of the data

product’s creator, everybody can verify all sources the methodology applied to the raw datasets for

13



CHAPTER 1. OVERVIEW

themselves. Furthermore, a detailed provenance record can be used to reenact the workflow and

(hopefully) reproduce the results. In particular, in many branches of science, this can contribute

to fighting the so called “reproducibility crisis” [55, 56, 57]. Again, tool support for keeping track

of changes is generally lacking. Standard spreadsheet software offers no means of capturing

provenance information beyond the undo/redo-functionality. However, even this information is

oftentimes lost once the respective tool is restarted. The use of scripting languages provides some

improvements: If the whole workflow was performed using the same language, there is at least a

chronological record of applied modifications. But as source datasets are oftentimes downloaded

separately, their sources are not part of that script and, hence, its provenance record. Although

scripting languages provide some kind of data provenance, this approach also lacks compatibility

to established standards like W3C’s PROV suite [web22] that enable analyses beyond the scope

of a single environment.

The previous discussion indicates that many basic components for the visualization workflow

presented in Figure 1.1 are present. If supported, they are scattered over multiple tools, though.

For decent results, quite a lot of expertise in a diverse range of areas is required. Besides the

usage of the respective tools, this includes knowing where to find appropriate data, how to

consistently transform it to the desired form, and which visualization suites the respective data

and message. For novice users, each of these challenges can prove to be quite a barrier. Even

if they can master the technical requirements, plenty of possible pitfalls remain on their way

between idea and final visualization.

14



1.1 Objectives

The previous section outlined key challenges users have to face when preparing a visualization to

support their storytelling. This thesis contributes to enabling novice and intermediate users to

overcome these challenges and create meaningful visualizations. The very same techniques can

also help advanced users to reduce time spent on repetitive steps and allow them to concentrate

on the creative parts of their tasks. Hence, the main objective of this thesis can be stated as

follows.

Objective 1. (Thesis objective) Development of a unified platform to
support visualization workflows from start to finish.
The platform has to support at least the following steps: data retrieval, data

transformation, visual mapping, and provenance tracking. All steps have to

be accessible through a single, unified user interface that allows novice and

intermediate users to access all functionalities with little to no prior expertise

in visualization workflows.

However, unified access to all functionality alone does not necessarily enable inexperienced

users to create suitable visualizations. As established before, at several stages of the workflow,

users require a certain level of expertise to produce meaningful results. However, this knowledge

can not be assumed for all users and is, in particular, lacking for novice users who, by definition,

have next to no prior experience with common best practices. Hence, the developed platform also

has to establish means to support users at critical stages in visualization workflows by either

providing suitable recommendations or highlighting (and thus preventing) potential errors. This

leads to the following additional set of objectives.

Objective 2. Development of integrated search and data access
capabilities to query and aggregate over multiple, heterogeneous data
providers.
Heterogeneity across datasets andor data providers – e.g., concerning file

formats, file structure, or terminology – has to be harmonized transparently

to users. If an information request can only be fulfilled by using multiple

datasets, their integration has to be performed in a semi-automatic fashion.



CHAPTER 1. OVERVIEW

Objective 3. Development of techniques to ensure the validity of data
transformations.
During data transformations, the system has to ensure the consistency of

the derived dataset. If users trigger an operation that would violate given

consistency constraints, the system should try to fix the issue. If an automatic

correction is not possible, it has to reject the execution of said operation and

issue a corresponding error to the user.

Objective 4. Development of a recommender to suggest suitable
visualizations and visual mappings for given datasets.
The system has to determine applicable visualizations for a given dataset

and rank them according to their suitability. Upon user selection of a suitable

visualization, the system has to suggest possible mappings of data columns to

visual artifacts taking into account their respective characteristics.

Objective 5. Consistent tracking of provenance over the entire data
visualization life-cycle.
The provenance and dependencies of all applied operations starting with data

retrieval and up to the creation of the final visualization product have to

be tracked consistently. Users have to be provided the option to export this

historical data in a standards-compliant way.

When applied to the entirety of possible visualizations and types of data, these objectives go

beyond the scope of just a single thesis. So within the presented work, certain restrictions are

placed on the considered inputs and outputs that the developed platform is able to cope with. It

only covers tabular data and InfoVis-related visualizations. In particular, this excludes any kind

of multimedia data like images or videos as or within datasets. Similarly, most visualizations that

are commonly attributed to SciVis are out of scope, including, e.g., any kind of isosurface-plots or

3D-renderings. While not discussed explicitly, some of the presented concepts may be transferred

beyond the scope, though. However, this extension of concepts is left for future work.

16



1.2 Thesis Structure

This thesis is structured into four parts: Prolog, Dialog, Genesis & Analysis, and Epilogue.

They reflect the split into prior considerations, conceptual contributions, evaluation through a

prototypical implementation, and final considerations.

Part I continues to lay the basis for the presented efforts. In Chapter 2 the previously outlined

objectives are translated into functional and non-functional requirements to guide the remainder

of the thesis. Subsequently, in Chapter 3, common strategies to create visualizations are discussed

and evaluated.

Part II contains the conceptual contributions of this thesis as well as necessary background

knowledge. Chapter 4 outlines the overall approach taken and thus motivates later discussions.

This is followed by foundational aspects, namely data types in Chapter 5 and data models for

tabular data in Chapter 6. Having laid this groundwork, data models to describe visualizations

and datasets are proposed in Chapter 7 and Chapter 8, respectively. Chapter 9 provides the means

to consistently and efficiently handle units of measurement across computations. Chapter 10

introduces an approach to fulfill search requests by combining multiple datasets. Chapter 11

presents a framework to recommend visualizations for a given dataset and rank them according

to their suitability. Finally, Chapter 12 concludes the conceptual aspects with a provenance model

to capture all activities throughout the proposed workflow.

Part III is dedicated to applying the proposed concepts and assess them in different scenarios.

Chapter 13 introduces the corresponding implementation, Yavaa, and reviews major decisions

throughout its development. This prototype is then subjected to the evaluation discussed in

Chapter 14, covering both a user study as well as performance benchmarks of the developed

implementation.

The final Part IV closes the thesis. Chapter 15 revisits the contributions of this thesis in the

light of the initially posed objectives and requirements, including a discussion of limitations in

the proposed approach. Chapter 16 summarizes the thesis, before in Chapter 17 possible future

directions are put forward that allow to continue and extend the work presented here.





C
H

A
P

T
E

R

2
REQUIREMENTS

Having previously outlined current challenges in common visualization workflows, now the

requirements they impose upon possible solutions shall be considered. The discussion of functional

requirements will follow the general order of steps given in the reference model of Figure 1.1.

The derived requirements will be used across multiple sections of this thesis: Existing solutions

will be reviewed in Chapter 3 in light of these requirements. The design of the proposed system

described in Chapter 4 and the subsequent chapters will be guided by the goals established here.

Finally, the prototypical implementation will be evaluated in Chapter 14, before Chapter 15 will

revisit the requirements posed here to judge the outcome of this thesis.

2.1 Functional Requirements

Dataset portals are just about as numerous as data providers [14]. From a user perspective

finding the proper portal is almost as difficult a task as identifying the actual dataset [23]. So it

is essential that search capabilities are not restricted to a single data provider but can integrate

multiple ones in a one-stop portal. But merely making the datasets available through a single

interface is not sufficient. As terminologies used oftentimes vary between providers [58], these

differences also have to be mediated to provide a truly integrated search.

Requirement 1. Search across Providers
The system has to provide a unified search interface across different data

providers. This also includes a translation of provided inputs into the idioms

used by the respective providers.

19



CHAPTER 2. REQUIREMENTS

Users’ information needs are ultimately served predominantly from the primary data. Yet,

traditional search systems often focus on a select few metadata fields like title and (human-

readable) description [59]. Sometimes users can place restrictions on the spatial or temporal

extent of their search, but most other primary data characteristics remain hidden [24, 58, 60].

For an effective result-driven search, users have to be able to place constraints on all primary

data variables [23]. Instead of having to manually inspect candidate datasets as returned by a

keyword-based search, users should be able to define relevant constraints as part of the search

query and thus increase the task-oriented precision of returned results.

Requirement 2. Search in Primary Data
The system has to support the definition of constraints on the primary data

as part of search requests.

Only a few visualization tasks can be served from a single dataset. More often than not,

multiple datasets, possibly from different providers, need to be combined [61, 62, 63, 64]. The

system should acknowledge this fact and also consider combinations of multiple datasets in order

to fulfill a certain request. Proposed combinations have to be valid, i.e., proper join-conditions

among the involved datasets have to exist, such that the result meets the posed requirements.

Requirement 3. Search by Combination
If a given search request can only be fulfilled by using multiple datasets, this

combination has to be suggested as a possible result.

As the system has most likely already established the required join-conditions for a combined

result, it is redundant for users to repeat this task when selecting this result. Upon user request,

the system should automatically materialize the proposed combination result. User interaction

should be limited to ambiguous cases like deciding on required aggregation functions when

multiple meaningful options exist.

Requirement 4. Materialize Combination-Results
If a search result was given as the combination of multiple datasets, means

have to be provided to materialize this combination.

Not limited to automatic combinations of datasets but also affecting manual joins are the

vocabularies used to encode the primary data. If two datasets are combined that use different

vocabularies for the same concepts, the system has to automatically harmonize occurring terms

and present a consistent result to its users [65, 66]. Besides accelerating the overall process, this

can also prevent errors in the results, e.g., when the same or similar abbreviations represent

different concepts in different vocabularies.

20



2.1. FUNCTIONAL REQUIREMENTS

Requirement 5. Mediate Abbreviations
Heterogeneous abbreviation schemes possibly in use by the involved data

providers have to be harmonized transparently for users.

Another consequence of Requirement 4 is that the system has to be able to take care of any

heterogeneity pertaining to the storage of data [66]. In particular, structures and formats used by

specific providers have to be transparently aligned to enable a seamless integration into a single

dataset as the basis for further operations.

Requirement 6. Support Heterogeneous File Formats
When loading primary data, the system has to support the consumption of

multiple, heterogeneous file formats transparently to users.

Requirement 7. Support Heterogeneous Dataset Structures
When loading primary data, the system has to be able to automatically har-

monize different data structures for further processing.

The vocabularies used by providers to encode their primary data can be arbitrarily abstract.

The target audience most likely is not familiar with the intricacies of each and every scheme in

use [67]. The system has to translate the used abbreviations wherever possible to terms users

are familiar with [65]. This only pertains to the presentation to users and does not have to extend

to an internal representation, which may remain unchanged.

Requirement 8. Translate Abbreviations
Encoding schemata in use by the different providers have to be consistently

translated into human-readable labels.

InfoVis is an inherently iterative process [19]: Data is prepared and visualized. Upon in-

spection of the visualization, further adjustments to the underlying data may become necessary,

triggering another cycle of modifications. The system has to support such iterations by providing

means to actively transform the data to get it into a suitable shape. In order for the process to be

truly interactive, the results of all modifications have to become immediately visible to users.

Requirement 9. Allow for Modification of Data
The system has to allow users to adapt datasets to their current needs by, e.g,

filtering, aggregating, or adding new columns derived from given formulae.

21



CHAPTER 2. REQUIREMENTS

Requirement 10. Provide Immediate Feedback on Operations
The results of applied operations have to be apparent to users without unnec-

essary delays.

Data modifications are a primary source of errors not only in visualization workflows but in

any data-driven process (e.g., [68, 69, 70]). During any data modification, the system has to check

operations’ validity, or critical errors might inadvertently find their way into the analysis. Here,

it does not matter whether this operation was triggered directly by the user or is the consequence

of some automated process like the aforementioned combination of datasets. In case a possible

error is detected, the system should attempt to automatically remedy the situation and apply a

proper compensatory actions. Only if this is not possible should the operation be canceled and

users be presented with the respective error.

Requirement 11. Ensure Validity of Operations
During both system-initiated as well as user-driven modifications of the

datasets, the system has to ensure the validity of operations. Possible errors

have to be transparently corrected. Only if this can not be achieved shall users

have to intervene.

Given the plethora of available visualizations, users may easily get overwhelmed with their

choices [71, 72]. However, not all visualization will be equally suitable for the current dataset. For

example, some might not even be applicable as the number and types of variables in the dataset

does not fit the requirements of the visualization. The system has to account for the current

dataset and only recommend visualizations that can be generated from the current dataset.

Requirement 12. Recommend Visualizations
The system has to provide recommendations for meaningful visualizations

given a certain dataset.

In general, for a selected visualization, there are also several possible configurations that de-

termine how the tuples of a dataset are converted into visual artifacts. However, this configuration-

space is subject to certain restrictions, as, e.g., not every variable can be translated into every

characteristic of the visual artifacts. Disregarding these restrictions either consciously or acci-

dentally can lead to misleading visualizations [73]. The system has to provide guidance on how

to translate the given dataset’s variables into visual artifacts of a selected visualization.

Requirement 13. Recommend Variable to Artifact Mappings
The system has to provide recommendations for a meaningful translation

from the current dataset and into the selected, applicable visualization.

22



2.1. FUNCTIONAL REQUIREMENTS

For a unified platform, merely recommending visualizations and mappings is not enough.

The system also has to be able to execute those recommendations and create the respective

visualizations. Users should only be required to select and, if necessary, adjust the declarative

definition of said visualization.

Requirement 14. Materialize Visualizations
The system has to be able to create visualizations based only on declarative

definitions provided by users.

There are plenty of steps involved in creating a visualization, with the final visualization

allowing for only limited assumptions about the process. In order to trace back the origins of a

visualization, the system has to record all data sources involved as well as the operations applied

to them. The entirety of those records then constitutes the provenance record for the visualization.

Adequate provenance records for a visualization form the basis for reproducing it if needed [55]

and enable tracking down possible errors in both analysis and data sources [74].

Requirement 15. Track Provenance
Each operation that alters a dataset has to induce an entry into the prove-

nance record of this dataset. The corresponding entry has to include all set-

tings that affected the respective operation, including at least inputs, outputs,

and any parameters necessary.

Provenance records in and of themselves are rather technical constructs and barely accessible

for most human users. On the other hand, visual representations such as workflow graphs have

emerged as a comparatively accessible way to inspect dependencies among and the order of

operations. To ease user access to the provenance record of a given visualization, the system has

to provide a visual representation of that record, e.g., in the form of a workflow graph.

Requirement 16. Visualize Provenance Records
The accumulated provenance records for the current dataset have to be pre-

sented visually to users. This representation has to include at least the applied

operations, their logical order, and their respective inputs and outputs.

Attesting to the validity of a visualization within the tool that created it is of only limited use

in the communication with others. Visualization pipelines have become an integral part of the

scientific process like analysis pipelines before [74]. As a means to maintain, share, and reuse

visualization pipelines, a standards-based exchange of provenance records is required.

23



CHAPTER 2. REQUIREMENTS

Requirement 17. Share Provenance Records
The system has to provide the means to export the complete provenance

record for a given workflow in a standardized format consumable by other

applications.

While human inspection is one use case for provenance tracking, another is given by the

reenactment of the respective workflow. While, in general, there is the distinction in repeating,

replicating, or reproducing the original workflow [web23, 75], a single system will first have to

focus on the former two1. To achieve replication of a previous result, the system has to be able to

consume a previously exported provenance record and execute the workflow described within.

The result should then resemble the original visualization or datasets. This will hold true only

under the assumption that the data sources did not change since the original execution. However,

those aspects are beyond the control of the described system.

Requirement 18. Allow for Reenactment of Workflows
Based on a previously exported provenance record and under the assumption

that the data sources did not change in the meanwhile, the system has to be

able to execute a previous workflow with the same results.

2.2 Non-Functional Requirements

As outlined by Objective 1, the main audience of the proposed system are users with no or only

limited experience in visualization workflows. Particularly in those scenarios, the usability of the

provided functions is of greater concern than their range. Hence, any system primarily catering

to non-expert users has to ensure that all functionalities are easily accessible.

Requirement 19. Usability
The system has to be accessible for novice to intermediate users.

Like many other domains also the areas touched by the described system are in constant flux.

In order for a system to stand the test of time, it has to be retrofitted with new components on a

regular basis to follow current trends. Two areas, namely visualizations as well as file format and

structure adapters, are particularly crucial in this regard. The system has to allow to develop

and integrate new components in those areas with only reasonable efforts required.

1The definitions of [web23, 75] require a different experimental setup for reproducing a workflow. In a strict interpre-
tation this requires a second, independent system with a comparable feature set.

24



2.3. SUMMARY

Requirement 20. Extensibility
The system has to be structured in a way that allows to easily add new com-

ponents for critical areas. In particular, this includes adding data providers,

data wrappers, and visualizations.

2.3 Summary

Table 2.1 summarizes the set objectives and lists the requirements derived from them. The thesis

objective, Objective 1, is not listed separately but assumed to be the underlying motivation to all

requirements. The last two non-functional requirements arise directly from the thesis objective

and from common best practices in developing user-facing software.

Primary
Objective Requirement

2: Support of
Multiple Providers

1: Search across Providers
2: Search in Primary Data
3: Search by Combination
4: Materialize Combination-Results
5: Mediate Abbreviations
6: Support Heterogeneous File Formats
7: Support Heterogeneous Dataset Structures

3: Validity of
Data Transformations

8: Translate Abbreviations
9: Allow for Modification of Data
10: Provide Immediate Feedback on Operations
11: Ensure Validity of Operations

4: Visualization
Recommendations

12: Recommend Visualizations
13: Recommend Variable to Artifact Mappings
14: Materialize Visualizations

5: Provenance
Tracking

15: Track Provenance
16: Visualize Provenance Records
17: Share Provenance Records
18: Allow for Reenactment of Workflows

19: Usability
20: Extensibility

Table 2.1: Summary of objectives and requirements.

25





C
H

A
P

T
E

R

3
COMMON STRATEGIES

The need for visualization arises in a wide range of areas, be it as a means of analysis, communi-

cation, or any other purpose. Consequently, the solutions developed so far differ just as much. In

an attempt to outline the current landscape, this chapter will describe several commonly used

approaches that shall serve as representative examples for their respective domain. Naturally,

such an overview will need to make a selection among the myriads of available tools and systems.

One could argue that one system or the other should also be included. The choice presented here

was made to highlight the different environments, assumptions, and solutions present without

letting the list grow too far. Another factor for the selection is the amount of information that

is publicly available and illustrates a system’s inner workings. After describing the approaches

individually, all of them will be evaluated along the criteria previously established in Chapter 2.

The approaches presented in the following are loosely ordered by the efforts required before

using them. This is determined not solely by expertise needed but also by whether there is

software to be installed locally instead of using a ready-made web interface. The descriptions

will start with Eurostat [web1] to outline the capabilities provided by many data portals. This is

followed by LibreOffice Calc [web17] as a prototypical spreadsheet software. Next, a web-based,

specialized data integration and visualization tool is given in Google Fusion Tables [web24].

Business Intelligence (BI) software is generally used to analyze the data holdings of companies

and support their business decisions. Tableau [web25] will be discussed as an example here. On

the border between scripting and tools providing a graphical user interface lie Jupyter Notebooks

[web26], which are described afterward. Finally, scientific workflow management tools will be

illustrated by means of a general one, Taverna [web27], as well as one specifically targeted at

visualizations, VisTrails [web28].

27



CHAPTER 3. COMMON STRATEGIES

Your key to European statistics

|

Legal notice | Cookies | Links |  My alerts | Contact  

Sign In Register

English

Type a keyword, a publication title, a dataset title...   

News Data Publications About Eurostat Help

European Commission Eurostat Da… Database







DATABASE

Information

Browse statistics by theme

Statistics A - Z

Experimental statistics

Bulk download

Web Services

SDMX Web Services

Json and Unicode Web Services

Access to microdata

GISCO:Geographical Information
and maps

Metadata

COVID-19: support for
statisticians

ESS Reference Metadata
Reporting Standards

Classifications

Code lists

Legislation and methodology 

Concepts and definitions 

National metadata 

SDMX InfoSpace

Data validation

DATA COVID-19

 Data navigation tree

 Database by themes

 General and regional statistics

 Economy and finance

 National accounts (ESA 2010) (na10) 

 Annual national accounts (nama10)

 Main GDP aggregates (nama_10_ma)

 GDP and main components (output, expenditure and income) (nama_10_gdp) 

 Final consumption aggregates by durability (nama_10_fcs) 

 Exports and imports by Member States of the EU/third countries (nama_10_exi) 

 Auxiliary indicators (population, GDP per capita and productivity) (nama_10_aux)


Basic breakdowns of main GDP aggregates and employment (by industry and by assets)
(nama_10_bbr)

 Detailed breakdowns of main GDP aggregates (by industry and consumption purpose) (nama_10_dbr)

 Breakdowns of non-financial assets by type, industry and sector (nama_10_nfa)

 Regional economic accounts (nama_10reg) 

 Quarterly national accounts (namq_10)

 Supply, use and Input-output tables (naio_10) 

 Annual sector accounts (ESA 2010) (nasa_10)

 Quarterly sector accounts (ESA 2010) (nasq_10)

 National accounts - international data cooperation (naid_10) 

 Government statistics (gov)

 Exchange rates (ert)

 Interest rates (irt)

 Prices (prc)

 Balance of payments - International transactions (bop) 

 Balance of payments - International transactions (BPM6) (bop_6) 

 Population and social conditions

 Industry, trade and services

 Agriculture, forestry and fisheries

 International trade in goods

 Transport

 Environment and energy

 Science, technology, digital society

 Tables by themes

 General and regional statistics

 Economy and finance

 Population and social conditions

 Industry, trade and services

 Agriculture, forestry and fisheries

 International trade in goods

 Transport

 Environment and energy

 Science, technology, digital society

 Tables on EU policy

  Macroeconomic imbalance procedure indicators

  Euro indicators / PEEIs 

  Europe 2020 indicators

  Circular economy indicators

  Sustainable development indicators

  Employment and social policy indicators

  European pillar of social rights (EPSR)

DATABASE

Figure 3.1: Eurostat: Catalog-based search interface (screenshot from [web1]).

3.1 Eurostat

As part of its operations, Eurostat offers data holdings and other publications via a web-based,

multi-lingual (English, German, French) interface [web1]. The data offered contains statistical

information about various socio-economic indicators with a focus on the European Union but also

including other selected countries and regions. Eurostat offers free reuse for its data, including

potential commercial uses [web29]. Primary data is organized into tables, each focusing on a

single measurement and having at least two dimensions. The default two dimensions common to

all tables are geo and time for the geopolitical entity the measurement refers to and the period

of time, respectively. In addition, other dimensions might be covered, including, e.g., the unit of

measurement, classification (e.g., age cohorts), or different variations of the respective indicator

(e.g., unadjusted vs. seasonally adjusted data).

There are arguably three different ways to search for suitable datasets. First, the bulk

download facility [web30] is geared towards automated access. It offers the raw data as well

as metadata in a mere file listing labeled by the respective dataset code. In addition, there are

files providing a table of contents, including the time of the last update for a specific dataset.

These tables of content are published in the same three languages as the portal and in a

machine-readable XML file. Finally, code lists are provided to map between used code-entries

and human-readable labels.

28



3.1. EUROSTAT

Your key to European statistics

|

Legal notice | Cookies | Links |  My alerts | Contact  

Sign In Register

English

News Data Publications About Eurostat Help

European Commission Eurostat Search

sheep



343

168

19

18

8

6

5

181

147

97

51

31

17

15

9

3

2

1

36

31

12

14

24

Filter by:

Search term: sheep

Theme

Agriculture, forestry and
fisheries

General and regional statistics

Environment and energy

Economy and finance

Population and social conditions

Transport

Industry, trade and services

Collection

Statistics in Focus

Statistical books/Pocketbooks

Dataset

Manuals and guidelines

Compact guides and
catalogues

Euro indicators

Statistical working papers

Eurostat News

Data in focus

Dedicated sections

Call for tenders and grants

Publication date

2021

2020

2019

2018

2017

18 more...

   554 results

Dataset [Database], Product code: apro_mt_lssheep, updated on 10-May-2021 , Theme: Agriculture, forestry and
fisheries

Match found in position: "Live animals > Live sheep"

Geopolitical entity (reporting): Multiple  Unit of measure: Thousand heads (animals)  Month: Multiple

Time frequency: Annual  Live animals: Multiple

Dataset [Database], Product code: ef_lsk_sheep, updated on 21-Feb-2020 , Theme: Agriculture, forestry and
fisheries

Match found in position: "Live animals > Live sheep"

Geopolitical entity (reporting): Multiple  Number of heads: Multiple  Unit of measure: Multiple  Land cover: Multiple

Time frequency: Annual  Standardoutput in Euros: Multiple  Agricultural area: Multiple  Live animals: Multiple

Dataset [Tables], Product code: tag00017, updated on 10-May-2021 , Theme: Agriculture, forestry and fisheries

Match found in position: "Live animals > Live sheep"

Number of sheep (over 500,000) from the November/December survey

Geopolitical entity (reporting): Multiple  Unit of measure: Thousand heads (animals)  Month: December

Time frequency: Annual  Live animals: Live sheep

Dataset [Tables], Product code: tag00045, updated on 10-May-2021 , Theme: Agriculture, forestry and fisheries

Match found in position: "Meat product > Meat of sheep and goats"

This indicator covers the carcass weight of sheep, including lambs, and goats slaughtered in slaughterhouses or
elsewhere whose meat is declared fit for human consumption.

Geopolitical entity (reporting): Multiple  Item of meat: Slaughterings  Unit of measure: Thousand tonnes

Meat product: Meat of sheep and goats  Time frequency: Annual

Dataset [Tables], Product code: tag00069, updated on 16-Apr-2021 , Theme: Agriculture, forestry and fisheries

Match found in position: "Animal products > Sheep - prices per 100 kg live weight"

The absolute prices in this table give information on the levels of the producer prices of the product. Prices are
net of VAT.

Geopolitical entity (reporting): Multiple  Animal products: Sheep - prices per 100 kg live we...  Time frequency: Annual

Currency: Euro

Dataset [Database], Product code: ef_lssheep, updated on 16-Jan-2017 , Theme: Agriculture, forestry and
fisheries

Match found in position: "Eurofarm indicators > head: Sheep - total"

Geopolitical entity (reporting): Multiple  Number of heads: Multiple  Eurofarm indicators: Multiple

Time frequency: Annual  Agricultural area: Multiple

Sort by: Relevancy  Subscribe 

Sheep population - annual data       

Sheep by NUTS 2 regions       

Number of sheep    

Production of meat: sheep and goats    

Selling prices of sheep    

Sheep: number of farms and heads and fodder crops by agricultural
size of farm (UAA) and size of sheep flock

      

Sheep       

  

Figure 3.2: Eurostat: Keyword-based search interface.

The two other search facilities are targeted to human consumption: a catalog-based (cf.

Figure 3.1) and a keyword-based search (cf. Figure 3.2). The catalog interface provides various

multi-level classifications of datasets that can be traversed via a tree-like menu. On the other

hand, the keyword-based interface provides a full-text search based on titles and descriptions but

apparently omitting other metadata fields as well as the primary data. Once an initial search has

been executed, the results can further be filtered using three different facets: Theme, Collection,

and Publication date. As the keyword-based search also extends to non-dataset resources, one can

restrict the search using the Collection-facet and exclude resources like news entries or manuals.

Once a proper dataset has been identified, it can be downloaded for local analysis but also

immediately accessed through Eurostat’s Data Browser1 (cf. Figure 3.3). It consists of three

sections: The topmost section includes the general metadata like title, description, and time of the

last update. The center section offers means of interaction, as discussed in the following. Finally,

the lower section shows the current representation of the data. In general, data can either be

shown in a tabular format or using one of three visualizations: line chart, bar chart, or map.

By default, the center interaction area provides controls to select a certain subset of the

data. Values are filtered by selecting the requested ones out of a list of all available values

(cf. Figure 3.4). The same interface is also used to select possible values from the time column.

1In addition, there is a second web application called Data Explorer. However, this appears to be a legacy application
offering only a subset of the Data Browser’s functionality and, hence, will be omitted from discussions here.

29



CHAPTER 3. COMMON STRATEGIES

Data Browser
 | Sign in  |

Number of sheep
1 000

online data code: TAG00017   last update: 10/05/2021 23:00     view: FULL

Source of data:  Eurostat ( APRO_MT_LSSHEEP )

Number of sheep (over 500,000) from the November/December survey More ...>

 About this dataset

 Explanatory textsM

Selection  Format   Download  

Column

Time [12/12]



Row

Geopolitical entity (reporting) [43/43]





Time frequency:  Annual Live animals:  Live sheep Month:  December

Unit of measure:  Thousand heads (animals)


Number of sheep  (online data code: TAG00017 )

 Source of data: Eurostat
Settings: Default presentation  

   Table Line Bar Map

TIME

GEO

2009 2010 2011 2012 2013 2014 2015

European Union - 27 countries (from 2020)

European Union - 28 countries (2013-2020)

European Union - 27 countries (2007-2013)

Euro area - 19 countries (from 2015)

Belgium

Bulgaria

Czechia

Denmark

:     :     :     :     62 985.82 (e) :    :     :    

:     :     :     :     86 088.82 (e) :    :     :    

:     :     :     :     85 480.82 (e) :    :     :    

:     :     :     :     :     :    :     :    

:     119.26     0.00     :     117.32 (e) 86.23    :     :    

1 454.62     1 361.55     1 369.58     1 335.28     1 331.89     1 360.09    1 400.25     1 367.99    

:     :     :     :     218.49 (e) :    196.91     :    

:     :     :     :     144.95 (e) :    :     :    



12 values displayed ▼ 43 values displayed ▼

 Info  Help

English EN 

EC data browser (Latest commit 8b0c83fcf, built on 2021-04-06T07:29:48.986Z)

Figure 3.3: Eurostat: Data Browser.

Filters can only be applied to multi-valued dimensions. Measurements as well as single-valued

dimensions (see gray boxes in the center section of Figure 3.3) can not be adjusted. Besides

filtering, multi-valued dimensions can also be assigned to different visual aspects of the current

representations. For example, in the table view, one is able to assign dimensions to be shown in

rows or columns, whereas in the bar chart a similar interface is used to distinguish between x and

y axes. On occasion, dimensions are fixed to a particular aspect, e.g., in the map representation,

the geographical area is bound to visualize the geographic entity referred to in the dataset.

In order to visualize more dimensions, both bar charts as well as maps offer the option to

define one dimension to serve as series. This provides a shortcut to easily switch between different

values of the assigned dimension (cf. bottom row of options in Figure 3.5) instead of adjusting the

filter each time.

Each representation also includes a range of formatting options available once the corre-

sponding representation has been selected (cf. different tabs in the lower section of Figure 3.3).

There is a common set of options across all representations to control, e.g., the display of labels

(cf. Figure 3.6(a)). Additionally, each representation has an individual set of options (cf. Figures

3.6(b) to 3.6(e)), like the sorting of entries in a bar chart or the color scale in a map.

Settings that lead to a particular visualization can be stored and retrieved from the browser’s

local storage or shared via a custom link. Storing settings in local storage is not persistent,

though, and may be removed when clearing the browser’s history. Links, on the other hand,

30



3.1. EUROSTAT

Selection  Format   Download  

X-Axis

Time [12/12]

Series

Geopolitical entity (reporting) [43/43]

43 values displayed, 5 values hi… ▼ 



Time frequency:  Annual Live animals:  Live sheep Month:  December

Unit of measure:  Thousand heads (animals)


Number of sheep  (online data code: TAG00017 )

  Source of data: Eurostat
Settings: Default presentation  

   Table Line Bar Map

5k

10k

15k

20k

25k

12 values displayed ▼

Y Axis zoom level: 1 x   

EC data browser (Latest commit 8b0c83fcf, built on 2021-04-06T07:29:48.986Z)

Highlighted [5] | Selected [43] | Available [43/43] C / L / C+L 

All Aggregates Countries 

Check all Uncheck all Reverse check  Clear

Poland PL

Portugal PT

Romania RO

Slovenia SI

Slovakia SK

Finland FI

Sweden SE

Iceland IS

Liechtenstein LI

Norway NO

Search by label 

Figure 3.4: Eurostat Data Browser: Filter interface.


Number of sheep  (online data code: TAG00017 )   Source of data: Eurostat

Settings: Default presentation  

   Table Line Bar Map

Spain

Romania

Greece

France

Italy

Ireland

Portugal

Serbia

Germany (until 1990 former territory of the…

Bulgaria

Hungary

Netherlands

Croatia

North Macedonia

Austria

Sweden

Lithuania

Latvia

Malta

European Union - 27 countries (from 2020)

European Union - 28 countries (2013-2020)

European Union - 27 countries (2007-2013)

Euro area - 19 countries (from 2015)

B l i

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k 12k 13k 14k

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

First Previous Next Last
Disclaimer

  

EC data browser (Latest commit 8b0c83fcf, built on 2021-04-06T07:29:48.986Z)

Figure 3.5: Eurostat Data Browser: Bar chart visualization.

31



CHAPTER 3. COMMON STRATEGIES

Selection  Format   Download  

General options

   

Table options

   

Time frequency:  Annual Live animals:  Live sheep Month:  December Unit of measure:  Thousand heads (animals)  |  Geopolitical entity (reporting):  (Multiple positions)    Time:  (Multiple positions)

Labelling 

labels

codes

codes and labels

dimension specific 

Decimal symbol 

dot (.)

comma (,)

Thousands symbol 

comma (,)

dot (.)

blank space

none

Flags 

show

hide

Empty Rows 

show

hide

Empty Columns 

show

hide

Data alignment 

right

decimal separator

Data displayed 

selected

EC data browser (Latest commit 8b0c83fcf, built on 2021-04-06T07:29:48.986Z)

(a) General options.

Selection  Format   Download  

General options

   

Table options

   

Time frequency:  Annual Live animals:  Live sheep Month:  December Unit of measure:  Thousand heads (animals)  |  Geopolitical entity (reporting):  (Multiple positions)    Time:  (Multiple positions)

Labelling 

labels

codes

codes and labels

dimension specific 

Decimal symbol 

dot (.)

comma (,)

Thousands symbol 

comma (,)

dot (.)

blank space

none

Flags 

show

hide

Empty Rows 

show

hide

Empty Columns 

show

hide

Data alignment 

right

decimal separator

Data displayed 

selected

EC data browser (Latest commit 8b0c83fcf, built on 2021-04-06T07:29:48.986Z)

(b) Table formatting options.

Selection  Format   Download  

General options

   

Linechart options

     

Time frequency:  Annual Live animals:  Live sheep Month:  December Unit of measure:  Thousand heads (animals)  |  Geopolitical entity (reporting):  (Multiple positions)    Time:  (Multiple positions)

Labelling 

labels

codes

codes and labels

dimension specific 

Decimal symbol 

dot (.)

comma (,)

Thousands symbol 

comma (,)

dot (.)

blank space

none

Flags 

show

hide

Breaks in Time selection 

show

hide

Series markers 

show

hide

Vertical axis (scale) 

start from 0

automatic

Vertical axis (type) 

linear

logarithmic

Data displayed 

highlighted

summary

selected

Show data labels

none

only flags

EC data browser (Latest commit 8b0c83fcf, built on 2021-04-06T07:29:48.986Z)

(c) Line chart formatting options.

Selection  Format   Download  

General options

   

Barchart options

     

  

Time frequency:  Annual Live animals:  Live sheep Month:  December Unit of measure:  Thousand heads (animals)  |  Geopolitical entity (reporting):  (Multiple positions)    Time:  (Multiple positions)

Labelling 

labels

codes

codes and labels

dimension specific 

Decimal symbol 

dot (.)

comma (,)

Thousands symbol 

comma (,)

dot (.)

blank space

none

Flags 

show

hide

Sorting 

none

descending

ascending

Bar orientation 

vertical

horizontal

Data not available (:) 

hide

show

"0" values 

hide

show

Show data 

selected data

complete with previous

Data displayed 

summary

selected

Show data labels

none

highlighted

all

only flags

Colour palette 

default

monocolour

contrasted

EC data browser (Latest commit 8b0c83fcf, built on 2021-04-06T07:29:48.986Z)

(d) Bar chart formatting options.

Selection  Format   Download  

General options

   

Map options

     

Time frequency:  Annual Live animals:  Live sheep Month:  December Unit of measure:  Thousand heads (animals)  |  Geopolitical entity (reporting):  (Multiple positions)    Time:  (Multiple positions)

Labelling 

labels

codes

codes and labels

dimension specific 

Decimal symbol 

dot (.)

comma (,)

Thousands symbol 

comma (,)

dot (.)

blank space

none

Flags 

show

hide

Data presentation 

choropleth

circles

Show data 

selected data

complete with previous

Classification method 

quantile

equal intervals

custom intervals

Amount of classes 

2

3

4

5

6

Colour scale 

default

monocolour

contrasted

Show data labels 

none

flags only

EC data browser (Latest commit 8b0c83fcf, built on 2021-04-06T07:29:48.986Z)

(e) Map formatting options.

Figure 3.6: Eurostat Data Browser: Formatting options.

32



3.2. SPREADSHEET SOFTWARE

encode all settings in a unique identifier and can thus be freely shared with others. The final

representations can also be exported to files. The format depends on the particular representation:

Tabular views can be exported to Excel spreadsheets [web31], SDMX [web12], or TSV [web32].

Visual representations vary in the supported formats but include at least one raster graphic and

one vector-based format each.

3.2 Spreadsheet Software

To many users, spreadsheet software is the first choice when it comes to data-related tasks. As a

consequence, many different variants were created over time ranging from desktop products like

commercial Mircosoft Excel [web31] and open-source Calc [web17] in the Document Foundation’s

LibreOffice suite to web-based tools like Google Sheets [web33]. Despite the differences in existing

implementations, their core functions are similar. Although LibreOffice Calc [web17] in version

6.0 forms the basis for the following discussion, the statements can be generalized to other

spreadsheet software products.

Unlike in other data-related software, spreadsheets do not enforce a strictly tabular structure

on the data. Instead, an (in theory) limitless 2-dimensional grid of cells is used, which is usually

called a sheet. Users can choose which part of this grid to use for their actual data. Oftentimes,

rows and columns are left empty or are used for metadata like headings or descriptions of the

primary data. This approach also allows for multiple tables to be part of the same sheet separated

by empty rows or columns or other markings within the cells in between. The native document

formats like the Office Open XML File Formats [web34] or the Open Document Format [web35]

allow to include multiple sheets within a single file. This allows for even greater flexibility in

storing data using these formats.

The offered flexibility is a double-edged sword. On the one hand, it enables applications

like spreadsheets. Here, user can enter their data in a subset of the cells. The remainder then

performs various computations, including visualizations of the respective data. On the other

hand, automatic processing is hindered. As data may be found anywhere in the spreadsheet in

various forms, automatic extraction into other systems is non-trivial [76, 77].

Derived data is created by setting the content of cells to formulae whose result is then shown

accordingly. These formulae can refer to any other cell within the same file by the use of its

“coordinates.” The coordinates are given by (optionally) the sheet and a combination of column

(via characters) and row (via numbers). Hence, the descriptor $Sheet1!B10 denotes the cell in the

tenth row of the second column in a sheet called Sheet1. Rectangular ranges of cells are defined

by their upper left and lower right corner, whose coordinates are separated by a double colon.

Within a formula, users are able to make use of a plethora of functions, including most common

33



CHAPTER 3. COMMON STRATEGIES

(a) Chart Type. (b) Data Range.

(c) Data Series. (d) Chart Elements.

Figure 3.7: LibreOffice Calc: Chart Wizard.

functions like summation or min/max estimation. To improve usability, formulae’s coordinates

are usually copied relative to the source cell. So if, e.g., a formula references a cell two columns to

the left, but on the same row, this will hold true also for all target cells this formula is copied to.

Joining two tables is also accomplished using a function that performs a lookup in some other

area of the file. Here, two alternatives are offered dependent on the table structure: VLOOKUP

and HLOOKUP. While VLOOKUP assumes rows to form a single tuple, HLOOKUP does the same for

columns. Both functions take four parameters: The first is the value to search for. This can either

be the coordinate of a cell or a regular expression. The second parameter refers to the area (table)

to search in. Here, the first column will be traversed in the search, while all later columns can

be referenced in the third parameter. This third parameter defines the column (VLOOKUP) or row

(HLOOKUP) whose value to take. The respective index is relative to the defined area and not the

whole sheet. The final parameter indicates whether the first column is sorted, which will speed

up the search. Joins on multiple columns are not supported but have to be emulated by first

creating a primary key consisting of just one column and subsequently using that in the lookup.

In general, joins can also be performed across multiple files. As the values of the source cells are

not copied to the target but are just referenced, in this case, a link to the other file is created.

This link can easily be broken if the files are moved or the referenced file is deleted.

For the creation of visualizations, a four-step wizard is provided (cf. Figure 3.7). The first

step allows selecting one of ten general chart types. In the second step, the area is selected that

contains the data to be visualized. The third step allows setting additional parameters. Their

34



3.3. GOOGLE FUSION TABLES

Astraptes fulgerator: demo data
Imported at Thu Mar 01 14:33:02 PST 2012 from astraptes_fulgerator_complex_sample_data (7).cs…  more >>
Dan Janzen & Winnie Hallwachs -  Edited on 2016 January 28

Share

File Edit Tools Help Rows 1 Filtered rows Default Card Custom Card Map of latitude +

No filters applied Not savingFilter

1-87 of 87

herbivore species URL adult URL cp lateral sex host plant species host plant family year voucher date eclosion elevation wingspan (… p

Astraptes SENNOV female Senna hayesiana Fabaceae 2005 05-SRNP-59407 9/11/05 560 60 d

Astraptes INGCUP  Inga sapindoides Fabaceae 2007 07-SRNP-55016 1/29/07 305 59 d

Astraptes FABOV male Senna hayesiana Fabaceae 1980 80-SRNP-202 7/28/80 290 46 d

Astraptes YESENN male Senna hayesiana Fabaceae 1993 93-SRNP-3364 8/13/93 290 44 d

Astraptes SENNOV female Senna hayesiana Fabaceae 2003 03-SRNP-14687 8/15/03 290 58 d

Astraptes SENNOV male Senna hayesiana Fabaceae 1992 92-SRNP-4398 9/8/92 280 57 d

Astraptes FABOV female Centrosema macrocarpum Fabaceae 1993 93-SRNP-7060 11/29/93 280 59 d

Astraptes INGCUP male Inga vera Fabaceae 2002 02-SRNP-32204 11/24/02 155 50 d

Figure 3.8: Google Fusion Tables: Data view using given demo data.

exact extent depends on the chart types selected but commonly includes naming the data series

or assigning a specific color. In the final fourth step, users are able to make some adjustments to

the graph as a whole. This includes adding titles for the graph as well as for the axis or enabling

grid lines to be shown.

3.3 Google Fusion Tables

Google Fusion Tables2 [web24, 78] described itself as “a service for data management, integration

and collaboration.” The system allowed users to upload their data or use previously shared

tables. Data was stored in a cloud-based BigTable [79]. In addition to the primary data, also a

basic set of metadata was maintained. This included the name and description of the respective

table, its schema, and the assigned permissions in form of access control lists. The schema of

the table consisted of column names and their respective types. The type model distinguished

text and numerical columns. Furthermore, there was a detection for geolocation like latitude and

longitude.

Once the data was uploaded, users could inspect it in a tabular layout as shown in Figure 3.8.

Users could create new views on the data using filters. The respective forms here depended on

the selected columns’ types and allow to either include or exclude rows based on specific values.

There was no option to compare values in different columns to one another and all filters were

connected using an AND relation. The results of these filter operations were not materialized but

stored as a view over the original data alongside the respective permissions.

Data could also be augmented using other tables, both user-provided ones as well as those

publicly shared through Google Fusion Tables. To discover matching tables, a function “Find a

table to merge with ...” was provided (cf. Figure 3.11(a)). Although details were not documented,

related data seemed to be found by using a column’s contents. Users selected a single column as

the join condition and the systems searched for tables containing similar values. The results list

also contained information about the coverage, i.e. how many rows did have matching rows in the

2The service was discontinued by the end of 2019 [web36, web37].

35



CHAPTER 3. COMMON STRATEGIES

Astraptes fulgerator: demo data
Imported at Thu Mar 01 14:33:02 PST 2012 from astraptes_fulgerator_complex_sample_data (7).cs…  more >>
Dan Janzen & Winnie Hallwachs -  Edited on 2016 January 28

Share

File Edit Tools Help Rows 1 Filtered rows Default Card Custom Card Map of latitude Map 2 +

No filters applied Saved 87 rowsFilter

Configure map Done

Location  latitude

Feature map

Heatmap

Radius 29

Opacity 80%

Weight  No weighting

Learn more

Kartendaten © 2018 Google10 km 

Figure 3.9: Google Fusion Tables: Map visualization.

Astraptes fulgerator: demo data
Imported at Thu Mar 01 14:33:02 PST 2012 from astraptes_fulgerator_complex_sample_data (7).cs…  more >>
Dan Janzen & Winnie Hallwachs -  Edited on 2016 January 28

Share

File Edit Tools Help Rows 1 Filtered rows Default Card Custom Card Map of latitude Chart 1 +

No filters applied. Summarized by 'herbivore species', sorted by 'herbivore species' Saved 87 rowsFilter

Configure pie chart  Change appearance...  DoneChange tooltip...

Category

herbivore species

Summarize data?  

Value

Count of herbivore species

Sum of elevation

Sort by

herbivore species

Maximum slices

10

reverse

Astraptes CELT
Astraptes FABOV
Astraptes HIHAMP
Astraptes INGCUP
Astraptes LOHAMP
Astraptes LONCHO
Astraptes SENNOV
Astraptes TRIGO
Astraptes YESENN

6.9%

6.9%

19.5%

21.8%

3.4%

9.2%

23%

Figure 3.10: Google Fusion Tables: Chart visualization.

target table. After reviewing matching values (cf. Figure 3.11(b)), users could select the columns

to be added (cf. Figure 3.11(c)). Join-conditions consisted of only one column pair. In addition

to the filter-limitation to single column predicates, this did not allow to use multi-column join

predicates like country and year for some governmental statistics.

Users were also able to visualize the given data. They were able to choose between map-based

visualizations (cf. Figure 3.9) and a set of statistical charts (cf. Figure 3.10). For each visualization

type, the used columns could be selected. Some visualizations also provided basic parameters. In

the heatmap view, e.g., users were able to set a radius and the opacity of the highlighted areas.

Some statistical charts also offered options to aggregate the given data. The graph in Figure 3.10,

e.g., shows the number of rows for the respective species.

Charts and tables created could be shared both within Google Fusion Tables and beyond. For

users that wanted to embed the maps or charts into their websites, a JavaScript snippet was

provided to embed the object in any HTML site. The data itself could also be accessed through

the Fusion Table REST API [web38]. Using that API users were able to programmatically access

all functionalities. In addition to the operations available through the front end, SQL-like queries

could be issued to retrieve and modify the stored data.

36



3.3. GOOGLE FUSION TABLES

Astraptes fulgerator: demo data
Imported at Thu Mar 01 14:33:02 PST 2012 from astraptes_fulgerator_complex_sample_data (7).cs…  more >>
Dan Janzen & Winnie Hallwachs -  Edited on 2016 January 28

Share

File Edit Tools Help Rows 1 Filtered rows Default Card Custom Card Map of latitude +

No filters applied Not savingFilter

1-87 of 87

herbivore species URL adult URL cp lateral sex host plant species host plant family year voucher date eclosion elevation wingspan (… primary eco latitude lo

Astraptes SENNOV female Senna hayesiana Fabaceae 2005 05-SRNP-59407 9/11/05 560 60 dry forest 10.75876 -

Astraptes INGCUP  Inga sapindoides Fabaceae 2007 07-SRNP-55016 1/29/07 305 59 dry forest 10.77175

Astraptes FABOV male Senna hayesiana Fabaceae 1980 80-SRNP-202 7/28/80 290 46 dry forest 10.85145 -

Astraptes YESENN male Senna hayesiana Fabaceae 1993 93-SRNP-3364 8/13/93 290 44 dry forest 10.85145 -

Astraptes SENNOV female Senna hayesiana Fabaceae 2003 03-SRNP-14687 8/15/03 290 58 dry forest 10.85145 -

Astraptes SENNOV male Senna hayesiana Fabaceae 1992 92-SRNP-4398 9/8/92 280 57 dry forest 10.85827 -

Astraptes FABOV female Centrosema macrocarpum Fabaceae 1993 93-SRNP-7060 11/29/93 280 59 dry forest 10.85827 -

Merge: Select a table

Suggest tables matching on  herbivore species

 

Or select a table from Google Drive

Cancel

Haki Fusion view table
150% of rows have a match.
Each match adds about 8 rows.

astraptes_fulgerator_complex_sample_data view table
160% of rows have a match.
Each match adds about 9 rows.

astraptes_fulgerator_complex_sample_data view table
6% of rows have a match.

USM view table
102% of rows have a match.
E h t h dd b t 5

Next

(a) Select a table

Astraptes fulgerator: demo data
Imported at Thu Mar 01 14:33:02 PST 2012 from astraptes_fulgerator_complex_sample_data (7).cs…  more >>
Dan Janzen & Winnie Hallwachs -  Edited on 2016 January 28

Share

File Edit Tools Help Rows 1 Filtered rows Default Card Custom Card Map of latitude +

No filters applied Not savingFilter

1-87 of 87

herbivore species URL adult URL cp lateral sex host plant species host plant family year voucher date eclosion elevation wingspan (… primary eco latitude lo

Astraptes SENNOV female Senna hayesiana Fabaceae 2005 05-SRNP-59407 9/11/05 560 60 dry forest 10.75876 -

Astraptes INGCUP  Inga sapindoides Fabaceae 2007 07-SRNP-55016 1/29/07 305 59 dry forest 10.77175

Astraptes FABOV male Senna hayesiana Fabaceae 1980 80-SRNP-202 7/28/80 290 46 dry forest 10.85145 -

Astraptes YESENN male Senna hayesiana Fabaceae 1993 93-SRNP-3364 8/13/93 290 44 dry forest 10.85145 -

Astraptes SENNOV female Senna hayesiana Fabaceae 2003 03-SRNP-14687 8/15/03 290 58 dry forest 10.85145 -

Astraptes SENNOV male Senna hayesiana Fabaceae 1992 92-SRNP-4398 9/8/92 280 57 dry forest 10.85827 -

Astraptes FABOV female Centrosema macrocarpum Fabaceae 1993 93-SRNP-7060 11/29/93 280 59 dry forest 10.85827 -

Merge: Confirm source of match

This table astraptes_fulgerator_comple…

herbivore species herbivore species

Astraptes SENNOV
Astraptes INGCUP
Astraptes FABOV
Astraptes YESENN
Astraptes SENNOV
Astraptes SENNOV
Astraptes FABOV
Astraptes INGCUP
Astraptes INGCUP
Astraptes INGCUP

Astraptes SENNOV
Astraptes INGCUP
Astraptes FABOV

Matching values in these two columns will create the merged table. Learn more

Cancel Previous  Next

(b) Confirm source of match
Astraptes fulgerator: demo data
Imported at Thu Mar 01 14:33:02 PST 2012 from astraptes_fulgerator_complex_sample_data (7).cs…  more >>
Dan Janzen & Winnie Hallwachs -  Edited on 2016 January 28

Share

File Edit Tools Help Rows 1 Filtered rows Default Card Custom Card Map of latitude +

No filters applied Not savingFilter

1-87 of 87

herbivore species URL adult URL cp lateral sex host plant species host plant family year voucher date eclosion elevation wingspan (… primary eco latitude lo

Astraptes SENNOV female Senna hayesiana Fabaceae 2005 05-SRNP-59407 9/11/05 560 60 dry forest 10.75876 -

Astraptes INGCUP  Inga sapindoides Fabaceae 2007 07-SRNP-55016 1/29/07 305 59 dry forest 10.77175

Astraptes FABOV male Senna hayesiana Fabaceae 1980 80-SRNP-202 7/28/80 290 46 dry forest 10.85145 -

Astraptes YESENN male Senna hayesiana Fabaceae 1993 93-SRNP-3364 8/13/93 290 44 dry forest 10.85145 -

Astraptes SENNOV female Senna hayesiana Fabaceae 2003 03-SRNP-14687 8/15/03 290 58 dry forest 10.85145 -

Astraptes SENNOV male Senna hayesiana Fabaceae 1992 92-SRNP-4398 9/8/92 280 57 dry forest 10.85827 -

Astraptes FABOV female Centrosema macrocarpum Fabaceae 1993 93-SRNP-7060 11/29/93 280 59 dry forest 10.85827 -

Merge: Choose columns

All   

27 columns

Select all none

Cancel Previous  Merge

herbivore species
voucher
URL adult
URL cp lateral
sex
host plant species
host plant family
year
date eclosion
elevation

(c) Choose columns

Figure 3.11: Google Fusion Tables: “Find a table to merge with ...”.

37



CHAPTER 3. COMMON STRATEGIES

Figure 3.12: Tableau: User-created dashboard.

3.4 Tableau

Tableau [web25] is the commercialized successor to Polaris [80]. It allows users to create interac-

tive visualizations from a variety of data sources. The following discussion refers to the online

version of Tableau corresponding to the 10.5 release of the desktop version. At this point only

features from a user perspective are described. Underlying principles and approaches will be the

subject of later discussion within the related work of the conceptual aspects. Example figures

were created from datasets supplied as samples by the software itself.

The general idea for users is to create dashboards that consist of multiple visualizations as

shown in Figure 3.12. It consists of multiple so-called sheets each depicting a particular aspect

of the underlying dataset. In addition, users are able to add static content like headings and

controls to apply additional filters to the data (shown on the lower left-hand side of Figure 3.12).

Upon changing any value within this filter, the visualizations on the dashboard are adapted on

the fly. For this purpose, neither data nor the actual visualization is transferred, but a series of

drawing commands in form of a JSON [39] serialization, which are then executed on the client’s

machine.

To design such dashboards users first have to create a workbook. A workbook represents a

visualization project consisting of multiple datasets and dashboards. The dataset overview is

shown in Figure 3.13. It is possible to upload files in various formats including Excel [web31] and

text-based formats like TSV [web32]. Furthermore, it is possible to establish live connections

to cloud-based databases of various vendors using, e.g., SQL [81]. On-premise databases can be

38



3.4. TABLEAU

Figure 3.13: Tableau: Datasources.

accessed using Tableau Bridge. Data sources included can also be filtered. This will remove a

subset of the rows for all sheets of the workbook. As discussed later, it is also possible to add

filters on a sheet level, which will only not affect any other sheet beside the assigned one.

The interface to create or edit a particular sheet is given in Figure 3.14. In the left column,

the available datasets are listed – in the example, these are “Quota” and “Salesforce”. Below the

datasets, the list of available fields is shown. This list always corresponds to the selected dataset

above and is separated into dimensions, measurements, and parameters along the OLAP naming

conventions [82].

In the second column and the top row, fields are assigned to aspects of the visualization,

which are shown live in the remaining area. The main parts here are “Columns” and “Rows” on

top as well as “Marks” in the second column. Fields can be dragged into any of these shelves. The

“Columns” and “Rows” shelves refer to the horizontal and vertical partitioning of the visualization.

The actual result depends on the current visualization chosen as well as the data types and

order of the respective fields. In the example of Figure 3.14, both fields are numeric and are

mapped to the scales for the x- and y-axis. If, for example, a categorical field is prepended to the

column shelve, the horizontal axis is first split into separate panes according to the values of that

categorical field. Within each pane, the data is filtered according to that value and the resulting

visualization is shown. For more details, see the respective parts of Chapter 7.

In the “Marks” of the interface, fields can be mapped to other aspects of the visualization. From

the drop-down menu, the general mark type of the visualization can be chosen. If the automatic

option is selected, Tableau will determine the shown visualization by the fields assigned to rows

and columns. For example, a date field in columns and a measurement in rows will lead to a line

chart. Other options (cf. Figure 3.16) allow users to explicitly select the mark type. In general,

the mark type directly corresponds to the visualization shown. So, e.g., the mark type “Line”

results in a line graph and the “Bar” type in a variation of a bar chart. Some mark types behave

differently depending on other options set. Per default, a tabular heatmap is shown, if the mark

type “Square” is selected and some measure is assigned to color. Assigning another field to size,

however, changes the visualization to a treemap.

39



CHAPTER 3. COMMON STRATEGIES

Figure 3.14: Tableau: Editing interface.

Additional information can be encoded using the options below the mark type. Some options

are not applicable to all mark types. So, e.g., an area mark type does not allow for additional

information to be encoded in size or a path to be added. Assigning fields to the details type allows

separating marks according to that field. This can, for example, transform a bar chart into a

stacked bar chart including one more dimension. By default, Tableau adds a tooltip to each data

point in the visualization. It shows the values encoded in the graph and, if added, all fields

assigned to the tooltip type. Finally, the path option allows connecting separate marks by a path,

whose order is determined by the assigned field. An example from the Tableau documentation is

the connection of individual measures on a map to show the route hurricanes follow.

Users are also able to define their own calculated fields that depend on the fields as given

by the data sources. To this end, Tableau provides a number of functions spanning standard

operations on numbers, strings, and dates. Some operations like the Pearson correlation can only

be applied to data coming from particular sources. Here, the interface to create such calculated

fields is text-driven as shown in Figure 3.15.

The filter pane allows adding filters on particular fields to just this view. The respective

characteristics of the filter depend on the type it is applied to. Date and number fields allow

defining a range of values to be retained, while for categorical fields the values can be chosen

from a list. In addition to being predefined by the author, filters can also be presented to users.

This allows to interactively explore the underlying data at runtime of the dashboard. Figure 3.14

shows these user-accessible filters on the right-hand side.

40



3.4. TABLEAU

Figure 3.15: Tableau: Calculated fields interface.

Figure 3.16: Tableau: Mark types. Figure 3.17: Tableau: Joining datasets.

When working with multiple datasets in a sheet, the one first added is designated the primary

dataset and highlighted using a blue icon next to the dataset. Other datasets are considered

secondary and have an orange icon (cf. Figure 3.17). Two datasets can be joined by first selecting

a secondary dataset and then choosing the respective fields. Candidate fields for the join are

automatically selected by their respective labels. Figure 3.17 shows the respective dimension list

for “Quota”. In total, four fields have been determined as possible join conditions. In the example,

only one of them, “Close Date”, is active. Field labels can be changed. So if the source datasets do

share values in fields of different labels, these differences can be mitigated. If the values differ,

they can be adjusted by creating a calculated field.

41



CHAPTER 3. COMMON STRATEGIES

3.5 Jupyter Notebooks

Jupyter Notebooks [web26, 83] are a collection of tools to enable so-called computational notebooks.

The underlying ideas can be traced back at least four decades to Knuth who wrote in 1984

[84]: “Instead of imagining that our main task is to instruct a computer what to do, let us

concentrate rather on explaining to human beings what we want the computer to do”. He

implemented that idea into a system called WEB that allowed for extensive documentation of code

using formatted comments within the code itself. Subsequently, code and documentation could

be separated and compiled individually leading to an executable binary as well as a human-

readable document. Computational notebooks extend this approach and allow for intermixing

executable code fragments with text, images, and other media meant for human consumption.

The aforementioned Jupyter Notebooks are one such implementation that is primarily focused on

using Python [web39] as the coding language of choice, but allows for other languages as well3.

The interface of a Jupyter Notebook is implemented as a web application (cf. Figure 3.18). It

is comprised of a number of cells and their corresponding output, if applicable. There are three

types of cells [web40]: First, code cells contain a code fragment to be executed. Once available, the

output of a code cell is shown alongside it. Second, markdown cells contain formatted text, written

in Markdown [web41] and using a few extensions. Markdown cells may also include media files

like images. Finally, raw cells allow adding content that is not processed by the notebook itself.

Code cells are not executed inside the browser but are instead sent to the server4. Here, a

so-called kernel executes the respective fragment and returns the results back to the application.

In general, kernels are wrappers for the language-specific components exposed by a Jupyter

Notebook. Similarly, access to files and the Internet is not run from within the client’s system but

is instead executed on a separate machine running the kernel. In particular, this requires all

datasets and other dependencies to be available on that machine. The order of execution among

the cells is not fixed, so for better or worse users can execute cells in any order.

Through code cells, Jupyter Notebooks offer access to all aspects of the underlying program-

ming language. Consequently, all available libraries of that language can also be used as part of a

notebook’s code. Python’s vivid data science community in particular has developed a broad range

of libraries5 over time that can be used to implement various visualization workflows. An example

is the SciPy ecosystem [web46] that includes some of the most popular Python libraries for data

science applications: NumPy for numeric computations [web47], pandas providing manipulation

and analysis tools [web48], and matplotlib for visualization [web49].

3Its predecessor, IPython [85], used Python exclusively, but support for other languages has been added since [83].
4As of June 2021, JupyterLite has been announced [web43, web44] to remove the dependency on a dedicated server.

Instead, notebooks and all of their contents are to be translated to WebAssembly [web45] and thus can be run
directly in the browser.

5While performance-critical parts are usually developed in languages like C or C++, libraries include Python wrappers
that allow for seamless integration into any Python script.

42



3.5. JUPYTER NOTEBOOKS

Plot the Amplitude Spectral Density (ASD)
Plotting these data in the Fourier domain gives us an idea of the frequency content of the data. A way to visualize the frequency content of the data is to plot the
amplitude spectral density, ASD.

The ASDs are the square root of the power spectral densities (PSDs), which are averages of the square of the fast fourier transforms (FFTs) of the data.

They are an estimate of the "strain-equivalent noise" of the detectors versus frequency, which limit the ability of the detectors to identify GW signals.

They are in units of strain/rt(Hz). So, if you want to know the root-mean-square (rms) strain noise in a frequency band, integrate (sum) the squares of the ASD over
that band, then take the square-root.

There's a signal in these data! For the moment, let's ignore that, and assume it's all noise.

In [8]: make_psds = 1
if make_psds:
    # number of sample for the fast fourier transform:
    NFFT = 4*fs
    Pxx_H1, freqs = mlab.psd(strain_H1, Fs = fs, NFFT = NFFT)
    Pxx_L1, freqs = mlab.psd(strain_L1, Fs = fs, NFFT = NFFT)
 
    # We will use interpolations of the ASDs computed above for whitening:
    psd_H1 = interp1d(freqs, Pxx_H1)
    psd_L1 = interp1d(freqs, Pxx_L1)
 
    # Here is an approximate, smoothed PSD for H1 during O1, with no lines. We'll use it later.    
    Pxx = (1.e-22*(18./(0.1+freqs))**2)**2+0.7e-23**2+((freqs/2000.)*4.e-23)**2
    psd_smooth = interp1d(freqs, Pxx)
 
if make_plots:
    # plot the ASDs, with the template overlaid:
    f_min = 20.
    f_max = 2000. 
    plt.figure(figsize=(10,8))
    plt.loglog(freqs, np.sqrt(Pxx_L1),'g',label='L1 strain')
    plt.loglog(freqs, np.sqrt(Pxx_H1),'r',label='H1 strain')
    plt.loglog(freqs, np.sqrt(Pxx),'k',label='H1 strain, O1 smooth model')
    plt.axis([f_min, f_max, 1e-24, 1e-19])
    plt.grid('on')
    plt.ylabel('ASD (strain/rtHz)')
    plt.xlabel('Freq (Hz)')
    plt.legend(loc='upper center')
    plt.title('Advanced LIGO strain data near '+eventname)
    plt.savefig(eventname+'_ASDs.'+plottype)

index (autosaved) Visit repo Copy Binder link

Python 3  Not Connected Not TrustedFile Edit View Insert Cell Kernel Widgets Help

Markdown        Run      Download    GitHub  Binder

Figure 3.18: Jupyter Notebook: Interface (example from [86, web42]).

43



CHAPTER 3. COMMON STRATEGIES

1 {
"nbformat" : 4 ,
"nbformat_minor" : 1 ,

4 "metadata" : {
"kernelspec" : {

"display_name" : "Python 3" ,
7 "language" : "python" ,

"name" : "python3"

} ,
10 "language_info" : {

"name" : "python" ,
"version" : "3.6.0"

13 } ,
/* ... */

} ,
16 "cells" : [

/* ... */

]
19 }

Listing 3.1: Structure of ipynb: Top level structure (extracted from [web42]).

{
2 {

"cell_type" : "markdown" ,
"metadata" : { } ,

5 "source" : [ /* ... */ ]
} ,
{

8 "cell_type" : "code" ,
"execution_count" : 1 ,
"metadata" : {

11 "collapsed" : true
} ,
"outputs" : [ ] ,

14 "source" : [ /* ... */ ]
} ,
/* ... */

17 }

Listing 3.2: Structure of ipynb: Cell level structure (extracted from [web42]).

Jupyter Notebooks are stored in form of ipynb files which are in essence a JSON-encoded

description of a notebook [web50]. Listing 3.1 illustrates the top-level structure of such files.

Besides fields to specify the standard’s version used, the data content is divided into metadata

and cell description. According to [web50], all metadata fields are optional and may be ignored.

Additionally, any extension may add new metadata fields as it sees fit. The content of the

actual notebook is defined by the sequence of cells. In general, cells consist of a type, metadata

information, their source, and possibly their output (cf. Listing 3.2). Outputs in turn are given by

their mime-type and a base64-encoded representation of their content.

44



3.6. TAVERNA

Besides using Jupyter Notebooks as a tool (e.g., [86, 87, 88]), scientific interest up to now

focused on two areas: extending notebooks with additional ways to interact with data (e.g., [89,

90]) and viewing notebooks as means of reproducible science (e.g., [91, 92]). While notebooks

allow capturing the steps leading to a particular result, they do not capture discarded attempts

during their development or other aspects of retrospective provenance (cf. Chapter 12). Initially

developed for purely script-based environments, noWorkflow was ported to Jupyter Notebooks

and allows capturing detailed operating-system-level provenance6 [91]. Similarly, ProvBook

tracks the provenance of a notebook on the level of the notebook itself, i.e. it captures executions

of cells together with the current source code, start and end time, and the corresponding output

[92]. Both systems allow inspecting the collected provenance data through the notebook itself,

with ProvBook also offering means to compare between different runs of a single cell.

Computational notebooks promised to add both reproducibility and a narrative to analysis

workflows. Studies on their real-world use indicate that this promise has not yet been fulfilled,

though [93, 94]. From a sample of about 1.1m notebooks gathered from Github [web51], only

about 25% could be executed at all [93]. The most prominent reason for failing to execute a

notebook was found to be missing dependencies or an unknown version thereof. Another study

focused, among other aspects, on interviews with academic scholars using Jupyter Notebooks [94].

Many of the scholars displayed difficulties providing proper narratives for their notebooks. In

particular, the lack of interest on behalf of collaborators did not incentivize proper explanations.

Furthermore, real-world notebooks were characterized as messy and in need of “polishing” before

being published and distributed beyond personal use.

3.6 Taverna

Under the umbrella of the myGrid project [95, web52], a number of tools are developed to help

scientists in their daily work with in-silico experiments7. The project originates in Bioinformatics,

where there is a rather large base of web services providing different functionalities. Due to the

lack of proper tools, most scientists used these services either manually by copying the outputs

of one service to the inputs of another or they wrote specialized scripts to handle this. One of

the tools developed is the Taverna workflow suite [web27, 96], which provides a common model

for workflows and means for sharing and reusing them across the borders of individual working

groups.

On October 20th, 2010, Taverna became an Apache Software Foundation [web53] Incubator

project [web54]. The Incubator project was announced to be retired on February 20, 2020, so no

further development under the umbrella of the Apache Software Foundation is expected. There

6For more details on noWorkflow, kindly refer to Chapter 12.
7The term in silico refers to experiments conducted in form of a computer simulation of some sort. It contrasts

the terms in vivo and in vitro which refer to experiments or observations of living organisms or components of
organisms respectively.

45



CHAPTER 3. COMMON STRATEGIES

have been releases on a set of core libraries of Taverna including a command-line client (version

3.1.0-incubating as of June 30, 2016 [web55]), the server (version 3.1.0-incubating as of January

18, 2018 [web56]), and the workflow specification language SCUFL28 (version 0.15.1-incubating

as of March 3, 2016 [web57]), but there has been no comprehensive release of the Taverna suite

during the lifetime of the Incubator project. Consequently, the following discussion will mostly

refer to the pre-Apache-era release.

The Taverna workflow model is focused on processors and data links [98]. A workflow specifies

input and output ports, which represent the necessary inputs (files, databases, user input, etc.) for

this workflow to be executed as well as the generated output(s). Each port is uniquely identified

by a combination of the workflow name and a name for the specific port9. Processors represent

software components, which can either be called as web-services or are present locally in form of

scripts. Similar to their respective counterparts in the workflow definition, inputs and outputs

of processors are also mapped via ports. As the general interface of workflows and processors is

compatible, one can also use pre-existing workflows as part of a new workflow definition. Taverna

offers a collection of predefined processors like reading from or writing to files or connecting to a

database. Furthermore, there is a tight integration of web-service registries like BioCatalogue

[99, web58], which is also a myGrid project.

The connections between processors are given by data-links, which connect an output with an

input port using receivesFrom and sendsTo properties. In addition, there are so-called “control

links”. Control links allow delaying the execution of a processor until a certain condition is met.

One use case mentioned is waiting for asynchronous operations like writing to a database before

proceeding with the workflow execution [web59].

An example of a workflow defined using the Taverna Workbench is shown in Figure 3.19. The

workflow [web60] takes a list of NCBI [web61] gene identifiers and returns the information about

them stored in the KEGG database [100]. Figure 3.19(a) shows the design perspective, which

lets users edit their workflows. The upper left part offers options to add new processors to the

workflow. The lower left and right parts represent the current workflow. There is both a visual

graph representation as well as a tree view, which orders the elements by their respective types.

After executing the workflow, one can inspect the results in the result perspective, which is

shown in Figure 3.19(b). The upper left part now offers references to previous runs. In the upper

right part within the graph representation of the workflow users may select specific components

(in the example the add_ncbi_to_string processor is selected). Upon selection, the lower part

8Simple Conceptual Unified Flow Language [97].
9To be exact, each workflow will have an identifier in the Taverna namespace http://ns.taverna.org.uk/

2010/researchObject/[uuid]/workflow/[workflowName]/ with [uuid] and [workflowName] replaced with
the respective workflow’s information. Accordingly ports identifiers are given by the template workflow/

[workflowName]/[portType]/[portName], where [portType] is either in or out. Processor identifiers are
build in a similar manner using the template workflow/[workflowName]/processor/[processorName]/ and
the same extension for ports.

46

http://ns.taverna.org.uk/2010/researchObject/[uuid]/workflow/[workflowName]/
http://ns.taverna.org.uk/2010/researchObject/[uuid]/workflow/[workflowName]/
workflow/[workflowName]/[portType]/[portName]
workflow/[workflowName]/[portType]/[portName]
workflow/[workflowName]/processor/[processorName]/


3.7. VISTRAILS

of the perspective allows users to review input (red triangle) as well as output (green triangle)

parameters of this component. That way in case of errors in the execution users can track down

the failing component.

Once a workflow is created, it can either be executed locally using Taverna Workbench (cf.

Figure 3.19(b)) or remotely using Taverna Server. While in version one of Taverna there had to

be a centralized enactment controller, version two dropped this requirement. Each processor is

mapped to an object, which starts its processing in a separate thread as soon as data on all input

ports is available [98].

Once a workflow is executed, its progression can be observed (cf. Figure 3.19(b)). This includes

inspecting all input and output values as well as any intermediate results created. One is also

able to export the data concerning a specific run into a so-called provenance bundle. This bundle

includes a number of files describing

• input, output, and intermediate results as text files,

• the executed workflow as a SCUFL2 [web62] bundle, and

• provenance information about the particular run using a PROV-O dialect [101] (cf. Subsec-

tion 12.1.3) in form of a Turtle file [web63].

The PROV-O description of the workflow run connects all stored result text files as part of the

workflow with the processors that created them. Furthermore, it keeps track of the execution

times of processors and stores hashes for all result files.

The SCUFL2 [web62] description is stored as an RDF/XML file [web64]. This ontology closely

models Taverna’s view on workflows as it contains processor and data-link definitions as well as

input and output ports for both the workflow and the included processors. Other processor-specific

information like required parameters are stored separately per processor in so-called annotation

files. In a mailing list entry [web65] Stian Soiland-Reyes, one of the Taverna authors, states that

“SCUFL2 is not meant as a generic workflow language, but as a way to generalize the Taverna

workflow model” and points towards [98] for further explanation.

3.7 VisTrails

VisTrails [web28, 102] is a scientific workflow management system with an emphasis on workflow

provenance. It keeps track of the whole process which leads to a final workflow. This includes

branches that resulted in dead ends as well as the eventual “successful” paths. This results in

provenance information about the workflow itself in contrast to most other approaches, which

just collect provenance information about the execution of a workflow and its respective results.

To separate this from other kinds of provenance, this information is called workflow provenance

or workflow evolution [103].

47



CHAPTER 3. COMMON STRATEGIES

(a) Design Perspective

(b) Result Perspective

Figure 3.19: Taverna Workbench: Perspectives for an example workflow [web60].

48



3.7. VISTRAILS

vtkRendererOutput

vtkRenderer

vtkCamera

vtkImageMapToColors
vtkPolyDataNormals

vtkLookupTable

vtkStripper

vtkDataSetReader

vtkContourFilter

vtkActor

vtkPolyDataMapper

vtkProperty

vtkProbeFilter

vtkDataSetReader

DownloadFile

DownloadFile

(a) Pipeline.

vtkDataSetReader

vtkProbeFilter

vtkProperty

vtkPolyDataMapper

vtkActor

vtkContourFilter

vtkDataSetReader

vtkStripper

vtkLookupTable

vtkPolyDataNormals
vtkImageMapToColors

HTTPFile

HTTPFile

vtkRenderer

VTKCell

vtkCamera

(b) Execution provenance.

(c) Generated output.

color 2

contour 3

color 1 color 3

opacity

contour 4

brain

contour 1 contour 2

(d) History of workflow evolution.

Figure 3.20: VisTrails: Example workflow
(generated using “brain_vistrail.vt” example bundled with VisTrails).

Another feature is the separation between workflow generation and execution. That way

VisTrails opens the possibility of automatic workflow generation by scripts and exploring the

parameter space by multiple batch executions of the same workflow using different parameter

sets. Figure 3.20 shows the main parts of the VisTrails user interface: A pipeline, the execution

provenance, the respective workflow history, and the generated output.

The creation of a workflow is similar to other workflow systems with one exception: A workflow

is modeled as a directed acyclic graph, so no loops are possible within a workflow. Furthermore,

the workflow is modeled as a data flow. Operations on the data are encapsulated into modules

like HTTPFile for accessing files using the HTTP protocol [104] or PythonCalc as a wrapper for

simple arithmetic operations. Most of the bundled modules, however, come from wrappers for

49



CHAPTER 3. COMMON STRATEGIES

VTK [105, web66]. VTK is a basic visualization toolkit with a focus on three-dimensional graphics.

It places an abstraction layer on top of system-dependent graphic interfaces. That way it can

easily be ported between different operating systems.

The output ports of modules are connected to input ports of other modules in order to build

up an acyclic graph representing the workflow. The final data products, which in most cases

will be images of some sort, are then shown in a spreadsheet. This spreadsheet distinguishes

VisTrails from other workflow systems. Each run of the workflow may be assigned to a different

cell inside this spreadsheet, thus making it possible to compare different visualization modules

or variations on the parameters easily. The spreadsheet in Figure 3.20(c), e.g., shows variations

on the parameters used, while the underlying dataset and workflow remain the same.

Figure 3.20(b) shows the (execution) provenance perspective of VisTrails. In this example, the

nodes, for which cached results have been used, are colored yellow, while others are colored green.

Upon selecting a particular node additional information is available like the start of the execution

and its end. The provenance information can be exported using PROV (cf. Subsection 12.1.3) or

OPM [106]. This export includes only the data for a single execution and not the evolution of the

workflow.

VisTrails also includes a repository for past workflow executions. Using this repository parts of

a workflow may be replaced with cached data products from previous runs [107]. As a prerequisite

VisTrails requires modules to work stateless: The output of a module is only determined by its

current input and parameters. Past input data or previous executions must have no influence

beyond their own processing. A data product is then defined only by the (sub)workflow and

the parameters that lead to its creation. That way VisTrails can replace parts of the current

workflow with a cache lookup, if the intermediate result is already known, and thus save execution

resources.

Another advantage of saving workflows’ creation history is, that the very same process enables

for concurrent collaborative work on a single workflow [108]. Different scientists may work on

the same workflow at the same time by creating separate paths in the workflow’s history. It is

not possible to delete or modify parts of the history. This feature of a VisTrails history is called

monotonicity [108]. It prevents cases when one user removes or alters parts of the workflow

another one is currently working on.

Inside a workflow, each module has a timestamp. As it can not be enforced that these times-

tamps are globally unique, each local repository keeps a mapping between its local timestamp

and the global ones. That way it is also possible to change the global timestamps in a commit

process without interfering with internal identifiers.

Applying graph algorithms to the workflow graph enables new ways of creating workflows like

creating workflows by analogy [109]. Given three pipelines pa, pb, and pc a new pipeline pd shall

be created, so that pd extends pc in the same way as pb does extend pa. For simplification, pb

has to be derived from pa. Then a function δab is defined to describe the actions that transformed

50



3.7. VISTRAILS

A

C

B

D

E F

path vertex
A→ C → D E 
A→ C → D F 
B → C → D E 
B → C → D F 

C → D E 
C → D F 

D E 
D F

Figure 3.21: VisComplete: Path summary (from [110]).
Node D is chosen as an anchor node and subsequently all paths ending in D are
extracted. These are called upstream paths. Additionally the downstream vertices E
and F are appended to each path.

pa into pb. Furthermore, a mapping between the two pipelines pa and pc is given. This mapping

relies on the graph representation and may only be partial if nodes of pa do not match nodes

in pc or vice versa. Connecting both functions pd is generated from pc by applying δab to pc

with respect to the mapping found. Using the same pipeline difference function δ the authors

describe a “query by example” approach, where users only define fragments of a pipeline they are

searching for and the system searches for pipelines that include or resemble that fragment.

Another approach is taken by [110] with VisComplete. This VisTrails extension provides

users with suggestions on how the current pipeline can be extended similarly to the autocomplete

functionality in many web applications. To gather data for the suggestions the system analyzes

the repository of previous pipelines. Individual pipelines get split into a multitude of paths10. An

example for such a path summary can be seen in Figure 3.21. This path summary is generated in

forward as well as reverse direction with respect to the direction of the edges. This is necessary to

allow for suggestions in both top-down and bottom-up approaches. Additionally, information about

the in- and out-degree of nodes is saved along with the connection types for pairs of modules

as two modules may be connected using different (combinations of) ports. Having extracted

paths from many different pipelines, VisComplete maintains an extensive database on how

(statistically) likely a node v is to follow a path P.

The suggestions are then generated by analyzing the current pipeline, extracting its paths

and repeatedly augmenting these paths with the most likely nodes. This process is recursive in

the sense that adding a new node to a path generates a new path that may itself be augmented as

well. That way a multitude of possible extensions is generated. In order to restrict the complexity

of this calculation and only present a few, but better-suited suggestions to the user, for each

extension a confidence value is calculated using Equation 3.1. This confidence relies primarily

on the frequency a node occurred in conjunction with a path in the past. In Equations 3.1, v

represents a newly added node, P is the set of corresponding paths and G is a workflow graph

10Remember that workflow graphs are directed and acyclic, at least within VisTrails. Bearing in mind that a workflow
is also finite, there is a finite number of paths per workflow.

51



CHAPTER 3. COMMON STRATEGIES

Figure 3.22: VisComplete: Interface example (from [110]). The left-hand side shows a node added
by the user. On the right-hand side, a suggestion is given. Suggested completions
are displayed as semitransparent nodes. Users may navigate through the set of
suggestions and choose the appropriate one using the controls on the bottom of the
screen.

created by adding multiple nodes.

c(v)=
∑︁

P ∈ upstream( v ) count( v | P )∑︁
P ∈ upstream( v ) count( P )

(3.1)

c(G)= ∏︂
v∈G

c(v)

It is noted that the recommendation might be adjusted by using weights based on user

preference. There are, however, no further details given on how these user preferences are

modeled or collected. The description of this adjustment is restricted to giving two motivating

examples [110]:

For example, if a user has been working on volume rendering pipelines, completions

that emphasize modules related to that technique could be ranked higher than those

dealing with other techniques. In addition, some users will prefer certain completions

over others because they more closely mirror their own work or their own pipeline

structures.

The confidence is then used to prune intermediate results from rare cases. The final set of

suggestions is sorted by the calculated confidence values before being presented to the user. The

interface to present users with the suggestions is shown in Figure 3.22.

Besides the creation of new workflows, keeping provenance information about existing ones

and enabling their reproducibility are major goals of VisTrails [103]. As already mentioned

VisTrails not only keeps track of the workflow execution but also the workflow evolution. An

52



3.7. VISTRAILS

example of such workflow provenance is shown in Figure 3.20(d). Using this mechanism users

can go back in the history and explore other variations of the workflow without needing to worry

about storing and maintaining the different versions themselves.

One obstacle for reproducibility is the aging of software [111]. With respect to workflows, this

means, that some modules for specific steps within the workflow might get updated or replaced.

This also extends to cases, where multiple modules are replaced by a single one or the other

way around. To reproduce earlier results, one could maintain copies of the complete execution

environment including current versions of all tools. Despite the obvious storage consumption, this

also prevents the use of newer, improved modules. In VisTrails there is the option to upgrade11

workflows [112]. In its essence, this approach compares the versions of the modules as given

within the workflow to those that are present in the current environment. If there are mismatches,

it will try to replace (or upgrade) the version present in the workflow, so that it can be executed

in the current environment. Developers of modules may also include so-called “developer-defined

upgrades”, which gives them more freedom to manage this upgrade procedure including the

option to insert multiple modules.

Similar concerns regarding aging can also be raised for data, which is used within a workflow.

Files used as input might have changed since the last execution or are not available on the

machine. The latter might be caused by the workflow being created at a different location than it

is to be executed. For VisTrails, a package has been developed to cope with this problem [113]. By

using this package all data files involved in a workflow’s execution are put into a repository. Files

are given identifiers and version numbers, so they can be uniquely identified. Within the workflow,

instead of storing a local path to the file, in addition to this id, a hash value is maintained. So

even when the workflow is executed on a different machine, the execution engine has access to

the same input data. As all intermediate and final results are stored in that repository, those

files can be used to increase the performance of the workflow. Later if in a workflow steps have

been changed, instead of executing the whole workflow again, the intermediate result from the

last run can be retrieved and the workflow may start with executing the changed parts.

Beyond the core workflow topics, there are efforts towards executable publications using

VisTrails [114]. While traditionally publications just feature static figures and tables, the attempt

here is to include links to workflows and input data, so that reviewers and other readers may

reproduce the original result. The idea is to embed links to workflow and data into each figure.

Interested parties can then retrieve them online and execute the workflow to validate the

published results. For computationally expensive workflows, a reference to the aforementioned

caching mechanism for intermediate results is given [113].

11There is also a similar approach to downgrading workflows.

53



CHAPTER 3. COMMON STRATEGIES

3.8 Discussion

The strategies presented before were developed with different goals in mind and, hence, differ

substantially in the features offered. They range from tools specifically designed to exploit the

data offerings of a single provider (e.g., Eurostat) to general-purpose tools that can be applied to

basically any computational workflow (e.g., Jupyter Notebooks or Taverna). A consequence of

these differences in focus is varying support for the requirements previously defined in Chapter 2.

A summary of this varying support is given in Table 3.1 and will form the basis for the following

discussion. If in doubt, the assessment was made in favor of the respective system in order to not

skew discussions towards the approach presented in this thesis.

Search is a rather neglected aspect of most tools. Even when present, it is confined to the data

holdings within one system: Eurostat offers basic keyword- and catalog-based search interfaces,

but only for its own data holdings. Similarly, in Google Fusion Tables only datasets previously

uploaded to this system were available through a keyword-based search or as a means to augment

the current table. All other systems fully rely on users identifying proper datasets with the help

of tools not part of their own ecosystem. Consequently, also advanced features like searching

across multiple providers, inside the primary metadata, or even using multiple datasets in a

single response are outside of their scope. However, if datasets have been manually gathered,

their combination can be materialized in about half of the tools. With the exception of Google

Fusion Tables, this requires users to possibly prepare datasets and subsequently define proper

join conditions manually. This may include harmonizing abbreviations in case datasets have been

acquired from different providers and/or are employing different coding schemes.

When it comes to the heterogeneity in file formats and structures, most systems are able to

cope with a variety of such. As Eurostat focuses on its own data collections, it does not feature

support to include additionally provided data and thus is labeled as having no support for other

file formats. All other systems support a wide selection of file formats. Similarly, different dataset

structures are quite well supported, as most systems provide proper means to transform data

to the structure required. There are two exceptions, though: Google Fusion Tables required

datasets to be uploaded in a tabular format. Other structures like pivot tables (cf. Chapter 6)

are not supported. Spreadsheet software is somewhat in between in this regard. While it is

technically possible to load other data structures, converting between different structures is

rather cumbersome in comparison. Overall, this aspect of data retrieval is rather well supported,

though.

In the next step, modification of data, all systems provide at least the basic means to do

so. Only Eurostat is an exception, as it offers merely filtering dimensional values and no other

operations beyond that. With regard to getting immediate feedback from operations, workflow

engines like Taverna and VisTrails fall somewhat short. Here, the definition of a workflow is

decoupled from its execution. So, instead of having the result immediately available, users have to

run a workflow in order to retrieve its results. For smaller workflows and datasets, this is usually

54



3.8. DISCUSSION

Eu
ro

st
at

Sp
re

ad
sh

ee
t S

of
tw

ar
e

G
oo

gl
e

Fu
si

on
Ta

bl
es

Ta
bl

ea
u

Ju
py

te
r N

ot
eb

oo
ks

Ta
ve

rn
a

Vi
sT

ra
ils

Requirement 1:
Search across Providers # # # G# # # #

Requirement 2:
Search in Primary Data # # # # # # #

Requirement 3:
Search by Combination # # G# # # # #

Requirement 4:
Materialize Combination-Results # #  # G# G# G#

Requirement 5:
Mediate Abbreviations # # # # # # #

Requirement 6:
Support Heterogeneous File Formats #       

Requirement 7:
Support Heterogeneous Dataset Structures # G# #     

Requirement 8:
Translate Abbreviations  # # # # # #

Requirement 9:
Allow for Modification of Data G#       

Requirement 10:
Provide Immediate Feedback on Operations      G# G#

Requirement 11:
Ensure Validity of Operations # # # # # # #

Requirement 12:
Recommend Visualizations # # #  # #

⨁︁
Requirement 13:

Recommend Variable to Artifact Mappings # # #  # #
⨁︁

Requirement 14:
Materialize Visualizations        

Requirement 15:
Track Provenance # G# # G#

⨁︁
  

Requirement 16:
Visualize Provenance Records # # # #

⨁︁
  

Requirement 17:
Share Provenance Records # G# # G#

⨁︁
  

Requirement 18:
Allow for Reenactment of Workflows # G# # G#    

Table 3.1: Support for requirements in common strategies.
 . . . full support; G#. . . partial support; #. . . no support;

⨁︁
. . . support via extensions

55



CHAPTER 3. COMMON STRATEGIES

more of an annoyance than an actual obstacle. It might lead to situations, though, where large

workflows are defined without checking intermediate results. Mistakes during such workflows

might not be easily recognizable in the final result and as such can go unnoticed.

Pretty much no support is given by any tool in translating abbreviations or ensuring the

validity of operations. Only Eurostat implicitly translates all abbreviations used within their

datasets to human-readable labels. In all other systems, this has to be done manually by fetching

the respective dictionaries and replacing individual values. The situation for the validity of

operations beyond mere checking of data types is even bleaker. The responsibility for validating

each operation and applying possible corrections beforehand is completely put on individual users.

This opens up workflows to all kinds of inadvertent mistakes without any advice being given.

In terms of visualization, all systems again provide the means to produce reasonable graphs

and charts. On the way to those results, though, barely any recommendation or assistance is given.

Only Tableau and – using extensions – VisTrails help users in identifying proper visualizations

for their data. VisTrails’ extensions rely on analyzing past behavior and as such will not be able

to recommend new visualizations or mappings. On the other hand, Tableau allows users to pick a

subset of columns and proposes a suitable visualization including the corresponding mappings to

represent them.

Tracking of provenance is an essential part of workflow systems and, hence, supported by

both Taverna and VisTrails. Similarly, through the use of proper extensions, the history of

computations can also be tracked on different levels within Jupyter Notebooks. Tableau supports

a weaker notion of provenance. It is possible to maintain the connection between a created

dashboard and the underlying data sources. As such, it documents the provenance of a dashboard

to some degree and allows for sharing or recreating it. However, when the underlying data

source changes, also the results change without further notice. This behavior was labeled as

partial provenance support in Table 3.1. Finally, spreadsheet software allows documenting basic

workflows within a single document12. So following the argument made for Tableau, support

is labeled partial here as well. As discussed later in Chapter 12, both these approaches can be

seen as prospective provenance, whereas the approach taken by Taverna, VisTrails, and Jupiter

Notebooks covers both prospective as well as retrospective provenance. The other two systems,

Eurostat and Google Fusion Tables, do not support any meaningful way of tracking provenance

at all.

The basic means to create visualizations are present within all the systems discussed here.

However, there is only very limited support available to use those features without extensive

knowledge and expertise. Especially, non-expert users can easily be overwhelmed by the number

of features but have next to no guidance in how to use them properly. Some shortcomings

stand out in particular. First, pretty much no tool covers the whole visualization lifecycle as

previously outlined in Figure 1.1. Only Eurostat can cover the entirety of steps necessary but

12A particular sheet can fetch data from other sheets, formulae can be defined and are evaluated at runtime, etc.

56



3.8. DISCUSSION

does so at the cost of largely restricting their individual capabilities. Second, search interfaces

are usually externalized and not part of visualization-supporting tools. Users often have to

switch between tools which opens the door for all kinds of interoperability issues. Furthermore,

search is usually restricted to the dataset level, neglecting the contents of primary data. It also

assumes that the partitioning of data is the same for both producing as well as consuming it.

Third, supporting users during the workflow via recommenders and other assistants is overall a

quite rare trait. With the exception of BI software (Tableau) and some extensions in workflow

management systems (VisTrails), no system offers to support its users throughout the process.

Finally, provenance-related features are mostly restricted to workflow engines or, with limitations,

full-fledged programming languages. Both these options are usually only used by professional

users, so provenance is neglected for those not sharing this level of expertise. In summary, the

basic means to create meaningful visualizations are available for everyone in theory. However,

in practice, non-expert users are confronted with quite some obstacles and receive next to no

support in making the right choices along the process.

57





Part II

Dialog

59





C
H

A
P

T
E

R

4
APPROACH

After reviewing existing solutions that cover (parts of) the workflow outlined in the reference

model of Figure 1.1, now the approach taken within this thesis shall be described. This includes

core decisions made on the conceptual level but postpones their impact on a technical level to

later chapters. Similarly, more detailed analyses of the individual components are subject to the

following chapters and are only referenced here.

Figure 4.1 provides a high-level view of the workflow that is to be supported: At the start, an

information need leads to a first corresponding dataset via Search. This dataset is then subjected

to several Modifications resulting in another dataset. Through a process of Visualization, this

later dataset is, in turn, converted into its final representation in form of a graph. Provenance

information is kept throughout all of these steps to document the process. Each requirement

of Chapter 2 refers to one or more of these activities or the system as a whole. Consequently,

the remainder of this chapter will first consider generic system aspects, before discussing each

activity individually. The chapter will close with some final considerations and a summary of the

approach.

4.1 Overall System

Objective 1 calls for a unified platform. This can be interpreted in at least two different ways.

The Unix community, among others, favors a collection of independent tools, each particularly

well suited for a very specific task [115]. The inputs and outputs of said tools shall be designed to

be interoperable with yet unknown other programs. This approach most certainly contributed to

the success of Unix-like operating systems and their ecosystems, as it lets users combine existing

tools into new toolchains rather quickly. However, the sheer mass of available tools can quickly

become intimidating, especially to novice users. A different strategy is to integrate the available

61



CHAPTER 4. APPROACH

? Search Modification Visualization

Provenance

Figure 4.1: Conceptual workflow overview. Entities (circles) are transformed through activities
(rectangles).

functionality into a single, oftentimes graphical, user interface. Examples can be found among

large web platforms like Facebook [web67] or the online office suite provided by Google [web68].

Here, a unified user interface provides access to a variety of functionalities. With all parts of the

interface sharing the same design philosophy and interaction paradigms, new sections of the

portal can be understood rather quickly based on past experiences.

The intended audience for the developed system is envisioned to be among novice and

intermediate users (cf. Requirement 19). Consequently, a low barrier of entry is essential. Here

as well, integrated web platforms shine, as they do not require users to locally install certain

tools and possibly figure out their respective dependencies, but provide immediate access to the

intended functionality. For these reasons, the system described here will use a web interface

to expose access to the main components established previously: search, data modification,

visualization, and provenance.

4.2 Search

One core purpose of the system is to seamlessly work with data from multiple, independent

sources (cf. Objective 2). Depending on the point in time when data is integrated, systems are

generally classified into physical data integration (data warehousing) or virtual data integration

[116]. In data warehousing, data is processed in so-called “Extract, Transform, Load” (ETL)

pipelines to be accumulated in the namesake warehouse [45]. During this process data from all

sources is converted to adhere to a single schema which can then be easily queried from a central

location. On the other end of the spectrum, virtual data integration delays the primary data

integration until a query has been issued [117]. The query is then broken up, translated, and

relayed to the respective data providers, before the partial results are combined again and the

materialized result is returned.

The supposed environment for the proposed system is characterized by an immense number

of datasets that differ in their level of detail and also partially overlap in their content. Hence,

the creation of a single global schema needed for physical data integration seems to be an

62



4.2. SEARCH

insurmountable task. While this would enable the combination of all datasets, the majority of

those combinations either are meaningless or will never be requested, anyways. Besides the

impracticability of storing all the data at a single location, this motivated the selection of a

virtual integration approach for the system at hand. The necessity of a global schema is thus

replaced with a local one driven by a user-defined query (cf. Requirement 3). Besides substantially

reducing the number of involved datasets1, the target schema will also be given by the query

itself.

For enabling search requests across multiple providers (cf. Requirement 1) the decision is

again between a centralized and a decentralized approach. Both approaches provide a unified

interface through which queries can be issued. In decentralized query processing or federated

search [118], the query is distributed to the presumably independent search engines of each

provider. Individual results are subsequently merged and transparently returned to the user. In

contrast, a centralized system will accumulate a metadata catalog over the datasets provided by

each source and answer user queries from this knowledge base.

The decision between both approaches primarily depends on the capabilities of the providers’

search engines. For the system at hand, we require search capabilities that include the primary

data of datasets (cf. Requirement 2). As this is a barely available feature at the moment [119], a

centralized approach is chosen going forward. Depending on the capabilities of the respective

data provider, the system will either harvest or crawl the available datasets2 and consolidate the

acquired metadata into a common model stored within a metadata repository.

The acquired metadata has to contain information of the datasets’ primary data, in order to

enable corresponding search queries. This information is intended as a summary of the primary

data and not a copy of it, so reasonable simplifications are made to reduce the overall amount

of metadata stored. The tabular primary data in question can be structured into columns (cf.

Chapter 6), which present themselves as a useful level of aggregation for this purpose. In the

proposed metadata model (cf. Chapter 8) for each column, its range will be stored. For quantitative

and time columns3 this translates to the respective minimum and maximum values, whereas for

categorical columns a list of occurring values is maintained. The inherent order of quantitative

and time values allows omitting specific values in favor of such a range. Categorical columns do

not allow for such aggregation. However, unlike their quantitative counterparts, individual values

are oftentimes repeated rather frequently within a single dataset and thus a list of appearing

values likely is small enough to be stored.

A side effect of this collection of categorical values is the support for mitigating differences

among the data providers (cf. Requirement 5). As stated before, the coding schemes among

the data providers might differ, resulting in possible cases of synonymy and homonymy among

1The majority of datasets will be unrelated to the user query and as such can be discarded early on.
2We will use the term harvesting when cooperative data providers offer designated web services or files for fetching

metadata in a machine-accessible form. On the other hand, crawling denotes the process of extracting metadata
from any other source, such as the datasets themselves or websites intended for human use.

3A detailed discussion of the data types mentioned throughout this thesis can be found in Chapter 5.

63



CHAPTER 4. APPROACH

used abbreviations. Using the respective code lists, the abbreviations used by the respective

data providers can be mapped to one another. Within the presented approach these mapping

rules are realized using techniques of the Semantic Web [29]. Abbreviations are translated to

Internationalized Resource Identifiers (IRIs) for the respective code list. If there are no IRIs for

the respective code list publicly available, custom ones will be minted in a private namespace

and augmented with labels taken from the respective code list. In the next step, IRIs referring to

the same concept are linked to one another using owl:sameAs statements, thus providing the

required mappings. Whether this mapping is conceived automatically or manually as well as the

precise manner of doing so, is beyond the scope of this thesis. For the remainder of the thesis, the

existence and maintenance of such mappings is assumed as a given.

The previous process does not only relate different code lists but also provides the means to

translate abbreviations to human-readable labels (cf. Requirement 8). This can be broadened

further by including links to authoritative sources from Linked Data Cloud sources [120] like

Wikidata [121, web69]. Assuming such extended mappings are available to a sufficient degree,

these outside sources can provide alternative labels and multi-language support. Besides the

ability to customize the output of datasets seamlessly to the current user’s locale, this also

broadens the scope of keywords supported in the search interface.

On the back of the outlined metadata repository, the proposed system is able to provide

primary data search. In the past, two general strategies have been proposed for this: Keyword-

based search considers the dataset as a document and then applies techniques from document

retrieval [31]. In a nutshell, this looks for occurrences of values and ranks the datasets with more

occurrences over those with less. However, this will only provide a set of matching datasets and

leaves anything else to the user. Another strategy is generally referred to as “query by example”

in the database community [122]. Here, users describe their information need by providing a

rough table structure including column headers and possibly values. Systems will then try to

complete this table based on the datasets they have access to.

The proposed system follows the latter approach and allows users to define a set of columns

required to be present in the result (cf. Figure H.18). Paralleling the aforementioned range

definitions of datasets’ metadata descriptions, users can further specify a range of values for

each column. These ranges are interpreted as constraints on the desired content of the result.

Consequently, missing ranges for specific columns put no further restrictions on possible results.

To answer the posed query, the system will first fetch a list of candidate datasets from

the metadata repository (cf. Chapter 10). Candidates are those datasets that share at least

one dimension and one measurement column with the request4. For each of these candidates,

the overlap with the current request is computed and the largest overlap is chosen as part of

4The notions of “dimension” and “measurement” follow their respective definitions in the OLAP community, as
discussed in Chapter 6.

64



4.3. MODIFICATION

the result5. Subsequently, this overlap is removed from the request definition and the process

is repeated until no more suitable candidates are available or the request has been fulfilled

completely. If there are various iterations of this cycle, the posed query is answered using the

entirety of chosen candidates (cf. Requirement 3). Furthermore, if multiple datasets are involved

in providing an answer to the request, a sequence of join- and union-operations among the

respective overlaps is created to represent their combination. This sequence forms a workflow

that can directly be executed once the query response has been confirmed and possibly augmented

by the issuing user (cf. Requirement 4).

Actually fetching the data is done through the use of proper wrappers [123] that match the

data providers’ data format and structure. The information about which wrapper is suitable for

a particular dataset is retrieved from the respective metadata description and, hence, does not

require any user interaction (cf. Objective 2). For better maintainability (cf. Requirement 20),

wrappers are split into two groups building upon one another: The first group parses the source

data format as given by the provider to access individual data elements (cf. Requirement 6). A

second group then converts the given data structure into the format used throughout the system

(cf. Requirement 7). Here, categorical values are given by a label and their IRI which is created

in the same fashion as in the metadata descriptions before. Furthermore, on the column level,

the system will maintain more crucial metadata: All columns link to a describing concept as well

as their current range. Quantitative columns will also include the unit of measure used, while

time columns preserve their respective precision.

4.3 Modification

Once a dataset or a combination of multiple datasets is properly loaded, users can inspect the

primary data through a familiar, spreadsheet-like interface (cf. Figure H.12). From this interface,

they can issue further commands to adapt the dataset like aggregating, filtering, or adding

derived columns (cf. Requirement 9). Operations are always carried out over the dataset as a

whole to simplify the interface and certain operations like the conversion of units6. This does

not pose a restriction on the general capabilities of the system. The modification of individual

entries could still be facilitated via conditional operations, that apply a change only when the

preconditions are met, e.g., the row number is equal to a given target number. The results of an

operation are immediately shown in the interface giving users direct feedback of their actions

(cf. Requirement 10). In cases where the result of an operation does not match the expectations,

corresponding undo and redo features are provided.

5Computing the overlap can involve aggregations to reduce the number of dimensions within the candidate dataset to
match the ones in the request. The particular kind of aggregation function is of no consequence here and is left to
the user. Kindly refer to Chapter 10 for more details.

6Kindly recall that the unit of measurement is maintained on a column level. Hence, changing the unit requires the
conversion of all individual values.

65



CHAPTER 4. APPROACH

This mode of applying operations also allows for easier validation. Compared to data struc-

tures in non-restrictive spreadsheets, the data within the proposed system stays coherent and

most properties are shared between all cells of a column. Consequently, operations can be vali-

dated on the column rather than the individual cell level consuming significantly fewer resources.

The proposed architecture will focus on the consistent handling of units as one important exam-

ple of ensuring the validity of operations and thus the resulting datasets (cf. Objective 3 and

Requirement 11). As mentioned before, the unit is shared for all cells of a quantitative column –

a property maintained by applying bulk operations on datasets as a whole. So instead of ensuring

unit consistency on a cell level, any operation can be validated before execution on the column

level. This is far less computationally expensive and thus improves the overall responsiveness of

the system (cf. Requirement 10).

Ensuring unit consistency should be handled as transparent and unobtrusive to users as

possible (cf. Requirement 19). In particular, in case of an impending mistake, the system should

automatically take care of fixing the root cause, if possible at all. Only if such a fix is infeasible,

should a user request be rejected with an error message. With respect to units of measure, missing

conversions can be added automatically, while dimensional errors still need user intervention.

However, due to limited precision arithmetics, any additional conversion increases the chance that

rounding errors may distort the results. Hence, the proposed system will analyze formulae used

within operations and inject only the minimum number of conversions necessary (cf. Chapter 9).

4.4 Visualization

The final step of the workflow is the visualization of the results. For this work, the recommen-

dation of suitable visualizations (cf. Objective 4) will be limited to leveraging available data

characteristics. Other factors like the semantic meaning of the content or specific preferences

towards certain visualizations or representations are generally domain- or even task- and user-

specific, whereas the techniques and tools described here are intended to be domain-independent.

The creation of a knowledge base describing the individual peculiarities of individual domains,

tasks, or users is beyond the scope of this thesis and thus only considered on a conceptual level.

In general, recommending items from a given collection can be seen as a two-step process:

First, inapplicable items are removed from consideration, before, second, the remaining items

are ranked according to their suitability in the current situation. For visualizations, the notion

of applicability boils down to the compatibility with respect to types (cf. Chapter 5) between a

dataset’s columns and a visualization’s visual artifacts. A visualization is applicable to a dataset

if each mandatory visual artifact can be mapped to a specific column of the dataset. The reciprocal

condition, each column of the dataset can be mapped to a visual artifact, is an example of an

aspect to influence the ranking but not prevent the general applicability of the visualization.

Assuming that all remaining columns in the dataset are still significant within the context of

66



4.5. PROVENANCE

the current task7, visualizations capable of representing a larger subset of columns or even all

of them should be ranked higher. Another factor to influence the ranking is the multitude of

values. Some visual artifacts or combinations thereof can only be used to represent a certain

number of states (e.g., see [49]), before the quality of a visualization starts to deteriorate up to

the point of being completely useless. The number of states is no single threshold beyond which a

visualization is no more applicable. In fact, the transition from a well-received visualization to an

overburdened one is quite fuzzy.

The recommender proposed within this work (cf. Chapter 11) tries to accommodate all

these factors. It relies on a black-box model of visualizations that are characterized by a set of

optional and mandatory requirements. These requirements are formalized in possibly multiple

descriptions for a visualization that lists the visual artifacts of said visualization alongside

their characteristics (cf. Chapter 7). Here, the type and role of the visual artifact mirror the

respective notions for datasets (cf. Chapter 8). Furthermore, the number of representable states

is given by a threshold function to describe the aforementioned fuzzy transition between suitable

and unsuitable inputs. After users assembled their dataset, they are able to call upon the

visualization component. The recommender analyzes the given dataset and attempts to create

suitable mappings for all visualizations. In the process, inapplicable visualizations will be

determined and subsequently hidden in the interface. For applicable visualizations, a score is

computed to represent the degree to which columns could be mapped and the requirements of the

visualization could be fulfilled. Users can then select from a list of possible visualizations ranked

by these scores (cf. Requirement 12), adjust the mapping if needed (cf. Requirement 13), and

trigger the generation of the selected visualization (cf. Requirement 14). Allowing users to adjust

the mapping between columns and visual artifacts accounts, e.g., for cases where visual artifacts

are not distinguishable based on the mentioned criteria like the x and y axes in a scatter plot.

4.5 Provenance

For each result, no matter if intermediate or final, information about its provenance has to

be maintained (cf. Objective 5). In its most general form, this includes all resources used, the

actions taken, as well as the information accessed to create a particular result8. The information

accessed is rather hard to determine, unless users are confined to a very restrictive environment.

Hence, a narrower interpretation of provenance will be adopted subsequently. It includes only

information available within the proposed system but omits any failed attempts. Hence, the

tracking of provenance is confined to the resources used as well as the successful actions taken to

arrive at a certain result.

7A column not significant anymore is, e.g., one that only contains one value for all its cells as the result of a filter
operation.

8In some approaches like [web28, 102] (cf. Section 3.7) it even includes unsuccessful attempts that preceded the finally
successful one.

67



CHAPTER 4. APPROACH

The granularity of such tracking follows directly from the need to reenact a previous workflow

(cf. Requirement 18). To this end, any action has been documented that modified the dataset

and whose result did not get abolished later on. Having in mind that each action will operate

on the level of columns (cf. Chapter 6) and result in a new dataset, both the cause and the level

of detail for individual provenance records are defined. For each dataset, the system will create

an individual record including the action that led to its creation, its parameters, possible inputs

in form of other datasets, and the time of execution. The latter becomes especially important if

external input datasets are not under version control. In such cases, the time of access is the only

way to document the state of said datasets short of maintaining a complete copy. Following the

trail of provenance records across multiple intermediate datasets allows tracking the provenance

of a specific result (cf. Requirement 15). In an ideal world, this could be extended to each external

dataset as well, thus providing a complete record up until the initial means of data collection

or creation. However, in practice, the assumed independence and heterogeneity of providers, for

now, will make this impossible in almost all situations.

The accumulated provenance records serve at least three purposes: First, they can be exported

in a machine-readable, interoperable format (cf. Requirement 17). By adhering to commonly

accepted standards (cf. Chapter 12) this enables other tools to leverage or analyze the workflows

created. In the long run, this may also contribute to overcoming the aforementioned limitations

in provenance tracking across providers. Second, based on the exported provenance record the

system will later be able to reenact a given workflow (cf. Requirement 18). Leveraging the

documented actions as well as parameters and assuming the initial data is still available from

the respective provider, each step can be executed once again and thus replicate the original result.

Finally, the provenance records can be used to visualize a workflow to users (cf. Requirement 16).

Following commonly adopted visual metaphors like flow charts or workflow graphs, this enables

users to revisit and inspect the steps that led to the current result (cf. Section 13.5).

4.6 Final Considerations

In a system such as the one outlined above, there is a number of components that implement

different variations of a single task. For example, all included visualizations (cf. Appendix F) in an

abstract sense perform the same kind of transformation from a dataset to an image. Components

like these are also the most likely candidates to see new additions and changes over time.

Besides the already mentioned visualizations, this includes in particular the wrappers needed

to access specific data providers. The prototypical implementation (cf. Chapter 13) will gather

available variations of a specific component in so-called repositories. A repository is a collection of

variations for a specific type of component, usually consisting of a standardized description and

an implementation. At runtime, this repository will be accessed to determine which variations

are available and offer them as options in the respective user interfaces. This way, developers

68



4.7. SUMMARY

may add, e.g., a new visualization without necessarily having a complete understanding of the

system as a whole (cf. Requirement 20). A loose coupling like this also improves the overall

maintainability of the implementation as single components can be developed and tested without

affecting other parts of the application.

4.7 Summary

This chapter outlined the proposal made in this thesis. This includes the description of measures

taken to address the requirements identified previously (cf. Chapter 2). Table 4.1 summarizes this

effort by juxtaposing requirements and the corresponding proposed solutions. The latter will be

described throughout the remainder of this thesis. For now, Table 4.1 will point to the respective

chapters for a more detailed discussion of concepts and to individual sections of Chapter 13 for a

description of implementation details as part of the developed prototype, Yavaa.

69



CHAPTER 4. APPROACH

Requirement 1:
Search across Providers

Centralized metadata store (cf. Chapter 8 and Section 13.2)
Wrappers for data access (cf. Chapter 13)

Requirement 2:
Search in Primary Data

Tabular data model (cf. Chapter 6)
Primary data summary in metadata (cf. Chapter 8)

Requirement 3:
Search by Combination

Query by example and fulfill request from multiple
datasets (cf. Chapter 10)

Requirement 4:
Materialize Combination-Results Search results as executable workflow (cf. Chapters 10 and 12)

Requirement 5:
Mediate Abbreviations Map categorical values to semantic concepts (cf. Chapter 8)

Requirement 6:
Support Heterogeneous File Formats Wrappers for data access (cf. Chapter 13)

Requirement 7:
Support Heterogeneous Dataset Structures Wrappers for data access (cf. Chapter 13)

Requirement 8:
Translate Abbreviations Labels via mappings to semantic concepts (cf. Chapter 8)

Requirement 9:
Allow for Modification of Data Column-oriented operations (cf. Section 13.3)

Requirement 10:
Provide Immediate Feedback on Operations Interactive user interface (cf. Section 13.9)

Requirement 11:
Ensure Validity of Operations

Column-oriented operations (cf. Section 13.3)
Implicit management of unit consistency (cf. Chapter 9)

Requirement 12:
Recommend Visualizations Data-driven visualization recommendation (cf. Chapter 11)

Requirement 13:
Recommend Variable to Artifact Mappings

Filtering of vis. by data types (cf. Chapters 5 and 7)
Ranking of vis. by data characterstics (cf. Chapters 8 and 11)

Requirement 14:
Materialize Visualizations

Modules to materialize selected visualization
mappings (cf. Section 13.7)

Requirement 15:
Track Provenance Implicit tracking of applied operations (cf. Chapter 12)

Requirement 16:
Visualize Provenance Records Visualize provenance in a flow chart (cf. Section 13.5)

Requirement 17:
Share Provenance Records

Serialize provenance according to
PROV-standards (cf. Chapter 12 and Section 13.8)

Requirement 18:
Allow for Reenactment of Workflows Re-execute provenance records (cf. Section 13.8)

Table 4.1: Functional requirements and corresponding solution approaches.

70



C
H

A
P

T
E

R

5
DATAMODEL - DATA TYPES

Data types are one of the essential parts of data management. They classify the processed values,

so the system can easily decide how to present them or whether certain operations are valid. This

classification is generally driven by one of two factors.

The first approach focuses on the characteristics of the values themselves. One of these

characteristics can be, whether the set of values exhibits some kind of order. Another option

would be to ask for the existence of a meaningful definition of mathematical operations like

summation or multiplication.

The second approach to classification is driven by the kind of operations the data is subjected

to or how it is to be stored. An example is the introduction of the type Boolean, where the goal is

to support logical operations like AND or NOT. This results in two distinct values, true and false,

required to support said operations. In practice, these values may take multiple lexical forms like

T/F, yes/no, or any other binary set. However, during processing all these variations map to the

same two values.

Oftentimes both approaches end up with similar results, but one major exception to this is

the distinction into fixed-point and floating-point arithmetics in many systems. This is not driven

by data characteristics but by technical limitations in current hardware.

This chapter shall examine existing type schemes and derive one to be used henceforth in

this thesis. As discussed later, these data types are a cornerstone in the translation between an

actual dataset (cf. Chapter 8) and the visualization to represent it (cf. Chapter 7).

71



CHAPTER 5. DATAMODEL - DATA TYPES

5.1 Related Work

Spreadsheets and relational databases are a common way to store tabular data. Although there

are plenty of different systems, all of them support roughly the following data types in one way or

the other [web70, web71, web72, web73, web74, web75, web76, web77]. Most of them only differ

in the respective labels used and the respective length or precision.

Number Numerical values. Generally distinguished in integer, fixed-point and floating-point.

Text Strings of arbitrary characters.

Boolean Two possible values true and false. Sometimes implemented as an integer, where zero

represents false and all other values stand for true.

Date and Time Values describing a specific point or period in time. Oftentimes distinguishing

between dates, times, and combinations thereof.

Collection Lists of values of the same type.

Null Special keyword representing a missing value.

The last data type mentioned, Null, denotes a missing value as defined in SQL [81, Section

3.1.1.12]. It is explicitly included in OLAP systems as well as in relational databases. Spread-

sheets, on the other hand, do not model this as a separate type or value, but instead, just leave

the respective cell empty. The actual reason why a certain value is missing is not captured by

Null. For this reason, users oftentimes chose to use other designated values instead of null. For a

measurement that can have no negative values, e.g., users may specify to use multiple negative

values to indicate why a measurement was not possible. Examples may be a malfunction of the

measuring device or simply a forgotten measurement, which is labeled as such later on.

In SQL three different subtypes are defined for the data type collection: collection, array, and

multiset [81, Section 4.4.5.1]. These types are used to represent an (un)ordered list of values of the

same data type. Spreadsheets also define a data type array but omit the unordered equivalents.

Oftentimes spreadsheets also do not define a separate data type for date and time but use a

numerical timestamp which is then displayed to the user with a suitable formatting.

Another classification of data types is given by Stevens in [124]. For the classification four

operations are used: determining equality, rank-ordering, determining equality of differences,

and determining equality of ratios. For rank-ordering, no assumption is made on the distances

between two values. Especially it is not assumed, that all values can be equidistantly placed on

a linear scale. To illustrate the difference between the latter two, think of temperature scales

like Celsius and Fahrenheit. Given four temperatures ω1 to ω4 the test for equality of differences

is independent of the used scale. So, if ω1 −ω2 =ω3 −ω4 holds true in one scale, it will do so in

the other. For the respective ratios, however, ω1
ω2

= ω3
ω4

, the respective zero point in both scales

72



5.1. RELATED WORK

is important. As both scales use a different zero point (0 °C = 32 °F and 0 °F ≈ −17.78 °C)

temperature values, in general, are not subject to determining the equality of ratios. An example

where both, determining equality of ratios and differences, can be applied are lengths, where

there is a shared absolute zero point. If both of the above equations hold true, they will do so no

matter if one uses a meter or feet as a scale. Using these four operations, the following four data

types – called scales in this context – are defined:

Nominal For two values their equality can be determined.

Example: Color names, which possess no inherent order.

Ordinal There is an ordering defined over the set of possible values.

Example: Rating schemes like the Five-Star-Scheme, where different options are not placed

on an absolute scale but can be compared to one another.

Interval Differences between values can be tested for equality.

Example: Temperature scales like Celsius or Fahrenheit, where no absolute zero point is

given.

Ratio Ratios between values can be tested for equality.

Example: Length measurements, which share an absolute zero point.

Another different classification of data types can be found in [125]. While nominal and ordinal

scales are adopted as described before, interval and ratio scales are subsumed as numerical

scales. Numerical scales, however, have been distinguished into two types:

Discrete Numerical The set from which values are drawn is either finite or countable infinite.

Example: Counts of any sort like the number of offspring in a litter or the value of various

coins.

Continuous Numerical The precision of values is only bound by the ability to measure them and

not by the scale that is used. In theory, there can be as many different values as there are

real numbers.

Example: Most physical measurements like weight, length, or temperature.

This distinction has also been adopted by Tableau [80, 126], which presents among other

things an algebra to map multidimensional data to visualizations1 that also includes dates and

times as separate types:

C Categorical (discrete and continuous)

Cdate Categorical date (date or date&time)

1This grammar will be described in more detail in Chapter 7.

73



CHAPTER 5. DATAMODEL - DATA TYPES

Q Quantitative (continuous)

Qd Quantitative dependent (measure)

Qi Quantitative independent or Qdate (dimension)

Date and time are not exclusively listed as subtypes to either categorical or quantitative, but

depending on context can be part of both.

VizAssist [127] follows the general consensus of data types by using numeric, ordinal, nominal,

and time as data types. In addition, some more specific data types are included that convey a

special meaning when used within a visualization.

imageURL Representing the location of images that can be used within a visualization.

URL A general hyperlink is either added directly into a visualization or used as a target for

other elements serving as anchors.

country A geographical location as used, e.g., in maps.

source, target Used to represent graph nodes and edges.

Furthermore there a graph-specific versions of the common data types numeric, ordinal, and

nominal for both nodes and edges: Nodenumeric, Nodenominal, Edgenumeric, and Edgenominal.

5.2 Discussion

Reviewing both implementations as well as more theoretical classifications it seems for most

areas there is a broad consensus regarding the data types. There is a common distinction between

numeric and non-numeric data types. Date and time are oftentimes seen as a separate data type,

although sometimes regarded as a subtype of either numeric or non-numeric depending on the

respective usage.

The numeric data types are distinguished into discrete and continuous. SQL follows a slightly

different path here: numeric types are either exact numeric like integer or fixed-point or ap-

proximate numeric like floating-points. The reasoning for this distinction is mostly based on the

technical limitations of the adopted IEEE standard 754 [128] for floating-point arithmetics, which

on occasion introduce errors due to the limited precision involved. A simple example to illustrate

the shortcomings of this standard is given in Inequality 5.1.

(5.1) (0.1+0.2)−0.3> 0

Using any exact computation the left-hand side evaluates to zero, but as none of the involved

numbers has an exact representation using IEEE 754, the result of the computation evaluates to

about 5.551e−17.

74



5.3. APPROACH

Categorical
Nominal

Ordinal

Time

Quantitative
Discrete

Continuous

Figure 5.1: Hierarchy of data types.

For non-numeric data types, many implementations omit the distinction between ordinal

and nominal. One explanation for this is probably the difficulty to actually capture the order of

multiple values. Most of the time, values are just seen as a sequence of characters that carry no

inherent ordering. Systems implementing a separate ordinal data type have to resort to some

other source for obtaining the ordering of values.

Some types can also be restated as a constraint on those basic data types. Boolean in SQL,

e.g., could be stated as a non-numeric type restricted to two values true and false, which in some

contexts carry special meaning. Similarly, most of the special types in VizAssist can be seen as

non-numeric types that carry some additional information that is exploited in the mapping to a

visualization.

Here, one can see a major decision that has to be made when deciding upon data types: Should

the data types be based on the characteristics of the data values – as done by Stevens [124] or

Tableau [80] – or are the possible operations performed on them the driving factor – like done in

VizAssist [127] or SQL [128]2? The result of this consideration directly affects the number of data

types to be defined. As can be seen from the examples mentioned above, the number of data types

is much higher when driven by operations rather than characteristics.

5.3 Approach

Following the argument at the end of Section 5.2, within this work data types will be determined

by data characteristics rather than applied operations. Interpretations of values that go beyond

their inherent characteristics will be achieved in conjunction with additional meta-information

as stated in Chapter 6. The data types used are arranged into a hierarchy as shown in Figure 5.1.

Categorical Values represent certain entities. No arithmetic operations can be applied.

Superset of nominal and ordinal data types.
2The decisions in SQL are mostly driven by the efficiency of storage rather than the efficiency of computations. For the

sake of argument here storage of data is seen as one kind of operation.

75



CHAPTER 5. DATAMODEL - DATA TYPES

Nominal Values represent separate entities. No further restrictions apply.

Example: Color names.

Ordinal Values represent separate entities and have an inherent order.

Example: Ratings like “good”, “mediocre”, and “bad”.

Quantitative Values describe a measured observation of some sort in form of a number.

Continuous Values are drawn from a certain range of values. Any value of that range is valid.

Example: Most physical measurements like length or frequency.

Discrete Values are drawn from a set of numerical values that is either finite or countable infinite.

Example: Counts.

Time Values describe a point in time3. The precision of what is considered a “point in time” may

vary, though.

Examples: Specific months like April 2010 or specific times like 1969-07-20T20:17:404.

The definitions of the nominal and ordinal data types follow the ones given by Stevens [124],

while the definition of the quantitative types is modeled after the ones known in statistics as

presented in [125]. Regarding time the decision was made to introduce a distinct datatype similar

to SQL [81]. The main reason is that time values exhibit characteristics of both the other major

data types. Values like April 2010 can be seen as standalone entities which would result in a

categorical data type. On the other hand, some arithmetic operations like average or difference

are applicable which would put them into a numerical data type. So instead of having to decide

upon context which data type a time value belongs to like done in Tableau [80], within this work

time is seen as a separate data type.

Time intervals are not modeled as a separate type but are assumed to be split into two (time)

values: One denoting the start and one the end of the respective period. This removes the necessity

for an additional type and defining appropriate operations. All operations possible on a specific

time interval like calculating duration or ordering by start can be restated accordingly. The above

definition of time does also not specify the precision of a given point in time. Socio-economic

indicators like “production per month” can be defined using a single time value although they

actually represent a period of time. So following that approach, each time value itself actually

represents a period of time.

3In contrast, measuring the span of time a certain observation lasts is considered quantitative.
4Timestamp conforming to ISO/IEC 8601 [129].

76



C
H

A
P

T
E

R

6
DATAMODEL - TABLES

Each system has to have an internal model of the data and objects it deals with. This model is

tailored towards the operations performed on the respective data. So the most frequent operations

are sometimes executed more efficiently at the expense of more uncommon ones. Some of these

models are closely related so that instead of focusing on just a single model, a system can choose

a set of models and use the appropriate model for the task at hand. This, however, comes at the

cost of either maintaining both models throughout the execution or transforming the underlying

data from one model to the other when needed.

For the system discussed here the main type of data to deal with is statistical, tabular data,

while the necessary operations arise from the requirements stated in Section 1.1. Other systems

concerned with data processing are using different approaches ranging from relational databases

[130] over XML-dialects like SDMX [40] to formats closely modeling plain tables like CSV [131].

In this chapter first, the different models behind those systems are described in Section 6.1. In

real-world implementations, the distinctions may oftentimes not be as clear-cut as presented here,

though. The attempt is to focus on the fundamental ideas rather than the actual implementations.

After a brief discussion in Section 6.2, different aspects of approaches are integrated in Section 6.3

to form the data model used within this thesis including terms and distinctions used throughout.

Metadata descriptions will not be discussed here, but are subject to Chapter 8.

77



CHAPTER 6. DATAMODEL - TABLES

Country Year Olive prod. (t)

Greece 2014 206.58

Greece 2015 304.1

Spain 2014 434.81

header row

row

column cell

Figure 6.1: Basic table structure; Naming based on [web78]; Data: [data1].

6.1 Related Work

One basic model is a mere table, which is used by, e.g., CSV [131] and similar encoding schemes

like TSV [web32]. A table like the one shown in Figure 6.1 is comprised of rows and columns.

Individual values are contained within cells. The total of all cells in the same row forms a single

record. Cells in the same column represent instances of the same aspect. This aspect is usually

given within the first row - the so-called header row. In this row, cells contain the name or label

of the column instead of a concrete value. The standards usually make no assumption about the

type of data stored within a column. Only certain characters are prohibited or need to be escaped

as they are used to separate cells and rows within the persisted data.

Neither CSV nor TSV requires the number of cells per row to be constant within a single

document. Both standards, however, do not make any statement, how to handle mismatches

between given column labels and the number of cells in a given record.

A modification to this basic scheme is used by so-called pivot tables1, crosstables, and con-

tingency tables. If the same phenomenon has been observed under varying conditions, e.g., at

different locations and times, a table can be restructured as shown in Figure 6.2. Columns

describing the conditions will have just a few different values compared to the total number of

records in the table, so they are moved to the first row (column area) and first column (row area)

respectively. The actual observations are then placed in the remaining cells (value area) so that

they share the row or column with their respective conditions. The names row and column area

are a result of the fact, that the values there apply to the whole row and column respectively. The

cell in the first row and column serves no distinct purpose but is used for column titles of the row

and column area, the overall table title or left empty altogether.

The benefits of this approach are the reduced redundancy and thus the more compact display.

Furthermore, additional columns or rows can be appended to also include aggregates of the given

data like, e.g., the sum or average for certain conditions. The label ALL in the row or column area

1Credited to Pito Salas by [132] and confirmed by himself [web79].

78



6.1. RELATED WORK

Country Year Olive prod. (t)

Greece 2014 206.58

Greece 2015 304.1

Spain 2014 434.81

Spain 2015 540.48

Olive prod. (t)
Country

Year Greece Spain ALL

2014

2015

ALL

206.58 434.81 641.39

304.1 540.48 844.58

510.68 975.29 1485.97

row area

column area

value area

Figure 6.2: Transformation of a plain table to a pivot table. Naming based on [132]; Data: [data1].

represents the aggregate over all possible values of the respective aspect. By the same logic the

cell, that is addressed by ALL in both row and column area, represents the aggregate over all

values of that table.

The basic approach of pivot tables is extended by Gray et al. in [82]. Columns are distinguished

into dimensions and measurements or facts. Dimensions characterize the conditions of an

observation, while measurements describe the actual observations. Where pivot tables used

the dimension columns to span a two-dimensional area, here a multi-dimensional cube, also

called OLAP2 cube, is created. Each dimension of that cube represents one-dimensional column

of the data and the actual cells within the cube are filled with the respective values from the

measurement columns. An example of such an OLAP cube is given in Figure 6.3. The values of

the dimensions can be part of a hierarchy. If a column describes, e.g., a location of some sort, then

the levels of the hierarchy may be city → region → country → continent. This allows for easier

access to subsets of the data, so in the given example one can easily query for the data relating

to a single region without having to explicitly state which cities are actually part of that region.

Like in pivot tables most aggregates are precomputed to speed up analytical queries.

2On-Line Analytical Processing [133].

79



CHAPTER 6. DATAMODEL - TABLES

Country Year Usage Olive prod. (t)

Greece 2014 table use 206.58

Greece 2014 oil 1574.48

Spain 2014 table use 434.81

… … … …

Country

Ye
ar

Usag
e

Greece Spain ALL

2014

2015

ALL

table use

oil

ALL

dimensions

measurement
aggregation

Figure 6.3: Transformation of a plain table to an OLAP cube; including precomputed aggregations,
but omitting dimension hierarchies;
Data: Eurostat [web1] dataset [data1].

80



6.1. RELATED WORK

SDMX3 [40, web12] also uses the OLAP cube as its data model. However, SDMX allows

for just a single measurement column, which is labeled by OBS_VALUE. To allow for multiple

measurements within one dataset there is a specialized dimension called measure dimension [134,

Section 4.3.1.1]. The possible values of this dimension have to be defined in a concept scheme

and specify the kind of measurement given in this record. Another addition to the basic data

model is attributes. They provide the metadata for the given dataset like its title or the unit of

measurement used. It is also possible to create so-called groups to attach attributes to just a

subset of the data.

Another way to represent tabular data is in a relational model as described by Codd [130].

Data structures are captured in relations, which are defined as a subset of the Cartesian product

over a number of sets. These sets are also called domains and correspond to the columns of the

tabular model. They contain all possible values that could appear in the respective column. The

set of tuples in a relation constitute the records or rows in a table. There is no inherent order for

the tuples and due to the set nature of a relation, there can be no duplicates within a relation.

A subset of the domains of one relation that uniquely identify a record is called primary keys.

In modern relational databases, there can only be one primary key per relation. However, in

his initial publication, Codd states [130]: “ Whenever a relation has two or more nonredundant

primary keys, one of them is arbitrarily selected and called the primary key of that relation ”.

This implies that there might be multiple primary keys for a single relation in the generic model.

An additional requirement to primary keys is that they do not contain any superfluous domain,

which is not required for the unique identification. Even with this restriction it, is not guaranteed

that there is only one primary key for a given relation. In SQL [81, Section 4.6.5.4] this notion

has somewhat changed: Codd’s primary keys correspond to SQL’s unique constraints. One unique

constraint can be chosen to act as a primary key for a table. Hence, there is at most one primary

key per table.

Using these primary keys a relation is able to cross-reference entries of the same relation or

other relations. Domains referencing the primary key of another tuple are called foreign keys.

Using this technique the redundancy within a dataset can be reduced by moving repeating

patterns in tuples to a separate relation with possibly a short artificial primary key. Instead of

repeating the whole pattern multiple times in the original relation, one can then just reference

the primary key of the newly created relation. A single dataset in general is now represented by

a number of interconnected relations and not as a single monolithic table or cube.

In [50] Wilkinson omits the notion of a tabular data structure of some sort altogether. Further-

more, he states with a reference to Coombs [135] that this notion might even be preventing users

from “noticing meaningful patterns in their data”. Instead, he uses a set of so-called variable

mapping functions, which are required to return a valid value for each index. The returned value

is not restricted to be one-dimensional, but can also be a vector of multiple values. In this case,

3Statistical Data and Metadata eXchange.

81



CHAPTER 6. DATAMODEL - TABLES

the respective variable is called p-dimensional, where p is the number of elements within the

returned vector. As a consequence, the data model basically consists of a set of objects denoting

the actual data and a number of variables given by their variable mapping functions to access

individual data items.

The presented models themselves make almost no assumption with regard to the used data

types. Only columns for which aggregated values are computed are usually assumed to be numeric.

Systems implementing any of these models, however, have to restrict the data types they support.

A detailed discussion of data types can be found in Chapter 5.

Tables and pivot tables are used by spreadsheets like Excel [web31], LibreOffice [web17],

or Google Sheets [web33]. Examples for OLAP systems are Cubes [web80] and Oracle OLAP

[web81]. SQL, as defined in ISO 9075 [81], is based on the relational model, but deviates in

certain aspects. While, e.g., the relational model prohibits duplicates among the rows of one

relation, in SQL the same row can appear multiple times within the same table. Based on SQL a

multitude of implementations has been created including, e.g., MariaDB [web82] and IBM DB2

[web83]. Although there is a common standard, most database systems implement their own

dialect of SQL. This results not only in a different syntax used most of the time but also in the

supported subset of SQL.

6.2 Discussion

Before deciding for or against a specific data model one has to analyze the expected workload and

rate the available options according to that. From the requirements presented in Section 1.1 one

can deduce that there will just very few different kinds of operations on the actual data:

Aggregations Records can be grouped based on some equality criterion. For each group, a single

aggregated record can be calculated (cf. Subsection 13.3.2). A simple example could be a

two-column dataset with hourly measurements of temperature. One could now ask for the

average temperature per day. This would group all records referencing the same day and

then calculate the average over all temperatures within one group. The result would be a

list of records consisting of two values: one stating the day and one the respective average

temperature.

Additions or Updates Based on existing values and a given set of constants for each record a

new value is computed, which is then either appended to the record or replacing an already

existing value within the record. On a table-level this correlates with the creation of a new

column or the update of an existing one. An example here would be the conversion of units

of measurement like, e.g., from degree Celsius to degree Fahrenheit (cf. Chapter 9).

82



6.2. DISCUSSION

Removals Similarly to adding new properties, one can also remove those not needed anymore. If

a certain property just adopts the same value for all records in the dataset, this property

could be removed and the respective value-added as part of the metadata.

Joins Two datasets may be combined based on some equality criteria (cf. Subsection 13.3.3). Here,

the task is twofold: First, matching records from both datasets have to be found. In a second

step, for each pair of matching records, a new record is added to the result, which integrates

the properties of both source records. Due to the equality of some properties, the number

of properties in the resulting record is usually smaller than the sum of properties in both

source records. Following the example, one could want to add precipitation measurements

to the collection of measured temperatures. Both datasets identify their measurements by

a timestamp, which can be used as the equality criterion for the combination. A resulting

record would then use the timestamp from one dataset (which one does not matter, as both

timestamps should be equal) as well as the temperature from the first datasets and the

precipitation from the second one.

Filter The last operation, finally, is filtering the given dataset. Based on constraints for a subset

of properties for each record will be decided whether to remove or keep it. A simple example

would be to narrow down a given dataset to include just values from a specific week while

dropping data for all other dates.

The average distribution over these operations can not be determined beforehand and may

vary considerably between different tasks, so any weighting would be arbitrary and, hence, not

constructive at this point. In consequence, the judgment here will only be qualitative and not

quantitative.

Subsequently, pivot tables will be considered as OLAP cubes of lower dimensionality for

the sake of simplicity. Furthermore, the set characteristics of the relational model increase the

complexity of a possible implementation. This already leads to the situation, that most systems

labeled “relational” in fact just implement the standard defined by SQL and not the actual

relational model, which in turn basically uses the table model as present before. Wilkinson’s

object-oriented approach will place an unnecessary overhead on rather homogeneous data. It may

be an interesting conceptual model but seems unfit for direct implementation. Wrapping each

tuple inside a separate object will consume substantially more memory and storage as opposed to

structures that can exploit the data’s common structure. This leaves two options: the OLAP cube

and a basic table.

83



CHAPTER 6. DATAMODEL - TABLES

The primary goal of OLAP cubes is data analysis [45], so the data structure is quite optimized

for that use case. Even if aggregate values can not be precomputed, the multidimensional

structure allows for easy grouping of values and hence easy computation of aggregates. In

contrast, in a table to compute an aggregate function a system has to traverse the whole table

and collect records per group4.

When adding new columns to an OLAP cube, for each column it has to be determined whether

the respective column is a dimension or a measurement. While adding measurements does

not change the overall structure and thus is rather easy, adding a new dimension requires

restructuring the whole cube. In general, this will also introduce many empty cells, which will

unnecessarily consume memory or make more advanced techniques necessary. In a table on the

other hand adding a new column is a rather simple task in both cases. A similar argument can

be made for removing certain columns.

Joining datasets can be restated as adding new columns to one dataset based on the columns

in the other dataset. Basically, the function to compute a new column is a mere lookup using the

equality criterion in the other dataset. Hence, the argument made for adding columns before also

applies here.

In OLAP cubes filtering a dataset corresponds to extracting a sub-cube by putting constraints

on certain dimensions. In a table, this again requires a full table traversal. For each record, it

has to be decided individually whether it will be part of the result. For filters, that do not only

put constraints on individual columns, but use functions based on multiple columns, the problem

can basically be restated into adding a new column, that includes the resulting value of the filter

function, and then do simple filtering as described above. This approach results again in the

same argument already made for adding columns.

6.3 Approach

As a result of the discussion in Section 6.2, it seems that for the task at hand a table is the data

structure best suited. Although losing out on the performance of aggregation functions, it offers

higher flexibility for most other operations, where OLAP cubes only perform well under certain

conditions. Having decided on the general model in the remainder of this section the details of

the employed model shall be discussed.

Following the approach taken in SQL, within a dataset, the metadata is separated from

actual data. Hence, the actual table consists just of records and has no header row. The metadata

includes besides information about the dataset as a whole also information about each column

present5. For each column, the following aspects are represented within the metadata: the

concept, the role, the data type, and the scale.

4Assuming at this point that there are no index structures that support clustering of values.
5For a comprehensive overview over collected metadata see Chapter 8.

84



6.3. APPROACH

Concept The concept of a column replaces the title as described before. The title is a mere

string created by the dataset author to describe the contents of a column. This gives

way to every kind of ambiguities within a single or between multiple datasets: Usage

of synonyms, abbreviations, and mere typos make integration of datasets quite difficult.

On the other hand, a concept is a link to an entity within the Linked Data Cloud [120].

This way ambiguities about the authors’ intent are removed and datasets can easily be

combined with one another. As those entities are often attributed with labels of different

languages the possible translation of column titles according to users’ preferences is a

welcome side-effect.

Role The role of a column is used according to the distinction between dimension and mea-

surement as used within the OLAP community. This distinction roughly correlates with

dependent and independent variables used in statistics [125]. A dimension (independent

variable) describes the circumstances of an observation and is usually stated by creators

before the actual measurement. On the other hand, measurements (dependent variables)

denote the actual observation. As an example take the continuous observation of tem-

peratures at different locations. The produced dataset will have (at least) three columns:

location, time, and temperature. As values for time and location are fixed by the observer

beforehand, those two columns represent the dimensions of this dataset. In contrast, the

temperature observed states the measurement.

Data Type For each column no matter whether being a dimension or a measurement a data type

is specified. For the discussion of possible data types, refer to Chapter 5.

Scale To interpret numerical values a scale has to be given, which they are measured in. The

same holds true for time values, which need a reference system like the Gregorian Calendar

or the Islamic Calendar. On the other hand, categorical values do not require a specific

reference system. They can use a code list, though, to map from abbreviations used in the

data to actual entities.

Another part of the metadata is inter-column dependencies. A simple example is shown in

Table 6.1. Here, the first two columns form a hierarchy, which associates countries with the

respective continent they are a part of. Other possible relationships are functional transformations

where, e.g., measurements are classified according to some scheme. A simple example would

be a grading scheme where points reached in an exam are mapped to the final grade for that

exam. Knowing such relationships can improve the selection of visualizations and the mapping

of columns to artifacts which will be described in Chapter 11.

85



Continent Country Population
Africa Burundi 11179000
Africa Comoros 788000

. . .
Europe Belarus 9496000
Europe Bulgaria 7150000

. . .

Table 6.1: Example for a hierarchical relationship between columns.
Estimated population in selected countries as of 2015.
Data: [data2].



C
H

A
P

T
E

R

7
VISUALIZATION DESCRIPTION

One of the main objectives of this thesis is to allow users to easily create visualizations. Instead

of having them choose between myriads of possible visualizations, the system shall make valid

suggestions which visualizations might be fitting best for the current dataset (cf. Chapter 11).

However, to do so, the system first needs a formal model of visualizations that is in line with

the data model presented in Chapter 6. This model has to bridge the gap between the rows and

columns of a given dataset and the marks and other visual variables as present in visualizations.

Hence, there is a strong argument, that both models should share their vocabulary wherever

possible. This especially includes the aforementioned general data structure and used data types.

In literature, there are two general approaches to this problem: A constructive one and

a descriptive, monolithic one. The constructive approach starts out from a given dataset and

successively maps its components to separate visual variables, which in conjunction form the

visualization. In the process, several transformations are applied to make one fit the other.

Representatives of this approach are, e.g., Bertin [49], Wilkinson [50], and Vega [136]. The

monolithic approach takes a given visualization and then describes its various characteristics.

These characteristics include functional properties like required data types as well as non-

functional ones like the goal that is pursued. This second approach is used by a variety of sources,

examples being VizAssist [127] or VizBoard [137].

A more hybrid approach is taken by Polaris [80]. While constructive at a first glance, it

significantly reduces the number of options users can choose from. While this loses quite a lot of

the power of arbitrary combinations of components, the risk of creating an inferior result also

diminishes.

87



CHAPTER 7. VISUALIZATION DESCRIPTION

This chapter will present the aforementioned approaches in detail and discuss their applica-

bility to the work at hand. Afterward, the approach used throughout this work will be explained.

Finally, some examples will be given to illustrate the expressiveness of the proposed model and

prepare for the selection process as presented in Chapter 11.

7.1 Related Work

One of the most influential contributions to formalizing statistical visualizations is Semiology
of Graphics - Diagrams, Networks, Maps by Bertin [49]. Based on Bertin’s experience as

a cartographer and geographer, it provided the foundation to formalize the visualization of

(geospatial) data. At some points, this includes precise details on the extent of some properties,

that are not justified any further (cf., e.g., Table 7.2). Limiting the scope to static, planar graphs

“on a sheet of white paper”, six so-called visual variables1 are identified (cf. Figure 7.1). The

restriction to two dimensions especially excludes any kind of motion and a third spatial dimension

like a relief. Together with the two planar dimensions, the following visual variables form the

basis of a map2 or statistical graph.

Size relates to the area a mark is occupying.

Value describes the lightness of the coloring.

Texture3 denotes the filling of an area with repeating, geometrical shapes.

Color specifies the hue of an area’s filling.

Orientation refers to the primary direction of a mark or its texture.

Shape corresponds to the geometric shape of a mark.

Each variable has one of three different kinds of implantations: point, line, or area. Although

points and lines, in theory, cover no area, in practice they occupy a certain space in order to be

visible. Some of the expressive power of a retinal variable differs according to the implantation

1The term retinal variables is used as a synonym.
2Bertin addressed cartographers in the first place, so most definitions and examples are geared towards that audience.

However, he claims that the statements can be generalized to all graphical systems.
3The original French book emphasizes the distinction between texture (French: grain) and pattern (French: texture).

Consider the following example.

A B C

While A and B share the same pattern, they differ in texture. C features a different pattern to A and B. The
notion for pattern comes down to which basic shapes were used (here rectangles vs. triangles) and how they are
arranged.

88



7.1. RELATED WORK

2 × Position

Size

Value

Texture

Color

Orientation

Shape

Figure 7.1: Semiology of Graphics: Retinal variables (after [49]).

used to represent it. This expressive power is called level of organization by Bertin. To classify

the retinal variables accordingly, he first considers only variations within one variable and no

combinations thereof.

His first level of variables is called associative (≡). This represents the ability of users to

group different variations of a variable. An observer is able to identify all marks belonging to

the same family. A particular property of an associative variable is, that variations within that

variable alone do not cause the marks to appear with different degrees of “power”. While all other

visual variables are considered associative, size and value are not.

If a variable is selective ( ̸=), it is part of Bertin’s second level. An observer should be able to

isolate all marks of the same category easily within a graph. The goal is to (virtually) remove all

other categories and consider only the distribution of a single one. It is argued that for shape too

much cognitive effort is required to differentiate between different variants. Hence, shape is not

deemed selective, while all other variables are.

Ordered variables (O) form the third level. Their variations form a universally recognizable

sequence. Given three variations A, B, and C, this sequence might either be A, B, C or C, B, A,

but never, e.g., B, A, C. Size, value, and texture are considered ordered.

The fourth level consists of variables that are quantitative (Q). An observer may easily

estimate the ratio between two variations of such a variable. Only size meets this requirement.

89



CHAPTER 7. VISUALIZATION DESCRIPTION

A summary of the membership for all retinal variables to the levels of organization is given

in Table 7.1. Planar dimensions are the only variables that satisfy the requirements for all levels.

Plan. Dim. Size Value Texture Color Orient. Shape
Selective      G# #

Associative  # #     

Ordered     # # #

Quantitative   # # # # #

Table 7.1: Semiology of Graphics: Levels of organization for retinal variables (after [49]);
Sorted in descending order from left to right.
Requirements met:  . . . yes; G# . . . partially; # . . . no.

The difference according to implantation becomes relevant at two points: First, a variation

in orientation for a variable represented by an area implantation has a greatly diminished

selectivity and thus is discarded. This leaves orientation with only partial support for selective

variables.

The second aspect is the length of a variable. This property is used to describe the number

of variations for a variable that can be used in a graph. While this number is unlimited for

associative, ordered, and quantitative perception, it is rather small for selective purposes. Here, it

describes the maximum number of categories an observer will be able to distinguish. The length

for each selective variable also depends on the implantation used. Table 7.2 lists the lengths of

variables as suggested by Bertin. However, no reasoning for their specific values is given, so they

have to be attributed to his personal experience as a cartographer.

Size Value Texture Color Orientation
Point 4 3 2 7 4
Line 4 4 4 7 2
Area 5 5 5 8

Table 7.2: Semiology of Graphics: Length of retinal variables by implantation (after [49]).

The combination of retinal variables within one mark is split into two groups: Redundant

and meaningful combinations (cf. Figure 7.2). In a redundant combination, two or more retinal

variables are used to encode the same value. This allows observers to distinguish different values

more easily as opposed to the representation by a single retinal variable. The population of

French regions in Figure 7.2(a), e.g., can be represented by both size and texture of the mark

thus lowering the cognitive effort to understand the visualization. With respect to the level of

organization, the combination of retinal variables retains the highest level of its components with

the exception of the size-value combination. While size having higher level is labeled quantitative

and value is not, their combination remains not quantitative.

90



7.1. RELATED WORK

A meaningful combination of retinal variables, on the other hand, encodes two or more

different values within the same mark. It is noted, that this is used to highlight correlations

within the underlying data. In this case, either size or value or both of them are part of the

combination.

3mio 6mio 9mio

Population

+

2.5mio 5mio 7.5mio 10mio

Population

=

(a) Redundant combination of retinal variables: size and texture.

3mio 6mio 9mio

Population

+

250 300 350 400

Physicians or doctors
per 100.000 inhabitants

=

(b) Meaningful combination of retinal variables: size and texture.

Figure 7.2: Semiology of Graphics: Combination of retinal variables (after [49]).
Data: [data3, data4]; Map: [data5].

91



CHAPTER 7. VISUALIZATION DESCRIPTION

While Bertin [49] focuses on retinal variables and best practices in their application, Wilkinson

in The Grammar of Graphics describes “grammatical rules for creating perceivable graphs”

[50] which resemble a workflow from a given dataset to its visual representation. The process is

divided into six steps:

DATA maps the input data to variables that can be used later on.

TRANS applies transformations to the variables.

SCALE defines the structure of the axis.

COORD applies transformations to the geometric representations.

ELEMENT describes the mapping of variables to visual artifacts.

GUIDE allows adding other explanatory elements to the graph.

For each of these steps, a set of functions is defined that are used to describe the necessary

operations. Furthermore, each step but the last has a default function to be applied. If this default

function is used in a particular step, the respective step description can be omitted from the rule

as in this case the default function is implicitly used. An example for a graph and the respective

description is given in Figure 7.3.

USA

Population (m
illions)

New
 York

Chic
ag

o

Los 
Ang

ele
s

Lim
a

Melb
ou

rne Pari
s

Mosc
ow

Berl
in

Lon
do

n

Toro
nto

Man
ila

Mad
rid

Bag
da

d

40

35

30

25

20

15

10

5

0

World

Population (m
illions)

Tok
yo

Mum
ba

i

Osak
a-K

ob
e

Lag
os

Man
ila

Mosc
ow Pari

s

Lon
do

n
Lim

a

Bag
da

d

Mad
rid

Toro
nto

Melb
ou

rne
Berl

in

40

35

30

25

20

15

10

5

0

2015 2010 1980

ELEMENT: point( position( (city/group) * (pop1980+pop2000+pop2015) ) )

Figure 7.3: Grammar of Graphics: Example graph and description4 (after [50]).
Data: [data6, data7, data8].

For DATA the default operation is the identity, which does not modify the data at all and

can be used to map tabular data in a column-to-variable way. For other types like contents of an

object-oriented database one has to specify how values for a certain variable are created. Possible
4The cities in the left visualization refer indeed to cities within the USA, which share their names with internationally

more known counterparts. Both visualizations given here are part of an extended argument, that argues on the
use of both Blend and Nest operators, which will be explained later.

92



7.1. RELATED WORK

functions include traversing a matrix in some way to generate values for a single variable. This

mapping can, e.g., be a walk row by row, such that the index k is given by the row index i and the

column index j as shown in Equation 7.1, where n denotes the total number of columns.

(7.1) k = n∗ (i−1)+ j

In TRANS the default operation is again the identity. Besides this, one can use basically

any mathematical or statistical function to transform a variable on a case-by-case basis. The

transformation function might either use one or multiple other variables to compute its results.

In this step, there is also the option to sort the entries according to one or multiple variables

which comes in handy to highlight certain trends in the data.

The mapping of variables to axes is done in SCALE. For nominal and ordinal data this results

in an equidistant mapping of the values on the respective axis. In the latter case, this also adheres

to the given order. For numerical variables there are much more options: Values are split across

the given axis proportionally to their size. In addition, one is able to specify the start and end of

the scale, which default to the minimum and maximum of the values. This results in a linear

scale which is used if no other scale is given. One can, however, apply a transformation function

on the values before being distributed on the axis. Examples are given in Table 7.3. Using these

transformations it is possible to spread the given measurement values more evenly across the

axis or highlight a certain distribution.

Transformation Example

Ordinal -
red orange yellow green blue violet

Linear x −→ x
0 1 2 3 4 5

Logarithmic x −→ log(x)
0 1 10 100 1000 10000

Power x −→ xa
0 1 4 9 16 25

Logit5 x −→ log( x
1−x )

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Table 7.3: Grammar of Graphics: Scaling functions (after [50]).

Operations done in COORD define the geometrical properties of the graph. This is not

limited to choosing a proper coordinate system like Cartesian or polar, but can also involve other

transformations like reflection or stretching. The default coordinate system used is a simple

rectangular Cartesian coordinate system with no other modifications applied. Also possible is

the arrangement of multiple graphs in a table or matrix. This way, more than two variables

can be encoded as position within a planar graph. While some of the variables are used to

structure the matrix, the remaining positional variables form the actual graph. This is done using

5Only defined within the interval (0,1).

93



CHAPTER 7. VISUALIZATION DESCRIPTION

Form Surface Motion Sound Text
position color direction tone label
size hue speed volume
shape brightness acceleration rhythm
polygon saturation voice
glyph texture
image pattern

rotation granularity
resolution orientation

blur
transparency

Table 7.4: Grammar of Graphics: Aesthetic Attributes (from [50]).

different operators, which shall be discussed later. An example partition is given in Figure 7.3.

Here, the x-axis is split into two partitions depending on the world region (group). Within that

partition, the respective graphs are drawn according to the remaining definition. Besides these

planar transformations, Wilkinson also discusses the different options when projecting a higher

dimensional (usually 3-dimensional) object onto the plane.

The transformations of TRANS, SCALE and COORD seem similar. However, it is argued that

they work on different objects (variables, dimensions, and coordinates) and that this separation

helps to distinguish between statistical and geometric operations.

In ELEMENT variables are mapped to visual artifacts, which are called aesthetic attributes

(cf. retinal or visual variables in [49]). The aesthetic attributes used are partly derived from

Bertin [49] but were reorganized and extended. A list of attributes discussed in [50] is given in

Table 7.4.

Due to the limitations of a printed medium, only form, surface, and text are used throughout

the book. The position attribute has a special role: While all other attributes can only be used

to represent a single variable, position can visualize multiple variables. Besides mapping to the

two planar dimensions, one can also partition the given area into a matrix as described before.

To facilitate this partitioning an algebra is developed whose three operators describe how to

merge variables. Blend (+) is used to combine the contents of two variables very much like a

union-statement in databases. Unlike the other operators, Blend will display both variables

within the same cell of the matrix. Cross (∗) creates the Cartesian product of values from both

variables. Nest ( / ) is similar to cross, but only retains value combinations that can actually be

found within the underlying data. Using a cross operator one can, e.g., map two variables to the x

and y-axis of a graph as shown in Figure 7.3.

GUIDE, finally, allows for adding legends to a graph and adapt the axes’ labeling. Variables

that are not encoded by position will by default create a legend to allow observers to decode

the given graph. Legends include a list of all values or in case of continuous variables a subset

thereof and a mapping to the visual artifact representing that particular value. Axes serve the

94



7.1. RELATED WORK

same purpose for variables encoded in position. One is able to change the formatting of the labels

or apply geometric transformations like stretching and translation. The final guides mentioned

are so-called annotation guides, which allow adding generic descriptions. Examples are a title or

highlighting specific parts of the graph.

Tableau [web25] has already been described in Chapter 3. So at this point, only those aspects

shall be repeated that are relevant to a visualization description. As later publications lack the

necessary detail, the description will be based on [80, 138] mostly, which describe Tableau’s

predecessor Polaris. The specification later resulted in VizQL – Tableau’s internal description

language. Again, however, very little is publicly known as there seems to be only one very

short publication on the topic [139]. Both systems, Polaris and Tableau, use an OLAP cube (cf.

Section 6.1) as their underlying data model. In particular, some operations rely on a hierarchy

over dimensional values to be present.

Polaris defines an algebra to split the given area of a visualization in a tabular fashion6.

Possibly nested rows and columns are used to encode the values for some dimensions similar to a

pivot table (see Figure 7.4; cf. Section 6.1). Users can either map a single dimension to one of the

axes or give an expression using four operators (and parenthesis) to combine multiple dimensions.

These operators include the ones defined by Wilkinson [50] and are defined as set operations.

Cross (×)7 and Nest ( / ) remain unchanged. Wilkinson’s Blend is replaced by Concatenation (+)

to allow multiple expressions side by side not necessarily sharing the same data types. Dot ( . ) is

added as a new operator. It is similar to Nest but is aware of existing hierarchies.

To illustrate the difference the following example is given: Assume a fact table that records

revenue by Quarter and Month. This fact table has entries for all months but is missing one for

November. Nest will only use values existing in the fact table resulting in 11 different entries.

(7.2) Quarter / Month= { (1, Jan), (2,Feb), . . . , (4,Oct), (4,Dec) }

Dot, on the other hand, knows about the hierarchy between Quarter and Month and will add the

missing entry totaling 12 entries.

(7.3) Quarter . Month= { (1, Jan), (1,Feb), . . . , (4,Oct), (4, Nov), (4,Dec) }

In [138] it is claimed, that Nest requires a scan over the fact table, whereas Dot only has to

traverse the much smaller dimension tables. Hence, for explicitly modeled hierarchies Dot will

also have a performance advantage over Nest.

For all operators, the algebraic properties are explored. This leads to the following equations

and properties:

6A table with just a single row and column results in a single visualization as defined by the other approaches.
7The representing symbol, however, has changed.

95



CHAPTER 7. VISUALIZATION DESCRIPTION

Associativity

( A + B ) + C = A + ( B + C )(7.4)

( A . B ) . C = A . ( B . C )

(A × B ) × C = A × ( B × C )

( A / B ) / C = A / ( B / C )

Commutativity

A + B = B + A(7.5)

A × B = B × A

A / B = B / A

Distributivity

A × ( B + C ) = (A × B ) + ( A × C )(7.6)

A / ( B + C ) = (A / B ) + ( A / C )

Figure 7.4: Polaris: Example of a visualization (from [138]).
Defining expressions for columns and rows as annotations.

96



7.1. RELATED WORK

Besides the planar partitioning, Polaris also allows for multiple layers8. Layers share the

definition of their table structure as specified above but can refer to different data sources. All

specified layers are then superimposed back-to-front to form the final visualization.

After this first partitioning step, the graphical elements within a cell (called “pane”) have to

be specified. Here users can choose between three mark types, which resemble Bertin’s concept of

implantation [49]. For each mark type also options to encode additional data are given.

Point marks represent single tuples. Additional data can be encoded in shape and size. Examples

are text, shapes, and icons9.

Line marks encode ordered sets of tuples. Points representing each individual tuple are connected

in order. Additional data may be encoded in the fill pattern of the line. Line and Gantt

charts are examples of this mark type.

Area marks are used for ordered sets of tuples. The points encoded by tuples are connected

(including the first and last point) to form the boundary of an area. Additional data can be

encoded in the fill pattern and the color of the area. Examples are area charts and polygons

in maps.

Two other components of the specification are Group and Sort order. Group defines the level of

detail with regard to the respective dimensions’ hierarchies. In the case of line or area marks,

this also joins tuples to be represented by the same mark. Sort order, on the other hand, defines

the ordering of tuples as required by line and area marks.

In conjunction with the two spatial components, these – in total five – components (X, Y,

Mark, Group, and Sort order) form the visual specification. The actual visualization used is then

based on the type and number of fields assigned to the spatial components and the mark type.

The fields’ types (cf. Chapter 510) hereby induce a classification of the possible visualizations

as given in Figure 7.5. Within each class, the visualization is given by the mark type. In an

ordinal-quantitative pane, e.g., an area mark type will lead to a bar chart, whereas a line mark

type leads to a line chart.

Finally, additional variables can be encoded in visual properties. As already mentioned this

encoding is dependent on the mark type. In general, Polaris uses five visual properties: Position,

color, shape, size, and rotation (orientation). This constitutes a subset of the properties identified

by Bertin [49] and Wilkinson [50] (cf. Table 7.8). The definition of each visual property is also

mark-dependent. Shape, for example, refers to the external shape of the mark of a point mark,

8This corresponds to Wilkinson’s Blend operator.
9Shapes are defined here as “points with a varying shape encoding”, whereas icons are “fixed sized marks with shape

encoded as images”.
10In contrast to later works, categorical and ordinal types are subsumed as ordinal here. Categorical variables are

sorted lexicographically to be displayed on the axes.

97



CHAPTER 7. VISUALIZATION DESCRIPTION

Figure 7.5: Polaris: Classes of visualizations (from [138]).
Ordinal (O), independent (Q i), and dependent quantitative (Qd) variable types.

whereas for line and area marks the fill pattern is described. Similarly, size and rotation have

mark-dependent definitions. It is reasoned, that these definitions “simplify the encoding system”

and prevent “nonsensical encodings”.

In VizAssist [127, web84] each visualization is described as a collection of visual attributes.

Each of those attributes has four properties:

Visual Type Roughly corresponding to Bertin’s visual variables ([49], cf. Figure 7.1), although

not explicitly referred to. See Tables 7.5 and 7.6 for examples.

Data Type Type of values that can be used for this attribute. Refer to Section 5.1 or Tables 7.5

and 7.6 for a complete list.

Maximum Number of Values Number of values that can efficiently be rendered by this attribute.

It is stated that for the visual type color hue typically 10 distinct values can be represented.

Importance A value between zero and one hundred to describe whether this attribute is manda-

tory or optional to create the visualization.

Objective Weight For each of the predefined objectives a value between zero and one hundred is

given. This value represents how well the visualization can achieve the respective objective.

The importance vi of a visual attribute is computed by Equation 7.7. VAi denotes the visual

attribute, while vti and dti represent the visual type and data type accordingly. MatGL is the

degree how well a visual type can render the given data type. This mapping is hard-coded using

the values given in Tables 7.5 and 7.6. Mandatory( VAi ) is a Boolean value that describes

whether the respective attribute is mandatory or optional for the given visualization. This

classification into mandatory and optional is continued in the overall value vi: Values above 50

identify mandatory visual attributes, while values below 50 mark optional ones.

98



7.1. RELATED WORK

Numeric Ordinal Nominal
Position 100 100 100

Length/Height 95 65 60
Angle 90 60 55
Slope 85 55 50

Area/Size 80 50 45
Volume 75 45 40
Density 70 95 75

Color Saturation 65 90 70
Color Hue 60 85 95
Texture 55 80 90

Connection 50 75 85
Containment 45 70 80

Shape 40 40 65

Table 7.5: VizAssist: Mapping visual type (rows) and data type (columns) to MatGL (from [127]).

Visual Type Data Type MatGL

Time Axis Time 100
Image ImageURL 100

URL URL 100
Connection Source/Target 100

Country Country 100
Label (any data type) 100

Table 7.6: VizAssist: MatGL values for special data types (from [127]; cf. Section 5.1).

(7.7) vi = 50∗Mandatory( VAi )+ MatGL(vti,dti)
2

The objective weight has to be given by the visualization expert who adds the respective

visualization. Objectives are drawn from a hierarchical list, which the authors created after

literature review and personal experience (cf. Figure 7.6).

Table 7.7 shows the visualization model for a two-dimensional scatter plot as given in

VizAssist. The marks within the plot are drawn as two-dimensional bars, whose length is given

by the attribute L. The coordinates for each of those bars is given by X and Y respectively. The

final visual attribute is the color of the bars given by C. One can see that only two attributes X

and Y are mandatory, while L and C are marked optional. Furthermore; it is stated that at most

2000 different values can be mapped for X , Y , and L while the attribute C can only handle up to

10 distinct values. This example omits the associated objective weights.

99



CHAPTER 7. VISUALIZATION DESCRIPTION

Set your objectives

What do you want to do with
your data?

I have no idea, so please make me
some suggestions.

My objectives are not listed below.
I choose from the list below.

Data mining tasks

Analyze
a class attribute (nominal/ordinal values)
a measure (numeric values)

Cluster
data items
attributes
time series
nodes
geographical locations
images

Discover
concepts (description)
similar data items
temporal patterns
outliers
relational patterns
geographical patterns

Correlate
attributes
time series

Compare
data items
attributes
time series

Properties of visualizations

Select
data
attributes

Label
data
attributes

Zoom
data
attributes

Reorganize
data
attributes

View
overview
details

Filter
data
attributes

PREVIOUS 0 1 2 3 4 5 6 NEXT

Figure 7.6: VizAssist: Selection of Objectives (from [127]).

Visual Attr. Visual Type Data Type Importance Max. Number of Values
X position numeric 100 2000
Y position numeric 100 2000
L length numeric 47.5 2000
C color hue nominal 47.5 10

Table 7.7: VizAssist: Visualization model for a two-dimensional scatter plot (from [127]).

7.2 Discussion

The common ground for all presented approaches is the mapping of input variables to the visual

variables of the visualization. The subset of visual variables that may be used for that purpose,

however, varies as shown in Table 7.8.

A mostly neglected aspect is the interplay of multiple visual variables within one visualization.

While Bertin [49] at least mentions and briefly discusses the combination of variables, this context

is lost in the other presented approaches. Consider the charts given in Figure 7.7. Both chart

types share all properties, but the used coordinate system (polar coordinates for spider charts;

Cartesian coordinates for parallel coordinates). Yet they differ in the number of tuples that can

be displayed in a meaningful way.

100



7.2. DISCUSSION

Bertin
[49]

Wilkinson
[50]

Polaris
[80]

VizAssist
[127]

Position Position Position Position
Color Hue Color Hue
Value Saturation Saturation

Brightness
Shape Shape Shape Shape

Pattern
Size Size Size Size

Texture Grain Texture
Orientation Orientation Rotation Angle

Rotation
Blur Slope

Transparency Density
Direction Connection

Speed Containmemt
. . . Image

URL
Label

. . .

Table 7.8: Comparison of visual variables (after [80]).

Bertin [49] gives maximum numbers of values that can be represented by a certain visual

variable (and its implantation). These numbers, however, are just given per single visual variable.

In general, this seems to be insufficient as can be seen in the given counter-example. Here, one

has to consider not only the single visual variable but also its context and interplay with other

used variables.

Furthermore, a singular fixed value is problematic even when given per visualization as done

in VizAssist [127]. It induces a hard cut between “applicable” and “non-applicable”, where in

reality it is most often a smooth transition. In other words, referring to Table 7.7: Why is a scatter

plot with two thousand values possible, but two thousand and one values are too much?

An option to extend the number of applicable variables to a visualization is to embed one

visualization within another. The operators defined by Wilkinson [50] and within Polaris [80]

allow splitting the given area into multiple panes. Polaris is more general at this point: Wilkin-

son only allows splitting into similar visualization types (i.e. all panes use the same type of

visualization although applied to different datasets). Polaris, on the other hand, allows for each

pane to have a different visualization (cf. Figure 7.4). Furthermore, Polaris introduced the Dot

operator, which includes information that is not explicitly included in the data itself but has to be

gathered elsewhere. As Polaris works on an OLAP cube, the information can be obtained from

101



CHAPTER 7. VISUALIZATION DESCRIPTION

Apples

Cherries

Pears

Oranges

Tomatoes

Cucumbers

Carrots

Onions

(a) Spider Chart: Few tuples (2).

Ap
ple
s

Ch
err
ies

Pe
ars

Or
an
ge
s

To
ma
toe
s

Cu
cu
mb
ers

Ca
rro
ts

On
ion
s

(b) Parallel Coordinates: Few tuples (2).

Apples

Cherries

Pears

Oranges

Tomatoes

Cucumbers

Carrots

Onions

(c) Spider Chart: Multiple tuples (26).

Ap
ple
s

Ch
err
ies

Pe
ars

Or
an
ge
s

To
ma
toe
s

Cu
cu
mb
ers

Ca
rro
ts

On
ion
s

(d) Parallel Coordinates: Multiple tuples (26).

Eastern Europe Northern Europe Southern Europe Western Europe

Figure 7.7: Influence of chosen coordinate system on maximum number of tuples displayable.
Number of tuples in (c) and (d) determined by availability of data.
Data: [data9, data10, data11]; Classification: Eurovoc [data12].

102



7.2. DISCUSSION

 White
 Black
 Hispanic
 Asian
 American Indian/Alaska Native
 Native Hawaiian/Other Pacific Islander
 N/A

Figure 7.8: Nested visualization (Pie chart in map).
Data: [data13] via Kaiser Family Foundation [web85]; Map: [data14].

different hierarchy levels within the dimension tables. Both approaches, however, are limited

to partitioning the given canvas in a tabular fashion. It is not possible to define other possible

nested visualizations like the one given in Figure 7.8, where pie charts are nested within a map.

The limitation for rectangular layouts in Polaris extends beyond the partitioning of the

given canvas. Within the Polaris’ formalism, one can not create visualizations that are based

on, e.g., polar coordinates like pie or sunburst charts. It is not clear if a coordinate system in

addition to the pane visual attributes could remedy this situation. One would need to find suitable

visualizations for every combination of mark type and class of visualization as given in Figure 7.5.

In contrast to the other approaches presented, VizAssist [127] includes an objective weight.

Objectives describe possible goals or intentions of users. While this is a valuable addition to

the description, it leaves room for subjective bias. The weights are assigned by human experts

and are not derived by a systematic analysis of their usage in the wild. The latter might be

better justified and could also reveal some contextual differences: Some visualization might only

support a certain objective within a certain domain, while in others that visualization might be

less appropriate if at all.

The final argument between the presented approaches is about their complexity and expres-

sive power. Wilkinson’s workflows [50] seem to be the most expressive. As argued before, however,

in their current form they lack the means to describe nested visualizations in general. Further-

more, there is no measure which of the numerous possible combinations lead to meaningful

visualizations. Polaris [80] fixes some of the issues here. It is able to describe at least rectangular

layouts for nesting. On the other hand, it sacrifices some of the expressive power in favor of a

103



CHAPTER 7. VISUALIZATION DESCRIPTION

model, that prevents many meaningless visualizations and is better suited to create a direct user

interface. Both these approaches try to describe a visualization by its components. In contrast,

VizAssist [127] sees a visualization as one monolithic block. While this decreases the number of

available visualizations initially, this model can cater better to specific characteristics of certain

visualizations like the maximum number of possible values per visual variable.

7.3 Approach

The major decision in describing visualizations is between a monolithic description per visualiza-

tion like VizAssist [127] or the component-oriented approach as given by Wilkinson [50] and to

some extent Polaris [80]. While the latter requires fewer elements to describe a larger space of

possible visualizations, this space also contains fewer meaningful instances. On the other hand,

the monolithic approach can be seen as a selection of the most appropriate visualizations. As it

also allows for easier handling of characteristics specific to certain visualizations, this approach

is chosen for this work.

The most important part of the description is a list of possible bindings from dataset columns

to components of the visualization. These components roughly correspond to the visual attributes

mentioned before. However, a single visual attribute might be used by different components

within one visualization. One could, e.g., separate the filling color of a mark from that of its border

and bind both to different columns of the source data11. Using a visual attribute multiple times

within the same visualization might confuse observers, though. While the proposed model allows

for such combinations to not restrict the available space of representable visualizations, it is up to

the author of a particular description to decide whether this is appropriate in the particular case.

Chapter 6 discussed the underlying data model for the source data. As each column should

be mapped to one visualization component, some of the columns’ properties reappear within

the visualization description: For each component, both role and data type have to be specified

following the definitions of Chapters 5 and 6. While oftentimes only one column will be bound to a

component, there are instances where multiple ones can be used. This characteristic is captured

by the multiple-flag within the model. In general, the order of bound columns, in this case, is

important as it defines, e.g., the order of hierarchy levels. One example for the use of multiple

columns within the same component is said hierarchy levels in a Sunburst chart (cf. Section 7.3.1).

Here, multiple columns can be bound and will be interpreted as different levels of the hierarchy

used for circles from inner to outer.

Per default, for each component, a binding has to be provided. Alternatively, a component can

be labeled optional. In this case, the visualization can also produce meaningful results without

having any data for this component. In a simple bar chart, the color of the individual bars is an

11Both color-components should use disjoint color scales to avoid ambiguity.

104



7.3. APPROACH

example: The chart is perfectly fine without having a column responsible for the coloring of each

bar – all bars will share the same color. On the other hand, an additional value could be encoded

in that color, making that component optional.

To accommodate for nested visualizations as shown in Figure 7.8, one additional data type

visualization is needed. This allows for visualizations to define placeholders that can be

filled with the descriptions of other visualizations. This technique can also model the tabular

partitioning of the canvas used by Polaris (cf. Figure 7.4) with the exception of Concatenation.

The parent visualization consists of three components: Two to represent the axes of the table and

another one to represent the visualization used within the cells. The nested visualization can be

any other visualization including another level of nesting. For an example of the description in

Figure 7.8 refer to Subsection 7.3.1.

Most visualizations are agnostic with respect to the semantics of the data they show. However,

some require a subset of their components to be of a specific type. If a map is modeled by just one

component to represent regions of the world, columns bound to that component have to include

some kind of location information. As already discussed in Section 6.3, the column description

includes a concept for each column. The visualization component can similarly define a semantic

concept12. In this case, only columns with those concepts can be bound to that component that is

a child of the component’s concept or the concept itself. So for the map example, the component’s

concept could be “geographic region”. This limits the possible bound columns’ concepts to things

like “country” or “city”. If no restricting concept is given, any column’s concept can be matched.

Applied to OWL ontologies [web86], this is equivalent to use owl:Thing as a restricting concept.

As discussed in Section 7.2, not every visualization component can represent an arbitrary

number of distinct values13. The number of distinct values a component can accommodate will be

called its cardinality according to the respective use in literature [140, 141].

However, fixed thresholds for minimum or maximum cardinality oversimplify the issue

oftentimes. More realistic is a specification by a function that takes the number of distinct values

as input and returns a value between zero and one. The returned value represents the suitability

of that component for the given number of distinct values with zero signaling no match and one a

perfect match. Reasonable choices for such a function are sigmoid functions, Heaviside functions,

or the combination of multiple functions. Figure 7.9 shows an example of a combined lower and

upper bound for the cardinality of a component. Here, a Heaviside step function is used for the

lower boundary, while the upper boundary is given by a sigmoid function. The default for this

property is a constant function with a value of one indicating that this component is applicable to

any number of distinct values.

12This concept does not necessarily have to be a named concept, but can also be constructed by, e.g., the intersection or
union of other concepts.

13This restriction only applies to components with a categorical data type. Those bound to numeric or time columns
represent a continuous spectrum, which can not be described by “number of distinct values”.

105



CHAPTER 7. VISUALIZATION DESCRIPTION

0.0

0.5

1.0

0 2 4 6 8 10 12 14

perfect fit

no fit

Figure 7.9: Example suitability function to assess the cardinality of a component.

Besides this component definition, a visualization description also contains user-facing prop-

erties like a human-readable name and a schematic example picture. As these properties are

only used in the user interface, they will be omitted from most examples in the remainder of this

work.

The above description does not enforce a one-to-one relationship between a visualization

and its description. A single visualization might have multiple descriptions to accommodate for

the input data to be modeled in different ways. Consider the table headers given in Table 7.9.

Both datasets essentially describe the same data and could be represented using the same

visualization. However, their column description is different and they can not be mapped to the

same visualization description. To cater to these cases a single visualization can have multiple

component bindings.

Year Gender Avg. Income
. . . . . . . . .

Year
Avg. Income

(male)
Avg. Income

(female)
. . . . . . . . .

Table 7.9: Different models of the same data.

In summary, each visualization description consists of a set of components. Each component,

in turn, has the following properties and possible values14. In addition to the previous discussion,

two more user-facing properties are included as well: a name and a natural language description

of the property.

Name arbitrary human-readable name, e.g., “x−axis”.

Description short text describing the component used, if the component is not sufficiently de-

scribed by its name.

Data Type { categorical, time, quantitative, visualization, . . . }

Role { dim, meas }

Multiple { true, false }; default: false

Optional { true, false }; default: false

14The actual descriptions will use shortened names in most cases.

106



7.3. APPROACH

Semantic Concept arbitrary concept from an ontology; default: owl:Thing

Cardinality ( lower, upper ); default: unbound

The property to describe the cardinality is a tuple. It consists of a lower and an upper

definition to describe the upper and lower boundaries of the acceptable range. Both take values

in form of function definition that can vary between the function types. Two examples for those

functions are given in Listing 7.1.

If the default value for a property is to be used, it will be represented by an underscore _ at

the property’s position or the absence of that property altogether. To improve the readability of a

component’s description, a JSON notation [39] will be adopted as shown in Listing 7.1.

{
dataType : categor ica l ,
ro le : dim ,
opt ional : fa lse ,
concept : _ ,
card ina l i ty : {

lower : {
function : heaviside ,
threshold : 2

}
upper {

function : sigmoid ,
threshold : 10 ,
variance : 2

} } }

Listing 7.1: Notation example: Visualization component. For a visual display of cardinality see
Figure 7.9. Name and human-readable description are omitted.

Listing 7.1 defines a component, that takes a categorical dimension column as an input.

It places no restrictions on the concepts of bound columns. The cardinality has a hard lower

boundary of two, meaning that it is not suitable for a column holding only a single value. The

upper boundary uses a logistic function (x −→ 1
1−ex ) with a center point of 10 and a variance

of 2, which prohibits any value above 12 and uses a smooth transition between 8 and 12 (cf.

Figure 7.9).

107



CHAPTER 7. VISUALIZATION DESCRIPTION

7.3.1 Examples

Subsequently, some example visualizations and their corresponding descriptions are shown. Only

the column descriptions are given, while most of the user-facing model elements like component

descriptions are omitted.

The examples shall highlight each aspect of the described model. Line charts are restricted

in the number of distinct lines (and hence values) they can display. Sunburst diagrams show

hierarchies and as such need multiple columns being bound to the same components. Maps,

finally, can be used as a layout to nest other visualizations as already shown in Figure 7.8.

Sunburst Sunburst charts are used to visualize hierarchies, where the total value of the parent

is given by the sum of values of its children. The measured values are mapped to the size of

circular segments very much like in a traditional pie chart. Each hierarchy level adds another

concentric circle, which is then partitioned according to the respective measured values. In this

example, these hierarchy levels are represented by multiple dimension columns bound to the

Hierarchy component.

Sunburst diagrams are usually part of interactive graphics. As there is oftentimes a large

number of segments especially in the outer rings, some kind of dynamic tooltip is employed as a

replacement of a static legend.

Figure 7.10: Example vis.:
Sunburst
Data: [data15].

{
t i t l e : " sunburst " ,
descr ipt ion : "A sunburst displays a multi=

t iered hierarchy . . . . "
components : [ {

name: " Circular Segment Size " ,
dataType : quantitative ,
ro le : meas

} , {
name: " Hierarchy " ,
dataType : categor ica l ,
ro le : dim ,
multiple : true

} ]
}

Listing 7.2: Column Description:

Sunburst.

108



7.3. APPROACH

Line Chart A line chart is used to visualize time-series. Different points in time are represented

by the x-coordinate in a Cartesian coordinate system. The measured value then determines the

respective y-coordinate. Values of the same series get connected to form a line. If multiple value

series are to be displayed in the same chart, they can be distinguished by the color of their

respective lines.

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
0

50

100

150

200

250

300

350

400

450

500

Greece

Spain

Figure 7.11: Example vis.:
Line Chart.
Data: [data1].

{
t i t l e : " l ine chart " ,
descr ipt ion : "A l ine chart shows timeseries

information that . . . "
components : [ {

name: "X=Axis " ,
dataType : time ,
ro le : dim

} , {
name: "Y=Axis " ,
dataType : quantitative ,
ro le : meas

} , {
name: " Color " ,
dataType : categor ica l ,
ro le : dim
optional : true ,
card ina l i ty : {

upper : {
function : sigmoid ,
threshold : 8 ,
variance : 2

}
}

} ]
}

Listing 7.3: Column Description:

Linechart.

109



CHAPTER 7. VISUALIZATION DESCRIPTION

Map (Nesting) One example of a visualization that allows for nesting is a map as already

shown in Figure 7.8. Here, the map itself has just one component to represent the geographical

entities. The concept restricts possible bindings to wd:Q82794, which denotes the concept for

“geographic region” in Wikidata [121, web69]. This prevents arbitrary columns from being bound

to this component as it would not be able to display any non-geographical, categorical column

like peoples’ names. The other component is basically a placeholder, which can be filled with the

definition of any other visualization.

?

?
? ?

?

?

?
?

?

?

Figure 7.12: Example vis.:
Map (nesting).
Map: [data14].

{
t i t l e : "Map ( nesting ) " ,
descr ipt ion : "A nest map can be used

to d is t r ibute another
v isua l i zat i on geographical ly . . . . "

components : [ {
name: "Map" ,
dataType : categor ica l ,
ro le : dim ,
concept : wd: Q82794 /* geographic region */

} , {
name: " Nested Visual izat ion " ,
dataType : v i sua l i zat ion

} ]
}

Listing 7.4: Column Description:

Map (nesting).

110



C
H

A
P

T
E

R

8
DATASET DESCRIPTION

Metadata denotes “data about data” after the Greek prefix µετά- which translates to “after” and

later adopted the meaning of “one level of abstraction higher” in the English language. Possible

elements of metadata include information about the origin of the dataset like author and author

affiliation or about the structure of the dataset like the number of columns and the respective

headings. The importance of providing high-quality metadata has been emphasized on multiple

occasions [web87, 142, 143, 144].

Despite the consensus that metadata is essential, opinions vary on the extent of such and the

exact boundary between data and metadata. Assume a dataset that contains measurements at a

specific point in time. Does that time value belong to data or metadata? This decision depends on

both the opinion of the dataset creator as well as the intended application – both choices can be

valid in certain contexts.

A prominent use case for metadata is data publication or exchange. While data creators may

have extensive knowledge about their datasets, data consumers will need metadata in order to

understand the data they are given. To ease the transfer of knowledge between creators and

consumers in general a common format, a standard, is needed. Here, a common structure and

possibly vocabulary of terms is defined to help different stakeholders understand datasets also

from other creators. Without such an agreed-upon framework, metadata is bound to succumb to

all kinds of perils in human communication, most notably in the form of misunderstandings [145].

Similarly in automated workflows and machine-to-machine interactions, common standards are

vital to allow interpreting, interlinking, and finally exploiting data coming from different sources

[143].

111



CHAPTER 8. DATASET DESCRIPTION

Beyond the mere understanding of metadata descriptions, standards also regulate their

contents. They represent a community’s consensus on which information is essential to summarize

a dataset, which may be helpful, and which is better left to the primary data. The scope of

metadata entries defined in such standards is determined by its intended audience and thus may

vary widely. If metadata is used to estimate the trustworthiness of a dataset, information about

the authors, their affiliations, and maybe a list of contributing data sources as well as the used

methodology becomes more important. On the other hand, more information on the content is

needed when the goal is to provide useful search capabilities across datasets. A system may use

the title of the dataset as a whole and its columns in particular or the time and location of the

collected data in order to meet a given search query.

In the last example, metadata can also be used to improve performance quite a lot, as scanning

whole datasets or parts thereof can be avoided in favor of searching exclusively in their metadata

descriptions. A search query asking for datasets from a specific period of time may be answered

from metadata alone if the respective metadata includes such information. For other search

queries, it might at least be possible to narrow down the search space quite substantially before

having to scan the remaining datasets. As a consequence, one could argue to include as much

information about the content in the metadata as possible. However, this can easily negate the

biggest technical advantage of a metadata description, which is its small size in comparison to

the actual dataset. Hence, it is important to find the right balance between keeping the metadata

small enough and including all helpful information.

In the remainder of this chapter first, the requirements of this work will be stated. Afterward,

existing approaches to metadata descriptions will be outlined and discussed, before the approach

used throughout this work is presented.

8.1 Requirements

Before reviewing existing approaches to metadata descriptions, at this point, the requirements in

the context of this work will be discussed.

General information The first set of requirements is motivated by having to display basic dataset

properties to the user. This requires a minimum of descriptive information like a title,

publishing entity, and publishing date. That way users can, e.g., make an initial guess on

the trustworthiness of the data or use that as the starting point for further investigations.

Loading Different information is required to load a specific dataset. First of all, a location to

load the data from is needed which most often will just be a simple URL. Sometimes this

might also include a set of user credentials. Along with the location of the dataset, the

system needs to know the type of the respective dataset whether it is a CSV file, a SPARQL

[web88] endpoint, or any other supported type. For a given dataset, there might not only

112



8.2. RELATED WORK

be one way to access it, but several possible locations and types might be offered. Reasons

include distributing traffic or providing files of different types so everybody may choose

the one that is easiest to digest for their respective software. Hence, a dataset description

should be capable to provide multiple locations and types for a single given dataset.

Further down that line, the system has to convert from a dataset’s native model to the one

used internally (cf. Chapter 6). This requires more details on the internal structure like the

columns of the dataset. The most basic information at this point consists just of the data

type of each column as discussed in Chapter 5 so the system can use appropriate parsers.

Search So far the user would need to specify a certain dataset to be loaded as no efficient

search capabilities can be provided. As of now, the system would be limited to provide

key-based search based on titles and publishers but has no information about the actual

contents. For a more advanced approach, each column has to be described by a concept

that describes its respective contents. For example, a column including values like AT, BG,

etc. could be described to hold country names. To prevent fragmentation in the concepts

used for description, either a central vocabulary is needed or provisions have to be made

that different concepts can be related or translated to one another. To further narrow down

the search space, the description should also be able to provide ranges for each column.

That way, search for data might, e.g., be limited to a certain period of time or a range of

measured values.

Integration Finally, when using multiple datasets some information on how to integrate them is

required. One example here is units of measurement: Different authors may have chosen

different units for their measurements. When combining multiple datasets those scales

have to be aligned to get a meaningful result. Similarly, for categorical columns, code lists

can be employed to map between abbreviations. Here, the same restrictions as for column

concepts apply: Either a common vocabulary or means of translation are needed.

8.2 Related Work

As noted before, metadata standards are created by various communities and thus represent a

wide variety of views. On the other hand, they represent the consensus within those communities

and are the results of extensive efforts to distinguish essential from less crucial properties to

describe a dataset. In the following, a selection of metadata standards will be reviewed to gain

an overview of established approaches, identify commonalities among them, and see to which

degree they may satisfy the requirements laid out before. The goal is to inform the decision on

the details of metadata descriptions used throughout this work.

113



CHAPTER 8. DATASET DESCRIPTION

The Dublin Core forms the basis of many metadata standards. Maintained by the Dublin

Core Metadata Initiative (DCMI) [web89], it provides a controlled vocabulary to annotate different

kinds of resources. The vocabulary consists of two levels: The Dublin Core Metadata Element

Set [web90], which contains 15 initially defined terms, and the DCMI Metadata Terms [web91],

which includes all terms currently maintained by the DCMI.

The 15 terms in the Dublin Core Metadata Element Set are the following:

• contributor

• coverage

• creator

• date

• description

• format

• identifier

• language

• publisher

• relation

• rights

• source

• subject

• title

• type

They are described as “broad and generic, usable for describing a wide range of resources”.

The Dublin Core Metadata Element Set has also been adopted into a standard by several

organizations [146, 147, 148].

The DCMI Metadata Terms include the 15 terms of the Dublin Core Metadata Element Set

and 40 additional terms for a total of 55 terms. The additional terms provide a more precise defi-

nition of concepts. The general term description, e.g., now has two subproperties in abstract

and tableOfContents. Similarly, coverage can now be given more precisely as temporal or

spatial. Furthermore, it contains some new terms like rightsHolder or subject.

For the use of Dublin Core elements with RDF datasets, two namespaces have been estab-

lished:

• dcterms - http://purl.org/dc/terms/

• dc - http://purl.org/dc/elements/1.1/

The distinction became necessary when the DMCI in January 2008 specified domains and ranges

for the vocabulary. To not affect the conformance of already existing implementations, the latter

namespace was not changed. Instead, the new dc-namespace was created for all entities including

their respective domain and range definitions. Corresponding terms from the dc-namespace have

been defined as subproperties of their counterparts in the dcterms-namespace. The standard

definition does not demand to use the more comprehensive dcterms-namespace, but encourages

new implementations to use it as they “more fully follow emerging notions of best practice for

machine-processable metadata”.

The Data Catalog Vocabulary (dcat) [149, web92] is an RDF vocabulary to describe govern-

mental data catalogs or rather the datasets within. An overview of its model is given in Figure 8.1.

The main three classes are Catalog, DataSet, and Distribution.

A catalog represents a data catalog containing the metadata of several datasets. Most of

its properties refer to elements of the Dublin Core [150]. The additional properties include for

one the listing of datasets contained and, on the other hand, a specification of the geographical

114

http://purl.org/dc/terms/
http://purl.org/dc/elements/1.1/


8.2. RELATED WORK

foaf:Agent

skos:ConceptScheme skos:Concept

dcat:Resource
dcat:contactPoint
dcat:keyword
dcat:landingPage
dcterms:accessRights
dcterms:conformsTo
dcterms:conformsTo
dcterms:title
dcterms:description
dcterms:license
dcterms:identifier
…
prov:qualifiedAttribution

dcat:Relationship
dcat:hadRole
dcat:relation

dcat:Catalog
foaf:homepage

dcat:CatalogRecord
dcterms:title
dcterms:description
dcterms:issued
dcterms:modified
dcterms:conformsTo

dcat:Distribution
dcterms:title
dcterms:description
dcterms:issued
dcterms:modified
dcterms:license
dcterms:rights
dcat:accessURL
dcat:downloadURL
dcat:mediaType
dcterms:format
dcat:byteSize
…

dcat:Dataset
dcat:distribution
dcat:spatialResolutionInMeters
dcat:temporalResolution
dcat:accrualPeriodicity
dcterms:spatial
dcterms:temporal
prov:wasGeneratedBy

dcat:DataService
dcat:endpointDescription
dcat:endpointURL

dcterms:publisher
dcterms:creator

dcterms:publisher

dcat:themeTaxonomy

skos:inScheme dcat:theme

dcat:qualifiedRelation

dcterms:relation

dcat:record

foaf:primaryTopic

dcterms:hasPart

dcat:dataset

dcat:catalog

dcat:dataset dcat:service
dcat:distribution

Figure 8.1: dcat: Summary of ontology (from [web93]).

coverage of the whole catalog. That coverage is determined by the union of coverages of the

individual datasets. Additionally, it contains a list of keywords, so-called themes, which again is

the aggregation of the individual datasets’ themes.

The datasets themselves are also described by Dublin Core elements like publisher, license,

date of last modification, and the publishing frequency of the dataset. The latter is not connected

to the frequency which is used for taking the measurements. Additional properties are concerned

with both spatial and temporal coverage of the dataset. Besides the aforementioned themes, a

dataset can also contain associated keywords or tags to describe its content.

Finally, instances of the distribution class are tied to the respective datasets. They contain

information about how to access the dataset, its size, and its format.

2020 saw the second version of dcat [web93], depicted in Figure 8.1. It remains backward-

compatible with the first version, but includes new classes and relations and omits some of the

constraints made earlier. The most notable additions and changes are as follows:

• Added dcat:DataService to describe webservices providing data.

• Introduced dcat:Resource as a superclass of dcat:Dataset and dcat:DataService.

115



CHAPTER 8. DATASET DESCRIPTION

• Added Dublin Core terms to describe the spatial and temporal coverage of a resource

(dcterms:Location and dcterms:PeriodOfTime).

• Added dcat:spatialResolutionInMeters and dcat:temporalResolution to specify the

spatial and temporal resolution.

• Relaxed the range of dcat:themeTaxonomy to include vocabularies that are not formalized

as skos:ConceptScheme.

• Added terms from PROV-O ([web94]; cf. Chapter 12) to add the provenance of a dataset.

• Added dcat:Relationship to represent connections among resources.

The Vocabulary of Interlinked Datasets (voiD) [151, web95] is an RDF vocabulary for the

description of RDF-based datasets. The goal is to allow humans and systems to get a rather quick

overview what a specific dataset is about instead of having to run multiple queries in order to get

an understanding of the dataset. One use case mentioned is search engines that can index RDF

datasets much more efficiently using voiD than by analyzing the whole dataset. An overview of

the major involved classes is given in Figure 8.2.

A voiD description covers several aspects of the respective datasets. At first, the general

metadata about the dataset is given as specified in the Dublin Core [150]. This contains infor-

mation about the creator and publisher of the dataset as well as the general subject. For the

subject, it is recommended to use DBpedia [152] resources where possible. Another aspect is how

the dataset is to be accessed. The information given here includes a possible SPARQL endpoint

(void:sparqlEndpoint) or the location of RDF dumps (void:dataDump). If multiple data dumps

are given for a dataset, the defined semantic is to see them as components of the whole dataset

and not as possible alternatives.

There is also the concept of void:Linkset in voiD. A linkset can either be a dataset of its

own or be contained within another dataset. These datasets form the connection between two

datasets (referenced via void:target) using, for example, the owl:sameAs property to define

equality between entities in different datasets. The link between two datasets might also be

directed by, e.g., the foaf:interest property.

The structure of an RDF-graph is not restricted by a schema like in relational databases.

So the structure of the dataset is given by so-called root resources using void:rootResource

or representative example resources using void:exampleResource. Root resources follow the

assumption that most datasets are hierarchical and thus root resources provide a good entry

point to the RDF dataset. Starting from them, the whole dataset can be crawled by recursively

following the given links. Other vocabularies used within a dataset can be defined using the

void:vocabulary property. Within voiD a user is not required to specify all used vocabularies,

but it suggests listing at least those that may be important when issuing queries.

116



8.2. RELATED WORK

void:Dataset
foaf:homepage
foaf:page
dcterms:title
dcterms:description
dcterms:creator
dcterms:publisher
dcterms:subject
…
void:sparqlEndpoint
void:dataDump
void:exampleResource
void:rootResource
void:vocabulary
void:class
void:property
void:triples
void:entities
void:classes
void:properties
…

void:TechnicalFeature
rdfs:label
rdfs:comment
rdfs:seeAlso

void:Linkset
void:target
void:linkPredicate

void:feature

void:subset

void:classPartition
void:propertyPartition

Figure 8.2: voiD: Ontology model (after [web95]).

If not all parts of a dataset share the same attributes, one is able to define partitions of a

dataset using void:subset. The main dataset then contains all global properties and a list of its

subsets. Each subset may have properties specific to it. One way of specifying subsets is to make

restrictions on classes or properties using void:classPartition and void:propertyPartition,

which are both defined as subproperties of void:subset. The partitions are required to have

exactly one property of type void:class or void:property to describe the class or property all

members of that partition share.

Finally to describe the size of a dataset, voiD provides the option to attach the counts of

several components of the artifact like, e.g., void:triples, void:entities, void:classes, or

void:properties.

Data Cubes [web9, 153] is an ontology trying to form a core vocabulary to express multidi-

mensional datasets as RDF resources. The main goal was to unite the ideas formulated in the

SDMX standard [40, web12] with the principles of linked open data [120]. An ontology overview

is given in Figure 8.3.

The underlying data model is the OLAP cube (cf. Section 6.1). Each cell of the cube is modeled

as a qb:Observation with the respective dimension and measurement values as attached

properties. This introduces a lot of redundancies as dimension values are repeated over and over

again. To tackle this problem a qb:Slice can define a subset of observations that share certain

properties. Besides reducing redundancy, slices can also provide a separate URI for a subset of

the data for annotation or external referencing. The standard definition allows for the option to

repeat values defined for the slice at each observation, so queries do not have to traverse through

117



CHAPTER 8. DATASET DESCRIPTION

existing slices. As a generalization of qb:Slice, there is also qb:ObervationGroup which does

not require a shared dimensional value for its member observations. The entirety of observations

— possibly organized into slices or groups — form a qb:DataSet1.

Besides representing the actual observations, Data Cubes also allows defining the dataset

structure using qb:DataStructureDefinition. These definitions may be shared across different

datasets. They follow the design of an OLAP cube in specifying dimensions and measurements as

components. Another component type is attributes which are used to define constant values that

apply to the whole dataset like the unit of measurement. For each component, one can specify the

concept that is represented using qb:concept. If the values of a component are drawn from a

finite set of options, one can mark that component as qb:CodedProperty and attach a code list

of allowed values. For other components, the representation of possible values can be attached

via rdfs:range. Examples are given by XSD Datatypes [web96] or “URIs drawn from a time

reference service”. The presentational order of components can also be encoded in the definition

by using qb:order.

The authors give two primary objectives for data structure definitions: It enables users to

get a quick overview over the given dataset without the need to traverse the actual observations.

Furthermore, the definition can be utilized to verify the observation in terms of both structure

and content.

The Ecological Metadata Language (EML) [154, web97] is an XML-based [web11] meta-

data standard with a primary focus on the ecology domain. As of EML version 2.2.0, it is comprised

of 26 modules each concerned with a different aspect of the metadata description. If a module

lacks certain features for a given domain, one can easily extend that module to cater to the

specific requirements. That way, the standard can be adapted to more specific needs without an

extensive approval process to change it as a whole.

EML is not restricted to tabular data, but also provides modules to deal with citations,

software, or protocols. The following description will, however, focus on the modules involved in

describing tabular data. Likewise, due to the extent of the specification, other aspects may be

generalized or omitted.

A dataset in EML’s notion is “all of the information describing a data collection event” which

is captured in several data entities. Data entities supported are data tables, spatial raster images,

and spatial vectors. If the dataset is stored in a DBMS, one is also able to describe stored

procedures and views. A data table consists of a list of attributes and possibly constraints. An

overview of the involved types and the discussed properties is given in Figure 8.4.

Some properties like coverage (cf. Figure 8.5) or methods may appear on multiple levels

of the hierarchy. Here, the more specific property supersedes the more general one. So the

methods specified on a dataTable level supersede the methods given at the dataset level for

that particular data entity. Other entities will not be affected. Most of the properties relate to

1Contrary to other ontologies like voiD or dcat, Data Cubes capitalizes the “S” here. The reason is the compatibility
with the SDMX element DataSet.

118



8.2. RELATED WORK

qb:ObservationGroup qb:Observation

qb:DataSet

qb:Slice qb:DataStructureDefinition

qb:SliceKey qb:ComponentSpecification
qb:order

skos:Concept

qb:ComponentProperty
rdfs:range

qb:CodedProperty
qb:codelist

qb:DimensionPropertyqb:MeasurePropertyqb:AttributeProperty

qb:observation

qb:dataSet

qb:slice qb:structure

qb:sliceStructure qb:sliceKey qb:component

qb:componentProperty
qb:dimension
qb:attribute
qb:measure

qb:concept

Figure 8.3: Data Cube: Ontology model (from [web9]).

119



CHAPTER 8. DATASET DESCRIPTION

eml:eml
…

eml:access
…

eml:dataset
eml:methods
…

eml:keywordSet
eml:keyword
eml:keywordThesaurus
…

eml:spatialRaster
…

eml:spatialVector
…

eml:otherEntity
…

eml:dataTable
eml:methods
eml:numberOfRecords
…

eml:coverage
…

eml:attributeList
…

eml:constraint
eml:primaryKey
eml:uniqueKey
eml:foreignKey
eml:notNullConstraint
eml:checkConstraint
…

eml:physical
eml:size
eml:authentication
…

eml:dataFormat
eml:externallyDefinedFormat
eml:binaryRasterFormat
…

eml:distribution
…

eml:online
eml:url
eml:connection
…

eml:offline
eml:mediumName
eml:mediumVolume
eml:mediumNote
…

eml:inline
…

eml:textFormat
eml:attributeOrientation
eml:numHeaderLines
eml:numFooterLines
eml:recordDelimiter
…

eml:externallyDefinedFormat
…

eml:binaryRasterFormat
…

Figure 8.4: EML: Schematic overview (after [web97]).

120



8.2. RELATED WORK

eml:coverage
…

eml:temporalCoverage
…

eml:singleDateTime
…

eml:rangeOfDates
eml:begin
eml:end
…

eml:geographicCoverage
…

eml:datasetGPolygon
…

eml:boundingCoordinates
eml:westBoundingCoordinate
eml:eastBoundingCoordinate
eml:northBoundingCoordinate
eml:southBoundingCoordinate
…

eml:taxonomicCoverage
…

eml:taxonomicSystem
…

eml:taxonomicClassification
eml:taxonRankName
eml:taxonRankValue
eml:taxonRankId
…

Figure 8.5: EML: Schematic overview: Coverage (after [web97]).

counterparts of the DCMI Metadata Terms [web91]. However, there are some differences: At the

dataset level, one is able to specify multiple sets of keywords to describe the dataset. Each set

can be linked to a thesaurus from which the keywords were taken. Furthermore, the coverage

can be given in terms of spatial, temporal, and taxonomic coverage. The latter highlighting the

main use case for EML.

For a specific data table, EML includes both physical distribution and logical structure. The

physical distribution contains information about the size of the data entity and authentication

data like the MD5 hash [155] of the entity. The distribution of a data entity can be either online,

offline, or inline. Online data is identified by a URL and further connection information. If the

dataset is given in a textual format like CSV files, one is able to attach quite detailed parsing

instructions including the number of header or footer lines, field lengths, or delimiter characters.

Data included in the metadata specification itself is called inline data. In this case, EML expects

mostly text-based data but has no further provisions. Finally, offline data is characterized by

the distribution medium. Here, no formal point of contact on the distribution level is given, but

a user has to refer to the general contact information on the dataset level. However, there is a

mediumNote property to hold any information not fitting for one of the other properties.

The logical structure is given in form of an attribute list (cf. Figure 8.6). Here, EML follows

the classification of Stevens [124] (cf. Section 5.1), but adds a separate dateTime class. Ordinal

and nominal attributes can either be of type textDomain or enumeratedDomain. While the latter

allows to restrict possible values to a given code list, the former may be restricted by the use of

regular expressions. A unit of measurement is required for interval and ratio attributes. This

121



CHAPTER 8. DATASET DESCRIPTION

eml:attributeList
…

eml:attribute
eml:attributeName
eml:attributeLabel
…

eml:missingValueCode
eml:code
eml:explanation
…

eml:measurementScale
…

eml:dateTime
eml:dateTimePrecision
…

eml:dateTimeDomain
…

eml:bounds
eml:minimum
eml:maximum
…

eml:nominal
…

eml:ordinal
…

eml:interval
…

eml:ratio
…

eml:nonNumericDomain
…

eml:enumeratedDomain
eml:entityCodeList
eml:codeDefinition
eml:externalCodeSet
…

eml:textDomain
eml:definition
eml:pattern
…

eml:unit
eml:standardUnit
eml:customUnit
…

eml:precision
…

eml:numericDomain
eml:minimum
eml:maximum
…

eml:bounds
eml:minimum
eml:maximum
…

Figure 8.6: EML: Schematic overview: AttributeList (after [web97]).

122



8.3. DISCUSSION

unit can either be drawn from the unit list provided by STMML [156] or be provided as a string

following the STMML syntax. The range of values can be given by minimum and maximum

values. Furthermore, one is able to specify the precision of values given as a fraction of the base

unit. Attributes of type dateTime share the option to attach minimum and maximum value as

well as precision. Additionally, a string has to be given to describe the format of values. This

string has to follow the widespread pattern of using predefined symbols like Y , m, or h to indicate

the position and extent of year, month, and hour values within the value string.

For each attribute, one can also list codes used to indicate missing values. Each such code

consists of the actual code as used within the table and a free text explanation like “removed

because of a calibration error” or “measurement not taken”.

On a datatable level, constraints can be added. These include key constraints like defining

primary and foreign key relationships or a notNullConstraint. Furthermore, there is the option

to define arithmetic constraints like “site>10”. This constraint has just the form of a string,

though. The authors suggest using SQL [148] statements, but also allow for any other language.

8.3 Discussion

The first requirement, identified in Section 8.1, is concerned with general metadata. As all

presented approaches support the DCMI Metadata Terms [web91] as part of their dataset

description, no major differences are apparent. Dublin Core is only concerned with a high-level

description of resources. In consequence, it does not comply with any of the other requirements

and, hence, will be excluded from further discussion.

Due to their different purposes, the approaches differ in their capability to specify a dataset’s

location(s). Data Cubes is intended to hold the actual data and not just metadata. Hence, it has

no provisions to specify the location of a dataset. Similarly, voiD is only concerned with RDF

datasets and thus is restricted to either list SPARQL-endpoints or the location of an RDF data

dump. For the latter, it is not possible to include alternative locations or the type of serialization

like Turtle [web63] or RDF/XML [web64]. Within dcat, on the other hand, one is able to attach

multiple distributions to a single dataset. Each of these distributions also has a media-type

property. Both voiD and dcat provide no distinct properties to specify user credentials. If the

credentials consist just of username and password, they can, however, be embedded in the URL

location entry [web98]. Finally, EML has the most extensive description of distributions. Here,

not only multiple locations but also a very detailed data structure — at least for text-based files

or binary raster data — can be attached.

The next requirement is concerned with the specification of a dataset’s structure. Neither

voiD nor dcat provides the means for detailed information in that regard. In Data Cubes the

structure is given as a collection of components where each component is augmented with the

covered concept, the included range, and the distinction in dimension and measurement. On the

123



CHAPTER 8. DATASET DESCRIPTION

other hand, EML classifies its attributes by content type following Stevens [124]. Similar to Data

Cubes for each attribute the range can be given as well as a pattern to validate or parse the

values for that attribute.

With regard to the last requirement of information needed for integration of datasets both

Data Cubes and EML are on par: Both allow for adding units of measurement or referencing of

(standardized) code lists.

A summary is given in Table 8.1. One can easily recognize, that only EML natively supports

all requirements. On the other hand, ontologies, in general, can easily be combined to exploit the

advantages of different modeling approaches and compensate for any missing components. As

previously mentioned it is also possible to extent EML modules, but here the embedding of other

standards requires more effort.

dcat voiD Data Cubes EML
General Information     

Loading – Location  G# #  

Loading – Structure # #   

Search # #   

Integration # #   

Table 8.1: Summary of support for requirements in existing metadata standards.
( . . . fully supported; G#. . . partially supported; #. . . no support)

The final argument is concerned with vocabularies used for identifiers outside of the core

metadata model like the concepts used to describe units. At this point EML is less flexible than

the ontologies: For concepts of columns no code list can be given. But even if code lists can be

specified like for the values within a column, translation between different code lists is completely

out of scope. For ontologies — especially those, that are part of the Linked Data Cloud [120] —

it is a sign of good design to link to other ontologies [web99]. This provides a way to decide for

concepts of different code lists whether they describe the same real-world entity or not.

8.4 Approach

While EML seems as the single best choice with regard to the listed requirements, a combination

of ontologies can yield the same result. Talking about issues of data integration, though, ontolo-

gies outperform the XML-based solution. Using semantic concepts, it becomes much easier to

determine the relationship between different entities. One could by convention adopt semantic

entities for EML as well, but then each resolving task would involve an ontology anyways. So

having the description in an ontology format ab initio avoids another media break.

From the presented ontologies, Data Cubes covers the given requirements best. Hence, it

seems the best choice to base the dataset description upon. Although not explicitly stated as a

use case in the standard description [web9], there is also no statement preventing the use of

124



8.4. APPROACH

an “empty” Data Cube dataset to describe other datasets. An overview of the final structure of

the dataset description is given in Figure 8.7. As previously noted, elements of multiple other

ontologies — namely DCMI Metadata Terms and dcat — have been integrated to account for

missing parts. Where no existing ontology provided suitable elements, new ones were created

under the namespace prefix yavaa.

At the center of the model is, of course, the dataset. A dataset is actually a subclass of both

qb:DataSet and dcat:Dataset. The former is used for attaching an instance of

qb:DataStructureDefinition, while the latter is required by dcat:distribution to add in-

stances of dcat:Distribution. A distribution as of now just consists of a download URL and a

media type. In the future, one could add access credentials or more detailed parsing instructions

following the ideas of EML. Besides structure and distribution, the dataset is also described by

several general metadata properties like dcterms:publisher and dcterms:title.

The structural definition follows the Data Cube standard. The qb:order property is used to

indicate the index of the column in the internal data model (cf. Chapter 6). If there is an order

of columns given in the dataset serialization, qb:order is equal to the respective index, such

that the index of the column in the source and in the internal model are identical. The contents

of a particular column are then given by an instance of one subclass of qb:ComponentProperty.

Here, the distinction between dimensions, measurements, and attributes is kept. Following

the Data Cube standard, a component property is also a subclass of qb:CodedProperty if the

values contained stem from a given code list. A common attribute for all columns no matter the

role is the concept covered. This is represented by a property of type qb:concept linking to a

specific instance of skos:Concept2. If the column is numerical, a unit of measurement is given

by yavaa:hasUnit. Details on the handling of units are given in Chapter 9.

Another important requirement is the description of the range of values. This is implemented

using rdfs:range pointing to either an instance of skos:ConceptScheme or rdfs:Datatype. The

former is used, when the values in the respective column consist of codes that can be mapped

to instances of skos:Concept. If the values are numerical measurements or time values, an

instance of rdfs:Datatype will define the minimum and maximum value using OWL-restrictions

on the respective XSD types [web96].

As the values for date and times have a wide range of possible representations, the respective

columns also include a link to parsing information via yavaa:hasFormat. The definition here is

rather simple and is shown in Figure 8.8. The definition is again based on an OWL-restriction,

this time put on the xsd:string type. Using the xsd:pattern property a regular expression is

used to parse a given string into a date and/or time. To specify which component contributes to

2Defining a common concept for a column is far from easy. Oftentimes, multiple naming schemes are implemented by
different data providers leading to issues of interoperability among them. The author of this thesis is part of a
working group, InteroperAble Descriptions of Observable Property Terminology WG [157, 158, web100] as part of
the Research Data Alliance [web101], to address these issues and provide guidelines to alleviate or even overcome
the impact of such issues. Unfortunately, the results of these efforts did not become available in time and thus
have to be deferred to future work.

125



CHAPTER 8. DATASET DESCRIPTION

which part of the date or time value, each capture group of the regular expression is referenced by

one yavaa:TimeComponent instance. This instance consists of a number referencing the index of

the respective capture group and an interpretation (like minutes or years) of the results matched

by the capture group.

Finally, instances of qb:AttributeProperty are used to encode invariants pertaining to all

entries in a dataset. They are interpreted as an additional virtual columns that are appended to

the existent ones and that hold the same value in their all rows. While such a column could be

made explicit in the dataset itself, it is more storage-efficient to summarize it into an attribute

within the metadata description. Each instance of qb:AttributeProperty is also an instance of

either qb:DimensionProperty or qb:MeasureProperty. It thus assumes all properties regarding

the general description for the virtual column like a code list or the time format depending on

their type. In addition, yavaa:hasValue provides the link to the actual value in the corresponding

virtual column.

The proposed metadata schema fulfills all requirements posed before in Section 8.1. General

information like title or author is given by the properties of qb:DataSet / dcat:Dataset lever-

aging the vocabulary of DCMI Metadata Terms. Data necessary to load and parse a dataset is

provided by two elements: First, a dcat:Distribution instance provides the URL and media

type of a possible download location. Second, the structures reused from Data Cubes outline the

content of the dataset by describing its columns in instances of qb:ComponentSpecification.

Besides keyword-based search over title and description properties, the model allows retrieving

datasets based on their actual contents. This is facilitated by having a skos:Concept associated

with each column describing the kind of value included and an instance of yavaa:Range to sum-

marize the values contained in it. Finally, data integration is supported by information that allows

to further interpret the values inside a dataset. For categorical columns, a skos:ConceptScheme

describes a mapping from used abbreviations to skos:Concepts allowing to map different repre-

sentations to the same concept. In quantitative columns, the unit of measurement is included to

facilitate conversions if necessary. Finally, for date/time columns a yavaa:TimeFormat allows to

parse and identify individual components of the provided values. With all requirements covered,

this model provides the basis for both search among and integration of dataset described in the

subsequent chapters.

126



8.4. APPROACH

qb:DataSet
dcat:Dataset

dcterms:title
…

dcterms:Agent
rdfs:label

qb:DataStructureDefinition dcat:Distribution
dcat:downloadURL
dcat:mediaType

qb:ComponentSpecification
qb:order
rdfs:label

yavaa:TimeFormat
…

qb:ComponentProperty
yavaa:hasUnit

skos:Concept
skos:exactMatch
skos:closeMatch

yavaa:Range

skos:ConceptScheme rdfs:Datatype
owl:onDatatype
owl:withRestrictions

qb:DimensionProperty

qb:MeasureProperty

qb:AttributeProperty
yavaa:hasValue

qb:CodedProperty
qb:codelist

dcterms:publisher dcat:distributionqb:structure

qb:component

qb:componentProperty

qb:concept

yavaa:hasFormat

rdfs:range

skos:hasTopConcept

qb:dimension
qb:attribute
qb:measure

Figure 8.7: Yavaa: Ontology model.

127



rdfs:Datatype yavaa:TimeFormat
owl:onDatatype xsd:string

xsd:pattern

yavaa:order

yavaa:TimeMeaning
yavaa:fullyear

yavaa:quarteryavaa:seconds …

owl:withRestrictions

yavaa:hasTimeComponent

yavaa:hasMeaning

Figure 8.8: Yavaa: Ontology model - yavaa:TimeFormat.



C
H

A
P

T
E

R

9
HANDLING OF UNITS

While working with measurements, the annotation of values with their respective units is

essential. Among the most prominent examples of failing to do so are the loss of the Mars Climate

Orbiter in 1999 [48] or the failed laser-beam missile defense experiment onboard the space-shuttle

Discovery in 1985 [47]. On both occasions, the unit expected by a subsystem was different than

the one provided, which obviously led to wrong results. While these incidents arose from an error

in the design of the system or its implementation, the same problems persist when human users

are working with datasets. Missing unit annotations leave it to the diligence of users to make

sure units are used consistently throughout the workflow. Sometimes this even includes guessing

the actual unit, when the metadata provided lacks the respective information.

Proper annotation and sufficient support of units throughout the workflow can prevent most

of these errors. The most basic approach is to ask users for the expected result of the entered

formula and alert them to any violations of unit consistency. Depending on the kind of violation

users may then either add the required conversions or — after determining the root cause —

rephrase the workflow in a proper way.

Then again, why burden users with tasks that can be automated? If the units for all operands

of a formula are known, the system should be able to determine the result or at least a list of

possible results. Furthermore, if the addition of conversions can fix an otherwise faulty formula,

the system can add those implicitly. An automated approach can also limit the number of errors

introduced by other mishaps like typos or plain out wrong conversions.

While the above argument has been made for unit consistency, a weaker form — dimensional

consistency [159] — is less computationally expensive. Each unit usually measures a certain

set of quantity kinds. Compatible kinds of quantities can then be subsumed under a single

dimension. An example is the dimension length that includes among others subclasses like width

129



CHAPTER 9. HANDLING OF UNITS

and diameter. Each dimension can be expressed as a vector of base quantities1. Using these

dimension vectors, a formula can be validated rather quickly as compared to validating the unit

consistency. However, certain errors can not be detected using checks for dimensional consistency

only. For example, the sum of a value given in foot and a value given in meter while being

dimensionally consistent is a violation of unit consistency unless the proper conversion is added.

To achieve the described level of automation a few prerequisites are needed, which should be

stated now.

Unique identifiers Each unit needs a unique identifier to annotate datasets (cf. Chapter 8). While

this may sound trivial at first, there are differences in the definitions of units oftentimes

as a result of historic processes. One example is the unit inch, which has multiple valid

definitions as shown in Equations 9.1 [web102].

1 (international) inch= 0.025 4 meter(9.1)

1 (US survey) inch≈ 0.025 400 050 8 meter

1 (British Imperial) inch= 0.025 399 98 meter

If the prefix is omitted, the system can not detect which particular unit was intended.

Another argument for unique identifiers is the different spelling of some units. An example

would be the writing of the unit meter which can also be spelled metre. Not having a

controlled vocabulary here may result in a computational overhead and possible errors while

mapping between different labels of units. These and similar issues were also encountered

and documented during a preceding study described at the end of this introduction [161].

Conversion of units This requirement is actually twofold: For one, users have to be able to

explicitly convert a given column from one unit to another. For usability purposes, the list

of possible conversion target units should be limited to compatible ones. So the system

needs to be aware of the dimensions of units and the respective conversion formulae.

Another variation is implicit conversion. If users try to apply a formula that is dimensional

consistent but not unit consistent, the system should be able to automatically insert the

necessary conversions without requiring further user interaction.

Determination of result unit The system should be able to deduce the final unit of a given formu-

lae automatically. This is quite easy if there are just summations and subtractions involved.

If formulae go beyond that, though, this does also include the substitution with compound

units. An example is the expression in Equation 9.2, which replaces a combination of three

units with a single one for simplicity’s sake. To facilitate such replacements the system

needs to know about the decomposition of compound units.

(9.2) 1 Kilogram∗ Meter
Second2 = 1 Newton

1Usually the International System of Units (SI) [160] is used as a basis.

130



Minimizing the number of applied conversions For summations a naïve approach to inserting

conversions could be to always convert the right-hand side operator to the unit of the

left-hand side operator. However, the example given in Equation 9.3 shows that this might

lead to suboptimal results in terms of the number of conversions applied.

(9.3) x [m]+ y [ft]+ z [ft]

Evaluating the formula from left to right using the above rule results in two conversions to

be applied: Converting both y and z to m. In this example, however, it is only necessary to

convert x to ft to make the formula unit consistent. Fewer conversions lead to a smaller

margin of error in the result, which is caused by inaccuracies in the supplied conversions

or shortcomings of floating-point arithmetics (cf. Section 5.2).

The above list of requirements can roughly be divided into two groups: One group is concerned

with a data source to supply all unit-related information like unique names, conversions, and

other relations. The second group is more of an algorithmic nature. It represents the problem of

finding the resulting unit of a formula and minimizing the number of required conversions and

will be the main focus of this chapter.

With regard to finding a proper data source for unit related information, an extensive study

was conducted in collaboration with Jan Martin Keil and involving Markus Steinberg, a MSc

student at the time [161, 162, 163]. In the context of this work, the data source has to be compliant

with the dataset descriptions discussed in Chapter 8 that are represented in an RDF-based format.

So, the study focused on finding appropriate ontologies and compare them with one another to

determine the currently most suitable ontology for this thesis and similar projects. With various

ontologies been developed over the years, the study was split into two parts: First, generic use

cases for unit ontologies were defined [162]. In a second step, the extent of ontologies with respect

to provided individuals was determined [161]. The latter part also revealed a number of issues in

all examined ontologies ranging from typos to erroneous conversion factors. These issues were

reported to the ontology authors and have been fixed in some of the ontologies. The experiences

during the study also led to general conclusions for the development of such and similar ontologies

[163]. As a result of this study, the choice for this thesis fell on Ontology of units of Measure and

related concepts (OM) [164]. Of the examined ontologies, it contained the smallest number of

errors, includes the second largest number of units (only surpassed by Wikidata [121]), and as the

sole ontology provided information about the unit composition as described before. In particular,

that last aspect is a crucial component for the implementation of the approach presented in the

remainder of this chapter.

131



CHAPTER 9. HANDLING OF UNITS

9.1 Related Work

Support for units of measurements in programming languages has been the subject of research

for many years now. Extensions to several languages (e.g., B [165], C [166, 167], GLISP [168])

have been proposed, but as of now, these efforts have not led to widespread adoption. Similarly,

various software products have included solutions for the handling of units, examples of which

are Mathematica [web103], Matlab [web104], R [web105], Octave [web106], SPSS [web107], or

Stata [web108]. According to [166] current approaches can be categorized into three groups:

Library-based solutions add functionality to manipulate units by providing new classes or func-

tions. By these means, programmers can ensure unit safety within their code.

Language or type system extensions extend the typing system or possibly the language syntax.

This allows for validation of unit usage by the compiler or interpreter.

Annotation-based solutions require the user to add annotations to variables and functions. Tools

can then analyze a program’s source code to find possible unit errors.

The approach presented in [166], CPF[UNITS], is itself an annotation-based solution for

C. An example for annotated code is given in Listing 9.1. The annotations are embedded into C

comments starting with either //@ or /*@ for line or block comments. They describe the pre- and

postconditions of a function. The token @result is used to refer to the return value of a function.

Furthermore, single variable assignments can be annotated using //@ assume(UNITS). The set

of used units has to be given by the software developers. They can specify base units like meter or

foot and combinations thereof using algebraic operators like multiplication and exponentiation.

One can also provide canonical forms of units, so that, e.g., meter can be an alias to m.

If within a conditional code block units of variables are changed, CPF[UNITS] will maintain

multiple so-called “environments”, where each environment represents a mapping between

variables and units. Each statement afterward is evaluated once per environment, thus traversing

all possible code paths.

The actual analysis is performed in two steps: In a first step, all direct annotations and

assignments2 are exploited to derive an initial environment. Afterward, expressions are evaluated

according to a set of rules, which for each binary relation check certain conditions and return the

resulting unit. For multiplication, this is just the concatenation of both operands’ units as there

are no further restrictions. For summation, the units of both operands have to be identical or a

unit fail is returned to indicate the error. Comparisons — like summations — first validate the

equality of both operands, before returning a unit noUnit as a placeholder for a dimensionless

value. There are also similar rules to handle operations on structures and pointers. However, there

2int x = y; will also assign the unit of y to x.

132



9.1. RELATED WORK

typedef struct {
double atomicWeight ;

3 double atomicNumber ;
} Element ;

6 //@ pre (UNITS) : unit ( material=>atomicWeight ) = kg
//@ pre (UNITS) : unit ( material=>atomicNumber ) = noUnit
//@ post (UNITS) : unit ( @result ) = m ^ 2 kg ^ =1

9 double radiationLength ( Element * material ) {
double A = material=>atomicWeight ;
double Z = material=>atomicNumber ;

12 double L = log ( 184.15 / pow(Z , 1 . 0 / 3 . 0 ) ) ;
double Lp = log ( 1194.0 / pow(Z , 2 . 0 / 3 . 0 ) ) ;
return ( 4.0 * alpha * re * re ) * ( NA / A ) *

15 ( Z * Z * L + Z * Lp ) ;
}

18 //@ pre (UNITS) : unit ( material=>atomicWeight ) = kg
//@ pre (UNITS) : unit ( material=>atomicNumber ) = noUnit
//@ pre (UNITS) : unit ( density ) = kg m ^ =3

21 //@ pre (UNITS) : unit ( thick ) = m
//@ pre (UNITS) : unit ( initEnergy ) = kg m ^ 2 s ^ =2
double finalEnergy ( Element * material , double density ,

24 double thick , double initEnergy ) {
double X0 = radiationLength ( material ) ;
return initEnergy / exp ( thick / X0 ) ;

27 }

Listing 9.1: Sample C program with CPF[UNITS] annotations (from [166])

is no automatic conversion at any point – the annotated units are just propagated throughout the

program and possible contradictions will be highlighted. In the example of Listing 9.1 this will

result in an error message3:

Function finalEnergy: ERROR on line 26(1): Assert failed!

In [168] a unit integration into GLISP (“Generic LISP” [169]) is presented. According

to the above classification, it represents a typing extension. Before using units, users have to

define them as shown in Listing 9.2. Unit definitions are split into two groups: Simple units are

given by name, conversion factor, and a list of aliases. The conversion factor is always relative

to the respective SI [160] unit of the same dimension. So, e.g., meter has a conversion factor of

1, whereas foot uses 0.3048, as both are relative to the respective SI base unit, which in this

3 The result of radiationLength() is given by m2 ∗ kg−1 and thick is annotated to use m. In consequence, the
exponent in line 26 is evaluated to kg1 ∗m−1, which violates a rule that requires the exponent to be unitless.

133



CHAPTER 9. HANDLING OF UNITS

( defsimpleunits ’ length
’ ( ( meter 1.0 (m meters ) )

3 ( f oo t 0.3048 ( f t f ee t ) )
( angstrom 1.0e=10 ( a angstroms ) )
( parsec 3.083e16 ( parsecs ) ) ) )

6

( defderivedunits ’ f o rce
’ ( ( newton

9 ( / (* kilogram meter ) (* second second ) )
( nt newtons ) )

( pound=f o rce
12 ( / (* slug foo t ) (* second second ) )

( l b f ) ) ) )
( ounce=f o rce

15 ( / pound=f o rce 16)
( ) ) ) )

Listing 9.2: GLISP unit definitions (from [168])

case is meter. Compound units on the other hand are given by a composition of simple units.

Their conversion factor is automatically calculated as the product or quotient of the conversion

factors of their components. Units with conversions that include an offset different from zero are

explicitly excluded from this work.

Units are also grouped by their dimension – length and force in the example of Listing 9.2.

For each dimension, a dimension vector is defined according to the SI base dimensions with the

addition of money4 (cf. Table 9.1).

Index Kind of Quantity Unit

0 length meter

1 time second

2 temperature kelvin

3 mass kilogram

4 current ampere

5 substance mole

6 luminosity candela

7 money dollar

Table 9.1: Dimension vector definition of [168]. In the source “quantity” instead of “kind of
quantity” has been used. This contradicts the definitions used throughout this work
and has been replaced accordingly.

4The unit dollar is chosen as a base unit for money. No reason for this particular choice is given in [168].

134



9.1. RELATED WORK

The index assigned to each base dimension is used to serialize the dimension vector into

a single integer. As the exponents within the dimension vector are usually quite small (±4

oftentimes less), the whole dimension vector fits into a single 32-bit integer. For this purpose two

vectors are defined:

dimsizes = [ 20, 20, 20, 10, 10, 10, 10, 10 ]

dimvals = [ 1, 20, 400, 8000, 80000, 800000, 8000000, 80000000 ]

The entries in dimsizes allocate a certain range of values for each component of the dimension

vector. A value of 20 represents a range of ±9 and a value of 10 a range of ±4 respectively. So

together with the mapping of Table 9.1, this defines the allowed range of exponents for length to

±9 while for amount of substance only ±4 is valid.

The second vector dimvals is derived from dimsizes by the means of Equation 9.4. It basically

represents offsets, so integer representations can be computed by mere multiplication.

(9.4) dimvalsi =
{︄

1 if i = 0

dimvalsi−1 ×dimsizei−1 otherwise

The integer representation dimint of a dimension vector v can be computed using Equation 9.5.

This approach does not recognize yet alone handle cases when the exponent for a base dimension

is outside of the valid range. Equation 9.6 shows an example for computing dimint for the

dimension force (force = length1 × time−2 ×mass1). Having the integer representation of the

vectors, dimensional analysis can be performed on (integer) numbers instead of vectors. The

dimension vector for compound units can, e.g., be computed as a sum or difference of the dimension

vectors of all compounds.

(9.5) dimint(v)=∑︁7
i=0dimvalsi ×vi

(9.6) dimint([1,−2,0,1,0,0,0,0])= (1×1)+ (−2×20)+ (1×8000)= 7961

Within the actual program, users can define their variables to use a unit in addition to the

data type using

x: (units real meters)

While this example uses meters, users can insert any defined alias for a unit or a unit expression

following the same rules as the unit definition.

For calculations, the compiler will check for dimensionally consistency of the given formula.

If the formula is dimensional consistent, the resulting unit is determined. There are two major

areas: Summations and subtractions are evaluated in a pairwise fashion. Here, the result of a

single operation always uses the unit of the operand on the left-hand side. If the right-hand side

operand uses a different unit, it will automatically be converted according to the defined rules.

135



CHAPTER 9. HANDLING OF UNITS

1. The goal system of units i s determined by the fo l lowing p r i o r i t y :
= user input
= dominant system ; estimated by counting unit occurences
= SI system

2. Units are expanded to the equivalents in the base dimensions .
Dimensionless units are converted to numbers .

3 . Base units not present in the goal system are converted .
Conversion fac tors are accumulated .

4 . Numerator and denominator are sorted alphabet ica l ly .
5 . Corresponding duplicate units are removed in a l inear pass .

This cancels units present both in numerator and denominator .
6 . Derived units o f the goal system ( and their inverse )

are tested against the resul t .
The largest derived unit found replaces i t s compounds .
This process i s repeated unt i l no further replacements are poss ib le .

Listing 9.3: Simplification of compound units (from [168])

#define millimeter mil l i=meter
#define inch meter 39.370079

Listing 9.4: Osprey: Additional unit definitions (from [167]).

In the case of products and quotients, on the other hand, units are derived by multiplying

or dividing the source units. Afterward, the system tries to simplify the result according to the

algorithm given in Listing 9.3.

A typing extension for C is Osprey [167]. Listing 9.5 illustrates the typing system of Osprey

using basically the same sample code as Listing 9.1. The types of variables are given in form of

predefined units like $meter or $unity. Not all variables, however, have to include a unit as can

be seen from lines 10-17. Osprey comes with a list of “aliases and abbreviations for commonly

used units”, but users are also able to add custom units in an additional configuration file. The

definitions follow the syntax of C macro statements. Listing 9.4 defines millimeter as an alias

for millimeter and the new unit inch including the conversion factor relative to meter. Units

that include an offset in their conversions are not included yet but are referred to as future work.

At compile time, Osprey will traverse the abstract syntax tree of the program in general

and the variable assignments in particular to create a set of constraints. Each binary operation

will result in a separate constraint – most of them belonging two one of two forms: ua = ub and

ua = ub ×uc, where ua, ub, and uc are unit variables or constants. The former is used to indicate

equality like used in variable assignments or summations or subtraction. The latter represents

the results of multiplications and divisions.

136



9.1. RELATED WORK

1 double pow(double , $unity double ) ;
2 $unity double log ( $unity double ) ;
3 $unity double exp ( $unity double ) ;

4 extern $unity double alpha , NA;
5 extern $meter double re ;

6 typedef struct {
7 $kilogram double atomicWeight ;
8 $unity double atomicNumber ;
9 } Element ;

10 double radiationLength ( Element * material ) {
11 double A = material=>atomicWeight ;
12 double Z = material=>atomicNumber ;
13 double L = log ( 184.15 / pow(Z , 1 . 0 / 3 ) ) ;
14 double Lp = log ( 1194.0 / pow(Z , 2 . 0 / 3 ) ) ;
15 return ( 4.0* alpha*re*re ) * ( NA/A )
16 * ( Z*Z*L + Z*Lp ) ;
17 }

18 double finalEnergy ( Element * material ,
19 $kilogram*meter−3 double density ,
20 $meter double thick ,
21 $kilogram*meter2*second−2 double initEnergy )
22 { double X0 = radiationLength ( material ) ;
23 return initEnergy / exp ( thick / X0 ) ;
24 }

Listing 9.5: Osprey: Sample C program using Osprey types (from [167]).

Each time a new variable with a type is allocated, the respective unit variable is bound to

that unit. In formulae, a unit variable is created for the result of each binary sub-operation. In

the unit variables’ names, Osprey encodes the line number of the corresponding code fragment,

the variable name, and other information that later allows pinpointing errors. For assignments

and operations the respective constraints5 are also created. Given the example of Listing 9.5,

some examples for these constraints are given in Table 9.2.

These constraints are passed through a constraint resolution engine and fed into a Gaussian

Elimination engine. In the process contradictions found are reported as errors. In the example of

Listing 9.5, this leads to the following error message6:

5Both operands of a summation or subtraction need to have the same unit. The unit of a product or quotient will be
the product or quotient of its operands’ units respectively.

6The reason has been given in Footnote 3 before.

137



CHAPTER 9. HANDLING OF UNITS

Line# Source Code
Unit

Environment Constraints

4 $unity double alpha; u_4_alpha: unity -

11 A=...->atomicWeight - u_11_A = u_5_unamed@atomicWeight

16 Z * Lp u_16_Z_MUL_Lp: δ u_16_Z_MUL_Lp = u_12_Z * u_14_Lp

16 (Z. . . + . . . ) -
u_16_Z_MUL_Z_MUL_L =

u_16_Z_MUL_Lp

Table 9.2: Osprey: Example-constraints for code of Listing 9.5 (from [167]).

ERROR: The constraint:

u_20_thick = u_23_thick_DIV_X0 * u_22_X0

is reduced to:

$meter^1$ = $meter^2 kilogram^{-1}$

One further feature of Osprey is the ability to annotate constants within formulae as con-

version factors. Listing 9.6 shows such an annotation – in this example for conversion between

millimeter and inch. Osprey will include those conversions into the set of constraints to be

validated as well.

$millimeter double mm;

$inch double inch ;

mm = inch *( $f ) 2 5 . 4 ;

Listing 9.6: Annotating a constant as conversion factor in Osprey (from [167])

An annotation-based validation for B is described in [165]. The annotation itself follows

the already discussed ways. An example is shown in Listing 9.7. Variables can be annotated with

units drawn from a pool of predefined units or combinations thereof. Furthermore, users are able

to define their own aliases to known units using unit_alias or define new unit with new_unit.

Defining a new unit, however, does not allow defining conversions to other, already defined units.

They act as separate base units which form a base dimension of their own. Predefined units are

restricted to the ones from the SI-system [160].

As shown in Listing 9.7 users are also able to annotate conversions as such to distinguish

them from other operations. The system will in these cases validate the conversion factor.

Units that are no aliases are defined in terms of the SI base units. If prefixes are attached,

they are replaced by the respective powers of ten7. This leads to the canonical representation

of units where each one is represented by an (ordered) set of factors of the form u = 10p ×ue.

By definition, each base unit can only appear once in such a set. The decision has been made to

7Conversions using other factors or requiring offsets are stored as exceptions.

138



9.1. RELATED WORK

MACHINE ConversionExample
VARIABLES

3 / *@ unit 10**=2 * m * / x ,
/ *@ unit 10**=3 * m * / y

INVARIANT x :NAT & y :NAT
6 INITIALISATION x , y := 0 , 0

OPERATIONS
mmToCm = x := / *@ conversion * / (10*y )

9 END

Listing 9.7: Annotating a B machine as given in [165]

preserve the prefixes for each component instead of having a single prefix for the whole compound

unit. Improved traceability of errors is given as justification for this decision, although it is noted

that this has a certain impact on other calculations.

This approach leads to a rather easy verification process of formulae: In the case of multi-

plication and division, the exponents of shared base units are added or subtracted, while the

others are just added (possibly using the inverse). Existing prefixes are also multiplied or divided

separately per base unit. The check for equivalence as needed for summation or subtraction boils

down to comparing the exponents for each base unit as well as the products of all prefixes per

operand.

Besides the approaches documented in literature, there are several software packages deal-

ing with similar challenges. Systems like Mathematica [web103], Matlab [web104], R [web105],

Octave [web106], SPSS [web107], or Stata [web108] allow users to perform analysis on different

datasets. They vary in their main focus and support for units of measurements. Details of the

respective approaches are rarely available. So to estimate the extent of their unit support a small

empirical survey was compiled, whose results can be found in Appendix B.

SPSS and Stata were found to have no unit support at all. Octave provides a function to

explicitly convert from one unit to another. This, however, places the burden of validating unit

consistency solely on users. For R there are several packages to provide unit support. Besides

those providing explicit conversions like in Octave, there is at least one package (units [web109])

that also deals with automatic conversions. Here, however, the naïve approach is used, which

determines the result of a binary operation by just taking the unit of the left-hand side operand.

Mathematica and Matlab in their current releases both have native support for units of

measurement. Mathematica includes composition and decomposition of compound units. Re-

garding unit conversions the survey suggests the system chooses the unit, which will result in

fewer decimals – actual magnitudes of values omitted. Matlab on the other hand also supports

decomposition of units, but support for the composition seems to be missing as of now. Regarding

unit conversions no general strategy became apparent from the samples taken.

139



CHAPTER 9. HANDLING OF UNITS

9.2 Discussion

Approaches found in the literature mostly focus on the technical details of adding unit support

to specific programming languages. With units added, dimensional and unit consistency is

validated for the given source code. Dimensional consistency is a weaker property compared to

unit consistency. So most systems will only check explicitly for unit consistency, which includes

the validation of dimensional consistency.

While language extensions require users to annotate all variables, annotation approaches

are more flexible. When users only annotate some of their variables, some systems try to infer

the missing annotations. This inference, however, seems somewhat limited. Some systems like

[165] restrict the units to the SI system [160], which makes the task significantly easier: Only

the prefix can vary for a given dimension, so there is no need to decide between units of different

systems. Others like Osprey [167] are not restricted to a single system of units. However, cases

like the summation of variables using different units for the same dimension are reported as

errors here. Implicit conversions are not (yet) supported.

The current situation in common software packages seems similar. Only some systems support

units at all. In these systems one can observe an evolution of unit support: From providing

functions to explicitly convert between units [web106, web110], over adding distinct objects to

encapsulate unit annotations for values [web109] to “real” support as part of the language used

[web103, web104]. The latter then differs in the extent and sophistication of support.

At the time of writing, the support for units as found in Mathematica [web103] seems to be

the most advanced. Neither is it limited to SI units nor does it seem to be overly biased towards

them. The empiric results of Appendix B show a preference for the unit that results in the least

amount of decimals no matter which system it belongs to. Mathematica is also able to recognize

compound units as well as decompose a compound unit when necessary.

One point of discussion in Mathematica’s strategy is the lack to recognize (or deliberately

disregard) the dominant unit in a formula. If the majority of operands use a particular system,

chances are, that the result is expected to have a unit of the same system.

There are also two drawbacks to Mathematica’s approach when trying to apply it to the

system described in this work. When applied to a rather small number of values (like usually the

case in Mathematica) the number of conversions applied can be disregarded in terms of execution

time. If, however, the amount of data grows, unnecessary conversion can have a serious impact.

So from a performance point of view alone, the number of conversions should be kept as low as

possible.

140



9.3. APPROACH

1. Convert the given formula to an AST
2. Optional : Apply pre=processing rules ( post=order )
3 . Walk the the AST in post=order and apply postProcess ( ) to each node
4. Optional : Apply post=processing rules ( pre=order )

Recalculate conversion count
5 . Simplify units for variants o f the root node
6. Return unit l i s t f or the root node of the AST

Listing 9.8: Pseudocode to determine the result unit for a given formula.

Another disadvantage of a higher number of conversions is the impact on the numerical preci-

sion of the result8. As most conversions aside from prefixes are multiplications with non-integer

factors and the precision of floating-point arithmetics is limited, each additional conversion will

degrade the result to a certain degree. So again, a lower number of conversions will improve the

results – this time with respect to quality and not just performance.

9.3 Approach

To reduce the overall number of conversions the approach has to shift from only considering local,

binary relations to a more global one, which takes the whole formula into account. All approaches

discussed before focus on local relations. They repeatedly replace relations by the respective

result, thus successively working their way up to the result of the whole formula. While this

is valid for the magnitudes of the values, it may increase the number of conversions applied

unnecessarily.

A natural way to represent a formula is an Abstract Syntax Tree (AST) like the one shown in

Figure 9.1(a). All of the approaches discussed before can be translated to a post-order walk over

an AST, while choosing one of its children’s units for each inner node. This general approach is

kept with two modifications: Instead of propagating just one resulting unit from leaves to root, a

list of reasonable units is used. A reasonable unit in this context is a unit that was present in

at least one of the child nodes. Furthermore, for each node and unit, a counter is added to keep

track of the conversions needed. This is used as a criterion to choose between different units for a

single node. It can also be used to rank resulting units when presented to users. In addition, pre-

and post-processing phases are added to enable further optimizations to reduce the conversion

count. As these optimizations are optional, they will be discussed after the actual algorithm in

Subsection 9.3.3.

The general workflow of the algorithm is given in Listing 9.8, while Listing 9.9 shows the

processing of each node. A variant in the sense of the algorithm is a tuple of an operation (for

inner nodes), a unit, a conversion count, and possibly child variants. It represents one possible

8For Mathematica this is of no concern, as all computations are performed symbolically.

141



CHAPTER 9. HANDLING OF UNITS

instantiation of a node including all conversions needed in the subtree rooted at the respective

node. These variants and the connections between them form ASTs themselves. They shadow the

original AST and preserve its general structure, but may add some additional conversion nodes if

necessary.

To enable a more meaningful way to do arithmetic with units the definitions of a unit U and its

decomposition given in Equations 9.7 are used. A base unit9 is a unit that can not be decomposed

further. A compound unit consists of two products of base units – one for the numerator N and

one for the denominator D. The list for numerator or denominator may be empty, which would

yield a 1 as a result. For the unit unity, both lists are empty.

U =
{︄

U base unit
N
D compound unit

(9.7)

N =∏︂
i

Ni

D =∏︂
j

D j

While addition and subtraction still require both operands to have the same unit, multi-

plication and division combine the units of both their operands as given in Equation 9.8 and

Equation 9.9. Division uses the fact that it can be defined as reciprocal multiplication. After

merging the respective numerators and denominators the unit should also be simplified. This

process is similar to reducing a fraction but uses base units instead of prime factors.

U =Uleft ×Uright(9.8)

N =∏︂
i

Ni =
(︄ ∏︂

j ∈ left
N j

)︄
×

(︄ ∏︂
k ∈ right

Nk

)︄

D =∏︂
i

D i =
(︄ ∏︂

j ∈ left
D j

)︄
×

(︄ ∏︂
k ∈ right

Dk

)︄

U =Uleft / Uright(9.9)

N =∏︂
i

Ni =
(︄ ∏︂

j ∈ left
N j

)︄
×

(︄ ∏︂
k ∈ right

Dk

)︄

D =∏︂
i

D i =
(︄ ∏︂

j ∈ left
D j

)︄
×

(︄ ∏︂
k ∈ right

Nk

)︄

The definition of processNode() given in Listing 9.9 uses both definitions. The first block in

lines 3 to 10 is basically an initialization phase. For each leaf of the AST a variant is created that

contains the source unit as well as a conversion count of zero. The lines afterward deal with inner
9This is a different definition compared to a base unit for a system of units.

142



9.3. APPROACH

nodes, which represent the operations of the formula. The block from lines 12 to 22 represents

multiplication and division as stated before. As the operands may have multiple variants — i.e.,

they can be represented using different units — a new result variant is added for each possible

combination. In case multiple variants are created with the same unit, only the variant with the

lowest conversion count is maintained. Finally, the last block starting in line 25 deals with sums

and differences. A list units of all units present in the operands’ variant sets is created (line 26).

The algorithm then needs to validate dimensional consistency (lines 27 and 28), which a minor

modification of the approach presented in Listing 9.3 is used for. For each of these units, a new

variant for the current node is created in lines 29 to 41. As the children of the variant need to

share the same unit the respective variants from the respective child nodes are picked in lines

32 to 35. Furthermore, in this pass, the total number of conversions needed is accumulated. If

no matching variant exists, a new one is created that is based on the variant of that node that

currently has the lowest conversion count (cf. Listing 9.10).

In a final step, the units of variants for the top node are simplified. Albeit technically not

required, this step will improve the readability of the results. Otherwise, results like [ ft2

m × s ]

would be possible, which are unnecessarily hard to recognize as a unit of velocity. So in this

case, the unit should get reduced to something like [ ft
s ]. To achieve this, first, all base units of

the same dimension have to be unified, i.e. be converted to the same unit. The decision is made

analogous to the choice given in [168] (cf. Listing 9.3, step 1): The dominant system of units is

preferred. If this criterion results in a tie, then the SI unit will be chosen, as user input might not

be available at this point. If there is a user selection available, it overrides any decisions made by

the algorithm. Finally, the algorithm will try to substitute for compound units where possible

again using the approach given in [168] (cf. Listing 9.3, step 6).

After processing the AST this way, a number of shadow trees have been generated – one for

each possible result unit. They can all be accessed through the variants of the root AST node. As

the number of required conversions was tracked throughout the process, the system can now

order the resulting units by conversion effort needed. It can automatically select the most efficient

one or present users with a more detailed list of options. If users request a valid unit that is

currently not in the list, the system can again apply getVariant() to the root node and retrieve

a new shadow tree for that.

The algorithm delays conversions as much as possible. This allows to take advantage of terms,

that cancel out each other during the course of execution. If those values would be converted at

the beginning (i.e. conversions are applied directly to all leaf nodes when necessary), superfluous

conversions would have been introduced. This characteristic also allows certain optimizations,

which will be discussed in Subsection 9.3.3.

The algorithm presented considers all conversions to be equal with respect to numerical

stability. However, there are differences: Using standard floating-point arithmetics [128] the

conversion from kilometer to meter will merely result in a change of the exponent by three. As long

143



CHAPTER 9. HANDLING OF UNITS

FUNCTION processNode ( node )
2

IF node i s a l ea f
Add a variant to node : (

5 operator : value ,
unit : node.unit ,
convCount : 0 ,

8 children : null
)
RETURN

11

IF node i s a product or quotient
le f t = l e f t=hand chi ld

14 right = right=hand chi ld
FOREACH variant le f tChild of le f t

FOREACH variant rightChild of right
17 Add a variant to node : (

operator : node.operator ,
unit : le f tChild.unit node.operator rightChild.unit ,

20 convCount : le f tChild.convCount + rightChild.convCount ,
chi ldren : [ le f tChild , rightChild ]

)
23 RETURN

IF node i s a sum or d i f f e rence
26 units = a l l units o f variants present in chi ld nodes

IF units contains units o f more than one dimension
THROW ERROR " dimensional inconsistency "

29 FOREACH unit of units
childV ariants = [ ]
convCount = 0

32 FOREACH child of chi ld nodes
variant = getVariant ( child , unit )
childV ariants += variant

35 convCount += variant.convCount
Add a variant to node : (

operator : node.operator ,
38 unit : unit ,

convCount : convCount ,
chi ldren : childV ariants

41 )
RETURN

44 END

Listing 9.9: Pseudocode to process an AST node.

144



9.3. APPROACH

1 FUNCTION getVariant ( node , unit )

IF node has variant using unit
4 variant = pick variant using unit of node

RETURN variant

7 base = variant o f node with lowest conversion count
add variant newV ariant to node : (

operator : conversion ,
10 unit : unit ,

convCount : base.convCount + 1 ,
children : [ base ]

13 )
RETURN newV ariant

16 END

Listing 9.10: Pseudocode to retrieve a specific variant for a node.

as the result is within the range of the exponent, this has no impact on precision. The conversion

from inch to feet on the other hand involves a factor of 1
12 [web102]. Here, the conversion factor

itself can not be exactly represented using the double-precision standard. Hence, all conversions

will include a small error10. In contrast, the inverse conversion from feet to inch will use a factor

of 12, which most often will not cause any issues.

The examples show, that some conversions are more preferable than others. The algorithm

can account for this by introducing additional weights for the conversions. Where the default

execution uses a weight of 1 when counting conversions, a more sophisticated approach could use

different weights based on numeric stability. That way the final ranking would favor more stable

results. The exact values of these weights, however, require further considerations, which are out

of the scope of this work.

9.3.1 Example

In Figure 9.1 the algorithm is successively applied to the formula [m]+[ft]
[s] + [ft]

[s] . First, the formula

is transformed to the AST shown in Figure 9.1(b). For simplicity’s sake, the magnitudes of values

are omitted as will, later on, be the connections between variants including the respective added

conversions. As of now, no rules for pre- and post-processing have been defined, so steps 2 and

4 of Listing 9.8 can be skipped and the processing is reduced to the repeated application of

processNode() (cf. Listing 9.9) to all nodes in a post-order walk.

10The error most often is negligible, but on occasion, it might cause problems.

145



CHAPTER 9. HANDLING OF UNITS

+

/

+

[m] [ft]

[s]

/

[ft] [s]

(a)

+

/

+

m
0

ft
0

[s]

/

[ft] [s]

(b)

+

/

m
1

ft
1

+

m
0

ft
1

ft
0

m
1

[s]

/

[ft] [s]

(c)

+

m
s
1

ft
s
1

/

m
1

ft
1

+

m
0

ft
1

ft
0

m
1

s
0

/

[ft] [s]

(d)

+

m
s
1

ft
s
1

/

m
1

ft
1

+

m
0

ft
1

ft
0

m
1

s
0

ft
s
0

/

ft
0

s
0

(e)

m
s
2

ft
s
1

+

m
s
1

ft
s
1

/

m
1

ft
1

+

m
0

ft
1

ft
0

m
1

s
0

ft
s
0

m
s
1

/

ft
0

s
0

(f)

Figure 9.1: Successive application of unit resolving to formula: [m]+[ft]
[s] + [ft]

[s] .
Inner nodes (ellipsis, solid), leaf nodes (ellipsis, dashed), variants (rectangles, solid).
Variants are given by unit and conversion count. Their connections are omitted.

146



9.3. APPROACH

m
s
2

+
/

+

[m] C

[ft]

[s]

C

/

[ft] [s]

(a)

ft
s
1

+
/

+

[m]

C [ft]

[s]

/

[ft] [s]

(b)

Figure 9.2: Resulting ASTs after applying unit resolving for formula: [m]+[ft]
[s] + [ft]

[s] .
Conversion nodes are marked by a “C”. Conversion details have been omitted.

The algorithm will first traverse the AST until it reaches leaf nodes. The first two leaf nodes

encountered are the ones on the lower left containing the units [m] and [ft]. The respective

variants with a conversion count of zero are created and added to the respective AST nodes. The

state after processing both nodes is shown in Figure 9.1(b).

Afterward, the lower-left summation node is visited. The first step is to pull all units from the

child nodes variants. In this case, the result is a list with two elements: [m] and [ft]. For both

these units, a variant to the summation has to be created. In order to have matching operands,

the algorithm has to add new variants to the child nodes. So the left-hand side operand has to be

converted to [ft], while for the right-hand side a variant with unit [m] is added. Both these new

variants have a conversion count of one as they had to be derived. Now the respective variants

including links to the operands can be added to the summation node as shown in Figure 9.1(c).

The next visited node is the left leaf node using [s] as a unit. It is processed in the same way

as the other leaf nodes before, adding a single variant with conversion count zero. In the left

division node, all combinations of units from the left-hand side and right-hand side operators

have to be combined. The left-hand side operator currently has two units ([m] and [ft]), while

the right-hand side one has just one ([s]). Hence, two variants are added to the division node

representing the respective results. This results in the state shown in Figure 9.1(d), where there

is one variant using [m]
[s] and another one using [ft]

[s] .

The right-hand side subtree node is processed similarly. Here again, one variant is added to

each leaf node. The division node, however, has just one variant as both its children have just

one variant each. The state of the AST after the processing of the right division node is shown in

Figure 9.1(e).

The last node processed is the root node. Again all units of the child nodes’ variants are

collected, which this times yields [m]
[s] and [ft]

[s] . The left-hand side child already has variants for

both units. The right-hand side child, however, just has a variant for [ft]
[s] . So to represent all units

in the root node, a new variant has to be created in the right child node. The algorithm uses the

147



CHAPTER 9. HANDLING OF UNITS

variant with the lowest conversion count as a bases, which is the variant using [ft]
[s] as it is the

only variant present. After that variant is added, all units can be represented in the root node

and the AST takes the form of Figure 9.1(f).

All variants of inner nodes have connections to their operands or the source variant they

were derived from. The respective ASTs for specific result units are already given by that. In

Figure 9.2 the final ASTs for both resulting units of the example are shown.

9.3.2 Limitations

While the described approach works fine for most units, there is one group of compound units that

necessitates some modifications. If one component of a compound unit is a scaled unit, conversion

is not defined unambiguously. The general formula for a unit conversion is given in Equation 9.10,

where fU→A is the factor and oU→A the offset used for a conversion from unit U to unit A.

(9.10) xU = (x× fU→A + oU→A)A = yA

For most units in use, the conversion offset is equal to zero. There is, however, at least one

group of units for which the offset has a value different than zero: temperatures. The conversion

from degree Celsius to degree Fahrenheit, for example, uses an offset of 32 and a factor of 1.8. If

one component of a compound unit is such a scaled unit, the order of conversions matters for the

result as illustrated in Equation 9.11 and Equation 9.12.

xUV = (x× fU→A + oU→A)AV(9.11)

= ((x× fU→A + oU→A)A× fV→B)B

= (x× fU→A × fV→B + oU→A × fV→B)AB

xUV = (x× fV→B)UB(9.12)

= (x× fV→B × A× fU→A + oU→A)B

= (x× fV→B × fU→A + oU→A)AB

Computing the difference between both orderings yields a value different than zero in contrast

to unit conversions without offsets.

(x× fU→A × fV→B + oU→A × fV→B)− (x× fV→B × fU→A + oU→A)(9.13)

= oU→A × fV→B − oU→A

= oU→A × ( fV→B −1)

148



9.3. APPROACH

In these cases, an unambiguous conversion seems not possible. In an attempt to partly rectify

the situation, the algorithm is adjusted as follows. Before traversing the AST, the system will

scan for occurrences of scaled units in the input and group them by dimension. Depending on the

characteristics of the dimension group, different actions will be taken for each one:

• Dimension groups containing no more than one scaled unit.

None of the scaled units will have to be converted and, hence, no adjustments are required.

• Dimension groups containing more than one scaled unit, but none of these are part of any

compound unit – i.e. they appear just as single base units.

Additional variants are added in the initialization step of the algorithm (cf. lines 3 to 10

of Listing 9.9). In each node that uses one of those scaled units, variants are added for all

other units of the same dimension group.

• Dimension groups containing more than one scaled unit and some of these are also part of

compound units.

Here, two sub-cases have to be distinguished:

– Just one of the scaled units is present in compound units.

This can be handled like dimensions groups with just scaled units that do not appear

in compound units. The difference, however, is, that only variants for the one unit

appearing in compound units have to be added.

– Multiple units of this dimension group appear in compound units.

There is a chance, the algorithm will have to convert between two scaled compound

units at some point. For the previously mentioned reasons, it can not do this unam-

biguously. So in this case an error is thrown and the algorithm will abort.

Using the above measures, some of the ambiguous situations can be avoided. For all scaled

units that might need to be converted the respective variants are added to nodes, where they

appear as base units and conversions are clearly defined. As a consequence, the last block of

Listing 9.9 might add two variants with the same (compound) unit to a node. In these cases, only

one variant is maintained, namely the one with the lower conversion count.

Some formulae that after the discussed algorithm extension are rejected with an error, could

be processed using a different technique. Consider, e.g., the formula ([m°C]) / ([m°F])11, which

will have a dimensionless result. This formula could be reduced to something like [°C] / [°F],

where again the scaled units appear on their own and can be converted. To cater for such cases,

one could still apply the above changes, but do not throw an error on the last condition. Instead,

the algorithm would try to process all nodes as given in Listing 9.8. Variants that would require

11Meter times degree Celsius and meter times degree Fahrenheit, respectively.

149



CHAPTER 9. HANDLING OF UNITS

a conversion of a compound scaled unit would be dropped. If after executing processNode() a

node does not include a single variant attached to it, an error will be raised. In that case, the

algorithm was not able to mitigate the ambiguity problem.

Another solution approach at this point would be an attempt to restructure or reorder the

formula. This, however, would require other techniques, which are for the most part outside of

the scope of this work.

9.3.3 Optimizations

As already indicated before, certain restructurings of the AST can yield additional benefits

towards reducing the number of conversions needed. The algorithm as given in Listing 9.8

already includes two optional steps, in which rules to change the AST structure may be applied.

These rules should only reorder the AST to reduce the number of conversions, but not change

the result in any way. While more rules are possible, in the following a few examples will be

described to illustrate the potential impact.

As a motivational example for the first rule, assume the following formula which sums up a

list of length values:

(9.14) [m]+ [ft]+ [m]+ [ft]+ [m]+ [ft]+ [m]

In the default algorithm in total three conversions would be applied – one for each occurrence

of a value measured using [ft]. If the formula, however, is restructured as follows, this number

could be reduced to one without changing the core algorithm.

(9.15) ([m]+ [m]+ [m]+ [m])+ ([ft]+ [ft]+ [ft])

The basic idea is to sort sums by the unit of the input provided. As a first step, the rule given

in Listing 9.11 is added to the pre-processing phase. The rule only affects nodes that represent

summations (line 3). If any child nodes themselves are summations, it will move their children to

the parent node’s child list. Repeated application of this rule will collect all operands of the sum

at a single node. A visual illustration of this rule is given in Figure 9.3.

In contrast to multiplication and division, the algorithm does not limit the number of operands

of summations to two (cf. lines 25 to 41 of Listing 9.9). In consequence, it is able to process

summation nodes with more child nodes attached.

After the main processing step, a second rule (cf. Listing 9.12) is applied to convert the AST

back to a state that uses only binary summations. In general, it groups the used variants by unit

– however, for variants that represent conversions (i.e. the input node did not supply the required

unit) the respective source variant’s unit is used instead (lines 4 to 6). Afterward, each group is

converted to a binary tree. If necessary, a conversion is added to the root node of that subtree

(lines 10 and 11). Finally, the list of children of the original node is replaced by the list of subtrees’

roots.

150



9.3. APPROACH

FUNCTION collectSums ( node )
2

IF node.operator == +
FOREACH child of chi ld nodes

5 IF child has operator +
Remove child from node ’ s ch i ld nodes
Add chi ld nodes of child to node ’ s ch i ld nodes

Listing 9.11: Pseudocode for rule to collect operands of summations in pre-processing.

+

+

+

Figure 9.3: Visual illustration of summation collection rule.

FUNCTION splitSums ( node )
2

IF node.operator == +
children = chi ld nodes of node

5 Replace converted variants in children by their source
groups = Group children by unit
childList = [ ]

8 FOREACH group of groups
head = create binary tree from group members
IF head.unit != node

11 head = getVariant ( head , node.unit )
Add head to childList

node.children = childList

Listing 9.12: Pseudocode for rule to split up summations in post-processing.

In order to be able to apply the aforementioned rules to differences as well, another rule can

be applied earlier in the pre-processing to convert differences to summations. This is simply done

by transforming the binary difference-relation to a unary negation followed by a sum. This rule

is given in Listing 9.13 and by the following formula:

(9.16) a−b = a+ (−b)

151



CHAPTER 9. HANDLING OF UNITS

FUNCTION transformDifference ( node )
2

IF node.operator == −
right = right=hand chi ld

5 newNode = unary negation of right
Replace right=hand side chi ld with newNode
node.operator = +

Listing 9.13: Pseudocode for rule to split up summations in post-processing.

Other restructuring rules are possible. One could, e.g., restructure formulae of the form
[a]+[b]

[c] to [a]
[c] + [b]

[c] . Although this would further increase the applicability of the summation rule

mentioned before, it comes at the cost of an additional division. This might outweigh the benefits

of saving on the amount of conversion, which is why it is not listed as a default optimization rule

here. The same holds true for the respective multiplication rule.

As some of the transformations may change the total conversion count, it has to be recalculated

as part of the post-processing step.

152



C
H

A
P

T
E

R

10
DATASET COMBINATIONS

The visualization process requires a single, consolidated dataset including all data necessary for

the specific task. The effort needed to create such a consolidated dataset varies substantially. If

the visualization task is in line with the original intent of the data producer, all data necessary

might be contained within a dataset. However, the intentions of data producers and consumers

can also differ quite a lot. In these situations, required data might be scattered over multiple

datasets even created by different data producers [64].

Data consumers have to accomplish two tasks to retrieve a consolidated dataset. First, they

have to identify and retrieve datasets that can contribute to the result. Having found matching

datasets, these will need to be integrated in a second step. Traditional search implementations

are oftentimes restricted to metadata descriptions and will only search in fields like title or at

best column headers. Primary data is usually neglected, though, forcing users to check each

dataset individually to verify whether the requested data is actually contained within a dataset.

When the required data is spread across multiple datasets and join- or union-operations need to

be applied, those need again to be specified by users in a mostly manual manner.

For non-tech-savvy users, these tasks may prove too big a barrier to entry. Here, a query-

by-example approach similar to the one presented in [122] seems promising. Instead of manual

search, users specify a table structure that represents their current search goal. The system

subsequently looks through the available data sources and attempts to fulfill the search request.

For this thesis, data integration challenges like duplicate detection or schema mapping

are mostly considered out of scope. Furthermore, in order to distinguish the given approach

from previous work on data integration and data fusion, the general problem is labeled dataset

combination. The main goal in dataset combination is to find a workflow that transforms and

combines multiple data sources to fulfill users’ search requests as given by an example table.

153



CHAPTER 10. DATASET COMBINATIONS

10.1 Related Work

The Mannheim Search Join Engine (MSJ Engine) [61, 170, 171, web111] is a system to

augment a given (relational) table with additional information gathered from websites. There are

two types of input tables to the system: constrained and unconstrained queries. While constrained

queries just ask for the addition of a single specified attribute, for unconstrained queries the

system will add all matching attributes to the input. Both kinds of queries are answered using

the same three-step process: Table Indexing, Table Search, and Data Consolidation.

In the Table Indexing step, the given corpus is preprocessed and indexed within Lucene

[web112]. Apart from tabular datasets like the WikiTables Dataset [172] and the WebDataCom-

mons HTML Tables Dataset [173], the approach is also applied on RDF-based datasets like the

WebDataCommons Microdata Dataset [174] and the Billion Triples Challenge 2014 Dataset

[web113]. The former two can immediately be converted to an internal subject-attribute table.

However, the RDF-based datasets have to be converted to a tabular structure first: For each class,

a separate table is constructed and all RDF-predicates are added as attributes accordingly. In the

case of multi-valued objects, only the first value is maintained.

In order to be indexed, a table has to fulfill two criteria: It has to contain at least three

attributes (columns) and it must contain a subject attribute. The subject attribute is identified by

the use of the following heuristic: If the table contains an attribute rdfs:label or the respective

table header contains the string name, it is selected as a subject attribute. If this condition fails,

the attribute with the highest count of distinct values is selected1. Ties are broken by choosing

the left-most attribute.

Furthermore, by the use of manually defined rules and regular expressions, the data types

number, timestamp, and geo-coordinate are identified. Another set of rules enables the detection

of units of measurement and converts those to the respective base unit. As the evaluation is using

English queries, tables containing data in other languages are also filtered as is adult content.

These transformation and filter rules result in a usable corpus of 36,337,000 tables total. This

represents about 25 % of the input datasets’ tables. Before being indexed in Lucene, all cells’

values are normalized, i.e. they are tokenized, lowercased, and values in brackets as well as stop

words are removed.

In the Table Search step, the actual query is posed. The input table is processed in the same

manner as the tables of the corpus before, i.e. in particular a subject attribute is identified. A

search operator will then try to find matching subject values across all indexed tables. Two

approaches are used to find such matches: an exact matching as well as a FastJoin matcher [175],

which allows for fuzzy matching of tokens. Tables, where at least one subject value could be

matched, are ranked according to Equation 10.1, which describes an average similarity between

input and corpus table regarding the subject values contained. Here, T(t) is a table within the

1Only attributes with at least 60 % unique values are considered here.

154



10.1. RELATED WORK

corpus, T(q) is the query table, |T(q)| denotes the cardinality of the query table, and l(q.k, t.k)

the Lucene similarity score of the matched subject values. Only the top-k2 results are considered

further on.

(10.1) rT(t) = 1
|T(q)|

∑︂
l(q.k, t.k)

All found attributes are appended to the query table using a series of left outer joins called a

multi-join operator. Afterward, the third step Data Consolidation is applied which depends on

the query type.

For constrained queries only those attributes are kept, whose attribute header contains the

specified header. So for a queried header “GDP”, attributes with headers like “Total GDP” or

“GDP (US$)” are retained. The remaining attributes are consolidated in a row-wise fashion.

All attribute values belonging to a single subject value are now clustered using the similarity

measures proposed in [176]. The final value is selected by choosing the cluster with the highest

number of elements and then picking the most frequent element of that cluster. It is argued,

that this better accounts for different spellings present in the corpus. With a majority vote alone,

“Ipoh” might be picked as the capital of Malaysia as the correct answer is present with multiple

different spellings each of a lower frequency: “kuala lumpu”, “kuala lumpua”, and “kuala lumpur”.

The results for unconstrained queries are processed in a similar way. Here, attributes with the

same semantic intention have to be matched. This is done by the use of two different approaches:

The first approach matches attributes based on their values for each subject using the same

techniques as in the clustering before. The second approach relies on matching attribute headers.

First, a matching to background knowledge bases like DBpedia [152], YAGO [177], and Wordnet

[178] is attempted, after which is-a relations of those knowledge bases are exploited [179]. If no

matching concepts can be found this approach falls back to string similarity using Levenshtein

distance [180]. The results of both approaches are combined afterward. Regarding the attribute

values, users may choose between different conflict resolution strategies [181]. For the evaluation,

voting is used for nominal attributes, while the median is selected for numeric ones.

In an evaluation, the authors indexed tables of the four aforementioned corpora and ran “sev-

eral constrained and unconstrained queries covering different topical domains”. For constrained

queries, they report a coverage between 88 % and 100 %, if exact subject matching was used,

and a coverage between 95 % and 100 % for similar subject matching. The manually evaluated

precision ranges between 67 % and 100 % for exact matching and 100 % for similar matching

For unconstrained queries, between 1700 and 2700 attributes were added which covered at least

50 % of the subject values. Here, no precision evaluation is given. However, they also report that

running a table extension query using their example corpus and a single machine takes “several

minutes” to complete [170].

2For the evaluation k = 1000 is chosen.

155



CHAPTER 10. DATASET COMBINATIONS

Query
(q)

E

Core  c o lumn
e ntity ranking

Sc he ma
de te rmination

Value  lookup

E
S

S

V

Figure 10.1: “On-the-fly Table Generation”: Approach (from [182]).

A different take on the problem is presented in “On-the-fly Table Generation” [182]. Here,

the assumption is that many keyword-based queries can be answered by a summarizing table

instead of a ranked list of entities. Subsequently, the overall task is split into three different

components as shown in Figure 10.1. The individual components do not work in isolation but

inform each other, resulting in an iterative process to generate the final table. The approach

is based not only on the information in a table corpus but also relies on a knowledge graph.

Consequently, many of the ranking signals in the following are present in two variations, once for

the table corpus and once for the knowledge graph.

Core column entity ranking identifies the concepts in the query to be used in the core column.

Schema determination determines the header labels used to construct the table.

Value lookup retrieves values for the individual cells of the table.

The approach is based on the assumption that the requested table describes only one entity per

row, the so-called “core entity”. During core column entity ranking, several different techniques

are exploited to match the input query to entities that may be included. Initially, the approach

relies on term-based matching using a Language Modeling approach [183] and a deep relevance

matching model (DRMM) [184]. While the former relies on statistical measures like TF-IDF [185],

the latter employs a deep learning model to match queries to documents (or entity descriptions in

this case). Starting with the second iteration, candidates for the schema information are available

as well. For the DRMM model, the concatenation of all schema candidates is appended to the

query in order to improve the matching accuracy. A final ranking signal is given by the so-called

“entity-schema compatibility”. This compatibility is determined by the candidate entity having

156



10.1. RELATED WORK

properties corresponding to the identified schema labels. In the knowledge graph this directly

translates to properties, whereas in the table corpus it is evidenced by at least one table that

includes the respective entity and a corresponding header field.

Similarly, schema determination depends on multiple ranking signals. A first signal, column

population, matches the query to tables of the corpus. Relying on prior work [186], BM25 is used

to determine a set of tables τ from the corpus that is relevant to the query. Candidate headers

are then matches to the headers of the tables from τ using the maximum edit distance [61]. The

second signal applies the same DRMM-based approach as the core column entity ranking. Once

initial core column entity candidates are available, three more signals can be exploited: The

column population is extended by a factor that captures how many of the core column entities are

covered by a given table. A second signal defines the task as an attribute search for the current

set of core column entities and follows the method proposed by Kopliku et al. [187]. The final

signal is again given by the entity-schema compatibility in the same manner as before.

From each round, the top-k (k = 10 has been reported as the best choice) candidates of both

core column entity ranking and schema determination serve as input to the next iteration. Once

the set of candidates has stabilized across iterations, the final component, the value lookup is

executed. This lookup is done for each cell independently. First, a list of candidate values is

retrieved from the table corpus by using a fuzzy string matching of header and entity labels.

This list is subsequently ranked by a so-called confidence score that depends on the relevancy

of a given table to the query (cf. the selection process for τ during the schema determination).

However, results from the knowledge graph, if existent, are always prioritized over the ones

found in the table corpus. The authors reason that the data contained within the knowledge

graph is manually curated and thus of higher quality compared to the table corpus. In the initial

publication [182] only the top-ranked value is included in the result. Subsequent work also

proposed user interactions to select among other high-ranking candidates [188].

A related problem is posed within the OLAP community under the name of Minimum
description length (MDL) summarization [189, 190]. The problem can be stated as follows:

Given a k-dimensional OLAP cube and a user query, all cells of said cube are marked as either

blue (“interesting”), red (“not desirable”), or white (“don’t care”) [190]. The task is to find a

minimal set of rectangular regions within the cube, such that

(a) all blue cells are covered by a region,

(b) no red cell is covered by a region, and

(c) a minimal number of white cells is covered by a region.

An example is given in Figure 10.2. Here, the OLAP-cube has two dimensions whose values are

denoted by numbers and letters. A covering set of regions is, e.g., given by regions R1, R2, and R3.

For this set, the number of included white cells, also-called budget, is zero. Another set of regions

157



CHAPTER 10. DATASET COMBINATIONS

a
b
c
d
e

1 2 3 4 5 6 7

O

O

O

O

O

O

O

O O

X

O interesting cell
X not desirable cell

R1 = ( b−d, 2−3 )
R2 = ( b, 2−4 )
R3 = ( d, 6−7 )

R4 = ( b−d, 2−4 )

Figure 10.2: MDL summarization: Example.

consisting of R3 and R4 has a smaller cardinality but will include two white cells as well. In this

example, this second set is minimal in terms of regions required. A region like ( b−d, 2−7 ) is

not possible due to the not desirable cell at ( c, 6 ).

In general, this problem is NP-complete [191], but faster heuristic algorithms have been

proposed. One of these is called CAS-Interior [190] whose pseudo-code is given in Listing 10.1.

1 Build indices IA , IB f o r a l l the red and blue c e l l s respect ive ly .
Construct a s ingle Region R containing a l l the blue c e l l s .
I n i t i a l i z e the covering C to contain R only .
I n i t i a l i z e curr=consumption to be the number of white c e l l s in R .

2 WHILE ( there ex i s t s R ∈ C containing a red c e l l )

2.1 Grow the red c e l l in R to a larger region not containing any
blue c e l l using the blue index IB .

2.2 Spl i t R into ( at most ) 2d regions , where d i s the dimensionality
o f the space , excluding the ent ire red region .

2.3 Remove R from C , but add the s p l i t regions into C .
Update cur_consumption .

3 WHILE ( cur_consumption > white budget )

Do s p l i t t i n g similar to step ( 2 ) , th is time growing based on white c e l l s .

4 Return a l l the regions in C as the MDL covering .

Listing 10.1: MDL-summarization: CAS-Interior (from [190]).

The algorithm works in a top-down manner and successively removes sub-regions that contain

red or white cells. For the actual splitting, a reference to R-tree node splitting [192] is given. Each

split operation may result in 2×d regions as illustrated in Figure 10.3. A red cell is located at

( c, 5 ). The region around this red cell is expanded as long as it does not contain any blue cell

158



10.1. RELATED WORK

a
b
c
d
e

1 2 3 4 5 6 7

O

O

O

O

O

O

O

O O

O

O

O

X

Figure 10.3: CAS-Interior: Worst case splitting (after [190]).

a
b
c
d
e

f

g

h

i

1 2 3 4 5 6 7
8 9 10

11

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

X

X

X

X

X

X

Figure 10.4: MDLH: Example.

leading to a region ( b−d, 3−6 ) (dashed border) to be removed finally. As all regions have to

be rectangular in shape, this limits the size of the region to remove and forces four new regions

after the split.

It is noted that the regions are non-overlapping. The main reason given is that this reduces

the necessary efforts to keep track of the number of white cells. With non-overlapping regions,

each white cell is part of at most one region and thus possible multiple counting of a single white

cell is prevented.

As an extension of this algorithm, CAS-Corner is mentioned. Instead of using a random

red and white cell seed for the splitting regions, corners are examined for such seeds first. If a

matching cell is found and the respective region is removed, at most two remaining regions will

be created, thus lowering the number of regions created.

Another approach is given in [193]: MDL summarization with holes (MDLH). The budget for

white cells used before is omitted and replaced by a definition of regions with holes. Assume the

example given in Figure 10.4. In contrast to the examples before, hierarchies over the dimensions

have been added. No matter the approach, this results in a solution using four regions along

the borders. If, however, holes are allowed, the solution can also be given as ( i, 11 ) ⊖ ( g, 9 ),

reducing the cardinality of the solution from four (regions) to two. To this purpose, the algorithms

presented in [193] define the notion of benefit:

(10.2) Ben( S ⊖ H ) = |D| − ( |S| + |H| )

159



CHAPTER 10. DATASET COMBINATIONS

a b c d e f g h i j k

l m n

11

O O O O O X O O O X X

Figure 10.5: MDLH: One-dimensional example.

Here, S denotes the set of regions covering all blue cells, H the set of non-blue cells, and D is

a collection of blue cells. The benefit in essence describes the gain of describing D by use of S

and H instead of D alone. In other words, how much shorter is the description using regions and

holes as compared to a listing of cells?

This benefit can also be applied to elements of the dimensional hierarchy as they themselves

describe a certain region. Consider the one-dimensional example of Figure 10.5. The benefit for

(m) and (n) is calculated as follows:

Ben(m) = 3 − ( | { (m) } | − | { ( f ) } | ) = 3 − ( 1 + 1 ) = 1(10.3)

Ben(n) = 2 − ( | { (n) } | − | { ( j), (k) } | ) = 2 − ( 1 + 2 ) = −1

So while the use of (m) as a region yields a positive benefit, using (n) results in a negative benefit

as the description for holes can not be shortened.

Using this benefit definition, the algorithm MDLH-Greedy is presented. The pseudo-code is

given in Listing 10.2. In the first step, S, the set of solution regions, is initialized to contain a

list of all blue cells. Furthermore, the list of holes H is set to an empty set, while two auxiliary

sets S′ and H′ are also set to empty sets. Afterward, the benefit is calculated for all so-called

“parent-regions”. A parent region is a region, that uses one parent node from one dimension

while using leaves for all other dimensions. So in the example of Figure 10.4, ( g, 2 ) constitutes

a parent region, while ( g, 8 ) does not. The list of parent-regions and respective benefits is

subsequently sorted by benefit (descending) and the number of holes (ascending).

This sorted list is processed from start to end in steps three and four. Step three simulates

the addition of region x to the solution by removing the contained blue cells from the solution and

adding non-blue cells to the list of holes. Step four checks whether this solution is advantageous

over the current solution and adopts the new solution in case of improvements. Step six marks

all selected holes blue and uses another algorithm3 to simplify the solution S. After marking

all holes blue, selected regions so far are rectangular and without holes. So using the default

algorithm with a budget of zero will return a reduced solution for the set of selected regions S.

Finally, the reduced set of regions along with the accumulated set of holes is returned as the

output of the algorithm.

3The authors at this point chose the MDL-Tree algorithm [190], but any other MDL-algorithm would suffice.

160



10.1. RELATED WORK

Input : a k=d data cube and the set o f blue c e l l s D
Output : an MDLH descr ipt ion for D

1 / * H and H′ are sets o f holes . S ⊖ H i s a descr ipt ion for D .
Each time we s e l e c t a region x , S′ contains the blue c e l l s in S but not in x .
H′ contains holes in H and x . S′ ⊖ H′ i s the new descr ipt ion by se lec t ing x . * /
I n i t i a l i z e S = D and H = S0 = H0 = ∅ .

2 Compute the benef i t o f each parent region and sort those regions with non=negative benef i ts to
form a sorted l i s t in descending order of benef i ts but in ascending order of the number of holes .

3 Obtain the next best unprocessed region x from the sorted l i s t .
Set S′ = S − BlueCell(x) , and H′ = H + NonBlueCell(x) .

4 I f (|S′| + |H′| < |S| + |H|) then { S = S′ and H = H′ } .

5 I f there i s any unprocessed region in the sorted l i s t , then go to step 3.

6 Mark each c e l l in H as blue . Apply MDL=Tree algorithm on a l l the blue c e l l s and the descr ipt ion
generated i s stored in S

7 Return S ⊖ H as the MDLH descr ipt ion for D .

Listing 10.2: MDL-summarization: MDLH-Greedy (from [193]).

There are a few things to note regarding this algorithm: First, the selection of only parent

regions seems to restrict the solution space at first glance. The authors argue that this approach

reduces the number of regions to check in steps three and four. On the other hand, possible

improvements of selecting a parent node instead of its children to form a region are gathered in

step six.

Another important aspect is that the benefit is not recalculated after selecting a specific

region. The authors state that step four includes an implicit calculation of the benefit. Their

experiments show that adding a recalculation step offers only minor benefits in terms of solution

quality, but had significant impacts on the overall runtime.

In the form of Listing 10.2, the algorithm will return a list of cells as the set of holes. The

algorithm can, however, be applied recursively to create a minimal description length for this list

as well. In a first iteration, this would result in a description of the form S ⊖ SH ⊕ HH with SH

and HH being the results of the recursive call using H as the input set.

In the database community, a related problem is studied under the name of query answering

or query answering using views [194]. It has been studied in different contexts ranging from

query optimization to data integration. The general assumption is that there is a global (database)

schema and a set of materialized views over that schema. As the views are materialized, replacing

parts of the original query can yield significant performance improvements over using the

database relations themselves. This is the main motivation in the context of query optimization.

In data integration, the problem is phrased in a different manner. Again there is a global,

mediated schema to represent the domain dealt with. However, the views refer to different,

possibly autonomous, datasets. They are described as views of the global schema. Users are able

161



CHAPTER 10. DATASET COMBINATIONS

to pose queries against the global schema and the system will determine which datasets can

contribute to the answer. Here, the result is not an execution plan as with query optimization,

but a query referring to the individual datasets instead of the global schema.

Both aspects deal with the same problem: Given a set of views, which of these can contribute

to answering a given user query? Before discussing possible solutions, the problem itself has to

be formalized. A first definition is concerned with the relation of two queries like the input query

and the result query [194].

Query containment and equivalence. A query Q1 is said to be contained in a query Q2, denoted

by Q1 ⊑Q2, if for all database instances D, the set of tuples computed for Q1 is a subset

of those computed for Q2, i.e. Q1(D)⊆Q2(D). The two queries are said to be equivalent if

Q1⊑Q2 and Q2⊑Q1.

The determination of this relation itself has attracted quite some research over time. It has been

studied in different contexts [194] like select-project-join queries and unions thereof, queries

with arithmetic comparison predicates, recursive queries, and queries with bag semantics. For

conjunctive queries, the decision of whether one query is contained within another is known to be

NP-complete [195].

When rewriting a given query using views, two different kinds of results are possible: Equiv-

alent rewritings and contained rewritings. While the former’s result is equivalent to the input

query, the latter only represents a subset. A formal definition can be given as follows [194].

Equivalent rewritings. Let Q be a query and V =V1, . . . ,Vm be a set of view definitions. The query

Q′ is an equivalent rewriting of Q using V if:

• Q′ refers only to the views in V , and

• Q′ is equivalent to Q.

Maximally-contained rewritings. Let Q be a query, V = V1, . . . ,Vm be a set of view definitions,

and L be a query language. The query Q′ is a maximally-contained rewriting of Q using V

w.r.t. L if:

• Q′ is a query in L that refers only to the views in V ,

• Q′ is contained in Q, and

• there is no rewriting Q1 ∈L , such that Q′ ⊑Q1 ⊑Q and Q1 is not equivalent to Q′.

A contained rewriting is defined in the same way as a maximally contained rewriting but omits

the third requirement. Approaches to determine query containment only validate a given solution,

but do not create one by themselves. Finding such rewritings is a problem in its own right.

162



10.1. RELATED WORK

Class Subclass of Attributes Disjoint from
Product Model Person
Automobile Product Model, Year, Category Stereo
Motorcycle Automobile Model, Year Car
Car Automobile Model, Year, Category Motorcycle
NewCar Car Model, Year, Category UsedCar
UsedCar Car Model, Year, Category NewCar
CarForSale Car Model, Year, Category, Price, SellerContact

Table 10.1: Information Manifold: Class hierarchy (from [196]).

Source 1: Used cars for sale.
Contents: V1(c) ⊆ CarForSale(c), UsedCar (c)
Source 2: Luxury cars for sale. All cars in this database are priced above $20,000.
Contents: V2(c) ⊆ CarForSale(c), Price(c, p), p ≥ 20000
Source 3: Vintage cars for sale (cars manufactured before 1950).
Contents: V3(c) ⊆ CarForSale(c), Year (c, y), y≤ 1950
Source 4: Motorcycles for sale.
Contents: V4(c) ⊆ Motorcycle(c)
Source 5: Car reviews database. Contains reviews for cars manufactured after 1990.
Contents: V5(c, y, r) ⊆ Car (c), Model (c, m), Year (c, y), ProductReview (m, y, r)

Table 10.2: Information Manifold: Information sources (from [196]).

One approach to create query rewritings, the so-called bucket algorithm, is given in [196]. It

was implemented in the context of the Information Manifold System that provided users with a

unified query interface to “more than 100 information sources, many of them on the WWW”. The

global schema is called world view and consists of several (virtual) classes as well as (virtual)

relations which can be of any arity.

Table 10.1 lists examples for classes used in [196]. The classes and their instances are mapped

to relations for unified access in the following way: Each class is represented by one unary relation.

Properties of the classes are mapped to one binary relation each. Disjointness and inheritance are

maintained in the relational view. So if C and D are disjoint classes, for the respective relations

C∩D =∅ holds true. Similarly, if C is a subclass of D, then C ⊆ D applies to the relations.

The information sources are described in terms of views over the world view as shown in

Table 10.2. Like the world view relations and classes, these descriptions are created manually.

No single data source will contain all instances of a certain relation. To highlight this fact the

views are defined using a subset relation ⊆ instead of a defining property ← as used within the

queries later on.

Users may pose queries against this global view. An example is given in Listing 10.3. The

query asks for a list of models, their prices, and reviews for sportscars manufactured after 1992.

163



CHAPTER 10. DATASET COMBINATIONS

q(m1, p1, r1) ← CarForSale(c1), Category(c1, sportscar), Y ear(c1, y1),
Price(c1, p1), Model(c1, m1), ProductReview(m1, y1, r1), y1 ≥1992

Listing 10.3: Information Manifold: Example query (from [196]).

The actual algorithm works in two steps. First, a bucket for each subgoal is created. A subgoal

denotes a single requirement in the query. So in the example of Listing 10.3, the first subgoal is

given by CarForSale(c). Each bucket will contain a list of views that can contribute tuples to

the respective subgoal. In a seconds step, all combinations of views are considered where one

view is drawn from each bucket. For each combination, it is then tested whether it is contained

within the original query using the algorithm provided in [197]. If this is the case, the respective

combination is added to the set of correct solutions. The final result is given by the union of all

these solutions.

The algorithm for the creation of buckets is given in Listing 10.4. The input is given as a

conjunctive query (cf. Listing 10.3). For each component of that query a bucket is created (line 4).

A relation can appear multiple times within such a query and for each occurrence, a separate

bucket is created. Afterward, these buckets are populated by comparing the respective component

with each component present in the views (lines 6 to 16). If the relation of the component matches

one present in the view (line 9), a mapping of variables is created (lines 11 to 13). This mapping

also applies to the other components of the view. The view definition with the applied mapping

is appended to the original query to form a new query Q′ (lines 14 and 15). If this new query is

satisfiable, i.e. it does not contain any contradictions or results in an empty result set, the view

including that mapping is added to the respective bucket (line 16). A single view can be added to

one bucket multiple times, if multiple relations can be matched and, hence, multiple mappings

exist.

Consider the example views of Table 10.2 and the query given in Listing 10.3. The first bucket

is created for the component CarForSale(c). The respective relation CarForSale is also found

in the first component of the first view. Hence, a mapping c → c1 is created, which results in

the query Q′ given in Listing 10.5. As CarForSale and UsedCar are not disjoint, the respective

query is satisfiable and Source 1 alongside the mapping is added to the first bucket. Source 2 will

be processed in a similar way. For Source 3 the resulting query is not satisfiable as y ≤ 1950 and

y ≥ 1996 will return an empty result. Source 4 is not added as Motorcycle and CarForSale

are disjoint classes. Finally, Source 5 is also added as Car and CarForSale can be mapped and

the resulting formula is satisfiable. The remaining components of the input query are processed

in a similar fashion. The bucket for the final component ProductReview(m1, y1, r1) will only

contain a single view and mapping, since only Source 5 can be matched here.

CarForSale(c1), Category(c1, sportscar), Y ear(c1, y1),

Price(c1, p1), Model(c1, m1), ProductReview(m1, y1, r1), y1 ≥1992,

164



10.1. RELATED WORK

1 Input : V i s a set o f content descript ions , and Q i s a conjunctive query of the form
Q : Q(X ) ← R1(X1), . . . , Rm(X m),CQ :

4 Set Bucketi to ∅ f o r 1 ≤ i ≤ m .
For i = 1, . . . , m do

For each V ∈ V

7 Let V be of the form : V (
−→
Y ) ⊆ S1(Y 1), . . . , Sn(Y n), CV

For j = 1, . . . , n do
I f Ri = S j or Ri and S j are non=d i s j o i n t c lasses

10 Let ψ be the mapping defined on the variables o f V as fo l lows :
I f y i s the jth variable in Y j and y ∈ Y

then ψ(y) = x j , where x j i s the jth variable in X i
13 e lse ψ(y) i s a new variable that does not appear in Q or V

Let Q′ be the 0=ary query :
Q′ ← R1(X1), . . . , Rm(X m), CQ , S1(ψ(Y 1)), . . . , Sn(ψ(Y n)), ψ(CV )

16 I f Satis f iable(Q′) then add ψ(V ) to Bucketi

End .

Listing 10.4: Information Manifold: CreateBuckets (from [196]).

CarForSale(c1), UsedCar(c1)

Listing 10.5: Information Manifold: Intermediate query Q′ (after [196]).

In the second step, the contents of the individual buckets are combined, such that each

candidate solution contains one element of each bucket. The candidate solutions’ components

are then minimized, i.e. all redundant components are removed. If the resulting candidate is

contained in the input query or can be made to be contained by adding further restrictions, it is

added to the list of correct solutions. The returned result is then given by the union of all correct

solutions. Further steps within the Information Manifold system will create executable plans

from these solutions by the means presented in [198], which shall not be discussed here.

The MiniCon algorithm presented in [199, 200] uses the same basic approach but improves

the algorithm by reducing the search space even further early in the process. Similar to the

bucket algorithm, in the first step mappings between components of the input query and the view

descriptions are detected. While the bucket algorithm will insert any matching to the respective

bucket, the MiniCon algorithm will apply more checks.

Q1(x) ← cites(x, y), cites(y, x), sameTopic(x, y)

V4(a) ← cites(a, b), cites(b, a)

V5(c, d) ← sameTopic(c, d)

V6( f , h) ← cites( f , g), cites(g, h), sameTopic( f , g)

Listing 10.6: MiniCon: Example setup (from [200]).

165



CHAPTER 10. DATASET COMBINATIONS

Consider the example of Listing 10.6 where Q1 is the input query and V4, V5, and V6 are

the data source views. The first occurrence of cites in both Q1 and V4 can be matched with a

mapping like x → a, y → b. The bucket algorithm will stop here and add V4 to the bucket

for cites(x, y). MiniCon, however, considers further implications: As b is existential, i.e. it does

not appear in the head of the view, and there is a mapping y → b, all other occurrences of

y also have to be present in V4. Informally speaking, y is needed in the join condition for all

relations containing it. So these joins either have to be performed within the respective view

definitions or the variable y has to be exposed in the head to be available for further joins outside

the view. In the example, y is mapped to the variable b. The head of the view definition for V4

does not contain b, so all other relations of y in the input query also have to be present in V4,

also respecting the mapping created so far. The second cites(y, x) can be mapped to the second

occurrence of cites(b, a) in V4. However, the last relation sameTopic(x, y) has no equivalent

in V4, so MiniCon will not include V4 in the solution. As a consequence, MiniCon maintains

sets of subgoals alongside the mapping in contrast to the bucket algorithm, which only considers

isolated subgoals. Within the MiniCon algorithm, sets of subgoals alongside the found mapping

are maintained within so-called MiniCon-Descriptions (MCD).

In the second step, MCDs found in step one are combined to form the final solution. Here,

only MCD with non-overlapping sets of subgoals is considered. A proof that this still results in

accurate solutions is given in [200]. This proof also justifies the omission of the query containment

check present in the bucket algorithm. Both of these aspects, reducing the search space in step

one and omission of query containment checks in step two, lead to substantial performance gains

of MiniCon as compared to the bucket algorithm [199, 200].

The complexity of query answering using views has been studied in [201, 202]. The problem

has been examined under both the Open World Assumption (OWA) as well as the Closed World

Assumption (CWA). Under CWA view instances include all the tuples that satisfy the view

definition. OWA, on the other hand, allows for incomplete instances that might only store some of

those tuples. One of the results stated is, that even under the OWA queries using inequalities are

co-NP hard. Restricting both query and views to conjunctive queries, on the other hand, results

in a PTIME complexity.

10.2 Discussion

All approaches deal with the same situation: A dataset that is the combination of multiple parts.

While MDL descriptions are concerned with describing each part in relation to the whole dataset,

the others are concerned with finding suitable pieces to form the dataset.

MDL summarization could be employed as part of a dataset combination as follows. The user

query for a dataset can be interpreted as a virtual OLAP cube. The next step would now find

the source dataset that covers most cells of this cube. For the MDL summarization, the cells not

166



10.2. DISCUSSION

covered by the source datasets are now marked as blue cells. This results in a new query that

covers the remaining area, which can in turn be fed to another recursive call of the algorithm.

This process is repeated until no area remains or no matching source dataset can be found.

While this resembles the general structure of the approach presented later on, the use of

MDL summarization in this scenario is rather limited. The main advantage of summarization

algorithms is the generation of short query result descriptions targeted towards human users.

Within reasonable boundaries algorithms, however, are agnostic of this. Finding the source

dataset to match the current query might even reverse this process to estimate the coverage of a

certain source. Assume, e.g., the summarization detects that data for Africa is missing from the

current result, the candidate source datasets, however, contain data on the country level. Here,

the second step of the algorithm would need to reverse the summarization in order to rank those

datasets.

Query answering using views addresses a similar problem to the one posed. It defines a global

mediated schema and describes all data sources as views over that schema. User queries are also

posed as queries over the global schema and are then rewritten by algorithms in terms of the

data sources’ views.

This global schema, however, also represents a potential weak point. A fixed schema might

need frequent adjustments when new datasets shall be added to the pool. The authors of [196]

state that their process of describing datasets was “leaving the world-view relatively stable”.

This highlights, however, that even for small numbers – -only 100 datasets were used in their

experiments — such adjustments were necessary.

Another disadvantage lies in the description of the user queries. Users have to be familiar

with the global schema to pose valid queries. This especially includes the need to include the join

conditions needed to combine multiple relations. If the domains grow beyond a certain threshold,

this will impede the accessibility for users that are no experts in the respective area. Similarly,

queries spanning multiple overlapping domains will pose problems if these domains have been

modeled separately. In this case, most certainly redundant relations will have to be mapped to

one another and possibly conflicting models need to be reconciled.

A further problem of this query answering is hidden in the solution being defined as a union

of multiple queries. Under both bag semantics [203, 204] and set semantics [130], the result

might contain tuples users may regard as duplicates. The general query answering approach does

not distinguish between dimensions and measurements. As a result, conflicting measurements

might not be resolved. Instead of resulting in the equivalent of one coherent OLAP cube, the

result might contain multiple tuples referring to the same cell. The system itself is not capable of

resolving these issues but needs further information or user interaction.

Finally, the MSJ engine and “On-the-fly Table Generation” come closest to solving the posed

problem. In MSJ, users provide lists containing objects of interest and possibly concepts they wish

the table to be extended with. The system will search through a web corpus and try to add the

167



CHAPTER 10. DATASET COMBINATIONS

respective attributes and present the respective result table. In contrast to the query answering

algorithms, it is not reliant on a predefined global schema. Similarly, the approach of “On-the-fly

Table Generation” attempts to extract a list of objects of interest from a keyword-based query

first. Subsequently, the corresponding candidates are used to generate a table answering the

query.

Both approaches are focused on single identifying labels. While this might be suitable to

retrieve information about single objects, it becomes problematic if the required data is multidi-

mensional. Assume a query for the annual budget of certain countries. A user might pose a query

with a list of countries and requesting columns relating to year and budget. The MSJ engine

will acquire all relevant datasets and create a combined table. However, after the consolidation

phase only two values per row will be present. The proposed algorithm at this point does not even

retain the connection between those two cells. As users might not be aware of such behavior, they

might keep on working using this false data as to them it appears valid.

The consolidation phase of MSJ and the overall approach of The focus on individual cells

in “On-the-fly Table Generation” suffers from might yield another possible issue. Values are

retrieved individually for each returned row and cell, losing the connection of values from the

same dataset. So while the value for one cell might be taken from dataset A, another cell in the

same tuple might be filled with a value from dataset B. This may introduce incoherences in the

result. In case of “On-the-fly Table Generation”, the situation gets even worse. As values are

fetched independently for each cell, values for year and budget of a country might be fetched

from completely unrelated sources (i.e., either tables from the corpus or the knowledge graph).

Again, no hint would be given to a user that the provided data can not be relied upon.

The quality of the result might be increased by choosing values from preferred datasets and

only resorting to others if the preferred one can not provide a value for a given cell. That is, of

course, under the assumption that there are no or at least fewer incoherences within the source

datasets.

10.3 Approach

Before discussing an actual approach, the format of the input has to be specified. The expected

result is a new dataset, so it is only natural to reuse the dataset description of Chapter 8 at this

point. A user query may hence be given as a collection of at least two columns. Two columns are

needed so the final dataset will consist of at least one dimension and one measurement. A mere

list of individuals is considered out of scope for this approach.

168



10.3. APPROACH

Each column can consist of a concept and a value range. Omitting a value range labels a

particular column as infinite, i.e. there are no restrictions placed on the values that might be

included. In contrast to that, columns that include a range of values will be called finite. For

quantitative or time-based4 columns there might also be semi-finite specifications that only state

an upper or lower bound for the range of values.

The concept definition for a column is optional if that column is of a categorical type. Here,

the set of specified values implicitly defines the column’s concept. The respective user interface

has to ensure that all values of a dataset can be attributed to the same concept. This way of

implicitly defining a column’s concept can not be extended to quantitative columns. A given value

range can be attributed to basically any concept. Even the addition of a unit can only narrow

down the list of concepts, but can not uniquely identify a single one.

The general approach is given in Listing 10.7. It extends the idea stated towards the end of

the previous discussion to a general principle for a data combination approach: Satisfy the user

query as much as possible with a single dataset, then apply the same principle to the parts not

covered yet. Adhering to that principle yields two kinds of benefits. On the one hand, the risk of

incoherences introduced by using multiple sources is reduced5. On the other hand, using fewer

data sources will also increase the performance of such an approach, as fewer sources have to be

accessed and fewer resources have to be spent on the resolution of possible conflicts.

INPUT: Target dataset descr ipt ion as l i s t o f column de f i n i t i on s
2 ( concept and / or range of values )

OUTPUT: Workflow to create said dataset as c l o s e l y as poss ib le

5 FUNCTION createWorkflow ( user query )

LET descr ipt ions = List o f matching dataset descr ipt ions from the repos i tory
8

LET bestDs = Dataset descr ipt ion best f i t t i n g to the user query

11 LET regions = Remainders a f ter applying bestDs to the user query

LET subWorkflows = FOREACH region OF regions : CALL createWorkflow ( region )
14

LET resul t = Combine subWorkflows and bestDs using JOIN and UNION operators

17 RETURN resul t

END

Listing 10.7: Pseudocode for dataset combination approach.

4The definition of “time-based” is in line with the restrictions stated in Section 5.3. This denotes a certain point in
time and not the measured length of some event.

5This labels the given approach as conflict-avoiding according to the classification of [205].

169



CHAPTER 10. DATASET COMBINATIONS

The individual steps in the approach will be discussed in detail in the following sections.

At this point, just a brief overview is given. The first step (line 7) is to gather a list of dataset

descriptions that might satisfy at least a part of the user query. This step will reduce the search

space by a large margin as most dataset descriptions will not be relevant for the given query. The

next step (line 9) will rank all remaining datasets according to their usability for the current user

query and select the highest-scoring one. This follows the aforementioned principle by satisfying

the user query as far as possible by using just a single source. Now, the user query is split with

respect to the selected dataset into regions (line 11). Subsequently, for each of these regions

the algorithm is called recursively (line 13). In a way this resembles the approach of recursive

MDLH-descriptions, but, instead of specifying holes in the solution, those holes are used as new

user queries to the recursive calls. The final step (line 15) combines the results of the recursive

calls with the selected dataset for the current user query to create the overall solution.

10.3.1 Searching dataset descriptions

This step assumes that there is a repository that contains the descriptions for datasets in the

format outlined in Chapter 8. Besides information to access a particular dataset, this especially

includes the respective column definitions. As the user query is given in a similar format, both

descriptions can easily be matched.

Some categorical columns in the user query might have no concept assigned to them but

are merely defined by a collection of values. In a preprocessing step, the concepts for these

columns are determined by retrieving a common concept that includes all given values as possible

instances. After this preprocessing, each column is described by a concept. Some columns might

also be further restricted by a given value range.

A description has to meet the following criteria to be considered a candidate for the remainder

of the algorithm. The concepts of at least two columns in the description have to match to

counterparts within the user query. If the user query poses restrictions on the value ranges

for the matched columns, columns in the description need to specify a non-empty intersection

with those ranges. Furthermore, within the set of matched columns, there has to be at least one

dimension and one measurement.

The rationale for the first requirement is rather obvious. Without any overlap in terms of

columns, the described datasets will not contribute to the answering of the user query and, hence,

can be removed from the search space. The second requirement is caused by applying the same

reasoning to the value ranges: The dataset will not be part of the solution if none of the matched

columns’ value ranges overlaps with the restrictions posed by the user query.

The remaining requirement calls for at least two matching columns, in particular at least one

dimension and one measurement. On the one hand, this matches the restriction on user queries

which prohibits requests for simple lists of values. On the other hand, this removes datasets that

only match dimensions or only match measurements. Both of them are of little use here. The

170



10.3. APPROACH

datasets will be transformed in a later step of the algorithm to remove columns that are not part

of the query, so only matched columns need to be considered at this point. Values in columns

are connected if there is a measurement that is described by one or multiple dimensions. As a

consequence, datasets that consist of only dimensions or only measurements can only contribute

unconnected values to the result. The query, however, asks for connected values of some sort, so

these datasets will not provide any meaningful benefit to answering that query.

The above discussion can be applied to all levels of recursion in the algorithm. However, all

but the first level leave room for optimization. All recursive calls will concern subsets of the

original user query. So each dataset that fits one of these subqueries has also to be applicable to

the parent query. Instead of retrieving dataset descriptions again and again from the repository,

the system can reuse the candidate list from the parent call and apply the restrictions of the

subquery on this list. Depending on the size of the repository, the number of candidates, and the

recursion level of the current call, this can yield substantial performance benefits as the size of

the search space will be strictly monotonic decreasing with each new level of recursion6.

10.3.2 Ranking Datasets

The ranking of datasets follows the same general notion like OLAP cubes and MDL-descriptions

before (cf. Figures 10.3 to 10.5). Both, user query and candidate datasets, are seen as multidi-

mensional OLAP cubes. The ranking is determined by the overlap between the cubes of a dataset

and the cube defined by the user query: Candidates that cover a larger share of the user query

cube will be ranked above those of lesser coverage.

As outlined during the discussion of MDL-approaches, a precise description of such cubes can

get arbitrarily complex. The dataset descriptions described in Chapter 8 already introduced a

simplification to avoid this complexity: Datasets are assumed to have no holes in their coverage.

If the description of a dataset claims a certain coverage for a specific dimension, each value of

that dimension has a corresponding measurement. The same notion is extended to combinations

of dimensions, so there are no cells lacking a measurement in the corresponding OLAP-cube.

While this assumption will likely only hold up for very few real-world datasets, affected datasets

could be split into multiple (virtual) ones following the ideas of MDLH. Anyhow, its effects will

only be noticeable once there is a substantial share of missing measurements. So for the purpose

of this thesis, potential missing entries in a dataset will be disregarded.

The coverage of any particular dataset with respect to the given user query can be computed

as a product of the coverage for each mapped dimension individually. The mapping of columns has

already been determined during the previous process of finding candidate datasets by matching

the columns’ concepts to one another. So, for a given source dataset s containing dimensions

6At least one dataset is picked to satisfy parts of the parent query. All remainder regions have no intersection with
this dataset, so the number of descriptions within the dataset will decrease by at least one. Further, no new
dataset descriptions can be added as there can be no dataset meeting the requirements of a subquery but failing
to do so for the parent query.

171



CHAPTER 10. DATASET COMBINATIONS

cs
i mapped to their counterparts cq

i in a user query q, the coverage can be calculated using

Equation 10.4. Dimensions that could not be mapped are omitted from this calculation but will

be accounted for in another metric later on.

(10.4) Coverage( s, q ) = ∏︂
i

Coverage( cs
i , cq

i )

To calculate the coverage of a particular dimension, first, the intersection of values in the

dataset and query has to be computed. The dataset’s dimension is always finite, so this intersection

is finite as well. However, it might be empty if there is no overlap between both columns. The

size of this intersection is then scaled according to the size of the query dimension if it is finite.

If the query dimension is infinite or semi-finite, a similar scaling can be achieved by using the

intersection’s reciprocal size. The size of the intersection is calculated differently for categorical

columns on the one side and quantitative and time columns on the other side. For categorical

columns, it is given by the number of distinct values, whereas the other two types use the

difference between the maximum and minimum value. If Intersection() denotes the intersection of

two columns and Size() its size, Equation 10.5 calculates the coverage for an individual column.

Coverage( cs
i , cq

i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if Intersection( cs
i , cq

i ) = ∅

Size( Intersection( cs
i , cq

i ) )
Size( cq

i ) if Intersection( cs
i , cq

i ) ̸= ∅ and cq
i is finite

1− 1
Size( Intersection( cs

i , cq
i ) ) otherwise

(10.5)

The discussions so far assume that source datasets and query share the same dimensions,

which does not hold in all cases. Source datasets may only cover a subset of the query’s columns

or include other columns the query does not request7. To address these cases in the ranking, two

more metrics are defined. Together they describe the deviation from meeting the schema of the

query exactly.

Support describes the fraction of columns in a query q that can be satisfied by a source dataset s.

(10.6) Support( s, q ) = #( shared columns between s and q )
#( columns in q )

Excess is the fraction of dimensions in a source dataset s that are not requested by a query q.

(10.7) Excess( s, q ) = #( dimensions present in s but not in q )
#( dimensions in s )

7If these datasets are chosen to be part of the result, additional actions have to be taken to adjust them to the target
schema. The respective efforts will be discussed later.

172



10.3. APPROACH

Excess only measures the number of superfluous dimensions in the dataset but ignores

superfluous measurements. The rationale behind this is, that additional measurements might

just be dropped from the dataset without affecting the usable result. Dimensions, on the other

hand, need to be eliminated by the use of aggregation operations. These operations require

additional effort and, hence, the respective datasets are penalized here.

Combining the three described aspects yields a final ranking for each pair of dataset and

query. Following the goal to use as few datasets as possible, high values for both coverage and

support will yield better results. While both seem to capture similar properties, they differ in

their reference parameters. Coverage measures the overlap on the cell level, whereas support

measures it on a schema level. Coverage is directly derived from the notion of an OLAP-cube that

is to be filled with values. The rationale behind the support metric is to favor those datasets that

are closer to the overall intention of the query or even share it. On the other hand, the datasets

picked should contain only few to none superfluous columns, so the excess rating should be low.

The final ranking is now given by a vector of the metrics discussed before as shown in

Equation 10.8. The excess metric is inverted, such that higher values signal better suitability.

This is only done to simplify later comparisons and has no further effect. To derive the best

candidate, the ranking vector is computed for each dataset individually. Those with a zero value

in the first element of the vector are discarded as they do not match the current query. All others

are sorted by using the elements of their vectors successively: Initially, they are ordered by

comparison of the first components. If this results in ties, the second elements are used. This

results in a ranking of datasets, from which the best candidate can now be picked.

(10.8) Score( s, q ) =
(︄

Coverage( s, q ) × Support( s, q )

1− Excess( s, q )

)︄

10.3.3 Splitting Queries

Determining the remainder after applying a certain dataset has to consider two scenarios. In

the first scenario, the dataset and the user query use equivalent schemata. Here, the areas

already covered by the dataset can be removed and the remaining regions are identified. The

dataset might also cover the whole user query, thus resulting in an empty remaining region. In

another scenario, the dataset differs from the query’s schema. An example for this scenario is

oftentimes queries containing multiple measurements. As each measurement might be provided

by a different data source, the system will have to cope with several deviating schemata in the

process. In the following, the scenario of equivalent schemata will be discussed first, before the

approach is extended to the more general situation of deviating schemata.

The splitting process for the first scenario can be visualized as shown in the example of

Figure 10.6. The user query is represented by a two-dimensional OLAP cube (cf. Figure 10.6(a)).

Similarly, datasets are also given as two-dimensional subcubes. The distinction between dimen-

173



CHAPTER 10. DATASET COMBINATIONS

(a) User query.

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

(b) Best suitable dataset.

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

X X X X X

X

X

X

X

X

X

X

X

X

X

(c) Remainder.

O Dataset X Remainder

Figure 10.6: Division of a user query by a source dataset.

sions and measurements is not given by the user query in the first place, but by the definition

of the dataset. However, there might be restrictions imposed on some columns as a result of

splitting a query by a dataset with deviating schema. This will be discussed later in the context

of the second scenario. The best-fit dataset as determined by the ranking process will cover a

subcube within the query’s cube (cf. Figure 10.6(b)). The goal of the splitting process is to identify

the remaining region (cf. Figure 10.6(c)). The algorithm itself is then run again on the remainder

to fill in the gaps in the user query. It will terminate if either the user query has been satisfied

entirely or for all remainders, no overlapping dataset can be found.

To form a rectangular OLAP cube, the remainder itself has to be cut again. Possible strategies

are illustrated in Figure 10.7. The remainder can either be split into overlapping subcubes (cf.

Figure 10.7(a)) or into disjoint ones (cf. Figures 10.7(b) and 10.7(c)). The advantage of a split

into overlapping subcubes is, that the number of subcubes only grows linear in the number

of dimensions of the user query. However, this comes at the cost of possibly requiring conflict

resolution techniques when putting the pieces back together.

On the other hand, both disjoint strategies do not require such a reconciliation as they create

no overlaps. In the asymmetric strategy (cf. Figure 10.7(b)) the dimensions are ordered by some

kind of preference. Dimensions of a higher preference are less likely to be split along than those

of a lower preference. In the example of Figure 10.7(b) the vertical dimension precedes the

horizontal one and thus is not split here. In the symmetric strategy (cf. Figure 10.7(c)) there is no

such ordering of dimensions and all of them are treated equally. This, however, results in more

subcubes being created, so while the two other strategies grow just linear with regard to the

dimensions, the symmetric strategy grows by O( 3d −1 ) in each level of the recursion, where d is

the number of dimensions.

While this exponential growth in complexity seems excessive at first, it is important to

note that the other strategies may deteriorate similarly if not worse. Consider the example

of Figure 10.8, which continues the splitting process of Figure 10.6. Figure 10.8(a) shows the

174



10.3. APPROACH

O

O

O

O

O

O

O

O

O

I I X X X I I

I

X

X

X

I

I

X

X

X

I

I I X X X I I

I

X

X

X

I

I

X

X

X

I

(a) Overlapping.

O

O

O

O

O

O

O

O

O

X X X

X

X

X

X

X

X

X

X

X

X

X X X

X

X

X

X

X

X

X

X

X

X

(b) Disjoint (asymmetric).

O

O

O

O

O

O

O

O

O

X X X X X

X

X

X

X

X

X

X XX X XX X

X

X

X

X

X

X

X X

(c) Disjoint (symmetric).

O Dataset X Remainder I Remainder (overlapping)

Figure 10.7: Strategies when splitting a user query.

process for splitting into overlapping subcubes. While only two subcubes are created in the

initial splitting, the next recursion level has to create two more subcubes for each call. Hence,

the number of subcubes that have to be checked is higher compared to the disjoint, symmetric

splitting strategy (cf. Figure 10.8(b)). Furthermore, the additional recursion step includes another

iteration of actually finding the best match and splitting the query accordingly. As a consequence,

the disjoint symmetric splitting strategy will outperform the overlapping strategy here, as it

saves this intermediate step. The argument can be extended in a similar fashion for the disjoint,

asymmetric strategy. While the number of subcubes to check is equal to the symmetric strategy,

it involves another recursion level as well. As a consequence, it is similarly outperformed by the

disjoint, symmetric approach.

Figure 10.8(a) also highlights another potential drawback in the overlapping splitting strategy.

Under certain circumstances, identical subcubes are processed multiple times. This issue can

be tackled by use of a lookup to memorize already processed subcubes, but this comes at the

cost of additional computational resources within the actual lookups. Furthermore, the subcubes

do not necessarily have to be equivalent as shown in the example, but can also manifest in

other “subcube”-relations, where a superset of the currently considered subcube has already been

processed. This further increases the computational cost of said lookup and thus decreases this

strategy’s performance.

The second scenario involves deviating schemata between user query and chosen dataset.

In particular, the dataset schema will be a subset of the query’s schema. The reverse situation,

where the query represents a subset of the dataset, will be discussed later in Subsection 10.3.4.

For the purpose of splitting the query, only the matched columns of the dataset are relevant. If

the query schema is a subset of the dataset’s, this results in an instance of the first scenario

presented before and no additional efforts are needed.

175



CHAPTER 10. DATASET COMBINATIONS

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

X

X

X

X

X

X

X

X

X

X

X X X X X X X

2

2

2

2

2

2

2

2

XX

3 3 3 3 3 X X

44 44

(a) Overlapping.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

X

X

X

X

X

X

X

X

X

X

X X X X X X X

2

2

2

2

2

2

2

2

3 3 3 3 3 4 4

(b) Disjoint (symmetric).

1 2 3 4 Datasets X Remainder

Figure 10.8: Worst case deterioration of splitting strategies.

If the dataset covers only a subset of the columns, the metaphor of an OLAP-cube used so far

falls short. While the remainder-subcubes can be treated as before, the dataset itself does not

cover the entirety of its respective subcube. Instead, it satisfies only a lower-dimensional subset

of it, while leaving columns related to the higher dimensions of the subcube valueless. So in order

to contribute a complete subcube, these remaining columns have to be filled as well.

In addition to the previous remainder-subqueries, another subquery for the subcube pertinent

to the found dataset is needed. In this subquery, all columns already satisfied by the current

dataset can not be matched to measurement columns in other datasets. As a consequence, they

are labeled dimension for the sake of the next recursion call. This causes datasets found in later

recursion steps to fill up the remaining columns, but they can not contradict values in the already

satisfied ones. No recursive calls are necessary if all columns are labeled dimensions. As per

requirement before, each candidate dataset has to feature at least one matching measurement,

so no candidate dataset can satisfy a query with only dimensions remaining.

176



10.3. APPROACH

10.3.4 Assembling Workflows

In the final step of the algorithm given in Listing 10.7, the results of the individual recursive

calls have to be merged together into an executable workflow. The workflow itself will follow

the structure imposed by the recursive approach and can, hence, be represented in a tree-like

fashion. Leaves in that tree represent source datasets to be loaded, whereas internal nodes stand

for operations combining them. Finally, the result for the query is given in the root node.

Subsection 10.3.3 introduced different scenarios that might occur when combining subresults.

One scenario was left open, as it did not affect the necessary splitting of queries during the

recursive calls: candidate datasets that include additional columns beyond what is requested in

the respective query. Up to now, those were only considered regarding the columns that match the

queries’ schema, disregarding the additional columns. However, before using such datasets within

the result, their schema has to be adjusted to remove those additional columns. Per definition,

additional measurements do not affect other columns. So measurement columns that could not

be matched to the query can just be dropped while loading the dataset.

Additional dimensions, on the other side, can not be dealt with in the same way. Simply

removing them would remove a crucial piece of information from the dataset and, hence, alter

its content. To remove such columns, the dataset has to be aggregated along the remaining

dimensions that were mapped to the user query. This aggregation raises the issue, which aggre-

gation function to use for the remaining measurements. In general, the system will not be able to

decide on a suitable aggregation function, as this relies on the particular user intention which is

unknown to the system.

As an example, consider sales data over some time for a certain number of branches of a

company. Dropping the time dimension can have two reasons: On the one hand, users may

want to have the overall sales numbers for each branch, which would result in a summation

aggregation function. On the other hand, the goal might be to get an average number of sales.

In this case, the aggregation function to chose would be averaging. This example highlights the

need for user interaction in the dataset combination process. Hence, the workflow will include

nodes that prompt for user input on these occasions.

Within these interactions, users are presented with several options. The choice of the aggre-

gation function depends on the type of the column in question, but will include the standard

aggregation functions like sum, average, or max. Besides choosing an aggregation function for

the measurement columns, users also have two other options. The first one offers to drop the

superfluous dimension without any aggregation done. While this is most often not a suitable

solution, some datasets might store redundant information in different dimension columns. In

these cases, users may choose to remove that redundancy and just drop that column.

Another option is to include said dimension in the result. By selecting this option users will

discard the current query results, and issue a new query that includes the column(s) in question.

This is necessary as the addition of a new column to the query will invalidate any ranking made

177



CHAPTER 10. DATASET COMBINATIONS

before and the result will, hence, not represent the optimal solution with respect to the stated

criteria. If users choose to stick to the current query and select any of the other options, a new

node will be added as the parent of the leaf-loader node for the respective dataset. That node will

contain all processing instructions necessary to harmonize the dataset and query schemata.

After the schema is adjusted, the values within the dataset are filtered with respect to the

requirements of the current query. This may introduce a second filter node as the parent of either

the dataset-loader node directly, if no schema adjustments are required or of the previously

created filter node that adjusts the schema. This step may also be executed before adjusting the

dataset schema. If aggregations are necessary, this reduces the amount of data needing to be

processed.

After datasets are brought in line with the respective query, missing columns have to be

replaced. If necessary, the previous splitting process created one subquery to bridge the gap

between dataset and query schema. So in this step, both these results will be joined into an

intermediate result conforming to the queries schema. Within the formalism of relational algebra

this represents a LEFT OUTER JOIN of the dataset found in the current recursion (left table) with

the results found for the remainder-query (right table). The result for the subquery may be empty

if no matching dataset had been found in the recursive call. In this case, all missing columns are

filled using null values. This way it is guaranteed that the schema of intermediate result and

query are identical.

On all other subresults, the splitting process placed no additional restrictions. Hence, by the

recursion invariant, they already adhere to the user query’s schema and can be added to the

intermediate result without the need for any adaptations. The respective pendant in relational

algebra for this step is the union-operator.

As already mentioned, the result of one recursion step is a tree-like structure. Datasets form

the leaf nodes in this tree. If their schema differs from the query, there might be an additional

filter node as their direct parent to remove superfluous columns. Similarly, an additional parent

node might be added to request user intervention in determining a suitable aggregation function,

if this is required. The remaining inner nodes represent either join (for deviating schemata) or

union (for conforming schemata) operations on some subresults. The root node itself will also be

an instance of one of these node types. Furthermore, it serves as the entry point for executing the

resulting workflow, which executes all operations in this tree in a post-order walk.

10.3.5 Optimizations

The presented workflow generation approach does not include any optimizations. However, there

is some room for improvement here. First of all, the order of join-operations can be changed to

reduce the overall computational effort. This is studied in the context of relational databases for

quite some time now [206] and is, hence, omitted here.

178



10.3. APPROACH

Another opportunity to reduce the complexity of the workflow is a direct result of the splitting

strategies presented in Subsection 10.3.3. The query-remainders in any particular step might be

split in such a way that a single source dataset may satisfy multiple subqueries. In the workflow

as given so far, these datasets would be loaded multiple times and filtered multiple times before

being added to the result. This situation may be remedied by an additional step before applying

the union-operator. If the root of several subresults are filter-nodes working on the same dataset,

these filters can be combined into a single node. The filter conditions are connected using an or-

operator and may subsequently be simplified. The subresults relating to this dataset are removed

and replaced by a single subresult using the combined filter. This removes multiple different

passes over the respective dataset. A single dataset might still occur on different subtrees and,

hence, not get optimized. In such cases all filter-nodes can point towards the same loader-node

for that dataset, at least preventing the dataset to be loaded multiple times. However, this does

not prevent multiple passes over the same dataset caused by the filter-nodes.

10.3.6 Example

The goal of this section is to illustrate the presented approach based on the example query

outlined in Figure 10.9. The requested dataset contains four columns: country, time, population,

and sheep. It further constraints the values for two of the columns. Data is requested only for

France, Iceland, and Spain as well as the years 2018 to 2019. All categorical values as well as the

column headers have been resolved to concepts in a prior step.

• Country
France, Iceland, Spain

• Year
2018 - 2019

• Population • Sheep

(a) Textual representation.

C
ou
nt
ry France

Iceland

Spain

Year
2018 2019

(b) OLAP-cube representation. Cells diagonally split
between population and sheep measurements.

Figure 10.9: Example: Initial query.

In a first step, the system has to look for proper candidates that cover at least one dimension

and at least one measurement of the query (cf. Subsection 10.3.1). Further, candidate datasets

are required to have some overlap with the values requested by the query. Given the previous

example, this could identify the four datasets, I to IV , shown in Figure 10.10 as possible

candidates.

179



CHAPTER 10. DATASET COMBINATIONS

Ⅰ

Country Year Pop.

France 2019 67,177,636

France 2018 67,026,224

Iceland 2019 356,991

Iceland 2018 348,450

Spain 2019 46,937,060

Spain 2018 46,658,447

Ⅱ

Country Year Sheep

France 2019 7,105,000

France 2018 7,166,000

Iceland 2019 416,000

Iceland 2018 432,000

Ⅲ

Country Year Color Sheep

Spain 2019 black 3,095,724

Spain 2018 black 3,170,506

Spain 2019 white 12,382,896

Spain 2018 white 12,682,024

Ⅳ

Country Year Pop.

France 2019 67,177,636

Iceland 2019 356,991

Spain 2019 46,937,060

Turkey 2019 82,003,882

Figure 10.10: Example: Source datasets (partially fictitious, data after [data3, data16]).

Next, these candidates have to be ranked according to their overlap with the initial query

(cf. Subsection 10.3.2). The results for the example query and the identified candidate datasets

are given in Table 10.3. The first dimension, country, is categorical, so the coverage is calculated

by comparing the number of distinct, matching values in datasets with those requested in the

query. For the second dimension, year, the coverage is calculated using the difference between

the minimum and maximum value. Here, the coverage of dataset IV highlights a particular

aspect of time-typed columns: A time-value actually represents a period of time given by its

respective precision (cf. Chapter 5). For example, the value 2019 represents the period between

the first and last moment of that year8 and as such covers all 365 days in between. Consequently,

the coverage of the column year, in this case, is 1
2 and not 0. The coverage from both dimension

columns subsequently yields the total coverage for all datasets of the example. The support for

all datasets is equal, as all of them cover the two dimensions, country and year, and one of the

two measurements. Dataset III has an additional dimension, color, which results in an excess

of 1
4 contrary to all other datasets whose value is 0, as they do not contain any such additional

dimension. Finally, the score vector is computed according to Equation 10.8.

8The first and last moments are given by the start of Jan. 1st 2019 and the end of Dec. 31st 2019 respectively.

180



10.3. APPROACH

Coverage per Dimension

Country Year Coverage Support Excess Score

I 3
3

2
2

3
3 × 2

2 = 1 3
4

0
3

⎛⎝1× 3
4

1− 0
3

⎞⎠=
⎛⎝3

4

1

⎞⎠
II 2

3
2
2

2
3 × 2

2 = 2
3

3
4

0
3

⎛⎝2
3 × 3

4

1− 0
3

⎞⎠=
⎛⎝1

2

1

⎞⎠
III 1

3
2
2

1
3 × 2

2 = 1
3

3
4

1
4

⎛⎝1
3 × 3

4

1− 1
4

⎞⎠=
⎛⎝1

4
3
4

⎞⎠
IV 3

3
1
2

3
3 × 1

2 = 1
2

3
4

0
3

⎛⎝1
2 × 3

4

1− 0
3

⎞⎠=
⎛⎝3

8

1

⎞⎠
Table 10.3: Example: Coverage and scores for initial query.

After rating each candidate dataset, the top-scoring one, here dataset I , is selected as an

initial data source9. Using that dataset the measurement population can be provided for all

dimensions as illustrated in Figure 10.11(a). However, as the query is not yet covered in its

entirety, the query has to be split with respect to the already covered portions. As noted before,

there is no need to keep looking for population measurements and, hence, this is dropped from

the query as outlined in Figure 10.11(b). The input to the next iteration of the algorithm is now

given by this query and the remaining candidates, i.e. the ones listed in Figure 10.10 minus

dataset I .

C
ou
nt
ry France

Iceland

Spain

Year
2018 2019

Ⅰ
Ⅰ
Ⅰ

Ⅰ
Ⅰ
Ⅰ

(a) Current state of the OLAP-cube. Dataset I providing
all requested population measurements.

• Country
France, Iceland, Spain

• Year
2018 - 2019

• Population • Sheep

(b) Remaining query. Measurement population
removed.

Figure 10.11: Example: State of processing after first iteration.

The search step in the second iteration basically degrades to a filter operation on the re-

maining datasets. In the example, dataset IV will be removed, as it does not contain both a

dimension and a measurement of the remaining query. This leaves II and III as viable candi-

dates. Again, for both datasets, a score is computed. However, this time according to the new

query of Figure 10.11(b). The results of this second iteration of scores are given in Table 10.4.

9The ranking is done according to the first element of the score vector. The second element is only used to break ties.

181



CHAPTER 10. DATASET COMBINATIONS

Coverage per Dimension

Country Year Coverage Support Excess Score

II 2
3

2
2

2
3 × 2

2 = 2
3

3
3

0
3

⎛⎝2
3 × 3

3

1− 0
3

⎞⎠=
⎛⎝2

3

1

⎞⎠
III 1

3
2
2

1
3 × 2

2 = 1
3

3
3

1
4

⎛⎝1
3 × 3

3

1− 1
4

⎞⎠=
⎛⎝1

3
3
4

⎞⎠
Table 10.4: Example: Coverage and scores for second iteration’s query.

The choice in the second iteration is dataset II covering a larger share of the remaining

query. This dataset is able to cover two-thirds of the remaining dimensions but provides no data

for Spain in the requested years. Figure 10.12(a) shows the updated response after this second

round. As still not all values for the sheep measurement could be provided, the query is split

again reducing it to the form of Figure 10.12(b).

C
ou
nt
ry France

Iceland

Spain

Year
2018 2019

Ⅰ
Ⅰ
Ⅰ

Ⅰ
Ⅰ
Ⅰ

Ⅱ
Ⅱ

Ⅱ
Ⅱ

(a) Current state of the OLAP-cube. Dataset II providing
some sheep measurements.

• Country
France, Iceland, Spain

• Year
2018 - 2019

• Population • Sheep

(b) Remaining query. France and Iceland
removed from the country dimension.

Figure 10.12: Example: State of processing after second iteration.

For the third iteration only one dataset, III , is left. It covers part of the remaining query

and is thus chosen to contribute to the final result. At this point, the list of candidate datasets is

exhausted and the initial query has been covered in its entirety, so the recursion in the algorithm

ends. The final contributions of each source datasets are outlined in Figure 10.13.

C
ou
nt
ry France

Iceland

Spain

Year
2018 2019
Ⅰ

Ⅰ

Ⅰ

Ⅰ

Ⅰ

Ⅰ

Ⅱ

Ⅱ

Ⅱ

Ⅱ

Ⅲ Ⅲ

Figure 10.13: Example: Final composition of result.

In a final step the selected candidate datasets have to be assembled into a single workflow. The

schema of the last selected candidate dataset, III , contains a column, color, that is not requested

by the example query of Figure 10.9. As discussed before, an aggregation necessary to remove that

column requires additional user interaction. The particular aggregation function chosen is out of

182



10.3. APPROACH

scope for this algorithm and will be represented by a placeholder in the workflow graph (cf. the

node “user” in Figure 10.14). After applying that aggregation function, the schema of the results

conforms to the one of II and both can be combined via a union-operation. The combination of

both datasets accounts for all sheep measurements but does not cover the corresponding data for

population. The latter is provided by dataset I . The schemata of both intermediate results are

already compatible, so both (sub)results can be merged using a join-operation. This concludes

the creation of a workflow as all selected datasets have been included. The final workflow is

illustrated in Figure 10.14. After replacing the placeholder operation with a suitable aggregation

derived through user interaction(s), the workflow can be executed to materialize the requested

dataset.

req. datasetjoin

dataset Ⅰ

union

userdataset Ⅲ

dataset Ⅱ

Figure 10.14: Example: Workflow to fulfill the posed request. Styling and layout according to
guidelines for PROV-documents, which will be described in Subsection 12.1.3 and
Section 13.5. In particular, arrows point back in time to a activity that generated a
result or an entity that was used as part of an activity.

183





C
H

A
P

T
E

R

11
SELECTION OF VISUALIZATION

After the necessary data is gathered and prepared, the next step is finding a suitable visualization.

Over time, a plethora of variants has been developed [207]. People came up with more and more

sophisticated ways to embed complex data and relationships into easy-to-access visual metaphors.

With the wide range of visualizations came the agony of choice for willing users. Which factors

determine the visualization that is best suited for the current situation? Some factors are easier

to recognize like the structure of data at hand or the message to convey. Others are less obvious

to the uninitiated like targeting specific audiences with a visualization. One example of the latter

is the use of colors. Here, certain guidelines [web114, 208, 209] have to be followed to not exclude

parts of the population by, e.g., their level of vision [210] or their sex [211, 212]. Recently, efforts

to collect and formalize these and best practices have gained traction [213, 214].

While visualization experts have the experience to take many of those factors into account,

many other users will fail to do so. But even for experts, automating parts of the process can free

mental capacity for other aspects of their work.

The goal of this chapter is to provide users with a meaningful selection of visualization options

instead of confronting them with an excessive amount of visualizations to choose from. For this

purpose, both the description of the current dataset (cf. Chapter 6) as well as of visualization

types (cf. Chapter 7) are needed. The subsequent process is separated into three steps: select

visualizations that fit the input data, find suitable mappings, and, finally, rank the results in

order to be presented to the user.

185



CHAPTER 11. SELECTION OF VISUALIZATION

11.1 Related Work

APT 1 [215] is one of the early works on automatic visualization selection. It operates under the

assumption that there is a second system providing APT with the necessary input dataset in

form of relational tables as well as certain other information like the importance ordering among

the input columns. It models visualizations as a graphical language. That language consists of a

basic set of primitive languages, which either represent visual attributes as defined by Bertin

[49] or more advanced components like Venn diagrams (cf. Table 11.1), and a set of composition

operators to combine them. There are also two criteria defined – expressiveness and effectiveness

– to judge the suitability of a particular language for a given dataset or parts thereof.

The expressiveness criterion refers to the underlying data which is seen as a collection of

facts. If the language – and hence visualization – encodes all the facts of the underlying data and

no additional facts, the data is expressible in that language.

Expressible( f acts, lang ) ⇔ ∃ s [ lang(s) ∧∀ f [

f ∈ f acts ⇒ Encodes( s, f , lang ) ∧
f ̸∈ f acts ⇒¬Encodes( s, f , lang ) ] ]

(11.1)

The expressiveness criterion results in a number of Encodes-relations which describe certain

characteristics of a given visualization. The fact, e.g., that in a bar chart the length of a bar

encodes some kind of ordering over values is formalized using the following relation, where bx

are values of the dataset and Length(barx) are the lengths of the associated bars.

(11.2) Encodes( Length(bar i) > Length(bar j), bi > b j, BarChart )

The second criterion, effectiveness, is dependent on the observer. It is noted that a compre-

hensive theory of human perceptual capabilities is missing and, hence, only a conjectural theory

is used. This theory is based on earlier works of Cleveland et al. [216], who examined the human

perception of statistical graphs but focused only on quantitative data. In APT this was extended

to the ranking shown in Figure 11.1 where visual attributes are ordered with respect to the data

types they are to represent. In the shown diagram, each column represents a particular data type.

Visual attributes are ordered vertically by their effectiveness in decreasing order. Connecting

lines highlight the differences in the rank of visual attributes as the data types get more general

from left to right2.

1“A Presentation Tool”
2Each quantitative column can be regarded as ordinal. Similarly, each ordinal column can be interpreted as nominal.

Although this loses some inherent information about the column, it is technically valid.

186



11.1. RELATED WORK

Quantitative

Position
Length
Angle
Slope
Area

Volume
Density

Color Saturation
Color Hue

Texture
Connection

Containment
Shape

Ordinal

Position
Density

Color Saturation
Color Hue

Texture
Connection

Containment
Length
Angle
Slope
Area

Volume
Shape

Nominal

Position
Color Hue
Texture
Connection
Containment
Density
Color Saturation
Shape
Length
Angle
Slope
Area
Volume

Figure 11.1: APT: Ranking of visual attributes depending on data type (from [215]).
Attributes in gray boxes are not relevant for the particular type. Lines linking visual
attributes across data types with solid lines showing an increase in effectiveness,
whereas dashed lines represent a decrease.

In a dataset, multiple columns can share the same data type, so there is a need to decide

which column gets mapped to which visual attribute. For this purpose, the following principle is

formulated. The importance ordering of columns is given by the system providing the input data.

Principle of Importance Ordering:

Encode more important information more effectively.

The primitive languages mostly follow the classification of Bertin [49] (cf. Chapter 7). This

origin results in the visual property “position” exclusively being represented in Cartesian co-

ordinates. Other coordinate systems, however, are used in primitive languages APT classifies

as “Misc.” (cf. Table 11.1). Some visualizations like bar charts or plot charts are also considered

primitive languages here, although they might be composed of the other components as well.

The composition of these primitives is led by another principle:

Principle of Composition:

Compose two designs by merging parts that encode the same information.

This results in three composition operators: double-axes composition, single-axis composition, and

mark composition. The former two can be used if both operands share one or two common axes.

The latter is used if multiple properties of the dataset are encoded within the mark. However,

both operands have to be compatible, i.e. they do not use the same retinal variables or, if they do,

those retinal variables are mapped to the same properties of the data.

187



CHAPTER 11. SELECTION OF VISUALIZATION

Encoding Technique Primitive Graphical Language Expressiveness Criteria
Single-position Horizontal axis, vertical axis X → Y (X is nominal)

Apposed-position Line chart, bar chart, plot chart X × Y (X, Y are not nominal)

Retinal-list Color, shape, size, saturation, X , or X → Y (X is not quantitative)

texture, orientation

Map Road map, topographic map L → X (L is a location)

Connection Tree, acyclic graph, network X × X (X is nominal)

Misc. (angle, contain, . . . ) Pie chart, Venn diagram Generally, X × Y

Table 11.1: APT: Base set of primitive graphical languages (from [215]).

The actual selection algorithm consists of three steps: Partitioning, Selection, and Composition.

The first partitioning step takes the given input data and partitions its properties in such a

way that each partition can be mapped to a graphical primitive (i.e. it fulfills the respective

expressiveness criterion). Here, the principle of importance ordering is used to give precedence to

partitions of higher importance.

In the selection step candidate designs for each partition of the previous step are chosen. The

effectiveness criterion is then used to order these candidate designs.

In the final composition step, the composition operators combine the chosen designs to form a

visualization for the whole dataset. The primitives chosen for two partitions might conflict with

each other as, e.g., both are mapped to the x-axis. This triggers a backtracking algorithm and

will pick the next most effective candidate design for the right-hand side operator3. The resulting

design is then presented to the user, who does not get to choose between multiple alternatives.

The Show Me [126] features of Tableau [web25] are a set of user interface commands

that allow users to easily generate visualizations from multi-dimensional data. The “Automatic

Marks” feature chooses a default visualization for each pane4. “Add to Sheet” allows to include

another column in the current visualization. “Show Me Alternatives”, finally, provides a list of

visualizations to chose from when starting from scratch.

Automatic Marks relies on a set of rules that will choose the mark type based on the data

type of the selected columns. Due to the tabular nesting of columns, only the innermost nesting

level is relevant for this choice. In the Tableau user interface (cf. Figure 3.14), this correlates to

the rightmost fields in the row and column shelves. Based on the data type of these two fields the

mark type is chosen according to Table 11.2.

3Partitions are ordered according to their importance from left to right. This results in the less important property to
use a less effective design.

4At this point be kindly reminded, that Tableau uses a tabular scheme of panes to include more dimensions into a
visualization. See the respective parts of Section 7.1 for more details.

188



11.1. RELATED WORK

Field 1 Type Field 2 Type Mark Type View Type
C C Text Cross-tab

Qd C Bar Bar view
Qd Cdate Line Line view
Qd Qd Shape Scatter plot
Qi C Gantt Gantt view
Qi Qd Line Line view
Qi Qi Shape Scatter plot

Table 11.2: Tableau: Mark type selection (from [126]).
Categorical (C); Categorical date (Cdate); Quantitative dependent (Qd); Quantitative
independent or Quantitative date (Qi)

Using the Add to Sheet functionality, users are able to add additional columns to the current

visualization. These columns might either be added to the row and column shelves or to shelves

that lead to a representation via size, shape, or color. To determine in which shelve to place a

particular column, Show Me uses a set of heuristics.

The first heuristics tries to place new fields of the same or a similar type within the row and

column shelves. This results in another level of nesting within the resulting visualization table.

If the system detects that the added column belongs to the same hierarchy as an already selected

one, both columns are placed next to each other. An example is the hierarchy of country, region,

and state within the USA.

Another heuristic matches the column against the encoding requirements for visual variables.

Tableau as of [126] includes a palette of 20 colors and 10 shapes, which places restrictions on

fields assigned to those variables.

For quantitative fields, there is also the option to use the special fields “Measure Names”

and “Measure Values”. The functionality of these is similar to Wilkinson’s blend operator [50] (cf.

Section 7.1) in that it allows to combine an arbitrary number of fields. So for example, Measure

Names could be assigned to the color value which then classifies the marks according to the

measurement they represent.

Finally, Show Me Alternatives presents the user with a stable grid of visualization choices.

Selectable visualizations are shown with saturated colors, whereas inactive ones are shown using

a lesser opacity. To determine which visualizations are selectable, Tableau uses the data types of

the given fields and respective conditions for each visualization. A line chart, e.g., requires at

least one Cdate field and one quantitative field.

In addition to this user selection of a visualization, Tableau also offers a direct Show Me

function. Visualizations are ranked to “default Show Me designs that embody best practices”. If

the user selects the Show Me option, the system will select the highest-ranking visualization

whose conditions are met. As the conditions generally get more complex with higher rank, this is

189



CHAPTER 11. SELECTION OF VISUALIZATION

supposed to select the best visualization for the current task. Not all visualizations are included

in the ranking. Those that are not, are only selectable directly by the user and will not be chosen

by automatic selection.

Articulate [217, 218] tries to provide meaningful visualizations by use of a conversational

interface. Users can select a dataset which is then analyzed regarding data types and attribute

names. In the next step, users pose natural language questions to the system like “How does

conductivity relate to depth when depth equals 7.5” to describe their information need. This

query is analyzed using standard NLP techniques5 and a feature vector is derived from it.

This feature vector includes Boolean elements like the presence of “relationship keywords” or

“time series keywords” and one element that counts the number of attributes mentioned within

the query. The Boolean attributes are determined by the use of dictionaries for each attribute.

Words like “associate”, “correlate”, “link”, “relate”, or “relevant” are, e.g., part of the dictionary for

“relationship keywords”. The number of attributes in the query is calculated by comparing nouns

appearing in the query with the attribute names of the underlying dataset. It is categorized into

four groups: 0, 1, and 2 directly represent the number of appearing attributes, whereas 3 just

signals, that more than two attributes were found.

The vector was later extended by using four more Boolean and one ordinal element. The

new ordinal attribute describes the type of sentence according to the Penn treebank [219] which

distinguishes, e.g., simple declarative clauses like “I want a pie chart” and direct questions like

“What is the correlation between depth and temperature”. The added Boolean attributes describe

the presence of a certain construct. However, this time this is not done using a dictionary, but by

applying part-of-speech tagging. They include, whether a comparative or superlative adjective or

adverb was used, whether any cardinal numbers appear, whether quantifier like “all” or “both”

are present, and whether a filter was used.

In the next step, three different classifiers (Decision Tree, Bayesian Network, and Support

Vector Machine) map the feature vector to one of seven classes: comparison, relationship, com-

position, distribution, statistics, manipulation, and filter. These classes are not identical to the

Boolean elements of the vectors although there is some overlap. The answers for some of these

classes will just result in the change of the currently shown visualization, while others require a

new visualization. The results of the query analysis are formalized in the “Simplified Visualiza-

tion Language” (SimVL)6 and passed on to the graph reasoner7. The final visualization is then

selected through the decision tree shown in Figure 11.2.

5In particular part-of-speech tagging and stemming.
6This language seems to have no further adoption beyond Articulate and even here seems to be non-essential for the

visualization selection process. Hence, a further description is omitted.
7The term “graph” is used here with the same meaning as visualization.

190



11.1. RELATED WORK

Classes of Visual Analytic Tasks

Relationship Comparison Composition Distribution

Pairwise or overall?

# of variables

2

Scatter plot

Bubble plot
Colored scatter plot

3
>3

Scatter plot matrix

Pairwise

# of variables

Overall

Few

Multi Y-axis plot Many

Radar Plot
Parallel Coordinates

Is independent variable ordinal? 
(e.g. time series)

Yes

No

# of samples for each 
independent variable value

1

Line chart

>1
Line chart 

with whisker
# of categoriesfew

Bar chart

many
# of samples for 
each category

>1

Bar chart 
with whisker

1

# of samples for 
each category

1

Scatter plot

>1

Scatter plot
with whisker

# of components
few

A few
Pie chart

Histogram with 
each category 

as a bin

# of categories

Many

Histogram with 
grouped categories 

as bins

Figure 11.2: Articulate: Selection process for visualization (from [217]).

191



CHAPTER 11. SELECTION OF VISUALIZATION

VizBoard [140, 220, web115] uses an ontology called VISO8 [221] to recommend visualiza-

tions. The ontology models visualizations in a monolithic way using standard properties like

data type, role, visual attribute, and cardinality. Example models are shown in Figure 11.3. In

addition, domain ontology concepts can be linked to both input data and visualizations or parts

thereof. The annotations for the input data are assumed to be created automatically and, hence,

also have a probability value attached to specify the assumed accuracy. Within the model, an

entity can have links to several other entities as shown in Figure 11.3(b). This allows VISO to

also represent graph-based visualizations.

E: Point

DV: X

SoM: Quan
VA: Pos
Role: Ind
…

DV: Y

SoM: Quan
VA: Pos
Role: Dep
…

(a) Tabular Schema of a scatter plot.

E: Node
R: Rel1 R: Rel2

E: NodeE: Leaf

DV: Label

SoM: Nom
VA: Text
Role: Ind
…

DV: Num

SoM: Quan
VA: Size
Role: Dep
…

(b) Graph schema of a treemap.

Event

Venue

hasName

SoM: Nom
DT: string
Quan: 6
…

hasPrice

SoM: Quan
DT: float
Quan: 6
…

(c) Selected data (example).

E: E1
R: R1

E: E2

DV: N1

SoM: Nom
DT: string
Quan: 6
…

DV: Q1

SoM: Quan
DT: float
Quan: 6
…

(d) Generic schema for selected data (example).

Figure 11.3: VizBoard and VISO: Visualization and data model (from [140]).
Entity (E); Data Variable (DV); Relation (R); Scale of Measurement (SoM); Visual
Attribute (VA); Data Type (DT); Quantity (Quan)

8The ontology is claimed to be published under http://purl.org/viso/. At the time of writing this URL is not
accessible, though.

192

http://purl.org/viso/


11.1. RELATED WORK

The visualization selection process is split into two major parts: finding possible mappings

and then ranking them. The search for potential mappings consists of four tasks. In the first

phase (“pre-selection”), visualizations are filtered according to three criteria:

Compatibility with the client device . The client device has to be able to create and display the

visualization. As an example, the availability of certain plugins is mentioned.

Support of the number of data properties . Each column of the input dataset will have to be

represented within the visualization. At this point, no check for data types is performed.

Support of tasks . If the user has specified certain tasks like “overview”, the visualization has to

support those.

The second phase (“gathering semantics”) analyzes the input data further. First, the data

is converted to RDF triples [web10] and afterward annotated using a lexicographical analyzer

[220] with concepts from DBpedia [152] and WordNet [178]. Similarly, all the attributes, that also

describe visualizations, are extracted from the data. This includes the “scale of measurement”,

which is roughly equal to the data type discussed in Chapter 5, the (technical) “data type” like

xsd:float, and the “quantity” that equals the concept of cardinality of Chapter 7.

In the third phase (“generating generic data schemas”), a model is created to represent the

input data in the same way as the visualizations (cf. Figures 11.3(c) and 11.3(d)). Here, VizBoard

distinguishes between tabular and graph-based schemas. Tabular schemata consist of a single

root node called “entity” with all columns attached as so-called “data variables” (cf. Figure 11.3(a)).

The data variables in turn hold the aforementioned properties to describe each column. Graph-

based schemata can contain multiple entities each with a number of data variables attached (cf.

Figure 11.3(b)). If there is just a single class present in the input data, only a tabular schema is

created. If there are multiple classes present, both tabular as well as graph-based schemata are

generated.

In the final phase, the schemata of the input data are mapped against the previously selected

visualization schemata. Here, the properties attached to the data variables are also considered.

So in the example of Figure 11.3, the schema of Figure 11.3(c) can only be mapped to the schema

of Figure 11.3(b) and not to the one of Figure 11.3(a) as the scales of measurement only fit to the

former. Multiple mappings between input data and the same visualization can be created due to

permutations of the data variables.

The list of mappings created is ranked in a second step. Up to four different kinds of ranking

are used depending on the availability of data. The final ranking is subsequently calculated by

the average of the individual rankings.

193



CHAPTER 11. SELECTION OF VISUALIZATION

Factual Visualization Knowledge . This is a collection of rules to describe a specific visualization.

It includes scores for each visual encoding following the results of Cleveland et al. [216].

The quantitative data variable of Figure 11.3(b) (treemap), e.g., is rated with 0.5 as it only

uses size and not position to represent values.

Domain Assignments . This compares the semantic similarity of all concepts attached to both the

visualization and the input data. To calculate that similarity, [222] is given as a reference

method.

User and Device information . Similar to the factual visualization knowledge, this includes a

number of rules that are evaluated at runtime to describe the user preferences. The example

given is past usage of visualizations which results in a rating between 0 and 1 for each

visualization.

User shared Knowledge . This uses collaborative filtering to rank the visualizations, similar to

earlier works by Gilson et al. [223]. User interest in a certain visualization is recognized by

three different actions: If a user uses a particular visualization more than three times, the

visualization is put on a white list. If a user discards a certain visualization, it is added to

a black list. The user may also explicitly rate the visualization in the context of another

dataset. Depending on the particular rating, the visualization is inserted into either a black

or white list.

VizRec [137, 141] is a two-phase visualization recommender system. It uses a monolithic

visualization description (cf. Chapter 7) called “visual pattern” that includes two properties

for each visualization component: (primitive) data type and “occurrence”9 (cardinality). If a

visualization component can have multiple data types, a separate description is given for each

possible combination of data types. Listing 11.1 lists the descriptions for bar charts as an example.

{ x=axis : string , y=axis : number }
{ x=axis : date , y=axis : number }
{ x=axis : string , y=axis : number , co lor : s tr ing }
{ x=axis : date , y=axis : number , co lor : s tr ing }

Listing 11.1: VizRec: Bar chart descriptions (from [137]).

In a pre-processing step, the input data is analyzed with respect to data types, cardinalities,

and semantic types. The extraction of semantic types is done using gazetteer lists. Using this

information and the given visual patterns of the first phase10 creates a list of all possible

mappings. Example mappings from datasets in the movie domain to the bar chart descriptions

of Listing 11.1 are given in Table 11.3. This also allows for redundant mappings as defined by

Bertin [49]. Further, not all columns of the input data need to be represented in the mapping.

9All example definitions of [137] seem to omit occurrence. The examples given here will follow that convention.
10This part of the approach is based on earlier work [224], which resulted in a publicly available prototype [web116].

194



11.1. RELATED WORK

Visual Pattern Mappings

{x-axis: string, y-axis: number}

{x-axis: movie name, y-axis: budget}

{x-axis: movie name, y-axis: gross}

{x-axis: genre, y-axis: gross}

{x-axis: genre, y-axis: budget}

{x-axis: date, y-axis: number}
{x-axis: creation year, y-axis: budget}

{x-axis: creation year, y-axis: gross}

{x-axis: string, y-axis: number, color: string}

{x-axis: movie name, y-axis: budget, color: genre}

{x-axis: movie name, y-axis: gross, color: genre}

{x-axis: movie name, y-axis: budget, color: movie name}

{x-axis: movie name, y-axis: gross, color: movie name}

{x-axis: genre, y-axis: gross, color: genre}

{x-axis: genre, y-axis: budget, color: genre}

{x-axis: genre, y-axis: gross, color: movie name}

{x-axis: genre, y-axis: budget, color: movie name}
. . . . . .

Table 11.3: VizRec: Possible mappings (after [137]).

The second phase ranks the created mappings according to the principles of collaborative and

content-based recommender systems. Users are able to rate specific mappings on a scale from

one to seven. These ratings are fed to a collaborative recommender system. When a user wants to

visualize a new dataset, the previous ratings are used to select a group of similar users using the

Pearson correlation coefficient [225]. From the ratings of those similar users a predicted rating

for the current user is calculated which is then used to rank the given mappings.

However, new users have no previous ratings given, so the collaborative recommender system

will fail due to a lack of data (cf. the “cold start problem” [226]). For these cases, a content-based

recommendation is calculated. Each mapping is considered a separate item which is then tagged

using the concepts for each component. So the first mapping from Table 11.3 will get two tags:

movie name and budget. Similarly, the user will be assigned tags for which all concepts from

the input dataset are used. Users may also manually add more tags which will be added to the

existing ones. For each item (mappings and the current user) a vector is calculated that holds the

TF-IDF [185] values for each tag11. Using a conventional vector space model and cosine similarity,

the system ranks all mappings by their similarity to the current user.

Finally, VizRec will combine the scores of both recommendation strategies. With rec j denoting

the recommendation score of the jth strategy, w j the respective weight, u the current, user and i

a mapping item, the final, hybrid ranking is calculated as follows:

(11.3) predhyb(u, i)=
n∑︂

j=1
w j × rec j(u, i)

11The set of all candidate mappings and their tags is used as the corpus for the IDF computation.

195



CHAPTER 11. SELECTION OF VISUALIZATION

VisRec currently employs two recommender systems (n = 2) and a uniform weighting scheme

(w j = 0.5). Ranking these scores will result in the final recommendation as presented to the user.

The underlying data model of VizAssist [127, web84] has already been described in Sec-

tion 7.1. Given an input dataset as well as user-assigned importance values for each column and

a list of objectives, VizAssist will compute two different scores for each visualization: an objective

score and a match score.

The objective score will be calculated using Equation 11.4. Ouser j represents the user-defined

objectives as a Boolean variable. Ovisui j are the supported objectives of the ith visualization.

Higher scores indicate better suitability for the objectives.

(11.4) Scoreob jectives(Vi)=
l∑︂

j=1
Ouser j ×Ovisui j

The match score, on the other hand, uses the suitability matrix MatGL which assigns a

suitability value to each combination of a visual attribute type(VAi j) and data type type(Al) (cf.

Section 7.1). This value is multiplied with the given importance value ul for each attribute Al ,

before calculating the overall sum. If a visualization can not support all the attributes of the

given dataset, it will be discarded.

(11.5) MatchScore(Vi)=
∑︂

(VAi j ,Al )
∈ Mapped Attributes

MatGL
(︁

type(VAi j), type(Al)
)︁×ul

Users are presented with a list of all feasible visualizations which can be ordered using both

scores individually. The algorithm is deterministic as it always will result in the same output

for the same input data. However, it does not allow to explore different attribute mappings. In a

second recommendation step, users may explore different mappings using an interactive genetic

algorithm.

Genetic algorithms are modeled after the evolution process in biology and provide approximate

solutions to combinatorial problems [227]. A solution instance to the given problem is described

by a number of genes. Each gene represents a particular aspect of the solution and is usually

coded as a nominal value. In order to determine the quality of a given instance, a so-called fitness

function has to be provided. This function calculates a single value for each instance to determine

the quality of the solution.

The actual algorithm starts with a number of randomly or heuristically generated instances

– the population. The fitness value is computed for each of these instances. The instances

performing worst are discarded from the current population. They are replaced by new instances

that are generated by combining the remaining instances. With a certain probability some genes

are mutated, i.e. their values are replaced with randomly chosen ones. This newly generated

population is the input to another iteration of the algorithm. Genetic algorithms terminate if

either a certain threshold regarding the best fitness value within a population is reached or the

fitness value is stagnant over a predefined number of generations.

196



11.1. RELATED WORK

The rationale behind an interactive genetic algorithm is that it is not always possible to find a

mathematically precise formulation for the required fitness function. In the case of visualization

where user perception is an important factor, the feedback of the current user can be used instead.

VizAssist uses the vector of user-assigned importance weights as a genome. It is reasoned

that this can be explained to a user more easily and allows for reuse within VizAssist or other

tools. Alongside, three operators are defined: a creation operator, a mutation operator, and a

crossover operator. The creation operator is used to create the initial population and just applies

the mutation operator to the initially given importance weights. The mutation operator adds some

random noise [−δb,+δb] to each weight individually with a probability pmutation. The crossover

operator, finally, takes two genomes as input and returns a single genome where each gene is

chosen with equal probability from either of its parents.

During the interaction, users are presented with nine different mappings in form of the

resulting visualization. They are asked to select those visualizations that currently fit their needs

best. In the next generation, all other visualizations will be replaced using the above operators.

They are also provided with a slider for “diversity” which changes the parameters of the mutation

operator. Less diversity is associated with an exploitation approach, whereas more diversity

results in an exploration approach. By using multiple generations of this phase, users can refine

their information need even without having to state particular importance values for each data

attribute.

Draco [228, web117] is a rather recent visualization recommender. In contrast to other tools, it

models the recommendation process by a set of hard and soft constraints on the visualization task.

Valid recommendations have to fulfill all hard constraints and are ranked subsequently by the soft

constraints they fulfill. The actual materialization of the recommended visualization is relayed

to Vega-Lite [229], a grammar and corresponding compiler in the tradition of The Grammar of

Graphics by Wilkinson [50] (cf. Section 7.1) and the works it inspired like Polaris/Tableau [web25,

80] (cf. Sections 3.4 and 7.1). As the focus is on visualization recommendation here, details of

Vega-Lite will largely be omitted at this point.

Constraints are constructed following the requirements of Answer Set Programming (ASP).

They are built from using so-called atoms and their negations that describe certain aspects of

the problem at hand. Atoms can further make use of variables to be instantiated. So the general

definition of an atom encoding(E) can, e.g., be instantiated as encoding(e1)12. Each constraint

consists of a head and a body, such that the single atom in the head is true (“can be derived”) if

all atoms in the body are true. Both head and body, can also be empty. An empty head represents

an integrity constraint that derives false from its body, i.e. all atoms in the body being true

results in a contradiction. Similarly, an empty body declares the respective atom to be true.

12In the notion of [228], upper case letters represent variables, whereas lower case letters are used for instances.

197



CHAPTER 11. SELECTION OF VISUALIZATION

Syntactically, soft and hard constraints are distinguished by the operator that separates

head from body. Hard constraints use :− as an operator, whereas soft constraints resort to :∼. In

addition to head and body, soft constraints are further augmented with a weight w at the end

of the constraint. This weight represents the cost of a solution when it violates the respective

constraint. The authors note that a single constraint can be violated multiple times when the

variables are instantiated by different values. Examples are shown in Listing 11.2. Here, the

upper soft constraint states that continuous fields are preferred to include a zero baseline and

penalizes a solution by 5 if this does not hold. This formalizes the intuition that non-zero-based

scales are generally misleading but might be reasonable under certain conditions. The hard

constraint is a direct consequence of Vega-Lite implementing only 8 different shapes. It states

that any variable bound to the channel “shape” has to have a cardinality less than or equal to 8.

:~ continuous (E) , not zero (E) . [ 5 ]

2

:= channel (E, shape ) , card ina l i ty (E,C) , C > 8

Listing 11.2: Draco: Soft (upper) and hard constraint (lower) examples (after [228]).

In addition, ASP allows to define aggregations in the form of lA0, . . . , Ank. This defines that

out of the set of n atoms, at least l and at most k atoms need to be true. Such aggregates can

appear in both the head and the body of a constraint.

Using this formalism, Draco defines the Vega-Lite specification, two user tasks13, and the

data schema as a set of atoms. Visualizations are defined by a number of atoms. Examples include

mark(X) to define a specific mark type (point, line, area, or bar), encoding(E) to declare an

encoding E, or channel(E, Y) to state that an encoding E uses an encoding channel Y . Draco

currently supports two tasks, summary and value, that are declared by task(X) which can

also be associated with individual fields using interesting(X, Y). Finally, the data schema is

described by five atoms:

• num_rows(X) to state the number of rows,

• fieldtype(X, Y) to declare data types (string, number, date, . . . ),

• cardinality(X, Y) provides the number of distinct values within a column,

• entropy(X, Y) defines a column’s entropy, and

• extent(X, Y, Z) describes the minimum and maximum value of a column.

The total cost of a particular visualization is given by the sum of costs of the soft constraints

it violates. While the individual costs can be manually defined by experts, [228] also suggests a

learning-to-rank approach [230] to determine weights and, hence, costs. The training is accom-

13A wider collection of tasks is announced as part of future work.

198



11.2. DISCUSSION

plished by using pairs of visualizations. For each such pair, the preference for either visualization

is given. Using these preferences and a RankSVM model [231], the cost for all soft constraints

can be determined.

The input to the actual system is the knowledge base described above including a description of

the dataset at hand and potentially a partial specification of the result. Such a partial specification

can already include certain binding as shown in Listing 11.3. Here for a fictitious dataset about

cars, already one encoding e1 for the field horsepower is specified which after a binning operation

is bound to the channel x.

encoding ( e1 ) .

:= not channel ( e1 , x ) .

3 := not f i e l d ( e1 , horsepower ) .

:= not bin ( e1 , _ ) .

Listing 11.3: Draco: Example for Partial Specification (from [228]).

At this point, three sets of constraints are available: dataset constraints describing the data

to be visualized, query constraints to capture the user’s needs including a potential partial

specification, and knowledge base constraints formalizing the background knowledge about

visualization components and their interactions. All these constraints are forwarded to an ASP

solver, Clingo [232]. Following the example of a car dataset, the facts provided in Listing 11.4

might be returned and be interpreted as an additional encoding e2 that binds a field count to the

y-axis. This is translated back to a Vega-Lite specification which is subsequently returned as a

result to the user.

encoding ( e2 ) .

2 channel ( e2 , y ) .

aggregate ( e2 , count ) .

Listing 11.4: Draco: Sample response (from [228]).

11.2 Discussion

While Section 7.1 presented two approaches to visualization descriptions, in practice there seems

to be an overwhelming preference towards the monolithic model. Only APT, Draco, and to a

lesser extent Tableau use a somewhat constructive approach. But even here some approaches

have monolithic components: APT also uses monolithic visualizations as components besides the

constructive ones. In Tableau, the Show Me features are also based on predefined visualizations

instead of a truly dynamic composition. Only Draco appears as a truly constructive recommender.

199



CHAPTER 11. SELECTION OF VISUALIZATION

Besides Draco which uses a constraint solver for the whole task at once, the general process

of selecting a visualization consists of three phases: In the first phase, the list of all visualization

will be filtered down to those that can hold the given input data or support the selected tasks. A

second phase tries to establish bindings between input data and visualization. The last phase

takes the list of bindings and ranks them according to some criteria.

Sometimes the filter phase is skipped, though. In VizRec, for example, it is possible that only

a subset of columns appears in a given binding. As a consequence, there is less opportunity to

discard certain visualizations early in the process.

Afterward, the systems generate bindings from input data to the visualizations. Finding such

bindings is usually based on comparisons of data types and sometimes cardinality. VizBoard

and the Automatic Mark selection of Tableau also use the role of a certain column. APT uses an

importance ordering of the input columns: The most important column will be bound to the most

prominent visual attribute and so on.

The candidate bindings will afterward be ranked in order to be presented to the user. The

exceptions are APT and Articulate. APT will return only the first suitable binding found and

not explore other possible bindings. Articulate uses a decision tree to determine the appropriate

visualization, so there is no need for further ranking.

In most systems, the results will be ranked, though, so users get an idea of which visualiza-

tions are deemed more suitable options by the system. For this ranking, different criteria are used

and/or combined: A data-centric approach uses an importance ordering of the input columns to

assign more important columns to more prominent components (APT, VizBoard, Draco). A second

criterion applies collaborative or content-based filtering techniques to the domain (VizBoard,

VizRec). If semantic information is available on both the input data as well as the visualiza-

tion, semantic similarity measures are used (VizBoard). Best practices may contribute to the

ranking as well (Draco). Finally, the pursued tasks can be used for ranking (VizBoard, VizAssist,

Articulate, and Draco to some extent).

The use of some kind of importance ranking for the columns requires a similar property

on side of the visualization components. Already APT mentioned the lack of a holistic theory

of human perception and there seems to be little progress regarding this in the visualization

recommendation area. As a consequence, systems using the importance criterion only refer to the

works of Cleveland et al. [216], (APT, VizBoard) or to some rather vague “best practices” (Tableau).

On the other hand, Draco proposes a way to learn best practices including the importance of

components from provided example ratings. However, as other with machine learning approaches,

this depends on a rather large training collection.

Some recommender techniques from the field of information retrieval have also been applied.

Collaborative filtering sees visualizations as items. The rating is either explicitly given (VizBoard,

VizRec) or deduced by past usage (VizBoard). The content-based approach taken by VizRec

uses the different bindings as items that are tagged by the used columns. These are compared

200



11.2. DISCUSSION

with tags provided by the user – either explicitly or by means of the input data. However, the

use of recommender systems also subjects a system to problems like scarcity of data and the

aforementioned cold start problem. They also push users towards visualizations that they have

been using in the past. This limits the option to explore other types of visualization that might be

better suited for the task at hand.

VizBoard also uses the concept of semantic similarity to compare the input data to pos-

sible bindings. While this, in general, seems a sound approach, it requires the annotation of

visualizations with (domain-specific) concepts. At this point, it remains doubtful whether these

annotations can be made sufficiently general to match all concepts attached to the input data.

For the task criterion, one major challenge is the transfer of implicit knowledge about this

from the user side to an explicit representation within the system. The naïve approach is to

present users with a list of options and have them select one or more entries. This strategy is

used by VizAssist, but this begs the question if the user really needs to be bothered with such

a task. Some users may also be lost when confronted with a list of possible tasks if they do not

understand the technical terms presented or are unsure to which categories their current work

belongs. Articulate, on the other hand, extracts a task vector from the user query. This further

automates the process and, in doing so, releases users from one input step. The actual description

of tasks seems more sophisticated within VizAssist as here also hierarchical dependencies

between tasks are modeled.

Systems that result in only a single visualization instead of a (ranked) list of options suffer

from one problem: They do not allow users to explore new visualizations. This will prevent them

from discovering new visualizations they did not know before. These new visualizations might be

better suited in their current situation, though. So by not giving them a list to choose from, the

respective systems do also not foster an improved visualization literacy among their users.

One disadvantage almost all presented systems share is that they do not allow the user

to manually change the binding. Most systems present users with a list of ranked bindings

without any option to change just parts of them. The two exceptions are Tableau and VizAssist.

Tableau itself offers users to manually assign columns to specific properties. However, the general

selection of visualizations is rather restricted (cf. Section 7.1). VizAssist does not allow users to

change the binding directly, but at least provides means to alter the binding once a visualization

is selected. If advanced users have a specific visualization and binding already in mind, this

approach will reduce their productivity, though.

201



CHAPTER 11. SELECTION OF VISUALIZATION

11.3 Approach

Each visualization recommendation process starts with the generation of candidate bindings.

Here, the first decisions have to be made, though: Should only one final result be presented

or should users be able to select between multiple options? This first decision also extends to

the variations of a single visualization: Should the system show only the best binding for each

visualization — whatever “best” means in this context — or display multiple variations?

Within this work, multiple visualizations will be shown, but for each one, only a single binding

will be provided. Users will be able to adjust this binding if they feel a different binding is more

suitable. The rationale behind this is that showing multiple variations of a single visualization

clutters the result list, but provides little additional value. In some cases, other visualization

types might even be completely overshadowed by the numerous variations for a single one.

Assume, for example, a high-dimensional dataset for which parallel coordinates are deemed to be

best suited. Due to the high number of possible combinations (which input column gets bound

to which position in the order of coordinates), other visualizations like spider charts might be

way down in the list of recommendations. As users tend to highly favor content and items that

are immediately visible14, those visualizations will hardly be noticed thus limiting diversity in

actual results.

Another decision is whether to use all columns of the input dataset or to allow for subsets to

be mapped to a visualization. Here, the decision has been made to favor inserting all available

columns into the visualization over including only subsets. However, instead of preventing the

latter altogether, it is only penalized during the ranking step. Requiring all columns to be used

in the visualization would imply that all superfluous columns have been removed during data

preparation. In general, this condition will not hold and, hence, the system also has to account

for non-reduced input datasets. While the system will still attempt to include as many columns

as possible, it may drop individual columns to meet a visualization’s requirements.

Having made these decisions, next up is finding suitable bindings. To reduce the overall set of

visualizations to consider, the system will first remove those visualizations from the candidate

pool whose requirements can be met neither by the input dataset as a whole nor by any of its

subsets. Any valid subset of the input will still need to include at least one measurement, though.

Subsequently, for each of the remaining visualizations, one suitable binding will be calculated.

11.3.1 Weighted Bipartite Matching

At this point, the problem at hand can be phrased like this: Given a set of column descriptions (cf.

Chapter 6) and one visualization description consisting of multiple components (cf. Chapter 7),

find the best possible binding with respect to the stated criteria. The criteria can be formalized

14The content “above the fold”; see, e.g., [233].

202



11.3. APPROACH

into a scoring function that given a particular column and component returns a score to estimate

the suitability of that component to represent the given column. Details of this scoring function

will be discussed later.

This problem statement itself resembles the one of Maximum Bipartite Matching, which is

discussed in graph theory [234]:

Given an undirected Graph G = (V ,E), a matching is a subset of edges M ⊆ E such

that for all vertices v ∈V , at most one edge of M is incident on v.

A maximum matching is a matching of maximum cardinality, that is, a matching m

such that for any matching M′, we have |M| ≥ ⃓⃓
M′⃓⃓.

[...] bipartite graphs: graphs in which the vertex set can be partitioned into V = L∪R,

where L and R are disjoint and all edges in E go between L and R.

The definition can be extended by assigning weights to the edges resulting in a Weighted Bipartite

Matching15 [235]. This problem has long been discussed and several algorithms have been

presented to solve it [235, 236, 237].

Before actually applying the algorithm, the binding problem has to be stated as an input

instance to the Weighted Bipartite Matching. The partitions of the bipartite graph can easily be

associated with the input data and the visualization components respectively. So for each column

one vertex will be created in the L partition and for each visualization component, one will be

added to R.

However, this will fail for components that allow for multiple bindings. As per definition,

within a matching every vertex is linked to only one other vertex. So to accommodate for multiple

bindings, multiple additional copies of the vertex representing the respective component will

have to be inserted (cf. Figure 11.4). There will be one original vertex and possibly multiple copy

vertices for one component. This distinction will become relevant when discussing the scoring

function. As for the number of copies, a naïve approach inserts as many copies as there are

vertices in the other partition. To reduce the instance size, this can be reduced to the number

of vertices with a compatible data type16 as no other can be matched anyhow. For the sake of

brevity in further discussion, there is no distinction made between a vertex and the column or

component it represents except where noted explicitly.

The other ingredient to the problem instance are the edges. Here, all vertices of L will be

connected to all vertices of R, i.e. E = { (l, r) | (l ∈ L)∧ (r ∈ R) }. Again, some of these edges could

be omitted due to filtering by data type or other properties. Some of the algorithms applied to the

problem require a complete bipartite graph as input which is usually represented by an adjacency

matrix. In order to allow for an easy substitution of the solving algorithm, this requirement shall

be fulfilled in all instances.

15Also-called Assignment Problem.
16That is a vertex representing an input data column with a compatible data type.

203



CHAPTER 11. SELECTION OF VISUALIZATION

Ausgaben

Einzelplan

Kapitel

Titel

Segment

Hierarchy

(a) Before Duplication.

Ausgaben

Einzelplan

Kapitel

Titel

Segment

Hierarchy

(b) After Duplication.

Figure 11.4: Yavaa: Preparation of mapping graph - duplication of vertices;
duplicate nodes shown with dashed border, data types represented by color;
using description of Listing 7.2 and Figure 7.10.

11.3.2 Scoring Function

For all edges, a weight has to be calculated by the use of a scoring function score(). This scoring

function has to fulfill at least two criteria:

1. A higher score indicates better suitability for a given binding.

2. Edges representing infeasible bindings, like a data type mismatch, have a score of zero.

These criteria alone would allow for at least two cases of infeasible bindings: Multiple columns

might be bound to a single component that allows for multiple bindings while other required

components have no binding. Similarly, optional components might have a binding attached

while required ones were omitted. To prevent this behavior, vertices representing visualization

components will have to be distinguished into two groups: A set of primary vertices Vp will

contain all the single-binding components as well as the original vertices of multi-binding

components. Another set of secondary vertices Vs is comprised of the copied vertices for multi-

binding components and optional components. Using this distinction, a third criterion for the

scoring function can be formulated:

3. Let Vi be the set of all vertices representing input data columns. For any combination of

input vertex vi ∈Vi and primary vertex vp ∈Vp the following property has to hold up:

score
(︁
vi,vp

)︁ = 0(11.6)

∨
∀

vs∈Vs
score

(︁
vi,vp

)︁ > score (vi,vs)

Adding this criterion ensures that bindings will favor primary vertices first, before resorting to

the secondary ones. Without loss of generality, scores for edges including secondary vertices can

be assigned a range of [0,0.5) and edges including primary vertices a range of [0.5,1].

As for the scoring function used within this work, a product will be used whose factors

each represent one binding criterion. This approach allows to easily add further aspects in the

future without the need to change the core approach. The calculations for the factors themselves

204



11.3. APPROACH

are ordered by their computational cost. This allows short-circuiting computational expensive

calculations if earlier, less expensive aspects already resulted in a factor of zero. While this might

not be overly relevant with the criteria provided within this work, this simple property might

improve the performance in the future.

In the following, the individual factors used within this work will be listed and described.

They are ordered by computational complexity in ascending order, putting computational more

expensive ones towards the end.

Data Type A Boolean factor indicating whether the data types of the component matches that of

the column.

Role A Boolean factor indicating whether the role of the component matches that of the column.

Primary vs. Secondary Component This factor takes a value of 1 for primary components and a

value of 0.5 for secondary ones.

Cardinality If the component description gives a function description for cardinality, this function

is evaluated for the given column. Otherwise, a value of 1 is returned.

Semantic Concept If a semantic concept restriction is given for the component, it is evaluated

whether the column’s concept is a descendant of that concept. A value of 1 is returned if

such a connection can be found or the component places no restriction. If the column’s

concept can not be established as a descendant of the component’s concept, a value of 0 is

returned.

Not included here is any ranking of the visual attributes as, e.g., suggested by APT [215]. As

already mentioned previously, this could easily be added in the future, but the current lack of

research in this area does not allow for assigning specific numeric values.

If the scoring function has not been short-circuited by one factor resulting in a zero value, the

final result is computed by Equation 11.7.

(11.7) scorebinding( component, column ) = ∏︂
factors f i

f i( component, column )

11.3.3 Ranking

Having constructed a complete graph and assigned weights to all edges using the aforementioned

function, the resulting graph can serve as an input instance to the problem of Weighted Bipartite

Matching. At this point, any of the existing algorithms can be used to determine a maximum

weight matching. The resulting matching has a total weight (the sum of all weights from the used

edges). So, the result consists of a list of visualizations, each having one representative binding

and an associated weight or score.

205



CHAPTER 11. SELECTION OF VISUALIZATION

When presented in the user interface, the visualizations are arranged in a particular way.

This arrangement suggests an order, which might or might not be intended, though. In general,

items towards the top, left, or appearing first are presumed more important. So instead of placing

visualizations next to one another without considering this implication, the system has to rank

the alternatives and use that ranking as a basis for display.

The first step towards such a ranking is already defined by the aforementioned weight or

score for each visualization mapping. As the scoring mechanism is uniform for all visualizations,

the results are comparable as well. The presented criteria for bindings, however, mostly consist

of Boolean factors which will skew the results to both extremes (0 and 1). This provides little

differentiation between different visualizations, though, and thus other ranking factors have to

be included as well.

An often used factor to rank visualizations is the support for certain tasks (cf. Section 11.1).

Here, the main challenge is to derive a list of perceived user tasks. As already discussed before,

simply asking users for their intended goals is less preferable as it requires explicit user inter-

action and knowledge. Other approaches (cf. Articulate [217, 218]) are beyond the scope of this

work. So at this point, it is just assumed that user tasks have somehow been specified.

With a predefined, fixed list of tasks, the system is able to define a task vector such that

every element of that vector represents the presence of a task in either the user request or the

visualization description. For the ranking factor scoretasks, the request vector −→r can be compared

to the visualization vector −→v using standard cosine similarity (cf. Equation 11.8).

(11.8) scoretasks = similaritycosine(
−→r ,−→v ) =

−→r ·−→v⃦⃦−→r ⃦⃦
2

⃦⃦−→v ⃦⃦
2

=

√︄
n∑︂

i=1
r ivi√︄

n∑︂
i=1

r2
i

√︄
n∑︂

i=1
v2

i

A third factor is the past usage of a visualization in certain application domains. By harvesting

user-created workflows (cf. Chapter 12), the system over time accumulates knowledge about

which visualizations are used in which contexts. These workflows contain not only the selected

visualizations, but also which columns and which concepts were used in creating a particular

visualization.

The process of creating a ranking out of this past usage is related to the problem of classifica-

tion: In general, given an input instance, the classifier has to decide to which category or class

this instance belongs. This decision is based on a training set of instances for which the respective

categories are known. An extension to this are probabilistic classifiers. Instead of returning just

the “best” category for a given instance, they provide a probability distribution over all categories.

206



11.3. APPROACH

Another related field is the mining of association rules [238]. Here, problem instances are

databases of transactions D = { t1, t2, . . . , tn} which in turn consist of a collection of items from

a fixed set I = {I1, I2, . . . , Im}. The task is to find rules of the form X ⇒ Y with X , Y ⊆ I. The

quality of said rules is estimated by different measures:

Support describes the fraction of transactions that include all elements of a set Z that usually

consists of the union of X and Y [238].

(11.9) supp( Z ) = | { t ∈ D | (Z)⊆ t } |
|D|

Confidence is the fraction of transactions containing X that also contain Y [238].

(11.10) conf ( X ⇒ Y ) = supp( X ∪Y )
supp( X )

Lift estimates the significance of a rule by comparing it to the expected confidence [239].

(11.11) lift( X ⇒ Y ) = supp( X ∪Y )
supp( X ) × supp( Y )

In theory, the number of rules can grow exponentially in the number of items. To limit this

growth, algorithms to find rules are oftentimes given values for minimum support and confidence.

That way, the most insignificant rules are immediately pruned from the results.

A combination of both approaches can be found in associative classification. Here, the right-

hand side of rules found is limited to items representing a category, whereas the left-hand side

represents the features of the input instance. One major advantage over other classification

approaches is that the decision is based on simple if-then-rules which are easily accessible to

human users [240]. The set of rules can also easily be updated as soon as new training data

becomes available.

The transition from visualization workflows to instances for associative classification is

straightforward: The columns’ concepts are represented by items, while the respective visu-

alizations form the categories. To solve the associative classification problem, a multitude of

algorithms have been proposed (for a survey see, e.g, [240]).

Within this work, the SBA17 approach presented in [241] shall be used which similar to

probabilistic classification approaches returns not just a final category, but assigns scores to each

category. It is intended to separate between two classes (“positive” vs. “negative”). This, however,

can be overcome by sequentially computing the score for each category individually, subsuming

all other categories under “negative”. For the basic rule generation, any algorithm may be used

(e.g., Apriori [242]). SBA uses a different minimum support and confidence for each category

17Scoring Based on Associations.

207



CHAPTER 11. SELECTION OF VISUALIZATION

Ci to compensate for unbalanced training data D. The function f ( Ci ) defines the number of

transactions labeled with the category Ci and t_minsup is a configuration parameter.

minsup( Ci ) = t_minsup× f (Ci)
|D|(11.12)

minconf ( Ci ) = f (Ci)
|D|(11.13)

The scoring itself uses all rules applicable to the input instance and the category in question,

i.e. both positive as well as negative rules contribute to the result. Other approaches will only use

the rule with the highest confidence and in doing so ignore a vast proportion of the knowledge

base. The score S is calculated by the means of Equation 11.14, where

• POS and NEG are the sets of positive and negative rules,

• W i
positive and W j

negative are weights assigned to the respective rules,

• conf i is the original confidence of a positive rule, and

• conf j
positive equals 1−conf j.

(11.14) scoreconcept =

∑︂
i∈POS

(W i
positive ×conf i) + ∑︂

j∈NEG
(W i

negative ×conf j
positive)∑︂

i∈POS
W i

positive +
∑︂

j∈NEG
W j

negative

The weights are defined differently for positive and negative rules in Equations 11.15 and

11.16. Here, k is a constant to reduce the influence of negative rules.

W i
positive = conf i × supi(11.15)

W j
negative = conf j × sup j

k
(11.16)

The calculations necessary for the concept-based score are all just dependent on a number of

counts: The total number of workflows (transactions), the frequency of selection for visualization

(category), and the frequency of concept sets (items). Over time, when more workflows become

available, all these counts can easily be updated without the need to redo a modeling process like

required by other classification algorithms.

Having computed three different scores for each visualization, finally, all of them have to be

merged together. As per definition all of them return a value in the range of [0,1], this can easily

be done by computing the product:

(11.17) score = scorebinding × scoretasks × scoreconcept

208



11.3. APPROACH

11.3.4 Special Case: Nested Visualizations

One type of visualization has been omitted so far from the discussion: visualizations allowing for

nesting. Here, the number of possible components also depends on the nested visualization used

and thus is not fixed as with other visualizations. The aforementioned process, however, is not

capable to handle such dynamic descriptions. So before inserting nested visualizations into the

process, feasible combinations have to be found.

Nesting visualizations have one helpful property: It always reduces the number of remaining

columns, but never increases it. Consequently, one can first apply a nesting visualization and

then try to map the remaining columns against the set of visualizations again. As the number

of columns is strictly decreasing in each iteration, this approach will terminate when either

all columns are accounted for or no more feasible visualization can be found for the remaining

columns. While the former represents a feasible combination, the latter does not. By enumerating

all feasible combinations, a list of virtual visualizations is created, which can be fed into the

mapping/ranking algorithm. These visualizations are called virtual as they are not part of the

visualization repository consisting of the descriptions defined in Chapter 7. They are, in fact, just

created on the fly, if the combinations they represent are applicable to the current input data.

FUNCTION findVirtualViz ( inputCols )

v ir tViz = <empty l i s t >

FOREACH nesting v isua l i zat i on nViz DO

i f ( nviz i s appl icable to the input data )

co l s = remove columns needed for nviz from inputCols

FOREACH( for co l s feas iab le v i sua l i zat i on viz )
add ( nViz , v iz ) to v ir tViz

RETURN virtViz

END

Listing 11.5: Pseudocode: Creation of virtual visualizations.

Listing 11.5 shows the pseudocode for this algorithm. At this point, the feasibility of a

visualization is not estimated by a complete binding, but rather by comparing the number of

columns per data type and possibly attached concepts. The actual binding is created later by

passing the virtual visualization into the general process as described before.

209



CHAPTER 11. SELECTION OF VISUALIZATION

There are cases where the search for feasible nested visualizations can be short-circuited.

If the number of remaining columns is less than two, no more visualization can be found as all

visualizations consist of at least two required components. Furthermore, the set of remaining

columns has to contain at least one measurement. This again is caused by the fact, that each

visualization will require at least one component with the role measurement.

11.3.5 User Interface

Finally, the computed recommendations are presented to users. The visualizations and virtual

visualizations that passed the previous selection process are ordered by the score defined in

Subsection 11.3.3. Users are able to choose their preferred visualization by selecting a generic

preview image.

As the system only suggests one binding, users are given the possibility to change it. The

changes, however, are also subject to the restrictions as given by the visualization descriptions.

So for example, data types and concepts have to line up. The restriction on the cardinality of a

column, on the other hand, may be overridden by users. In this case, only a warning is issued

which can be dismissed by users.

11.3.6 Summary

Figure 11.5 summarizes the steps necessary for the visualization selection approach presented.

Two lists of visualization descriptions are retrieved from a repository of visualization descrip-

tions: nesting and non-nesting visualizations 1⃝. Both lists are used to create a list of virtual

visualizations 2⃝ (cf. Subsection 11.3.4). The non-nesting visualizations are also initially filtered

by comparing the number of columns to the number of columns of the input dataset 3⃝.

These two candidate sets are then fed into the binding search 4⃝ (cf. Subsection 11.3.1). Here,

using a scoring function (cf. Subsection 11.3.2) and weighted bipartite graph for each candidate a

binding is generated which is passed on alongside the respective its total score.

The final ranking algorithm 5⃝ (cf. Subsection 11.3.3) uses these scores as well as an asso-

ciation classification algorithm and the task similarities between visualization and user input

to create the final ranking. Subsequently, this ranking is passed on to the user interface (cf.

Subsection 11.3.5).

Table 11.4 compares the approaches presented in Section 11.1 and Yavaa along three main

categories: (i) general properties of the approaches, (ii) data characteristics used in the recom-

mendation, and (iii) other relevant features. In the remainder, the focus will be on Yavaa as the

other approaches have already been discussed previously in Section 11.2.

Yavaa’s visualization selection approach is envisioned as a recommender. So in particular,

it provides a ranked list of visualizations instead of a “single best” choice. Unlike many of the

discussed systems, the bindings for specific visualizations can be adjusted by users. Similarly, the

dataset may contain columns that should not be visualized. While Yavaa is not able to determine

210



11.3. APPROACH

Visualization
Repository

1

Nesting
Vis.

Non-Nesting
Vis. Filter

3

Create
Virt. Vis.

2

Filtered
Non-Nesting

Vis.

Virtual
Vis.

Map
Data to Vis.
4

Weighted
Bipartite
Matching
Algorithm

Scoring
Function

(Virt.) Vis.
Bindings
Scores

Rank
Vis.

5

Association
Rules

Associative
Classification

Algorithm

(Virt.) Vis.
Ranking

Input
Dataset

Figure 11.5: Yavaa: Schematic overview for visualization selection.

which columns can be omitted, it also provides recommendations for subsets of the data if this

adds new options to the result list. This way, Yavaa allows users to adjust the visualization to

their particular needs without necessarily having to restrict the dataset beforehand – contrary to

most other approaches discussed here.

With regard to data characteristics used in the recommendation, Yavaa exploits almost all the

criteria appearing in the discussed approaches. One exception are potential links across different

columns which is only exploited by VizBoard to support graph-based visualizations. Yavaa’s data

descriptions (cf Chapter 8) would allow extracting possible relationships across columns. However,

these relationships would subsequently need to be translated into weights of the bipartite graph

that is at the core of Yavaa’s recommendation. Determining possible connections and translating

them into weights is assumed non-trivial and thus left for future work. Contrary to any of the

discussed systems, Yavaa does not use fixed cardinality thresholds but relies on functions to

represent the transition from suitable value ranges to those that are not.

For now, Yavaa does not include a user model to represent, e.g., the visualization preferences

of a specific user. Such a model has been omitted in favor of a collaborative recommender. On the

one hand, this bypasses the cold start problem [226] for new users when using a model based on

past user interactions. On the other hand, user models explicitly provided by users themselves

would constitute an additional step in the process and possibly another source of complexity –

both aspects that Yavaa in general tries to avoid.

211



CHAPTER 11. SELECTION OF VISUALIZATION

AP
T

[2
15

]
Sh

ow
M

e
(T

ab
le

au
) [

12
6]

Ar
tic

ul
at

e
[2

17
, 2

18
]

Vi
zB

oa
rd

[1
40

, 2
20

, w
eb

11
5]

Vi
zR

ec
[1

37
, 1

41
]

Vi
zA

ss
is

t [
12

7,
w

eb
84

]

D
ra

co
[2

28
]

Ya
va

a

Single (s) or Multiple (m) Recom. s s s m m m s m

Ranking of Recom. - G#
a -      

Adjustable Mappings #  # # #  G#
b

 

Subsets of Data # G#
c

# #  # #  

Data Types         

Role #  #  # # #  

Cardinality   #      

Links across Columns # # #  # # # #

Tasks / Objectives # #   #    

Semantic Constraints # # #   # #  

Collaborative Recom. # # #   # #  

User Model # # #   # # #

Optional Visual Artifacts # - # # #    

Nested Visualizations # # # # # # #  

Suitability Functions for Card. # # - # # # #  

a Only available to users in “Best Practice Mode”.
b Via partial specifications.
c Via user selection of a subset of the data.

Table 11.4: Comparison of visualization recommending systems.
 . . . supported; G#. . . partially supported; #. . . not supported; − . . . not applicable

A final addition by Yavaa is the support for nested visualizations like arranging multiple

scatter plots in a matrix. While in general supported by visualization tools like Tableau, it is not

part of any recommender strategy including Tableau’s ShowMe. Here, Yavaa provides a generic

mechanism to include more data dimensions into a single visualization and thus widens the

range of possible suggestions.

212



C
H

A
P

T
E

R

12
PROVENANCE MANAGEMENT

For any given data product — no matter whether it is a table or a visualization — questions may

arise regarding its origins: Who created it? How was it produced? Which sources were used? What

processing was applied? When was it created? The answers to all these questions require detailed

documentation of the process that finally led to the given data product. This documentation is

usually called data provenance and is defined by [243] as follows:

The provenance of a computational result [. . . ] refers to a complete record of the

source of any raw data used, the computer programs or software packages employed,

etc. The concept of provenance generally includes a record of changes that the dataset

or software has undergone.

Having such provenance data readily available enables a wide range of applications [110,

244, 245, 246]. A prime use case is the ability to trace the origins of a particular data product.

Propagating the trust [247] placed in the involved actors, data sources, and possibly operations to

the final outcome allows making a statement about the believability of the latter [245]. Similarly,

questions of quality or attribution can be answered [244]. On a different account, detailed

documentation will also allow repeating the workflow to either validate past results or update

the content based on more recent data [244, 246]. Finally, large collections of provenance data

are a valuable resource for analysis. They document common usage of datasets and operations

including the resources spent. This information can be used to assist other users [110, 246] or

even predict the runtime characteristics of similar workflows before their actual execution [246].

This chapter discusses the efforts made to capture the provenance of datasets or visualizations

created using the presented architecture. As data provenance has been studied in many different

areas, first different approaches to and aspects of provenance will be described. After a discussion

of this related work, the approach used in this thesis will be presented.

213



CHAPTER 12. PROVENANCE MANAGEMENT

12.1 Related Work

In literature, provenance is oftentimes categorized along different dimensions. One such cat-

egorization is derived from the granularity of provenance information collected [248, 249]. In

data provenance, the focus is on particular data items within larger datasets oftentimes within

a database (cf. Subsection 12.1.1). This can either be done by propagating annotations during

individual operations or by analyzing the operations themselves alongside their input and output

data. In contrast, process provenance, also called workflow provenance, deals with the transfor-

mation of datasets as a whole during a workflow (cf. Subsection 12.1.2). This is oftentimes used

in business applications [248] or scientific workflows [249] and is usually captured automatically

by dedicated software(-components) [248].

A different classification of provenance is induced by the intended use. Here, one can distin-

guish between prospective and retrospective provenance [250, 251, 252]. Prospective provenance

can be seen as a “recipe” that includes all necessary steps to create a certain data product. On the

other hand, retrospective provenance collects data on how a specific data product was generated

including factors like execution times and software or environment used.

For a better understanding, the different views of provenance, its collection, and preservation

are separated in the following sections. Provenance in the context of existing workflow systems

has already been discussed in Chapter 3 and will not be repeated here.

12.1.1 Database Provenance

Data provenance is oftentimes treated as provenance inside (relational) database systems. Data

transformations are modeled by SQL-queries [253] or relational calculus. This leads to the

following scenario as a basis for most considerations: At one point in time, the database consists

of a number of tables. These tables have provenance records attached to them or some kind

of description from which provenance records can computationally be deducted. Now an SQL-

query is executed resulting in a new table. The problem statement for database provenance

can now be phrased as follows: “What records have to be attached to the new table in order to

sufficiently document its provenance?”. This includes the issue of what information constitutes

the provenance of the respective data, at which granularity it shall be documented, and how this

provenance has to be stored.

There are three major approaches to the kind of data which has to be stored: why-provenance

[254], where-provenance [254], and how-provenance [255]. Why-provenance represents all the

input tuples which in some kind have contributed to the output. This can include the whole input

table, though. Consider the query given in Listing 12.1. Here, through the AVERAGE function, one

can argue that every record in the employee table contributed to the result of the query.

214



12.1. RELATED WORK

SELECT name, telephone
FROM employee
WHERE salary > (SELECT AVERAGE salary FROM employee )

Listing 12.1: Why-Provenance: Example SQL-query (from [254]).

Why-provenance can also be seen as witnesses or proofs for the inclusion of a specific record

in the result set [256]. Depending on the query structure, otherwise equivalent queries can result

in different why-provenance records. Especially when operators like DISTINCT or UNION come

into play, the structure of the query plays an important role. Here, multiple identical records may

be included in an intermediate result and combined into a single record in the final result. This

final record could be witnessed by any one of these intermediate records and their respective

sources which do not have to be identical or exclusive. An example is shown in Figure 12.1. Two

identical Queries Q and Q' produce the same output. The provenance records shown to the right

of each result record, however, differ substantially.

Q: Ans(x,y):- R(x,y).
Q': Ans(x,y):- R(x,y), R(x,z).

Instance I:
R
t:
t':
t'':

A B
1 2
1 3
4 2

Output of Q(I)
A B
1 2
1 3
4 2

why
{{t}}
{{t'}}
{{t''}}

Output of Q'(I)
A B
1 2
1 3
4 2

why
{{t},{t,t'}}
{{t'},{t,t'}}
{{t''}}

Figure 12.1: Why-Provenance: Different witnesses for same query result (from [256]).

To address this, [254] introduces the notion of a minimal witness basis. This denotes the set of

all minimal witnesses. A witness is minimal if none of its proper subinstances is a witness itself.

Furthermore, the paper showed that this minimal witness basis is invariant under equivalent

queries with only equality conditions.

Another notion of provenance is where-provenance. Unlike why-provenance, the focus is on

where each part of a result tuple came from. It provides a connection between individual cells in

input and output tables. It relates to the study of the view update problem [257]: Upon an update

on a database view, a system has to determine which parts of the raw data underlying have to

be changed. This is especially hampered by the fact that there might be multiple such changes

possible - all resulting in the same result on the view. Where-provenance, like why-provenance,

depends on the structure of the query.

In [255] commutative semirings are used to represent several extensions to relational algebra.

One of the considered extensions is why-provenance. It is shown that their model generalizes

the notion of why-provenance and extends it to what the authors call how-provenance. They

distinguish two distinct ways tuples can contribute to the result. They are either joined with

other tuples or merged using a projection or union-operator. These two transformations are

215



CHAPTER 12. PROVENANCE MANAGEMENT

associated with the two operands of the semiring, namely + for joins and · for merges. So, a term

like t1+ (t2 · t3) indicates that first t2 and t3 were merged and afterward that result was joined

with the tuple t1. That shows not only that the tuples t1 through t3 were involved in generating

the resulting tuple, but also provides some insight into how they contributed.

Orthogonal to the problem of what data should be stored is the question of how it should

be stored or extracted. In [256], the distinction is made between eager and lazy approaches.

The difference between both of these approaches is the point in time when the provenance is

computed. Eager approaches consume more storage space as they compute all the provenance

entries no matter what. Lazy approaches, however, just restore the provenance of a specific entry

upon request.

An eager approach computes the provenance of a tuple while it is created. This can be done by

annotation propagation as demonstrated in DBNotes [258]. It is based on an extension to a subset

of SQL, which is called pSQL [259]. Each part of every tuple can have annotations associated

with it. When a query is run using these tuples, their annotations are propagated to the resulting

tuples. To specify which annotations to propagate, a user can use an additional PROPAGATE

clause as shown in Listing 12.2.

SELECT DISTINCT s e l e c t l i s t
FROM f roml is t
WHERE wherelist
PROPAGATE DEFAULT | DEFAULT=ALL | r1 .A1 TO B1, . . . , rn .An TO Bn

Listing 12.2: pSQL: Query syntax (from [259]).

There are three modes of annotation propagation. In default mode, only those annotations

are propagated that are associated with the very field the data is copied from. Under this mode,

both Q1 and Q2 of Listing 12.3 result in possibly different annotations being propagated. The

result in Q1 yields the annotations of table R, while in Q2 table S propagates its annotations.

When using default-all, however, both sets of annotations appear in the result. For that purpose.

the system constructs a finite subset of all possible, equivalent queries and merges all the results.

The last mode is called custom propagation scheme and allows users to specify which annotation

gets propagated. This comes in handy when users only want to preserve annotations from one

trusted source and neglect all other.

Q1: SELECT r .B FROM R r , S s WHERE r .B = s .B

Q2: SELECT s .B FROM R r , S s WHERE r .B = s .B

Listing 12.3: pSQL: Sample queries (from [259]).

216



12.1. RELATED WORK

Provenance is preserved in this system as soon as every field in every tuple is annotated with

its own location. When a transformation occurs, these annotations get propagated along and it

is easy to deduce which tuples contributed to a specific value in the result. Furthermore, using

this information the data flow that leads to a specific result can be restored. Another use case

mentioned in [259] is the preservation of error reports. If a specific entry in a curated database is

marked incorrect or imprecise, this information is automatically assigned to all other tuples that

get created using this entry.

The lazy approach is characterized by the fact, that the provenance is computed at the point in

time when it is needed. In large datasets, the overhead is thus dramatically reduced. An example

of lazy provenance computing is given in [260]. Here, the authors define the weak inversion of a

function f as the function f −w that attempts to map the results of f back to its inputs but is not

guaranteed to be accurate. For some functions, an inverse function is defined, but in general, it

may be hard or impossible to determine the correct inverse. For example, the square function

( f (x) = x2) for the result 9 yields two possible inputs {3,−3}. Extending the notion of a weak

inversion function, two properties are defined. A complete, weak inversion contains no false

negatives meaning, that all possible solutions are included. On the other hand, a pure, weak

inversion contains no false positives in the sense that it generates only solutions that can result

in the given output data1. A weak inversion, that is both pure and complete, is a regular inverse

function. While weak inversion functions have no reference to the input tuples, their result may

be refined using a verification function. These functions use the result of f −w and the input tuples

to further adjust the results.

The authors describe a database system where each function has at least one (weak) inverse

function attached to it. There may, however, be multiple weak inverse functions attached to a

single function. Using multiple inverse functions, the system is able to increase the accuracy of

the presented result. If both inverse functions are complete, the intersection of the individual

solutions yields a smaller, but still complete set. On the other hand, if both functions are pure,

then the union of both results in a larger, pure set.

The premise in this paper is that the process flow resulting in a specific set of tuples is

still available and attached to the result. Using this information and the defined inverse and

verification functions, their system is able to compute the where-provenance of a data product in

retrospect.

12.1.2 Script Provenance

Although plenty of scientific workflow management systems are available (cf. Sections 3.6 and

3.7), many scientists resort to the use of scripting languages like R [web105], Matlab [web104], or

Python [web39]. Reasons may include a steep learning curve or the time-consuming need to wrap

1The definition is equivalent to saying that complete indicates that no less than all solutions are included, whereas
pure declares that there are no more solutions included.

217



CHAPTER 12. PROVENANCE MANAGEMENT

tools for use in a workflow management system if they are not geared towards it [261]. Others

also argue that big “on-size-fits-all” solutions are not appropriate for use in highly dynamic and

heterogeneous scientific domains [262].

Nevertheless, the need for documentation of provenance prevails in these environments as

well. Multiple attempts have been made to target this situation. Examples can be found at [263,

264, 265, 266, 267]. Two relatively recent efforts to capture provenance information for the

execution of scripts are noWorkflow2 [261, 268, web118] and YesWorkflow [269, web119]. While

noWorkflow monitors the execution of a script including the respective environment, YesWorkflow

relies on annotations within the scripts. Both approaches complement each other as they capture

different characteristics of script executions, so attempts have been made to combine them [270].

At the time of writing, these efforts were discontinued, though3.

noWorkflow monitors the actual execution of a Python script in a way similar to a debugger. It

requires users to execute their scripts not directly using Python, but by the use of the noWorkflow

executable. By default, noWorkflow collects data about function activations, global variables,

parameters, and return values. If a finer granularity level is required, noWorkflow can also track

“variable attributions, loop definitions and other variable dependencies” [271].

When files are read from or written to, copies of these files are also retained. For this purpose,

Python’s open function is replaced, so that each time it is called two copies of the accessed file

are made: one before executing the original open call and one after. That way, all changes to

files are documented within the system. To reduce the amount of redundancy created by this

approach, files are identified by a SHA1 hash [272] which is stored in a local database and is

used to avoid duplicates within the stored files. This part of the provenance collection is called

execution provenance.

Besides this, noWorkflow also captures deployment provenance and definition provenance.

The former includes the execution environment and possibly existing module dependencies. Here,

noWorkflow uses existing Python packages to capture information like the operating system,

the hostname, the machine architecture, and the used Python version. Furthermore, using

modulefinder it also detects the transitive closure of libraries used as well as their version and

source code, if available.

Finally, by the name definition provenance noWorkflow stores information about function

definitions and calls that are referred to within the script. This is done by analyzing the abstract

syntax tree (AST) of the script and limits itself to user-defined functions. Functions of other

packages, which also includes user created packages, are seen as atomic and are not analyzed in

further detail. Calls to open are still intercepted no matter which function triggers the call.

The provenance information collected from all three parts is stored within a subfolder called

.noworkflow within the script directory. To distinguish separate runs of the script, called trials,

each trial is given a sequential identification number. By the use of the now restore command,

2not-only workflow.
3Statement by J.F. Pimentel and V. Braganholo in a meeting on 23rd February 2021.

218



12.1. RELATED WORK

users are able to revisit past trials and make changes similar to common version control systems.

Making changes creates a new trial, which is linked to its parent. This way, dependencies of trials

and their data products can also be established (cf. Figure 12.2).

For the analysis of the captured provenance, noWorkflow currently offers a text-based diff-

functionality, a static dataflow view, and a web-based visualization component. The text-based

diff provides basic comparisons like parameters used and duration of the execution. An example

of the dataflow view is shown in Figure 12.3. Nodes with round corners represent data, white

nodes represent files and dark blue rectangles represent function calls. Figure 12.4 shows an

activation graph as collected by noWorkflow. The coloring of a node represents the duration of the

respective function call from red (slow activation) to white (fast activation). Blue edges represent

a sequence of calls whereas dashed arrows signal return values. Numbers at the edges show the

number of activations.

109

8

76

54

3

2

1

Figure 12.2: noWorkflow: trial history (from noWorkflow demo project [web118]).

run_simulation

plot

10 return

9 data 6 data_a

36 data_a

6 data_b

37 data_b

7 csv_readdata1.dat

7 a

8 csv_readdata2.dat

8 b 9 simulate 38 data

25 data27 extract_column

27 t

29 extract_column

29 p

30 scatter

31 xlabel

32 ylabel

33 savefig output.png

Figure 12.3: noWorkflow: dataflow (from noWorkflow demo project [web118]).

219



CHAPTER 12. PROVENANCE MANAGEMENT

11
3 6

1

1

1

36
11

1
1

1
1

1

1

1

1
18

0

1

1

1

1
18

0

1

1
1

1

1

1

1

1

1

simulation.py

plot

savefig

ylabel

xlabel

scatter
extract_column

list.append

extract_column
list.append

run_simulation

simulate

csv_read

list.append

reader

open

csv_read

list.append

reader

open

Figure 12.4: noWorkflow: details of trial execution (from noWorkflow demo project [web118]).

YesWorkflow, on the other hand, requires users to annotate their scripts similar to existing

JavaDoc [web120] or JSDoc [web121] descriptions. Using these annotations, users are able to

mark program blocks4, ports, and channels. Ports describe the data flow in and out of the program

block. Channels are the connections between the in and out ports of different program blocks.

They are inferred by YesWorkflow using the names of ports within the same workflow.

An example of an annotated script can be found in Listing 12.4. In the actual analysis,

YesWorkflow first extracts the relevant annotations from the comments. As of now, YesWorkflow

supports eight languages including C, C++, and Java. The extracted data flow can be exported

to a visual representation as shown in Figure 12.5. Parameters are represented using white

boxes while data elements have yellow ones and program blocks are shown using green boxes.

Figure 12.5 shows a combined data and process-oriented view. There is also the option to visualize

just the process or just the data flow. Further querying of the provenance graph is currently not

available but was announced as part of future work.

12.1.3 Documenting Provenance

PROV is a W3C [web122] effort to “achieve the vision of inter-operable interchange of provenance

information in heterogeneous environments such as the Web” [web22, 273]. It consists of several

documents [web22, web94, web123, web124, web125, web126, web127, web128, web129, web130,

4Program blocks denote any arbitrary computational step, possibly coinciding with function definitions in the script.

220



12.1. RELATED WORK

import netCDF4
import numpy as np
from netCDF4 import ma
import matplotl ib . pyplot as p l t
from matplotl ib . backends . backend_pdf import PdfPages

# @BEGIN main
# @PARAM db_pth
# @PARAM fmodel
# @IN input_mask_file @URI f i l e : { db_pth }/ land_water_mask/LandWaterMask_Global_CRUNCEP . nc
# @IN input_data_f i l e @URI f i l e : { db_pth }/ NEE_first_year . nc
# @OUT result_NEE_pdf @URI f i l e : result_NEE . pdf

def main ( db_pth = ’ . ’ , fmodel = ’ clm ’ ) :

# @BEGIN fetch_mask
# @PARAM db_pth
# @IN g @AS input_mask_file @URI f i l e : { db_pth }/ land_water_mask/LandWaterMask_Global_CRUNCEP . nc
# @OUT mask @AS land_water_mask
g = netCDF4 . Dataset ( db_pth+ ’ / land_water_mask / LandWaterMask_Global_CRUNCEP . nc ’ , ’ r ’ )
mask = g . variables [ ’ land_water_mask ’ ]
mask = mask [ : ] . swapaxes (0 ,1 )
# @END fetch_mask

# @BEGIN load_data
# @PARAM db_pth
# @IN input_data_f i l e @URI f i l e : { db_pth }/ NEE_first_year . nc
# @OUT data @AS NEE_data
f = netCDF4 . Dataset ( db_pth+ ’ / NEE_first_year . nc ’ , ’ r ’ )
data = f . variables [ ’NEE ’ ]
data = data [ : ]
data = data . swapaxes (0 ,2 )
adj = 60*60*24*(365/12)*1000
data = data* adj
# @END load_data

# @BEGIN standardize_with_mask
# @IN data @AS NEE_data
# @IN mask @AS land_water_mask
# @OUT data @AS standardized_NEE_data
native = data .mean( 2 )
latShape = mask . shape [ 0 ]
logShape = mask . shape [ 1 ]
for x in range ( latShape ) :

for y in range ( logShape ) :
i f mask[ x , y ] == 1 and ma. getmask ( native [ x , y ] ) == 1:

for index in range ( data . shape [ 2 ] ) :
data [ x , y , index ] = 0

# @END standardize_with_mask

# @BEGIN simple_diagnose
# @PARAM fmodel
# @IN data @AS standardized_NEE_data
# @OUT pp @AS result_NEE_pdf @URI f i l e : result_NEE . pdf
pl t . imshow (np .mean( data , 2 ) )
p l t . x label ( "Mean 1982=2010 NEE [gC /m2/mon] " )
p l t . t i t l e ( fmodel + " :BG1" )
pp = PdfPages ( ’ result_NEE . pdf ’ )
pp . savef ig ( )
pp . c lose ( )
# @END simple_diagnose

# @END main

Listing 12.4: YesWorkflow: example script (from [web119]).

221



CHAPTER 12. PROVENANCE MANAGEMENT

main

fetch_mask

land_water_mask

load_data

NEE_data

standardize_with_mask

standardized_NEE_data

simple_diagnose

result_NEE_pdf
file:result_NEE.pdf

input_mask_file
file:{db_pth}/land_water_mask/LandWaterMask_Global_CRUNCEP.nc

input_data_file
file:{db_pth}/NEE_first_year.nc

db_pth

fmodel

Figure 12.5: YesWorkflow: dataflow of the YesWorkflow example script [web119].

web131, web132, web133] at various levels of the W3C standards track [web134]5. The effort is

based on earlier activities that emerged from the provenance challenge series [275, web135, 276,

web136] and that had resulted in the Open Provenance Model (OPM) [106].

The PROV data model [web129] itself is agnostic of a specific implementation. It uses a

human-readable representation given by PROV-N [web133]. Furthermore, the standard defines

an OWL2 [web86] serialization (PROV-O [web94]) as well as an XML one (PROV-XML [web137]).

Finally, there is a member submission for a JSON serialization [web131] which as of now is

not part of the official family of documents [web22]. It is stated that the conversion between

several serializations is not subject of the PROV working group [274]. Accordingly, a round

trip of conversions between different serializations does not necessarily result in an equivalent

representation. Other parts of the PROV document family are concerned with setting constraints

on the validity of PROV instances [web125], mechanisms to access provenance information

[web126], a particular dictionary data structure [web128], a mapping to Dublin Core [web89]

terms [web127], a specification of PROV in terms of first-order-logic [web124], and the option to

link between different parts of a provenance graph [web132].

5Some of the documents are deliberately maintained as “group notes” for reasons of less strict rules to the editing
process [274].

222



12.1. RELATED WORK

Entity Activity

Agent

WasDerivedFrom WasInformedBy

ActedOnBehalfOf

Used

WasGeneratedBy

WasAttributedTo

Wa
sA
sso
cia
ted
W
ith

Figure 12.6: PROV: Concepts and relations (after [web129]).

PROV models provenance as a directed graph with three types of nodes and seven types of

edges. The nodes can be of the following types [web129]:

Entity . “A physical, digital, conceptual, or other kind of thing with some fixed aspects; entities

may be real or imaginary.”

Activity . “Something that occurs over a period of time and acts upon or with entities; it may

include consuming, processing, transforming, modifying, relocating, using, or generating

entities.”

Agent . “Something that bears some form of responsibility for an activity taking place, for the

existence of an entity, or for another agent’s activity.”

These node types are not necessarily mutually exclusive. In particular, PROV allows modeling

the provenance of agents which in turn makes them the entity of their own provenance graph.

Similarly, agents may adopt the role of an activity. The use of an activity as an entity and vice

verse, on the other hand, is prohibited by [web125]. While PROV adopts a fairly flexible approach

here, applications are allowed to make an explicit distinction between all three classes.

Similar to the nodes, their connections are also classified into distinct types. All relations

defined in the data model point towards the past. While this is a requirement for the data model,

it is just a convention and recommendation within PROV-O. An overview of the defined properties

as well as their domains and ranges is given in Figure 12.6.

223



CHAPTER 12. PROVENANCE MANAGEMENT

Each component of a PROV model has the option to include a number of attributes. PROV

provides five built-in attributes. All of these attributes are optional in their use, but some of them

might be restricted to specific classes or relations. In general, however, an application can define

its own attributes, which are not bound to the predefined ones.

prov:label a human readable representation.

prov:location either a geographical place or a non-geographic location like a specific row.

prov:role the role of an entity or agent within an activity.

prov:type further typing information available for all classes and relations.

prov:value the actual value of an entity.

Activities occur over a specific period of time; they have a start and end time which can be

attached to the respective object. All relations as well as the life-cycle events for entities and

activities are, on the other hand, regarded instantaneous. While the activity that creates an

entity can take some time, the actual generation6 of the entity happens in an instant. The notion,

in that case, is that the timestamp represents the completion of the respective activity with

regard to that entity7. In consequence, all relations have just a single timestamp associated with

them.

The only relation for which PROV does require a strict ordering is derivation. This, however,

might result in cycles for other relations. The only consensus reached by the working group [274]

was to consider all events along such a cycle as simultaneous, but allow applications to impose

stricter rules.

To adapt PROV to domain-specific use cases, three different ways are suggested [web129].

Applications can make use of sub-types and sub-relations of their predefined counterparts. Within

the data model, this is represented by the use of prov:type within the attribute set of the

respective individual or relation. Similarly, prov:role can be used to assign specific roles to

entities, agents, or activities within a relation. Finally, applications are allowed to add arbitrary

information to the attribute lists. The implementation of those extension points is different

between the serialization options. While PROV-O [web94], e.g., uses rdf:type to represent

prov:type attributes, PROV-XML [web137] and PROV-JSON [web131] choose to follow the data

model more closely and include prov:type itself.

6The event associated with prov:wasGeneratedBy.
7A single activity can generate multiple entities which might be completed at different points in time.

224



12.1. RELATED WORK

Figure 12.7 shows a visual representation of a provenance graph as defined in [web129].

The visual elements follow the layout conventions8 of [web138]. These conventions suggest the

use of yellow ovals for entities, blue rectangles for activities, and orange pentagons for agents.

Furthermore, preceding events should be positioned towards the top (vertical layout) or to the

left (horizontal layouts). As already stated, relations point towards past events.

The example itself represents the provenance of a document WD-prov-dm-20111215. The

document was created by an activity edit1 of type editing, which led to version two of the

document. Two agents took part in the editing activity: Simon was associated as a contributor,

whereas Paolo was an editor. No further information is given, so in particular, any timestamps

are missing here.

Simon

Paolo

edit1 WD-prov-
dm-20111215

wasAssociatedWith

wasAssociatedWith
wasGeneratedBy

role =
contributor

role =
editor

type =
editing

type = document
version = 2

Figure 12.7: PROV: Example provenance graph (from [web129]).

Besides the mentioned basic components, there are others defined within the standard. They

are usually defined as subtyping of the base components and account for more specific use cases.

One example are plans which allow users to represent a set of actions to achieve some goal. As

this set can change over time, a plan is an entity as per aforementioned definition and can itself

be subject to a provenance record. Another extension are collections. They allow the grouping

of different entities to maintain common provenance information for all of its constituents. One

particular type of collection that attracted special attention are dictionaries [web128]. They

represent a list of key-entity pairs also known as maps. The document on dictionaries also notes

that the full content of a dictionary is regarded unknown unless its history can be traced back to

an empty dictionary via a series of insertion and removal activities.

8These are recommendations and are not normative [274, web138].

225



CHAPTER 12. PROVENANCE MANAGEMENT

As noted before, PROV encourages domain-specific extensions. ProvONE [277, web139] is

one such extension that is targeted specifically towards scientific workflows. It aims to be the

unifying provenance standard across different scientific workflow management systems like the

aforementioned Taverna and VisTrails (cf. Sections 3.6 and 3.7). An overview of the ProvONE

data model is given in Figure 12.8.

The model is separated into three parts: workflow representation (blue), trace representa-

tion (brown), and data structure representation (purple). Further, ProvONE mentions a work-

flow evolution representation that does not have distinct classes but is given by the relation

prov:wasDerivedFrom. This relation links different versions of the same workflow, thus forming

a derivation tree for its history.

The workflow representation captures the prospective part of the definition. At its heart is

the Program that captures a computational task and may represent a Workflow of its own. The

inputs and outputs of such a Program are given by different Ports. For input Ports that are not

connected to the outputs of other Programs, there is the option to define default values using

hasDefaultParam and a corresponding entity, usually of type Data. The actual data flow across

the workflow is modeled by instances of Channel that allows connecting the ports of involved

Programs. Finally, the Controller class allows specifying that the execution of one Program is

controlled by another, thus allowing to define different models of computation (e.g., synchronous

vs asynchronous execution models).

The data structure representation extends PROV’s Entity with three classes: Visualization,

Data, and Document. These types are supposed to represent the different entities exchanged

within a workflow. Here, Visualization seems to represent all kinds of media files, as the

standard lists MP4 as an example among multiple image formats. Document is defined as any

kind of “article or report that was created as a result” of a workflow execution. The Data type is a

general placeholder for all kinds of data (apart from the aforementioned media files) covering XML

structures, tables, and individual values as, e.g., used as default parameters to Programs. Multiple

instances of different types can further be subsumed by a Collection that may “represent a set,

bag, list or another variant of a group of items”.

Finally, the trace representation covers the retrospective provenance of particular Executions.

It links to a specific Program or Workflow and may involve a responsible User. The artifacts used

and created throughout this execution are attached via instances of Usage and Generation. Each

involved Entity is linked to the input or output port of the respective Program.

12.2 Discussion

The three presented areas of provenance research cover different parts of the provenance life

cycle. Subsection 12.1.1 is concerned with the usage of provenance information, Subsection 12.1.2

covers its collection, and, finally, Subsection 12.1.3 deals with its storage.

226



12.2. DISCUSSION

Us
er

Ex
ec

ut
io

n

«A
ss

oc
ia

tio
n »

« U
sa

ge
 »

«G
en

er
at

io
n »

«E
nt

ity
 »

D
at

a

D
oc

um
en

t

Vi
su

al
iz

at
io

n
« C

ol
le

ct
io

n »

Co
nt

ro
lle

r
Pr

og
ra

m

W
or

k�
lo

w
Ch

an
ne

l

Po
rt

w
as

Pa
rt

O
f

«h
ad

M
em

be
r »

«w
as

D
er

iv
ed

Fr
om

 »

ha
sS

ub
Pr

og
ra

m
«h

ad
Pl

an
 »

co
nt

ro
lle

dB
y

co
nt

ro
ls

[*
]

[*
]

[*
]

[*
]

[*
]

[*
]

«w
as

D
er

iv
ed

Fr
om

 »

[*
]

[*
]

[0
..1

]

[0
..1

]

[0
..1

]

[*
]

[1
]

[*
]

[*
]

[0
..1

]
[0

..1
]

ha
sO

ut
Po

rt
[*

]
[0

..1
]

[1
]

«w
as

As
so

ci
at

ed
W

ith
 »

«a
ge

nt
 »

[1
]

[0
..1

]

[*
]

[*
]

[*
]

[*
]

[*
]

[*
]

[*
]

[*
]

[*
]

[*
]

[*
]

[*
]

[0
..1

]
[0

..1
]

ha
sI

nP
or

t
[*

]
[0

..1
]

co
nn

ec
ts

To [*
]

[0
..1

]

«w
as

In
fo

rm
ed

By
 »

[*
]

[1
]

«w
as

Ge
ne

ra
te

dB
y »

«q
ua

li�
ie

dG
en

er
at

io
n »

«q
ua

li�
ie

dU
sa

ge
 »

«q
ua

li�
ie

dA
ss

oc
ia

tio
n 
»

ha
dE

nt
ity

«u
se

d » ha
dO

ut
Po

rt
ha

dI
nP

or
t

[*
]

[1
]

[1
]

[1
]

[1
]

[1
]

ha
dE

nt
ity

ha
sD

ef
au

ltP
ar

am

F
ig

ur
e

12
.8

:P
ro

vO
N

E
da

ta
m

od
el

(f
ro

m
[w

eb
13

9]
).

227



CHAPTER 12. PROVENANCE MANAGEMENT

The collection of provenance information becomes relevant when using custom scripts instead

of workflow systems. Taverna (cf. Section 3.6) and VisTrails (cf. Section 3.7) collect provenance

information in their execution phase. One difference between the presented collection methods

is the handling of different runs. The question is whether provenance data is to be stored only

for the final run or for all runs before as well. Taverna chooses to store provenance information

only for the current run, whereas VisTrails and noWorkflow maintain it for all executions of the

workflow. The latter also include any intermediate (persisted) results as opposed to just saving

the final outcome. This allows these systems to also answer questions related to the workflow

evolution but comes at the cost of additional storage requirements.

It remains doubtful whether gains outweigh the costs in data-intensive and, thus, storage-

demanding scenarios. Workflows are often created by a trial and error approach including both a

variation in parameters as well as changes in the actual workflow. Keeping all (intermediate)

results of all unsuccessful attempts will just occupy storage without much benefit for analysis.

If such an analysis of the workflow evolution is to be made, versioning of the workflow and an

exhaustive description of the execution environment should suffice to answer most provenance-

related questions. As the input datasets oftentimes remain the same, preserving them would

allow executing past workflows again and regain access to those past results. Especially when the

datasets grow in size, the storage of workflow descriptions rather than all workflow results is less

demanding. These considerations only apply to workflows where the amount of data excels the

amount of time to create it. If, however, the time it takes to generate a specific dataset exceeds a

certain threshold or the results of different runs are expected to all be used, storing intermediate

as well as final results for all runs may be useful and in fact save time and space overall.

Another aspect that differs between the presented approaches is the granularity in which

provenance data is kept. The two extremes are keeping the information for each tuple within

a table separately as opposed to just tracking the dataset as a whole. Workflow systems and

script-based provenance tracking as presented has decided for the latter, whereas database

provenance has a more detailed view. The decision within workflow systems can be argued for

by the fact that here not only tabular information can be processed, but any data format can be

used as long as the respective implementation allows for it. So the concept of a tuple can not be

maintained for all datasets and, hence, is dropped.

PROV as a means to store provenance information is in general able to handle both kinds of

granularity. While it is possible to store provenance information on a tuple level and aggregate

them using a collection entity, it is also possible to treat complete datasets as atomic entities.

However, considerations for gains versus costs are again relevant. If provenance is to be stored

with very fine granularity, lots of provenance information is generated. In fact, all intermediate

results will be stored along with the general overhead as introduced by PROV. If there is no need

to retrace every tuple’s detailed history or if the workflow leading to it can easily be executed

again, storing provenance information on a tuple basis seems overly precise.

228



12.3. APPROACH

12.3 Approach

A first decision when tracking provenance is that of granularity of objects whose provenance is to

be collected. Two obvious options are to follow the concept of database provenance and describe

individual tuples or use the approach of other workflow systems and track datasets as a whole.

The former leads to an extensive amount of provenance data likely to exceed the size of the final

result. The latter, however, provides less insight into the process overall.

The other components of the proposed architecture work on a column level. Visualization,

e.g., will map columns to visual components (cf. Chapter 11). As a consequence, it seems natural

to also use columns as the central entity for which provenance is tracked. This allows users to

determine the sources which contributed to a specific property of the final visualization like the

color of artifacts but also limits the amount of information to store.

The next question deals with the representation of the collected provenance data. Here, W3C’s

PROV [web123] seems to have gained a lot of attention. Many workflow systems adopted PROV

at least as one way to persist their provenance information (cf. Sections 3.6 and 3.7). Due to its

extendible nature, PROV can also serve as the basis to store all workflow-related information.

Hence, for now, the architecture presented will use only PROV as the main representation of

workflows. Besides preserving provenance information about past runs, this also includes the

option to reenact a workflow using new data.

A particular workflow-extension like ProvONE seems excessive, though. While it can cater

to the workflows of pretty much any workflow system, its level of detail is not required here.

Contrary to generic workflow systems (cf. Sections 3.6 and 3.7), the workflows created within

Yavaa are rather simple and well structured. At this point in time, it seems doubtful that using

the overhead of a generic representation like ProvOne would yield any specific benefit for the

system. With ProvOne and the chosen approach both being based on PROV, a future mapping

seems possible and comparatively low effort now. So for now, ProvONE will be foregone in favor

of a custom model tailored to the provenance of workflows for tabular data.

Having decided upon the provenance representation, the next step is to identify and map all

involved components of the workflow to their respective counterparts within the PROV formalism.

Each (non-empty) workflow within the proposed architecture will start with the loading of a

dataset. This process will result in more than three objects within the provenance documentation:

The source location of the dataset is an entity, the loading procedure is an activity, and the

resulting in-memory dataset is again an entity. As the provenance is tracked on a column level,

the in-memory dataset is of type prov:Collection and consists of one entity for each column.

Additional information to uniquely identify the source dataset is attached by the use of

attributes to both source entity and load activity. While the source entity contains attributes that

specify the location and publisher of the dataset, the time the dataset was loaded is stored in an

229



CHAPTER 12. PROVENANCE MANAGEMENT

source dataset
dct:publisher = someone
prov:atLocation = https://some.url
…

②

load
prov:startTime = …
prov:endTime = …
…

① ① ①

column 1 column 2 column 3
yavaa:order = 3
yavaa:label = column 3
…

③ ③ ③
①

in-memory dataset prov:type = prov:Collection
…

① … wasGeneratedBy
② … used
③ … hadMember

Figure 12.9: Yavaa: Schematic example for provenance graph of a load activity.
Attribute lists for column 1 and column 2 omitted.

attribute of the load activity. This split of identifying information seems counterintuitive at first

but is more consistent with later activities, which also store their respective execution times. To

reduce the redundancy, the time information of the source entity is hence omitted.

Figure 12.9 shows a schematic example for a load activity and the involved entities. The

in-memory dataset has no attributes but its type. Similarly, the columns’ attribute lists contain

only a few items. Attributes in the yavaa namespace are used for workflow reenactment. The

yavaa:order, e.g., describes the position of the respective column within the array of all columns

of that dataset and is used as an identifier within the system.

After a dataset is loaded, a series of operations can be applied. Each operation is represented

by an activity within the provenance graph. Similar to the load activity, each other activity will

result in a set of new columns. The resulting dataset does not necessarily consist only of such

new columns, but may also include a subset of the input columns for that activity. Those columns

have not been affected by the activity in question.

Figure 12.10 shows a schematic example for the provenance graph of such a computational

activity. Here, column 3a was transformed in a computation that resulted in column 3b and

used column 2 as an additional input. Besides the relations used in the load activity, the changed

column has references to other columns. The column which was the direct source for the com-

putation is referenced using wasDerivedFrom 4⃝, whereas other columns that influenced the

computation are linked by wasInfluencedBy 5⃝. The attribute lists have been omitted. In this

example, they contain the start and end time for the activity as well as the order number for all

columns in the same way as shown in Figure 12.9.

230



12.3. APPROACH

③ ③ ③

dataset (before)

column 1 column 2 column 3a

② ②

②

compute

①
①

④

⑤
column 3b

③ ③

③
dataset (after)

④

① … wasGeneratedBy
② … used
③ … hadMember
④ … wasDerivedFrom
⑤ … wasInfluencedBy

Figure 12.10: Yavaa: Schematic example for provenance graph of a computational activity.
Attribute lists omitted.

The final visualization step is treated like other computational steps with just minor differ-

ences: First and foremost, the resulting visualization is considered final, i.e. it will not be used

by another activity within the proposed architecture. The visualization consists of components

instead of columns. There is, however, a close relationship between both (cf. Chapter 11). This is

represented by a wasDerivedFrom edge 4⃝ that links each component to the column(s)9 which

provided the respective values. A schematic example for a visualization activity is given in

Figure 12.11.

In addition to the already described attributes, for each activity, some technical information

is stored. In particular, this includes the command and parameters that triggered the respective

activity. Commands used within the prototype and their description are given in Appendix D.

This information is primarily used to reenact the workflow, but also includes more details on the

activities performed. These attributes have no equivalent within the PROV standard and, hence,

reside within a yavaa namespace.

For the display within the prototype, some adaptations have been made which are described

in Section 13.5. These adaptations remove redundant information from the displayed graph. They

are in line with the inference rules and constraints as given in [web125].

9One component can be bound to multiple columns as per definitions of Chapters 7 and 11.

231



③ ③ ③

dataset

column 1 column 2 column 3

②②②

visualize

① ① ①

comp. 1 comp. 2 comp. 3

③ ③ ③

④④ ④

visualization

① … wasGeneratedBy
② … used
③ … hadMember
④ … wasDerivedFrom

Figure 12.11: Yavaa: Schematic example for provenance graph of a visualization activity. At-
tribute lists omitted. A wasDerivedFrom edge from component to column 2 is also
hidden for clearer presentation.



Part III

Genesis & Analysis

233





C
H

A
P

T
E

R

13
IMPLEMENTATION

Previously, concepts necessary for an integrated data workflow were presented. To evaluate their

validity and compare against other approaches, they were implemented in a proof-of-concept

prototype called Yavaa. This chapter will focus on the technical aspects of said implementation.

It will justify the choices made and describe its overall structure.

All concepts presented before have been implemented as part of the prototype. However,

there is one restriction: The data types as described in Chapter 5 are only used within their first

level (categorical vs. time vs. quantitative). Second-order classifications have so far been omitted

and are left open for future implementation. The reason for this lies in the automatic creation

of dataset descriptions which will be discussed subsequently in Section 14.1. Distinguishing

between the second level types is non-trivial and considered out of scope for this work.

13.1 Architecture

An overview of Yavaa’s architecture is shown in Figure 13.1. It consists of two separate compo-

nents, user interface, and worker, connected by a communication layer1. The sole purpose of the

user interface is to provide human access to the worker and present its results. All other tasks,

including data processing and repository lookups, are performed from within the worker. Datasets

accessible via Yavaa are not part of the application itself. Instead, they remain exclusively at the

respective provider and are only accessed on demand by using proper wrappers.

The two components may either be run in a single environment, i.e. a browser, or be split

up to run at different locations. The latter allows for thin clients where the browser only serves

as a user interface, whereas the computations are actually run on dedicated servers. The user

1Details on the messages exchanged are given in Section 13.6.

235



CHAPTER 13. IMPLEMENTATION

interface is implemented as a single page application using HTML5 [web140], CSS [web141],

and JavaScript [web142]. The worker is also implemented using JavaScript. This allows reusing

the very same code in both modes of execution either in users’ browsers using a WebWorker

[web143] or on a server using a Node.js [web144] environment. In both cases, the communication

between the user interface and the worker is abstracted into a separate layer. This layer hides

environment details and exposes a common interface.

Inside the worker module, there are three kinds of components. Repositories hold dynamic

data. This data is considered dynamic as new additions do not affect the overall architecture

and can be made without understanding the concepts underlying other parts. This includes

the description of datasets and visualizations, the datasets that are currently used, and code

fragments, e.g., aggregation functions or the serializations of datasets. According to their contents,

the repositories use different techniques to keep their data: While the code repositories basically

just organize code fragments and their JSON-descriptions, dataset descriptions and unit data

are stored in an RDF triple store. Finally, the data store keeps already downloaded data using

in-memory structures which will be discussed in detail in Section 13.2. As mentioned before,

Yavaa does not include any means to maintain datasets long term but reuses existing capabilities

by external dataset providers.

Stores provide the access to the repositories. For RDF-based repositories, this means issuing

the respective SPARQL-queries [web88] and converting the result to a standardized format.

Other descriptions like the ones for visualizations are parsed into in-memory structures that can

easily be accessed and queried. Code-fragments are interpreted or compiled2 and returned to the

caller as executable objects. The data and workflow store use the same repository but expose

different operations based upon the datasets contained. The data store provides access to the

primary data of a dataset and thus forms the basis for all computations applied. On the other

hand, the workflow store allows to access the provenance record of a dataset. Each version of a

dataset is annotated with the operation and source(s) that lead to its creation. By traversing these

links, the workflow store provides access to the full history that resulted in a specific dataset

version. Unless explicitly requested by users, all data is kept in memory. As such, it will be lost

once the session ends. More details on the internal data handling will be given in Section 13.2.

Finally, Functional Blocks include most of the application logic. Their execution is triggered

via the user interface. During their operation, they mostly rely on the underlying stores for

fetching datasets and storing them after modification. The only exception is the access of remote

data sources which does not rely on a separate store object but accesses the remote datasets

directly. However, both, the necessary wrapper as well as the resulting (internal) dataset, are

managed via the respective stores again.

2Details depend on the execution environment which might use different techniques to execute the JavaScript code.

236



13.1. ARCHITECTURE

Se
ar

ch
M

od
if

ic
at

io
n

P
ro

ve
na

nc
e

V
is

ua
li

za
ti

on
P

ub
li

sh

U
S

E
R

 
I

N
T

E
R

F
A

C
E

D
at

as
et

C
om

bi
na

tio
n

K
ey

w
or

d
Se

ar
ch

M
et

ad
at

a 
St

or
e

D
at

as
et

D
es

cr
ip

tio
ns

D
at

as
ou

rc
e

A
cc

es
s

D
at

a
A

cc
es

s
C

om
p.

E
ng

in
e

L
oa

de
r

St
or

e
D

at
a

St
or

e
U

ni
t

St
or

e
C

om
p.

St
or

e

L
oa

de
r

Fu
nc

.
(I

nt
er

na
l)

D
at

as
et

s
U

ni
ts

Pr
ed

ef
in

ed
Fu

nc
tio

ns

W
or

kf
lo

w
E

xe
cu

tio
n

W
or

kf
lo

w
V

is
ua

liz
at

io
n

W
or

kf
lo

w
 S

to
re

V
is

ua
lis

at
io

n
R

ec
om

m
.

V
is

ua
lis

at
io

n
G

en
er

at
io

n

V
is

ua
lis

at
io

n 
St

or
e

V
is

ua
liz

at
io

n
D

es
cr

ip
tio

ns
 &

 C
od

e

E
xp

or
t

Se
ri

al
iz

at
io

n
St

or
e

Se
ri

al
iz

at
io

n
Fu

nc
tio

ns

C
O

M
M

U
N

I
C

A
T

I
O

N
 

L
A

Y
E

R

W
O

R
K

E
R

E
xt

er
na

l D
at

as
et

s
L

eg
en

d
M

od
ul

e

R
ep

os
ito

ry

Fu
nc

tio
na

l B
lo

ck

St
or

e

F
ig

ur
e

13
.1

:Y
av

aa
:A

rc
hi

te
ct

ur
e

O
ve

rv
ie

w
.

H
or

iz
on

ta
la

ss
ig

nm
en

t
by

m
ai

n
pu

rp
os

e,
in

di
vi

du
al

pa
rt

s
m

ig
ht

be
re

us
ed

fo
r

ot
he

r
ta

sk
s

as
w

el
l,

th
ou

gh
.C

on
ne

ct
io

ns
fr

om
E
x
p
o
r
t

to
D
a
t
a

S
t
o
r
e

an
d
W
o
r
k
f
l
o
w
S
t
o
r
e

om
it

te
d.

237



CHAPTER 13. IMPLEMENTATION

In addition to this separation into layers, the individual components can be classified by the

tasks they refer to. These are highlighted by the vertical sections of Figure 13.1 and follow the

steps identified in Chapter 1. In general, each task is represented in both the worker as well as in

the user interface. In the remainder of this section, a rather high-level description of the provided

functionalities will be provided. The following sections elaborate on individual components as

well as their counterparts in the user interface.

Search allows users to identify the datasets they need to accomplish their goals. One option

is a keyword-based search that relies on the datasets’ titles. The other option is to describe a

dataset structure for which the system will attempt to create a corresponding workflow following

the concepts described in Chapter 10. In both cases, there is not yet direct interaction with the

datasets themselves. They only rely on the dataset descriptions outlined in Chapter 8 and are

stored within the Dataset Descriptions Repository. The worker will return a dataset identifier

or a workflow that can be further refined by users. Once users agree with the choice made, they

trigger the workflow execution and/or retrieval of datasets.

The Modification section allows users to load a dataset and transform it according to their

needs. The most important functional block is the Computation Engine. After a dataset has

been loaded, all other operations will be performed through this engine. It will apply the given

function in a row-wise fashion to all rows of the dataset and store the result as a new dataset. As

noted before, this dataset includes an annotation that identifies the operation and sources used.

To ensure consistency with regard to units, the engine relies on the Units Store to provide the

required conversion functions and may modify the submitted operations to ensure the results

stay consistent.

The Datasource Access component, upon request, fetches the dataset’s description to determine

its location and the corresponding loader to use. It then retrieves the dataset from said location,

parses it using the loader, and stores the result in the Data Store. The Data Access component

allows other components or the user interface to access the primary data of a dataset or parts

thereof. Finally, Workflow Execution can parse a given workflow into executable commands which

are then passed to the computation engine to materialize the described dataset.

The main objective of the Provenance section is to provide other sections and users access

to the provenance of a given dataset. Users are able to view a graph representation of their

workflows. Details of this representation will be provided in Section 13.5. As previously mentioned,

all operations on datasets are performed through the Computation Engine, which will ensure

that the respective annotations are present for each (intermediate) dataset.

The Visualization section features two functionalities. On the one hand, it implements the

Visualization Recommender presented in Chapter 11. On the other hand, it facilitates the creation

of a selected visualization. The bindings as provided by the recommender and adapted by users

238



13.2. DATA STORE

are passed alongside the primary data to a code fragment that creates the respective visualization.

The result is then passed back to the caller to either be downloaded or rendered via the user

interface.

The last section is Publish. It provides download capabilities for the results of a given workflow.

This includes the resulting dataset, the visualization, and the respective workflow. Here, different

serialization-formats for each aspect are possible and are stored in the Serialization Store. The

overview in Figure 13.1 omits the connections from the Export component to the Data and

Workflow Store for the sake of clarity in the display. Within the implementation, however, the

export component uses both these stores as well as the Visualization Generation component to

retrieve the requested data.

13.2 Data Store

Each operation of the Computation Engine and the Datasource Access component creates a new

internal dataset. It is referenced by a numeric identifier that is unique throughout a particular

user’s session and is used to identify the dataset an issued operation is supposed to work on.

This way, multiple concurrent datasets can be handled within a single session which especially

becomes important in case multiple datasets are to be integrated (cf. Subsection 13.3.3).

Besides the identifier, these datasets are comprised of three parts: the dataset’s label or title,

the workflow entry associated with this dataset, and the actual primary data. The title is used

to reference the dataset within the user interface as a header and in other circumstances that

require a reference to a specific dataset to be shown to users. Beyond that, the label is not used

within the system.

As already mentioned, each dataset is annotated with a workflow entry describing its creation

process. In particular, this includes the command send to trigger that operation on the worker

including all parameters (cf. Section 13.6 on the messages used). Part of these parameters are

the dataset-ids to use as sources of the operation. They are maintained in the workflow record as

a pointer to the source datasets to establish a chain of entries and thus the complete provenance

for a given dataset. One exception is loading datasets from external providers. Here, no pointer

to another dataset within the system is available. However, the description of the operation itself

will contain an identifier from Yavaa’s dataset descriptions, the URL the dataset was fetched

from, and the specific format that was used.

For more detailed provenance tracking, a similar process is applied to each column separately.

Each column in a dataset falls into one of three categories: It remained unchanged from the

previous dataset version, it was adapted from a column of the previous dataset version, or it was

newly-created, e.g., as part of loading a dataset or the result of applying a formula. Unless it

was adopted unchanged, other columns might have contributed to the change or creation. For

example, if a new column represents a population density it might have been computed of two

239



CHAPTER 13. IMPLEMENTATION

other columns present, namely population and area. In total, this leads to three properties for

each column: a flag to signal whether it was changed or not, a nullable pointer to its equivalent

in a previous dataset version, and a nullable list of pointers to other columns that contributed to

its modification or creation. Using these three properties, all three provenance options can be

modeled as shown in Table 13.1. Furthermore, this contains all information required to create

and visualize the provenance graph as discussed in Chapter 12 and Section 13.5.

Column status Changed Flag
Previous

Representation
Contributing

Columns
unchanged false set null

changed true set set
new true null set

Table 13.1: Yavaa: Workflow annotation properties for a single column.

The final component of the internal dataset representation is the actual primary data. Here,

two approaches are available in principle: row-oriented or column-oriented. Column-oriented

databases have been found to outperform row-oriented ones in analytic workloads [278]. However,

this advantage is attributed to a large extent to differences in I/O where column-oriented

databases have to read less from disk. As all datasets within Yavaa will be held in memory, this

particular aspect can not inform the decision.

On the other hand, memory allocation is a major factor in Yavaa. At least when run exclusively

in a browser environment, there is no way of storing (parts of) the primary data on disk. Another

important factor in the decision is the observation that most operations will result in the change

of a single column’s values and leave the other columns unaffected. In a row-oriented system,

this would nevertheless require a copy of the whole tuple to be stored with just that single value

changed or added. Then again, in a column-oriented system, both dataset versions can share

a certain set of columns and just differ in the column changed as shown in Figure 13.2. Yavaa

uses this approach as it reduces the overall memory footprint of the system considerably3. It

considers columns immutable and, hence, can reuse them in an arbitrary number of datasets.

Consequently, any change in the values of a column will result in the creation of a new column

object. Inside column objects, data values are stored in form of an array. The indices of these

arrays are aligned for column objects pertaining to the same dataset. Hence, the nth-tuple of a

dataset can be reconstructed from the nth-elements of each of its column objects.

With the columns immutable, their metadata can be attached directly instead of being

maintained on a dataset level. So, column properties mirroring the ones listed in Chapter 8 like

title, unit, role, or type are maintained as part of the column object. Optionally, the column object

3In a worst-case scenario, all columns will change. In this case, the column-oriented approach will only deteriorate to
a similar level as a row-oriented approach. Depending on the implementation overhead of linking values to a
tuple vs. linking them in a column-array, the substantially higher number of tuples vs. columns will probably
even yield a slight benefit towards the column-oriented approach.

240



13.3. COMPUTATION ENGINE

Dataset Version 1 Dataset Version 2

Column 1 Column 2 Column 3a Column 3b

wasDerivedFrom

wasDerivedFrom

Figure 13.2: Yavaa: Reuse of columns across dataset versions.
Columns 1 and 2 remain unchanged between both dataset versions and are reused.
Column 3a was modified and is replaced by Column 3b in Dataset Version 2.

might also contain the range of values for the respective column if it has been established either

by the loading process, a specific filter, or any other operation that has requested this kind of

information.

A common operation, which would change the values in all columns, is ordering the dataset

according to some criteria. In order to prevent a full duplicate of the actual data, Yavaa uses a

separate SortedDataset object. It mimics the behavior of the standard dataset in all aspects

but the primary data. Instead of holding the column-objects it only stores a single array to map

entries from the previous dataset version to their new positions. The indices of this array are

identical to the ones in the previous version’s columns. The values represent the new ordering of

the respective entries. This sorting will be obsolete as soon as another operation takes place that

modifies the dataset. Here, the operation will basically work on the previous dataset version and

thus invalidate the ordering.

13.3 Computation Engine

The Computation Engine is the central part of the worker component. At one point or another,

most operations will resort to the functionalities provided here. The supported modifications

of primary data can be distinguished into three classes: Simple operations add one or multiple

columns to a dataset, leaving the remaining columns unaffected. These operations can be modeled

to work on the dataset in a row-wise fashion. Aggregations and expansions combine multiple

input rows to a single output row or the other way around. In consequence, they can not just

be executed separately on a row-by-row basis. Finally, joins combine two datasets. Again, an

execution for each line is not possible and other challenges have to be addressed.

The details presented in the following are modeled after the MapReduce paradigm [279]

where needed. Simple operations can be represented by a single map function without the need

for an additional reduce step. Aggregations use a full MapReduce cycle. The mapping function

241



CHAPTER 13. IMPLEMENTATION

will collect rows based on the aggregation condition(s), whereas the reduce function will then

apply the actual aggregation function. Expansions only require a single map function that will

possibly emit multiple generated rows. Finally, joins can be calculated by unifying both involved

datasets into a single one and then applying an aggregation. However, the aggregation function

this time merges the matched rows from both datasets into one or multiple rows of the resulting

dataset. Rows of the source datasets are annotated with their respective dataset-id, so they can

be distinguished from one another in the aggregation step. In this case, two MapReduce cycles —

one for labeling, one for the actual join — will be required.

Although not implemented yet, this compatible modeling will allow Yavaa workflows to be

run on Hadoop [web145] clusters or any other infrastructure following the MapReduce paradigm

and supporting JavaScript. The rationale is to allow users to work on a sample of the actual data

if the size of the datasets exceeds the capacities of their local environment. They can specify the

workflow on this subset of the data and tentatively evaluate its results. After completing the

workflow, it can then immediately be deployed to an infrastructure capable of handling the actual

dataset. In particular, the same code will be executed in both iterations, thus reducing the risk of

code-induced deviations in the result4. A corresponding implementation is postponed for future

work, though.

Changing a single cell’s value can also be modeled using this technique. The function applied

to the dataset is equal to the identity function for all rows but the one changed. In this row, a

changed value is returned, thus modifying the targeted cell without affecting any other row.

13.3.1 Simple Operations

As mentioned before, simple operations append new columns to an existing dataset. They do not

change the overall number of rows, i.e. no rows are added or removed in the dataset. Changing

a column in a dataset is represented by the creation of a new column, which is followed by a

subsequent replacement of the original column as described in Section 13.2.

The input for these kinds of operations is a dataset and a function whose return value

generates the new column. There can be two sources for said functions: Either users explicitly

specify the function to be applied or trigger it indirectly by selecting one of the predefined

operations like changing the unit of measurement. In both cases, the function is given as an

AST. This allows applying structural optimization techniques at a single point which prevents

repeated implementations at the point of generation of the ASTs in the respective modules. For

now, only constant folding is implemented, but an extension point for other techniques is given.

The optimized AST is subsequently converted to executable code in form of a JavaScript

function. This function is subsequently called for each row of the input dataset and its return

values are collected in a new column. For some operations, a generic function could simplify

4Depending on the sampling algorithm used to create the subset using in preparing the workflow, the results might
differ though.

242



13.3. COMPUTATION ENGINE

this generation process. However, a compiled, custom-tailored function will yield considerable

performance benefits, as it does not need to include any other command than those needed for the

task at hand. Furthermore, it can make use of the built-in optimizations of modern JavaScript

engines like Chakra [web146], Spidermonkey [web147], or V8 [web148]. This, of course, is based

on the assumption, that the execution time of applying the function to the dataset is considerably

larger than the time needed to prepare it. This assumption seems reasonable in the current

context as the function has only to be prepared once, whereas it is executed for thousands of rows

at a time.

Functions triggered by other internal worker-operations are immediately available as ASTs.

Functions supplied by users have to be parsed into such an AST first. They also need to be

validated against a given schema or grammar to prevent erroneous inputs and possible code

injections by malicious users. To this end, the grammar provided in Appendix E was created. It is

a Parsing Expression Grammar (PEG) [280], which can be compiled into JavaScript code using

PEG.js [web149].

PEGs differ from Context-Free Grammars (CFGs) in that they replace the (unordered) choice

operator | in CFGs with a prioritized choice operator /. In a CFG, the following two rules are

equivalent: A → a|ab and A → ab|a. However, in a PEG the two rules A → ab/a and A → a/ab

are different. In particular, in the second rule, the latter alternative will never be matched as the

first alternative will precede it for every input string starting with an a. A well-formed PEG is a

grammar that includes no left recursive rules like A → Aa/a. If applied, such rules would lead

to endless loops5 in parsing and are thus provide no useful applications in practice. All aspects

combined allow for the creation of efficient, i.e. linear time, parsers using memoization like the

packrat parser [281].

The grammar used in Yavaa is well-formed and provides support for the four basic mathe-

matical operations (Addition, Subtraction, Multiplication, Division), a reference to the current

value (value), and references to other cells of the same row (col0, col1, . . . ). Similar to the

HTML-specification [web150], an arbitrary number of whitespace-characters6 can be inserted

between the tokens. PEG.js also allows to label parts of an expression and to use that label in

code snippets directly attached to the grammar. These snippets are used to transform matched

expressions for further use. In the case of Yavaa’s formula parsing, they are used to return an

AST comparable to the ones created by other worker-operations.

In the prototypical implementation described here, user-defined operations are only supported

on quantitative columns. Compared to the rather well-defined and commonly used operations

on quantitative values, defining meaningful and useful counterparts on, e.g., semantic entities

is non-trivial. So while the developed architecture allows for adding this in the future, it is

considered out of scope in this thesis.

5A parser would try to match rule A to an input string. This, in turn, starts by applying a recursive matching to rule
A, which does the same ad infinitum.

6TAB (U+0009), LF (U+000A), CR U+000D, and SPACE (U+0020).

243



CHAPTER 13. IMPLEMENTATION

13.3.2 Aggregations and Expansions

Both aggregation and expansion, modify the number of rows within a dataset and can be seen

as inverse functions to one another. While within an aggregation one or multiple input rows

contribute to a single output row, an expansion function takes a single input row and returns one

or multiple output rows.

Expansions work similarly to simple operations. The dataset is processed line by line and a

function is applied to one column. However, instead of returning a single value for each row, the

function applied might return an array of values. Subsequently, for each value within that array,

a new row is inserted into the result dataset. The values for all other columns are copied from

the source row. At the time of writing, the only expansion function to be applied is unbagging,

which is the reverse function to bagging as discussed later on.

On the other hand, aggregations require more effort. Here, input rows first have to be grouped

according to the values in a subset of columns. This is implemented by a tree-structure where

each level represents one column to be grouped by. Each child node spans the subtree for a given

value represented by its hash-value. Leaf nodes contain pointers to each matching row where the

path from the root represents the values within that row. After building this tree, all leaf nodes

are traversed in order. Each value on the path towards that leaf is inserted at the respective

position of the result row(s). Next, for each remaining position, all values from the rows collected

in the leaf nodes are gathered into a list. The resulting lists are passed to aggregation functions

to retrieve the final values to be used in the generated row. Aggregation functions currently

supported are listed below.

avg computes the average of a given collection of numbers.

bag collects all values in a multiset. This is the default aggregation function.

sum returns the sum of a given collection of numbers.

set collects the values in a set.

takeOne returns the first value of the collection.

New aggregation functions can easily be added: All that is needed is a function that takes

a list of values as an input and returns a single value. Alongside the actual implementation, a

description has to be provided to define the required properties. This includes, besides the name

and a description, a list of data types the respective aggregation function can be applied upon or

the keyword all if there are no restrictions7.

At this point, the difference between bag and set shall be emphasized. While bag returns

a multiset in which duplicate entries will be retained, using set will eliminate said duplicates

and return only a list of unique values. Depending on the use case, one or the other might be
7From the provided aggregation functions, only sum and avg are restricted to the numeric data type. All other functions

can be applied without restriction.

244



13.4. UNIT STORE

chosen. Identifying all entities satisfying a certain condition, set semantics might be preferred.

However, if another aggregation function should be applied subsequently, bag semantics retain

more information. In particular, for mathematical functions like summation or average, the

correct result can most often only be achieved using bag semantics, whereas set semantics will

skew the results here.

13.3.3 Joins

Join algorithms are generally implemented using one of three techniques [282]: Nested loop joins,

sort-merge joins, and hash joins. In the following discussions, L will denote the left-hand side

dataset in the join, whereas R will stand for the right-hand side one.

In their most basic form, nested loop joins traverse all rows of L. For each row, R is scanned

for matching rows and a resulting row is returned for each match. An optimization is to scan R in

blocks (“nested block join”) reducing necessary I/O-operations depending on available memory.

Sort-merge joins are executed in two steps. In the first step, both datasets are sorted according

to the columns present in the join condition. Afterward, both datasets can be traversed in order,

evaluating the join condition for each pair and adding matching rows to the result. Using this

approach, each row has only to be read once from disk saving a lot of I/O-operations compared to

a nested loop approach.

Hash joins exist in many variations. Common to all of them is, that for each row in L the

values present in the join condition are hashed. The hashes along with a pointer to the source row

are stored in a hash table. Now, the rows of R are traversed. For each row, again corresponding

hashes are computed. If there is a matching entry in the hash table, both rows are joined and

added to the result.

Yavaa’s implementation uses a hash join as well, as this can be transferred easily to a

MapReduce setting. In particular, a left outer join is implemented using the same technique

already described for aggregations. R is added to a tree structure using the join conditions to

identify the respective leaf node. Then L is traversed and for each row, a match within the tree is

determined. If no matching leaf node can be found, the respective result row is filled with null

values for the missing columns.

13.4 Unit Store

The Unit Store is the primary source for information related to units of measurement. As

discussed in Chapter 9, OM [164] is used as a knowledge base for this purpose. However, to

extend the number of available datasets in the evaluation (cf. Chapter 14) several units and

dimensions had to be added. In particular, this includes units related to counting entities that are

missing in OM. A full list of added individuals is given in Appendix C. They follow the schema

given by the T-Box definition of OM and can thus be treated in the same way as the original ones.

245



CHAPTER 13. IMPLEMENTATION

As hinted in Figure 13.1 before, the Unit Store is backed by an RDF triple store. This separates

between maintaining unit data in the triple store and using it within Yavaa’s Unit Store. In

particular, should new units become necessary or issues with the existing ones need to be fixed,

no code changes are necessary. Instead, any change made to the triple store will immediately be

available throughout the system, e.g., to describe new datasets. All communication is done via

SPARQL-queries. This would also allow to swap out the local unit triple store, with a publicly

available SPARQL-endpoint possibly maintained by the data providers themselves.

Before describing the functionalities provided by the Unit Store, the concept of a conversion

graph shall be discussed. Part of OM is the modeling of conversions of units. These conversions

form a directed graph, where each unit is represented by a node and two nodes are connected if

and only if a conversion consisting of a factor and possibly an offset between both units is given.

The direction of the edge is determined by the direction of the conversion, i.e. an edge from unit

A to unit B contains the factor and offset to convert a measurement using A to one using B.

A conversion graph constructed in the aforementioned way will contain multiple clusters

consisting of nodes having no connection to nodes in other clusters. Each of these clusters

represents a set of compatible units. The topology of individual clusters can take different shapes

as exemplified in Figure 13.38. For the complete and star-shaped topologies, a conversion can be

determined by a single query. In the complete topology (cf. Figure 13.3(a)), each conversion is

explicitly represented within the ontology and, hence, can be queried directly. In a star-shaped

topology (cf. Figure 13.3(b)), the path between any two units is at most of length two. Both steps

can also be retrieved in a single query. However, within snowflake topology (cf. Figure 13.3(c))

the conversion path can be of arbitrary length, making aggregation functions necessary. As

of version 1.1, SPARQL does not include an aggregation function to multiply multiple values

[web88, §18.5]9. So with this topology, the conversion between two arbitrary units can not be

determined using a single query. OM uses a snowflake topology. The implementation to deal with

the resulting challenges will be described later on.

(a) Complete. (b) Star-shaped. (c) Snowflake-shaped.

Figure 13.3: Reasonable conversion graph topologies.

The Unit Store provides endpoints to serve different kinds of queries. Units that are part

of the input are always given by their respective URLs. Queries like retrieving units by their

label as part of the dataset annotation process are considered out of scope for the main Yavaa

application and, hence, are not supported by the Unit Store.

8These topologies and their implications have also been discussed in [283].
9Supported aggregation are: Count, Sum, Avg, Min, Max, GroupConcat, and Sample.

246



13.4. UNIT STORE

Pulling general information for a unit involves its label, its dimension(-vector), and whether

it is a scaled unit like temperatures. The data is used within the user interface and within the

determination of the resulting unit of a formula (cf. Chapter 9). It is directly modeled within the

OM ontology and this requires no additional efforts.

Alternative units are found by exploring the respective conversion graph. This is a more

reliable approach compared to a search on compatible dimension vectors as, e.g., in [168]. As

an example, consider pressure and (volumetric) energy density. Both share the same dimension

vector according to the SI system of units [160], namely Mass × Length−1 × Time−2. However,

as they describe different properties of a phenomenon, their respective units can not be used

interchangeably and, hence, can not be converted to one another. A search solely based on the

respective dimensions vectors will miss that fact and report wrong results. Another advantage

of basing the search for alternatives on the conversion graph is the guarantee of a conversion

existing. If the underlying ontology was missing some conversion, this could otherwise lead to

problems: A unit presented to users as a possible target of a conversion would result in errors

when being actually selected and attempted to be applied.

Another function provided by the Unit Store is the conversion between two given (compatible)

units. The result is not the converted measurement value, but a function or the corresponding

AST representing the conversion. The AST can be used for possible adaptations like optimizations

in the context of a user-defined function’s AST. As mentioned before, OM uses a snowflake schema

for its conversion graphs, so in general, the paths within a cluster can be of arbitrary length.

The final conversion factor accumulating all factors along this path can not be determined by a

single SPARQL query alone, as discussed before. At the very least this requires aggregating the

conversion factors within the application.

Another challenge is the different kinds of conversions represented in OM. It contains three

different kinds of conversions: direct conversion between two units only using a factor like from

foot to meter, conversions using prefixes like kilometer to meter, and conversions involving a

change of scale like from degree Fahrenheit to degree Kelvin. Figure 13.4 shows an overview

of possible cases. If a unit is prefixed, the conversion factor to the respective singular unit is

given by that prefix. Afterward, there can be an arbitrary number of conversions defined via

om:Measure-individuals10. If the unit uses scales, there is another step using the associated

om:Measurement_scale-individual. These scales follow the same paradigm as units with respect

to their conversions, but besides a conversion factor also include an offset. In total, this results in

three different ways to model conversions within OM which all have to be dealt with within the

query.

To cope with both challenges, a three-step approach has been taken to gather all necessary

information for a requested conversion. In a first step, the conversion graph related to both

source and target unit is examined and for both units, all nodes along the path to the center

10To be precise, a single multiple of unit A is measured in terms of unit B, thus defining the conversion.

247



CHAPTER 13. IMPLEMENTATION

of the respective cluster are collected. This center is uniquely defined for all clusters with the

exception of the one representing mass: In that one graph there is a cycle between om:gram

and om:kilogram. While gram is defined via a direct conversion towards kilogram, kilogram

also is annotated as a prefixed version of gram. Adhering to the SI definition [160], Yavaa uses

om:kilogram as the center of this cluster.

With the exception of this sole case, the direction of the conversions is always well defined. So,

in a second query, all conversions for the units along the path are gathered. Scaled units pose

another obstacle here: Although they are defined using their respective scales, they also have a

property using an om:Measure-individual. However, this individual omits the conversion offset

and, hence, has to be ignored.

Having obtained all the required information, the last step creates the actual conversion path.

As both paths might intersect before the center of the cluster, the application searches for the

first common node within both paths towards said center. All subsequently shared nodes will be

removed. Afterward, the conversion AST is created by traversing the path from the source unit

to a common node and then from common node to target unit. All conversion factors along the

way are represented within the conversion AST to prevent inaccuracies while accumulating11.

Finally, the Unit Store offers some functions to handle compound units. The first method

returns the respective compounds given a compound unit. If the unit consists of other compound

units, those will be resolved recursively. Similarly, the reverse method is provided: For a given

virtual unit object12 consisting of two sets of units, one for the numerator and one for the

denominator, the method tries to provide the URL of the respective equivalent compound unit.

This compound unit might not exist in all cases, though, so this method might return a null value.

For virtual units also a simplification method is provided. This removes common entries

from numerator and denominator using the approach presented in [168]. First, all compound

units within both sets are replaced by their compounds. The replacement of a unit present in

the numerator set might also affect the denominator set and vice versa when the compound

itself is comprised of numerator and denominator. Furthermore, prefixes are removed and their

respective numerical values collected for each set. In the second step, common occurrences in

both sets are removed and the accumulated prefix factors are aggregated. The resulting sets are

then passed to the aforementioned method to resolve a virtual unit. If a single individual for that

virtual unit is found, it is returned. Otherwise, a new simplified virtual unit is passed on.

11The different factors will be accumulated when the AST is converted to an actual JavaScript function. In this
process, certain optimizations take place which includes the aggregation of chains of constants factors. However,
this uses the predefined precision settings, so within those boundaries, no additional inaccuracies are introduced.

12Virtual units may appear as the result of certain operations. In essence, they are compound units that have not
been matched to a corresponding entry in the unit ontology or where no such entry could be found.

248



13.4. UNIT STORE

(source)
om:Unit

(target)
om:Unit

om:Prefix om:Prefix

om:Singular_unit om:Singular_unit

om:Measure

om:Unit

om:Measure

om:Unit

*

om:Unit

*

factor factor

om:Measurement_scale om:Measurement_scale

om:Measurement_scale

* *
factor

offset

factor

offset

Figure 13.4: OM 1: Generalized conversion path structure.

249



CHAPTER 13. IMPLEMENTATION

13.5 Graphical Workflow Layout

The Workflow Visualization converts the workflow maintained internally or in the used PROV

dialect (cf. Chapter 12) to a visual representation accessible to users. In the past, various

algorithms have been proposed to draw graphs. An extensive survey including a classification of

graph layout algorithms can be found in [284]. These algorithms optimize for different criteria like

minimizing edge crossings, creating symmetric graphs, preventing node-edge overlaps, separating

non-adjacent nodes, or facilitating a uniform node distribution. However, most of them target

general graphs or cater to different constraints than the ones at hand.

The workflow graph as created by Yavaa is highly structured (cf. Chapter 12). It consists of a

sequence of datasets each consisting of multiple columns13. Columns often remain unchanged

over multiple or all datasets in a sequence. Another constraint arises from the PROV graph

layout conventions [web138]. They suggest providing a chronological ordering either horizontally

or vertically with the newest node on the right or bottom respectively. As the datasets in the given

workflow depend on one another, this determines their relative positions within the visualization.

The algorithm presented here will adhere to these constraints by implementing the following

layout conventions: To reflect the structure of the workflow, each set of columns will receive a

dedicated vertical lane within the visualization. This mimics the general layout of a tabular

dataset where values of a particular column are also vertically aligned forming a dedicated lane

for that column. Activities will span all lanes of columns they modify. Columns that only influence

a certain activity without being modified by it will only be referenced by dashed arrows. The

chronological order will be represented by the vertical positioning: source datasets at the very

top, intermediate activities in the middle section, and the resulting dataset or visualization at

the bottom. The vertical positioning of activities will also follow a strictly chronological ordering.

If activity a1 predates activity a2 its node will be shown more towards the upper end of the

visualization than the one representing a2.

Sample layouts of the workflow graph were given in Figures 12.9 to 12.11. These already ad-

here to most of the layout conventions listed, but do not represent the final workflow visualization.

In the given samples, all entities and relations present in the graph have a visual representation.

In particular, this includes entities for a dataset and its respective columns after each operation.

To increase the readability of the generated workflow visualization some elements of the

workflow will subsequently be omitted. Firstly, only the first and last column-entity of each lane

will be shown. All intermediate column-entities will have no visual representation. As columns

are already assigned to their dedicated lane and the starting and final entity for that column

is shown, the creation of a new column-entity after each activity is assumed to be implicit and,

hence, redundant. The same approach is taken for datasets. Only sources and final results will

have a visual representation, while all intermediate datasets are omitted in the visualization.

13The term “dataset” within this context also includes the visualization. As discussed before, from an abstract point of
view the difference is negligible.

250



13.5. GRAPHICAL WORKFLOW LAYOUT

The omission of intermediate column-entities can be justified from the constraint set specified

by PROV [web125]. Inference rule five states that, if an activity a2 prov:wasInformedBy a1, there

exists an entity e, such that e prov:wasGeneratedBy a2 and a1 prov:used e. Figure 13.5 shows

a visual illustration of this inference rule. So by connecting activities using prov:wasInformedBy-

edges, the workflow visualization implicitly includes the omitted intermediate column-entities.

For the omission of intermediate datasets, there is no equivalent inference rule. So technically,

the visualization generated will not represent the exact workflow as serialized by the Export

component.

a1
① a2 ⇔ a1

② e ③ a2

① … wasInformedBy ② … wasGeneratedBy ③ … used

Figure 13.5: PROV-Constraints [web125]: Visual illustration of inference rule 5.

The visualization algorithm itself is separated into two steps. A first layouting step (List-

ing 13.1) will create visual artifacts to be rendered and determine the horizontal order of column

lanes. The second step (Listing 13.2 utilizing Listing 13.3) will then traverse the chronologically

ordered list and position all artifacts as well as draw their connections. An example output is

shown in Figure 13.6.

The layouting step in Listing 13.1 works as follows. First, artifact-objects are created to

hold the data within the visualization (lines 3 to 7). As discussed before, intermediate datasets

will not be shown within the visualization and, hence, no artifact is created for them. Similarly,

column-entities are discarded as they are directly bound to activities and will be accessed

through them. Now, a global column mapping in form of the array columnMapping is created

by traversing a sorted list of artifacts representing activities (lines 9ff.). The list is sorted in

ascending order by the prov:startTime-property of the associated activity. The array contains

objects representing the aforementioned lanes for each column whose positions within the array

also encode their later position in the visualization. If an activity creates new columns, for each

of these columns a new lane-object is created (lines 15 to 18). The lane object includes a list

of all column-entities it represents in its wfEntries-property. The newly created lane-objects

will then be inserted into columnMapping array (lines 20 to 23). If the activity only creates new

columns but uses no existing ones14, all new lane-objects are appended to the end of the column

mapping. However, if the activity works on an intermediate dataset, the lanes will be inserted

at the relative positions within columnMapping, possibly changing the indices for later entries.

The relative position is given by the yavaa:order property accessible through the columns of

the dataset created by the respective activity and columns already positioned within the column

mapping. Finally, all columns involved in the activity are mapped to their respective lane (lines

14In the current implementation, this only refers to activities loading external datasets.

251



CHAPTER 13. IMPLEMENTATION

Population on 1 JanuaryNumber of sheep

loadData

Live animals Month Unit of measure Geopolitical enti… Time Number of sheep

loadData

Demographic in… Geopolitical enti… Time Population

Geopolitical enti… Time

join

filterData

filterData

Demographic in…

dropColumns

Live animals

dropColumns

Month

dropColumns

Unit of measure

dropColumns

compute

Geopolitical enti… Time PopulationNumber of sheep sheep per person

Result

 SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2 dataset 3

Figure 13.6: Yavaa: Workflow view.
Chronologically ordered from sources (top) to final data products (bottom). Wide ellip-
sis on the top and bottom indicate data sources and final data products respectively.
Columns are arranged into vertical lanes and use smaller ellipses to represent their
lifespan within the workflow: The upper one shows their inception, while a lower
one symbolizes either end-of-life or their final state. Solid arrows further illustrate
the column lanes and connect entities to operations that modified them. Operations
are given by rectangles covering all lanes of affected columns. Dashed arrows link
operations to used but unchanged columns.

252



13.5. GRAPHICAL WORKFLOW LAYOUT

FUNCTION layoutGraph ( wfGraph )
2

a r t i f a c t s = <empty l i s t >
FOREACH act iv i ty= and entity=item in wfGraph DO

5 IF item i s not an intermediate dataset or column=ent i ty
a r t i f a c t = { wfEntry : entry } ;
add a r t i f a c t to a r t i f a c t s

8
columnMapping = <empty array>
a c t i v i t i e s = sort ac t iv i ty=a r t i f a c t s ascending by the startTime of their respect ive wfEntry

11 FOREACH a c t i v i t y in a c t i v i t i e s

IF a c t i v i t y . wfEntry creates new columns
14

newColumns = <empty l i s t >
FOREACH column created by a c t i v i t y . wfEntry DO

17 lane = { wfEntries : [ column ] }
add lane to newColumns

20 IF a c t i v i t y . wfEntry loads from an external source
append newColumns to columnMapping

ELSE
23 insert newColumns at the ir re la t i ve pos i t ions to columnMapping

FOREACH column present in the dataset created by a c t i v i t y . wfEntry DO
26 predecessor = column=ent i ty connected via wasDerivedFrom to column

lane = entry in columnMapping containing predecessor
add column to lane . wfEntries

29
RETURN columnMapping and a r t i f a c t s

32 END

Listing 13.1: Yavaa: Workflow graph visualization - layouting.

25 to 28). For this, the predecessor of the given column-entity is determined, which is given

by a connection via prov:wasDerivedFrom in the workflow graph. This predecessor is already

listed in the wfEntries-property of one entry in the column mapping, which thus defines the

lane-object for the current column. The current column is also added to the wfEntries-property

of the respective lane to allow for further activities’ columns to be assigned the same way. The

result of the layouting step is a list of artifacts to be rendered and a global ordering of all columns

within the workflow in columnMapping.

The drawing step of the algorithm, given in Listing 13.2, takes these intermediate results

and draws visual artifacts on a canvas15. Given inputs are the list of artifacts, the column

mapping as created by the previous step, and two constants: Horizontal spacing determines

the width of a column-lane. Vertical spacing defines the vertical distance between two rendered

artifacts. The algorithm processes all items in chronological order (line 8ff.). Throughout this,

the current position along the y-axis is maintained in curY (line 3). It is incremented by the

vertical spacing constant each time a horizontal series of artifacts has been rendered. In addition

to the previous step, the remaining dataset and visualization artifacts are also included in that

ordering. As they do not possess a prov:startTime-property themselves, the respective property

15The implementation relies on SVG [web151] at this point.

253



CHAPTER 13. IMPLEMENTATION

1 FUNCTION drawGraph ( ar t i f a c t s , columnMapping , constants )

curY = constants . vert icalSpacing
4

FOREACH lane in columnMapping DO
lane . x = indexOf ( lane ) * constants . horizontalSpacing

7
sort a r t i f a c t s chrono log i ca l ly

FOREACH a r t i f a c t in a r t i f a c t s DO
10

SWITCH TYPEOF a r t i f a c t . wfEntry
CASE a c t i v i t y :

13
droppedColumns = lane a r t i f a c t s for each column dropped by a r t i f a c t . wfEntry
IF droppedColumns . length > 0

16 FOREACH lane in droppedColumns DO
render column ob jec t using curY and lane . x
render connector for column ob jec t from curY to lane . s tart

19 curY += constants . vert icalSpacing

a r t i f a c t . y = curY
22 render ( ar t i f a c t , columnMapping , constants )

curY += constants . vert icalSpacing
IF TYPEOF a r t i f a c t . wfEntry == ’ load ’

25 render connector to respect ive source ent i ty
ELSE

render connector to a l l droppedColumns
28

createdColumns = lane a r t i f a c t s for each column created by a r t i f a c t . wfEntry
IF createdColumns . length > 0

31 FOREACH lane in createdColumns DO
render column ob jec t using curY and lane . x
lane . s tart = curY

34 render connector for column ob jec t from curY to a r t i f a c t . y
curY += constants . vert icalSpacing

37 CASE ent i ty :

IF a r t i f a c t . wfEntry i s source dataset
40

a r t i f a c t . y = 0
render ( ar t i f a c t , columnMapping , constants )

43
ELSE

46 lanes = lanes referenced by a r t i f a c t . wfEntry in columnMapping
FOREACH lane in lanes

render column ob jec t using curY and lane . x
49 render connector for column ob jec t from curY to lane . s tart

curY += constants . vert icalSpacing

52 a r t i f a c t . y = curY
render ( ar t i f a c t , columnMapping , constants )
render connectors from curY to previous column ob jec ts for each lane

55 curY += constants . vert icalSpacing

END

Listing 13.2: Yavaa: Workflow graph visualization - drawing.

254



13.6. COMMUNICATION LAYER

of the activity succeeding them (source datasets and loading activity) or preceding them (result

datasets/visualization) are used instead. Depending on the type associated with the artifact, the

rendering differs.

If the artifact represents an activity, first all lanes dropped by the activity are drawn (lines 14

to 19). In this case, a final column artifact is drawn and subsequently connected to the respective

starting artifact. Now, the artifact for the activity itself is rendered and connected to either the

source entity (load activities) or the previously drawn artifacts for dropped columns, if existing

(lines 21 to 26). Finally, if the activity created new lanes, those are drawn and connected to the

activity artifact (lines 29 to 35). The y-coordinate for these newly created artifacts is maintained

to allow for the connection from the final column artifact to be drawn later on (line 33).

Rendering the remaining entity artifacts is simpler. If the artifact represents a data source, it

is drawn at the very top of the graph (lines 39 to 42). Otherwise, the entity represents the final

dataset or visualization. In this case, for all lanes, a final column artifact is drawn and connected

to the starting artifact for that lane (lines 46 to 50). Afterward, the entity is rendered and also

connected to all column objects just rendered (lines 52 to 55).

FUNCTION render ( ar t i f a c t , columnMapping , constants )

3 lanes = lanes referenced by a r t i f a c t . wfEntry in columnMapping

a r t i f a c t .minX = minimum of a l l co l . x for co l in lanes
6 a r t i f a c t .maxX = (maximum of a l l co l . x for co l in lanes ) + constants . horizontalSpacing

IF a r t i f a c t i s ent i ty
9 render ent i ty ob jec t using a r t i f a c t . y and a r t i f a c t .minX / a r t i f a c t .maxX

ELSE
render a c t i v i t y ob jec t using a r t i f a c t . y and a r t i f a c t .minX / a r t i f a c t .maxX

12
END

Listing 13.3: Yavaa: Workflow graph visualization - Render object.

The rendering of all artifacts but the connections need the width of the artifact16. For column

objects this width is equal to the width of their lanes given by the horizontal spacing minus a

certain margin. However, other artifacts need to cover multiple lanes. The respective calculations

are given in Listing 13.3. First, all lanes affected by this activity or included in the entity have to

be determined (line 3). The width is then given by the minimum and maximum x-coordinates of

all these lanes (lines 5 and 6). This allows drawing the appropriate artifact (lines 8 to 10).

13.6 Communication Layer

As mentioned previously, the user interface and worker are loosely coupled and are connected by a

separate communication layer. The actual medium of that layer is not fixed, but implementations

are provided for communication to a server via WebSockets [web152] or within the browser to a
16The height is given by a constant. The implementation uses about half the horizontal spacing.

255



CHAPTER 13. IMPLEMENTATION

WebWorker [web143]. The submitted messages are fixed in their structure, though. For a full

list of supported commands see Appendix D. At this point only a qualitative description of the

messages and their structure shall be given.

The communication channel is considered asynchronous, so the communication layer has to

take care of matching messages from the worker to previous requests from the user interface. This

is achieved by the use of so-called job-ids which will be assigned by the worker to each incoming

request. Hence, the exchange of messages is structured as follows: The user interface sends a

request to the worker. This is immediately responded to by a message stating the respective

job-id. The user interface refrains from sending any other request until that first request has

received a job-id. Previously, other requests may have already be sent without having received

the actual result yet. On the worker, site the acknowledgment for a new request in form of the

job-id is sent as soon as the incoming message has been validated. In particular, this precedes

any calculation needed to fulfill said request. After sending the acknowledgment or an error

message if the validation failed, the actual computations are run to provide a response. In the

meanwhile, other requests will already be accepted. If the result of a request has been prepared,

the response is augmented with the respective job-id and sent to the user interface. By the use

of that id, the user interface will identify the original calling function and relay the results to it.

The decision to assign the job-id on the worker’s side is almost arbitrary. The scale was

tipped by considering necessary validations and potential surface area for attacks. Any client-

provided data is a potential security risk [web153] and as such requires validation. Although a

particular attack vector might not be known in advance, less surface area for any kind of attack is

always preferable. When the job-id is already part of the initial request, code for its validation

would need to be added. Assigning the job-id on the worker’s side, this requirement can be

omitted to save some pieces of code that might potentially break.

Within the implementation, a Promise [web142, §25.4] is created for each request sent by

the user interface and returned to the caller at once. When the respective job-id is received,

it is used to identify the corresponding Promise. Upon response, the Promise is resolved using

the response’s payload. This method allows any user interface component to trigger (multiple

parallel) asynchronous requests to the worker and thus prevent any blocking behavior.

The structure of messages is defined in an XML [web11] file17. The file itself serves two

purposes: On the one hand, it documents the external API of the worker and thus allows other

vendors to use the worker within their own application or websites. Using a parser18, also more

human accessible documents can be created to serve the same purpose. On the other hand, the

file is used to run a basic validation of the messages received and transmitted by the worker.

The message definition is split into three hierarchical levels as shown in Listing 13.4. The first

hierarchy splits the list of messages according to topics using <section>-elements. On the second

level, messages are grouped by the direction they are sent in using <sectionpart>-elements

17protocol.xml
18Such a parser is not provided as part of the prototype implementation, though.

256



13.6. COMMUNICATION LAYER

<root>
2 <sect ion t i t l e ="some t i t l e ">

<sect ionpart d i rec t i on="W2UI">
<command / >

5 < / sect ionpart>
<sect ionpart d i rec t i on="UI2W">

<command / >
8 < / sect ionpart>

< / sect ion>
< / root>

Listing 13.4: Message definition: General structure.

<command name=" getData ">
2 <desc>request a chunk of data< / desc>

<binding module="comm/ data " method=" getPartialData " / >
<params>

5 <param name=" data_id " type="Number">ID of the respect ive dataset< / param>
<param name=" start " type="Number">start index inside the dataset< / param>
<param name=" entr ies " type="Number">amount of entr ies< / param>

8 < / params>
< /command>

Listing 13.5: Message definition: Example (Request subset of primary data).

{
"action" : "getData" ,

3 "params" : {
"data_id" : 1 ,
"start" : 0 ,

6 "entries" : 200
}

}

Listing 13.6: Communication Layer: Example message (Request for a subset of primary data).

and the respective attribute direction. The direction might either be from user interface to

worker (direction="UI2W") or vice versa (direction="W2UI"). Finally, the last hierarchy level

represents the actual messages sent that are defined by <command>-elements.

An example message definition is given in Listing 13.5. The message is labeled by the name

attribute of the <command>-element. Furthermore, it is comprised of three parts: The <desc>-

element provides a human-readable description. The part of a worker’s code that is to be executed

receiving this message is given by the <binding>-element. Finally, using <params> and its

<param>-child-nodes all parameters of this message are defined. Each parameter consists of two

attributes name and type as well as a human-readable description in the element’s content. The

types currently supported by the parser are Number, String, Array, and Object. For arrays also

the type of its members can be stated. Furthermore, a list of valid values can be given using a

JSON-encoded [285, web142, §24.3.2] array holding all allowed values.

257



CHAPTER 13. IMPLEMENTATION

A message itself is a JSON encoded instance compliant to this description. Listing 13.6 shows

a possible instance for the definition given in Listing 13.5. In this message, a subset of 200 entries

from the dataset with id 1 is requested, starting from row zero. On the worker side, this message

is validated against the respective definition. The action-property defines the respective message

definition upon which the presence of all listed properties and their respective types are validated.

If any of these checks fails, the message is discarded and an error message returned. Otherwise,

the message is accepted and the requested operations are scheduled.

13.7 Visualizations

After users prepared their data and have selected a suitable visualization (cf. Chapter 11), the

Visualization Generation will execute the respective code. The result is an SVG representation

[web151] of the chosen visualization. SVG is chosen over canvas [web154] at this point for the

following reasons: First of all, most statistical visualizations are rather structured in the way

they are composed19. Data is mapped to visual artifacts that are represented by well-defined

geometric shapes. A natural way to represent those shapes within images is vector graphics for

which in a Web context the default format is SVG. Using SVG also entails all other benefits of

vector over raster graphics like reduced file size and better scaling.

Another reason lies in the environment the visualization is created in. Recall, that the worker

may be run using a WebWorker [web143] in the browser or on a Node.js server [web144]. In both

environments, there is no direct access to the Document Object Model (DOM) [web155]. A canvas

image, however, is created by successively applying commands to a <canvas> element to draw

individual artifacts. To be transmitted to the browser, the resulting image has to be exported to

a raster graphic in any supported format. Contrary, SVG at its core is just an XML document

[web11] that can be serialized and transmitted easily. While canvas needs a rather complete

DOM implementation, SVG can be created using only a subset of DOM operations20. To provide

a sufficient DOM environment, Yavaa relies on jsdom [web156] which is a pure JavaScript DOM

implementation. However, at the point of writing it does not include canvas support.

The final reason to use SVG over canvas concerns the addition of interactive elements

or animations within the visualization. Although not implemented in the prototype, dynamic

elements can be added to the visualizations using the given architecture. While for canvas

this requires redrawing certain areas of the image over and over again, SVG supports direct

manipulation of its elements as well as zooming in and out of the visualization21. Annotating

certain elements of the SVG graphic then also allows for generic controls, whereas canvas needs

customized code for each visualization.

19At this point kindly recall the approaches described in Chapter 7.
20Actually, no DOM implementation whatsoever would be needed. However, in order to be able to use existing

JavaScript charting libraries a subset of commands is necessary to, e.g., create nodes and add attributes.
21The redrawing is entirely handled by the browser engine here. From a developer’s point of view, only certain

attributes have to be changed.

258



13.8. PROVENANCE AND REENACTMENT

The general workflow of the visualization generation is given in Figure 13.7. After the dataset

and respective visualization have been selected, first, the visualization’s preprocessor is executed.

Here, the visualization implementation has full access to functionality provided by Yavaa. For

example, certain aggregations can be calculated if not all values are to be shown directly in the

visualization. Afterward, this data is passed on to the actual generation process. This process is

executed using the aforementioned DOM environment which enables the use of most JavaScript

charting libraries relying on SVG. As of now, all visualizations are realized using Data-Driven

Documents (D3.js) [web19]. However, the implementation can easily be adapted to accommodate

other libraries as well. After the visualization has been generated within the artificial DOM

environment, the respective SVG image is serialized and submitted to the client.

Visualization
Selection

Computations

Vis. Description

Dataset

Preprocessing Vis. Data Generation Visualization

Yavaa function access (pseudo-) DOM access

Figure 13.7: Workflow for visualization generation (using PROV-notation).

The implementation of a visualization is split into multiple files according to this workflow.

Besides the individual visualizations implementation, Yavaa also includes a general template

that provides the general setup for D3.js, so that this is not repeated for each visualization.

Overall, each visualization has to provide the following four files. On server start, Yavaa will scan

for those and, after basic validation, add them to the internal Visualization Repository. A full list

of currently supported visualizations can be found in Appendix F.

Description . a JSON-encoded [39] description as defined in Chapter 7.

Preprocessing . JavaScript code to facilitate necessary data preparations.

Generation . JavaScript code to create the actual visualization.

Preview-Image . a preview image to be shown in the user interface.

13.8 Provenance and Reenactment

As discussed previously in Chapter 12, there are two ways to think of provenance [250, 251, 252]:

Retrospective provenance documents the origin of a particular entity. In the context of this thesis,

this refers to the steps taken to derive a particular dataset or visualization. On the other hand,

259



CHAPTER 13. IMPLEMENTATION

prospective provenance is represented by a not yet enacted workflow that describes how to create

a particular result. The provenance records exported by Yavaa cater to both views and will be

described in the following.

The provided serialization follows the guidelines of PROV-JSON [web131]22. It serializes

a given provenance record into a series of nested objects and as such is, first of all, a form

of retrospective provenance. Subsequently, its structure will be illustrated using the example

workflow given in Figure 13.8 which presents one way of solving the tasks posed during the user

evaluation (cf. Section 14.2).

The first level of nesting is given by the types of components as shown in Listing 13.7.

Following the model described in Chapter 12, this results in seven properties here: The nodes of

the provenance graph are collected under either entities or activities. The edges connecting

those nodes are separated by their respective type. So following the model presented before, five

types of edges and, hence, properties are present in the serialization: used, wasDerivedFrom,

wasGeneratedBy, wasInfluencedBy, and hadMember. Per definition, all unprefixed properties in

the serialization are part of the default PROV-namespace.

1 {
"entity" : { } ,
"activity" : { } ,

4 "used" : { } ,
"wasDerivedFrom" : { } ,
"wasGeneratedBy" : { } ,

7 "wasInfluencedBy" : { } ,
"hadMember" : { }

}

Listing 13.7: Yavaa: Serialized provenance record - top level.

The keys in the nested objects are given by the IDs for each included entry. As most IDs do

not carry any meaning outside the particular provenance record, the serialization will choose

generic IDs based on the respective type. JSON does not allow for circular references or general

referencing which might be needed to properly represent a provenance record. So, the generated

IDs are used instead to allow for proper interlinking of components. Listing 13.8 sketches the

content of entities with three examples. An external source is described in source6. It is

given by properties used to identify the metadata record (yavaa:datasetId) as well as generic

information that may be utilized by other tools (remaining properties). An example of an internal

dataset is given by result7 which in this case is an intermediate result. Each provenance

record only contains a single non-intermediate result which in turn represents the final outcome

of the given workflow. As seen in the example, internal datasets are modeled as instances of

prov:Collection. They contain multiple columns with one given by column3 in the example.

22At the time of writing this is still a “member submission”, but appears stable enough for production use.

260



13.8. PROVENANCE AND REENACTMENT

Population on 1 January Number of sheep

loadData

Demographic ind… Geopolitical entit… Time Population

loadData

Live animals Month Unit of measure Geopolitical entit… Time Number of sheep

filterData

filterData

aggregate

aggregate

Demographic ind…

dropColumns

Live animals Month Unit of measure

dropColumns

Geopolitical entit… Time

join

compute

Population Number of sheep

dropColumns

Geopolitical entit… Time sheep per person

Result

Figure 13.8: Yavaa: Example workflow.

An example for an activity is given in Listing 13.9. Here, the generic provenance information

is the start and end time for the execution of this activity. Further, it contains the particular

command (yavaa:action) and parameters (yavaa:params) that triggered this activity. The

format of both command and parameters follow the same conventions as the protocol outlined in

Section 13.6. The property yavaa:columns describes the provenance for the associated columns.

In particular, this includes the position of a column within a dataset (order) to allow for a

261



CHAPTER 13. IMPLEMENTATION

{
"entity" : {

3 "_:source6" : {
"prov:atLocation" : "http://ec.europa.eu/.../BulkDownloadListing?file=data/tps00001.tsv.gz" ,
"yavaa:type" : "text/tsv" ,

6 "yavaa:datasetId" : "http://yavaa.org/ns/eurostat/dsd#tps00001" ,
"dct:publisher" : "http://yavaa.org/ns/Eurostat" ,
"dct:title" : "Population on 1 January"

9 } ,
"_:result7" : {

"prov:type" : { "$" : "prov:Collection" , "type" : "xsd:QName" } ,
12 "yavaa:intermediateResult" : true

} ,
"_:column3" : {

15 "dct:title" : "Geopolitical entity (reporting)"

}
}

18 }

Listing 13.8: Yavaa: Serialized provenance record - second level entities.

{
"activity" : {

3 "_:comp7" : {
"prov:startTime" : "2021-04-25T18:50:01.382Z" ,
"prov:endTime" : "2021-04-25T18:50:01.414Z" ,

6 "prov:type" : { "$" : "yavaa:comp" , "type" : "xsd:QName" } ,
"yavaa:action" : "dropColumns" ,
"yavaa:params" : "{\"columns\":[0,1,2]}" ,

9 "yavaa:columns" : "[{\"former\":3,\"basedOn\":null,\"order\":0},{\"former\":4,

\"basedOn\":null,\"order\":1},{\"former\":5,\"basedOn\":null,\"order\":2}]" ,
"yavaa:prevActivity" : [ "_:comp8" ]

12 }
}

}

Listing 13.9: Yavaa: Serialized provenance record - second-level activities.

consistent interpretation of activities’ parameters. Finally, yavaa:prevActivity points towards

the preceding activity. While this is not strictly necessary and can be derived from the provenance

graph itself, it eases the re-enactment of this workflow as discussed later.

Finally, all entities and activities are linked via different relations. Examples are given in

Listing 13.10. The particular meaning of each relation was previously described in Chapter 12.

The presented provenance record can also be interpreted prospectively. Users may upload the

serialization of a previous workflow and have it executed once again possibly using updated data.

Here, the system first parses the uploaded workflow and reconstructs the order of activities or

rather operations. Using the yavaa:prevActivity of each activity simplifies this process quite

substantially as there is no need to derive the order from dependencies among the activities.

Once the sequence of operations is determined, the workflow can be executed once again. As both

command and parameters already follow the same format as the worker protocol (cf. Section 13.6),

no further transformations of provenance records are required.

262



13.9. USER INTERFACE

1 {
"used" : {

"_:used2" : {
4 "prov:activity" : "_:comp0" ,

"prov:entity" : "_:result1"

}
7 } ,

"wasDerivedFrom" : {
"_:wasDerivedFrom36" : {

10 "prov:generatedEntity" : "_:column6" ,
"prov:usedEntity" : "_:column0"

}
13 } ,

"wasInfluencedBy" : {
"_:wasInfluencedBy37" : {

16 "prov:influencer" : "_:column3" ,
"prov:influencee" : "_:column6"

}
19 } ,

"hadMember" : {
"_:hadMember24" : {

22 "prov:collection" : "_:result12" ,
"prov:entity" : "_:column0"

}
25 }

}

Listing 13.10: Yavaa: Serialized provenance record - second-level relations.

While the current process described before works well enough for the prototype implementa-

tion, it has some shortcomings that may impact an immediate use in production. Most of them

are a direct result of the workflow itself not being validated. This should not pose a security risk,

though, as the execution of operations is isolated within the worker and individual operations are

validated before being executed. However, in case datasets’ structures have changed since the

initial execution of the workflow, the reenactment might lead to undefined behavior. The reenact-

ment is based on the current state of the metadata description as identified by yavaa:datasetId

and subsequently retrieved from the metadata store. Should the dataset, e.g., not contain the

same columns as before, some operations might be applied to the wrong columns and thus yield

unexpected errors. While this could be remedied by verifying the column headers upon loading, it

was considered out of scope for this prototypical implementation.

13.9 User Interface

Alongside the worker, a corresponding graphical user interface was developed. This interface

provides access to most23 functionalities using a browser via a single-page application. The

individual elements were built following the recommendations and examples provided by Google’s

Material Design [web157]. Figure 13.9 shows the interface with multiple datasets already loaded.

Individual functions are controlled via corresponding dialogs which are reachable either via the

23Some functions are used primarily during debugging and are not exposed to common users.

263



CHAPTER 13. IMPLEMENTATION

 SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2 dataset 3

Geopolitical entity (reporting) Time Population Number of sheep sheep per person

Germany 2014 80767463 1600.78 0.019819614737682178

Germany 2015 81197537 1579.79 0.019456132025285447

Germany 2016 82175684 1574.27 0.019157370202114776

Germany 2017 82521653 1579.79 0.019143945165519164

Germany 2018 82792351 1569.9 0.018961896612888792

Germany 2019 83019213 1556.5 0.018748672069440119

Spain 2014 46512199 15431.83 0.33178027123593963

Spain 2015 46449565 16026.37 0.345027343097830948

Spain 2016 46440099 15962.89 0.34373074872213343

Spain 2017 46528024 15963.11 0.343085921723217818

Spain 2018 46658447 15852.53 0.339756914755435388

Spain 2019 46937060 15478.62 0.329773956869049744

Ireland 2014 4637852 3324.9 0.716905153506407708

Ireland 2015 4677627 3324.84 0.710796307614950914

Ireland 2016 4726286 3438.23 0.72746972993170536

A B C

F

D

E

Figure 13.9: Yavaa user interface. A undo/redo actions; B new datasets; C dataset-specific
tasks; D active datasets; E dataset headers; F dataset contents

menu on top or context menus available from different components. In the following, the general

interface as well as selected dialogs shall be described. For dialogs not discussed here, kindly

refer to Appendix H which includes an additional selection of screenshots drawn from the user

survey (cf. Section 14.2).

The main interface is separated into three parts (cf. Figure 13.9): The top row, A to C ,

contains a menu that lets users access individual dialogs. Below is the list of current datasets

that were already loaded into the application D . The remainder of the interface, representing

the majority of the available screen estate, is devoted to the actual dataset, E and F . Hereby,

the dataset can be represented in different forms. The example of Figure 13.9 features the Data

View that allows inspecting the current state of the primary data. It follows the default style of

tabular display including column headers E as well as table content F . The two other options

are a Workflow View (cf. Figure H.16) outlining the provenance of the current dataset and the

Visualization View (cf. Figure H.15) containing the selected visualization.

The top menu itself is again subdivided into three sections. The first section A allows

traversing the history of the current dataset. In the current implementation, all prior versions of

a dataset are still available. The second section B contains links to dialogs used to load datasets

by different means. From left to right those are as follows:

264



13.9. USER INTERFACE

Load Dataset Datasets can be loaded by using either a keyword-based search or an identifier-

based search (cf. Figure H.3). The latter is expected of little use to most users, but allows to

skip the actual search in case the required dataset’s identifier is already known.

Execute Workflow. The provenance of a particular dataset can be exported and stored inside a

file (cf. Section 13.8). This option provides the inverse functionality: It requires a previously

created provenance file as input, executes the included workflow based on current data,

and adds the resulting dataset to the interface.

Construct Dataset. The required dataset can be posed as a specification of its structure and con-

tents. This implements the approach proposed in Chapter 10. Details of the corresponding

interface will be discussed later in this section .

While the second section contains global functions independent of particular datasets and

is always available, the third section C is dataset-specific and thus only available once at least

one dataset has been loaded. All options here apply to the currently active dataset, highlighted

in D and currently shown in the main content area. Some of the options may also be selected

from context menus attached to either the dataset headers D or the column headers E . Dataset

specific dialogs include the following dialogs, listed again from left to right:

Change View. As noted before, a dataset can be seen through different views. This dialog as well

as the arrows on the outer sides of the main content area allow switching among these

views.

Resolve Label. Initially, values for categorical columns are displayed by the label as used within

the source dataset. If these are abbreviations, this option allows to expand them into more

user-friendly labels (cf. Figure H.6).

Visualize Dataset. With the help of the Visualization Recommender (cf. Chapter 11), this dialog

allows users to select and render a visualization matching the current dataset. Details will

be discussed later in this section .

Aggregate. The tuples of a dataset can be clustered and merged, in essence representing the

Group By-statement available in most database systems (cf. Subsection 13.3.2).

Show Metadata. This dialog provides an overview of the current dataset’s data. It features each

column as well as the currently contained values either as a list (categorical) or a range

(time and quantitative).

Export. The current dataset can be exported in different forms (cf. Figure H.17). This currently

includes the following: the dataset itself formatted as a TSV-file, its provenance record either

as a JSON-based serialization or in a visual display (cf. Section 13.8), and its currently

selected visualization, if available, in form of an SVG-file.

265



CHAPTER 13. IMPLEMENTATION

Join two Datasets. Oftentimes individual datasets do not hold all required data. This dialog offers

the option to join two datasets based on columns shared between both (cf. Subsection 13.3.3

as well as Figure H.4 and H.5).

Apply Function. Based on the current datasets users are able to apply mathematical functions.

The result of these functions may either replace one of the current columns or can be added

as a new column (cf. Figure H.11).

The context menus associated to individual columns feature some more dialogs. In general,

they are available for all columns. The only exception is Change Unit which is only available for

quantitative columns. The remaining dialogs are as follows:

Drop Column. Columns might become superfluous during a workflow. For the clarity of the

interface, this dialog allows dropping individual columns from a dataset (cf. Figure H.9).

Filter Column. To limit the content of a dataset to the actually required data, datasets can be

filtered by using the value of individual columns24. The dialog’s appearance is adapted

to the selected column’s datatype distinguishing between categorical (cf. Figure H.7) and

time/quantitative columns (cf. Figure H.8). Filters can be either excluding or including, i.e.

users either specify the values to keep or the values to remove. While this has no impact

the result in the current workflow, it might change behavior when re-executing it later

on. In the meantime, new tuples might have been added to the dataset, so excluding or

including filters determines how to handle those new entries.

Change unit. Values of quantitative columns might be unwieldy in the source dataset or become

so during the data modifications. This dialog allows switching the unit of measurement

used for the selected column. It will present users with a list of compatible units fetched

from the Unit Store and initiates the conversion once a target unit has been selected.

In the remainder, two dialogs shall be presented in more detail. These two represent access to

implementations of two major contributions of this thesis: The Construct Dataset dialog serves as

a frontend to the implementation of concepts previously discussed in Chapter 10. Furthermore,

the Visualize Dataset dialog supports users in selecting a suitable visualization and corresponding

binding by using the recommender described in Chapter 11.

The initial view of the Construct Dataset dialog is shown in Figure 13.10. The dataset

definition view is vertically split into two parts: On the left side A , column headers are specified,

whereas on the right-hand side included values can be described B . Consequently, each horizontal

row defines one column for the target dataset. In the example shown, four target columns are

already defined: one categorical C , one time D , and two quantitative columns E . Columns are

24Filter conditions based on multiple columns are supported by the worker, but no corresponding interface has been
developed yet.

266



13.9. USER INTERFACE SessionId: BYzgtvVgkF49MaCyAAAi

SEARCH CANCEL

Construct dataset 


Specify Result Distribution Adjust

Construct a dataset by specifying columns and/or their contents: 

 Geopolitical entity (report… Germany Iceland Ireland Romania Spain

 Time    

 Population    

 Number of sheep    

add column

value
Value

2014-01-01
Between

2019-12-31
and

from
Between

to
and

from
Between

to
and

EXECUTE

A B

C

D

E

Figure 13.10: Yavaa user interface: Construct Dataset dialog. A column headers; B column
values; C categorical column; D time column; E quantitative columns

selected via an autocomplete field whose options are drawn from the set of all columns available

in the dataset repository. So, users start entering keywords and then select from a list containing

the most likely known matches.

Once the column is selected, its data type determines the shape of the input for the corre-

sponding value range. For categorical columns C , this is another autocomplete field that is now

bound to possible values from the selected column. As the particular instance of the column, i.e.

its incarnation within a particular dataset, is not yet determined, values will be drawn from all

possible datasets. On the other hand, time D and quantitative columns E provide corresponding

inputs to define the range by lower and upper bound. It is also possible to specify no further

restrictions on a column, which will match any column of that type during the search process.

After the search has been executed, two more views, Result and Distribution, of the dialog

are enabled. The third, Adjust, only becomes available if the suggested combination involves an

aggregation over several columns and allows users to choose appropriate aggregation functions.

The Result view shown in Figure 13.11 summarizes the efforts by the system to provide a

complete dataset. As outlined in Chapter 10, this result might be the combination of several

datasets. For further insight, the Distribution section shows which datasets by which provider

were included (cf. Figure H.20).

The overall layout of the Result view mirrors the one of the specification view: One column

per row with column headers on the left side and corresponding value ranges on the right side.

However, this view does not offer interaction elements to further refine the result. Instead, it

visualizes for each column whether it is included in the result and if so with which values. For

267



CHAPTER 13. IMPLEMENTATION  SessionId: BYzgtvVgkF49MaCyAAAi

We were able to find the following parts of your request: 

Geopolitical entity (report… Germany ✔ Iceland ✔ Ireland ✔ Romania ✔ Spain ✔

Time 2014.01.01

 

2014.01.01

2019.12.31

 

2019.01.01

Population  

31269

 

513481690

Number of sheep  

0

 

86088.82

SEARCH EXECUTE CANCEL

Construct dataset 


Specify Result Distribution Adjust

 
   

    

    

    

Figure 13.11: Yavaa user interface: Results of Construct Dataset.

categorical columns, the latter is indicated by an icon after the respective value: a checkmark for

included values and a cross for omitted ones. Similarly, time and quantitative columns’ coverage

is visualized in a bar with green sections for the matched range and red sections for the remainder.

The borders of both ranges are further given by their respective values next to the bars. If the

suggested result does not meet expectations, users can refine their request by returning to the

specification view. Once the result is acceptable, a click on Execute will trigger the system to run

the underlying workflow and present the result (cf. Figure H.10).

With a prepared dataset, users may select a suitable visualization from the Visualize Dataset

view. Figure 13.12 shows an example of the first step hereby. Here, users may select among

visualizations that may be used to represent the current dataset. Following the strategies

discussed in Chapter 11, this includes only those visualizations whose requirements can be met.

Others are omitted from this view. Figure 13.12 includes examples for possible recommendations

made by the system. Visualizations may be recommended without further changes needed A .

Here, all available columns in the dataset could be matched to one of the requirements of the

visualization. Visualizations might be suitable but can not cover all available columns B . They

are still suggested, but icon in the lower right hand corner indicate how many columns may need

to be omitted. Finally, nested visualizations might be suggested C where some of the dimensions

may be mapped to rows and/or columns in a matrix representation. Some combinations for nested

visualizations might still require columns to be omitted from the result D .

With one visualization selected, users proceed to the second step illustrated in Figure 13.13

to assign individual columns to the artifacts of the visualization. In the upper section A , all

columns of the current dataset are listed. Individual colors indicate a column’s role: dimension

or measurement. The lower section includes one row per artifact of the visualization. Using

268



13.9. USER INTERFACE SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2 dataset 3

Geopolitical entity (reporting) Time Population Number of sheep sheep per person

Germany 2014 80767463 1600.78 0.019819614737682178

Germany 2015 81197537 1579.79 0.019456132025285447

Germany 2016 82175684 1574.27 0.019157370202114776

Germany 2017 82521653 1579.79 0.019143945165519164

Germany 2018 82792351 1569.9 0.018961896612888792

Germany 2019 83019213 1556.5 0.018748672069440119

Spain 2014 46512199 15431.83 0.33178027123593963

Spain 2015 46449565 16026.37 0.345027343097830948

Spain 2016 46440099 15962.89 0.34373074872213343

Spain 2017 46528024 15963.11 0.343085921723217818

Spain 2018 46658447 15852.53 0.339756914755435388

Spain 2019 46937060 15478.62 0.329773956869049744

Ireland 2014 4637852 3324.9 0.716905153506407708

Ireland 2015 4677627 3324.84 0.710796307614950914

Ireland 2016 4726286 3438.23 0.72746972993170536

   

NEXT CANCEL

Visualize Dataset 


M M

?
?
?

M M

?
?
?

?
?
?

A B CD

Figure 13.12: Yavaa user interface: Selecting a visualization.
Recommendation types: A plain vis.; B vis. with changes needed; C nested vis.;
D nested vis. with changes needed  SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2 dataset 3

Geopolitical entity (reporting) Time Population Number of sheep sheep per person

Germany 2014 80767463 1600.78 0.019819614737682178

Germany 2015 81197537 1579.79 0.019456132025285447

Germany 2016 82175684 1574.27 0.019157370202114776

Germany 2017 82521653 1579.79 0.019143945165519164

Germany 2018 82792351 1569.9 0.018961896612888792

Germany 2019 83019213 1556.5 0.018748672069440119

Spain 2014 46512199 15431.83 0.33178027123593963

Spain 2015 46449565 16026.37 0.345027343097830948

Spain 2016 46440099 15962.89 0.34373074872213343

Spain 2017 46528024 15963.11 0.343085921723217818

Spain 2018 46658447 15852.53 0.339756914755435388

Spain 2019 46937060 15478.62 0.329773956869049744

Ireland 2014 4637852 3324.9 0.716905153506407708

Ireland 2015 4677627 3324.84 0.710796307614950914

Ireland 2016 4726286 3438.23 0.72746972993170536

VISUALIZE CANCEL

Visualize Dataset 


Population Number of sheep

* multitude of lines
  Geopolitical enti…

* x-axis
  Time

* y-axis
  sheep per person

* … mandatory binding

  Available Columns
suggest  reset

A

B

C

B

B

Figure 13.13: Yavaa user interface: Visualization specific bindings.
A available columns; B visualization component; C recommended mapping

drag&drop interactions, users can assign each column to a corresponding artifact of the visualiza-

tion. During that, borders of hovered drop areas B turn green for suitable mappings and red in

case column and artifact are incompatible. Instead of providing the mapping manually, users

may also ask the system to suggest a suitable mapping C (cf. Chapter 11). When all mandatory

mappings (marked by a ∗ next to the label) are assigned, the Visualize button is enabled and

users can trigger the rendering of the selected configuration.

269



CHAPTER 13. IMPLEMENTATION

13.10 Summary

This chapter introduced the overall structure of Yavaa. As a prototypical implementation, Yavaa

demonstrates the feasibility of the concepts presented in this thesis (cf. Part II). Yavaa’s interface

allows users to cover the entire visualization workflow25 from within a single tool. This includes

the ability to search across multiple data providers, adapt the data to the particular needs, and

finally visualize the result. Over the entire course of the process, all interactions are recorded as

part of the provenance record for the final results.

The implementations is fully based on web technologies — HTML [web140], CSS [web141],

and JavaScript [web142] — allowing access via broadly available web browsers. Further, the

message-based architecture allows to switch between two modes: In a server-based setup, the

heavy lifting of operations is done on dedicated machines and browsers act as mere interfaces.

In a purely client-based setup, all calculations are performed in the browser and workflows

can stay completely private if needed. During its design, special attention was given to the

extensibility of the system. Parts like visualization modules or wrappers for accessing data

providers can be developed almost independently from the core system and are made available

through registration in so-called stores. This allows the system to rather quickly be extended or

adapted without the need to access other parts of the code.

Implementing all core concepts of this thesis, Yavaa lays the ground for an evaluation of these

concepts. Its preparation, conduct, and results shall be described in the following Chapter 14.

25The reference model of such a workflow is depicted in Figure 1.1 and was discussed in Chapter 1.

270



C
H

A
P

T
E

R

14
EVALUATION

Previous chapters outlined core concepts to ease individual tasks during visualization workflows

and discussed the validity of the chosen approaches. A developed prototype also showed that

those concepts and methods can be transferred into a working implementation. What remains is

an evaluation of whether users perceive an actual benefit over existing solutions used to perform

comparable assignments. This chapter will provide this last piece of the puzzle.

The primary goal, as stated in Objective 1, is to support users in the process of creating a

visualization as a whole. So a natural way of assessing the presented system is to evaluate it in a

common workflow and to compare it against other tools that are usually used in similar scenarios.

Assuming that the target audience has only rudimentary experience with scripting languages in

general and visualization software in particular, the comparison will use standard spreadsheet

software like LibreOffice [web17] or Microsoft Excel [web31] as a baseline.

Besides evaluating the user experience of the developed prototype, also its performance

with respect to technical aspects shall be analyzed. This includes in particular the time it takes

to execute a sample workflow. However, such measures are difficult to gather for monolithic

software like the spreadsheet tools of the user evaluation. So for the technical evaluation, different

solutions are chosen: As an overall baseline for performance a relational database management

system (RDBMS), SQLite [web158], will be used. Similarly, representing scripting languages, the

workflow will be executed through a Python/pandas script [web48].

The following sections describe the individual steps necessary: Section 14.1 outlines the

efforts to replicate a realistic environment using data provided by Eurostat [web1]. Afterward,

Section 14.2 presents a fictitious scenario as well as anticipated strategies to solve it. The results

of the subsequent user evaluation are discussed in Section 14.3. Finally, Section 14.4 is dedicated

to exploring Yavaa’s performance using the same scenario.

271



CHAPTER 14. EVALUATION

14.1 Evaluation Setup

Providing a somewhat realistic environment requires a sufficiently large corpus of datasets

annotated according to the specifications of Chapter 8. This corpus has to be publicly available in

order to allow all tools within the comparison equal access to the raw data. Eurostat [web1] fulfills

both these requirements: A multitude of statistical datasets about the situation in European

Union member states and other selected countries is published in regular intervals1. Datasets

can be accessed via a bulk download facility [web159] that provides TSV [web32] files for each

dataset in a Pivot table format (cf. Chapter 6). The bulk download facility also includes metadata

descriptions for said datasets: Column headers and categorical values are codified and can be

resolved using a corresponding dictionary. Each dataset represents a particular combination of

dimensions and a single type of measurement given in the dataset’s title. Similar measurements

aggregated for different combinations of dimensions are stored in separate datasets. In these

cases, the name of the dataset will oftentimes include a list of used dimensions like “Population

on 1 January by age, sex and NUTS 2 region” [data3]. Unfortunately enough, there does not seem

to be a compulsory naming scheme. As a consequence, additional preparations became necessary

to harmonize datasets’ labels, details of which will be described later.

In the past, projects already attempted to convert Eurostat data to RDF, but they seem to have

gone either dormant [web160] or do not provide sufficient details [web161]. These efforts focused

on converting the datasets’ primary data to RDF. However, for the purpose of this evaluation

suitable metadata descriptions were required which, as a result, had to be generated anew. A

workflow was set up to automatically create descriptions based on the current set of Eurostat

data holdings2. Intermediate results are held in an SQLite database [web158], so subsequent

runs of the workflow only need to process updated datasets. The workflow was implemented with

the help of Maximilian Stiede who improved an earlier implementation during an internship. The

implementation is published under a free license [data17, web162] and may serve as a template

for the integration of other data portals.

Retrieve a list of changed datasets. Eurostat supplies an XML file3 that lists all available

datasets alongside some basic metadata. In particular, it contains the time of the most recent

update for each dataset. This information is extracted and compared to the respective entry

stored in the database to gather a list of datasets that changed since the last execution.

1At the time of writing, over six thousand datasets are publicly available with updates provided in 12h intervals
[web30].

2The workflow is not supposed to run continuously but only takes a snapshot of Eurostat’s data holdings. An initial
snapshot was performed on 2nd February 2020. An update became necessary on 21st May 2020 due to Eurostat
adding new entries in the datasets used in this survey as a consequence of Great Britain leaving the European
Union [286].

3http://ec.europa.eu/eurostat/estat-navtree-portlet-prod/BulkDownloadListing?file=table_of_contents.xml

272

http://ec.europa.eu/eurostat/estat-navtree-portlet-prod/BulkDownloadListing?file=table_of_contents.xml


14.1. EVALUATION SETUP

Retrieve and parse datasets. All updated datasets are downloaded and parsed using the

respective wrapper that is also part of the Yavaa implementation. The result is a plain table

format that allows extracting the range for each column easily. For quantitative columns, the

range corresponds to the minimum and maximum value, whereas for time4 and categorical

columns an enumeration of distinct values is extracted.

Harmonize measurement headers. As mentioned before, some datasets’ titles include a

list of dimensions used within. Those suffixes are removed by a simple heuristic that detects

phrasings starting with certain key-phrases like “by” or “between” as well as some special

characters like “:” and “-”. This harmonized dataset title is then assigned as the label of its

respective measurement column.

Annotate with units of measurement. All quantitative columns are annotated with a

matching unit of measurement which is derived by different means depending on the dataset:

Some datasets contain a specific column named unit. If such a column exists, the respective unit

is used for the measurement column in that dataset5. Furthermore, the aforementioned XML file

contains units of measurement for a subset of its entries. If the entry for a dataset has such an

annotation, the respective unit is added as well. Finally, some datasets’ unit is assigned manually

to increase the number of available datasets during the evaluation.

The units determined this way are subsequently mapped to the concepts of OM [164]. However,

OM does not include fitting concepts for all units. In particular, units regarding the number of

entities or objects are missing. Individuals for those units have been added where needed in

accordance with the schema used by OM.

This mapping remains incomplete for different reasons. For one, some extracted units remain

too vague to be mapped to a specific concept. For example, the same unit “Annual average” is used

for two datasets “Hours worked per week of part-time employment” [data18] and “Unemployment

rates of the population aged 25-64 by educational attainment level” [data19]. However, it is

obvious that both actually relate to different unit concepts which prevents a generalized mapping

here. Datasets, whose units could not be mapped, were dropped from the evaluation corpus

(cf. Table 14.1). In other instances, a pragmatic approach for the mapping is employed: While

Eurostat uses different units for counting different things like persons, employees, or farms, those

have been assigned to the same unit. It might be worth discussing, whether those are actually

the same unit6, but it seems sufficient for the purpose of this evaluation.

4Time columns are recognized by their header “time”, which is uniformly used throughout all datasets.
5Some datasets contain more than one value in the unit-column. As this does not conform to the assumptions made

in Chapter 8, no unit is extracted for these datasets.
6One advantage would be, that different units prevent the aggregation of unrelated objects like persons and farms.

However, this opens the issue, which objects are actually compatible, and entails questions far beyond the scope
of this thesis.

273



CHAPTER 14. EVALUATION

Determine date format. Values contained in time-columns come in different formats and

granularity. Examples include years like 2015, months like 2011M04, or quarters like 2012Q3.

Furthermore, periods of time can be included like 2011-2018. To determine which date format is

used by a particular column, for each encountered format a regular expression was created. Using

these expressions all time-columns are annotated with a concept representing the respective

format7. If multiple different formats are detected within a single time-column, the corresponding

dataset is dropped. Similar to quantitative columns, time-columns are annotated with their

minimum and maximum value.

Convert column headers and categorical values to concepts. The headers for all columns

are converted to RDF concepts [web10] using a camel case conversion of the respective title

and a default namespace. Mapping to other knowledge bases like Wikidata [web69] or DBpedia

[web163] is considered out of scope for the time being. While this would prove vital to integrate

datasets of different providers, it is not strictly necessary to evaluate the implemented concepts.

The same procedure is applied to the values of categorical columns. Further, all concepts created

are annotated with the labels from the dictionaries of Eurostat’s bulk download facility [web30].

Creation of code list. Similar to quantitative and time columns, categorical columns are

annotated with a list of included concepts. In a naïve implementation, this would result in

numerous identical code lists being stored which results in an unnecessary overhead within the

database. To reduce this redundancy, identical code lists are subsumed into a single code list

entity with all associated columns referring to the same one.

RDF creation. All entries in the database — i.e. datasets, columns, code lists, and categorical

values — are converted to RDF using a set of prepared templates. Each template represents a

part of the dataset description proposed in Chapter 8. Finally, all created RDF alongside other

predefined RDF datasets like the OM ontology are pushed to a triple store that serves as the data

source for Yavaa’s Metadata Store.

The described process adds the datasets available in Eurostat’s bulk download facility

[web159] to Yavaa’s dataset repository. As already mentioned on different occasions, datasets had

to be excluded from this import for several reasons:

• Datasets containing a measurement provided in multiple units of measurement.

• Datasets containing units of measurement that could not be mapped to OM and were not

relevant for the evaluation.

• Datasets containing time-columns using multiple time formats.

7The RDF files describing the respective date format were manually prepared. The format is illustrated in Figure 8.8.

274



14.2. USER EVALUATION

• Datasets that could not be downloaded or parsed in the first place.

• Datasets that would require further manual corrections, but are not relevant for the

evaluation task.

Table 14.1 lists the number of remaining entities imported into the Metadata Store and thus

available throughout the evaluation. This also documents the fact that not even half (∼47%) of

the datasets from Eurostat were included in the evaluation. However, this does not imply that

all other datasets are unusable for Yavaa in general. In fact, many of these datasets could have

been included given additional manual effort. For the scope of this evaluation, this was deemed

unnecessary, though, and thus omitted.

Number of datasets available from Eurostat 6,283
Imported datasets 2,943
Imported codelists 6,182

Imported distinct dimension concepts 381
Imported distinct measurement concepts 1,369

Imported distinct value concepts 197,301
Imported distinct value concepts (used) 81,107

Imported time formats 4

Table 14.1: Yavaa Metadata Store (Evaluation): Number of entities.

14.2 User Evaluation

The efforts outlined in Section 14.1 resulted in a repository of real-world datasets ready to be used

within a user survey. Now, a scenario has to be established that finds the right balance between

covering as many aspects of the supported workflow as possible and, at the same time, staying

simple and concise enough to be easily understood. The latter requirement serves the following

two goals in particular: For one, the audience is envisioned to consist mostly of non-experts,

so complex scenarios involving many unfamiliar concepts might distract from the actual task.

Furthermore, complex scenarios require more time and effort to complete the survey up to the

point when this has a negative impact on participation and completion rates.

The desired scenario’s subtasks are given by the generic workflow depicted in Figure 1.1 in

general and the contributions of this thesis in particular. As interactive visualizations are out of

scope, this results in four subtasks to be performed: First, participants should locate multiple

datasets and integrate them into a single one for subsequent processing (cf. Chapter 10). Second,

this dataset should be transformed to be ready for visualization (cf. Chapter 9). Third, a suitable

visualization should be created (cf. Chapter 11). Finally, the results, both in form of a dataset and

a visualization, should be exported (cf. Chapter 12).

275



CHAPTER 14. EVALUATION

As part of a study concerned with public health, you are tasked to look into the quality
of sleep. As the primary indicator the number of available sheep per person is chosen.
(Nothing is worse than trying to get to sleep and running out of sheep to count, right?)
To eliminate short-term effects, you are interested in the development over the last 5
years. This will also show you, which countries actually make an effort to improve their
citizens nightly life!

Figure 14.1: User evaluation: Scenario.

Next, a choice about the baseline has to be made that the developed systems is evaluated

against. The almost ubiquitous presence of office suites like Microsoft Office [web164] or Libre-

Office [web165] has also established their respective spreadsheet components as common tools

to create ad hoc visualizations. The resulting widespread familiarity with these tools triggered

the decision to use them as a comparison baseline. However, spreadsheet software, in general,

does not feature a built-in search for data repositories. So for the discovery phase of the workflow,

participants will have to rely on the standard search capabilities provided by Eurostat [web1].

As a limitation, spreadsheet software usually does not track the provenance of the performed

actions. So any comparison of this aspect has been dropped within this evaluation.

These constraints, requirements, and the chosen baseline, lead to the scenario as given in

Figure 14.1. In an attempt to reduce sequence effects, a within-subject design with counterbal-

ancing was chosen [287]: Each participant is asked to solve the tasks given in Figure 14.2 twice –

once using the spreadsheet software and once using Yavaa (cf. Chapter 13). The order of tools is

randomized to account for possible sequence effects like an increased familiarity with the task

or fatigue effects over the course of the study. Early tests revealed that some participants were

unable to locate the proper datasets. As this would have prevented any further evaluation of the

workflow, the accompanying survey offers additional hints in such cases (cf. Figure G.6 and G.12).

After each tool, participants are asked to upload both the final dataset as well as the created

visualization. For each individual task, the overall time spend is measured and participants are

requested to assess the approximate distribution of time spent for each subtask. This allows for

a comparison between the two passes. In Yavaa, all actions are logged alongside the respective

timings, but there is no comparable data available from the spreadsheet tools. Subsequently,

participants are asked to rate the difficulty of each subtask and the overall usability of the

respective approach using a standard System Usability Scale (SUS) questionnaire [288, 289]. The

survey concludes by gathering demographic data about the participants as well as their former

experience with the topic. A full account of the survey is given in Appendix G.

For the assigned task, two strategies were anticipated as illustrated in Figure 14.3. While the

visualization step itself is shared between both strategies, the steps needed for data preparation

differ: The conventional approach involves locating the data manually, followed by multiple

steps to prepare its final form. In the enhanced approach, the actual data gathering is mostly

276



14.3. ASSESSMENT

Your task is to create a dataset that holds the amount of sheep per inhabitant for the
following European countries (the shortlist of vacation destinations of your superior -
purely coincidental, of course) and period of time (previous five years):

• Countries: Germany, Iceland, Ireland, Romania, Spain

• Period of time: 2014 - 2019

After the dataset has been assembled, choose an adequate graph to present your results
to your fellow colleagues and the general public. The suggested order of steps is as
follows. Your personal workflow might deviate, though.

1. Identify suitable datasets.
While in general Eurostat has all the data you need, it is not provided as a single
dataset to start with, so you will need to combine multiple ones.

2. Prepare a single dataset.
Eurostat’s datasets contain more data than needed, so you will have to filter for
the requested values. You may also need to join multiple source datasets.

3. Calculate the desired metric.
The requested metric is not included in Eurostat’s raw data, so you will have to
calculate it manually.

4. Select a proper visualization.
Once the dataset contains only the requested values, you can choose a suitable
visualization.

5. Export your results.
Store your results (data and visualization) locally and then upload them on the
next page.

Figure 14.2: User evaluation: Task description.

handed off to the system and only the final creation of the derived column (sheep per inhabitant)

requires manual effort. The baseline toolchain (Eurostat web-search and Excel or LibreOffice)

only supports the conventional approach, whereas Yavaa allows for both routes to be taken.

The individual steps necessary for both strategies using Yavaa are documented in Appendix H.

Participants were provided with a tutorial that illustrated all required functionalities [data20].

14.3 Assessment

The user evaluation was conducted in an unsupervised, remote fashion. This has two major

reasons: First, compared to other evaluations the one conducted takes a rather extensive amount

of time. Letting participants choose a time and place convenient to them is supposed to increase

277



CHAPTER 14. EVALUATION

Conventional Approach

Locate
Datasets

Import
Datasets

Join
Datasets

Filter
Values &
Columns

Add
Derived
Column

Visualize Export

Enhanced Approach

Construct
Dataset

Add
Derived
Column

Visualize Export

Figure 14.3: User evaluation: Anticipated Strategies.

participation rates. Second, any evaluation with the evaluator present bears the risk of intro-

ducing additional bias. This may be due to comments and answers by evaluators themselves

or by communication with other participants that might be present. In a remote evaluation,

chances are that participants work on their own and thus are influenced less by the decisions

and opinions of others.

The survey described before8 was distributed over the course of several months via different

mailing lists, social media channels, as well as personally approaching potential participants.

This resulted in well above two thousand individuals being contacted for taking part in the survey.

However, over the course of the survey only 16 fully completed responses could be collected from

a pool of 92 recorded accesses to the survey. Reasons can only be speculated upon, but discussions

with participants after completing the survey point towards the amount of time allotted as the

dominating factor. This indicated that either a qualitative, interview-based study or a smaller

scenario might have been a more appropriate choice to evaluate the system at hand. While the

former has been rejected for the aforementioned reasons, the latter would not have allowed to get

an adequate picture of the whole workflow and thus would also compromise the goal of the study.

Participants For the following discussions only complete responses were considered. As stated

before, this amounts to 16 entries in total. The raw responses (excluding personal data), submitted

files, and derived attributes are publicly available [data21]. The gender ratio was rather balanced

with 9 male and 6 female participants (1× no answer). The professional background of participants

was mostly in scientific areas: 10 individuals stated computer science, 2 geography, and 3 other

or generic areas of science (1× no answer). Most participants hold an academic degree (5× BSc,

4× MSc, 2× Diploma, and 3× PhD) with only 1 individual(s) having not (yet) achieved this (1×
no answer). Finally, in terms of age, most participants were in the range of 25 to 34 years (7×),

followed by the 35- to 44-year-old (5×), and the ones between 18 and 24 years of age (4×). A visual

summary of the participants’ demographics is given in Figure 14.4.

8For a full account refer to Appendix G.

278



14.3. ASSESSMENT

Age Cohort

18-24
25-34

35-44

Gender

Female
Male

N/A

Profession

Computer Science

Geography and related

Other Science Domains

N/A

Highest Degree Obtained

Abitur
BSc Diploma

MSc
PhD N/A

Current Country of Residence

Germany
N/A

0 2 4 6 8 10 12 14 16

Figure 14.4: Evaluation participants: Demographic composition.

To put the responses into perspective, participants were asked to rate their prior experience

in four areas on a Likert-scale [290] ranging from “beginner” over “intermediate” to “expert”.

Assessments of language and programming skills were intended to serve as proxies for the general

understanding of the task description and overall technical adeptness respectively. Questions

about the experience with spreadsheet software and information visualization, on the other hand,

are directed at the tasks required throughout the evaluation.

The respective results are illustrated in Figure 14.5. All participants rated their understand-

ing of English as intermediate or better. Similarly, most participants have at least an intermediate

understanding of programming. Both outcomes support the assumption that any issues during

the evaluation are not caused by participants, but are either rooted in the task description

279



CHAPTER 14. EVALUATION

English Language

Programming

Spreadsheet Software

Information Visualization

0% 20% 40% 60% 80% 100%

beginner beginner to interm. intermediate interm. to expert expert

Figure 14.5: Evaluation participants: Prior experience.

or caused by the tools themselves. The self-assessments regarding spreadsheet software and

visualization show a rather broad spectrum of prior experience. So despite its small size, the

gathered sample seems to represent a rather complete cross-section of potential users.

Dimensions of Evaluation. The actual results of the evaluation will be discussed along

the following four dimensions. The first one is a successful task execution: Were participants

able to perform the posed task and generate suitable results? After that, the time each of them

required will be analyzed. The remaining two dimensions are concerned with the opinions as

stated by participants. Users were asked to rate the employed tools with respect to both the

perceived difficulty of executing the tasks as well as the general usability of the respective tool.

The former attempts to measure the experience needed to successfully command the tools and by

extension how suited they are for new users. The latter is concerned with the appropriateness of

the provided interface in supporting users in their given tasks.

Successful Task Execution. A prime indicator for the usefulness of a tool is the ability

of users to perform given tasks with said tool. However, measuring that success is a rather

complicated endeavor. In the following, different criteria are applied to compare the suitability of

the evaluated tools. A first measure relies on user interactions during the evaluation and uses

two proxies: First, participants could request additional assistance in case they were not able to

locate the appropriate datasets (cf. Figure G.5 and Figure G.11). As the spreadsheet tools used in

this evaluation do not include search capabilities, this does not compare Yavaa with spreadsheet

software but with the default search capabilities of the data provider, namely Eurostat [web1]. A

second proxy is given by participants stating that they were unable to complete the task with the

given tool (cf. Figure G.6 and Figure G.12) as well as the respective reason. Some also used this

opportunity to explain why they were not able to locate the datasets in the first place.

Additional assistance was requested both for Yavaa (1×) as well as Eurostat (2×) with two of

these cases including a corresponding explanation. The problem for Yavaa was rooted in technical

issues at the point of taking the survey which prevented any successful search due to a crash of

280



14.3. ASSESSMENT

the backend triple store. For Eurostat, one participant stated that searching using the keyword

“sheep” only yielded results for 2018 and 2019, but a search for the German “Schafe” would

subsequently return the appropriate dataset. Although this behavior could be reproduced neither

by using the German keyword nor the English one, this seems to indicate an issue with different

language versions of Eurostat’s search interface.

Looking at the inability to complete the tasks at all, the picture is more complex. Two

participants reported a (partial) failure to finish the task using Yavaa. In one case, the participant

was able to assemble the dataset up to the point of creating the derived column. However,

the corresponding comment only mentions issues during search as described in the previous

paragraph. So any conclusions on possible reasons fall within the realm of speculation. The other

participant unable to complete the task, mentions technical problems while filtering the dataset.

This issue was caused by a change in Eurostat’s schema9. This change was not properly reflected

in the underlying metadata store which caused problems when trying to remove the values

unknown to the system. By updating the metadata store this issue was fixed for subsequent

participants. Using spreadsheet software, five users reported problems completing the given task

(2× using LibreOffice and 3× using Excel). One participant merely criticized the task definition,

but still created results in line with the original intent. Three participants (2× using Libre Office

and 1× using Excel) did not find an appropriate visualization but were able to create a suitable

dataset. Finally, one participant using Excel reported that they were unable to normalize and

subsequently join the data.

In addition to the previous accounts, one participant did not upload any result for either tool

and also did not comment about if or why they were unable to complete the task. However, a

comment in the final section of the survey (cf. Figure G.17) suggests they did indeed finish the

task. Due to these uncertainties, the corresponding submission is excluded from the discussions

here.

Besides the aforementioned proxies, the uploaded results for both visualization and underly-

ing dataset can give insight into the success rate of the task execution. In an attempt to reduce

the observer bias, the results were manually evaluated against a list of possible deviations from

the sample solution (cf. Figure 14.6). This strategy allows for a more detailed and objective

measure, whether the results can be considered successful. The list was extended throughout

the evaluation upon encountering new deviation-types. There are fewer deviations evaluated

for visualizations compared to the underlying dataset(s) for mainly two reasons: First, many

aspects of the visualization depend on the underlying dataset. An assessment of these aspects

would only repeat the previous evaluation of the datasets themselves. Second, judging whether a

particular visualization itself is suitable for the task can be highly subjective and would require

9In Q2 2020 Eurostat added new designations to represent accumulated statistics for the EU as a whole. Those
became necessary as Great Britain left the EU earlier that year [286] and subsequently designations for an EU
with and without Great Britain became necessary.

281



CHAPTER 14. EVALUATION

Geopolitical entity (reporting) Time sheep per person
Germany 2014 0.019819614737682178
Germany 2015 0.019456132025285447
Germany 2016 0.019157370202114776
Germany 2017 0.019143945165519164
Germany 2018 0.018961896612888792
Germany 2019 0.018748672069440119

Spain 2014 0.33178027123593963
Spain 2015 0.345027343097830948
Spain 2016 0.34373074872213343

. . . . . . . . .

(a) Dataset.

2014 2015 2016 2017 2018 2019
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Romania

Iceland

Ireland

Spain

Germany

(b) Visualization.

Figure 14.6: User evaluation: Sample Solution.

an extensive survey of its own which is beyond the scope of this thesis. The prevalences of these

deviations are given in Figures 14.7 to 14.9. They are classified into the following three groups

based on their impact on the task result.

• HIGH-severity deviations render the submitted artifact(s) unsuitable for the given task.

• MODERATE-severity deviations violate some of the task constraints, but the artifact(s)

can still be considered suitable. In particular, the results include all required facts and no

errors. However, there might be additional information added or clarifications needed to

interpret the result in the right way.

• LOW-severity deviations are mostly cosmetic in nature. The suitability of artifact(s) is not

affected.

Hereinafter, the encountered deviations and possible causes shall be discussed based, of

course, only on the submitted artifacts. However, some participants did not upload (parts of) their

results as summarized in Table 14.2. Only in one case per tool, this coincides with the respective

participants stating that they were unable to complete the task. Apart from that, there is no

282



14.3. ASSESSMENT

No Dataset No Visualization
Yavaa 2× 3×

Spreadsheet 2× 3×
Table 14.2: User evaluation: Missing artifacts in submissions.

correlation between the reported ability to complete the tasks and the actual submission of the

results. Some submissions lack (parts of) the required artifacts without giving a reason, whereas

others include all artifacts despite stating the opposite.

The first deviations among those of high severity (cf. Figure 14.7) concern missing data within

the dimensions of the assembled dataset. With regard to countries included, one submission

substituted a country each in both task executions. As different countries were mixed up, the

cause seems to be a lack of focus rather than a systematic error. Another submission included only

a single year (2018) instead of the whole range, again for both task executions. Finally, a third

submission included only 2017 and 2018 in the spreadsheet-execution. The submitted file seems

to be the result of copy-pasting the required values manually, so the cause of incompleteness is

likely the repetitiveness of the chosen approach. The next crucial step is joining the required

source datasets (population and number of sheep). Here, one submission for the Yavaa used only

a single join condition (country) performing a cross join on the other (time). For the spreadsheet-

execution, two submissions failed to perform the correct join. The aforementioned submission

with swapped countries ignored the country name during the join and seems to have done a

purely position-based join. As the switch of countries only appears for one source, this aggregates

data for two unrelated countries thus invalidating the respective values. The other submission

used a single value per country for the number of sheep therein. This hints towards omitting the

year as a proper join condition.

The next subtask involves creating a derived value giving the number of sheep per population.

Three submissions for Yavaa did not include any such column with no reason given in the

comments, whereas this did not occur throughout the spreadsheet-submissions. But also with

the derived column being present, some submissions contained other substantial deviations.

Whereas for Yavaa the sole reason was a mix up of operands (2×), the causes using spreadsheet

software were more diverse: Swapping operands (1×), using a wrong conversion factor (1×), and

an unknown reason10 (1×) were encountered in the submitted artifacts.

The final step concerns the visualization of the results. Here, major deviations occurred only in

the spreadsheet-tasks. One submission neglected the development over time and just visualized

the state in one year. Two other submissions represented the data in a way that no longer allows

deducing anything meaningful from the visualization. Finally, in three visualizations data points

10Here, the submitted values were incorrect, but the process leading up to them remained unclear.

283



CHAPTER 14. EVALUATION

At least one of the targeted countries is missing.
1

1

At least one of the targeted years is missing.
1

2

The join between both source datasets is incorrect.
1

2

There is no column for the derived values.
3

0

Operands for the computation of 
derived values have been swapped.

2

1

Derived values are incorrect 
for an unknown reason.

0

1

Derived values were computed 
using a wrong conversion-factor.

0

1

One of the required variables is not visualized 
although being present in the dataset.

0

1

The visualization does not represent the data at all.
0

2

Missing values are visualized as zero.
0

3

Yavaa
LibreOffice
Excel

Figure 14.7: User evaluation: HIGH-severity deviations from the sample solution.

missing in the dataset11 were represented as zero in the visualization instead of omitting them in

some way. In a standalone visualization without the accompanying dataset, this will easily lead

to the wrong conclusion that the values for those year(s) were not missing but were indeed zero.

Deviations of moderate severity (cf. Figure 14.8) can be divided into three groups: additional

data, partial completeness, and omitting conversions. Among the occurrences of additional data,

the aforementioned submission substituting countries accounted for one case in each Yavaa as

well as spreadsheet-submissions. Furthermore, another spreadsheet-solution included a non-

required country (Poland). The remaining cases of additional data are all caused by omitting

the filter-operations on country and/or time. All issues regarding partial completeness refer to a

single spreadsheet-submission: Based on a complete source file for population data, only a subset

of entries were augmented with the data requested by the given task. While technically correct,

the dataset remains incomplete with the majority of entries lacking most of the data.

The final deviation of moderate-severity is omitting the conversion at all, occurring five

times across the spreadsheet-submissions. Contrary to using a wrong conversion factor, this

deviation has only been classified as moderate. The task description did not call for a target

11The cause is incomplete data in the source files and not the result of a mistake by the respective participants.

284



14.3. ASSESSMENT

Additional countries are included 
that were not required.

2

3

Additional years are included 
that were not required.

1

2

The join between both source datasets 
is only partially executed.

0

1

Derived values are only computed 
for a subset of tuples.

0

1

During the computation of derived values 
no conversion was used.

0

5

Yavaa
LibreOffice
Excel

Figure 14.8: User evaluation: MODERATE-severity deviations from the sample solution.

unit for the derived column or even mention this issue. Hence, the classification is made under

the assumption that the actual unit is mentioned alongside the future uses of the respective

visualization, e.g., as part of an image caption. However, the wrong conversion factor mentioned

in Figure 14.7 indicates an actual error possibly due to a typo or a flawed interpretation of the

source datasets’ metadata.

The last class of deviations contains those of low severity (cf. Figure 14.9). In many cases,

both the dataset as well as the visualization referred to countries only by their abbreviation

(Yavaa 13×, spreadsheet-software 9×). There are two things to note here. First, while Yavaa

offers the option to resolve those abbreviations to the full labels, this functionality was neither

part of the tutorial nor were participants required to make use of it. Overall this led to only one

participant actually applying that feature. Second, the situation seems slightly better for the

spreadsheet results at a first glance. However, inspecting the files with resolved country names

strongly suggests that the data was manually copy-pasted from the Eurostat website and not

via downloading and processing the underlying files. In contrast to the plain files available for

download, Eurostat’s web-frontend already resolves the respective abbreviations before displaying

datasets to its users.

This immediately leads to the next observation. Although spreadsheet-software generally

offers ways to automate almost all tasks of this evaluation, quite some participants resorted

to manually perform at least some steps. This stretches across most of the data manipulation

subtasks: Instead of using the download facilities for the raw datasets, tables were copy-pasted

directly from Eurostat’s web-frontend (4×). Instead of using the built-in VLOOKUP-mechanism, the

joins between datasets were performed manually (4×). Instead of applying a formula to compute

the number of sheep per population, seemingly the values were computed using a different tool

(3×). The numbers presented here only reflect the most obvious cases. If there was any doubt

about the process, in an in-dubio-pro-reo fashion the use of all built-in capabilities was assumed.

Other submissions might also have neglected these facilities, but the resulting artifact does not

285



CHAPTER 14. EVALUATION

Countries are referred to 
by abbreviation and not full name.

13

9

Data appears to be manually copy-pasted 
from the Eurostat website.

0

4

The join between both source datasets 
appears to be done manually.

0

4

The derived values seem 
to have been computed manually.

0

3

Constant columns (e.g., demographic indicator)
remain in the result.

4

5

Yavaa
LibreOffice
Excel

Figure 14.9: User evaluation: LOW-severity deviations from the sample solution.

1 2 3 4 50

High Severity
88

5 3 1
7

Moderate Severity 3

13

5
1 1

9

Low Severity
11

32

7 5 22

Yavaa
Spreadsheet

Figure 14.10: User evaluation: Issues per submission by severity.

provide sufficient evidence anymore12. Another important aspect is that the individual manual

execution of steps does not necessarily entail the same for other steps. Overall, seven submissions

indicate the manual execution of at least one step with basically all combinations of the above

mentioned being present at least once.

Finally and of least importance, are remnants of the source datasets that are not needed

for the visualization. The sources include constant columns, e.g., to state the type or unit of the

measurement. In some submissions, these columns were still included (Yavaa 4×, spreadsheet-

tools 5×). While they do not have a negative impact on either the process or the result, they

constitute unnecessary noise in the artifact and as such should be removed.

Figure 14.10 summarizes the spread of deviations among the submitted artifacts subdivided

by their severity. Across all categories, a reduction in deviations per submission can be observed

when choosing Yavaa over standard spreadsheet software. This becomes especially noteworthy

due to the fact that most participants reported at least an intermediate knowledge of spreadsheet

12When a CSV file was submitted applied functions are replaced by the resulting values. As a result, only in rare
cases do some indicators of them remain, like a value of #VALUE! representing a computation gone wrong.

286



14.3. ASSESSMENT

software while this evaluation was their first encounter with Yavaa. Keeping in mind that

the training materials provided for each tool were equivalent, which should favor spreadsheet

software considering the prior experience.

Reviewing the deviations and participants’ comments, one can speculate about possible

reasons and relate them to the tools used. The following discussion will focus mostly on deviations

of high and moderate severity, as those impact the results, whereas deviations of low severity

merely affect the presentation or process. A first noteworthy set of deviations is concerned with

differences between covered dimensions of the results compared to the actual task description.

While most participants were able to gather the information in principle, one can observe a

number of lacking or added values in some artifacts. This is likely not an issue of the employed

tools themselves but can be attributed to negligence on behalf of the participants. Looking at the

frequency, using spreadsheet software seemingly increase the chance that values are added or

missed out on.

The analysis of submitted artifacts showed that a substantial number of participants dis-

regarded the built-in capabilities during data preparation when using spreadsheet software.

Instead, individual values oftentimes seem to be the result of manually copy-pasting them to

their intended positions. While not necessarily affecting the results by itself, such an approach

may lead to certain mistakes that go unnoticed due to the extent of repetitive tasks. The repeti-

tiveness and the resulting additional effort can result in a kind of fatigue which in turn reduces

participants’ diligence and causes the observed deviations. As Yavaa by design only allows to edit

columns as a whole and thus prevents such manual editing of individual values, this particular

reason does not apply here and thus its consequences are less likely to appear.

The second group of deviations is likely caused by shortcomings of the respective user-

interfaces. It stretches across two main areas: performing the join of the two data sources and

calculating the derived value. In addition to the observed manual copy-pasting of values, in

particular, the inability to directly use a multi-column join condition appears to be an obstacle.

Yavaa does not suffer from this limitation, but despite a semi-automatic suggestion of a proper

join condition, at least one participant also used a single-column-join. This suggests that an

additional warning in such cases might be in order.

Using Yavaa, three subjects failed to compute the derived values necessary. As no explicit

reasons were provided by those participants, one can only speculate. A possible reason might be

issues with the interface to create the derived values (cf. Figure H.11). The list of shortcuts to be

used in the function editor is initially collapsed, so users might have not been able to refer to the

correct column designations here. Similar problems might also arise in spreadsheet tools, where

columns are generally also referred to by rather abstract designations13. However, in spreadsheet

software they are visible at almost any time, so users are more used to them. On the other hand,

Yavaa attempts to use the actual labels of columns wherever possible and only resorts to the

13There are means to define alternative designations for columns, but for an ad-hoc task like in this survey, their use
seems disproportionate.

287



CHAPTER 14. EVALUATION

abbreviations where necessary. At least in this particular case, this seems to have backfired.

Possible changes addressing this could include expanding the list of shortcuts when needed or

adapting the function editor to use the same column names as the remainder of the interface.

This might also address the other deviation that can likely be traced to a lack of support in the

user interface: the swapping of columns in creating the derived value. So instead of calculating

the number of sheep per inhabitant, the affected datasets contain the number of inhabitants per

sheep. In general, both values might be valid and a system may not detect which one is more

correct. Again, by using only abstract designations for the columns involved, users can easily

miss such issues and proceed without further checks. This affects both spreadsheet software and

Yavaa equally, although in the survey Yavaa-artifacts suffered from this slightly more often.

A final set of deviations could have been prevented assuming proper checks, support, or

automation by the tool used. This includes issues concerning unit-conversions and the observed

deviations during visualization. Spreadsheet software offers no support in both areas. It is

solely the responsibility of users to make sure their data is consistent. Yavaa takes care of this

behind the scenes and thus prevents many such errors. Regarding the visualization, spreadsheet

software sometimes falls victim to its own capabilities. In general, there are few constraints

about how the data is structured within a worksheet and which parts thereof are used for the

visualization. However, this approach also opens up a wide range of possible mistakes. In the

survey, this has been witnessed by artifacts failing to represent the data in any meaningful

way or missing the distinction between missing values and zero in the visualization. The more

restrictive approach used by Yavaa managed to prevent or reduce those issues at least for the

given set of tasks and participants.

In summary, the greater flexibility of spreadsheet software sometimes seems to be more of a

curse than a blessing in this particular task. It allows users to bypass the intended workflows or

capabilities in favor of simpler but also more error-prone approaches. On the other hand, Yavaa

does not allow for such improvised solutions and forces its users to adhere to prescribed ways.

While this removes an “easy way out” for inexperienced users, it also reduces the number of

crucial errors. Accounting for the aforementioned difference in prior experience with both tools,

the results obtained by this user survey support this restrictive approach’s appropriateness at

least for the evaluated workflow.

Time Taken. Another aspect of the usefulness of a tool is the time required for a certain task.

Generally, the better-suited tool will allow users to perform their work faster compared to its

competitors. In the following, two aspects shall be examined in comparing Yavaa and standard

spreadsheet software: First, the overall time needed to solve the given task from start to finish.

Second, how much time is spent on the individual steps like locating appropriate data, joining

datasets, etc. For this comparison, all submissions were used that resulted in an actual file being

submitted. In particular, this includes submissions by participants stating to be unable to fulfill

the task albeit producing a proper result.

288



14.3. ASSESSMENT

Yavaa

Spreadsheet

0 20 40 60 80 100 120

Task execution time (minutes).

Figure 14.11: Evaluation results: Time spent overall. Where relevant, results for Yavaa a given
as total (thick bar) an split by strategy (thin bars).

0 20 40 60 80 100 120

Time (in Minutes)

0

1

2

3

4

5

Is
su

es
 p

er
 su

bm
is

si
on

Figure 14.12: Evaluation results: Time spent vs. issues in submissions.

Figure 14.11 shows how much time participants spent on the posed task using each tool.

It documents a rather substantial advantage towards Yavaa. Participants on average spent

only about 22.7min (median: 21.5min) to finish the task using Yavaa, which is about half of the

42.4min (median: 35.0min) it took them using common spreadsheet software. As noted before, the

nature of collected submissions did not allow to investigate the influence of tool order. Similarly,

the low number of overall submissions did not allow to establish any correlations between the

time spent on the task and the quality of results. Both, statistical tests (e.g., via t-tests) and

visual inspection (cf. Figure 14.12), did not reveal any significant relationship.

The time spent on individual steps is rather hard to measure precisely as tasks may overlap

and are rarely performed in linear order. As an approximation, participants were asked about

the fraction of time that was spent on each step relative to the overall time spent (cf. Figure G.7 /

G.13). In conjunction with the timestamp of starting the task (cf. Figure G.4 / G.10) and the time

of finishing the task (cf. Figure G.5 / G.11), these fractions were used to calculate the time spent

for each individual step.

289



CHAPTER 14. EVALUATION

0 10 20 30 40 50

Task execution time (minutes).

Search & Load

Filter

Joining Datasets

Transform & Adapt

Visualize

Export

Yavaa
Yavaa (conventional)
Yavaa (enhanced)
Spreadsheet

Figure 14.13: Evaluation results: Time taken per tool and step. Results for Yavaa a given as total
(thick bar) and split by strategy (thin bars).

The distribution of time over tasks is shown in Figure 14.13. One caveat of note is due to

participants stating a relative share of zero for a particular step. In general, each step is required

for successfully finishing the task. So assigning a zero-share – basically skipping a step – seems

like a mistake while filling the respective form entry. The only exception to this rule might be the

Filter and Joining Datasets steps in Yavaa’s enhanced strategy, as here those tasks are performed

implicitly by the system, so users spend no explicit time here. Entries assigning 100% of the

time spent to a single task were excluded. Here, participants either misunderstood the respective

question or willfully entered incorrect data. This affects five responses for Yavaa as well as five

for spreadsheet software.

In the following, Yavaa’s different strategies will only be distinguished during the first three

steps – (Search & Load, Filter, Joining Datasets). For all other steps, the workflow does not differ

between the two strategies, so any differences can not be attributed to the chosen strategy (cf.

Figure 14.3). Furthermore, the stated times represent the respective median across all valid

responses in an effort to reduce the influence of zero-entries as well as other outliers occurring.

Traditional spreadsheet software does not provide a built-in search facility for data reposi-

tories, so the actual search was delegated to the Eurostat web portal [web1]. Having identified

a dataset, the respective data had to be loaded into a separate tool, the actual spreadsheet

software, to continue. Despite this necessity to involve at least two different tools, the first step,

290



14.3. ASSESSMENT

0 10 20 30 40 50 60 70

Task execution time (minutes).

Data Retrieval & Fusion

Yavaa
Yavaa (conventional)
Yavaa (enhanced)
Spreadsheet

Figure 14.14: Evaluation results: Aggregated time for Search & Load, Filter, and Joining
datasets.

Search & Load, Yavaa’s conventional strategy (5.8min) took participants slightly longer com-

pared to Eurostat/spreadsheet software (4.8min). However, Yavaa’s enhanced strategy demanded

considerably more time (9.2min).

In the subsequent step, Filter, Yavaa’s conventional strategy and spreadsheet software are

again quite close (4.1min vs. 4.2min). In the enhanced strategy such an additional step is not

necessary in general. The corresponding median time of 0min for this step supports this statement.

For the Joining Datasets step, the same argument applies to Yavaa’s enhanced strategy and again

a median of 0min can be observed. Further, also the conventional strategy (1.6min) outperforms

spreadsheet software (6.6min) quite substantially here. Noteworthy are in particular the apparent

outliers, which coincide with participants presumably attempting to perform a manual join of the

two involved datasets.

In the Transform & Adapt step no meaningful differences can be observed. Yavaa (4.6min)

and spreadsheet software (4.5min) require almost the same time. The Visualization step shows

a small advantage towards Yavaa: Here, participants took only 3.6min compared to the 4.8min

while using spreadsheet software. The final Export step shows again no noteworthy difference

between Yavaa (1.4min) and spreadsheet software (1.7min).

As noted before, Yavaa’s enhanced strategy combines several steps into a single interface.

This makes it even harder to distinguish the respective time demands of each individual step.

For a more realistic comparison, the respective times are combined in Figure 14.14. In this

aggregated view, Yavaa’s enhanced strategy requires only about half the time (9.2min) compared

to spreadsheet software (18.4min). Due to the substantial advantage when joining datasets, also

the conventional strategy of Yavaa outperforms common spreadsheet software (10.9min).

By its design, the survey assigned a random order of tools to each participant individually.

However, due to the rather low number of complete survey responses, all successful responses

placed the Yavaa task before the spreadsheet software one. As both tasks are identical with

the exception of the tool to be used, this places spreadsheet software at an advantage: Once

participants have proceeded to this phase of the survey, they already solved the same task using

Yavaa and likely increased their overall understanding.

291



CHAPTER 14. EVALUATION

Nevertheless, the presented time measurements show that Yavaa for the given task can com-

pete with common spreadsheet software across the board. In the two areas explicitly addressed,

Yavaa excels in particular. The time necessary to assemble a dataset by combining multiple

sources is reduced to almost half of what is needed using spreadsheet software. Similarly, the

time required to pick a proper visualization for this dataset has been reduced by about 25%. The

savings in these two areas are the main reason that allowed participants to perform the given

task almost twice as fast using Yavaa than with common spreadsheet software.

Difficulty. Next, participants were asked for a (subjective) assessment of the difficulty of each

step on a Likert-scale ranging from “very difficult” (−2) over “neutral” (0) to “very easy” (+2).

During the subsequent discussions, the individual ratings are considered equidistant to their

respective neighbors. While this might be an oversimplification, it allows for an easier comparison

of the involved tools and making an admittedly sketchy estimation of any potential improvement

or lack thereof by Yavaa.

The questions were posed immediately after each task. So again due to the one-sided distribu-

tion of task-sequence, Yavaa’s assessment might be more neutral, while the one for spreadsheet

software is influenced by the perception of the former. The distribution of responses for both

spreadsheet software as well as Yavaa is shown in Figure 14.15. Furthermore, Figure 14.16

presents the relative difference between the assessments for Yavaa and spreadsheet software.

Like before, the difficulty assessments for Search & Load, Filter, and Joining datasets are split

between Yavaa’s two strategies.

Eurostat’s search is deemed rather difficult by most: Only three participants labeled it “very

easy”, while the remainder chose “neutral” or worse. On the other hand, Yavaa’s results are

distributed quite evenly across the range from “difficult” to “very easy”. Of note is the polarized

assessment for the enhanced strategy. Out of five participants employing that strategy, two rated

it “very easy” and two others as “difficult” with a final “neutral” vote being cast. Considering the

overall average of ratings, Yavaa leads spreadsheet software by about 0.5. Here, the difference

between Yavaa’s two strategies seems negligible.

Filtering using spreadsheet software is deemed “easy” or “very easy” by about two-thirds of

participants. Yavaa improves this result even further with only one “neutral” vote. Two out of five

participants that adhered to the enhanced strategy rated the filtering process, although it does

not constitute a distinct step here. The result is the aforementioned “neutral” as well as another

“very easy” vote. This improvement is subsequently reflected in the average ratings as well where

Yavaa scores 1.0 (conventional strategy) and 0.5 (enhanced strategy) ahead respectively.

Joining datasets with spreadsheet software was rated “difficult” or “very difficult” by nine

participants. Another two voting with “neutral” leaving four “easy” to “very easy” votes. Yavaa’s

assessments are more favorable with only one vote for “neutral” and the remaining twelve votes

split evenly between “easy” to “very easy”. The same two participants employing the enhanced

292



14.3. ASSESSMENT

strategy that assessed filtering did so here as well. Also, the respective votes are the same with

one being “neutral” and the other “very easy”. In the comparisons of averages, Yavaa can pull

ahead by more than 2.0 for the conventional strategy (1.5 for the enhanced strategy).

The next step, Transform & Adapt, is again mostly rated as “neutral” to “very difficult” for

spreadsheet software. Only a single vote each has been cast for “easy” and “very easy”. The

situation is reversed for Yavaa. A single vote each for “very difficult” and “difficult” with the rest

given to “neutral” or higher. The resulting averages put Yavaa ahead by over 1.0.

The ratings for Visualization using spreadsheet software are split almost evenly between all

options with the exception of “very easy” receiving just a single vote. In contrast, Yavaa provides

again a rather polarized result. Three participants voted for “difficult”, whereas all others chose

either “easy” or “very easy”. On average, Yavaa outperforms spreadsheet software by about 1.3.

Exporting the results from spreadsheet software seems complicated for some. Three par-

ticipants rated this step with “very difficult” or “difficult”, while four more voted for “neutral”.

However, the majority of eight participants chose “very easy”. The opinion about Yavaa is almost

unanimous. With a single vote cast for “difficult” and another to “easy”, all other participants

voted for “very easy”. This results in an advantage for Yavaa of almost 1.0 on average.

Overall, Yavaa is perceived as easier to use across all examined steps. Common spreadsheet

software especially falls shot when it comes to joining different datasets. As this functionality is

not directly supported but has to be emulated by VLOOKUP statements, this is hardly surprising.

While most steps’ results are in line with expectations, two results are quite curious and shall be

discussed in more detail.

Search & Load shows the smallest difference. For the conventional strategy, the interfaces

of Yavaa and Eurostat offer a similar interface with both providing keyword-based search. The

differences in the assessment are thus likely rooted in the integration in the overall workflow

referenced by the “Load” component of this step. The average difficulty for the enhanced strategy

shows only a minor improvement. The option of building a dataset bottom-up by defining the

intended contents and letting the system handling the rest does not seem to resonate with all

participants. This is also supported by only a third actually choosing this strategy. Possible

reasons could lie with the lack of familiarity with such approaches. Popular search systems

nowadays most often follow the same workflow14: Users enter a list of keywords and can then

pick from a returned list of possible matches. This represents more of a top-down approach in

contrast to the bottom-up of the enhanced strategy.

Yavaa’s results for the Visualize step are quite polarized by comparison. This seems to indicate

that the interface was accepted rather well by some participants, but failed considerably for

others. There is no correlation between these two groups and the respective responses in other

parts of the survey like prior experience, time taken, or issues in the submitted artifacts. Also,

the provided comments provide no hint for this separation. A potential reason could be issues

14Previously available catalog-based systems seem to have lost their importance over time.

293



CHAPTER 14. EVALUATION

Very difficult Neutral Very easy

# Resp.

Search & Load 11 / 5

16

Filter 11 / 2

15

Joining Datasets 10 / 2

15

Transform & Adapt 15

16

Visualize 15

15

Export 16

15

Yavaa Yavaa (conventional) Yavaa (enhanced) Spreadsheet

Figure 14.15: Evaluation results: Difficulty assessments. Triangles indicating average value.

in the accessibility of the interface. Once the main idea and intuition behind the workflow is

grasped, it is rather easy to use. But failing to do so may result in perceiving the interface as less

intuitive, thus resulting in the “difficult” rating.

Usability. A final aspect of the survey was concerned with the overall usability of the systems.

Here, the evaluation was conducted via a standard SUS questionnaire [288, 289]. The detailed

results for each item herein are given in Figure 14.17. Brooke, the author of SUS, notes that

“scores for individual items are not meaningful on their own” [288] – a statement also reinforced

by meta-analyses over a wide range of SUS-surveys [291]. Instead, he advises an aggregated

form, the SUS-score, that combines the individual ratings into a single score ranging from

zero (worst) to one hundred (best). In addition to this numeric value, several ordinal scales

have emerged among practitioners in order to better communicate the respective results. Later

analyses showed that these scales correlate quite well with the numeric SUS-scores [291, 292].

Figure 14.18 visualizes the results of this user evaluation and includes some alternative, ordinal

294



14.3. ASSESSMENT

-2.0 -1.0 0.0 1.0 2.0

Spreadsheet Software Yavaa # Resp.

Search & Load 0.46 11
0.59 5

Filter 0.99 11
0.53 2

Joining Datasets 2.17 10
1.67 2

Transform & Adapt 1.18 15

Visualize 1.33 15

Export 0.95 16

Yavaa Yavaa (conventional) Yavaa (enhanced)

Figure 14.16: Evaluation results: Average difference of difficulty assessments.

scales for orientation. Following the previous admonition, the subsequent discussion will focus on

SUS-scores, while the individual distributions for each question are only given for completeness’

sake.

The majority of participants rated common spreadsheet software with an SUS-score below 60.

Ten ratings are even below 50, labeling the tool not acceptable. Only two ratings are above 60

which puts them in the (marginally) acceptable range. The results for Yavaa are almost swapped.

Only two ratings fall in the not acceptable range, whereas ten are well in the acceptable one. This

contrast is also represented in the average SUS-score, which puts spreadsheet software at 44.46

while Yavaa resides at 73.57. Spreadsheet software’s assessment thus corresponds (on average)

to a poor-to-ok rating, whereas Yavaa’s is associated with a good rating.

The acquired SUS-scores put Yavaa in a substantial lead over common spreadsheet software.

At least for the posed task, the latter seems to be the worse choice despite being a rather common

one for comparable tasks. Comparing the results on a participant-level (cf. Figure 14.19) reveals

that the two outliers in each SUS-score distribution actually belong to the same two participants

(represented by squares in the figure). Within the comments, one of those participants reports

the aforementioned technical issues. The other one mentions actual deficiencies in the user

interface that require further attention. Both participants stated an intermediate to expert prior

knowledge of spreadsheets, which might have further biased the decision. However, from the

gathered data this correlation can not be generalized as other participants with similar conditions

did not come to a similar conclusion.

295



CHAPTER 14. EVALUATION

Strongly disagree Neutral Strongly agree

# Resp.

I think that I would like to 
use this system frequently.

15

15

I found the system unnecessarily complex. 16

15

I thought the system was easy to use. 16

16

I think that I would need the support of 
a technical person to be able to use this system.

16

15

I found the various functions in 
this system were well integrated.

16

15

I thought there was too much 
inconsistency in this system.

15

15

I would imagine that most people would 
learn to use this system very quickly.

16

15

I found the system very awkward to use. 16

15

I felt very confident using the system. 16

16

I needed to learn a lot of things 
before I could get going with this system.

16

16

Yavaa Spreadsheet

Figure 14.17: Evaluation results: Usability assessments. Triangles indicating average value.

296



14.3. ASSESSMENT

0 20 40 60 80 100

Acceptability Ranges
not acceptable marginal acceptable

LOW HIGH

Grade Scale F D C B A

Adjective Ratings worst
imaginable

poor ok good excellent best
imaginable

SUS-Score

Yavaa Spreadsheet

Figure 14.18: Evaluation results: SUS-scores. Triangles indicating average value.
Responses missing ratings had to be removed. This leaves 14 scores remaining for
spreadsheet software as well as 14 for Yavaa.

0 10 20 30 40 50 60 70 80 90 100

SUS-Score Spreadsheet Software

0

10

20

30

40

50

60

70

80

90

100

SU
S-

Sc
or

e 
Ya

va
a

Figure 14.19: Relation of SUS-scores for responses that allowed the calculation of both (13×).

297



CHAPTER 14. EVALUATION

14.4 Technical Evaluation

The performance of the provided implementation is not the prime focus of this thesis. Neverthe-

less, this section shall provide a first impression of its runtime characteristics compared to its

established counterparts. In particular, two aspects will be examined: First, how does the en-

hanced search strategy proposed in Chapter 10 compare to conventional keyword-based searches?

Second, how does the prototypical implementation (cf. Chapter 13) fare against established tools

like relational databases or a Python-based implementation?

All measurements presented in the following used the same infrastructure that was prepared

for the user evaluation. In particular, it is hosted on a single virtual machine provided by Amazon

Web Services [web166], i.e. a “t2.medium” EC2 instance with 2 vCPUs and 4GB of memory

running Amazon Linux [web167]. All measurements were executed from the same machine.

While this reduces the impact of network issues, requests will still have to undergo the cycle of

serialization and deserialization common in such scenarios.

14.4.1 Search Strategies Performance

Yavaa supports two strategies to identify dataset(s) needed for the current task (cf. Figure 14.3 in

Section 14.2). The conventional strategy implements the common approach to return datasets

whose titles include the given keywords. The enhanced strategy allows users to describe the

desired dataset. The system will try to fulfill this request by possibly combining multiple datasets.

An intuitive measure for the performance of both strategies is the number of requests per

minute the system is able to serve. The scenario for such requests is taken from the user eval-

uation (cf. Section 14.2): Two datasets are required, one containing the human population for

European countries and another one their respective sheep populations. Following the conven-

tional strategy one may thus issue two queries: One using the keyword “population” and another

one using “sheep”. On the other hand, the dataset definition for the enhanced strategy will

contain four15 columns (“country”, “time”, “population”, “sheep”).

For each strategy, the corresponding requests have been issued in sequential order over the

course of one minute. So once a request was successfully processed, the next one was issued.

Figure 14.20 visualizes the respective number of iterations during that time. In addition to the

two aforementioned strategies, it also includes the number of iterations for each keyword-based

query in isolation.

A first, interesting observation is the rather large difference between the individual queries.

In the given time frame the system could respond to far more requests for “sheep” compared to

“population”. The underlying reason is likely rooted in the nature of the dataset repository. In the

repository used throughout the evaluation, only two datasets mention the term “sheep”, whereas

15Kindly be reminded at this point that the derived column “sheep per capita” has to be computed in a separate step,
as it is not available from the sources directly.

298



14.4. TECHNICAL EVALUATION

enhanced strategy 1269

conventional strategy 1191

conventional strategy ("sheep") 2726

conventional strategy ("population") 2152

0 500 1000 1500 2000 2500

Figure 14.20: Benchmark search strategies: Executions per minute.

171 mention the term “population”. This large difference in the number of results is amplified by

the need to serialize the respective results in order to transfer them. These two aspects are the

probable cause of the difference witnessed between the two queries.

Another observation concerns the actual strategies. Here, both strategies are almost on the

same level with a small advantage towards the enhanced strategy. On a first glimpse, this is

rather surprising, as the enhanced strategy issues more queries to the triple store and further has

to combine the intermediate results subsequently. A naïve view would thus expect fewer requests

to be served. The core difference here is how the respective queries are framed. The conventional

query used keywords, i.e. strings which have to be matched against other strings, the dataset

titles. However, in the enhanced approach, those strings have been mapped to concepts of the

dataset description model beforehand16. So instead of string comparisons, the queries to the triple

store now rely on graph traversal which is faster in this case. Summarizing, even the overhead

of more queries, applying constraints, and combining the results does not put the enhanced

strategy at a disadvantage. In terms of pure execution performance, it seems to be comparable to

a conventional keyword-based search.

14.4.2 Compute Engine Performance

A second experiment was conducted to compare the execution time using Yavaa’s prototypical

implementation against other well-established tools. Two such tools were chosen: An implemen-

tation using Python’s pandas library (version: 1.0.4) [web48] serves as an example of a scripting

language often used by Data Science professionals. Further, the same workflow was implemented

using SQLite [web158] (version: 3.31.1 via better-sqlite3 [web168]). As a relational database,

this represents years of experience in managing tabular data. The underlying workflow is again

modeled after the one used in the user study of Section 14.2. It omits the preceding search step,

16During creating a query for a combined dataset, users are presented with the labels of concepts for columns and
values. Internally the system relies on their respective IRIs, though.

299



CHAPTER 14. EVALUATION

# distinct Times
10 20 30 40 50 60 70 80 90 100

# 
di

st
in

ct
 C

at
eg

or
ie

s

20

45

70

95

120

145

170

195

220

245

0.02

0.02

0.03

0.04

0.05

0.06

0.06

0.07

0.08

0.09

0.02

0.04

0.05

0.07

0.08

0.10

0.12

0.14

0.15

0.17

0.03

0.06

0.08

0.10

0.12

0.15

0.18

0.21

0.23

0.25

0.04

0.07

0.10

0.14

0.17

0.21

0.24

0.28

0.31

0.34

0.05

0.09

0.13

0.18

0.22

0.25

0.32

0.35

0.39

0.43

0.06

0.11

0.16

0.22

0.26

0.33

0.36

0.41

0.46

0.50

0.08

0.13

0.19

0.25

0.32

0.37

0.42

0.47

0.51

0.57

0.09

0.16

0.23

0.29

0.36

0.42

0.47

0.53

0.59

0.63

0.11

0.18

0.26

0.34

0.41

0.48

0.53

0.59

0.65

0.70

0.13

0.20

0.29

0.38

0.45

0.51

0.59

0.65

0.72

0.76

(a) SQLite (total).

# distinct Times
10 20 30 40 50 60 70 80 90 100

# 
di

st
in

ct
 C

at
eg

or
ie

s

20

45

70

95

120

145

170

195

220

245

0.04

0.04

0.04

0.05

0.05

0.05

0.06

0.06

0.07

0.07

0.04

0.05

0.06

0.06

0.07

0.08

0.08

0.09

0.10

0.10

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.05

0.07

0.08

0.09

0.11

0.12

0.13

0.15

0.16

0.17

0.06

0.07

0.09

0.11

0.13

0.14

0.16

0.18

0.19

0.21

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.21

0.22

0.25

0.07

0.09

0.11

0.14

0.16

0.18

0.21

0.23

0.25

0.28

0.07

0.10

0.13

0.15

0.18

0.21

0.23

0.26

0.29

0.31

0.08

0.11

0.14

0.17

0.20

0.23

0.26

0.29

0.32

0.35

0.08

0.11

0.15

0.18

0.22

0.25

0.28

0.32

0.34

0.38

(b) Python/pandas (total).

# distinct Times
10 20 30 40 50 60 70 80 90 100

# 
di

st
in

ct
 C

at
eg

or
ie

s

20

45

70

95

120

145

170

195

220

245

0.49

0.52

0.52

0.55

0.57

0.58

0.59

0.62

0.63

0.65

0.51

0.53

0.57

0.60

0.62

0.65

0.69

0.71

0.76

0.78

0.53

0.57

0.61

0.64

0.67

0.74

0.79

0.84

0.88

0.91

0.54

0.59

0.64

0.68

0.75

0.82

0.87

0.92

0.97

1.03

0.55

0.60

0.68

0.76

0.83

0.87

0.94

1.00

1.06

1.13

0.56

0.63

0.71

0.81

0.87

0.96

1.02

1.08

1.16

1.24

0.57

0.66

0.76

0.85

0.93

1.00

1.08

1.16

1.25

1.34

0.58

0.68

0.80

0.89

0.98

1.07

1.16

1.26

1.36

1.44

0.59

0.70

0.83

0.92

1.02

1.12

1.22

1.32

1.45

1.53

0.60

0.73

0.86

0.97

1.07

1.19

1.29

1.41

1.52

1.62

(c) Yavaa (total).

# distinct Times
10 20 30 40 50 60 70 80 90 100

# 
di

st
in

ct
 C

at
eg

or
ie

s

20

45

70

95

120

145

170

195

220

245

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

0.01

0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

0.01

0.01

0.01

0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

0.01

0.01

0.01

0.01

0.01

< 0.01

< 0.01

< 0.01

< 0.01

0.01

0.01

0.01

0.01

0.01

0.01

< 0.01

< 0.01

< 0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

< 0.01

< 0.01

< 0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

< 0.01

< 0.01

< 0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.02

< 0.01

< 0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.02

0.02

(d) SQLite (non-I/O).

# distinct Times
10 20 30 40 50 60 70 80 90 100

# 
di

st
in

ct
 C

at
eg

or
ie

s

20

45

70

95

120

145

170

195

220

245

0.01

0.01

0.02

0.02

0.02

0.02

0.02

0.03

0.03

0.03

0.01

0.02

0.02

0.02

0.03

0.03

0.04

0.04

0.04

0.05

0.01

0.02

0.03

0.03

0.04

0.04

0.05

0.05

0.06

0.06

0.02

0.02

0.03

0.04

0.05

0.05

0.06

0.07

0.07

0.08

0.02

0.03

0.04

0.04

0.06

0.06

0.07

0.08

0.09

0.10

0.02

0.03

0.04

0.05

0.06

0.07

0.09

0.10

0.10

0.12

0.02

0.03

0.05

0.06

0.07

0.08

0.10

0.11

0.12

0.13

0.02

0.04

0.05

0.07

0.08

0.09

0.11

0.12

0.14

0.15

0.02

0.04

0.06

0.07

0.09

0.10

0.12

0.14

0.15

0.17

0.02

0.04

0.06

0.08

0.10

0.11

0.13

0.15

0.16

0.18

(e) Python/pandas (non-I/O).

# distinct Times
10 20 30 40 50 60 70 80 90 100

# 
di

st
in

ct
 C

at
eg

or
ie

s

20

45

70

95

120

145

170

195

220

245

0.10

0.13

0.12

0.15

0.15

0.16

0.17

0.19

0.19

0.20

0.12

0.13

0.16

0.18

0.19

0.22

0.24

0.25

0.29

0.30

0.13

0.16

0.18

0.21

0.22

0.28

0.32

0.34

0.37

0.39

0.14

0.17

0.21

0.23

0.29

0.33

0.37

0.40

0.43

0.46

0.15

0.17

0.23

0.29

0.33

0.36

0.41

0.44

0.48

0.54

0.15

0.19

0.26

0.33

0.36

0.42

0.46

0.51

0.57

0.62

0.16

0.22

0.29

0.35

0.41

0.44

0.50

0.57

0.63

0.70

0.16

0.23

0.32

0.38

0.43

0.49

0.57

0.63

0.70

0.77

0.17

0.25

0.34

0.40

0.46

0.54

0.61

0.68

0.77

0.84

0.18

0.27

0.36

0.43

0.49

0.59

0.67

0.75

0.83

0.91

(f) Yavaa (non-I/O).

Figure 14.21: Benchmark results: Workflow execution time in seconds (cat. sel. 50%; time sel.
50%).

but follows the general approach of loading two datasets, filtering entries, joining them, and

deriving a new column. Finally, the results are exported into a CSV file. The source code to

conduct the measurements as well as the respective data generator is publicly available [data22].

For the evaluation, the size and characteristics of datasets have been varied along the

following dimensions17. The number of distinct countries started at 20 and was increased in steps

of 25 up to a maximum of 245 (user study: 55 and 39). Distinct time values ranged from 10 to 100

in steps of 10 (user study: 12 for both datasets). An additional modifier for data items18 is added

with a probability of 10% (user study: 5% and 10%). Missing values occurred with a probability of

15% (user study: 32% and 4%). During the workflow, the selectivity of filters was applied in three

variations of 20%, 50%, and 80%. Overall this leads to 10×10×3×3= 900 different configurations

(number of categories × number of time periods × category selectivity × time selectivity). The

datasets required by each configuration were generated beforehand and reused for all tools. Each

measurement was repeated 42 times out of which the best run will be reported in the following.

17The corresponding values for the two datasets from the user study are provided in parentheses.
18Eurostat uses those to add additional information about the value presented, e.g., to indicate provisional values.

300



14.4. TECHNICAL EVALUATION

Time-Selectivity (%)
20 50 80

C
at

eg
or

y-
Se

le
ct

iv
ity

 (%
)

20

50

80

0.01

0.01

0.01

0.01

0.02

0.02

0.02

0.03

0.04

(a) SQLite.

Time-Selectivity (%)
20 50 80

C
at

eg
or

y-
Se

le
ct

iv
ity

 (%
)

20

50

80

0.04

0.08

0.12

0.09

0.18

0.29

0.13

0.28

0.45

(b) Python/pandas.

Time-Selectivity (%)
20 50 80

C
at

eg
or

y-
Se

le
ct

iv
ity

 (%
)

20

50

80

0.32

0.54

0.73

0.46

0.91

1.33

0.63

1.31

1.92

(c) Yavaa.

Figure 14.22: Benchmark results: Workflow execution time in seconds for different selectivities
excluding I/O-operations (distinct categories: 245; distinct times: 100).

The results for one slice of the evaluation are given in Figure 14.21(a) to 14.21(c). For the

smallest configuration SQLite outperforms the other tools with 0.02s against 0.04s (Python/pan-

das) and 0.49s (Yavaa). Looking at only the largest configuration, Python/pandas takes the lead

with 0.38s versus 0.76s (SQLite) and 1.62s (Yavaa).

The overall time spent on the workflow is predominantly consumed by I/O-operations. Remov-

ing the initial reading of data19 and the export of the final results yields much lower executions

times, as shown in Figure 14.21(d) to 14.21(f). In particular, SQLite spent most of its time with

these preparatory tasks with only 2% being used in the actual calculation. Both other tools,

Python/pandas and Yavaa, split the execution time roughly equal between I/O and non-I/O tasks

with 48% (Python/pandas) and 56% (Yavaa) used for calculations in the same configuration. The

scaling between the smallest and the largest configuration differs quite substantially among the

three tools. The execution times increase 25× (SQLite), 16× (Python/pandas), and 9× (Yavaa).

A final aspect is the influence of the selectivity for filters used, i.e. the fraction of values that

are kept after applying said filters. Figure 14.22 summarizes the corresponding results for the

largest configuration of 245 distinct categorical values as well as 100 distinct time entries. Here,

the overhead of I/O-operations has been omitted. Comparing the smallest configuration (both

selectivities at 20%) with the larges one (both selectivities at 80%), puts SQLite and Yavaa ahead

with a 6× increase, whereas Python/pandas’ execution time grew 10×.

In summary, the following observation can be made. First, Yavaa’s current implementation in

terms of absolute performance can not compete with state-of-the-art tools dedicated to comparable

tasks. The years of experience put into such tools puts them substantially ahead. Second, consid-

ering the relative scaling with respect to increasing dataset sizes and selectivity of filters the

current implementation performs similar or even better compared to other tools. This suggests

that while individual operations might have an inferior implementation, the overall architecture

is quite apt. Finally, considered in isolation the Yavaa-prototype tested here is a viable solution to

19This includes the conversion of the dataset from a pivot table to a normalized structure, as Yavaa performs that in a
single step.

301



CHAPTER 14. EVALUATION

perform the given workflow. Even for larger datasets tested, the absolute runtime is still within

acceptable ranges for conversational interactions, commonly given by 2s−5s in standard system

response time models [293]. Even more, since workflows are expected to be rarely executed as

a whole, but are successively build-up by various user interactions. This breaks it down into

smaller steps, each with lower execution time.

302



Part IV

Epilogue

303





C
H

A
P

T
E

R

15
RETROSPECTIVE

The goals of this thesis were introduced in Section 1.1 and translated into specific requirements

in Chapter 2. The previous chapters described possible approaches to solve issues emerging

from these requirements (cf. Part II), outlined their implementation (cf. Chapter 13), and, finally,

evaluated the resulting prototype (cf. Chapter 14). At this point, the requirements posed in the

beginning shall be revisited. The goal is to examine how each of them was addressed and to what

extent it was fulfilled. As fulfillment of the requirements entails fulfillment of the corresponding

objectives, the latter will not be discussed separately here. In the following, requirements are

grouped in accordance to the modules addressing them in Yavaa. At times, this may deviate from

the order initially given in Chapter 2.

Requirement 1. Search across Providers
The system has to provide a unified search interface across different data

providers. This also includes a translation of provided inputs into the idioms

used by the respective providers.

Requirement 5. Mediate Abbreviations
Heterogeneous abbreviation schemes possibly in use by the involved data

providers have to be harmonized transparently for users.

Requirement 6. Support Heterogeneous File Formats
When loading primary data, the system has to support the consumption of

multiple, heterogeneous file formats transparently to users.

Requirement 7. Support Heterogeneous Dataset Structures
When loading primary data, the system has to be able to automatically har-

monize different data structures for further processing.

305



CHAPTER 15. RETROSPECTIVE

Requirement 8. Translate Abbreviations
Encoding schemata in use by the different providers have to be consistently

translated into human-readable labels.

Yavaa’s search relies on the metadata model proposed in Chapter 8. Here, no prior assump-

tions are made on where the dataset currently resides (Requirement 1). It even allows for multiple

locations from which a dataset can be retrieved. This includes the possibility to specify different

formats or representations that are available (Requirement 6). Furthermore, the respective

idiosyncrasies of each provider are mitigated by linking datasets to code lists used and mapping

existing values to semantic concepts therein. This allows to translate across different represen-

tations of values without further intervention by users of the system. From a user perspective,

all this is hidden. During loading, a file Yavaa automatically normalizes the dataset’s structure

(Requirement 7) and translates occurring values into their associated concepts. For further

operations, it only relies on those concepts and internally omits the display label (Requirement 5).

Users, on the other side, will not encounter those concepts, but interact with only the display

label. Depending on the current state of the interactions this is either the label used in the

original data source or a canonical label attached to the corresponding concept (Requirement 8).

Requirement 2. Search in Primary Data
The system has to support the definition of constraints on the primary data

as part of search requests.

Requirement 3. Search by Combination
If a given search request can only be fulfilled by using multiple datasets, this

combination has to be suggested as a possible result.

Requirement 4. Materialize Combination-Results
If a search result was given as the combination of multiple datasets, means

have to be provided to materialize this combination.

The former two requirements are addressed through the search-by-combination proposed in

Chapter 10 and the respective implementation outlined in Section 13.9. Users are allowed to

describe their information need in form of a table definition that includes both requested columns

as well as constraints posed on their value ranges (Requirement 2). Yavaa will attempt to fulfill

this query by possibly combining multiple datasets (Requirement 3). A viable result is given by a

workflow that once executed would produce the requested table. Users can choose to execute said

workflow to materialize the corresponding table (Requirement 4).

Requirement 9. Allow for Modification of Data
The system has to allow users to adapt datasets to their current needs by, e.g,

filtering, aggregating, or adding new columns derived from given formulae.

306



Requirement 11. Ensure Validity of Operations
During both system-initiated as well as user-driven modifications of the

datasets, the system has to ensure the validity of operations. Possible errors

have to be transparently corrected. Only if this can not be achieved shall users

have to intervene.

The capabilities of Yavaa to modify datasets have been described in Section 13.3. In particular,

this includes the three operations requested in Requirement 9. During these operations, the corre-

sponding unit of measure is automatically determined whenever possible. While this still leaves

invalid operations in the realm of possibilities and thus only partly satisfies Requirement 11,

it removes a prominent source of errors in many workflows. The prevalence of unit errors has

been documented by the user study conducted as part of the evaluation (cf. Section 14.2), where

related issues appeared in over 40% of submissions using spreadsheet software (6 out of 14; cf.

Section 14.3).
Requirement 10. Provide Immediate Feedback on Operations
The results of applied operations have to be apparent to users without unnec-

essary delays.

Immediate feedback on triggered operations can be interpreted in at least two ways. First,

it requires a proper interface to actually represent the feedback. Yavaa has a graphical user

interface (cf. Appendix G) that represents datasets from three perspectives: a complete one

proving access to the primary data, a summarizing one visualizing the dataset, and a formal

one outlining the workflow that leads to the current state (cf. Section 13.9). The second way is

given by the time users have to wait before operations take effect. This aspect was examined in

Section 14.4. While lagging behind tools commonly used in similar tasks like SQL-databases or

Python-scripts, Yavaa can still execute common workflows well within reasonable times allowing

for an uninterrupted user experience.
Requirement 12. Recommend Visualizations
The system has to provide recommendations for meaningful visualizations

given a certain dataset.

Requirement 13. Recommend Variable to Artifact Mappings
The system has to provide recommendations for a meaningful translation

from the current dataset and into the selected, applicable visualization.

Requirement 14. Materialize Visualizations
The system has to be able to create visualizations based only on declarative

definitions provided by users.

Chapter 7 contains Yavaa’s internal model to describe visualizations. This includes the

definition of interfaces that allow mapping columns of existing datasets to corresponding visual

artifacts. Based on these descriptions as well as the currently active dataset’s corresponding

307



CHAPTER 15. RETROSPECTIVE

description (cf. Chapter 8), Yavaa recommends possible visualizations (Requirement 12). As

both descriptions primarily operate on the level of columns and visual artifacts, Yavaa is able

not only to suggest suitable visualizations but can also provide specific bindings between those

components (Requirement 13). The details of deriving these recommendations are described in

Chapter 11. Users may adjust the proposed mappings and then can immediately trigger the

rendering of a chosen visualization as outlined in Section 13.7. This is done in a purely descriptive

manner using a drag&drop-interface (Requirement 14).

Requirement 15. Track Provenance
Each operation that alters a dataset has to induce an entry into the prove-

nance record of this dataset. The corresponding entry has to include all set-

tings that affected the respective operation, including at least inputs, outputs,

and any parameters necessary.

Requirement 16. Visualize Provenance Records
The accumulated provenance records for the current dataset have to be pre-

sented visually to users. This representation has to include at least the applied

operations, their logical order, and their respective inputs and outputs.

Actions triggered by users can be distinguished into two groups: those that modify the un-

derlying dataset and those that do not. While the latter are often of informative nature like

retrieving the dataset summary, the former have a lasting impact on the final data product.

Consequently, each version of a dataset (cf. Section 13.2) in Yavaa is associated with a description

of how it came about (cf. Chapter 12). As this includes a link to its predecessor(s), Yavaa is able

to establish a chain of provenance records that includes each of these prior versions (Require-

ment 15). This rather abstract notion of a workflow is subsequently transformed into a flow chart

(cf. Section 13.5) that is more accessible to human users (Requirement 16).

Requirement 17. Share Provenance Records
The system has to provide the means to export the complete provenance

record for a given workflow in a standardized format consumable by other

applications.

Requirement 18. Allow for Reenactment of Workflows
Based on a previously exported provenance record and under the assumption

that the data sources did not change in the meanwhile, the system has to be

able to execute a previous workflow with the same results.

Besides the visual inspection of the workflow, Yavaa also allows exporting a JSON-based,

PROV-compatible serialization (Requirement 17). These exported workflows can freely be shared

and interpreted by other provenance tools. Furthermore, users are able to load and execute them

via Yavaa once again using possibly updated data (Requirement 18).

308



Requirement 19. Usability
The system has to be accessible for novice to intermediate users.

The usability of Yavaa especially in comparison to commonly used spreadsheet tools was a

major object of investigation during the user study (cf. Section 14.2). The corresponding results

substantiated a considerable improvement over these tools (cf. Section 14.3). As participants also

covered a broad range of experience, Yavaa appears as an adequate alternative no matter a user’s

prior skill level.

Requirement 20. Extensibility
The system has to be structured in a way that allows to easily add new com-

ponents for critical areas. In particular, this includes adding data providers,

data wrappers, and visualizations.

Yavaa’s architecture, as outlined in Section 13.1, features several so-called stores to hold both

declarative descriptions of crucial components as well as the corresponding implementations.

Only a few components are hard-wired, e.g., to facilitate the communication to the interface and

orchestrate the access to and execution of modules from those stores. Yavaa’s other capabilities

in terms of supported data providers, data wrappers, visualizations, and other aspects can be

extended by adding to these stores without having to adjust the remaining codebase. This allows

to rather easily extend the provided functionalities, thus satisfying the set requirement.

This concludes the review of this thesis with regard to the requirements posed in Chapter 2.

It confirms that each of those requirements has been successfully addressed in either concept,

implementation, or both. This conclusion can also be extended to the thesis objectives stated

in Section 1.1, as the discussed requirements were derived from said objectives and as such

represent the same goals. In summary, the preceding discussion illustrates that the proposed

concepts and the corresponding implementation, Yavaa, are indeed a valuable contribution to

enable easier access to data visualization for a broader range of users.

Limitations. As many research projects, also this thesis is based on a set of assumptions to

limit the scope to a feasible subset and promote the bigger picture over handling all corner cases.

However, in practice, those assumptions may restrain the applicability of the developed solution

in real-world scenarios. In the following, some of the assumptions made in this thesis shall be

revisited with respect to the restrictions they entail. Similarly, some general limitations of Yavaa

will be discussed to gauge their impact for the intended audience and workflows. Some of the

current limitations are not fundamental to the approach itself and, hence, can be a subject of

future work. Those will be expanded upon in more detail in Chapter 17.

A key assumption in the dataset descriptions (cf. Chapter 8) and subsequently during dataset

combination (cf. Chapter 10) is the homogeneity of datasets: Values within a column have to share

the same type (given by the column concept), the same format (in particular for time columns),

309



CHAPTER 15. RETROSPECTIVE

and the same unit (applicable only in quantitative columns). As witnessed by the evaluation

preparation (cf. Section 14.1), especially the latter two excluded quite a few datasets. However,

this does not seem to be an intrinsic limitation. Most issues with the format in time columns

are due to datasets providing data for different levels of aggregation like mixing monthly and

yearly data in a single dataset. Arguably, those datasets should be split anyways according to the

granularity of the data they provide. Similarly, datasets containing measurements represented

in different units could be harmonized to use a single unit and thus again conform to the given

requirement.

Similar to the homogeneity, Yavaa also assumes all datasets to be complete, i.e. every combi-

nation of included dimensional values exists in the datasets and is associated to corresponding

measurements. This simplifies the situation of real-world datasets where often enough at least

some values are missing. As discussed before in the context of MDLH [193] (cf. Section 10.1),

describing these gaps can already get arbitrarily complex. So accounting for them in the metadata

descriptions may significantly increase the size of the same up to negating their summarizing

nature altogether. Further, evaluating those descriptions in the context of a particular query will

be slowed down considerably, as the number of required query splits (cf. Subsection 10.3.3) and

thus iterations of the algorithm will grow substantially. For a large number of candidate datasets

or a complicated structure of gaps in the corresponding datasets, this might make the approach

unfeasible in a live-interaction system.

A different approach could be to fill in the gaps once the result is materialized and they can

easily be identified. Other datasets covering these regions could then be fetched to provide the

necessary measurements. However, as metadata descriptions do not contain information about

possible gaps, this might require fetching all such datasets only to finally recognize that some

values are just not available in general. One of the key advantages of the approach presented

in this thesis is the comparatively small amount of data needed to respond to a given query. So

it can be applied even to rather large collections of datasets. This advantage would be entirely

nullified if results would need to be materialized in order to evaluate their suitability. Here, the

decision has been made to favor possibly less complete results but against fetching large amounts

of data for each query.

On a related account, the presented approach committed to the assumption that results

are more consistent if large parts originate from the same source. The idea of fetching all

possible datasets that cover (parts of) a query might have been chosen as the alternative ap-

proach1. This would shift the focus from trying to find a (minimal) combination of datasets

to fulfill a query towards having to resolve possible contradictions among different sources.

Besides requiring substantially more data to be fetched, this also calls for conflict resolution

strategies [205]. From a user perspective, this entails two options: Either conflicts are resolved

transparently by the system or user interactions are used at least in controversial cases. For the

1This is virtually equivalent to first executing the workflow generated by the approach presented in Chapter 10 and
subsequently filling in the blanks in the resulting dataset.

310



intended audience of novice users, both options are likely undesirable. Transparently handling

all conflicts in a background process can hide deficiencies in both data sources as well as the

conflict resolution itself. Even when the system is not confident that a certain value is reliable,

users would have no feedback and might place exaggerated trust in low-confidence data. On the

other hand, the system could provide confidence estimates to users or even include them in the

conflict resolution process. This will require substantial additions to the user interface making it

more complex and thus likely less accessible to inexperienced users. For these reasons, such an

approach has been forgone in this thesis and the aforementioned conflict avoiding strategy has

been adopted instead.

Another simplification has been adopted with regard to the concepts describing the contents

of datasets’ columns. Here, it is assumed that all datasets describe their data using a similar

level of granularity and normalization. However, in practice, dataset structures might differ at

least between providers. Assume a statistical dataset about the number of unemployed by sex.

One way of representing this data is to use, among others, two columns with concepts like “male

unemployed” and “female unemployed”. A different provider might choose a different structure

using a column “sex” and another column “unemployed”. While both datasets might contain the

same data, Yavaa is currently not able to make the connection between those two. In order to

recognize that both descriptions are semantically equivalent, the respective concepts would need

to be decomposed and the underlying data transformed accordingly. This has been deemed out of

scope for this thesis and is discussed as part of future work (cf. Chapter 17).

The motivation for the visualization recommender of Chapter 11 is the lack of experience by

users in choosing suitable visualizations. The matter of what constitutes “suitable” in this context

has to be relayed to the authors of the corresponding visualization descriptions. While most of the

criteria there are of a technical nature2, others depend on the opinion of the respective author. This

constitutes a rather fundamental restriction to basically all such systems. Certain best practices

have evolved that might be applicable to the vast majority of situations [213, 214]. Still, they are

driven by opinions and those opinions may differ, e.g., by cultural background and even change

over time due to, e.g., broader familiarity with certain representations [294]. Similarly, there is a

wide range of potential cognitive biases that may be considered for specific tasks or audiences

[295]. Accounting for all potentially relevant aspects in a visualization recommendation is next

to impossible or will make interacting with the respective interface excruciating cumbersome. So

like all other solutions that venture beyond the mere technical dependencies of visualizations,

also the recommender implemented in Yavaa will inevitably involve a certain level of bias. All

that remains is to recognize biases — not just in this context, but in basically every situation —

and reduce their impact as far as possible.

2For example, there is no meaningful way to create a particular visualization if the data types of involved columns do
not match the ones expected by the visualization.

311





C
H

A
P

T
E

R

16
CONCLUSION

With the thesis coming to a close, it is time to recapitulate. This chapter will revisit the underlying

motivation and summarize the main contributions made. A further look at future directions is

deferred to subsequent Chapter 17.

Ever more publicly available data raises questions about how this treasure of information

can be exploited not just by a select few but by anyone interested. Possible answers have to cover

a rather wide range of relevant aspects: Required data is often scattered over different datasets

owned and published by a multitude of providers. Proper means are needed to identify all relevant

datasets and to combine them into an exhaustive basis for further analysis. As data is rarely

in the form required, several operations will be applied to bring it to its final form. Besides the

omnipresent chance for human error, heterogeneity in representations and the resulting need for

alignments is another source of errors. Especially novice users may miss some pitfalls and need

support to create high-quality results. Raw data is barely understood directly. To reach a wide

audience, effective visualizations are essential to communicate one’s findings and ideas. However,

selecting visualizations matching the current data, let alone effective ones, is a daunting task for

many users. Here, recommenders accounting for the current context can guide users towards

meaningful results. Finally, when all obstacles are overcome, information about the decisions

made is oftentimes lost. This provenance is needed to justify or reproduce the results, though. It

has to be tracked along the entire workflow to document the steps leading to a final data product.

Despite past efforts to solve the individual aspects of such visualization workflows, there is

no widespread solution addressing all of them holistically. This gap was the starting point for

the thesis presented. Its main goal is to develop a platform that is able to support users in their

visualization tasks from start to finish. Over the course of the thesis, this workflow was separated

into individual steps, each of which was analyzed to see how users can be supported to complete

313



CHAPTER 16. CONCLUSION

their tasks. This analysis was guided by two principles: easing challenges posed to users and

eliminating sources of errors. In conjunction with an extensive literature review, the results of

this analysis subsequently motivated the following contributions of this thesis.

A semantic metadata model was developed to describe tabular data which accounts for

a large share of generated data. It extends current standards by including information about

codification schemes as well as summarizing a dataset’s contents. This model paved the way to a

search engine that allows to seamlessly combine multiple datasets into a single result
satisfying users’ information needs. Instead of manually retrieving and joining the results of a

keyword-based search, users can immediately receive a dataset containing all requested data.

The same model allows translating codified values into semantic entities to mitigate

between various encoding schemes used by different data publishers. In subsequent operations,

consistent handling of units is ensured. This includes all necessary conversions of values

between different units, should those become necessary. For complex formulae, an algorithm was

devised to minimize the number of conversions improving the numeric stability of results.

A developed visualization recommender supports users in selecting suitable visualizations.

Besides suggesting visualizations themselves, it also maps individual columns to visual artifacts

thereof. The presented algorithm accounts for column roles, datatypes, and value ranges in the

matching process. Furthermore, dataset structures and visualizations do not need to match

exactly. The recommender also includes suggestions that cover only parts of the dataset but ranks

them lower compared to complete mappings.

Over the course of the entire workflow, all actions are tracked and stored in a provenance
model. This model provides not only the full history of any created data product but also allows to

re-execute the workflow on updated data. Provenance is tracked on a column-level, thus allowing

not only to follow the applied operations but also to inspect the interdependencies among the

individual columns of a dataset. As a means for human users to inspect a given workflow, also a

layouting algorithm for this provenance graph was devised.

All proposed concepts were implemented into a prototype, Yavaa, whose code is pub-

licly available under an open license [data23, web169]. Based on Eurostat’s data holdings, it

features the entire visualization workflow in a single application. To verify the claimed

improvements over commonly used tools for similar tasks, Yavaa was subjected to an extensive

user study. This evaluation confirmed improved usability as well as a reduction of errors in the

resulting data products.

The concepts and implementation provided in this thesis can form the basis for a more

evenly spread exploitation of publicly available data. Unearthing the secrets hidden in this

wealth of information does not have to require expert knowledge. Instead, proper tool support

at crucial steps in the workflow can democratize data access and its dissemination. In this

spirit, the presented thesis might be a small puzzle piece on the way to more transparency and

accountability in all aspects of public life.

314



C
H

A
P

T
E

R

17
FUTURE WORK

As common to research, the concepts presented in this thesis answer some questions, but also

bring up new ones. In the following, some of the future directions arising from the contributions

of this thesis shall be presented. Some of them will include first ideas on how to approach the

respective issues leading the way to continue the work done here. Furthermore, this listing

represents an attempt to classify the elements of future work into those that lean towards the

software engineering side and those that require additional conceptual work. The boundary

between both areas is oftentimes blurry at best, especially in Computer Science. So further

investigations into individual topics might change the current assignments in both directions.

17.1 Conceptual Foundations

Decentralize metadata repositories. The architecture proposed in Chapter 13 relies on a

centralized metadata store for all available data products. This design is based on the assumption

that data providers are either not involved in such a project or are non-cooperative. In both

cases, no changes to the existing systems could be made. If this assumption is dropped and data

providers actively participate, the metadata store can be decentralized, such that each provider

is responsible for maintaining its own store.

The requirements for such a store a rather low, as they only have to provide a public SPARQL

endpoint and the metadata within that has to comply with the structure proposed in Chapter 8.

While the former is already part of many Linked Data setups, the latter also relies to a large

extent on existing and widespread standards. This keeps structural changes to a minimum and

allows for low-investment participation. A more challenging task is posed by the harmonization

of the vocabularies used to describe the particular datasets’ contents.

315



CHAPTER 17. FUTURE WORK

Extend dataset descriptions for better ranking during dataset combinations. As noted

in the later parts of Chapter 15, Yavaa currently assumes datasets to complete, i.e. they do not

contain larger gaps in their value coverage. As one way to account for such gaps, the dataset

description could be extended with information about this coverage. This information could then

be used during the ranking phase of dataset combinations (cf. Subsection 10.3.2) to promote more

complete datasets over those with inferior coverage. Similarly, other value-level characteristics

like confidence-intervals could be used as additional ranking factors in the dataset combination1.

However, meaningful aggregations have to be found that allow keeping the metadata descriptions

overall within a reasonable size.

Decompose column header concepts. Different data providers will inevitably have diverging

opinions on how data should be modeled. One consequence is a certain variety in how datasets

are structured. Large parts of this thesis are based on the assumption that datasets are fully

normalized and thus column headers are already atomic. In practice, however, this might prove

to be too restrictive. As an example, consider data about life expectancy by sex. This can be

represented either by two normalized columns, sex and life expectancy, or by using composed

concepts for two columns like female life expectancy and male life expectancy. In the future,

systems should be able to recognize both variations as idempotent and be able to match one to

the other. Furthermore, this decomposition might be context-sensitive: What is considered atomic

in one context, may need to be decomposed in another. Nonetheless, the information about a

possible decomposition of the concepts used to describe a column’s content needs to be maintained.

For observable properties, this likely requires implementing the recommendations made by the

InteroperAble Descriptions of Observable Property Terminology WG [157, 158, web100]. Here,

the author of this thesis is already involved in efforts to systematically decompose existing

vocabularies with the goal of making them interoperable. While this effort is only geared towards

observable properties, i.e. measurable characteristics of physical objects, similar techniques can

likely be applied to other areas as well.

Model the mathematical relationships among concepts. The example used in the user

evaluation (cf. Section 14.2) showed that users still need to define the input operands before

being able to calculate a derived value. At least some of these relations could be expressed in

the underlying semantic model. One example is the concept of “unemployment rate” which by

itself is derived from two other concepts – “people unemployed” and “labor force”. Sometimes data

providers already offer the derived quantity kind in a dataset of its own, but oftentimes only the

individual operands are available. As touched upon in Chapter 9, a similar situation exists for

units of measurement: Derived units can be expressed via the relations among their components

and some unit ontologies encode this information [161]. This general approach can be extended

1This is assuming the corresponding information is offered by data providers.

316



17.1. CONCEPTUAL FOUNDATIONS

and applied to generic concepts outside of the unit domain. If such concepts and relations would

be available, systems like Yavaa can go beyond union and join operations for dataset combination

(cf. Chapter 10) and automatically compute derived values.

Generalizing the approach of derived units is not without challenges, though. Some rela-

tionships are more complex than just applying some arithmetic operators, but pose additional

restrictions on the operands. Consider “annual increase in population” as an example. The

mathematical connection is a mere difference between two operands. However, the remaining

context has to be equal (e.g., the region or the age cohort observed) and both operands have to

originate from consecutive years. A model would not only have to include the arithmetic operation

(subtraction) but also the additional restriction (data from consecutive years). Another challenge

is given by the sheer endless possibilities to combine existing values. Any static model will miss

out on some links and still be subject to more than exponential growth. This suggests that a more

dynamic approach is advised. Instead of modeling certain connections repetitively for all concepts,

a combination of Natural Language Processing (NLP) and semantic concepts could separate

structure from content. While one part of the model describes the basic concepts (essentially the

current status), another part focuses on just the connections without particular instantiations.

These connections could, e.g., be just “annual increase” without the connection to population.

User input would need to be parsed in the component describing the content (“population”) and

the one for structure (“annual increase”). By combining the two on-the-fly a system can then

trigger the respective computations without the need to materialize all possible combinations

beforehand.

Support for user uploaded datasets. Yavaa currently includes only rudimentary support for

datasets uploaded by users. In particular, this was disabled throughout the evaluation and used

only during early testing. However, for a productive system users need to be able to augment

datasets with their own local data. Most modules in Yavaa need some information about the data

they are working with in order to function properly. This metadata is initially lacking for local

datasets provided by users and needs to be generated on the fly. Determining datatypes, roles, and

concepts of and in columns corresponds to tasks within Semantic Table Annotation (STA) [296,

297]. However, the scope is somewhat extended: Where STA assumes only a single subject per

row, statistical datasets oftentimes have multiple dimensional columns of equal rank (e.g., two

countries and their trade balance). Further, current research into STA assumes that most or even

all of the information in the table is already included in the knowledge graph and the task boils

down to matching table and knowledge graph information. When considering arbitrary datasets,

only the entities by themselves will be included in the knowledge graph, though. Most of their

relations and especially the measurements themselves will be missing, making the matching

tasks much more challenging.

317



CHAPTER 17. FUTURE WORK

Explore and evaluate other strategies to cope with an overlap in dataset combination.
Chapter 10 describes an algorithm to generate a workflow for a user-requested dataset by

combining existing datasets on-the-fly. During such a combination individual parts of the resulting

dataset may be provided by different sources that are possibly contradicting one another. The

proposed algorithm adopted a strategy of maximum coherence, i.e. by favoring datasets that can

cover larger parts of the final result over smaller ones. This follows the assumption that the

source datasets in themselves are coherent and any conflicts will arise from combining datasets

from different sources. However, other strategies might be possible here. Different approaches

might consider the values of all datasets in question. First, they gather all datasets in question

and combine all of them resulting in cells with a set of values. In a second conflict resolving

step, these sets can be reduced into a single value using different techniques. Naïve techniques

might resort to a simple majority voting or are simply compute the average or median of all

available values. Others might consider additional aspects like some kind of trustworthiness of

the respective sources, outlier detection within a cell before averaging or maximizing consistency

with cell in the immediate surrounding2.

Multiple factors might influence the choice of an approach. The primary goal is likely to

provide “correct data”, whatever this means in a particular context. Apart from that, other factors

can be the availability of information and the performance of computations. Having information

about the trustworthiness of sources can also be a deciding factor. Similarly, when a particular

approach substantially deteriorates the performance of a system and users have to wait a long

time even for rather simple queries, such an approach will not gain any traction. Another aspect

to consider is the tracking of the provenance as outlined in Chapter 12. More complex approaches

will increase the amount of provenance data to be gathered. This may go up to a point where it is

no longer maintainable in the current form and new ways of storing and handling provenance

data have to be found.

Track column semantics across computations. Similar to the aforementioned modeling of

derived quantity kinds in order to serve more complex user queries directly, the same techniques

can be used to track the meaning of individual columns across computations. Right now, many

operations lose the semantic meaning of a particular column – Yavaa has no way of knowing what

the resulting meaning of a column is that has been derived by combining multiple existing ones.

In contrast to dataset combination, here input and output are switched. Instead of determining

the necessary computations given a certain concept, the computations are given and the concept is

asked for. In general, many techniques will be able to handle both directions. However, formulae

2Here, the surrounding is defined according to data dimensions. However, the challenge remains to define a proper
measure for closeness for each dimension and determine their importance in relation to one another. In a dataset
about population counts, a dimension “country” requires a binary distance measure (basically only assigning
equal values as close). On the other hand, a dimension “year” can use a Euclidean distance measure. With regard
to the importance, the “country” is essential, whereas the “year” is less so.

318



17.1. CONCEPTUAL FOUNDATIONS

used for the computation might vary in their form and thus make it harder to determine the

corresponding concept. So before matching against a repository of known concepts and their

relations can be performed, formulae have to be normalized into a canonical form.

Explore semantics-driven operations. In this thesis and most other systems, operations

that can be applied to a dataset’s columns are either generic or at most driven by the corresponding

data type. However, when the values of a column are embedded into a semantic network, the

intrinsic information could be exploited to offer different ways of interacting with the data. For

example, consider a column containing geographic entities like cities. When those values are part

of a larger knowledge graph, the interface can offer semantic-driven aggregation functions like

“aggregate by country”3. Similarly, custom filter operations are possible once the context of values

is known to a system.

Extend the usage of data characteristics in visualization recommendation. Chapter 7

and 11 outlined a way to capture the technical requirements a visualization poses on the underly-

ing dataset. The aspects used there are by no means exhaustive. Other data characteristics may

in a similar way contribute to the recommendations made by Yavaa. For example, the distinction

between continuous and discrete values in a measurement column can drive the distinction

between a line and a bar chart. Having a large number of duplicates in a dataset will yield a

different visualization than having only unique entries.

Another characteristic to be exploited is the initial thrust of a dataset. Even though their

superficial structure might seem closely related, it is all tables, after all, there are different kinds

of datasets. In time series data, numeric values will likely be close to one another. On the other

hand, graphs will have at least have two categorical columns that draw values from a shared

pool, labels of the respective nodes. Further analysis of the correlations among nodes might

yield the fact that this is actually a hierarchy instead of a generic graph structure. Determining

the category the current dataset belongs to, further enables reducing the number of suggested

candidates. For example, a dataset consisting of two categorical dimensions and a numeric

measurement can be displayed using a tabular heatmap. However, if the category suggests this is

a generic graph, a force feedback layout mapping the numeric values to distances between nodes

or edge weights might be more appropriate.

Consider further aspects in visualization recommendation. The approach presented in

Chapter 11 is based almost exclusively on technical data characteristics. However, other aspects

can contribute as well [298]. As outlined in Chapter 1, visualizations serve a specific purpose or

task. So when a system has an understanding of what tasks underlie the current workflow, it can

3This particular behavior could be accomplished the Mannheim Search Join Engine [61] (cf. Section 10.1). However,
with that system users would first need to extend their current dataset with the respective information, before
being able to aggregate it in a second step.

319



CHAPTER 17. FUTURE WORK

also suggest more appropriate visualizations. Further, users and their communities might have

specific preferences for one visualization over another. While the respective information can be

queried explicitly from users, the true goal would be to determine them automatically. Having a

user model and by extension a community model in addition to the characteristics of the current

dataset, a system might be able to make educated guesses4 on tasks and general preferences.

Including these and other inputs more in the visualization recommendation will improve not only

its prediction accuracy but also reduce the number of “useless” visualizations.

Explore recommendation of scales in visualizations. Scales are an important part of any

visualizations and control how values are mapped to (spatial) artifacts. While Wilkinson stressed

this fact in The Grammar of Graphics [50], most visualization recommender systems omit this

aspect (cf. Chapter 11). The default criterion to choose a scale would be to make efficient use of

available space. For example, a scatter plot is rather useless when all values are concentrated in

a small section of the canvas. Similarly, a bar chart for vastly different values may not be useful

as some bars might not be recognizable anymore. In both cases, a more adequate scale might be of

help. Changing the range of the scale might yield better results in the first case, while the second

one could benefit from switching to a logarithmic scale. As with visualizations, determining a

proper scale is influenced by many factors: Most important is the distribution of values along the

scale. But also the conventions for particular visualizations have to be considered. For example,

line charts are generally assumed to show the x-axis at a y-value of zero. While technically correct

and feasible, deviating from that convention increases the mental capacity needed to understand

the visualization and might lead to easier misinterpretation.

17.2 Software Engineering

Increase system performance. While Yavaa’s performance was demonstrated to be well

suited for the posed tasks, lowering technical requirements and increasing overall performance

are natural goals for any system in production. For Yavaa, multiple different venues are possible.

On an implementation level, the last years saw most browser vendors implementing support for

WebAssembly [web45]. Its code is not parsed and compiled at runtime like JavaScript, but is

processed beforehand. This allows to apply a wider range of static analysis and thus optimizations

that would be too costly for just-in-time compiler. On a more conceptual level, the workflow itself

could be optimized. The database community has a long-standing experience in query planning

and execution. The operations performed in both environments, Yavaa and databases, are closely

related. So transferring proven techniques from databases to Yavaa may induce better ways to do

4A guessing system translates into a probability distribution over available possibilities in its implementation.

320



17.2. SOFTWARE ENGINEERING

certain computations. In particular, these techniques can be applied for the execution of already

existing workflows. Here, optimization can not only happen on a local, step-by-step basis but

consider the entire workflow at once.

Another indirect way of increasing performance is given by offloading some computations

to the data providers themselves. While CSV/TSV-based formats currently do not allow for

complex queries5, other methods of data access offer computational capabilities. For example,

publishing datasets using the RDF Data Cube Vocabulary [web9] via a SPARQL endpoint would

provide systems with the opportunity to offload some computations to data providers. Initial

filter operations triggered by the data combination dialog could be encoded in the corresponding

SPARQL queries. Besides reducing the computations necessary on the client-side, this would also

reduce the required amount of data transfers between a data provider and client. As with all

public offerings of computational capacity, fair-use policies need to be respected and fail-safes

have to be put in place in case the respective service is unavailable.

Extend supported data providers. Yavaa’s implementation is prototypical and focused on

only one data provider: Eurostat. For a production system to demonstrate its full potential,

multiple such providers as diverse as possible need to be supported. For the most part, this

will boil down to implementation tasks, as Yavaa’s architecture already accounts for multiple

providers to be used. In particular, two modules would need to be extended or refactored: the

data loaders mentioned in Section 13.1 and the crawler described in Section 14.1. Adaptations in

these two components could allow to include basically any data provider offering tabular data.

Harmonize vocabulary and root it in common knowledge bases. The prototype used in

the evaluation simplified the vocabulary to describe dataset and column contents by minting new

IRIs for each header after normalization. However, this removes any semantic connection across

different headers almost completely. A more sophisticated approach should reuse the concepts of

common knowledge bases like Wikidata [web69] or DBpedia [web163] wherever possible. Such

a foundation will further foster data exchange across organizations and ease data integration

not only with Yavaa. When metadata stores are distributed across several providers, a common

vocabulary can substantially reduce the efforts needed to integrate the data. In particular, it

removes the necessity to traverse multiple links to determine whether two IRIs actually refer to

the same or similar concepts.

Mine usage data for common operations and visualizations. Once a system like Yavaa is

used in production, a wealth of information in form of executed workflows will become available.

Such a resource can yield more insight into what data is commonly used, how it is combined

and transformed, or how visualizations are chosen based on data semantics. Yavaa and similar

5An RFC for “URI Fragment Identifiers for the text/csv Media Type” [299] might have provided a way, but seems to
never have gained enough traction.

321



CHAPTER 17. FUTURE WORK

systems can benefit from this usage data in order to improve and extend the existing recommenda-

tion facilities. Of particular interest are relationships between visualizations and data semantics.

Users well versed in a particular domain can easily decide on a common data display for their

data and domain. However, such knowledge is rather hard to obtain for users new to the field

and generic systems. Having a large stockpile of formal descriptions for how specific datasets are

translated into a visual representation, might bridge this gap. A system can formalize potential

connections and subsequently include them in the recommendations made to users. The basis

for such analysis is laid in the detailed tracking of provenance as described in Chapter 12. It

includes not only the data semantics in form of concepts for each column but also the detailed

mapping of which columns is translated to which artifact.

Extend the visualization store in quantity and quality. Yavaa’s current implementation

features only a small number of visualizations. While implementing a given visualization is rather

easy, determining its requirements is not. This challenge only grows when more visualizations

and their descriptions are to be added or new types of requirements are introduced. As outlined

in Chapter 7, most of the thresholds used to describe a visualization are fuzzy and subject to

personal preferences. The challenge is to determine proper thresholds for a large number of

visualizations that still somewhat represent a consensus across all stakeholders. Approaching

this task objectively and systematically could be realized by analyzing large quantities of visu-

alizations including their source data. The increasing drive in scholarly publications towards

publishing source data along with derived texts and visualizations might provide the raw data at

least for the scientific domain. The analysis would then need to involve several steps: Encoun-

tered visualizations have to be classified independent of possible visual variations. Further, data

and other characteristics have to be deduced from both the source data and the context of the

visualization, most often given by a caption and/or surrounding text. Finally, all that information

has to be cleaned and analyzed to determine the range for each requirement and visualization

that should be included in the system. Such an approach would likely not only expand the range

of visualizations covered, but also base the chosen thresholds in their requirements on actual use

instead of a few opinions.

322



LIST OF TABLES

2.1 Summary of objectives and requirements. . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Support for requirements in common strategies. . . . . . . . . . . . . . . . . . . . . 55

4.1 Functional requirements and corresponding solution approaches. . . . . . . . . . 70

6.1 Example for a hierarchical relationship between columns. . . . . . . . . . . . . . . 86

7.1 Semiology of Graphics: Levels of organization for retinal variables (after [49]). . . 90

7.2 Semiology of Graphics: Length of retinal variables by implantation (after [49]). . 90

7.3 Grammar of Graphics: Scaling functions (after [50]). . . . . . . . . . . . . . . . . . . 93

7.4 Grammar of Graphics: Aesthetic Attributes (from [50]). . . . . . . . . . . . . . . . . 94

7.5 VizAssist: Mapping visual type (rows) and data type (columns) to MatGL (from

[127]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.6 VizAssist: MatGL values for special data types (from [127]; cf. Section 5.1). . . . . 99

7.7 VizAssist: Visualization model for a two-dimensional scatter plot (from [127]). . . 100

7.8 Comparison of visual variables (after [80]). . . . . . . . . . . . . . . . . . . . . . . . . 101

7.9 Different models of the same data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.1 Summary of support for requirements in existing metadata standards. . . . . . . . 124

9.1 Dimension vector definition of [168]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.2 Osprey: Example-constraints for code of Listing 9.5 (from [167]). . . . . . . . . . . 138

10.1 Information Manifold: Class hierarchy (from [196]). . . . . . . . . . . . . . . . . . . 163

10.2 Information Manifold: Information sources (from [196]). . . . . . . . . . . . . . . . 163

10.3 Example: Coverage and scores for initial query. . . . . . . . . . . . . . . . . . . . . . 181

10.4 Example: Coverage and scores for second iteration’s query. . . . . . . . . . . . . . . 182

11.1 APT: Base set of primitive graphical languages (from [215]). . . . . . . . . . . . . . 188

11.2 Tableau: Mark type selection (from [126]). . . . . . . . . . . . . . . . . . . . . . . . . 189

11.3 VizRec: Possible mappings (after [137]). . . . . . . . . . . . . . . . . . . . . . . . . . 195

11.4 Comparison of visualization recommending systems. . . . . . . . . . . . . . . . . . . 212

323



LIST OF TABLES

13.1 Yavaa: Workflow annotation properties for a single column. . . . . . . . . . . . . . 240

14.1 Yavaa Metadata Store (Evaluation): Number of entities. . . . . . . . . . . . . . . . 275

14.2 User evaluation: Missing artifacts in submissions. . . . . . . . . . . . . . . . . . . . 283

A.1 RDF namespaces used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

C.1 Dimensions added. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

C.2 Units added I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

C.3 Units added II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

C.4 Compound units added. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

F.1 Yavaa: List of supported visualizations. . . . . . . . . . . . . . . . . . . . . . . . . . . 402

F.2 Yavaa: List of supported layouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

324



LIST OF FIGURES

1.1 Visualization Reference Model (extended from [19]). . . . . . . . . . . . . . . . . . 10

3.1 Eurostat: Catalog-based search interface (screenshot from [web1]). . . . . . . . . 28

3.2 Eurostat: Keyword-based search interface. . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Eurostat: Data Browser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Eurostat Data Browser: Filter interface. . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Eurostat Data Browser: Bar chart visualization. . . . . . . . . . . . . . . . . . . . 31

3.6 Eurostat Data Browser: Formatting options. . . . . . . . . . . . . . . . . . . . . . . 32

3.7 LibreOffice Calc: Chart Wizard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 Google Fusion Tables: Data view using given demo data. . . . . . . . . . . . . . . 35

3.9 Google Fusion Tables: Map visualization. . . . . . . . . . . . . . . . . . . . . . . . . 36

3.10 Google Fusion Tables: Chart visualization. . . . . . . . . . . . . . . . . . . . . . . . 36

3.11 Google Fusion Tables: “Find a table to merge with ...”. . . . . . . . . . . . . . . . . 37

3.12 Tableau: User-created dashboard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.13 Tableau: Datasources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.14 Tableau: Editing interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.15 Tableau: Calculated fields interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.16 Tableau: Mark types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.17 Tableau: Joining datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.18 Jupyter Notebook: Interface (example from [86, web42]). . . . . . . . . . . . . . . 43

3.19 Taverna Workbench: Perspectives for an example workflow [web60]. . . . . . . . 48

3.20 VisTrails: Example workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.21 VisComplete: Path summary (from [110]) . . . . . . . . . . . . . . . . . . . . . . . . 51

3.22 VisComplete: Interface example (from [110]). . . . . . . . . . . . . . . . . . . . . . 52

4.1 Conceptual workflow overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Hierarchy of data types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 Basic table structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Transformation of a plain table to a pivot table. . . . . . . . . . . . . . . . . . . . . 79

6.3 Transformation of a plain table to an OLAP cube. . . . . . . . . . . . . . . . . . . . 80

325



LIST OF FIGURES

7.1 Semiology of Graphics: Retinal variables (after [49]). . . . . . . . . . . . . . . . . 89

7.2 Semiology of Graphics: Combination of retinal variables (after [49]). . . . . . . . 91

7.3 Grammar of Graphics: Example graph and description (after [50]). . . . . . . . . 92

7.4 Polaris: Example of a visualization (from [138]). . . . . . . . . . . . . . . . . . . . 96

7.5 Polaris: Classes of visualizations (from [138]). . . . . . . . . . . . . . . . . . . . . . 98

7.6 VizAssist: Selection of Objectives (from [127]). . . . . . . . . . . . . . . . . . . . . . 100

7.7 Influence of chosen coordinate system on the maximum number of tuples dis-

playable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.8 Nested visualization (Pie chart in map). . . . . . . . . . . . . . . . . . . . . . . . . 103

7.9 Example suitability function to assess the cardinality of a component. . . . . . . 106

7.10 Example visualization: Sunburst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.11 Example visualization: Linechart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.12 Example visualization: Map (nesting). . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.1 dcat: Summary of ontology (from [web93]). . . . . . . . . . . . . . . . . . . . . . . . 115

8.2 voiD: Ontology model (after [web95]). . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.3 Data Cube: Ontology model (from [web9]). . . . . . . . . . . . . . . . . . . . . . . . 119

8.4 EML: Schematic overview (after [web97]). . . . . . . . . . . . . . . . . . . . . . . . 120

8.5 EML: Schematic overview: Coverage (after [web97]). . . . . . . . . . . . . . . . . . 121

8.6 EML: Schematic overview: AttributeList (after [web97]). . . . . . . . . . . . . . . 122

8.7 Yavaa: Ontology model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.8 Yavaa: Ontology model - yavaa:TimeFormat. . . . . . . . . . . . . . . . . . . . . . 128

9.1 Successive application of unit resolving to formula: [m]+[ft]
[s] + [ft]

[s] . . . . . . . . . . . 146

9.2 Resulting ASTs after applying unit resolving for formula: [m]+[ft]
[s] + [ft]

[s] . . . . . . . 147

9.3 Visual illustration of summation collection rule. . . . . . . . . . . . . . . . . . . . . 151

10.1 “On-the-fly Table Generation”: Approach (from [182]). . . . . . . . . . . . . . . . . 156

10.2 MDL summarization: Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.3 CAS-Interior: Worst case splitting (after [190]). . . . . . . . . . . . . . . . . . . . . 159

10.4 MDLH: Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

10.5 MDLH: One-dimensional example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

10.6 Division of a user query by a source dataset. . . . . . . . . . . . . . . . . . . . . . . 174

10.7 Strategies when splitting a user query. . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.8 Worst case deterioration of splitting strategies. . . . . . . . . . . . . . . . . . . . . 176

10.9 Example: Initial query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10.10 Example: Source datasets (partially fictitious, data after [data3, data16]). . . . . 180

10.11 Example: State of processing after first iteration. . . . . . . . . . . . . . . . . . . . 181

10.12 Example: State of processing after second iteration. . . . . . . . . . . . . . . . . . 182

10.13 Example: Final composition of result. . . . . . . . . . . . . . . . . . . . . . . . . . . 182

326



LIST OF FIGURES

10.14 Example: Workflow to fulfill request. . . . . . . . . . . . . . . . . . . . . . . . . . . 183

11.1 APT: Ranking of visual attributes (from [215]). . . . . . . . . . . . . . . . . . . . . 187

11.2 Articulate: Selection process for visualization (from [217]). . . . . . . . . . . . . . 191

11.3 VizBoard and VISO: Visualization and data model (from [140]). . . . . . . . . . . 192

11.4 Yavaa: Preparation of mapping graph - duplication of vertices. . . . . . . . . . . . 204

11.5 Yavaa: Schematic overview for visualization selection. . . . . . . . . . . . . . . . . 211

12.1 Why-Provenance: Different witnesses for same query result (from [256]). . . . . 215

12.2 noWorkflow: trial history (from noWorkflow demo project [web118]). . . . . . . . 219

12.3 noWorkflow: dataflow (from noWorkflow demo project [web118]). . . . . . . . . . 219

12.4 noWorkflow: details of trial execution (from noWorkflow demo project [web118]). 220

12.5 YesWorkflow: dataflow of the YesWorkflow example script [web119]. . . . . . . . 222

12.6 PROV: Concepts and relations (after [web129]). . . . . . . . . . . . . . . . . . . . . 223

12.7 PROV: Example provenance graph (from [web129]). . . . . . . . . . . . . . . . . . 225

12.8 ProvONE datamodel (from [web139]). . . . . . . . . . . . . . . . . . . . . . . . . . . 227

12.9 Yavaa: Schematic example for provenance graph of a load activity. . . . . . . . . 230

12.10 Yavaa: Schematic example for provenance graph of a computational activity. . . 231

12.11 Yavaa: Schematic example for provenance graph of a visualization activity. . . . 232

13.1 Yavaa: Architecture Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

13.2 Yavaa: Reuse of columns across dataset versions. . . . . . . . . . . . . . . . . . . . 241

13.3 Reasonable conversion graph topologies. . . . . . . . . . . . . . . . . . . . . . . . . 246

13.4 OM 1: Generalized conversion path structure. . . . . . . . . . . . . . . . . . . . . . 249

13.5 PROV-Constraints [web125]: Visual illustration of inference rule 5. . . . . . . . . 251

13.6 Yavaa: Workflow view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

13.7 Workflow for visualization generation . . . . . . . . . . . . . . . . . . . . . . . . . . 259

13.8 Yavaa: Example workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

13.9 Yavaa user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

13.10 Yavaa user interface: Construct Dataset dialog. . . . . . . . . . . . . . . . . . . . . 267

13.11 Yavaa user interface: Results of Construct Dataset. . . . . . . . . . . . . . . . . . 268

13.12 Yavaa user interface: Selecting a visualization. . . . . . . . . . . . . . . . . . . . . 269

13.13 Yavaa user interface: Visualization specific bindings. . . . . . . . . . . . . . . . . . 269

14.1 User evaluation: Scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

14.2 User evaluation: Task description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

14.3 User evaluation: Anticipated Strategies. . . . . . . . . . . . . . . . . . . . . . . . . 278

14.4 Evaluation participants: Demographic composition. . . . . . . . . . . . . . . . . . 279

14.5 Evaluation participants: Prior experience. . . . . . . . . . . . . . . . . . . . . . . . 280

14.6 User evaluation: Sample Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

327



LIST OF FIGURES

14.7 User evaluation: HIGH-severity deviations from the sample solution. . . . . . . 284

14.8 User evaluation: MODERATE-severity deviations from the sample solution. . . 285

14.9 User evaluation: LOW-severity deviations from the sample solution. . . . . . . . 286

14.10 User evaluation: Issues per submission by severity. . . . . . . . . . . . . . . . . . 286

14.11 Evaluation results: Time spent overall. . . . . . . . . . . . . . . . . . . . . . . . . . 289

14.12 Evaluation results: Time spent vs. issues in submissions. . . . . . . . . . . . . . . 289

14.13 Evaluation results: Time taken per tool and step. . . . . . . . . . . . . . . . . . . . 290

14.14 Evaluation results: Aggregated time for Search & Load, Filter, and Joining

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

14.15 Evaluation results: Difficulty assessments. . . . . . . . . . . . . . . . . . . . . . . . 294

14.16 Evaluation results: Average difference of difficulty assessments. . . . . . . . . . . 295

14.17 Evaluation results: Usability assessments. . . . . . . . . . . . . . . . . . . . . . . . 296

14.18 Evaluation results: SUS-scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

14.19 Relation of SUS-scores for responses that allowed the calculation of both (13×). 297

14.20 Benchmark search strategies: Executions per minute. . . . . . . . . . . . . . . . . 299

14.21 Benchmark results: Workflow execution time in seconds (cat. sel. 50%; time sel.

50%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

14.22 Benchmark results: Workflow execution time in seconds for different selectivities

excluding I/O-operations (distinct categories: 245; distinct times: 100). . . . . . . 301

G.1 User evaluation: Welcome page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

G.2 User evaluation: Privacy statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

G.3 User evaluation: Scenario and task introduction. . . . . . . . . . . . . . . . . . . . 405

G.4 User evaluation: Task description (Yavaa / part 1). . . . . . . . . . . . . . . . . . . 406

G.5 User evaluation: Task description (Yavaa / part 2). . . . . . . . . . . . . . . . . . . 407

G.6 User evaluation: Task description (Yavaa / optional hint). . . . . . . . . . . . . . . 407

G.7 User evaluation: Artifacts and time distribution (Yavaa). . . . . . . . . . . . . . . 408

G.8 User evaluation: Difficulty assessment (Yavaa). . . . . . . . . . . . . . . . . . . . . 409

G.9 User evaluation: Usability assessment (Yavaa). . . . . . . . . . . . . . . . . . . . . 409

G.10 User evaluation: Task description (Spreadsheet / part 1). . . . . . . . . . . . . . . 410

G.11 User evaluation: Task description (Spreadsheet / part 2). . . . . . . . . . . . . . . 411

G.12 User evaluation: Task description (Spreadsheet / optional hint). . . . . . . . . . . 411

G.13 User evaluation: Artifacts and time distribution (Spreadsheet). . . . . . . . . . . 412

G.14 User evaluation: Difficulty assessment (Spreadsheet). . . . . . . . . . . . . . . . . 413

G.15 User evaluation: Usability assessment (Spreadsheet). . . . . . . . . . . . . . . . . 413

G.16 User evaluation: Background information. . . . . . . . . . . . . . . . . . . . . . . . 414

G.17 User evaluation: Final Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

H.1 Yavaa user interface: Workflow per strategy. . . . . . . . . . . . . . . . . . . . . . . 417

328



LIST OF FIGURES

H.2 Yavaa user interface: Landing page. . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

H.3 Yavaa user interface: Keyword based search. . . . . . . . . . . . . . . . . . . . . . 418

H.4 Yavaa user interface: Select datasets to join. . . . . . . . . . . . . . . . . . . . . . . 419

H.5 Yavaa user interface: Join condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

H.6 Yavaa user interface: Resolve value labels. . . . . . . . . . . . . . . . . . . . . . . . 420

H.7 Yavaa user interface: Filtering a categorical column. . . . . . . . . . . . . . . . . . 420

H.8 Yavaa user interface: Filtering a numerical/time column. . . . . . . . . . . . . . . 421

H.9 Yavaa user interface: Dropping columns. . . . . . . . . . . . . . . . . . . . . . . . . 421

H.10 Yavaa user interface: Merged and filtered dataset. . . . . . . . . . . . . . . . . . . 422

H.11 Yavaa user interface: Adding derived columns. . . . . . . . . . . . . . . . . . . . . 422

H.12 Yavaa user interface: Dataset ready to be visualized. . . . . . . . . . . . . . . . . . 423

H.13 Yavaa user interface: Selecting a visualization. . . . . . . . . . . . . . . . . . . . . 423

H.14 Yavaa user interface: Binding columns to visual artifacts. . . . . . . . . . . . . . . 424

H.15 Yavaa user interface: Visualized dataset. . . . . . . . . . . . . . . . . . . . . . . . . 424

H.16 Yavaa user interface: Workflow view. . . . . . . . . . . . . . . . . . . . . . . . . . . 425

H.17 Yavaa user interface: Export dialog. . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

H.18 Yavaa user interface: Constructing a dataset. . . . . . . . . . . . . . . . . . . . . . 426

H.19 Yavaa user interface: Search result for a constructed dataset. . . . . . . . . . . . 426

H.20 Yavaa user interface: Source distribution for a constructed dataset. . . . . . . . . 427

329





LIST OF CODE-LISTINGS

3.1 Structure of ipynb: Top level structure (extracted from [web42]). . . . . . . . . . . 44

3.2 Structure of ipynb: Cell level structure (extracted from [web42]). . . . . . . . . . 44

7.1 Notation example: Visualization component. . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Column Description: Sunburst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3 Column Description: Linechart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.4 Column Description: Map (nesting). . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.1 Sample C program with CPF[UNITS] annotations (from [166]) . . . . . . . . . . 133

9.2 GLISP unit definitions (from [168]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.3 Simplification of compound units (from [168]) . . . . . . . . . . . . . . . . . . . . . 136

9.4 Osprey: Additional unit definitions (from [167]). . . . . . . . . . . . . . . . . . . . 136

9.5 Osprey: Sample C program using Osprey types (from [167]). . . . . . . . . . . . . 137

9.6 Annotating a constant as conversion factor in Osprey (from [167]) . . . . . . . . . 138

9.7 Annotating a B machine as given in [165] . . . . . . . . . . . . . . . . . . . . . . . 139

9.8 Pseudocode to determine the result unit for a given formula. . . . . . . . . . . . . 141

9.9 Pseudocode to process an AST node. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.10 Pseudocode to retrieve a specific variant for a node. . . . . . . . . . . . . . . . . . 145

9.11 Pseudocode for rule to collect operands of summations in pre-processing. . . . . 151

9.12 Pseudocode for rule to split up summations in post-processing. . . . . . . . . . . . 151

9.13 Pseudocode for rule to split up summations in post-processing. . . . . . . . . . . . 152

10.1 MDL-summarization: CAS-Interior (from [190]). . . . . . . . . . . . . . . . . . . . 158

10.2 MDL-summarization: MDLH-Greedy (from [193]). . . . . . . . . . . . . . . . . . . 161

10.3 Information Manifold: Example query (from [196]). . . . . . . . . . . . . . . . . . . 164

10.5 Information Manifold: Intermediate query Q′ (after [196]). . . . . . . . . . . . . . 164

10.4 Information Manifold: CreateBuckets (from [196]). . . . . . . . . . . . . . . . . . . 165

10.6 MiniCon: Example setup (from [200]). . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10.7 Pseudocode for dataset combination approach. . . . . . . . . . . . . . . . . . . . . 169

11.1 VizRec: Bar chart descriptions (from [137]). . . . . . . . . . . . . . . . . . . . . . . 194

11.2 Draco: Soft and hard constraint examples (after [228]). . . . . . . . . . . . . . . . 198

11.3 Draco: Example for Partial Specification (from [228]). . . . . . . . . . . . . . . . . 199

11.4 Draco: Sample response (from [228]). . . . . . . . . . . . . . . . . . . . . . . . . . . 199

11.5 Pseudocode: Creation of virtual visualizations. . . . . . . . . . . . . . . . . . . . . 209

331



LIST OF CODE-LISTINGS

12.1 Why-Provenance: Example SQL-query (from [254]). . . . . . . . . . . . . . . . . . 215

12.2 pSQL: Query syntax (from [259]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

12.3 pSQL: Sample queries (from [259]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

12.4 YesWorkflow: example script (from [web119]). . . . . . . . . . . . . . . . . . . . . . 221

13.1 Yavaa: Workflow graph visualization - layouting. . . . . . . . . . . . . . . . . . . . 253

13.2 Yavaa: Workflow graph visualization - drawing. . . . . . . . . . . . . . . . . . . . . 254

13.3 Yavaa: Workflow graph visualization - Render object. . . . . . . . . . . . . . . . . 255

13.4 Message definition: General structure. . . . . . . . . . . . . . . . . . . . . . . . . . 257

13.5 Message definition: Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

13.6 Communication Layer: Example message (Request for a subset of primary data). 257

13.7 Yavaa: Serialized provenance record - top level. . . . . . . . . . . . . . . . . . . . . 260

13.8 Yavaa: Serialized provenance record - second level entities. . . . . . . . . . . . . . 262

13.9 Yavaa: Serialized provenance record - second-level activities. . . . . . . . . . . . . 262

13.10 Yavaa: Serialized provenance record - second-level relations. . . . . . . . . . . . . 263

B.1 Unit testing script in Mathematica [web103]. . . . . . . . . . . . . . . . . . . . . . 383

B.2 Results for unit testing script in Mathematica [web103]. . . . . . . . . . . . . . . 384

B.3 Unit testing script in Matlab [web104]. . . . . . . . . . . . . . . . . . . . . . . . . . 385

B.4 Results for unit testing script in Matlab [web104]. . . . . . . . . . . . . . . . . . . 386

E.1 PEG grammar used to parse user defined functions. . . . . . . . . . . . . . . . . . 399

332



BIBLIOGRAPHY

References

[1] I. Turgenev. Fathers and Sons. Trans. Russian by R. Hare.
The University of Adelaide Library, Dec. 17, 2014.

[2] J. Snow. On the mode of communication of cholera. London, UK: John Churchill, 1855.

[3] C.-J. Minard. Des tableaux graphiques et des cartes figuratives. impr. de Thunot (Paris), 1862.
ark: ark:/12148/bpt6k56900532.

[4] J. Zhang, K. A. Johnson, J. T. Malin, and J. W. Smith.
“Human-centered information visualization”.
In: International workshop on dynamic visualizations and learning, Tubingen, Germany. 2002.

[5] T.-M. Rhyne, M. Tory, T. Munzner, M. Ward, C. R. Johnson, and D. H. Laidlaw.
“Information and scientific visualization: separate but equal or happy together at last”.
In: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. IEEE, Oct. 2003.
DOI: 10.1109/visual.2003.1250428.

[6] D. Weiskopf, K.-L. Ma, J. J. van Wijk, R. Kosara, and H. Hauser.
“Scivis, infovis-bridging the community divide”.
In: Proceedings of the IEEE Visualization Conference. IEEE. 2006.

[7] D. Reinsel, J. Gantz, and J. Rydning.
“Data age 2025: the digitization of the world from edge to core”. In: Seagate (2018).

[8] M. Hilbert and P. Lopez.
“The World’s Technological Capacity to Store, Communicate, and Compute Information”.
In: Science 332.6025 (Feb. 2011), pp. 60–65. DOI: 10.1126/science.1200970.

[9] A. McAfee and E. Brynjolfsson. “Big Data: The Management Revolution”.
In: Harvard business review 90 (Oct. 2012), pp. 60–6, 68, 128.

[10] J. Attard, F. Orlandi, S. Scerri, and S. Auer.
“A systematic review of open government data initiatives”.
In: Government Information Quarterly 32.4 (Oct. 2015), pp. 399–418.
DOI: 10.1016/j.giq.2015.07.006.

[11] OECD. Open Government Data Report. OECD, Sept. 2018, p. 264.
DOI: 10.1787/9789264305847-en.

[12] World Wide Web Foundation. Open Data Barometer: Leaders Edition. Tech. rep.
Washington DC: World Wide Web Foundation, 2018.

333

ark:/12148/bpt6k56900532
https://doi.org/10.1109/visual.2003.1250428
https://doi.org/10.1126/science.1200970
https://doi.org/10.1016/j.giq.2015.07.006
https://doi.org/10.1787/9789264305847-en


BIBLIOGRAPHY

[13] V. Gewin. “Data sharing: An open mind on open data”.
In: Nature 529.7584 (Jan. 2016), pp. 117–119. DOI: 10.1038/nj7584-117a.

[14] M. Kindling, H. Pampel, S. van de Sandt, J. Rücknagel, P. Vierkant, G. Kloska, M. Witt,
P. Schirmbacher, R. Bertelmann, and F. Scholze.
“The Landscape of Research Data Repositories in 2015: A re3data Analysis”.
In: D-Lib Magazine 23.3/4 (Mar. 2017). DOI: 10.1045/march2017-kindling.

[15] “Council of Europe Convention on Access to Official Documents”.
In: Council of Europe Treaty Series 205 (June 18, 2006).

[16] H.-J. Schulz, T. Nocke, M. Heitzler, and H. Schumann.
“A Design Space of Visualization Tasks”. In: IEEE Transactions on Visualization and
Computer Graphics 19.12 (Dec. 2013), pp. 2366–2375. DOI: 10.1109/tvcg.2013.120.

[17] B. Shneiderman.
“The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations”.
In: Proceedings of the 1996 IEEE Symposium on Visual Languages. VL ’96.
Washington, DC, USA: IEEE Computer Society, 1996, pp. 336–.

[18] C. Tominski, S. Gladisch, U. Kister, R. Dachselt, and H. Schumann.
“Interactive Lenses for Visualization: An Extended Survey”. In: Computer Graphics Forum.
Vol. 36. 6. Wiley Online Library. Wiley, May 2016, pp. 173–200. DOI: 10.1111/cgf.12871.

[19] S. K. Card, J. D. Mackinlay, and B. Shneiderman.
Readings in information visualization: using vision to think. Morgan Kaufmann, 1999.

[20] A. Zuiderwijk, M. Janssen, S. Choenni, R. Meijer, and R. Sheikh Alibaks.
“Socio-technical Impediments of Open Data”.
In: Electronic Journal of e-Government 10.2 (Dec. 1, 2012).

[21] M. Beno, K. Figl, J. Umbrich, and A. Polleres.
“Perception of Key Barriers in Using and Publishing Open Data”.
In: JeDEM - eJournal of eDemocracy and Open Government 9.2 (Dec. 2017), pp. 134–165.
DOI: 10.29379/jedem.v9i2.465.

[22] K. Gregory, P. Groth, A. Scharnhorst, and S. Wyatt.
“Lost or Found? Discovering Data Needed for Research”.
In: Harvard Data Science Review (Apr. 2020). DOI: 10.1162/99608f92.e38165eb.

[23] L. M. Koesten, E. Kacprzak, J. F. Tennison, and E. Simperl.
“The Trials and Tribulations of Working with Structured Data”.
In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems - CHI ’17.
ACM. ACM Press, 2017, pp. 1277–1289. DOI: 10.1145/3025453.3025838.

[24] E. Kacprzak, L. M. Koesten, L.-D. Ibáñez, E. Simperl, and J. Tennison.
“A Query Log Analysis of Dataset Search”. In: Lecture Notes in Computer Science.
Ed. by J. Cabot, R. De Virgilio, and R. Torlone. Cham: Springer International Publishing, 2017,
pp. 429–436. DOI: 10.1007/978-3-319-60131-1_29.

334

https://doi.org/10.1038/nj7584-117a
https://doi.org/10.1045/march2017-kindling
https://doi.org/10.1109/tvcg.2013.120
https://doi.org/10.1111/cgf.12871
https://doi.org/10.29379/jedem.v9i2.465
https://doi.org/10.1162/99608f92.e38165eb
https://doi.org/10.1145/3025453.3025838
https://doi.org/10.1007/978-3-319-60131-1_29


REFERENCES

[25] N. Noy, M. Burgess, and D. Brickley.
“Google Dataset Search: Building a search engine for datasets in an open Web ecosystem”.
In: The World Wide Web Conference on - WWW ’19. ACM Press, 2019.
DOI: 10.1145/3308558.3313685.

[26] S. Zhang and K. Balog. “Ad Hoc Table Retrieval using Semantic Similarity”.
In: Proceedings of the 2018 World Wide Web Conference on World Wide Web - WWW ’18.
ACM Press, 2018. DOI: 10.1145/3178876.3186067.

[27] S. Zhang and K. Balog. “Semantic Table Retrieval Using Keyword and Table Queries”.
In: ACM Transactions on the Web 15.3 (May 2021), pp. 1–33. DOI: 10.1145/3441690.

[28] S. A. W.M., M. Worring, S. Santini, A. Gupta, and R. Jain.
“Content-Based Image Retrieval at the End of the Early Years”. In: IEEE Transactions on
Pattern Analysis & Machine Intelligence 22.12 (Dec. 2000), pp. 1349–1380.
DOI: 10.1109/34.895972.

[29] T. Berners-Lee, J. Hendler, and O. Lassila. “The Semantic Web”.
In: Scientific American 284.5 (May 2001), pp. 34–43.
DOI: 10.1038/scientificamerican0501-34.

[30] A. Hogan, E. Blomqvist, M. Cochez, C. D’amato, G. D. Melo, C. Gutierrez, S. Kirrane,
J. E. L. Gayo, R. Navigli, S. Neumaier, A.-C. N. Ngomo, A. Polleres, S. M. Rashid, A. Rula,
L. Schmelzeisen, J. Sequeda, S. Staab, and A. Zimmermann. “Knowledge Graphs”.
In: ACM Computing Surveys 54.4 (July 2021), pp. 1–37. DOI: 10.1145/3447772.

[31] H. Bast, B. Buchhold, E. Haussmann, et al. “Semantic Search on Text and Knowledge Bases”.
In: Foundations and Trends® in Information Retrieval 10.1 (2016), pp. 119–271.
DOI: 10.1561/1500000032.

[32] W. Hu, H. Qiu, J. Huang, and M. Dumontier.
“BioSearch: a semantic search engine for Bio2RDF”. In: Database 2017 (2017).
DOI: 10.1093/database/bax059.

[33] S. Shekarpour, S. Auer, A.-C. N. Ngomo, D. Gerber, S. Hellmann, and C. Stadler.
“Keyword-Driven SPARQL Query Generation Leveraging Background Knowledge”.
In: 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent
Technology. IEEE Computer Society. IEEE, Aug. 2011, pp. 203–210.
DOI: 10.1109/wi-iat.2011.70.

[34] E. M. Voorhees. Query Expansion using Lexical-Semantic Relations. 1994.
DOI: 10.1007/978-1-4471-2099-5_7.

[35] F. Löffler and F. Klan. “Does Term Expansion Matter for the Retrieval of Biodiversity Data?”
In: Joint Proceedings of the Posters and Demos Track of the 12th International Conference on
Semantic Systems - SEMANTiCS2016 and the 1st International Workshop on Semantic
Change & Evolving Semantics (SuCCESS’16), co-located with the 12th International
Conference on Semantic Systems (SEMANTiCS 2016).
Ed. by M. Martin, M. Cuquet, and E. Folmer. CEUR Workshop Proceedings, 2016.

335

https://doi.org/10.1145/3308558.3313685
https://doi.org/10.1145/3178876.3186067
https://doi.org/10.1145/3441690
https://doi.org/10.1109/34.895972
https://doi.org/10.1038/scientificamerican0501-34
https://doi.org/10.1145/3447772
https://doi.org/10.1561/1500000032
https://doi.org/10.1093/database/bax059
https://doi.org/10.1109/wi-iat.2011.70
https://doi.org/10.1007/978-1-4471-2099-5_7


BIBLIOGRAPHY

[36] T. Tran, H. Wang, and P. Haase.
“Hermes: Data Web search on a pay-as-you-go integration infrastructure”. In: Web Semantics:
Science, Services and Agents on the World Wide Web 7.3 (2009), pp. 189–203.
DOI: 10.1016/j.websem.2009.07.001.

[37] Y. Wu, S. Yang, M. Srivatsa, A. Iyengar, and X. Yan.
“Summarizing answer graphs induced by keyword queries”.
In: Proceedings of the VLDB Endowment 6.14 (Sept. 2013), pp. 1774–1785.
DOI: 10.14778/2556549.2556561.

[38] A. Poggi, D. Lembo, D. Calvanese, G. D. Giacomo, M. Lenzerini, and R. Rosati.
“Linking Data to Ontologies”. In: Journal on Data Semantics X.
Springer Berlin Heidelberg, 2008, pp. 133–173. DOI: 10.1007/978-3-540-77688-8_5.

[39] The JSON Data Interchange Format. Tech. rep. ECMA, Oct. 2013.

[40] ISO. ISO 17369:2013 - Statistical Data and Metadata eXchange (SDMX). ISO Standard.
ISO, Jan. 2013.

[41] Eurostat (European Commission), ed. Regions in the European Union. Nomenclature of
territorial units for statistics, NUTS 2016/EU-28 : edition 2018. Dec. 6, 2018.
DOI: 10.2785/475524.

[42] ISO. ISO 3166-1:2013 - Codes for the representation of names of countries and their
subdivisions – Part 1: Country codes. ISO Standard. ISO, Nov. 2013.

[43] ISO. ISO 3166-2:2013 - Codes for the representation of names of countries and their
subdivisions – Part 2: Country subdivision code. ISO Standard. ISO, Nov. 2013.

[44] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer.
“Wrangler: Interactive visual specification of data transformation scripts”.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM. 2011, pp. 3363–3372. DOI: 10.1145/1978942.1979444.

[45] W. H. Inmon. Building the data warehouse. John Wiley & Sons, 2005.

[46] G. H. Lockwood. Final report of the Board of Inquiry investigating the circumstances of an
accident involving the Air Canada Boeing 767 aircraft C-GAUN that effected an emergency
landing at Gimli, Manitoba on the 23rd day of July, 1983. English.
Government of Canada [Ottawa], 1985, vi, 199 p.

[47] P. G. Neumann. “Letter from the editor”. In: SIGSOFT Softw. Eng. Notes 10.3 (1985).

[48] Mars Climate Orbiter Mishap Investigation Board Phase I Report. Tech. rep. NASA, Nov. 1999.

[49] J. Bertin. Semiology of Graphics - Diagrams, Networks, Maps. ESRI, 2010.

[50] L. Wilkinson. The Grammar of Graphics. Springer Science & Business Media, 2006.

[51] S. F. Roth and J. Mattis. “Data characterization for intelligent graphics presentation”.
In: Proceedings of the SIGCHI conference on Human factors in computing systems Empowering
people - CHI ’90. ACM Press, 1990. DOI: 10.1145/97243.97273.

[52] M. Brehmer and T. Munzner. “A Multi-Level Typology of Abstract Visualization Tasks”. In:
IEEE Transactions on Visualization and Computer Graphics 19.12 (Dec. 2013), pp. 2376–2385.
DOI: 10.1109/tvcg.2013.124.

336

https://doi.org/10.1016/j.websem.2009.07.001
https://doi.org/10.14778/2556549.2556561
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.2785/475524
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1145/97243.97273
https://doi.org/10.1109/tvcg.2013.124


REFERENCES

[53] D. A. Scheufele and N. M. Krause. “Science audiences, misinformation, and fake news”.
In: Proceedings of the National Academy of Sciences 116.16 (Jan. 2019), pp. 7662–7669.
DOI: 10.1073/pnas.1805871115.

[54] S. Vosoughi, D. Roy, and S. Aral. “The spread of true and false news online”.
In: Science 359.6380 (Mar. 2018), pp. 1146–1151. DOI: 10.1126/science.aap9559.

[55] R. Peng. “The reproducibility crisis in science: A statistical counterattack”.
In: Significance 12.3 (June 2015), pp. 30–32. DOI: 10.1111/j.1740-9713.2015.00827.x.

[56] M. Hutson. “Artificial intelligence faces reproducibility crisis”.
In: Science 359.6377 (Feb. 2018), pp. 725–726. DOI: 10.1126/science.359.6377.725.

[57] L. Hatton and M. van Genuchten.
“Computational Reproducibility: The Elephant in the Room”.
In: IEEE Software 36.2 (Mar. 2019), pp. 137–144. DOI: 10.1109/ms.2018.2883805.

[58] S. Khalsa, P. Cotroneo, and M. Wu. A survey of current practice of data search services.
May 2018. DOI: 10.17632/7j43z6n22z.1.

[59] F. Löffler, V. Wesp, B. König-Ries, and F. Klan. “Dataset Search In Biodiversity Research: Do
Metadata In Data Repositories Reflect Scholarly Information Needs?”
In: PLOS ONE 16.3 (Mar. 2021). Ed. by H. Suleman, e0246099.
DOI: 10.1371/journal.pone.0246099.

[60] S. Schindler, M. Paradies, and A. Twele.
“Here is my query, where are my results? A search log analysis of the EOWEB® Geoportal”.
In: Conference on Big Data from Space: Turning Data into Insights (BiDS’19). 2019, pp. 1–4.

[61] O. Lehmberg, D. Ritze, P. Ristoski, R. Meusel, H. Paulheim, and C. Bizer.
“The Mannheim Search Join Engine”. In: Web Semantics: Science, Services and Agents on the
World Wide Web 35 (Dec. 2015), pp. 159–166. DOI: 10.1016/j.websem.2015.05.001.

[62] R. Tuchinda, P. Szekely, and C. A. Knoblock.
“Building data integration queries by demonstration”.
In: Proceedings of the 12th international conference on Intelligent user interfaces - IUI ’07.
ACM Press, 2007. DOI: 10.1145/1216295.1216328.

[63] M. J. Cafarella, A. Halevy, and N. Khoussainova. “Data integration for the relational web”.
In: Proceedings of the VLDB Endowment 2.1 (Aug. 2009), pp. 1090–1101.
DOI: 10.14778/1687627.1687750.

[64] S. Kasica, C. Berret, and T. Munzner. “Table Scraps: An Actionable Framework for
Multi-Table Data Wrangling From An Artifact Study of Computational Journalism”.
In: IEEE Transactions on Visualization and Computer Graphics 27.2 (Feb. 2021), pp. 957–966.
DOI: 10.1109/tvcg.2020.3030462.

[65] C. Scaffidi, B. Myers, and M. Shaw.
“Intelligently creating and recommending reusable reformatting rules”.
In: Proceedingsc of the 13th international conference on Intelligent user interfaces - IUI ’09.
ACM Press, 2008. DOI: 10.1145/1502650.1502692.

337

https://doi.org/10.1073/pnas.1805871115
https://doi.org/10.1126/science.aap9559
https://doi.org/10.1111/j.1740-9713.2015.00827.x
https://doi.org/10.1126/science.359.6377.725
https://doi.org/10.1109/ms.2018.2883805
https://doi.org/10.17632/7j43z6n22z.1
https://doi.org/10.1371/journal.pone.0246099
https://doi.org/10.1016/j.websem.2015.05.001
https://doi.org/10.1145/1216295.1216328
https://doi.org/10.14778/1687627.1687750
https://doi.org/10.1109/tvcg.2020.3030462
https://doi.org/10.1145/1502650.1502692


BIBLIOGRAPHY

[66] E. Rahm and H. H. Do. “Data cleaning: Problems and current approaches”.
In: IEEE Data Eng. Bull. 23.4 (2000), pp. 3–13.

[67] R. A. Tariq and S. Sharma. “Inappropriate Medical Abbreviations”. In: StatPearls [Internet].
StatPearls Publishing, 2019.

[68] K. A. Baggerly and K. R. Coombes. “Deriving chemosensitivity from cell lines: Forensic
bioinformatics and reproducible research in high-throughput biology”.
In: The Annals of Applied Statistics 3.4 (Dec. 2009), pp. 1309–1334.
DOI: 10.1214/09-aoas291.

[69] T. Herndon, M. Ash, and R. Pollin.
“Does high public debt consistently stifle economic growth? A critique of Reinhart and Rogoff”.
In: Cambridge Journal of Economics 38.2 (Dec. 2013), pp. 257–279.
DOI: 10.1093/cje/bet075.

[70] M. Ziemann, Y. Eren, and A. El-Osta.
“Gene name errors are widespread in the scientific literature”.
In: Genome Biology 17.1 (Aug. 2016). DOI: 10.1186/s13059-016-1044-7.

[71] E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva.
“VisMashup: Streamlining the Creation of Custom Visualization Applications”. In: IEEE
Transactions on Visualization and Computer Graphics 15.6 (Nov. 2009), pp. 1539–1546.
DOI: 10.1109/tvcg.2009.195.

[72] L. Grammel, M. Tory, and M.-A. Storey.
“How Information Visualization Novices Construct Visualizations”.
In: IEEE Transactions on Visualization and Computer Graphics 16.6 (Nov. 2010), pp. 943–952.
DOI: 10.1109/tvcg.2010.164.

[73] B. E. Rogowitz, L. A. Treinish, and S. Bryson. “How Not to Lie with Visualization”.
In: Computers in Physics 10.3 (1996), p. 268. DOI: 10.1063/1.4822401.

[74] P. Fox and J. Hendler. “Changing the Equation on Scientific Data Visualization”.
In: Science 331.6018 (Feb. 2011), pp. 705–708. DOI: 10.1126/science.1197654.

[75] H. E. Plesser. “Reproducibility vs. Replicability: A Brief History of a Confused Terminology”.
In: Frontiers in Neuroinformatics 11 (Jan. 2018). DOI: 10.3389/fninf.2017.00076.

[76] R. Abraham and M. Erwig.
“Header and unit inference for spreadsheets through spatial analyses”.
In: Visual Languages and Human Centric Computing, 2004 IEEE Symposium on. IEEE. 2004,
pp. 165–172.

[77] P. W. Koch, B. Hofer, and F. Wotawa. “Static Spreadsheet Analysis”. In: Software Reliability
Engineering Workshops (ISSREW), 2016 IEEE International Symposium on. IEEE. 2016,
pp. 167–174. DOI: 10.1109/issrew.2016.8.

[78] H. Gonzalez, A. Halevy, C. S. Jensen, A. Langen, J. Madhavan, R. Shapley, and W. Shen.
“Google fusion tables: data management, integration and collaboration in the cloud”.
In: Proceedings of the 1st ACM symposium on Cloud computing. ACM. 2010, pp. 175–180.
DOI: 10.1145/1807128.1807158.

338

https://doi.org/10.1214/09-aoas291
https://doi.org/10.1093/cje/bet075
https://doi.org/10.1186/s13059-016-1044-7
https://doi.org/10.1109/tvcg.2009.195
https://doi.org/10.1109/tvcg.2010.164
https://doi.org/10.1063/1.4822401
https://doi.org/10.1126/science.1197654
https://doi.org/10.3389/fninf.2017.00076
https://doi.org/10.1109/issrew.2016.8
https://doi.org/10.1145/1807128.1807158


REFERENCES

[79] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber. “Bigtable: A Distributed Storage System for Structured Data.”
In: Inc. In proceeding of the OSDI 6 (2006). DOI: 10.1145/1365815.1365816.

[80] C. R. Stolte, D. Tang, and P. Hanrahan. “Polaris: A System for Query, Analysis, and
Visualization of Multidimensional Relational Databases”.
In: IEEE Trans. Vis. Comput. Graph. 8.1 (2002), pp. 52–65. DOI: 10.1109/2945.981851.

[81] ISO. ISO/IEC 9075-1:2016 - Information technology – Database languages – SQL – Part 1:
Framework (SQL/Framework). ISO Standard. ISO, Dec. 2016.

[82] J. Gray, A. Bosworth, A. Lyaman, and H. Pirahesh. “Data cube: a relational aggregation
operator generalizing GROUP-BY, CROSS-TAB, and SUB-TOTALS”.
In: Proceedings of the Twelfth International Conference on Data Engineering. Feb. 1996,
pp. 152–159. DOI: 10.1109/ICDE.1996.492099.

[83] K. Thomas, R.-K. Benjamin, P. Fernando, G. Brian, B. Matthias, F. Jonathan, K. Kyle,
H. Jessica, G. Jason, C. Sylvain, I. Paul, A. Damián, A. Safia, W. Carol, and J. D. Team.
“Jupyter Notebooks - a publishing format for reproducible computational workflows”.
In: 0 (2016), pp. 87–90. DOI: 10.3233/978-1-61499-649-1-87.

[84] D. E. Knuth. “Literate Programming”. In: The Computer Journal 27.2 (Feb. 1984), pp. 97–111.
DOI: 10.1093/comjnl/27.2.97.

[85] F. Perez and B. E. Granger. “IPython: A System for Interactive Scientific Computing”.
In: Computing in Science & Engineering 9.3 (2007), pp. 21–29. DOI: 10.1109/mcse.2007.53.

[86] B. Abbott, R. Abbott, T. Abbott, et al.
“Observation of Gravitational Waves from a Binary Black Hole Merger”.
In: Physical Review Letters 116.6 (Feb. 2016), p. 061102.
DOI: 10.1103/physrevlett.116.061102.

[87] E. Brunk, K. W. George, J. Alonso-Gutierrez, M. Thompson, E. Baidoo, G. Wang, C. J. Petzold,
D. McCloskey, J. Monk, L. Yang, E. J. O’Brien, T. S. Batth, H. G. Martin, A. Feist, P. D. Adams,
J. D. Keasling, B. O. Palsson, and T. S. Lee.
“Characterizing Strain Variation in Engineered E. coli Using a Multi-Omics-Based Workflow”.
In: Cell Systems 2.5 (May 2016), pp. 335–346. DOI: 10.1016/j.cels.2016.04.004.

[88] R. Connelly and V. Gayle. “An investigation of social class inequalities in general cognitive
ability in two British birth cohorts”.
In: The British Journal of Sociology 70.1 (Dec. 2017), pp. 90–108.
DOI: 10.1111/1468-4446.12343.

[89] S. B. Rosenthal, J. Len, M. Webster, A. Gary, A. Birmingham, and K. M. Fisch.
“Interactive network visualization in Jupyter notebooks: visJS2jupyter”.
In: Bioinformatics 34.1 (Sept. 2017). Ed. by O. Stegle, pp. 126–128.
DOI: 10.1093/bioinformatics/btx581.

[90] M. Reich, T. Tabor, T. Liefeld, H. Thorvaldsdóttir, B. Hill, P. Tamayo, and J. P. Mesirov.
“The GenePattern Notebook Environment”. In: Cell Systems 5.2 (Aug. 2017), 149–151.e1.
DOI: 10.1016/j.cels.2017.07.003.

339

https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1109/2945.981851
https://doi.org/10.1109/ICDE.1996.492099
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1109/mcse.2007.53
https://doi.org/10.1103/physrevlett.116.061102
https://doi.org/10.1016/j.cels.2016.04.004
https://doi.org/10.1111/1468-4446.12343
https://doi.org/10.1093/bioinformatics/btx581
https://doi.org/10.1016/j.cels.2017.07.003


BIBLIOGRAPHY

[91] J. F. N. Pimentel, V. Braganholo, L. Murta, and J. Freire. “Collecting and Analyzing
Provenance on Interactive Notebooks: When IPython Meets noWorkflow”.
In: 7th USENIX Workshop on the Theory and Practice of Provenance (TaPP 15).
Edinburgh, Scotland: USENIX Association, July 2015.

[92] S. Samuel and B. König-Ries. “ProvBook: Provenance-based Semantic Enrichment of
Interactive Notebooks for Reproducibility”. In: Proceedings of the ISWC 2018 Posters &
Demonstrations, Industry and Blue Sky Ideas Tracks co-located with 17th International
Semantic Web Conference (ISWC 2018), Monterey, USA, October 8th - to - 12th, 2018.
Ed. by M. van Erp, M. Atre, V. López, K. Srinivas, and C. Fortuna. Vol. 2180.
CEUR Workshop Proceedings. CEUR-WS.org, 2018.

[93] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire.
“A Large-Scale Study About Quality and Reproducibility of Jupyter Notebooks”.
In: 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR).
IEEE, May 2019. DOI: 10.1109/msr.2019.00077.

[94] A. Rule, A. Tabard, and J. D. Hollan.
“Exploration and Explanation in Computational Notebooks”.
In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
ACM, Apr. 2018. DOI: 10.1145/3173574.3173606.

[95] C. Goble, C. Wroe, and R. Stevens.
The myGrid Project: Services, Architecture and Demonstrator. 2003.

[96] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S. Soiland-Reyes,
I. Dunlop, A. Nenadic, P. Fisher, et al. “The Taverna workflow suite: designing and executing
workflows of Web Services on the desktop, web or in the cloud”.
In: Nucleic acids research 41.W1 (2013), W557–W561. DOI: 10.1093/nar/gkt328.

[97] T. Oinn, M. J. Addis, J. Ferris, D. J. Marvin, M. Greenwood, C. Goble, A. Wipat, P. Li, and
T. Carver. Delivering Web Service Coordination Capability to Users.
Conference or Workshop Item; PeerReviewed. 2004.

[98] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I. Dunlop, A. Williams, T. Oinn, and
C. Goble. “Taverna, reloaded”.
In: International conference on scientific and statistical database management. Springer. 2010,
pp. 471–481. DOI: 10.1007/978-3-642-13818-8_33.

[99] J. Bhagat, F. Tanoh, E. Nzuobontane, T. Laurent, J. Orlowski, M. Roos, K. Wolstencroft,
S. Aleksejevs, R. Stevens, S. Pettifer, R. Lopez, and C. A. Goble.
“BioCatalogue: a universal catalogue of web services for the life sciences”.
In: Nucleic Acids Research 38 (2010). DOI: 10.1093/nar/gkq394.

[100] M. Kanehisa. “KEGG: Kyoto Encyclopedia of Genes and Genomes”.
In: Nucleic Acids Research 28.1 (Jan. 2000), pp. 27–30. DOI: 10.1093/nar/28.1.27.

[101] Tracking Workflow Execution With Tavernaprov
(PROV: Three Years Later, Provenance Week 2016, June 6, 2016). Zenodo, 2016.
DOI: 10.5281/zenodo.51314.

340

https://doi.org/10.1109/msr.2019.00077
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1093/nar/gkt328
https://doi.org/10.1007/978-3-642-13818-8_33
https://doi.org/10.1093/nar/gkq394
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.5281/zenodo.51314


REFERENCES

[102] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo.
“VisTrails: visualization meets data management”. In: Proceedings of the 2006 ACM SIGMOD
international conference on Management of data - SIGMOD ’06. SIGMOD ’06.
Chicago, IL, USA: ACM Press, 2006, pp. 745–747. DOI: 10.1145/1142473.1142574.

[103] J. Freire, D. Koop, F. S. Chirigati, and C. T. Silva. “Reproducibility using vistrails”.
In: Implementing Reproducible Research 33 (2014).

[104] R. Fielding and J. Reschke.
“Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing”. In: (June 2014).
DOI: 10.17487/RFC7230.

[105] W. Schroeder, K. Martin, and W. Lorensen. “The design and implementation of an
object-oriented toolkit for 3D graphics and visualization”.
In: Proceedings of Seventh Annual IEEE Visualization ’96. IEEE, 1996.
DOI: 10.1109/visual.1996.567752.

[106] L. Moreau, J. Freire, J. Futrelle, R. McGrath, J. Myers, and P. Paulson.
The Open Provenance Model. Dec. 18, 2007.

[107] L. Bavoil, S. P. Callahan, C. E. Scheidegger, H. T. Vo, P. J. Crossno, C. T. Silva, and J. Freire.
“VisTrails: Enabling Interactive Multiple-View Visualizations”.
In: Visualization Conference, IEEE 0 (2005), p. 18.
DOI: http://doi.ieeecomputersociety.org/10.1109/VIS.2005.113.

[108] S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo.
Using Provenance to Streamline Data Exploration through Visualization.
SCI Institute Technical Report UUSCI-2006-016. University of Utah, 2006.

[109] C. Scheidegger, H. Vo, D. Koop, J. Freire, and C. Silva.
“Querying and Creating Visualizations by Analogy”. In: IEEE Transactions on Visualization
and Computer Graphics 13.6 (Nov. 2007), pp. 1560–1567. DOI: 10.1109/tvcg.2007.70584.

[110] D. Koop, C. Scheidegger, S. Callahan, J. Freire, and C. Silva.
“VisComplete: Automating Suggestions for Visualization Pipelines”. In: IEEE Transactions on
Visualization and Computer Graphics 14.6 (Nov. 2008), pp. 1691–1698.
DOI: 10.1109/tvcg.2008.174.

[111] D. L. Parnas. “Software aging”.
In: Proceedings of the 16th international conference on Software engineering.
IEEE Computer Society Press. 1994, pp. 279–287.

[112] D. Koop, C. E. Scheidegger, J. Freire, and C. T. Silva. “The Provenance of Workflow Upgrades.”
In: IPAW. Springer. 2010, pp. 2–16. DOI: 10.1007/978-3-642-17819-1_2.

[113] D. Koop, E. Santos, B. Bauer, M. Troyer, J. Freire, and C. T. Silva.
“Bridging Workflow and Data Provenance Using Strong Links.” In: SSDBM. Vol. 10.
Springer. 2010, pp. 397–415. DOI: 10.1007/978-3-642-13818-8_28.

[114] D. Koop, E. Santos, P. Mates, H. T. Vo, P. Bonnet, B. Bauer, B. Surer, M. Troyer,
D. N. Williams, J. E. Tohline, et al.
“A provenance-based infrastructure to support the life cycle of executable papers”.
In: Procedia Computer Science 4 (2011), pp. 648–657. DOI: 10.1016/j.procs.2011.04.068.

341

https://doi.org/10.1145/1142473.1142574
https://doi.org/10.17487/RFC7230
https://doi.org/10.1109/visual.1996.567752
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/VIS.2005.113
https://doi.org/10.1109/tvcg.2007.70584
https://doi.org/10.1109/tvcg.2008.174
https://doi.org/10.1007/978-3-642-17819-1_2
https://doi.org/10.1007/978-3-642-13818-8_28
https://doi.org/10.1016/j.procs.2011.04.068


BIBLIOGRAPHY

[115] M. D. McIlroy, E. N. Pinson, and B. A. Tague. “UNIX Time-Sharing System: Foreword”.
In: Bell System Technical Journal 57.6 (July 1978), pp. 1899–1904.
DOI: 10.1002/j.1538-7305.1978.tb02135.x.

[116] A. Doan. Principles of data integration. Waltham, MA: Morgan Kaufmann, 2012.

[117] W. McKnight. “Data Virtualization”. In: Information Management. Elsevier, 2014, pp. 86–96.
DOI: 10.1016/b978-0-12-408056-0.00009-6.

[118] M. Shokouhi and L. Si. “Federated Search”.
In: Foundations and Trends® in Information Retrieval 5.1 (2011), pp. 1–102.
DOI: 10.1561/1500000010.

[119] A. Chapman, E. Simperl, L. Koesten, G. Konstantinidis, L.-D. Ibáñez, E. Kacprzak, and
P. Groth. “Dataset search: a survey”. In: The VLDB Journal 29.1 (Aug. 2019), pp. 251–272.
DOI: 10.1007/s00778-019-00564-x.

[120] C. Bizer, T. Heath, and T. Berners-Lee. “Linked Data - The Story So Far”.
In: Int. J. Semantic Web Inf. Syst. 5.3 (2009), pp. 1–22. DOI: 10.4018/jswis.2009081901.

[121] D. Vrandečić and M. Krötzsch. “Wikidata: A Free Collaborative Knowledgebase”.
In: Communications of the ACM 57.10 (Sept. 2014), pp. 78–85. DOI: 10.1145/2629489.

[122] M. M. Zloof. “Query by example”. In: Proceedings of the June 7-10, 1976, national computer
conference and exposition on - AFIPS ’76. ACM. ACM Press, 1976, pp. 431–438.
DOI: 10.1145/1499799.1499914.

[123] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns.
Prentice Hall, Dec. 1, 1995.

[124] S. S. Stevens. “On the Theory of Scales of Measurement”.
In: Science 103.2684 (June 1946), pp. 677–680. DOI: 10.1126/science.103.2684.677.

[125] S. Dowdy, S. Wearden, and D. Chilko. Statistics for research. Vol. 512.
John Wiley & Sons, 2011.

[126] J. Mackinlay, P. Hanrahan, and C. Stolte.
“Show Me: Automatic Presentation for Visual Analysis”. In: IEEE Transactions on
Visualization and Computer Graphics 13.6 (Nov. 2007), pp. 1137–1144.
DOI: 10.1109/tvcg.2007.70594.

[127] F. Bouali, A. Guettala, and G. Venturini.
“VizAssist: an interactive user assistant for visual data mining”.
In: The Visual Computer 32.11 (May 2016), pp. 1447–1463.
DOI: 10.1007/s00371-015-1132-9.

[128] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2008 (Aug. 2008), pp. 1–70.
DOI: 10.1109/IEEESTD.2008.4610935.

[129] ISO. ISO 8601:2004 - Data elements and interchange formats – Information interchange –
Representation of dates and times. ISO Standard. ISO, Dec. 2004.

[130] E. F. Codd. “A relational model of data for large shared data banks”.
In: Communications of the ACM 13.6 (6 June 1970), pp. 377–387.
DOI: 10.1145/362384.362685.

342

https://doi.org/10.1002/j.1538-7305.1978.tb02135.x
https://doi.org/10.1016/b978-0-12-408056-0.00009-6
https://doi.org/10.1561/1500000010
https://doi.org/10.1007/s00778-019-00564-x
https://doi.org/10.4018/jswis.2009081901
https://doi.org/10.1145/2629489
https://doi.org/10.1145/1499799.1499914
https://doi.org/10.1126/science.103.2684.677
https://doi.org/10.1109/tvcg.2007.70594
https://doi.org/10.1007/s00371-015-1132-9
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1145/362384.362685


REFERENCES

[131] Y. Shafranovich. “Common Format and MIME Type for Comma-Separated Values (CSV) Files”.
In: (Oct. 2005). DOI: 10.17487/rfc4180.

[132] B. Jelen and M. Alexander. Pivot Table Data Crunching: Microsoft Excel 2010.
Pearson Education, 2010.

[133] E. F. Codd, S. B. Codd, and C. T. Salley.
“Providing OLAP (on-line analytical processing) to user-analysts: An IT mandate”.
In: Codd and Date 32 (1993).

[134] SDMX 2.1 User Guide. Sept. 19, 2012.

[135] C. H. Coombs. “A theory of data.” In: (1964).

[136] A. Satyanarayan, K. Wongsuphasawat, and J. Heer.
“Declarative Interaction Design for Data Visualization”.
In: ACM User Interface Software & Technology (UIST). ACM Press, 2014.
DOI: 10.1145/2642918.2647360.

[137] B. Mutlu, E. Veas, and C. Trattner. “Vizrec: Recommending personalized visualizations”.
In: ACM Transactions on Interactive Intelligent Systems (TiiS) 6.4 (2016), p. 31.
DOI: 10.1145/2983923.

[138] C. R. Stolte. “Query, Analysis, and Visualization of Multidimensional Databases”. AAI3090686.
PhD thesis. Stanford, CA, USA, 2003.

[139] P. Hanrahan. “VizQL: a language for query, analysis and visualization”. In: Proceedings of the
2006 ACM SIGMOD international conference on Management of data - SIGMOD ’06.
SIGMOD ’06. Chicago, IL, USA: ACM Press, 2006, pp. 721–721.
DOI: 10.1145/1142473.1142560.

[140] M. Voigt, M. Franke, and K. Meissner. “Using expert and empirical knowledge for
context-aware recommendation of visualization components”.
In: Int. J. Adv. Life Sci 5 (2013), pp. 27–41.

[141] B. Mutlu, E. Veas, C. Trattner, and V. Sabol.
“Vizrec: a two-stage recommender system for personalized visualizations”.
In: Proceedings of the 20th International Conference on Intelligent User Interfaces Companion.
ACM. 2015, pp. 49–52. DOI: 10.1145/2732158.2732190.

[142] W. K. Michener, J. W. Brunt, J. J. Helly, T. B. Kirchner, and S. G. Stafford.
“Nongeospatial Metadata for the Ecological Sciences”.
In: Ecological Applications 7.1 (Feb. 1997), pp. 330–342.
DOI: 10.1890/1051-0761(1997)007[0330:nmftes]2.0.co;2.

[143] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, J. Bouwman, A. J. Brookes,
T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers,
A. Gonzalez-Beltran, A. J. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. ’. Hoen,
R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E. Martone, A. Mons, A. L. Packer,
B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag,
T. Slater, G. Strawn, M. A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop,

343

https://doi.org/10.17487/rfc4180
https://doi.org/10.1145/2642918.2647360
https://doi.org/10.1145/2983923
https://doi.org/10.1145/1142473.1142560
https://doi.org/10.1145/2732158.2732190
https://doi.org/10.1890/1051-0761(1997)007[0330:nmftes]2.0.co;2


BIBLIOGRAPHY

A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, and B. Mons.
“The FAIR Guiding Principles for scientific data management and stewardship”.
In: Scientific Data 3.1 (Mar. 2016). DOI: 10.1038/sdata.2016.18.

[144] S. Neumaier, J. Umbrich, and A. Polleres.
“Automated Quality Assessment of Metadata across Open Data Portals”.
In: Journal of Data and Information Quality 8.1 (Nov. 2016), pp. 1–29.
DOI: 10.1145/2964909.

[145] A. Mauranen.
“Signaling and preventing misunderstanding in English as lingua franca communication”.
In: International Journal of the Sociology of Language 2006.177 (Jan. 2006).
DOI: 10.1515/ijsl.2006.008.

[146] ANSI/NISO Z39.85-2012 The Dublin Core Metadata Element Set. NISO Standard (ANSI).
NISO, Feb. 25, 2013.

[147] J. A. Kunze and T. Baker. “The Dublin Core Metadata Element Set”. In: (Aug. 2007).
DOI: 10.17487/rfc5013.

[148] ISO.
ISO 15836:2009 - Information and documentation – The Dublin Core metadata element set.
ISO Standard. ISO, Feb. 2009.

[149] R. Cyganiak, F. Maali, and V. Peristeras.
“Self-service linked government data with dcat and gridworks”.
In: Proceedings of the 6th International Conference on Semantic Systems - I-SEMANTICS ’10.
I-SEMANTICS ’10. Graz, Austria: ACM Press, 2010, 37:1–37:3.
DOI: 10.1145/1839707.1839754.

[150] M. Nilsson, A. Powell, P. Johnston, and A. Naeve.
“Expressing Dublin Core metadata using the Resource Description Framework (RDF)”.
In: DCMI Recommendation (2008).

[151] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. “Describing Linked Datasets On the
Design and Usage of voiD , the Vocabulary Of Interlinked Datasets”.
In: Design 19 (2009). Ed. by C. Bizer, T. Heath, T. J. Berners-Lee, and K. Idehen.

[152] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. Mendes, S. Hellmann,
M. Morsey, P. van Kleef, S. Auer, and C. Bizer.
“DBpedia - A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia”.
In: Semantic Web 6 (2015), pp. 167–195. DOI: 10.3233/SW-140134.

[153] R. Cyganiak, S. Field, A. Gregory, W. Halb, and W. Halb.
“Semantic Statistics : Bringing Together SDMX and SCOVO”.
In: Proceedings of the WWW2010 Workshop on Linked Data on the Web (2010), pp. 2–6.

[154] E. H. Fegraus, S. Andelman, M. B. Jones, and M. Schildhauer.
“Maximizing the Value of Ecological Data with Structured Metadata: An Introduction to
Ecological Metadata Language (EML) and Principles for Metadata Creation”.
In: Bulletin of the Ecological Society of America 86.3 (July 2005), pp. 158–168.
DOI: 10.1890/0012-9623(2005)86[158:mtvoed]2.0.co;2.

344

https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1145/2964909
https://doi.org/10.1515/ijsl.2006.008
https://doi.org/10.17487/rfc5013
https://doi.org/10.1145/1839707.1839754
https://doi.org/10.3233/SW-140134
https://doi.org/10.1890/0012-9623(2005)86[158:mtvoed]2.0.co;2


REFERENCES

[155] R. L. Rivest. “The MD5 Message-Digest Algorithm”. In: (Apr. 1992). DOI: 10.17487/rfc1321.

[156] P. Murray-Rust and H. S. Rzepa.
“STMML. A markup language for scientific, technical and medical publishing”.
In: Data Science Journal 1 (2002), pp. 128–192. DOI: 10.2481/dsj.1.128.

[157] B. Magagna, G. Moncoiffe, A. Devaraju, P. L. Buttigieg, M. Stoica, and S. Schindler.
“Towards an interoperability framework for observable property terminologies”.
In: (Mar. 2020). DOI: 10.5194/egusphere-egu2020-19895.

[158] B. Magagna, G. Moncoiffe, M. Stoica, A. Devaraju, A. Pamment, S. Schindler, and R. Huber.
“The I-ADOPT Interoperability Framework: a proposal for FAIRer observable property
descriptions”. In: (Mar. 2021). DOI: 10.5194/egusphere-egu21-13155.

[159] P. W. Bridgman. Dimensional analysis. New Haven: Yale University Press, 1922.

[160] The International System of Units (SI). Basic and general concepts and associated terms.
8th ed. International Bureau of Weights and Measures (BIPM). 2014.

[161] J. M. Keil and S. Schindler.
“Comparison and evaluation of ontologies for units of measurement”.
In: Semantic Web Journal 10 (2018), pp. 33–51. DOI: 10.3233/SW-180310.

[162] M. D. Steinberg, S. Schindler, and J. M. Keil.
“Use Cases and Suitability Metrics for Unit Ontologies”.
In: OWL: Experiences and Directions - Reasoner Evaluation - (OWLED 2016), (ORE 2016).
2016, pp. 40–54. DOI: 10.1007/978-3-319-54627-8_4.

[163] S. Schindler and J. M. Keil. “Building Ontologies for Reuse”.
In: 2nd International Workshop on Bad Or Good Ontology (BOG 2019). 2019.

[164] H. Rijgersberg, M. van Assem, and J. Top.
“Ontology of Units of Measure and Related Concepts”. In: Semantic Web 4.1 (2013), pp. 3–13.
DOI: 10.3233/SW-2012-0069.

[165] S. Krings and M. Leuschel. “Inferring physical units in formal models”.
In: Software and System Modeling 16 (2015), pp. 25–47. DOI: 10.1007/s10270-015-0458-0.

[166] M. Hills, F. Chen, and G. Rosu.
“A Rewriting Logic Approach to Static Checking of Units of Measurement in C”.
In: Electr. Notes Theor. Comput. Sci. 290 (2012), pp. 51–67.
DOI: 10.1016/j.entcs.2012.11.011.

[167] L. Jiang and Z. Su.
“Osprey: a practical type system for validating dimensional unit correctness of C programs”.
In: Proceeding of the 28th international conference on Software engineering - ICSE ’06.
ACM. ACM Press, 2006, pp. 262–271. DOI: 10.1145/1134285.1134323.

[168] G. S. Novak. “Conversion of Units of Measurement”.
In: IEEE Trans. Software Eng. 21.8 (1995), pp. 651–661. DOI: 10.1109/32.403789.

[169] G. S. Novak. “GLISP: A Lisp-Based Programming System with Data Abstraction”.
In: AI Magazine 4.3 (1983), pp. 37–47.

345

https://doi.org/10.17487/rfc1321
https://doi.org/10.2481/dsj.1.128
https://doi.org/10.5194/egusphere-egu2020-19895
https://doi.org/10.5194/egusphere-egu21-13155
https://doi.org/10.3233/SW-180310
https://doi.org/10.1007/978-3-319-54627-8_4
https://doi.org/10.3233/SW-2012-0069
https://doi.org/10.1007/s10270-015-0458-0
https://doi.org/10.1016/j.entcs.2012.11.011
https://doi.org/10.1145/1134285.1134323
https://doi.org/10.1109/32.403789


BIBLIOGRAPHY

[170] O. Lehmberg, D. Ritze, P. Ristoski, K. Eckert, H. Paulheim, and C. Bizer.
“Extending tables with data from over a million websites”.
In: Semantic Web Challenge 2014 (2014).

[171] C. Bizer. “Search Joins with the Web”.
In: In Proc. of the 17th Int. Conf. on Database Theory (ICDT). 2014.

[172] C. S. Bhagavatula, T. Noraset, and D. Downey.
“Methods for exploring and mining tables on wikipedia”.
In: Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics.
ACM. 2013, pp. 18–26. DOI: 10.1145/2501511.2501516.

[173] O. Lehmberg, D. Ritze, R. Meusel, and C. Bizer.
“A large public corpus of web tables containing time and context metadata”.
In: Proceedings of the 25th International Conference Companion on World Wide Web.
International World Wide Web Conferences Steering Committee. 2016, pp. 75–76.
DOI: 10.1145/2872518.2889386.

[174] R. Meusel, P. Petrovski, and C. Bizer.
“The webdatacommons microdata, rdfa and microformat dataset series”.
In: International Semantic Web Conference. Springer. 2014, pp. 277–292.
DOI: 10.1007/978-3-319-11964-9_18.

[175] J. Wang, G. Li, and J. Fe.
“Fast-join: An efficient method for fuzzy token matching based string similarity join”.
In: Data Engineering (ICDE), 2011 IEEE 27th International Conference on. IEEE. 2011,
pp. 458–469. DOI: 10.1109/icde.2011.5767865.

[176] D. Rinser, D. Lange, and F. Naumann.
“Cross-lingual entity matching and infobox alignment in Wikipedia”.
In: Information Systems 38.6 (2013), pp. 887–907. DOI: 10.1016/j.is.2012.10.003.

[177] M. Fabian, K. Gjergji, W. Gerhard, et al.
“Yago: A core of semantic knowledge unifying wordnet and wikipedia”.
In: 16th International World Wide Web Conference, WWW. 2007, pp. 697–706.

[178] C. Felbaum. Wordnet, an Electronic Lexical Database for English. 1998.

[179] P. Resnik. “Using information content to evaluate semantic similarity in a taxonomy”.
In: arXiv preprint cmp-lg/9511007 (1995).

[180] V. I. Levenshtein. “Binary codes capable of correcting deletions, insertions and reversals”.
In: Doklady. Akademii Nauk SSSR 163.4 (1965), pp. 845–848.

[181] J. Bleiholder and F. Naumann. “Data fusion”.
In: ACM Computing Surveys (CSUR) 41.1 (2009), p. 1. DOI: 10.14778/1687553.1687620.

[182] S. Zhang and K. Balog. “On-the-fly Table Generation”. In: The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval. ACM, June 2018.
DOI: 10.1145/3209978.3209988.

346

https://doi.org/10.1145/2501511.2501516
https://doi.org/10.1145/2872518.2889386
https://doi.org/10.1007/978-3-319-11964-9_18
https://doi.org/10.1109/icde.2011.5767865
https://doi.org/10.1016/j.is.2012.10.003
https://doi.org/10.14778/1687553.1687620
https://doi.org/10.1145/3209978.3209988


REFERENCES

[183] J. M. Ponte and W. B. Croft. “A language modeling approach to information retrieval”.
In: Proceedings of the 21st annual international ACM SIGIR conference on Research and
development in information retrieval - SIGIR ’98. ACM Press, 1998.
DOI: 10.1145/290941.291008.

[184] J. Guo, Y. Fan, Q. Ai, and W. B. Croft.
“A Deep Relevance Matching Model for Ad-hoc Retrieval”. In: Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management. ACM, Oct. 2016.
DOI: 10.1145/2983323.2983769.

[185] K. Sparck Jones.
“A statistical interpretation of term specificity and its application in retrieval”.
In: Journal of Documentation 28.1 (Jan. 1972), pp. 11–21. DOI: 10.1108/eb026526.

[186] S. Zhang and K. Balog. “EntiTables”. In: Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM, Aug. 2017.
DOI: 10.1145/3077136.3080796.

[187] A. Kopliku, M. Boughanem, and K. Pinel-Sauvagnat.
“Towards a framework for attribute retrieval”. In: Proceedings of the 20th ACM international
conference on Information and knowledge management - CIKM ’11. ACM Press, 2011.
DOI: 10.1145/2063576.2063654.

[188] S. Zhang and K. Balog. “Auto-completion for Data Cells in Relational Tables”. In: Proceedings
of the 28th ACM International Conference on Information and Knowledge Management.
ACM, Nov. 2019. DOI: 10.1145/3357384.3357932.

[189] G. Sathe and S. Sarawagi. “Intelligent rollups in multidimensional OLAP data”. In: VLDB.
Vol. 1. 2001, pp. 531–540.

[190] L. V. Lakshmanan, R. T. Ng, C. X. Wang, X. Zhou, and T. J. Johnson.
“The generalized MDL approach for summarization”.
In: Proceedings of the 28th international conference on Very Large Data Bases.
VLDB Endowment. 2002, pp. 766–777. DOI: 10.1016/b978-155860869-6/50073-1.

[191] A. O. Mendelzon and K. Q. Pu. “Concise descriptions of subsets of structured sets”.
In: Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems - PODS ’03. ACM. ACM Press, 2003, pp. 123–133.
DOI: 10.1145/773153.773166.

[192] A. Guttman. R-trees: A dynamic index structure for spatial searching. Vol. 14. 2. ACM, 1984.

[193] S. Bu, L. V. S. Lakshmanan, and R. T. Ng. “MDL summarization with holes”.
In: Proceedings of the 31st international conference on Very large data bases.
VLDB Endowment. 2005, pp. 433–444.

[194] A. Y. Halevy. “Answering queries using views: A survey”.
In: The VLDB Journal 10.4 (Dec. 2001), pp. 270–294. DOI: 10.1007/s007780100054.

[195] A. K. Chandra and P. M. Merlin.
“Optimal implementation of conjunctive queries in relational data bases”.
In: Proceedings of the ninth annual ACM symposium on Theory of computing.
ACM. ACM Press, 1977, pp. 77–90. DOI: 10.1145/800105.803397.

347

https://doi.org/10.1145/290941.291008
https://doi.org/10.1145/2983323.2983769
https://doi.org/10.1108/eb026526
https://doi.org/10.1145/3077136.3080796
https://doi.org/10.1145/2063576.2063654
https://doi.org/10.1145/3357384.3357932
https://doi.org/10.1016/b978-155860869-6/50073-1
https://doi.org/10.1145/773153.773166
https://doi.org/10.1007/s007780100054
https://doi.org/10.1145/800105.803397


BIBLIOGRAPHY

[196] A. Y. Levy, A. Rajaraman, and J. O. Joann.
“Querying heterogeneous information sources using source descriptions”. In: Proceedings of the
22nd International Conference on Very Large Databases, VLDB-96, Bombay, India. 1996.

[197] A. Y. Levy and Y. Sagiv. “Queries independent of updates”. In: VLDB. Vol. 93. 1993,
pp. 171–181.

[198] K. A. Morris. “An algorithm for ordering subgoals in NAIL?” In: Proceedings of the seventh
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems - PODS ’88.
ACM. ACM Press, 1988, pp. 82–88. DOI: 10.1145/308386.308419.

[199] R. Pottinger and A. Y. Levy. “A scalable algorithm for answering queries using views”.
In: VLDB. 2000, pp. 484–495.

[200] R. Pottinger and A. Halevy.
“MiniCon: A scalable algorithm for answering queries using views”.
In: The VLDB Journal 10.2 (Sept. 2001), pp. 182–198. DOI: 10.1007/s007780100048.

[201] S. Abiteboul and O. M. Duschka. “Complexity of answering queries using materialized views”.
In: Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems - PODS ’98. ACM. ACM Press, 1998, pp. 254–263.
DOI: 10.1145/275487.275516.

[202] R. van der Meyden. “The complexity of querying indefinite information: defined relations,
recursion and linear order”. PhD thesis. Rutgers University, Department of Computer Science,
Laboratory for Computer Science Research, 1992.

[203] U. Dayal, N. Goodman, and R. H. Katz.
“An extended relational algebra with control over duplicate elimination”. In: Proceedings of the
1st ACM SIGACT-SIGMOD symposium on Principles of database systems.
ACM. ACM Press, 1982, pp. 117–123. DOI: 10.1145/588111.588132.

[204] A. Klausner and N. Goodman. “Multirelations-Semantice and Languages.” In: VLDB. Vol. 85.
1985, pp. 251–258.

[205] X. L. Dong and F. Naumann. “Data fusion: resolving data conflicts for integration”.
In: Proceedings of the VLDB Endowment 2.2 (2009), pp. 1654–1655.
DOI: 10.14778/1687553.1687620.

[206] M. Jarke and J. Koch. “Query Optimization in Database Systems”.
In: ACM Computing Surveys 16.2 (June 1984), pp. 111–152. DOI: 10.1145/356924.356928.

[207] M. Friendly. “A Brief History of Data Visualization”.
In: Handbook of data visualization (2008), pp. 15–56. DOI: 10.1007/978-3-540-33037-0_2.

[208] M. Harrower and C. A. Brewer.
“ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps”.
In: The Cartographic Journal 40.1 (June 2003), pp. 27–37.
DOI: 10.1179/000870403235002042.

348

https://doi.org/10.1145/308386.308419
https://doi.org/10.1007/s007780100048
https://doi.org/10.1145/275487.275516
https://doi.org/10.1145/588111.588132
https://doi.org/10.14778/1687553.1687620
https://doi.org/10.1145/356924.356928
https://doi.org/10.1007/978-3-540-33037-0_2
https://doi.org/10.1179/000870403235002042


REFERENCES

[209] A. Dasgupta, J. Poco, B. Rogowitz, K. Han, E. Bertini, and C. T. Silva.
“The Effect of Color Scales on Climate Scientists’ Objective and Subjective Performance in
Spatial Data Analysis Tasks”. In: IEEE Transactions on Visualization and Computer Graphics
26.3 (Mar. 2020), pp. 1577–1591. DOI: 10.1109/tvcg.2018.2876539.

[210] K. R. Gegenfurtner and L. T. Sharpe. Color vision: From genes to perception.
Cambridge University Press, 2001.

[211] I. Abramov, J. Gordon, O. Feldman, and A. Chavarga.
“Sex & vision I: Spatio-temporal resolution”.
In: Biology of sex differences 3.1 (Sept. 2012), p. 20. DOI: 10.1186/2042-6410-3-20.

[212] I. Abramov, J. Gordon, O. Feldman, and A. Chavarga.
“Sex & vision II: Color appearance of monochromatic lights”.
In: Biology of Sex Differences 3.1 (2012), p. 21. DOI: 10.1186/2042-6410-3-21.

[213] A. McNutt and G. Kindlmann.
“Linting for Visualization: Towards a Practical Automated Visualization Guidance System”. In:
Oct. 2018.

[214] A. Diehl, A. Abdul-Rahman, M. El-Assady, B. Bach, D. Keim, and M. Chen.
“VisGuides: A Forum for Discussing Visualization Guidelines”. In:
The Eurographics Association, 2018. DOI: 10.2312/EUROVISSHORT.20181079.

[215] J. Mackinlay. “Automating the design of graphical presentations of relational information”.
In: ACM Transactions on Graphics 5.2 (Apr. 1986), pp. 110–141. DOI: 10.1145/22949.22950.

[216] W. S. Cleveland and R. McGill. “Graphical Perception: Theory, Experimentation, and
Application to the Development of Graphical Methods”.
In: Journal of the American Statistical Association 79.387 (Sept. 1984), pp. 531–554.
DOI: 10.1080/01621459.1984.10478080.

[217] Y. Sun, J. Leigh, A. E. Johnson, and S. Lee. “Articulate: A Semi-automated Model for
Translating Natural Language Queries into Meaningful Visualizations.” In: Smart Graphics.
Vol. 6133. Springer. Springer Berlin Heidelberg, 2010, pp. 184–195.
DOI: 10.1007/978-3-642-13544-6_18.

[218] Y. Sun. “Articulate: Creating Meaningful Visualizations from Natural Language”.
PhD thesis. University of Illinois at Chicago, 2012.
DOI: 10.4018/978-1-4666-4309-3.ch011.

[219] M. Marcus, G. Kim, M. A. Marcinkiewicz, R. MacIntyre, A. Bies, M. Ferguson, K. Katz, and
B. Schasberger. “The Penn Treebank: annotating predicate argument structure”.
In: Proceedings of the workshop on Human Language Technology.
Association for Computational Linguistics. 1994, pp. 114–119.
DOI: 10.3115/1075812.1075835.

[220] M. Voigt, S. Pietschmann, and K. Meißner. “A semantics-based, end-user-centered information
visualization process for semantic web data”.
In: Semantic models for adaptive interactive systems. Springer, 2013, pp. 83–107.
DOI: 10.1007/978-1-4471-5301-6_5.

349

https://doi.org/10.1109/tvcg.2018.2876539
https://doi.org/10.1186/2042-6410-3-20
https://doi.org/10.1186/2042-6410-3-21
https://doi.org/10.2312/EUROVISSHORT.20181079
https://doi.org/10.1145/22949.22950
https://doi.org/10.1080/01621459.1984.10478080
https://doi.org/10.1007/978-3-642-13544-6_18
https://doi.org/10.4018/978-1-4666-4309-3.ch011
https://doi.org/10.3115/1075812.1075835
https://doi.org/10.1007/978-1-4471-5301-6_5


BIBLIOGRAPHY

[221] J. Polowinski and M. Voigt. “VISO: A Shared, Formal Knowledge Base As a Foundation for
Semi-automatic Infovis Systems”.
In: CHI ’13 Extended Abstracts on Human Factors in Computing Systems. CHI EA ’13.
Paris, France: ACM, 2013, pp. 1791–1796. DOI: 10.1145/2468356.2468677.

[222] D. Lin. “An information-theoretic definition of similarity.” In: Icml. Vol. 98. 1998. 1998,
pp. 296–304.

[223] O. Gilson, N. Silva, P. W. Grant, and M. Chen.
“From Web Data to Visualization via Ontology Mapping”. In: Computer Graphics Forum.
Vol. 27. 3. Wiley Online Library. Wiley, May 2008, pp. 959–966.
DOI: 10.1111/j.1467-8659.2008.01230.x.

[224] B. Mutlu, P. Hoefler, G. Tschinkel, E. Veas, V. Sabol, F. Stegmaier, and M. Granitzer.
“Suggesting visualisations for published data”. In: Information Visualization Theory and
Applications (IVAPP), 2014 International Conference on. IEEE. 2014, pp. 267–275.

[225] K. Pearson. “Note on regression and inheritance in the case of two parents”.
In: Proceedings of the Royal Society of London 58 (1895), pp. 240–242.

[226] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock.
“Methods and metrics for cold-start recommendations”.
In: Proceedings of the 25th annual international ACM SIGIR conference on Research and
development in information retrieval - SIGIR ’02. ACM. ACM Press, 2002, pp. 253–260.
DOI: 10.1145/564376.564421.

[227] M. Srinivas and L. M. Patnaik. “Genetic algorithms: A survey”.
In: Computer 27.6 (June 1994), pp. 17–26. DOI: 10.1109/2.294849.

[228] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and J. Heer. “Formalizing
Visualization Design Knowledge as Constraints: Actionable and Extensible Models in Draco”.
In: IEEE Transactions on Visualization and Computer Graphics 25.1 (Jan. 2019), pp. 438–448.
DOI: 10.1109/tvcg.2018.2865240.

[229] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer.
“Vega-Lite: A Grammar of Interactive Graphics”.
In: IEEE Transactions on Visualization and Computer Graphics 23.1 (Jan. 2017), pp. 341–350.
DOI: 10.1109/tvcg.2016.2599030.

[230] T.-Y. Liu. “Learning to Rank for Information Retrieval”.
In: Foundations and Trends® in Information Retrieval 3.3 (2007), pp. 225–331.
DOI: 10.1561/1500000016.

[231] R. Herbrich. “Support vector learning for ordinal regression”.
In: 9th International Conference on Artificial Neural Networks: ICANN ’99. IEE, 1999.
DOI: 10.1049/cp:19991091.

[232] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and M. Schneider.
“Potassco: The Potsdam Answer Set Solving Collection”.
In: AI Communications 24 (2011), pp. 107–124. DOI: 10.3233/AIC-2011-0491.

[233] J. Nielsen and H. Loranger. Prioritizing web usability. Pearson Education, 2006.

350

https://doi.org/10.1145/2468356.2468677
https://doi.org/10.1111/j.1467-8659.2008.01230.x
https://doi.org/10.1145/564376.564421
https://doi.org/10.1109/2.294849
https://doi.org/10.1109/tvcg.2018.2865240
https://doi.org/10.1109/tvcg.2016.2599030
https://doi.org/10.1561/1500000016
https://doi.org/10.1049/cp:19991091
https://doi.org/10.3233/AIC-2011-0491


REFERENCES

[234] T. H. Cormen. Introduction to algorithms. MIT press, 2009.

[235] L. Ramshaw and R. E. Tarjan.
“On minimum-cost assignments in unbalanced bipartite graphs”.
In: HP Labs, Palo Alto, CA, USA, Tech. Rep. HPL-2012-40R1 (2012).

[236] H. W. Kuhn. “The Hungarian method for the assignment problem”.
In: Naval Research Logistics (NRL) 2.1-2 (1955), pp. 83–97.

[237] J. Edmonds and R. M. Karp.
“Theoretical improvements in algorithmic efficiency for network flow problems”.
In: Journal of the ACM (JACM) 19.2 (1972), pp. 248–264.

[238] R. Agrawal, T. Imieliński, and A. Swami.
“Mining association rules between sets of items in large databases”. In: Proceedings of the 1993
ACM SIGMOD international conference on Management of data - SIGMOD ’93. Vol. 22. 2.
ACM. ACM Press, 1993, pp. 207–216. DOI: 10.1145/170035.170072.

[239] T. Hastie, R. Tibshirani, and J. Friedman.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2002.

[240] F. Thabtah. “A review of associative classification mining”.
In: The Knowledge Engineering Review 22.1 (Mar. 2007), pp. 37–65.
DOI: 10.1017/s0269888907001026.

[241] B. Liu, Y. Ma, C. K. Wong, and S. Y. Philip. “Scoring the data using association rules”.
In: Applied intelligence 18.2 (2003), pp. 119–135.

[242] R. Agrawal, R. Srikant, et al. “Fast algorithms for mining association rules”.
In: Proc. 20th int. conf. very large data bases, VLDB. Vol. 1215. 1994, pp. 487–499.

[243] V. Stodden, D. H. Bailey, J. Borwein, R. J. LeVeque, W. Rider, and W. Stein. “Setting the
default to reproducible: Reproducibility in computational and experimental mathematics”.
In: Institute for Computational and Experimental Research in Mathematics (2013).

[244] Y. L. Simmhan, B. Plale, and D. Gannon. “A survey of data provenance in e-science”.
In: ACM SIGMOD Record 34.3 (Sept. 2005), pp. 31–36. DOI: 10.1145/1084805.1084812.

[245] N. Prat and S. Madnick. “Measuring Data Believability: A Provenance Approach”.
In: Proceedings of the 41st Annual Hawaii International Conference on System Sciences
(HICSS 2008). IEEE, Jan. 2008. DOI: 10.1109/hicss.2008.243.

[246] M. A. C. Johnson, M. Paradies, M. Dembska, K. Lackeos, H.-R. Klöckner, D. J. Champion, and
S. Schindler. “Astronomical Pipeline Provenance: A Use Case Evaluation”.
In: 13th International Workshop on Theory and Practice of Provenance (TaPP 2021).
USENIX Association, July 21, 2021.

[247] W. Han and H.-J. Schulz. “Beyond Trust Building — Calibrating Trust in Visual Analytics”.
In: 2020 IEEE Workshop on TRust and EXpertise in Visual Analytics (TREX). IEEE, Oct. 2020.
DOI: 10.1109/trex51495.2020.00006.

[248] A. Gupta. “Data Provenance”. In: Encyclopedia of Database Systems. Springer US, 2009,
pp. 608–608. DOI: 10.1007/978-0-387-39940-9_1305.

351

https://doi.org/10.1145/170035.170072
https://doi.org/10.1017/s0269888907001026
https://doi.org/10.1145/1084805.1084812
https://doi.org/10.1109/hicss.2008.243
https://doi.org/10.1109/trex51495.2020.00006
https://doi.org/10.1007/978-0-387-39940-9_1305


BIBLIOGRAPHY

[249] W.-C. Tan. “Provenance”. In: Encyclopedia of Database Systems. Springer US, 2009,
pp. 2202–2202. DOI: 10.1007/978-0-387-39940-9_283.

[250] Y. Zhao, M. Wilde, and I. Foster. “Applying the Virtual Data Provenance Model”.
In: International Provenance and Annotation Workshop.
Springer. Springer Berlin Heidelberg, 2006, pp. 148–161. DOI: 10.1007/11890850_16.

[251] J. Freire, D. Koop, E. Santos, and C. T. Silva. “Provenance for Computational Tasks: A Survey”.
In: Computing in Science & Engineering 10.3 (May 2008), pp. 11–21.
DOI: 10.1109/mcse.2008.79.

[252] C. Lim, S. Lu, A. Chebotko, and F. Fotouhi.
“Prospective and retrospective provenance collection in scientific workflow environments”.
In: Services Computing (SCC), 2010 IEEE International Conference on. IEEE. 2010,
pp. 449–456. DOI: 10.1109/scc.2010.18.

[253] D. D. Chamberlin and R. F. Boyce. “SEQUEL: A structured English query language”.
In: Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on Data description,
access and control. SIGFIDET ’74. Ann Arbor, Michigan: ACM, 1974, pp. 249–264.
DOI: http://doi.acm.org/10.1145/800296.811515.

[254] P. Buneman, S. Khanna, and W. C. Tan.
“Why and Where: A Characterization of Data Provenance”. In: ICDT.
Ed. by J. V. den Bussche and V. Vianu. Vol. 1973. Lecture Notes in Computer Science.
Springer, 2001, pp. 316–330.

[255] T. J. Green, G. Karvounarakis, and V. Tannen. “Provenance semirings”.
In: Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems - PODS ’07. PODS ’07. Beijing, China: ACM Press, 2007, pp. 31–40.
DOI: 10.1145/1265530.1265535.

[256] J. Cheney, L. Chiticariu, and W.-C. Tan. “Provenance in Databases: Why, How, and Where”.
In: Found. Trends databases 1 (4 Apr. 2009), pp. 379–474. DOI: 10.1561/1900000006.

[257] F. Bancilhon and N. Spyratos. “Update semantics of relational views”.
In: ACM Transactions on Database Systems 6.4 (Dec. 1981), pp. 557–575.
DOI: 10.1145/319628.319634.

[258] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya.
“DBNotes: a post-it system for relational databases based on provenance”.
In: Proceedings of the 2005 ACM SIGMOD international conference on Management of data.
SIGMOD ’05. Baltimore, Maryland: ACM, 2005, pp. 942–944.
DOI: http://doi.acm.org/10.1145/1066157.1066296.

[259] D. Bhagwat, L. Chiticariu, W.-C. Tan, and G. Vijayvargiya.
“An annotation management system for relational databases”.
In: The VLDB Journal 14 (4 2005). 10.1007/s00778-005-0156-6, pp. 373–396.

[260] A. Woodruff and M. Stonebraker.
“Supporting fine-grained data lineage in a database visualization environment”.
In: Data Engineering, 1997. Proceedings. 13th International Conference on. Apr. 1997,
pp. 91–102. DOI: 10.1109/ICDE.1997.581742.

352

https://doi.org/10.1007/978-0-387-39940-9_283
https://doi.org/10.1007/11890850_16
https://doi.org/10.1109/mcse.2008.79
https://doi.org/10.1109/scc.2010.18
https://doi.org/http://doi.acm.org/10.1145/800296.811515
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1561/1900000006
https://doi.org/10.1145/319628.319634
https://doi.org/http://doi.acm.org/10.1145/1066157.1066296
https://doi.org/10.1109/ICDE.1997.581742


REFERENCES

[261] L. Murta, V. Braganholo, F. Chirigati, D. Koop, and J. Freire.
“noWorkflow: capturing and analyzing provenance of scripts”.
In: International Provenance and Annotation Workshop. Springer. 2014, pp. 71–83.
DOI: 10.1007/978-3-319-16462-5_6.

[262] J. Van Zundert. “If you build it, will we come? Large scale digital infrastructures as a dead end
for digital humanities”.
In: Historical Social Research/Historische Sozialforschung (2012), pp. 165–186.

[263] C. Bochner, R. Gude, and A. Schreiber.
A Python Library for Provenance Recording and Querying, Provenance and Annotation of Data
and Processes: Second International Provenance and Annotation Workshop, IPAW 2008, Salt
Lake City, UT, USA, June 17-18, 2008. Revised Selected Papers. 2008.

[264] A. Davison. “Automated capture of experiment context for easier reproducibility in
computational research”. In: Computing in Science & Engineering 14.4 (2012), pp. 48–56.
DOI: 10.1109/mcse.2012.41.

[265] E. Angelino, D. Yamins, and M. Seltzer.
“StarFlow: A script-centric data analysis environment”.
In: Provenance and Annotation of Data and Processes (2010), pp. 236–250.
DOI: 10.1007/978-3-642-17819-1_27.

[266] D. Tariq, M. Ali, and A. Gehani.
“Towards Automated Collection of Application-Level Data Provenance.” In: TaPP. 2012.

[267] B. S. Lerner and E. R. Boose. “Collecting provenance in an interactive scripting environment”.
In: Workshop on the Theory and Practice of Provenance (TaPP), Cologne, Germany. 2014.

[268] J. F. Pimentel, J. Freire, V. Braganholo, and L. Murta.
“Tracking and analyzing the evolution of provenance from scripts”.
In: International Provenance and Annotation Workshop. Springer. 2016, pp. 16–28.
DOI: 10.1007/978-3-319-40593-3_2.

[269] T. McPhillips, T. Song, T. Kolisnik, S. Aulenbach, K. Belhajjame, K. Bocinsky, Y. Cao,
F. Chirigati, S. Dey, J. Freire, D. Huntzinger, C. Jones, D. Koop, P. Missier, M. Schildhauer,
C. Schwalm, Y. Wei, J. Cheney, M. Bieda, and B. Ludäscher. “YesWorkflow: A User-Oriented,
Language-Independent Tool for Recovering Workflow Information from Scripts”.
In: International Journal of Digital Curation 10.1 (May 2015), pp. 298–313.
DOI: 10.2218/ijdc.v10i1.370.

[270] J. F. Pimentel, S. Dey, T. McPhillips, K. Belhajjame, D. Koop, L. Murta, V. Braganholo, and
B. Ludäscher.
“Yin & Yang: demonstrating complementary provenance from noWorkflow & YesWorkflow”.
In: International Provenance and Annotation Workshop. Springer. 2016, pp. 161–165.
DOI: 10.1007/978-3-319-40593-3_13.

[271] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire.
“noWorkflow: a tool for collecting, analyzing, and managing provenance from python scripts”.
In: Proceedings of the VLDB Endowment 10.12 (2017), pp. 1841–1844.
DOI: 10.14778/3137765.3137789.

353

https://doi.org/10.1007/978-3-319-16462-5_6
https://doi.org/10.1109/mcse.2012.41
https://doi.org/10.1007/978-3-642-17819-1_27
https://doi.org/10.1007/978-3-319-40593-3_2
https://doi.org/10.2218/ijdc.v10i1.370
https://doi.org/10.1007/978-3-319-40593-3_13
https://doi.org/10.14778/3137765.3137789


BIBLIOGRAPHY

[272] “FIPS 180-1: Secure Hash Standard”.
In: NIST, US Dept. of Commerce, Washington DC April 9.21 (1995), p. 32.

[273] P. Missier, K. Belhajjame, and J. Cheney.
“The W3C PROV family of specifications for modelling provenance metadata”.
In: Proceedings of the 16th International Conference on Extending Database Technology.
ACM. 2013, pp. 773–776. DOI: 10.1145/2452376.2452478.

[274] L. Moreau, P. Groth, J. Cheney, T. Lebo, and S. Miles. “The rationale of PROV”.
In: Journal of Web Semantics 35 (Dec. 2015), pp. 235–257.
DOI: 10.1016/j.websem.2015.04.001.

[275] L. Moreau, B. Ludäscher, I. Altintas, R. S. Barga, S. Bowers, S. Callahan, G. Chin, B. Clifford,
S. Cohen, S. Cohen-Boulakia, S. Davidson, E. Deelman, L. Digiampietri, I. Foster, J. Freire,
J. Frew, J. Futrelle, T. Gibson, Y. Gil, C. Goble, J. Golbeck, P. Groth, D. A. Holland, S. Jiang,
J. Kim, D. Koop, A. Krenek, T. McPhillips, G. Mehta, S. Miles, D. Metzger, S. Munroe, J. Myers,
B. Plale, N. Podhorszki, V. Ratnakar, E. Santos, C. Scheidegger, K. Schuchardt, M. Seltzer,
Y. L. Simmhan, C. Silva, P. Slaughter, E. Stephan, R. Stevens, D. Turi, H. Vo, M. Wilde,
J. Zhao, and Y. Zhao. “Special Issue: The First Provenance Challenge”.
In: Concurrency and Computation: Practice and Experience 20.5 (2008), pp. 409–418.
DOI: 10.1002/cpe.1233.

[276] Y. Simmhan, P. Groth, and L. Moreau. “Special section: The third provenance challenge on
using the open provenance model for interoperability”.
In: Future Generation Computer Systems 27.6 (2011), pp. 737–742.
DOI: 10.1016/j.future.2010.11.020.

[277] Y. Cao, C. Jones, V. Cuevas-Vicenttin, M. B. Jones, B. Ludäscher, T. McPhillips, P. Missier,
C. Schwalm, P. Slaughter, D. Vieglais, L. Walker, and Y. Wei.
“ProvONE: extending PROV to support the DataONE scientific community”.
In: PROV: Three Years Later. June 6, 2016.

[278] D. J. Abadi, S. R. Madden, and N. Hachem.
“Column-stores vs. row-stores: How different are they really?” In: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data - SIGMOD ’08.
ACM. ACM Press, 2008, pp. 967–980. DOI: 10.1145/1376616.1376712.

[279] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on Large Clusters”.
In: OSDI (2004), p. 13.

[280] B. Ford. “Parsing expression grammars: a recognition-based syntactic foundation”.
In: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages - POPL ’04. Vol. 39. 1. ACM. ACM Press, 2004, pp. 111–122.
DOI: 10.1145/964001.964011.

[281] B. Ford. “Packrat parsing: simple, powerful, lazy, linear time, functional pearl”.
In: ACM SIGPLAN Notices. Vol. 37. 9. ACM. ACM Press, 2002, pp. 36–47.
DOI: 10.1145/581478.581483.

[282] P. Mishra and M. H. Eich. “Join processing in relational databases”.
In: ACM Computing Surveys 24.1 (Mar. 1992), pp. 63–113. DOI: 10.1145/128762.128764.

354

https://doi.org/10.1145/2452376.2452478
https://doi.org/10.1016/j.websem.2015.04.001
https://doi.org/10.1002/cpe.1233
https://doi.org/10.1016/j.future.2010.11.020
https://doi.org/10.1145/1376616.1376712
https://doi.org/10.1145/964001.964011
https://doi.org/10.1145/581478.581483
https://doi.org/10.1145/128762.128764


REFERENCES

[283] M. D. Steinberg. “Bewertung von Ontologien zum Thema Maßeinheiten”.
Bachelor’s thesis. Friedrich Schiller University Jena, Aug. 19, 2016.

[284] H. Gibson, J. Faith, and P. Vickers.
“A survey of two-dimensional graph layout techniques for information visualisation”.
In: Information visualization 12.3-4 (2013), pp. 324–357.

[285] “The JavaScript Object Notation (JSON) Data Interchange Format”.
In: (Dec. 2017). Ed. by T. Brady. DOI: 10.17487/RFC8259.

[286] “Agreement on the withdrawal of the United Kingdom of Great Britain and Northern Ireland
from the European Union and the European Atomic Energy Community”.
In: Office Journal of the European Union 63 (Jan. 31, 2020).

[287] M. Allen, ed. The SAGE Encyclopedia of Communication Research Methods. Mar. 7, 2017.
DOI: 10.4135/9781483381411.n103.

[288] J. Brooke. “SUS: a "quick and dirty" usability scale”. In: Usability Evaluation in Industry.
Ed. by P. W. Jordan, B. Thomas, B. Weerdmeester, and I. L. McClelland.
London: Taylor and Francis, 1996.

[289] J. Brooke. “SUS: A Retrospective”. In: J. Usability Studies 8.2 (Feb. 2013), pp. 29–40.

[290] R. Likert. “A technique for the measurement of attitudes.” In: Archives of psychology (1932).

[291] A. Bangor, P. T. Kortum, and J. T. Miller.
“An Empirical Evaluation of the System Usability Scale”.
In: International Journal of Human-Computer Interaction 24.6 (July 2008), pp. 574–594.
DOI: 10.1080/10447310802205776.

[292] A. Bangor, P. Kortum, and J. Miller.
“Determining What Individual SUS Scores Mean: Adding an Adjective Rating Scale”.
In: J. Usability Studies 4.3 (May 2009), pp. 114–123.

[293] J. Dabrowski and E. V. Munson.
“40years of searching for the best computer system response time”.
In: Interacting with Computers 23.5 (Sept. 2011), pp. 555–564.
DOI: 10.1016/j.intcom.2011.05.008.

[294] Z. Stachoň, Č. Šašinka, J. Čeněk, Z. Štěrba, S. Angsuesser, S. I. Fabrikant, R. Štampach, and
K. Morong. “Cross-cultural differences in figure–ground perception of cartographic stimuli”.
In: Cartography and Geographic Information Science 46.1 (May 2018), pp. 82–94.
DOI: 10.1080/15230406.2018.1470575.

[295] E. Dimara, S. Franconeri, C. Plaisant, A. Bezerianos, and P. Dragicevic.
“A Task-Based Taxonomy of Cognitive Biases for Information Visualization”. In: IEEE
Transactions on Visualization and Computer Graphics 26.2 (Feb. 2020), pp. 1413–1432.
DOI: 10.1109/tvcg.2018.2872577.

355

https://doi.org/10.17487/RFC8259
https://doi.org/10.4135/9781483381411.n103
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1016/j.intcom.2011.05.008
https://doi.org/10.1080/15230406.2018.1470575
https://doi.org/10.1109/tvcg.2018.2872577


BIBLIOGRAPHY

[296] N. Abdelmageed and S. Schindler. “JenTab: Matching Tabular Data to Knowledge Graphs”.
In: The Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab
2020) co-located with the 19th International Semantic Web Conference (ISWC 2020).
Ed. by E. Jiménez-Ruiz, O. Hassanzadeh, V. Efthymiou, J. Chen, K. Srinivas, and V. Cutrona.
Vol. 2775. CEUR Workshop Proceedings. CEUR-WS.org, 2020, pp. 40–49.

[297] N. Abdelmageed and S. Schindler. “JenTab: A Toolkit for Semantic Table Annotations”.
In: Second International Workshop on Knowledge Graph Construction (KGCW 2021) co-located
with the Extended Semantic Web Conference (ESWC 2021). June 6, 2021.

[298] M. Vartak, S. Huang, T. Siddiqui, S. Madden, and A. Parameswaran.
“Towards Visualization Recommendation Systems”.
In: ACM SIGMOD Record 45.4 (May 2017), pp. 34–39. DOI: 10.1145/3092931.3092937.

[299] M. Hausenblas, E. Wilde, and J. Tennison.
“URI Fragment Identifiers for the text/csv Media Type”. In: (Jan. 2014).
DOI: 10.17487/RFC7111.

[300] B. N. Taylor and A. Thompson. The International System of Units (SI). National Institute of
Standards and Technology Special Publication 330 (2008 Edition).
National Institute of Standards and Technology / U.S. Department of Commerce, 2008.

356

https://doi.org/10.1145/3092931.3092937
https://doi.org/10.17487/RFC7111


WEB RESOURCES

Web Resources

Snapshots of all web resources have been deposited with the Internet Archive’s Wayback Machine

(https: // web. archive. org/ ) at the time of last access.

[web1] Eurostat. European Comission.
URL: https://ec.europa.eu/eurostat Last Access: Aug. 7, 2021.

[web2] Uber Movement: Let’s find smarter ways forward, together. Uber Technologies, Inc.
URL: https://movement.uber.com Last Access: Aug. 7, 2021.

[web3] Willkommen - Open-Data-Portal – Deutsche Bahn Datenportal. Deutsche Bahn AG.
URL: https://data.deutschebahn.com/ Last Access: Aug. 7, 2021.

[web4] GFBio website - Welcome. GFBio e.V.
URL: https://www.gfbio.org/ Last Access: Aug. 7, 2021.

[web5] Find open data - data.gov.uk. URL: https://data.gov.uk/ Last Access: Aug. 7, 2021.

[web6] Bing. URL: https://www.bing.com/ Last Access: Aug. 7, 2021.

[web7] 百度一下，你就知道. URL: https://www.baidu.com/ Last Access: Aug. 7, 2021.

[web8] Google. URL: https://www.google.com/ Last Access: Aug. 7, 2021.

[web9] R. Cyganiak and D. Reynoolds, eds. The RDF Data Cube Vocabulary. W3C. Jan. 16, 2014.
URL: https://www.w3.org/TR/vocab-data-cube/ Last Access: Aug. 7, 2021.

[web10] R. Cyganiak, D. Wood, and M. Lanthaler, eds. RDF 1.1 Concepts and Abstract Syntax. W3C.
Feb. 25, 2014. URL: https://www.w3.org/TR/rdf11-concepts/ Last Access: Aug. 7, 2021.

[web11] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C. Nov. 26, 2008.
URL: https://www.w3.org/TR/xml/ Last Access: Aug. 7, 2021.

[web12] SDMX - Statistical Data and Metadata eXchange.
URL: https://sdmx.org/ Last Access: Aug. 7, 2021.

[web13] GBIF REST API. Global Biodiversity Information Facility.
URL: https://www.gbif.org/developer/summary Last Access: Aug. 7, 2021.

[web14] Wikidata Query Service. Wikimedia Foundation.
URL: https://query.wikidata.org/ Last Access: Aug. 7, 2021.

[web15] FIPS Codes Replacement Chart 2015.
URL: https://www.nist.gov/document/fipscodesreplacementchart2015pdf Last
Access: Aug. 7, 2021.

[web16] S. Ribecca. The Data Visualisation Catalogue.
URL: https://datavizcatalogue.com/ Last Access: Aug. 7, 2021.

[web17] Calc | LibreOffice - Free Office Suite - Fun Project - Fantastic People.
The Document Foundation.
URL: https://www.libreoffice.org/discover/calc/ Last Access: Aug. 7, 2021.

357

https://web.archive.org/
https://ec.europa.eu/eurostat
https://movement.uber.com
https://data.deutschebahn.com/
https://www.gfbio.org/
https://data.gov.uk/
https://www.bing.com/
https://www.baidu.com/
https://www.google.com/
https://www.w3.org/TR/vocab-data-cube/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/xml/
https://sdmx.org/
https://www.gbif.org/developer/summary
https://query.wikidata.org/
https://www.nist.gov/document/fipscodesreplacementchart2015pdf
https://datavizcatalogue.com/
https://www.libreoffice.org/discover/calc/


BIBLIOGRAPHY

[web18] Choosing a Chart Type - LibreOffice Help. The Document Foundation.
URL: https://help.libreoffice.org/Chart/Choosing_a_Chart_Type Last Access: Aug.
7, 2021.

[web19] M. Bostock. D3.js - Data-Driven Documents.
URL: https://d3js.org/ Last Access: Aug. 7, 2021.

[web20] gnuplot homepage. June 2021. URL: http://www.gnuplot.info Last Access: July. 21, 2021.

[web21] WTF Visualizations. URL: https://viz.wtf/ Last Access: Aug. 7, 2021.

[web22] P. Groth and L. Moreau, eds. PROV-Overview. W3C. Apr. 30, 2013.
URL: https://www.w3.org/TR/prov-overview/ Last Access: Aug. 7, 2021.

[web23] Artifact Review and Badging Version 1.1. ACM. Aug. 24, 2020.
URL: https://www.acm.org/publications/policies/artifact-review-and-badging-
current Last Access: Aug. 7, 2021.

[web24] Introduction - Google Fusion Tables. Google. URL:
https://sites.google.com/site/fusiontablestalks/home Last Access: Feb. 3, 2019.

[web25] Business Intelligence and Analytics. Tableau Software, LLC, a Salesforce Company.
URL: https://www.tableau.com Last Access: Aug. 7, 2021.

[web26] Project Jupyter | Home. Project Jupyter.
URL: https://jupyter.org/ Last Access: Aug. 7, 2021.

[web27] Taverna - Apache Incubator. The Apache Software Foundation.
URL: https://taverna.incubator.apache.org/ Last Access: Aug. 7, 2021.

[web28] VisTrails. Sept. 19, 2019. URL: http://www.vistrails.org Last Access: Aug. 7, 2021.

[web29] Copyright notice and free re-use of data - Eurostat. European Comission. URL:
https://ec.europa.eu/eurostat/about/policies/copyright Last Access: Aug. 7, 2021.

[web30] Bulk download - Eurostat. European Comission.
URL: https://ec.europa.eu/eurostat/data/bulkdownload Last Access: Aug. 7, 2021.

[web31] Microsoft Excel Spreadsheet Software | Microsoft 365. Microsoft.
URL: https://www.microsoft.com/en/microsoft-365/excel Last Access: Aug. 7, 2021.

[web32] IANA - Media Types - tab-separated-values. IANA.
URL: https://www.iana.org/assignments/media-types/text/tab-separated-values
Last Access: Aug. 7, 2021.

[web33] Google Sheets - create and edit spreadsheets online, for free. Google.
URL: https://www.google.com/sheets/about/ Last Access: Aug. 7, 2021.

[web34] ECMA-376-1:2016: Office Open XML File Formats. Ecma. Dec. 2016.
URL: https://www.ecma-international.org/publications-and-
standards/standards/ecma-376/ Last Access: Aug. 7, 2021.

358

https://help.libreoffice.org/Chart/Choosing_a_Chart_Type
https://d3js.org/
http://www.gnuplot.info
https://viz.wtf/
https://www.w3.org/TR/prov-overview/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://sites.google.com/site/fusiontablestalks/home
https://www.tableau.com
https://jupyter.org/
https://taverna.incubator.apache.org/
http://www.vistrails.org
https://ec.europa.eu/eurostat/about/policies/copyright
https://ec.europa.eu/eurostat/data/bulkdownload
https://www.microsoft.com/en/microsoft-365/excel
https://www.iana.org/assignments/media-types/text/tab-separated-values
https://www.google.com/sheets/about/
https://www.ecma-international.org/publications-and-standards/standards/ecma-376/
https://www.ecma-international.org/publications-and-standards/standards/ecma-376/


WEB RESOURCES

[web35] P. Durusau and M. Brauer, eds.
Open Document Format for Office Applications (OpenDocument) Version 1.2. OASIS.
Sept. 29, 2011.
URL: http://docs.oasis-open.org/office/v1.2/os/OpenDocument-v1.2-os.html Last
Access: Aug. 7, 2021.

[web36] FAQ: Google Fusion Tables - Fusion Tables Help. Google.
URL: https://support.google.com/fusiontables/answer/9551050?visit_id=
637211893913799211-597987236&rd=1 Last Access: Aug. 7, 2021.

[web37] G Suite Updates Blog: Google Fusion Tables to be shut down on December 3, 2019. Google.
URL: https://gsuiteupdates.googleblog.com/2018/12/google-fusion-tables-to-
be-shut-down-on.html Last Access: Aug. 7, 2021.

[web38] Fusion Tables REST API | Google Developers. Google.
URL: https://developers.google.com/fusiontables/ Last Access: Aug. 10, 2019.

[web39] Welcome to Python.org. Python Software Foundation.
URL: https://www.python.org/ Last Access: Aug. 7, 2021.

[web40] The Jupyter Notebook — Jupyter Notebook 6.4.0 documentation. Project Jupyter.
URL: https://jupyter-notebook.readthedocs.io/en/stable/ Last Access: Aug. 7, 2021.

[web41] J. Gruber. Daring Fireball: Markdown. The Daring Fireball Company LLC. Dec. 7, 2004.
URL: https://daringfireball.net/projects/markdown/ Last Access: Aug. 7, 2021.

[web42] B. Ragan-Kelley, A. J. Winstein, Y. Panda, and J. Kanner. minrk/ligo-binder: Black holes!
URL: https://github.com/minrk/ligo-binder Last Access: Aug. 7, 2021.

[web43] JupyterLite. URL: https://github.com/jupyterlite/ Last Access: Aug. 7, 2021.

[web44] J. Tuloup. JupyterLite: Jupyter ♥ WebAssembly ♥ Python. July 13, 2021.
URL: https://blog.jupyter.org/jupyterlite-jupyter-%5C%EF%5C%B8%5C%8F-
webassembly-%5C%EF%5C%B8%5C%8F-python-f6e2e41ab3fa Last Access: Aug. 7, 2021.

[web45] A. Rossberg, ed. WebAssembly Core Specification. W3C. Dec. 5, 2019.
URL: https://www.w3.org/TR/wasm-core/ Last Access: Aug. 7, 2021.

[web46] SciPy.org — SciPy.org. URL: https://www.scipy.org/ Last Access: Aug. 7, 2021.

[web47] NumPy. URL: https://numpy.org/ Last Access: Aug. 7, 2021.

[web48] pandas - Python Data Analysis Library.
URL: https://pandas.pydata.org/ Last Access: Aug. 7, 2021.

[web49] J. Hunter, D. Darren, E. Firing, M. Droettboom, and the Matplotlib development team.
Matplotlib: Python plotting — Matplotlib 3.4.2 documentation.
URL: https://matplotlib.org/ Last Access: Aug. 7, 2021.

[web50] Jupyter Development Team. The Jupyter Notebook Format — nbformat 5.1 documentation.
Project Jupyter.
URL: https://nbformat.readthedocs.io/en/latest/ Last Access: Aug. 7, 2021.

[web51] GitHub: Where the world builds software · GitHub. GitHub, Inc.
URL: https://github.com/ Last Access: Aug. 7, 2021.

359

http://docs.oasis-open.org/office/v1.2/os/OpenDocument-v1.2-os.html
https://support.google.com/fusiontables/answer/9551050?visit_id=637211893913799211-597987236&rd=1
https://support.google.com/fusiontables/answer/9551050?visit_id=637211893913799211-597987236&rd=1
https://gsuiteupdates.googleblog.com/2018/12/google-fusion-tables-to-be-shut-down-on.html
https://gsuiteupdates.googleblog.com/2018/12/google-fusion-tables-to-be-shut-down-on.html
https://developers.google.com/fusiontables/
https://www.python.org/
https://jupyter-notebook.readthedocs.io/en/stable/
https://daringfireball.net/projects/markdown/
https://github.com/minrk/ligo-binder
https://github.com/jupyterlite/
https://blog.jupyter.org/jupyterlite-jupyter-%5C%EF%5C%B8%5C%8F-webassembly-%5C%EF%5C%B8%5C%8F-python-f6e2e41ab3fa
https://blog.jupyter.org/jupyterlite-jupyter-%5C%EF%5C%B8%5C%8F-webassembly-%5C%EF%5C%B8%5C%8F-python-f6e2e41ab3fa
https://www.w3.org/TR/wasm-core/
https://www.scipy.org/
https://numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://nbformat.readthedocs.io/en/latest/
https://github.com/


BIBLIOGRAPHY

[web52] myGrid. URL: http://www.mygrid.org.uk/ Last Access: Nov. 8, 2017.

[web53] The Apache Software Foundation.
URL: https://www.apache.org/ Last Access: Aug. 7, 2021.

[web54] Taverna - Apache Incubator.
URL: http://incubator.apache.org/projects/taverna.html Last Access: Aug. 7, 2021.

[web55] Release taverna-commandline 3.1.0-incubating · apache/incubator-taverna-commandline.
June 30, 2016. URL: https://github.com/apache/incubator-taverna-
commandline/releases/tag/3.1.0-incubating Last Access: Aug. 7, 2021.

[web56] Release Apache Taverna Server 3.1.0-incubating · apache/incubator-taverna-server.
Jan. 18, 2018. URL: https://github.com/apache/incubator-taverna-
server/releases/tag/3.1.0-incubating Last Access: Aug. 7, 2021.

[web57] Release apache-taverna-language-0.15.1-incubating · apache/incubator-taverna-language.
Mar. 11, 2016. URL: https://github.com/apache/incubator-taverna-
language/releases/tag/0.15.1-incubating Last Access: Aug. 7, 2021.

[web58] BioCatalogue: The Life Science Web Service Registry.
URL: http://www.biocatalogue.org/ Last Access: Apr. 26, 2021.

[web59] A. Williams, ed. User Manual - Taverna 2.5 - myGrid developer wiki. May 7, 2014.
URL: http://dev.mygrid.org.uk/wiki/display/tav250/User+Manual Last Access: Aug.
7, 2021.

[web60] K. Wolstencroft, ed. myExperiment - Workflows - NCBI Gi to Kegg Pathway Descriptions (Katy
Wolstencroft) [Taverna 2 Workflow]. Jan. 30, 2013.
URL: http://www.myexperiment.org/workflows/2659.html Last Access: Aug. 7, 2021.

[web61] National Center for Biotechnology Information (NCBI). Bethesda (MD): National Library of
Medicine (US), National Center for Biotechnology Information. 1988.
URL: https://www.ncbi.nlm.nih.gov/ Last Access: Aug. 7, 2021.

[web62] Apache Taverna - SCUFL2 Taverna Language. Apache Taverna.
URL: https://taverna.incubator.apache.org/documentation/scufl2/ Last Access:
May. 15, 2020.

[web63] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and G. Carothers. RDF 1.1 Turtle.
Ed. by E. Prud’hommeaux and G. Carothers. W3C. Feb. 25, 2014.
URL: https://www.w3.org/TR/turtle/ Last Access: Aug. 7, 2021.

[web64] F. Gandon and G. Schreiber, eds. RDF 1.1 XML Syntax. W3C. Feb. 25, 2014.
URL: https://www.w3.org/TR/rdf-syntax-grammar/ Last Access: Aug. 7, 2021.

[web65] S. Soiland-Reyes, ed. Taverna, SCUFL2 and wfdesc. Oct. 21, 2014.
URL: https://groups.google.com/g/common-workflow-
language/c/eGrNfpjuq2E/m/mKj2pawNwakJ Last Access: Aug. 7, 2021.

[web66] VTK - The Visualization Toolkit. Kitware.
URL: http://www.vtk.org Last Access: Aug. 7, 2021.

[web67] Facebook. URL: https://www.facebook.com/ Last Access: Aug. 7, 2021.

360

http://www.mygrid.org.uk/
https://www.apache.org/
http://incubator.apache.org/projects/taverna.html
https://github.com/apache/incubator-taverna-commandline/releases/tag/3.1.0-incubating
https://github.com/apache/incubator-taverna-commandline/releases/tag/3.1.0-incubating
https://github.com/apache/incubator-taverna-server/releases/tag/3.1.0-incubating
https://github.com/apache/incubator-taverna-server/releases/tag/3.1.0-incubating
https://github.com/apache/incubator-taverna-language/releases/tag/0.15.1-incubating
https://github.com/apache/incubator-taverna-language/releases/tag/0.15.1-incubating
http://www.biocatalogue.org/
http://dev.mygrid.org.uk/wiki/display/tav250/User+Manual
http://www.myexperiment.org/workflows/2659.html
https://www.ncbi.nlm.nih.gov/
https://taverna.incubator.apache.org/documentation/scufl2/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/rdf-syntax-grammar/
https://groups.google.com/g/common-workflow-language/c/eGrNfpjuq2E/m/mKj2pawNwakJ
https://groups.google.com/g/common-workflow-language/c/eGrNfpjuq2E/m/mKj2pawNwakJ
http://www.vtk.org
https://www.facebook.com/


WEB RESOURCES

[web68] Google Workspace | Business Apps Collaboration Tools. Google.
URL: https://workspace.google.com/ Last Access: Aug. 7, 2021.

[web69] Wikidata. Wikimedia Foundation.
URL: https://www.wikidata.org Last Access: Aug. 7, 2021.

[web70] Microsoft Excel Data Types | Microsoft Docs. Microsoft. Jan. 19, 2017.
URL: https://docs.microsoft.com/en-us/sql/odbc/microsoft/microsoft-excel-
data-types Last Access: Aug. 7, 2021.

[web71] Data Types Used by Excel. July 1, 2011. URL:
https://msdn.microsoft.com/en-us/library/bb687869.aspx Last Access: Aug. 7, 2021.

[web72] Information Functions - LibreOffice Help. The Document Foundation.
URL: https://help.libreoffice.org/Calc/Information_Functions#TYPE Last Access:
Aug. 7, 2021.

[web73] TYPE - Docs editors Help. Google.
URL: https://support.google.com/docs/answer/3267375 Last Access: Aug. 7, 2021.

[web74] Data Types in Analysis Services | Microsoft Docs. Microsoft.
URL: https://docs.microsoft.com/en-us/analysis-services/multidimensional-
models/olap-physical/data-types-in-analysis-services Last Access: Aug. 7, 2021.

[web75] OLAP DML Data Types. Oracle. URL: https://docs.oracle.com/cd/B28359_01/olap.
111/b28126/dml_expression001.htm#OLADM138 Last Access: Aug. 7, 2021.

[web76] Data types of columns - IBM Documentation. IBM.
URL: https://www.ibm.com/docs/en/db2-for-zos/12?topic=columns-data-types Last
Access: Aug. 7, 2021.

[web77] Data Types - MariaDB Knowledge Base. MariaDB Foundation.
URL: https://mariadb.com/kb/en/mariadb/data-types/ Last Access: Aug. 7, 2021.

[web78] J. Tennison. CSV on the Web: A Primer. W3C. Feb. 25, 2016.
URL: https://www.w3.org/TR/tabular-data-primer/ Last Access: Aug. 7, 2021.

[web79] P. Salas. A bit of personal PR (at least I labeled it so you can skip it). Aug. 8, 2005.
URL: https://salas.com/2005/08/08/200588a-bit-of-personal-pr-at-least-i-
labeled-it-so-you-can-skip-i-html/ Last Access: Aug. 7, 2021.

[web80] Cubes | Data Brewery. Data Brewery.
URL: http://cubes.databrewery.org/ Last Access: Aug. 7, 2021.

[web81] Oracle OLAP. Oracle.
URL: http://www.oracle.com/technetwork/database/options/olap/index.html Last
Access: Aug. 7, 2021.

[web82] MariaDB.org - Ensuring continuity and open collaboration. MariaDB Foundation.
URL: https://mariadb.org/ Last Access: Aug. 7, 2021.

[web83] IBM Db2 – Data Management Software | IBM. IBM.
URL: https://www.ibm.com/analytics/db2 Last Access: Aug. 7, 2021.

361

https://workspace.google.com/
https://www.wikidata.org
https://docs.microsoft.com/en-us/sql/odbc/microsoft/microsoft-excel-data-types
https://docs.microsoft.com/en-us/sql/odbc/microsoft/microsoft-excel-data-types
https://msdn.microsoft.com/en-us/library/bb687869.aspx
https://help.libreoffice.org/Calc/Information_Functions#TYPE
https://support.google.com/docs/answer/3267375
https://docs.microsoft.com/en-us/analysis-services/multidimensional-models/olap-physical/data-types-in-analysis-services
https://docs.microsoft.com/en-us/analysis-services/multidimensional-models/olap-physical/data-types-in-analysis-services
https://docs.oracle.com/cd/B28359_01/olap.111/b28126/dml_expression001.htm#OLADM138
https://docs.oracle.com/cd/B28359_01/olap.111/b28126/dml_expression001.htm#OLADM138
https://www.ibm.com/docs/en/db2-for-zos/12?topic=columns-data-types
https://mariadb.com/kb/en/mariadb/data-types/
https://www.w3.org/TR/tabular-data-primer/
https://salas.com/2005/08/08/200588a-bit-of-personal-pr-at-least-i-labeled-it-so-you-can-skip-i-html/
https://salas.com/2005/08/08/200588a-bit-of-personal-pr-at-least-i-labeled-it-so-you-can-skip-i-html/
http://cubes.databrewery.org/
http://www.oracle.com/technetwork/database/options/olap/index.html
https://mariadb.org/
https://www.ibm.com/analytics/db2


BIBLIOGRAPHY

[web84] VizAssist - Your visualization Web assistant. Mar. 24, 2016.
URL: http://www.vizassist.fr/ Last Access: Aug. 7, 2021.

[web85] Kaiser Family Foundation - Health Policy Research, Analysis, Polling, Facts, Data and
Journalism. Kaiser Family Foundation.
URL: http://www.kff.org/ Last Access: Aug. 7, 2021.

[web86] W3C OWL Working Group, ed.
OWL 2 Web Ontology Language Document Overview (Second Edition). W3C. Dec. 11, 2012.
URL: https://www.w3.org/TR/owl2-overview/ Last Access: Aug. 7, 2021.

[web87] A. Greiner, A. Isaac, C. Iglesias, C. Laufer, C. Guéret, D. Lee, E. G. Stephan, E. Kauz,
G. A. Atemezing, H. Beeman, I. I. Bittencourt, J. P. Almeida, M. Dekkers, P. Winstanley,
P. Archer, R. Albertoni, S. Purohit, and Y. Córdova. Data on the Web Best Practices.
Ed. by B. F. Lóscio, C. Burle, and N. Calegari. W3C. Dec. 15, 2016.
URL: https://www.w3.org/TR/dwbp/ Last Access: Aug. 7, 2021.

[web88] C. B. Aranda, O. Corby, S. Das, L. Feigenbaum, P. Gearon, B. Glimm, S. Harris, S. Hawke,
I. Herman, N. Humfrey, N. Michaelis, C. Ogbuji, M. Perry, A. Passant, A. Polleres,
E. Prud’hommeaux, A. Seaborne, and G. T. Williams, eds. SPARQL 1.1 Overview. W3C.
Mar. 21, 2013.
URL: https://www.w3.org/TR/sparql11-overview/ Last Access: Aug. 7, 2021.

[web89] DCMI Home: Dublin Core® Metadata Initiative (DCMI). The Dublin Core Metadata Initiative.
URL: http://dublincore.org/ Last Access: Aug. 7, 2021.

[web90] Dublin Core Metadata Element Set, Version 1.1. The Dublin Core Metadata Initiative.
June 14, 2012.
URL: http://www.dublincore.org/documents/dces/ Last Access: Aug. 7, 2021.

[web91] DCMI Metadata Terms. June 14, 2012.
URL: http://dublincore.org/documents/dcmi-terms/ Last Access: Aug. 7, 2021.

[web92] F. Maali and J. Erickson, eds. Data Catalog Vocabulary (DCAT). W3C. Jan. 16, 2014.
URL: https://www.w3.org/TR/vocab-dcat/ Last Access: May. 10, 2018.

[web93] R. Albertoni, D. Browning, S. Cox, A. Gonzalez Beltran, A. Perego, and P. Winstanley, eds.
Data Catalog Vocabulary (DCAT) - Version 2. W3C. Feb. 2, 2020.
URL: https://www.w3.org/TR/vocab-dcat-2/ Last Access: Aug. 7, 2021.

[web94] K. Belhajjame, J. Cheney, D. Corsar, D. Garijo, S. Soiland-Reyes, S. Zednik, and J. Zhao.
PROV-O: The PROV Ontology. Ed. by T. Lebo, S. Sahoo, and D. McGuinness. W3C.
Apr. 30, 2013. URL: https://www.w3.org/TR/prov-o/ Last Access: Aug. 7, 2021.

[web95] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao.
Describing Linked Datasets with the VoID Vocabulary. W3C. Mar. 3, 2011.
URL: https://www.w3.org/TR/void/ Last Access: Aug. 7, 2021.

[web96] P. V. Biron and A. Malhotra, eds. XML Schema Part 2: Datatypes Second Edition. W3C.
Oct. 28, 2004. URL: https://www.w3.org/TR/xmlschema-2/ Last Access: Aug. 7, 2021.

362

http://www.vizassist.fr/
http://www.kff.org/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/dwbp/
https://www.w3.org/TR/sparql11-overview/
http://dublincore.org/
http://www.dublincore.org/documents/dces/
http://dublincore.org/documents/dcmi-terms/
https://www.w3.org/TR/vocab-dcat/
https://www.w3.org/TR/vocab-dcat-2/
https://www.w3.org/TR/prov-o/
https://www.w3.org/TR/void/
https://www.w3.org/TR/xmlschema-2/


WEB RESOURCES

[web97] M. Jones, M. O’Brien, B. Mecum, C. Boettiger, M. Schildhauer, M. Maier, T. Whiteaker,
S. Earl, and S. Chong. Ecological Metadata Language version 2.2.0. Feb. 22, 2021.
DOI: 10.5063/f11834t2.
URL: https://eml.ecoinformatics.org Last Access: Aug. 7, 2021.

[web98] URL. WHATWG. Aug. 5, 2021.
URL: https://url.spec.whatwg.org/ Last Access: Aug. 7, 2021.

[web99] T. Berners-Lee. Linked Data - Design Issues. June 18, 2009.
URL: https://www.w3.org/DesignIssues/LinkedData.html Last Access: Aug. 7, 2021.

[web100] B. Magagna, A. Devaraju, G. Moncoiffé, and M. Stoica.
InteroperAble Descriptions of Observable Property Terminology WG (I-ADOPT WG) | RDA.
Research Data Alliance.
URL: https://www.rd-alliance.org/groups/interoperable-descriptions-
observable-property-terminology-wg-i-adopt-wg Last Access: Aug. 7, 2021.

[web101] RDA | Research Data Sharing without barriers. Research Data Alliance.
URL: https://www.rd-alliance.org Last Access: Aug. 7, 2021.

[web102] G. Schadow and C. J. McDonald. The Unified Code for Units of Measure. Nov. 21, 2017.
URL: http://unitsofmeasure.org/ucum.html Last Access: Aug. 7, 2021.

[web103] Wolfram Mathematica: Modern Technical Computing. Wolfram.
URL: http://www.wolfram.com/mathematica/ Last Access: Aug. 7, 2021.

[web104] MATLAB - Mathworks.
URL: https://www.mathworks.com/products/matlab.html Last Access: Aug. 7, 2021.

[web105] R: The R Project for Statistical Computing. The R Foundation.
URL: https://www.r-project.org/ Last Access: Aug. 7, 2021.

[web106] J. W. Eaton. GNU Octave.
URL: https://www.gnu.org/software/octave/ Last Access: Aug. 7, 2021.

[web107] IBM SPSS - IBM Analytics. IBM. URL:
https://www.ibm.com/analytics/us/en/technology/spss/ Last Access: Aug. 7, 2021.

[web108] Data Analysis and Statistical Software | Stata. StataCorp LLC.
URL: http://www.stata.com/ Last Access: Aug. 7, 2021.

[web109] E. Pebesma, T. Mailund, T. Kalinowski, J. Hiebert, and I. Ucar. CRAN - Package units.
URL: https://cran.r-project.org/package=units Last Access: Aug. 7, 2021.

[web110] M. A. Birk. CRAN - Package measurements.
URL: https://cran.r-project.org/package=measurements Last Access: Aug. 7, 2021.

[web111] Mannheim Search Joins Engine. University of Mannheim.
URL: http://searchjoins.webdatacommons.org/ Last Access: Aug. 7, 2021.

[web112] Apache Lucene. The Apache Software Foundation.
URL: https://lucene.apache.org/ Last Access: Aug. 7, 2021.

[web113] T. Käfer and A. Harth. Billion Triples Challenge 2014 Dataset. 2014.
URL: http://km.aifb.kit.edu/projects/btc-2014/ Last Access: Aug. 7, 2021.

363

https://doi.org/10.5063/f11834t2
https://eml.ecoinformatics.org
https://url.spec.whatwg.org/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.rd-alliance.org/groups/interoperable-descriptions-observable-property-terminology-wg-i-adopt-wg
https://www.rd-alliance.org/groups/interoperable-descriptions-observable-property-terminology-wg-i-adopt-wg
https://www.rd-alliance.org
http://unitsofmeasure.org/ucum.html
http://www.wolfram.com/mathematica/
https://www.mathworks.com/products/matlab.html
https://www.r-project.org/
https://www.gnu.org/software/octave/
https://www.ibm.com/analytics/us/en/technology/spss/
http://www.stata.com/
https://cran.r-project.org/package=units
https://cran.r-project.org/package=measurements
http://searchjoins.webdatacommons.org/
https://lucene.apache.org/
http://km.aifb.kit.edu/projects/btc-2014/


BIBLIOGRAPHY

[web114] B. Caldwell, M. Cooper, L. Guarino Reid, and G. Vanderheiden, eds.
Web Content Accessibility Guidelines (WCAG) 2.0. W3C. Dec. 11, 2008.
URL: http://www.w3.org/TR/WCAG20/ Last Access: Aug. 7, 2021.

[web115] VIZBOARD - GAINING INSIGHTS FROM SEMANTIC DATA. TU Dresden.
URL: http://www.vizboard.de/ Last Access: Oct. 31, 2019.

[web116] CODE Linked Data Vis Wizard. Know-Center Graz.
URL: https://code.know-center.tugraz.at/vis Last Access: May. 12, 2015.

[web117] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and J. Heer. Draco.
Interactive Data Lab, University of Washington.
URL: https://uwdata.github.io/draco/ Last Access: Aug. 7, 2021.

[web118] gems-uff/noworkflow: Supporting infrastructure to run scientific experiments without a
scientific workflow management system.
URL: https://github.com/gems-uff/noworkflow Last Access: Aug. 7, 2021.

[web119] B. Ludaescher, T. Kolisnik, and T. McPhillips. YesWorkflow.
URL: https://github.com/yesworkflow-org Last Access: Aug. 7, 2021.

[web120] Javadoc Tool Home Page. Oracle.
URL: https://www.oracle.com/java/technologies/javase/javadoc.html Last Access:
Aug. 7, 2021.

[web121] Use JSDoc: Index. URL: http://usejsdoc.org/ Last Access: Aug. 7, 2021.

[web122] World Wide Web Consortium (W3C). W3C.
URL: https://www.w3.org Last Access: Aug. 7, 2021.

[web123] K. Belhajjame, H. Deus, D. Garijo, G. Klyne, P. Missier, S. Soiland-Reyes, and S. Zednik.
PROV Model Primer. Ed. by Y. Gil and S. Miles. W3C. Apr. 30, 2013.
URL: https://www.w3.org/TR/prov-primer/ Last Access: Aug. 7, 2021.

[web124] J. Cheney, ed. Semantics of the PROV Data Model. W3C. Apr. 30, 2013.
URL: https://www.w3.org/TR/prov-sem/ Last Access: Aug. 7, 2021.

[web125] T. De Nies. Constraints of the PROV Data Model. Ed. by J. Cheney, P. Missier, and L. Moreau.
W3C. Apr. 30, 2013.
URL: https://www.w3.org/TR/prov-constraints/ Last Access: Aug. 7, 2021.

[web126] L. Moreau, O. Hartig, Y. Simmhan, J. Myers, T. Lebo, K. Belhajjame, S. Miles, and
S. Soiland-Reyes. PROV-AQ: Provenance Access and Query. Ed. by G. Klyne and P. Groth.
W3C. Apr. 30, 2013. URL: https://www.w3.org/TR/prov-aq/ Last Access: Aug. 7, 2021.

[web127] S. Miles, C. M. Trim, and M. Panzer. Dublin Core to PROV Mapping.
Ed. by D. Garijo and K. Eckert. W3C. Apr. 30, 2013.
URL: https://www.w3.org/TR/prov-dc/ Last Access: Aug. 7, 2021.

[web128] P. Missier, L. Moreau, J. Cheney, T. Lebo, and S. Soiland-Reyes.
PROV-Dictionary: Modeling Provenance for Dictionary Data Structures.
Ed. by T. De Nies and S. Coppens. W3C. Apr. 30, 2013.
URL: https://www.w3.org/TR/prov-dictionary/ Last Access: Aug. 7, 2021.

364

http://www.w3.org/TR/WCAG20/
http://www.vizboard.de/
https://code.know-center.tugraz.at/vis
https://uwdata.github.io/draco/
https://github.com/gems-uff/noworkflow
https://github.com/yesworkflow-org
https://www.oracle.com/java/technologies/javase/javadoc.html
http://usejsdoc.org/
https://www.w3.org
https://www.w3.org/TR/prov-primer/
https://www.w3.org/TR/prov-sem/
https://www.w3.org/TR/prov-constraints/
https://www.w3.org/TR/prov-aq/
https://www.w3.org/TR/prov-dc/
https://www.w3.org/TR/prov-dictionary/


WEB RESOURCES

[web129] K. Belhajjame, R. B’Far, J. Cheney, S. a. C. S. Coppens, Y. Gil, P. Groth, G. Klyne, T. Lebo,
J. McCusker, S. Miles, J. Myers, S. Sahoo, and C. Tilmes. PROV-DM: The PROV Data Model.
Ed. by L. Moreau and P. Missier. W3C. Apr. 30, 2013.
URL: https://www.w3.org/TR/prov-dm/ Last Access: Aug. 7, 2021.

[web130] T. D. Huynh, P. Groth, and S. Zednik, eds. PROV Implementation Report. W3C. Apr. 30, 2013.
URL: https://www.w3.org/TR/prov-implementations/ Last Access: Aug. 7, 2021.

[web131] T. D. Huynh, M. O. Jewell, A. S. Keshavarz, D. T. Michaelides, H. Yang, and L. Moreau.
The PROV-JSON Serialization. A JSON Representation for the PROV Data Model. W3C.
Apr. 24, 2013.
URL: https://www.w3.org/Submission/prov-json/ Last Access: Aug. 7, 2021.

[web132] L. Moreau and T. Lebo, eds. Linking Across Provenance Bundles. W3C. Apr. 30, 2013.
URL: https://www.w3.org/TR/prov-links/ Last Access: Aug. 7, 2021.

[web133] J. Cheney and S. Soiland-Reyes. PROV-N: The Provenance Notation.
Ed. by L. Moreau and P. Missier. W3C. Apr. 30, 2013.
URL: http://www.w3.org/TR/prov-n/ Last Access: Aug. 7, 2021.

[web134] C. McCathie Nevila, ed. World Wide Web Consortium Process Document. W3C. Mar. 1, 2017.
URL: https://www.w3.org/Consortium/Process/ Last Access: Aug. 7, 2021.

[web135] Second Provenance Challenge < Challenge < TWiki.
URL: https://openprovenance.org/provenance-
challenge/SecondProvenanceChallenge.html Last Access: Aug. 7, 2021.

[web136] The Fourth and Last Provenance Challenge.
URL: https://openprovenance.org/provenance-
challenge/FourthProvenanceChallenge.html Last Access: Aug. 7, 2021.

[web137] L. Moreau. PROV-XML: The PROV XML Schema. Ed. by H. Hua, C. Tilmes, and S. Zednik.
W3C. Apr. 30, 2013. URL: https://www.w3.org/TR/prov-xml/ Last Access: Aug. 7, 2021.

[web138] PROV Graph Layout Conventions. W3C. Dec. 13, 2012.
URL: https://www.w3.org/2011/prov/wiki/Diagrams Last Access: Aug. 7, 2021.

[web139] V. Cuevas-Vicenttin, B. Ludäscher, P. Missier, K. Belhajjame, F. Chirigati, Y. Wei, S. Dey,
P. Kianmajd, D. Koop, S. Bowers, I. Altintas, C. Jones, M. B. Jones, L. Walker, P. Slaughter,
B. Leinfelder, and Y. Cao.
ProvONE: A PROV Extension Data Model for Scientific Workflow Provenance. May 1, 2016.
URL: https://purl.dataone.org/provone-v1-dev Last Access: Aug. 7, 2021.

[web140] HTML Living Standard. WHATWG. Aug. 6, 2021.
URL: https://html.spec.whatwg.org/ Last Access: Aug. 7, 2021.

[web141] T. Atkins, E. J. Etemad, and F. Rivoal, eds. CSS Snapshot 2017. W3C. Jan. 31, 2017.
URL: https://www.w3.org/TR/CSS/ Last Access: Aug. 7, 2021.

[web142] ECMAScript® 2021 Language Specification. Ecma.
URL: https://262.ecma-international.org/ Last Access: Aug. 7, 2021.

[web143] HTML Living Standard §10: Web workers. WHATWG. Aug. 6, 2021. URL:
https://html.spec.whatwg.org/multipage/workers.html Last Access: Aug. 7, 2021.

365

https://www.w3.org/TR/prov-dm/
https://www.w3.org/TR/prov-implementations/
https://www.w3.org/Submission/prov-json/
https://www.w3.org/TR/prov-links/
http://www.w3.org/TR/prov-n/
https://www.w3.org/Consortium/Process/
https://openprovenance.org/provenance-challenge/SecondProvenanceChallenge.html
https://openprovenance.org/provenance-challenge/SecondProvenanceChallenge.html
https://openprovenance.org/provenance-challenge/FourthProvenanceChallenge.html
https://openprovenance.org/provenance-challenge/FourthProvenanceChallenge.html
https://www.w3.org/TR/prov-xml/
https://www.w3.org/2011/prov/wiki/Diagrams
https://purl.dataone.org/provone-v1-dev
https://html.spec.whatwg.org/
https://www.w3.org/TR/CSS/
https://262.ecma-international.org/
https://html.spec.whatwg.org/multipage/workers.html


BIBLIOGRAPHY

[web144] Node.js. Node.js Foundation. URL: https://nodejs.org/en/ Last Access: Aug. 7, 2021.

[web145] Apache Hadoop. The Apache Software Foundation.
URL: http://hadoop.apache.org/ Last Access: Aug. 7, 2021.

[web146] Microsoft/ChakraCore: ChakraCore is the core part of the Chakra Javascript engine that
powers Microsoft Edge.
URL: https://github.com/Microsoft/ChakraCore Last Access: Aug. 7, 2021.

[web147] SpiderMonkey — Firefox Source Docs documentation. Mozilla Foundation. URL:
https://firefox-source-docs.mozilla.org/js/index.html Last Access: Aug. 7, 2021.

[web148] Chrome V8 | Google Developers. Google. URL: https://v8.dev/ Last Access: Aug. 7, 2021.

[web149] F.-z. Ryuu. PEG.js – Parser Generator for JavaScript. URL: https://pegjs.org/.

[web150] HTML Living Standard §12: The HTML syntax. WHATWG. Aug. 6, 2021.
URL: https://html.spec.whatwg.org/multipage/syntax.html Last Access: Aug. 7, 2021.

[web151] E. Dahlström, P. Dengler, A. Grasso, C. Lilley, C. McCormack, D. Schepers, J. Watt,
J. Ferrarolo,藤沢淳, and D. Jackson, eds. Scalable Vector Graphics (SVG) 1.1 (Second Edition).
W3C. Aug. 16, 2011. URL: https://www.w3.org/TR/SVG11/ Last Access: Aug. 7, 2021.

[web152] HTML Living Standard §9.3: Web sockets. WHATWG. Aug. 6, 2021.
URL: https://html.spec.whatwg.org/multipage/web-sockets.html Last Access: Aug. 7,
2021.

[web153] CWE - CWE-20: Improper Input Validation (4.3). Version 2020-10-10. July 19, 2006.
URL: https://cwe.mitre.org/data/definitions/20.html Last Access: Aug. 7, 2021.

[web154] HTML Living Standard §4.12.5: The canvas element. WHATWG. Aug. 6, 2021.
URL: https://html.spec.whatwg.org/multipage/canvas.html Last Access: Aug. 7, 2021.

[web155] Document Object Model. Living Standard. WHATWG. Aug. 2, 2021.
URL: https://dom.spec.whatwg.org/ Last Access: Aug. 7, 2021.

[web156] jsdom. URL: https://github.com/jsdom/jsdom Last Access: Aug. 7, 2021.

[web157] Homepage - Material Design. Google. URL: https://material.io/ Last Access: Aug. 7, 2021.

[web158] SQLite Home Page. SQLite Consortium.
URL: https://www.sqlite.org/ Last Access: Aug. 7, 2021.

[web159] Eurostat: Bulk Download. European Comission. URL:
http://ec.europa.eu/eurostat/estat-navtree-portlet-prod/BulkDownloadListing

Last Access: Aug. 7, 2021.

[web160] linked-statistics/eurostat: Back-end code and website for eurostat.linked-statistics.org.
URL: https://github.com/linked-statistics/eurostat Last Access: Aug. 7, 2021.

[web161] OntologyCentral Eurostat Mirror.
URL: http://ontologycentral.com/2009/01/eurostat/ Last Access: Aug. 7, 2021.

[web162] S. Schindler, ed. Yavaa-
Vis/YavaaEurostatCrawler : Eurostatcrawlertogeneratedatadescriptionsf orY avaa.
Aug. 15, 2021. URL: https://github.com/Yavaa-Vis/Yavaa_Eurostat_Crawler Last
Access: Aug. 15, 2021.

366

https://nodejs.org/en/
http://hadoop.apache.org/
https://github.com/Microsoft/ChakraCore
https://firefox-source-docs.mozilla.org/js/index.html
https://v8.dev/
https://pegjs.org/
https://html.spec.whatwg.org/multipage/syntax.html
https://www.w3.org/TR/SVG11/
https://html.spec.whatwg.org/multipage/web-sockets.html
https://cwe.mitre.org/data/definitions/20.html
https://html.spec.whatwg.org/multipage/canvas.html
https://dom.spec.whatwg.org/
https://github.com/jsdom/jsdom
https://material.io/
https://www.sqlite.org/
http://ec.europa.eu/eurostat/estat-navtree-portlet-prod/BulkDownloadListing
https://github.com/linked-statistics/eurostat
http://ontologycentral.com/2009/01/eurostat/
https://github.com/Yavaa-Vis/Yavaa_Eurostat_Crawler


WEB RESOURCES

[web163] DBpedia. DBpedia Association. URL: https://www.dbpedia.org/ Last Access: Aug. 7, 2021.

[web164] Microsoft 365 with Office apps | Microsoft 365. Microsoft.
URL: https://www.microsoft.com/en-us/microsoft-365 Last Access: Aug. 7, 2021.

[web165] Home | LibreOffice - Free Office Suite - Fun Project - Fantastic People.
The Document Foundation. URL: https://www.libreoffice.org/ Last Access: Aug. 7, 2021.

[web166] Amazon Web Services (AWS) - Cloud Computing Services. Amazon Web Services, Inc.
URL: https://aws.amazon.com/ Last Access: Aug. 7, 2021.

[web167] Amazon EC2 Instance Types - Amazon Web Services. Amazon Web Services, Inc.
URL: https://aws.amazon.com/ec2/instance-types/ Last Access: Aug. 7, 2021.

[web168] J. Wise. JoshuaWise/better-sqlite3: The fastest and simplest library for SQLite3 in Node.js.
URL: https://github.com/JoshuaWise/better-sqlite3 Last Access: Aug. 7, 2021.

[web169] S. Schindler, ed.
Yavaa-Vis/Yavaa: Supporting Data Workflows from Discovery to Visualization. Aug. 15, 2021.
URL: https://github.com/Yavaa-Vis/Yavaa Last Access: Aug. 15, 2021.

[web170] Units - GNU Project - Free Software Foundation. Free Software Foundation, Inc.
URL: https://www.gnu.org/software/units/ Last Access: Aug. 7, 2021.

367

https://www.dbpedia.org/
https://www.microsoft.com/en-us/microsoft-365
https://www.libreoffice.org/
https://aws.amazon.com/
https://aws.amazon.com/ec2/instance-types/
https://github.com/JoshuaWise/better-sqlite3
https://github.com/Yavaa-Vis/Yavaa
https://www.gnu.org/software/units/


BIBLIOGRAPHY

Dataset Resources

[data1] Olives by production. tag00122. Eurostat, Aug. 2, 2017.

[data2] World Population Prospects - Population Division - United Nations.
United Nations - Department of Econimic and Social Affairs. 2017.
URL: https://esa.un.org/unpd/wpp/Download/Standard/Population/.

[data3] Population on 1 January by age, sex and NUTS 2 region. demo_r_d2jan.
Eurostat, May 30, 2017.

[data4] Physicians or doctors by NUTS 2 regions. tgs00062. Eurostat, Aug. 2, 2017.

[data5] G. David, P. Carle, and J.-M. Leroux. France Geojson. Apr. 16, 2017.
URL: https://github.com/gregoiredavid/france-geojson/.

[data6] Minnesota Population Center.
National Historical Geographic Information System: Version 11.0 [Database].
Minneapolis: University of Minnesota, 2016. DOI: 10.18128/D050.V11.0.

[data7] S. Manson, J. Schroeder, D. V. Riper, and S. Ruggles.
IPUMS National Historical Geographic Information System: Version 12.0 [Database].
Minneapolis: University of Minnesota, 2017. DOI: 10.18128/D050.V12.0.

[data8] The World Factbook. Central Intelligence Agency. 2017.
URL: https://www.cia.gov/library/publications/the-world-factbook/.

[data9] Fresh vegetables and strawberries by area. tag00115. Eurostat, Aug. 2, 2017.

[data10] Permanent crops for human consumption by area. tag00120. Eurostat, Aug. 2, 2017.

[data11] Utilised agricultural area by categories. tag00025. Eurostat, Aug. 2, 2017.

[data12] Eurovoc, the EU’s multilingual thesaurus. European Commission.
URL: http://eurovoc.europa.eu/.

[data13] Population Distribution by Race/Ethnicity. US Census Bureau, 2016.

[data14] E. Celeste. GeoJSON and KML data for the United States. July 15, 2017.
URL: http://eric.clst.org/Stuff/USGeoJSON.

[data15] Bundeshaushalt-Info.de. Bundesministerium der Finanzen, Germany. 2017.
URL: https://www.bundeshaushalt-info.de/download.html.

[data16] Number of sheep. tag00017. Eurostat, Jan. 15, 2020.

[data17] S. Schindler. Yavaa-Vis/Yavaa_Eurostat_Crawler: 1.0.0. Version v1.0.0. Aug. 2021.
DOI: 10.5281/zenodo.5204518.

[data18] Hours worked per week of part-time employment. tps00070. Eurostat, Aug. 3, 2018.

[data19] Unemployment rates of the population aged 25-64 by educational attainment level. tps00066.
Eurostat, Aug. 3, 2018.

[data20] S. Schindler. Yavaa - Evaluation Materials. Version 1.0.0. Mar. 2021.
DOI: 10.5281/zenodo.4589337.

368

https://esa.un.org/unpd/wpp/Download/Standard/Population/
https://github.com/gregoiredavid/france-geojson/
https://doi.org/10.18128/D050.V11.0
https://doi.org/10.18128/D050.V12.0
https://www.cia.gov/library/publications/the-world-factbook/
http://eurovoc.europa.eu/
http://eric.clst.org/Stuff/USGeoJSON
https://www.bundeshaushalt-info.de/download.html
https://doi.org/10.5281/zenodo.5204518
https://doi.org/10.5281/zenodo.4589337


DATASET RESOURCES

[data21] S. Schindler. Yavaa - User Survey Results. Version 1.0.0. Zenodo, Aug. 2021.
DOI: 10.5281/zenodo.5171103.

[data22] S. Schindler. Yavaa - Performance Benchmark. Version 1.0.0. Feb. 2021.
DOI: 10.5281/zenodo.4514808.

[data23] S. Schindler. Yavaa-Vis/Yavaa: 1.0.0. Version v1.0.0. Aug. 2021.
DOI: 10.5281/zenodo.5204516.

369

https://doi.org/10.5281/zenodo.5171103
https://doi.org/10.5281/zenodo.4514808
https://doi.org/10.5281/zenodo.5204516


OTHER PUBLICATIONS

Author’s Publications

Publications Pertaining to this Thesis

[1] S. Schindler, M. Hauswirth, and B. König-Ries. “Navigating in a heterogeneous data space”.
In: 3rd International Conference on Web Science (WebSci’11). June 2011.

[2] M. D. Steinberg, S. Schindler, and J. M. Keil.
“Use Cases and Suitability Metrics for Unit Ontologies”.
In: OWL: Experiences and Directions - Reasoner Evaluation - (OWLED 2016), (ORE 2016).
2016, pp. 40–54. DOI: 10.1007/978-3-319-54627-8_4.

[3] J. M. Keil and S. Schindler.
“Comparison and evaluation of ontologies for units of measurement”.
In: Semantic Web Journal 10 (2018), pp. 33–51. DOI: 10.3233/SW-180310.

[4] S. Schindler and J. M. Keil. “Building Ontologies for Reuse”.
In: 2nd International Workshop on Bad Or Good Ontology (BOG 2019). 2019.

[5] S. Schindler. Yavaa - Evaluation Materials. Version 1.0.0. Mar. 2021.
DOI: 10.5281/zenodo.4589337.

[6] S. Schindler. Yavaa - Performance Benchmark. Version 1.0.0. Feb. 2021.
DOI: 10.5281/zenodo.4514808.

[7] S. Schindler. Yavaa - User Survey Results. Version 1.0.0. Zenodo, Aug. 2021.
DOI: 10.5281/zenodo.5171103.

[8] S. Schindler. Yavaa-Vis/Yavaa: 1.0.0. Version v1.0.0. Aug. 2021.
DOI: 10.5281/zenodo.5204516.

[9] S. Schindler. Yavaa-Vis/Yavaa_Eurostat_Crawler: 1.0.0. Version v1.0.0. Aug. 2021.
DOI: 10.5281/zenodo.5204518.

Other Publications

[1] A. Nauerz, S. Schindler, and F. Bakalov.
“Adaptive Treemap Based Navigation Through Web Portals”.
In: "Lernen, Wissen & Adaptivität" (LWA 2008). Vol. 448. Technical Report.
Department of Computer Science, University of Würzburg, Germany, 2008, pp. 51–54.

[2] M. Paradies, S. Schindler, S. Kiemle, and E. Mikusch.
“Large-Scale Data Management for Earth Observation Data - Challenges and Opportunities”.
In: "Lernen, Wissen, Daten, Analysen" (LWDA 2018). Vol. 2191. CEUR Workshop Proceedings.
CEUR-WS.org, 2018, pp. 285–288.

[3] L. Feddoul, S. Schindler, and F. Löffler.
“Automatic Facet Generation and Selection over Knowledge Graphs”. In: Semantic Systems.
The Power of AI and Knowledge Graphs - 15th International Conference (SEMANTiCS 2019).
Vol. 11702. Lecture Notes in Computer Science. Springer, 2019, pp. 310–325.
DOI: 10.1007/978-3-030-33220-4_23.

370

https://doi.org/10.1007/978-3-319-54627-8_4
https://doi.org/10.3233/SW-180310
https://doi.org/10.5281/zenodo.4589337
https://doi.org/10.5281/zenodo.4514808
https://doi.org/10.5281/zenodo.5171103
https://doi.org/10.5281/zenodo.5204516
https://doi.org/10.5281/zenodo.5204518
https://doi.org/10.1007/978-3-030-33220-4_23


OTHER PUBLICATIONS

[4] L. Feddoul, S. Schindler, and F. Löffler.
“Semantic Relatedness as an Inter-facet Metric for Facet Selection over Knowledge Graphs”.
In: The Semantic Web: ESWC 2019 Satellite Events - ESWC 2019 Satellite Events, Portorož,
Slovenia, June 2-6, 2019, Revised Selected Papers. Vol. 11762.
Lecture Notes in Computer Science. Springer, 2019, pp. 47–51.
DOI: 10.1007/978-3-030-32327-1_10.

[5] K. Opasjumruskit, S. Schindler, L. Thiele, and P. M. Schäfer.
“Towards Learning from User Feedback for Ontology-based Information Extraction”.
In: 1st International Workshop on Challenges and Experiences from Data Integration to
Knowledge Graphs co-located with the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD 2019). Vol. 2512. CEUR Workshop Proceedings.
CEUR-WS.org, 2019.

[6] S. Schindler, M. Paradies, and A. Twele.
“Here is my query, where are my results? A search log analysis of the EOWEB® Geoportal”.
In: Conference on Big Data from Space: Turning Data into Insights (BiDS’19). 2019, pp. 1–4.

[7] M. D. Steinberg, S. Schindler, and F. Klan.
“Software solutions for form-based, mobile data collection”.
In: Datenbanksysteme für Business, Technologie und Web (BTW 2019). Vol. P-290. LNI.
Gesellschaft für Informatik, Bonn, 2019, pp. 135–144. DOI: 10.18420/btw2019-ws-14.

[8] N. Abdelmageed and S. Schindler. “JenTab: Matching Tabular Data to Knowledge Graphs”.
In: The Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab
2020) co-located with the 19th International Semantic Web Conference (ISWC 2020).
Ed. by E. Jiménez-Ruiz, O. Hassanzadeh, V. Efthymiou, J. Chen, K. Srinivas, and V. Cutrona.
Vol. 2775. CEUR Workshop Proceedings. CEUR-WS.org, 2020, pp. 40–49.

[9] N. Abdelmageed and S. Schindler. “JenTab: A Toolkit for Semantic Table Annotations”.
In: Second International Workshop on Knowledge Graph Construction (KGCW 2021) co-located
with the Extended Semantic Web Conference (ESWC 2021). June 6, 2021.

[10] M. A. C. Johnson, M. Paradies, M. Dembska, K. Lackeos, H.-R. Klöckner, D. J. Champion, and
S. Schindler. “Astronomical Pipeline Provenance: A Use Case Evaluation”.
In: 13th International Workshop on Theory and Practice of Provenance (TaPP 2021).
USENIX Association, July 21, 2021.

[11] B. Magagna, I. Rosati, M. Stoica, S. Schindler, G. Moncoiffe, A. Devaraju, J. Peterseil, and
R. Huber.
“The I-ADOPT Interoperability Framework for FAIRer data descriptions of biodiversity”. In:
Proceedings of the 3rd International Workshop on Semantics for Biodiversity (S4BioDiv2021).
2021. arXiv: 2107.06547 [cs.AI].

[12] K. Opasjumruskit, S. Schindler, and D. Peters. “Automatic Data Sheet Information Extraction
for Supporting Model-based Systems Engineering”. In: The 18th International Conference on
Cooperative Design, Visualization and Engineering (CDVE 2021). 2021, pp. 1–4.

371

https://doi.org/10.1007/978-3-030-32327-1_10
https://doi.org/10.18420/btw2019-ws-14
https://arxiv.org/abs/2107.06547


POSTERS / DEMOS / EXTENDED ABSTRACTS / PREPRINTS

Posters / Demos / Extended Abstracts / Preprints

[1] A. Ostrowski, K. Y. Bohn, P. Kaur, E. Petzold, S. Schindler, F. Zander, and B. König-Ries.
“Just pain, no gain? Data management systems and biodiversity data”.
In: Ecology Across Borders: Joint Annual Meeting, Ghent, Belgium. 2017.
DOI: 10.22032/dbt.38468.

[2] A. Ostrowski, E. Petzold, and S. Schindler. “Showcase: Biodiversity Exploratories Information
System Report of our current stage of migration to the new BEXIS2 instance”.
In: 10th International Conference on Ecological Informatics – Translating Ecological Data into
Knowledge and Decisions in a Rapidly Changing World. (ICEI 2018) (Sept. 2018).
DOI: 10.22032/dbt.37933.

[3] L. Feddoul, S. Schindler, and F. Löffler.
“Automatic Facet Generation and Selection over Knowledge Graphs”. In: RDA Plenary 14.
Oct. 2019.

[4] K. Opasjumruskit, D. Peters, and S. Schindler.
“ConTrOn: Continuously Trained Ontology based on Technical Data Sheets and Wikidata”.
In: CoRR abs/1906.06752 (2019).

[5] S. Schindler and F. Klan.
“Automated Data Integration - How to enable a not (yet) Redeemed Promise?”
In: W3C Workshop on Web Standardization for Graph Data. Mar. 2019.

[6] M. Steinberg, S. Schindler, and F. Klan. “Open Data Kit Goes Semantic - A Contribution to the
Interpretability and Interoperability of Citizen Science Data”. In: Forum Citizen Science 2019.
2019.

[7] M. D. Steinberg, S. Schindler, and F. Klan. “Open Data Kit Goes Semantic - A Contribution to
the Interpretability and Interoperability of Field Data”. In: iDiv Annual Conference 2019.
2019.

[8] M. D. Steinberg, S. Schindler, and F. Klan.
“Bringing Semantics to Citizen Data Collection - A Semantic Extension of Open Data Kit 1”.
In: EGU General Assembly 2019. 2019.

[9] B. Magagna, G. Moncoiffe, A. Devaraju, P. L. Buttigieg, M. Stoica, and S. Schindler.
“Towards an interoperability framework for observable property terminologies”.
In: (Mar. 2020). DOI: 10.5194/egusphere-egu2020-19895.

[10] K. Opasjumruskit, D. Peters, and S. Schindler.
“DSAT: Ontology-based Information Extraction on Technical Data Sheets”.
In: ISWC 2020 Demos and Industry Tracks, co-located with 19th International Semantic Web
Conference (ISWC 2020). Vol. 2721. CEUR Workshop Proceedings. CEUR-WS.org, Nov. 2020,
pp. 251–256.

[11] B. Magagna, G. Moncoiffe, A. Devaraju, M. Stoica, S. Schindler, and A. Pamment.
“I-ADOPT Framework 1.0.0”. In: RDA Virtiual Plenary 17. Apr. 2021.

372

https://doi.org/10.22032/dbt.38468
https://doi.org/10.22032/dbt.37933
https://doi.org/10.5194/egusphere-egu2020-19895


INVITED TALKS

[12] B. Magagna, G. Moncoiffe, M. Stoica, A. Devaraju, A. Pamment, S. Schindler, and R. Huber.
“The I-ADOPT Interoperability Framework: a proposal for FAIRer observable property
descriptions”. In: (Mar. 2021). DOI: 10.5194/egusphere-egu21-13155.

Invited Talks

[1] M. Paradies, S. Schindler, and R. Axmann.
“Datenmanagement für Intelligente Verkehrssysteme und Erdbeobachtung: Unterschiedliche
Anwendungsbereiche mit gleichen Big Data Herausforderungen?” In: POSNAV 2018.
June 2018.

[2] S. Schindler. “The DLR Institute of Data Science”.
In: Radio2018 and GLOW Annual Assembly. Oct. 2018.

[3] M. Stoica, B. Magagna, A. Pamment, and S. Schindler.
“Decomposing Observable Property Descriptions into Machine-Readable Components to
Increase Interoperability Across Data Standards”. In: RDA US, Webinar 2021 Series.
July 28, 2021.

373

https://doi.org/10.5194/egusphere-egu21-13155




Appendices

375





A
P

P
E

N
D

I
X

A
RDF NAMESPACES

RDF examples throughout this work are given in Turtle syntax [web63]. Table A.1 gives a list of

namespaces and the respective prefixes used.

Prefix Namespace

dc http://purl.org/dc/elements/1.1/

dcat http://www.w3.org/ns/dcat#

dcterms http://purl.org/dc/terms/

dctype http://purl.org/dc/dcmitype/

foaf http://xmlns.com/foaf/0.1/

owl http://www.w3.org/2002/07/owl#
prov http://www.w3.org/ns/prov#

qb http://purl.org/linked-data/cube#

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

skos http://www.w3.org/2004/02/skos/core#

void http://rdfs.org/ns/void#

wd https://www.wikidata.org/wiki/

xsd http://www.w3.org/2001/XMLSchema#
yavaa http://yavaa.org/ns/

yDim http://yavaa.org/ns/dimension/

yUnit http://yavaa.org/ns/units/

Table A.1: RDF namespaces used.

377

Namespace
http://purl.org/dc/elements/1.1/
http://www.w3.org/ns/dcat# 
http://purl.org/dc/terms/ 
http://purl.org/dc/dcmitype/ 
http://xmlns.com/foaf/0.1/ 
http://www.w3.org/2002/07/owl# 
http://www.w3.org/ns/prov#
http://purl.org/linked-data/cube# 
http://www.w3.org/1999/02/22-rdf-syntax-ns# 
http://www.w3.org/2000/01/rdf-schema# 
http://www.w3.org/2004/02/skos/core# 
http://rdfs.org/ns/void# 
https://www.wikidata.org/wiki/
http://www.w3.org/2001/XMLSchema# 
 http://yavaa.org/ns/
http://yavaa.org/ns/dimension/
http://yavaa.org/ns/units/




A
P

P
E

N
D

I
X

B
TESTING SOFTWARE FOR UNIT-SUPPORT

Besides the approaches in the literature described in Section 9.1, there are also software pack-

ages supporting computations involving units. Software packages like SPSS [web107] or Stata

[web108] focussing mostly on statistical analysis make no mention of any support for units

of measurement in their documentation. Other packages like Octave [web106] offer means to

convert from one unit to the other, but no automatic dimensional checks or inference of units1.

The R project [web105] itself provides no unit support either, but there are different packages

adding various levels of support. The package measurements [web110] adds functions to allow

users to convert between predefined units. Another package, units [web109], adds separate

objects, which include both magnitude as well as unit of a value. Regarding the conversion,

however, it uses a naïve approach as it is stated2: “When mixing units in sums, comparisons or

concatenation, units are automatically converted to those of the first argument”.

More sophisticated systems like Mathematica [web103] or Matlab [web104] also have built-in

support for units of measurement. However, in their documentation, they do not describe their

approach in detail. Mathematica just states3, that “many symbolic commands are capable of

understanding units”. Matlab is similarly vague saying4 “The simplify function automatically

chooses the unit to simplify to”.

1Octave offers a function to integrate the result of GNU units [web170] using the function units:
https://octave.sourceforge.io/miscellaneous/function/units.html.

2https://cran.r-project.org/web/packages/units/vignettes/measurement_units_in_R.html
3https://reference.wolfram.com/language/tutorial/SymbolicCalculationsWithUnits.html
4https://mathworks.com/help/symbolic/units-of-measurement-tutorial.html

379

https://octave.sourceforge.io/miscellaneous/function/units.html
https://cran.r-project.org/web/packages/units/vignettes/measurement_units_in_R.html
https://reference.wolfram.com/language/tutorial/SymbolicCalculationsWithUnits.html
https://mathworks.com/help/symbolic/units-of-measurement-tutorial.html


APPENDIX B. TESTING SOFTWARE FOR UNIT-SUPPORT

To get an idea nonetheless of how these systems handle units of measurements in computa-

tions an empirical evaluation by the means of sample formulae was performed. Below, the test

cases will be listed alongside the respective rationale behind them5. Oftentimes, there will be

two almost identical test cases. This is done to account for the naïve approach to always use the

unit of the left-hand side operand.

1. Preference for SI units: The review of literature in Section 9.1 suggests that systems

may have a preference for SI units [300] as compared to units of other systems. So in this

test, a non-SI unit is added to an SI unit to see if the system will always return the same

unit.

Test cases:

• [m]+ [ f t]

• [ f t]+ [m]

• [m]+ [mile]

• [mile]+ [m]

2. Dominant unit: If a formula consists of multiple (compatible) units, the resulting unit

should be the one that appears most often.

Test cases:

• [m]+ [ f t]+ [m] • [ f t]+ [m]+ [ f t]

3. Composition of compound units: Derived units are a composition of multiple base

units. An example is the unit Newton which is defined as Kilogram times Meter per Second

squared. This test checks, whether the system is able to recognize such compound units

and substitutes them in the result.

Test cases:

• [kg]× [m] / [s]2 • [N]× [m]× [s]

4. Composition of compound units using different units: In the previous test case, the

components of a compound unit were given according to the definition. Here, however,

single components are substituted with other compatible units.

Test cases:

• [kg]× [ f t] / [s]2 • [kg]× [cm] / [s]2

5Unit names will be abbreviated as follows: Meter [m], Centimeter [cm], Kilometer [km], Foot [ f t], Yard [yd], Mile
[mi] Kilogram [kg], Second [s], Newton [N].

380



5. Partial composition of compound units: Analogous to the previous one, this test case

checks for the recognition of compound units. However, the result is not just a single

compound unit, but also another unit in addition.

Test cases:

• [kg]2 × [m] / [s]2

6. Decomposition of compound units: This test case is symmetrical to the preceding ones.

The system should also be able to decompose compound units, if necessary. It also checks

under which circumstances that decomposition occurs.

Test cases:

• [N] / [m] • [N] / [m]
[s] • [N] / [m]

[s]2

7. Preference for unprefixed units (prefix < 1): When unifying a unit with a prefixed

version of the same unit, does the system choose the prefixed or the unprefixed unit for the

result? In this iteration, the prefix represents a factor smaller than one.

Test cases:

• [m]+ [cm] • [cm]+ [m]

8. Preference for unprefixed units (prefix > 1): Using the same rationale as before, here

prefixes are checked that represent a factor larger than one.

Test cases:

• [m]+ [km] • [km]+ [m]

9. Preference for smaller or larger units (no prefix, same system): Similar to the before

test cases, a system may have different units for the same system without one being a

prefixed version of the other. This test checks, whether the smaller or larger unit will be

chosen.

Test cases:

• [ f t]+ [yd] • [yd]+ [ f t]

Mathematica [web103] has had native support for units since Version 9, which was released

on November 28th, 2012. Matlab [web104] introduced units with Version 9.2 (R2017a) released on

March 9th, 2017. For both systems, scripts were created to check the above test cases. The scripts

are given in Listing B.1 and Listing B.3, while the respective outputs are shown in Listing B.2

and Listing B.4. For both systems, the current versions at the time of writing were used. For

Mathematica this is 12.2.0 and for Matlab 9.10 (R2021a).

381



APPENDIX B. TESTING SOFTWARE FOR UNIT-SUPPORT

Both systems seem to employ a more sophisticated approach than the aforementioned naïve

one. The symmetric test cases, that check for these simple rules, all come back with identical

results independent of operand order. The naïve approach would have yielded different results

here.

The first two test cases also show no preference for SI units in both systems. On the contrary,

the non-SI unit Foot is used for the result no matter the number of input variables using it (see

Test Case 2). For Mathematica judging from Test Cases 1, 2, 7, 8, and 9 the preference is towards

the “smaller” unit – that is the one to use fewer decimals to represent the same value. For Matlab

this assumption fails, however, as in Test Case 8 Kilometer is chosen over Meter. Here, another

criterion is used which is not easily deduced from the examined samples.

Composition of compound units seems only to be present in Mathematica. However, even

substitutes using different units were recognized. Matlab, on the other hand, does not replace

any compound units in Test Cases 3 to 5.

The decomposition of compound units seems to work the same way for both systems. It seems

that a compound unit is decomposed as soon as the result has fewer components than the not

decomposed version. The term [N] / [m], for example, consists of two components, whereas the

decomposed version [kg] / [s]2 has three counting both occurrences of Second. This changes for

[N] / [m]
[s] where the base version consists of three components, while the decomposed one has only

two: [kg] / [s].

Overall, the support in Mathematica seems more sophisticated than Matlab. This is probably

caused by the more recent addition of unit support in Matlab, while the support in Mathematica

already has had the time to evolve over several more years and versions.

382



1 (* 1. Preference for SI units *)

Print [ "1. Preference for SI units" ]
Print [ "[m] + [ft]: " , UnitSimplify [ Quantity [ 1 , "Meter" ]

4 + Quantity [ 1 , "Feet" ] ] ]
Print [ "[ft] + [m]: " , UnitSimplify [ Quantity [ 1 , "Feet" ]

+ Quantity [ 1 , "Meter" ] ] ]
7 Print [ "[m] + [mile]: " , UnitSimplify [ Quantity [ 1 , "Meter" ]

+ Quantity [ 1 , "Mile" ] ] ]
Print [ "[mile] + [m]: " , UnitSimplify [ Quantity [ 1 , "Mile" ]

10 + Quantity [ 1 , "Meter" ] ] ]

(* 2. Dominant unit *)

13 Print [ "2. Dominant unit" ]
Print [ "[m] + [ft] + [m]: " , UnitSimplify [ Quantity [ 1 , "Meter" ]

+ Quantity [ 1 , "Feet" ] + Quantity [ 1 , "Meter" ] ] ]
16 Print [ "[ft] + [m] + [ft]: " , UnitSimplify [ Quantity [ 1 , "Feet" ]

+ Quantity [ 1 , "Meter" ] + Quantity [ 1 , "Feet" ] ] ]

19 (* 3. Composition of compound units *)

Print [ "3. Composition of compound units" ]
Print [ "[kg] * [m] / [s]^2: " , UnitSimplify [ Quantity [ 1 , "Kilogram" ]

22 * Quantity [ 1 , "Meter" ] / ( Quantity [ 1 , "Second" ]^2 ) ] ]
Print [ "[N] * [m] * [s]: " , UnitSimplify [ Quantity [ 1 , "Newton" ]

* Quantity [ 1 , "Meter" ] * Quantity [ 1 , "Second" ] ] ]
25

(* 4. Composition of compound units using different units *)

Print [ "4. Composition of compound units using different units" ]
28 Print [ "[kg] * [ft] / [s]^2: " , UnitSimplify [ Quantity [ 1 , "Kilogram" ]

* Quantity [ 1 , "Feet" ] / ( Quantity [ 1 , "Second" ]^2 ) ] ]
Print [ "[kg] * [cm] / [s]^2: " , UnitSimplify [ Quantity [ 1 , "Kilogram" ]

31 * Quantity [ 1 , "Centimeter" ] / ( Quantity [ 1 , "Second" ]^2 ) ] ]

(* 5. Partial composition of compound units *)

34 Print [ "5. Partial composition of compound units" ]
Print [ "[kg]^2 * [m] / [s]^2: " , UnitSimplify [ ( Quantity [ 1 , "Kilogram" ]^2)

* Quantity [ 1 , "Meter" ] / ( Quantity [ 1 , "Second" ]^2 ) ] ]
37

(* 6. Decomposition of compound units *)

Print [ "6. Decomposition of compound units" ]
40 Print [ "[N] / [m]: " , UnitSimplify [ Quantity [ 1 , "Newton" ] / Quantity [ 1 , "Meter" ] ] ]

Print [ "[N] / ( [m] / [s] ): " , UnitSimplify [ Quantity [ 1 , "Newton" ]
/ ( Quantity [ 1 , "Meter" ] / Quantity [ 1 , "Second" ] ) ] ]

43 Print [ "[N] / ( [m] / [s]^2 ): " , UnitSimplify [ Quantity [ 1 , "Newton" ]
/ ( Quantity [ 1 , "Meter" ] / ( Quantity [ 1 , "Second" ]^2 ) ) ] ]

46 (* 7. Preference for unprefixed units (prefix < 1) *)

Print [ "7. Preference for unprefixed units (prefix < 1)" ]
Print [ "[m] + [cm]: " , UnitSimplify [ Quantity [ 1 , "Meter" ] + Quantity [ 1 , "Centimeter" ] ] ]

49 Print [ "[cm] + [m]: " , UnitSimplify [ Quantity [ 1 , "Centimeter" ] + Quantity [ 1 , "Meter" ] ] ]

(* 8. Preference for unprefixed units (prefix > 1) *)

52 Print [ "8. Preference for unprefixed units (prefix > 1)" ]
Print [ "[m] + [km]: " , UnitSimplify [ Quantity [ 1 , "Meter" ] + Quantity [ 1 , "Kilometer" ] ] ]
Print [ "[km] + [m]: " , UnitSimplify [ Quantity [ 1 , "Kilometer" ] + Quantity [ 1 , "Meter" ] ] ]

55
(* 9. Preference for smaller or larger units (no prefix, same system) *)

Print [ "9. Preference for smaller or larger units (no prefix, same system)" ]
58 Print [ "[ft] + [yd]: " , UnitSimplify [ Quantity [ 1 , "Feet" ] + Quantity [ 1 , "Yard" ] ] ]

Print [ "[yd] + [ft]: " , UnitSimplify [ Quantity [ 1 , "Yard" ] + Quantity [ 1 , "Feet" ] ] ]

Listing B.1: Unit testing script in Mathematica [web103].



APPENDIX B. TESTING SOFTWARE FOR UNIT-SUPPORT

1 1. Preference for SI units
[m] + [ f t ] : 1631

381 f t
[ f t ] + [m] : 1631

381 f t
4 [m] + [ mile ] : 201293

25 m
[ mile ] + [m] : 201293

25 m

7 2. Dominant unit
[m] + [ f t ] + [m] : 2881

381 f t
[ f t ] + [m] + [ f t ] : 2012

381 f t
10

3. Composition of compound units
[ kg ] * [m] / [ s ]^2 : 1 N

13 [N] * [m] * [ s ] : 1 s J

4 . Composition of compound units using d i f f e r e n t units
16 [ kg ] * [ f t ] / [ s ]^2 : 381

1250 N
[ kg ] * [cm] / [ s ]^2 : 1

100 N

19 5. Part ia l composition of compound units
[ kg]^2 * [m] / [ s ]^2 : 1 kg N

22 6. Decomposition of compound units
[N] / [m] : 1 N / m
[N] / ( [m] / [ s ] ) : 1 kg / s

25 [N] / ( [m] / [ s ]^2 ) : 1 kg

7. Preference for unprefixed units ( pre f ix < 1)
28 [m] + [cm ] : 101 cm

[cm] + [m] : 101 cm

31 8. Preference for unprefixed units ( pre f ix > 1)
[m] + [km] : 1001 m
[km] + [m] : 1001 m

34
9. Preference for smaller or larger units ( no pref ix , same system )
[ f t ] + [ yd ] : 4 f t

37 [ yd ] + [ f t ] : 4 f t

Listing B.2: Results for unit testing script in Mathematica [web103].

384



% i n i t
2 clc % clear output

u = symunit ; % load units

5 % 1. Preference for SI units
disp ( " 1 . Preference for SI units " )
disp ( [ ’ [m] + [ f t ] : ’ , char ( s impl i fy ( 1 * u .m + 1 * u . f t ) ) ] )

8 disp ( [ ’ [ f t ] + [m] : ’ , char ( s impl i fy ( 1 * u . f t + 1 * u .m ) ) ] )
disp ( [ ’ [m] + [ mile ] : ’ , char ( s impl i fy ( 1 * u .m + 1 * u . mi ) ) ] )
disp ( [ ’ [ mile ] + [m] : ’ , char ( s impl i fy ( 1 * u . mi + 1 * u .m ) ) ] )

11
% 2. Dominant unit
disp ( ’ ’ )

14 disp ( ’ 2 . Dominant unit ’ )
disp ( [ ’ [m] + [ f t ] + [m] : ’ , char ( s impl i fy ( 1 * u .m + 1 * u . f t + 1 * u .m ) ) ] )
disp ( [ ’ [ f t ] + [m] + [ f t ] : ’ , char ( s impl i fy ( 1 * u . f t + 1 * u .m + 1 * u . f t ) ) ] )

17
% 3. Composition of compound units
disp ( ’ ’ )

20 disp ( ’ 3 . Composition of compound units ’ )
disp ( [ ’ [ kg ] * [m] / [ s ]^2 : ’ , char ( s impl i fy ( (1 * u . kg ) * (1 * u .m) / ( ( 1 * u . s )^2) ) ) ] )
disp ( [ ’ [N] * [m] * [ s ] : ’ , char ( s impl i fy ( (1 * u .N) * (1 * u .m) * (1 * u . s ) ) ) ] )

23
% 4. Composition of compound units using d i f f e r e n t units
disp ( ’ ’ )

26 disp ( ’ 4 . Composition of compound units using d i f f e r e n t units ’ )
disp ( [ ’ [ kg ] * [ f t ] / [ s ]^2 : ’ , char ( s impl i fy ( (1 * u . kg ) * (1 * u . f t ) / ( ( 1 * u . s )^2) ) ) ] )
disp ( [ ’ [ kg ] * [cm] / [ s ]^2 : ’ , char ( s impl i fy ( (1 * u . kg ) * (1 * u .cm) / ( ( 1 * u . s )^2) ) ) ] )

29
% 5. Part ial composition of compound units
disp ( ’ ’ )

32 disp ( ’ 5 . Part ia l composition of compound units ’ )
disp ( [ ’ [ kg ] * [m]^2 / [ s ]^2 : ’ , char ( s impl i fy ( 1 * u . kg * (1 * u .m)^2 / (1 * u . s )^2 ) ) ] )

35 % 6. Decomposition of compound units
disp ( ’ ’ )
disp ( ’ 6 . Decomposition of compound units ’ )

38 disp ( [ ’ [N] / [m] : ’ , char ( s impl i fy ( 1 * u .N / (1 * u .m) ) ) ] )
disp ( [ ’ [N] / ( [m] / [ s ] ) : ’ , char ( s impl i fy ( 1 * u .N / ( (1 * u .m) / (1 * u . s ) ) ) ) ] )
disp ( [ ’ [N] / ( [m] / [ s ]^2 ) : ’ , char ( s impl i fy ( 1 * u .N / ( (1 * u .m) / (1 * u . s )^2 ) ) ) ] )

41
% 7. Preference for unprefixed ( pr e f i x < 1)
disp ( ’ ’ )

44 disp ( " 7 . Preference for unprefixed units ( pre f ix < 1) " )
disp ( [ ’ [m] + [cm ] : ’ , char ( s impl i fy ( 1 * u .m + 1 * u .cm ) ) ] )
disp ( [ ’ [cm] + [m] : ’ , char ( s impl i fy ( 1 * u .cm + 1 * u .m ) ) ] )

47
% 8. Preference for unprefixed ( pr e f i x > 1)
disp ( ’ ’ )

50 disp ( " 8 . Preference for unprefixed units ( pre f ix > 1) " )
disp ( [ ’ [m] + [km] : ’ , char ( s impl i fy ( 1 * u .m + 1 * u .km ) ) ] )
disp ( [ ’ [km] + [m] : ’ , char ( s impl i fy ( 1 * u .km + 1 * u .m ) ) ] )

53
% 9. Preference for smaller or larger units ( no pre f ix , same system )
disp ( ’ ’ )

56 disp ( " 9 . Preference for smaller or larger units ( no pref ix , same system ) " )
disp ( [ ’ [ f t ] + [ yd ] : ’ , char ( s impl i fy ( 1 * u . f t + 1 * u . yd ) ) ] )
disp ( [ ’ [ yd ] + [ f t ] : ’ , char ( s impl i fy ( 1 * u . yd + 1 * u . f t ) ) ] )

Listing B.3: Unit testing script in Matlab [web104].

385



APPENDIX B. TESTING SOFTWARE FOR UNIT-SUPPORT

1. Preference for SI units
2 [m] + [ f t ] : (1631*symunit ( ’ f t ’ ) ) / 3 8 1

[ f t ] + [m] : (1631*symunit ( ’ f t ’ ) ) / 3 8 1
[m] + [ mile ] : (201293*symunit ( ’m’ ) ) / 1 2 5

5 [ mile ] + [m] : (201293*symunit ( ’m’ ) ) / 1 2 5

2. Dominant unit
8 [m] + [ f t ] + [m] : (2881*symunit ( ’ f t ’ ) ) / 3 8 1

[ f t ] + [m] + [ f t ] : (2012*symunit ( ’ f t ’ ) ) / 3 8 1

11 3. Composition of compound units
[ kg ] * [m] / [ s ]^2 : ( symunit ( ’ kg ’ ) * symunit ( ’m’ ) ) / symunit ( ’ s ’ ) ^ 2
[N] * [m] * [ s ] : symunit ( ’N’ ) * symunit ( ’m’ ) * symunit ( ’ s ’ )

14
4. Composition of compound units using d i f f e r e n t units
[ kg ] * [ f t ] / [ s ]^2 : ( symunit ( ’ f t ’ ) * symunit ( ’ kg ’ ) ) / symunit ( ’ s ’ ) ^ 2

17 [ kg ] * [cm] / [ s ]^2 : ( symunit ( ’ cm ’ ) * symunit ( ’ kg ’ ) ) / symunit ( ’ s ’ ) ^ 2

5 . Part ia l composition of compound units
20 [ kg ] * [m]^2 / [ s ]^2 : ( symunit ( ’ kg ’ ) * symunit ( ’m’ ) ^ 2 ) / symunit ( ’ s ’ ) ^ 2

6 . Decomposition of compound units
23 [N] / [m] : symunit ( ’N’ ) / symunit ( ’m’ )

[N] / ( [m] / [ s ] ) : symunit ( ’ kg ’ ) / symunit ( ’ s ’ )
[N] / ( [m] / [ s ]^2 ) : symunit ( ’ kg ’ )

26
7. Preference for unprefixed units ( pre f ix < 1)
[m] + [cm ] : 101*symunit ( ’ cm ’ )

29 [cm] + [m] : 101*symunit ( ’ cm ’ )

8 . Preference for unprefixed units ( pre f ix > 1)
32 [m] + [km] : (1001*symunit ( ’km’ ) ) / 1 0 0 0

[km] + [m] : (1001*symunit ( ’km’ ) ) / 1 0 0 0

35 9. Preference for smaller or larger units ( no pref ix , same system )
[ f t ] + [ yd ] : 4*symunit ( ’ f t ’ )
[ yd ] + [ f t ] : 4*symunit ( ’ f t ’ )

Listing B.4: Results for unit testing script in Matlab [web104].

386



A
P

P
E

N
D

I
X

C
ADDED UNITS AND DIMENSIONS

For a broader spectrum of datasets to be used in the evaluation (cf. Chapter 14) it became

necessary to extend the pool of units and dimensions provided by OM [164] (cf. Section 13.4). The

following tables list all the entities that were added alongside the information to connect them

to the remainder of the ontology. Table C.1 lists added dimensions alongside their dimensional

vector. Tables C.2 and C.3 enumerate added units including their dimension and a conversion,

where applicable. Finally, compound units as well as their compounds are given in Table C.4.

IRI Label Dimensional Vector
yDim:count dimensionless count [ 0, 0, 0, 0, 0, 1, 0 ]

yDim:massLength mass times length [ 1, 1, 0, 0, 0, 0, 0 ]

yDim:massPerTime mass per time [ 1, 1, -1, 0, 0, 0, 0 ]

yDim:perCount per count [ 0, 0, 0, 0, 0, -1, 0 ]

yDim:shipTonnage ship volume [ 3, 0, 0, 0, 0, 0, 0 ]

Table C.1: Dimensions added.

387



APPENDIX C. ADDED UNITS AND DIMENSIONS

IRI
Dimension Conversion

(Label)
yUnit:gigawattHours

om:energy-dimension 1e+6× om:kilowatt_hour
(gigawatt hours)

yUnit:grossTonnage
yDim:shipTonnage

(gross tonnage)

yUnit:hundred
yDim:count 1e+2× yUnit:one

(hundred)

yUnit:kgOilEquivalent
om:energy-dimension 4.1868e+4× om:gigajoule

(kilogram of oil equivalent)

yUnit:million
yDim:count 1e+6× yUnit:one

(million)

yUnit:millionCubicmeter
om:volume-dimension 1e+6× om:cubic_metre

(million cubic meter)

yUnit:millionEuro
om:Amount_of_money 1e+6× om:euro

(million Euro)

yUnit:millionPps
om:Amount_of_money 1e+6× yUnit:pps

(million purchasing power standard)

yUnit:millionSquaremeter
om:area-dimension 1e+6× om:square_metre

(million square meter)

yUnit:millionTonne
om:mass-dimension 1e+6× om:tonne

(million tonnes)

yUnit:one
yDim:count

(one)

yUnit:perOne
yDim:perCount

(per one)

yUnit:perHundred
yDim:perCount 1e−2× yUnit:perOne

(per one hundred)

yUnit:perHundredThousand
yDim:perCount 1e−5× yUnit:perOne

(per one hundred Thousand)

yUnit:perMillion
yDim:perCount 1e−6× yUnit:perOne

(per one million)

yUnit:perThousand
yDim:perCount 1e+0× yUnit:perOne

(per one thousand)

yUnit:pps
om:Amount_of_money

(purchasing power standard)

yUnit:terajoule
om:energy-dimension 1e+12× om:joule

(terajoule)

yUnit:thousand
yDim:count 1e+3× yUnit:one

(thousand)

Table C.2: Units added I.

388



IRI
Dimension Conversion

(Label)
yUnit:thousandCubicmeter

om:volume-dimension 1e+3× om:cubic_metre
(thousand cubic meter)

yUnit:thousandEuro
om:Amount_of_money 1e+3× om:euro

(thousand Euro)

yUnit:thousandHectar
om:area-dimension 1e+3× om:hectare

(thousand hectar)

yUnit:thousandMinute
om:time-dimension 1e+3× om:minute-time

(thousand minutes)

yUnit:thousandSquaremeter
om:area-dimension 1e+3× om:square_metre

(thousand square meter)

yUnit:thousandTonnes
om:mass-dimension 1e+3× om:tonne

(thousand tonnes)

yUnit:thousandTonnesOilEquivalent
om:energy-dimension 1e+3× yUnit:tonneOilEquivalent

(thousand tonnes of oil equivalent)

yUnit:thousandTonnesPerDay
yDim:massPerTime 1e+3× yUnit:tonnePerDay

(thousand tonnes per day)

yUnit:tonneOilEquivalent
om:energy-dimension

(tonne of oil equivalent)

yUnit:tonnesPerDay
yDim:massPerTime

(tonnes per day)

Table C.3: Units added II.

IRI
Compound Elements

(Label)
yUnit:euroPerTonneOilEquivalent

om:euro / yUnit:tonneOilEquivalent
(Euro per tonne of oil equivalent)

yUnit:gigawattHour
om:gigawatt * om:hour

(gigawatt-hour)

yUnit:kilogrammOilEquivalentPerThousandEuro
yUnit:kgOilEquivalent / yUnit:thousandEuro

(kilogram of oil equivalent per thousand Euro)

yUnit:kilogramPerThousandEuro
om:kilogram / yUnit:thousandEuro

(kilogram per thousand Euro)

yUnit:millionPpsPerSquarekilometer
yUnit:millionPps / om:square_kilometre(million purchasing power

standard per square kilometer)

yUnit:perMile
1 / om:mile-US_survey

(per mile)

yUnit:tonnePerDay
om:tonne / om:day

(tonne per day)

yUnit:tonnePerInhabitant
om:tonne / yUnit:inhabitant

(tonnes per capita)

Table C.4: Compound units added.

389





A
P

P
E

N
D

I
X

D
YAVAA: LIST OF SUPPORTED MESSAGES

In the following, all messages send between worker and interface of Yavaa are listed (cf. Sec-

tion 13.6). Messages are grouped by area of use and direction of transmission. Messages are sent

either from worker to interface or vice versa. This documentation loosely follows JSDoc conven-

tions [web121] to describe parameters. So, optional parameters are denoted by [parameter].

Aggregation
aggregate (interface → worker)

Aggregate inside a dataset by the given columns.

Parameters:
[agg] (Array) . . . List of aggregation functions for columns to be aggregated
cols (Array) . . . List of columns to group by

data_id (Number) . . . ID of the base dataset

unbag (interface → worker)

Unbag one column.

Parameters:
agg (String) . . . Function used to unbag
col (Number) . . . ID of column to unbag

data_id (Number) . . . ID of the base dataset

391



APPENDIX D. YAVAA: LIST OF SUPPORTED MESSAGES

Computation
compute (interface → worker)

Apply the given operation to a column.

Parameters:
col_id (Number) . . . ID of the respective column
data_id (Number) . . . ID of the respective dataset
[label] (String) . . . Label of the column, if it is a new one
new_col (Boolean) . . . Result stored in a new column? will replace source column otherwise

op (String) . . . Actual operation
op_type (["UDF"]) . . . Type of the operation

setUnit (interface → worker)

Change the unit for a given dataset and column.

Parameters:
col_id (Number) . . . ID of the respective column
data_id (Number) . . . ID of the respective dataset
unit (String) . . . URI for the target unit

done (worker → interface)

Operation has finished.

Parameters:

data_id (Number) . . . ID of the result dataset

progress (worker → interface)

Progress of current column operation.

Parameters:

progress (Number) . . . Current progress as value [0,1]

Data Communication
getColumnValues (interface → worker)

Get a list of distinct values for a particular column.

Parameters:
col_id (Number) . . . ID of the column
data_id (Number) . . . ID of the dataset

getData (interface → worker)

Request a chunk of data from the given dataset.

Parameters:
data_id (Number) . . . ID of the respective dataset
entries (Number) . . . Amount of entries
start (Number) . . . Start index inside the dataset

getMeta (interface → worker)

Request the metadata for a dataset.

Parameters:

data_id (Number) . . . ID of the respective dataset

392



columnValues (worker → interface)

List of distinct values for the given column/dataset.

Parameters:
col_id (Number) . . . ID of the respective column
data_id (Number) . . . ID of the respective dataset
values (Object) . . . Distinct column values; using "min"/"max" for numeric and time, "list" otherwise

data (worker → interface)

Subset of primary data.

Parameters:
data (Array[Array]) . . . Requested chunk of data

data_id (Number) . . . ID of the respective dataset

meta (worker → interface)

Metadata for the given dataset.

Parameters:
data_id (Number) . . . ID of the dataset
entries (Number) . . . Number of rows in the dataset
meta (Object) . . . Requested metadata

Data Filtering
dropColumns (interface → worker)

Drop the given columns from the given dataset.

Parameters:
columns (Array[Number]) . . . IDs of the columns to drop
data_id (Number) . . . ID of the respective dataset

filterData (interface → worker)

Filter the given dataset.

Parameters:
data_id (Number) . . . ID of the respective dataset
filterDef (Object) . . . Filter-options as an AST-like object

Data Retrieval
export (interface → worker)

Export a dataset to a file.

Parameters:
data_id (Number) . . . ID of the dataset to export
mime (String) . . . Mime type of the download requested
part (String) . . . Part requested for download (ds, wf, vis)

[visoptions] (Object) . . . If a vis is chosen as a part, this has to hold the respective parameters as
defined in getStaticViz

loadData (interface → worker)

Request loading of a dataset given by the ID.

Parameters:

id (String) . . . ID of the respective dataset

393



APPENDIX D. YAVAA: LIST OF SUPPORTED MESSAGES

loadFile (interface → worker)

Request parsing of the given string as a new dataset.

Parameters:
content (String) . . . Content of the file to parse
module (String) . . . Name of the parser module to use
parser (Array) . . . List of parsers to use for the columns
settings (Object) . . . Settings for the parser

exported (worker → interface)

Result of export function.

Parameters:
data (String) . . . Content of the exported file

data_id (Number) . . . Internal id of the retrieved dataset
mime (String) . . . Mime type for the download
part (String) . . . Part triggered for download

Dataset related information
resolveColValues (interface → worker)

Resolve values for a given column (has to be of type semantic), i.e. add labels.

Parameters:
columns (Array) . . . IDs of all columns to be resolved
data_id (Number) . . . Referenced dataset

setColLabel (interface → worker)

Set the label for a given column.

Parameters:
col_id (Number) . . . ID of the column
data_id (Number) . . . Referenced dataset
label (String) . . . New label

Debug
getMemory (interface → worker)

Retrieve the size of currently used memory.

memory (worker → interface)

Description of the currently used memory.

Parameters:

size (Number) . . . Size of currently used memory

394



General
error (interface → worker)

Description of error happening on the client side; to be logged on server side.

Parameters:
msg (String) . . . Error message
src (String) . . . Module where the error occurred

[stack] (String) . . . Stack trace of the error
ts (Number) . . . Timestamp of the error; as Unix timestamp

error (worker → interface)

Description of an error happening on the server side.

Parameters:
msg (String) . . . Error message
src (String) . . . Module where the error occurred

[stack] (String) . . . Stack trace of the error
ts (Number) . . . Timestamp of the error; as Unix timestamp

invalidCommand (worker → interface)

Last issued command was invalid.

Parameters:
command (Array) . . . Invalid command
message (String) . . . Error message

queued (worker → interface)

Operation queued for execution.

Joins
join (interface → worker)

Join the two given datasets.

Parameters:
augm_data_id (Number) . . . ID of the augmenting dataset

data_id (Number) . . . ID of the base dataset
join_cond (Array) . . . List of matching columns

suggestJoin (interface → worker)

Suggest a possible join condition for the two given datasets.

Parameters:
data_id1 (Number) . . . ID of the left hand dataset
data_id2 (Number) . . . ID of the right hand dataset

union (interface → worker)

Union the two given datasets.

Parameters:
augm_data_id (Number) . . . ID of the augmenting dataset
base_data_id (Number) . . . ID of the base dataset
union_cond (Array) . . . List of matching columns

395



APPENDIX D. YAVAA: LIST OF SUPPORTED MESSAGES

queued (worker → interface)

Operation queued for execution.

suggestedJoin (worker → interface)

Proposed join condition.

Parameters:
data_id1 (Number) . . . ID of the left hand dataset
data_id2 (Number) . . . ID of the right hand dataset
join_cond (Array[Array]) . . . Join condition

Knowledge Base
getCompatibleUnits (interface → worker)

Request a list of compatible alternatives for a given unit.

Parameters:

unit (Object) . . . Unit for which alternatives are requested

getDsDetails (interface → worker)

Request details for a specific dataset.

Parameters:

id (String) . . . URI of the dataset to get data about

resolveCodelists (interface → worker)

Find the associated values and labels for the given list of codelists-URIs.

Parameters:

uris (Array[String]) . . . List of codelist-URIs

resolveLabels (interface → worker)

Resolve labels for a given list of URIs.

Parameters:

uris (Array[String]) . . . List of URIs

compatibleUnits (worker → interface)

List of compatible units and the respective systems.

Parameters:
systems (Array) . . . System represented by at least one unit
unit (String) . . . Unit requested
units (Array) . . . List of compatible units

dsDetails (worker → interface)

Results of getDsDetails command.

Parameters:
cols (Array[Object]) . . . Column data for this dataset
meta (Object) . . . Metadata for this dataset

396



resolvedCodelists (worker → interface)

Labels for resolved URIs.

Parameters:

results (Object) . . . Map from codelist-URI to array of contained values

resolvedLabels (worker → interface)

Labels for resolved URIs.

Parameters:

results (Object) . . . Map from URI to label

Search
getDsByCombination (interface → worker)

Request a combination of datasets to fit the given description.

Parameters:

constraints (Array) . . . Constraints given per column

search (interface → worker)

Search datasets by keyword.

Parameters:

restrictions (Object) . . . Search restrictions

typeAhead (interface → worker)

Get a list of possible terms for an autocomplete field.

Parameters:
[codelist] (String) . . . For values using codelist, define that codelist
needle (String) . . . Currently given substring
type (String) . . . Type to search for (dimension, measurement, column, value)

getDsByCombination (worker → interface)

Possible combination of datasets found.

Parameters:
components (Array) . . . List of datasets used

pwf (Object|Number) . . . Pseudo-workflow to achieve the proposed result
result (Object) . . . Description of the resulting dataset

search (worker → interface)

Results of a previous search.

Parameters:

results (Array) . . . results

typeAhead (worker → interface)

List of possible terms.

Parameters:
terms (Object) . . . List of possible terms
type (String) . . . Used type for the query

397



APPENDIX D. YAVAA: LIST OF SUPPORTED MESSAGES

visualization
getStaticSVG (interface → worker)

Get a static SVG visualization.

Parameters:
data_id (Number) . . . ID of the result dataset
options (Object) . . . Settings for the visualization
type (String) . . . Type of requested visualization

suggestViz (interface → worker)

Get visualization recommendation for the given dataset.

Parameters:

data_id (Number) . . . ID of the result dataset

viz (worker → interface)

Visualization in form of the respective (SVG) code.

Parameters:
code (String) . . . Requested code

data_id (Number) . . . ID of the referenced dataset
type (String) . . . Static or dynamic code returned

vizSuggestions (worker → interface)

List of recommended visualizations and the respective scoring.

Parameters:
data_id (Number) . . . ID of the referenced dataset
omitted (Array) . . . Columns omitted from the suggestion; single valued dimensions
sugg (Array) . . . List of suggestions

Workflow
execWorkflow (interface → worker)

Execute the given workflow.

Parameters:
wfType (String) . . . Type of the transmitted workflow: "workflow" || "pwf"
workflow (Object) . . . Workflow to be executed; JSON-encoded

getWorkflow (interface → worker)

Get a serialized representation of the workflow leading to the given dataset.

Parameters:
data_id (Number) . . . ID of the result dataset
format (String) . . . Format of the workflow

[includeStyles] (Boolean) . . . Include styling information for visualizations?

workflow (worker → interface)

Document representing the workflow.

Parameters:
data_id (Number) . . . ID of the dataset to this workflow
format (String) . . . Format of the workflow
workflow (String) . . . Requested workflow

398



A
P

P
E

N
D

I
X

E
FORMULA PARSING GRAMMAR

/ *
2 * Grammar to parse arithmetic formulae in Yavaa

* adapted from https : / / github . com / pegjs / pegjs / blob / master / examples / arithmetics . pegjs

*
5 * /

/ * Term : addition , subtraction * /
8 TERM_ADD =

_ head :TERM_MUL _ t a i l : ( _ operator :ADD_OPERATOR _ right :TERM_MUL _ )* _
{

11 return t a i l . reduce ( function ( result , match ) {
return { value : match [ 1 ] , chi ldren : [ result , match [ 3 ] ] } ;

} , head ) ;
14 }

/ * Term : mult ipl icat ion , d iv i s ion * /
17 TERM_MUL =

_ head :FACTOR _ t a i l : ( _ operator :MUL_OPERATOR _ right :FACTOR _ )* _
{

20 return t a i l . reduce ( function ( result , match ) {
return { value : match [ 1 ] , chi ldren : [ result , match [ 3 ] ] } ;

} , head ) ;
23 }

/ * fac tor in TERM_MUL * /
26 FACTOR

= _ " ( " _ expr :TERM_ADD _ " ) " _
{ return expr ; }

29 / _ operand :OPERAND _
{ return operand ; }

32 / * operands * /
OPERAND =

399



APPENDIX E. FORMULA PARSING GRAMMAR

_ operand : (NUMBER / VALUE) _
35 { return { value : operand } ; }

/ * numbers * /
38 NUMBER =

_ number : $ ( [0=9]+( [ , . ] [0=9]+)? ) _
{ return number ; }

41

/ * values * /
VALUE =

44 _ value : ( " value " / ’ col0 ’ / $ ( ’ col ’[1=9][0=9]*) ) _
{ return value ; }

47 / * operators * /
OPERATOR =

ADD_OPERATOR / MUL_OPERATOR
50 ADD_OPERATOR =

_ operator : ( "+" / ’= ’ ) _
{ return operator ; }

53 MUL_OPERATOR =
_ operator : ( " * " / ’ / ’ ) _

{ return operator ; }
56

/ * whitespaces * /
_ =

59 ( " " / "\\t " / "\\n" / "\\r " )*
{ return ; }

Listing E.1: PEG grammar used to parse user defined functions.

400



A
P

P
E

N
D

I
X

F
SUPPORTED VISUALIZATIONS

Table F.1 shows an overview for the visualizations implemented in the Yavaa prototype. Similarly,

Table F.2 provides a list of implemented layouts. Given are the name, a list of column-binding

descriptions, and the pictogram representing the visualization within the user interface. The

syntax for the descriptions roughly follows the one usually seen in regular expressions:

• Left of the arrow are bindings for dimensions, whereas right of the arrow are those for

measurements.1

• The cross operator × connects two separate properties of a visualization.

• The data types as presented in Chapter 5 are represented using single, upper case letters:

C (categorical), Q (quantitative), T (time), or V (nested visualization).

• Parentheses are used to group subpatterns.

• Alternatives are connected by a vertical line |.

• The multiplicity of a pattern can be modified by using ? (zero or one), + (one or more), or *

(zero or more). The absence of a modifier signals a single occurrence.

As an example, consider the first description of a Line Chart: C? × (Q|T) −→ Q. Firstly,

C? describes an optional categorical binding, which here describes the coloring of the lines. The

next component, (Q|T) allows for either a quantitative or a time column to be bound. Here,

this represents the x-axis. While these first two components relate to dimension columns, the

final part Q describes the measurement to be displayed. In the example, this will map to the

y-coordinate of a line segment.
1For Parallel Coordinates this separation actually does not carry over to the visualization itself but is needed to

conform to the structure for other visualization types.

401



Name Definitions Pictogram

Area Chart (Q|T) −→ Q

Bar Chart
C? × C −→ Q
C? × T −→ Q

Box Plot C −→ Q

Bubble Chart C −→ Q

Heatmap (categorical) C × C −→ Q

Line Chart
C × (Q|T) −→ Q

(Q|T) −→ Q+

Parallel Coordinates C? × (C|Q|T)∗ −→ (C|Q|T)∗

Scatter Plot Q × Q −→ C?

Sunburst C+ −→ Q

Violin Plot C −→ Q × Q

Table F.1: Yavaa: List of supported visualizations.

Name Definitions Pictogram

Matrix Layout C × C −→ V
?
?
?

?
?
?

?
?
?

Row Layout C −→ V
?
?
?

Table F.2: Yavaa: List of supported layouts.



A
P

P
E

N
D

I
X

G
USER EVALUATION

The following screenshots document the user evaluation as conducted. For a description of

the reasoning kindly refer to Section 14.2. The order given here is not necessarily the order

presented in the actual survey as this was randomized between participants. The optional hints

in Figure G.6 and G.12 only became visible upon the user stating to be unable to find the required

datasets (cf. first question in Figure G.5 and G.11 respectively).

Yavaa User Study
User Evaluation Survey

Thank you for taking part in this survey!

Please make sure that you have enough time to complete the survey (about 60 to 90 minutes) and the following software is installed on your
current computer:

Spreadsheet-software: Excel or LibreOffice Calc
Current browser: Yavaa has been tested with current versions of Firefox, Chrome, and Edge. Other browsers may cause problems. In
particular, Internet Explorer is not supported!

You will be given a fictitious task and asked to solve it two times - once using Yavaa and once using a standard spreadsheet-software. The task
involves locating datasets, performing simple operations, and creating a meaningful visualization.

This survey is anonymous.

The record of your survey responses does not contain any identifying information about you, unless a specific survey question explicitly asked for it.

If you used an identifying token to access this survey, please rest assured that this token will not be stored together with your responses. It is managed in a
separate database and will only be updated to indicate whether you did (or did not) complete this survey. There is no way of matching identification tokens with
survey responses.

NEXT

Figure G.1: User evaluation: Welcome page.

403



Datenschutzerklärung / Privacy Policy
 
Dear participant,

On 25th May 2018, the new General Data Protection Regulation (GDPR) has come into effect. For compliance reasons we are obliged to
get your consent to the privacy policy before collecting any kind of personal information. 

The following information applies as a supplement to the general privacy policy of the Friedrich Schiller University Jena. We ask you to read
both policies carefully and to agree.

Please note, as the Friedrich Schiller University Jena is headquatered in Germany, only the german version of this privacy policy is legally
binding.

Geehrte Teilnehmende,

Am 25. Mai 2018 trat die Datenschutz-Grundverordnung (DSGVO) in Kraft. Um Ihre personenbezogenen Daten erheben und verarbeiten zu
können, benötigen wir daher aus rechtlichen Gründen zunächst Ihre Zustimmung zur Datenverarbeitung.

Die folgende Erklärung dient als Ergänzung zur Datenschutzerklärung der Friedrich-Schiller-Universität Jena. Wir möchten Sie bitten, beide
Dokumente gründlich durchzulesen und mit Ihrer Einwilligung zu bestätigen, dass Sie der Datenverarbeitung zustimmen.

privacy policy (english)   Datenschutzerklärung (deutsch)

  Check all that apply

Yes, I have read the privacy policy and agree. 
Ja, ich habe die Datenschutzerklärung gelesen und stimme zu.

NEXT

Figure G.2: User evaluation: privacy statement (detailed description omitted).



Introduction
In the following you will be asked to perform the below task twice - once using common spreadsheet software like Excel or LibreOffice Calc and
once using the web app Yavaa. The order will be randomly chosen and shown to you on the next page.

Before you start, please head over to the tutorial which describes all the actions you need to fulfill the given tasks. You can leave the tutorial open
and consult it again at any point. The task description will also be repeated on the following pages.

Each task page will ask you for the time you started the task as well as the time when you finished it. Please enter the starting date right away to
get an accurate timing.

In case you can not locate the appropriate datasets, below the task description on each task page you will find an option to provide you with
detailed instructions. Please use this option only, if you can not complete the survey otherwise.

Scenario
As part of a study concerned with public health, you are tasked to look into the quality of sleep. As the primary indicator the number of available
sheep per person is chosen. (Nothing is worse than trying to get to sleep and running out of sheep to count, right?) To eliminate short-term
effects, you are interested in the development over the last 5 years. This will also show you, which countries actually make an effort to improve
their citizens nightly life!

Task
Your task is to create a dataset that holds the amount of sheep per inhabitant for the following European countries (the shortlist of vacation
destinations of your superior - purely coincidental, of course) and period of time (previous five years):

Countries: Germany, Iceland, Ireland, Romania, Spain
Period of time: 2014 - 2019

After the dataset has been assembled, choose an adequate graph to present your results to your fellow colleagues and the general public.

The suggested order of steps is as follows. You personal workflow might deviate, though.

1. Identify suitable datasets.
While in general Eurostat has all the data you need, it is not provided as a single dataset to start with, so you will need to combine multiple ones.

2. Prepare a single dataset.
Eurostat's datasets contain more data than needed, so you will have to filter for the requested values. You may also need to join multiple source datasets.

3. Calculate the desired metric.
The requested metric is not included in Eurostat's raw data, so you will have to calculate it manually.

4. Select a proper visualization.
Once the dataset contains only the requested values, you can choose a suitable visualization.

5. Export your results.
Store your results (data and visualization) locally and then to upload them on the next page.

Hints
Eurostat sometimes lives in their own world and outsiders have a hard time understanding, what some terms mean. Luckily, you found the notes
of your predecessor and have the following information for your task:

Countries are called Geopolitical entity (reporting) or geo for short
All date and time related data is subsumed under Time
Inhabitants for a country in their various forms are called Population

NEXT

Figure G.3: User evaluation: Scenario and task introduction.

405



APPENDIX G. USER EVALUATION

 

Yavaa
At this point we ask you to perform the given task using Yavaa. You can open the web app by clicking this link.

Remember that you can consult the tutorial at any point.

Please indicate your Yavaa session id. You find it in the upper right corner of the web app.

Please enter the time you started working on the given task.
Format: HH:MM



Task
Your task is to create a dataset that holds the amount of sheep per inhabitant for the following European countries and period of time:

Countries: Germany, Iceland, Ireland, Romania, Spain
Period of time: 2014 - 2019

After the dataset has been assembled, choose an adequate graph to present your results to your fellow colleagues and the general public.

The suggested order of steps is as follows. You personal workflow might deviate, though.

1. Identify suitable datasets.
While in general Eurostat has all the data you need, it is not provided as a single dataset to start with, so you will need to combine multiple ones.

2. Prepare a single dataset.
Eurostat's datasets contain more data than needed, so you will have to filter for the requested values. You may also need to join multiple source datasets.

3. Calculate the desired metric.
The requested metric is not included in Eurostat's raw data, so you will have to calculate it manually.

4. Select a proper visualization.
Once the dataset contains only the requested values, you can choose a suitable visualization.

5. Export your results.
Store your results (data and visualization) locally and then to upload them on the next page.

Hints
Eurostat sometimes lives in their own world and outsiders have a hard time understanding, what some terms mean. Luckily, you found the notes
of your predecessor and have the following information for your task:

Countries are called Geopolitical entity (reporting) or geo for short
All date and time related data is subsumed under Time
Inhabitants for a country in their various forms are called Population

Figure G.4: User evaluation: Task description (Yavaa / part 1).

406



 

In case you are not able to locate the required datasets using the built-in search facilities by yourself, clicking the below checkbox will provide you
with the precise terms to use.

This is a only a fallback solution in situations, in which you are otherwise unable to complete this evaluation. 
Please give it a serious try before using this option.

I was not able to locate the datasets using Yavaa.

Please enter the time you finished working on the given task.
Format: HH:MM



If you were not able to complete the task, please tell us why. Otherwise leave this empty.

Please finish the task first, before advancing.

There will be no back-button!

NEXT

Figure G.5: User evaluation: Task description (Yavaa / part 2).

In case you are not able to locate the required datasets using the built-in search facilities by yourself, clicking the below checkbox will provide you
with the precise terms to use.

This is a only a fallback solution in situations, in which you are otherwise unable to complete this evaluation. 
Please give it a serious try before using this option.

I was not able to locate the datasets using Yavaa.

In the Construct dataset dialog use the following column names alongside suitable constraints for the column values.

Geopolitical entity (reporting)
Time
Population
Number of sheep

For Load Datasets / Search by keywords the full dataset names are given below. In the search results also other, similar results might appear.
Make sure to select the correct dataset.

Population: "population on 1 january"
Sheep: "number of sheep"

Figure G.6: User evaluation: Task description (Yavaa / optional hint).

407



APPENDIX G. USER EVALUATION

 

 

Yavaa
Please upload your results and give an estimate on the time you spent to create them.

Please upload the resulting data (table).   UPLOAD FILES

Please upload the resulting graph (image).   UPLOAD FILES

Please give an estimate how much of the time you spent on the following subtasks.

No exact times needed, ratios do suffice.

  Only numbers may be entered in these fields.

Search & Load

Manipulate

Filter

Join

Visualize

Export

NEXT

Figure G.7: User evaluation: Artifacts and time distribution (Yavaa).

408



Yavaa
How difficult or easy did you find the following subtasks using the system?

Very 
difficult Neutral

Very 
easy

No 
answer

Search & Load
(start working with a dataset)

Transform & Adapt
(e.g., applying formulae)

Filter
(remove unnecessary tuples)

Joining datasets
(combining information from multiple sources)

Visualize
(draw some shiny graph)

Export
(store your results for further use)

NEXT

Figure G.8: User evaluation: Difficulty assessment (Yavaa).

Yavaa
Please rate your experience.

Strongly 
disagree

Neutral 
 

Strongly 
agree

No 
answer

I think that I would like to use this system
frequently.

I found the system unnecessarily complex.

I thought the system was easy to use.

I think that I would need the support of a
technical person to be able to use this

system.

I found the various functions in this system
were well integrated.

I thought there was too much inconsistency
in this system.

I would imagine that most people would
learn to use this system very quickly.

I found the system very awkward to use.

I felt very confident using the system.

I needed to learn a lot of things before I
could get going with this system.

NEXT

Figure G.9: User evaluation: Usability assessment (Yavaa).

409



APPENDIX G. USER EVALUATION

 

Spreadsheet Software
At this point we ask you to perform the task with either Microsoft Excel or LibreOffice Calc.

Remember that you can consult the tutorial at any point.

Please indicate the software you use below.

  Choose one of the following answers

Microsoft Excel

LibreOffice Calc

Please enter the time you started working on the given task.
Format: HH:MM



Task
Your task is to create a dataset that holds the amount of sheep per inhabitant for the following European countries and period of time:

Countries: Germany, Iceland, Ireland, Romania, Spain
Period of time: 2014 - 2019

After the dataset has been assembled, choose an adequate graph to present your results to your fellow colleagues and the general public.

The suggested order of steps is as follows. You personal workflow might deviate, though.

1. Identify suitable datasets.
While in general Eurostat has all the data you need, it is not provided as a single dataset to start with, so you will need to combine multiple ones.

2. Prepare a single dataset.
Eurostat's datasets contain more data than needed, so you will have to filter for the requested values. You may also need to join multiple source datasets.

3. Calculate the desired metric.
The requested metric is not included in Eurostat's raw data, so you will have to calculate it manually.

4. Select a proper visualization.
Once the dataset contains only the requested values, you can choose a suitable visualization.

5. Export your results.
Store your results (data and visualization) locally and then to upload them on the next page.

Hints
Eurostat sometimes lives in their own world and outsiders have a hard time understanding, what some terms mean. Luckily, you found the notes
of your predecessor and have the following information for your task:

Countries are called Geopolitical entity (reporting) or geo for short
All date and time related data is subsumed under Time
Inhabitants for a country in their various forms are called Population

Figure G.10: User evaluation: Task description (Spreadsheet / part 1).

410



 

In case you are not able to locate the required datasets using Eurostat's search facilities by yourself, clicking the below checkbox will provide you
with direct links to those datasets.

This is only a fallback solution in situations, in which you are otherwise unable to complete this evaluation. 
Please give it a serious try before using this option.

I was not able to locate the datasets on Eurostat.

Please enter the time you finished working on the given task.
Format: HH:MM



If you were not able to complete the task, please tell us why. Otherwise leave this empty.

Please finish the task first, before advancing.

There will be no back-button!

NEXT

Figure G.11: User evaluation: Task description (Spreadsheet / part 2).

In case you are not able to locate the required datasets using Eurostat's search facilities by yourself, clicking the below checkbox will provide you
with direct links to those datasets.

This is only a fallback solution in situations, in which you are otherwise unable to complete this evaluation. 
Please give it a serious try before using this option.

I was not able to locate the datasets on Eurostat.

Population:

Population on 1 January (code: tps00001)

Sheep:

Number of sheep (code: tag00017)

Figure G.12: User evaluation: Task description (Spreadsheet / optional hint).

411



APPENDIX G. USER EVALUATION

 

 

Spreadsheet Software
Please upload your results and give an estimate on the time you spent to create them.

Please upload the resulting data (table).   UPLOAD FILES

Please upload the resulting graph (image).   UPLOAD FILES

Please give an estimate how much of the time you spent on the following subtasks.

No exact times needed, ratios do suffice.

  Only numbers may be entered in these fields.

Search & Load

Manipulate

Filter

Join

Visualize

Export

NEXT

Figure G.13: User evaluation: Artifacts and time distribution (Spreadsheet).

412



Spreadsheet Software
How difficult or easy did you find the following subtasks using the system?

Very 
difficult Neutral

Very 
easy

No 
answer

Search & Load
(start working with a dataset)

Transform & Adapt
(e.g., applying formulae)

Filter
(remove unnecessary tuples)

Joining datasets
(combining information from multiple sources)

Visualize
(draw some shiny graph)

Export
(store your results for further use)

NEXT

Figure G.14: User evaluation: Difficulty assessment (Spreadsheet).

Spreadsheet Software
Please rate your experience.

Strongly 
disagree

Neutral 
 

Strongly 
agree

No 
answer

I think that I would like to use this system
frequently.

I found the system unnecessarily complex.

I thought the system was easy to use.

I think that I would need the support of a
technical person to be able to use this

system.

I found the various functions in this system
were well integrated.

I thought there was too much inconsistency
in this system.

I would imagine that most people would
learn to use this system very quickly.

I found the system very awkward to use.

I felt very confident using the system.

I needed to learn a lot of things before I
could get going with this system.

NEXT

Figure G.15: User evaluation: Usability assessment (Spreadsheet).

413



APPENDIX G. USER EVALUATION

Background
Before concluding this survey, we would like to ask you for some information about your background and expertise. This will help us understand
your answers throughout the survey and put them into perspective.

Note, that this data will only be published in aggregated form. Your particular answers will not be identifiable from that.
If you still feel uncomfortable with giving an answer, you can skip the question.

Age Please choose...

Gender Please choose...

Hightest Level of Education Attained
(e.g., BSc or MSc)

Country of Origin
(the country you were born in)

Country of Residence
(the country you stayed longest in over the last 5

years)

Profession or Field of Study

Please rate your experience in the following areas.

beginner intermediate expert
No 

answer

English Language

Spreadsheet Software

Information Visualisation

Programming

Assume you were given the previous task and no specific tool(s) were required.

Which tool(s) would you use?

NEXT

Figure G.16: User evaluation: Background information.

414



Is there anything else you want to tell us about this survey?

SUBMIT

Figure G.17: User evaluation: Final Comments.

415





A
P

P
E

N
D

I
X

H
YAVAA USER INTERFACE

The following screenshots give an impression of the Yavaa user interface. They illustrate the

anticipated strategies of the user evaluation outlined in Section 14.2 and depicted in Figure 14.3.

Figure H.1 provides an overview of the order in which users of the respective strategy encounter

the respective application states. As both strategies only differ in how they retrieve and filter the

raw data, the later steps are shared between both. In the enhanced strategy, filtering the datasets

is inherent in the query execution and, hence, the filtering steps (illustrated in Figure H.7 through

H.9) can be omitted.

There is not necessarily one screenshot per user interaction necessary and vice versa. The

following figures are merely intended to illustrate important steps and the respective interface

presented to users.

Conventional Strategy

Enhanced Strategy

2
3 4 5

18 19 20
6

7 8 9
10 11 12 13 14 15 1616 17

Startup
Retrieve & Merge Data

Resolve Labels

Filter Values
Derive Values

Visualize
Export

Figure H.1: Yavaa user interface: Workflow per strategy.
Numbers referring to the respective figures of this section.

417



APPENDIX H. YAVAA USER INTERFACE

 SessionId: pQ7PNSOXlEui0TAjAAAS

Figure H.2: Yavaa user interface: Landing page.

 SessionId: pQ7PNSOXlEui0TAjAAAS

search

Production of meat: sheep and goats

(Eurostat)

Number of sheep

(Eurostat)

  

LOAD CANCEL

Load a new dataset 


Search Dataset by ID

sheep
Keywords

Number of sheep

Source: Eurostat

Columns: 

Live animals  Month  

Unit of measure  

Geopolitical entity (reporting)  Time  

Number of sheep

Figure H.3: Yavaa user interface: Keyword based search.

418



 SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2

Demographic indicator Geopolitical entity (reporting) Time Population

JAN AD 2008 83137

JAN AD 2009 84484

JAN AD 2010 84082

JAN AD 2011 78115

JAN AD 2012 78115

JAN AD 2013 76246

JAN AD 2014

JAN AD 2015

JAN AD 2016 71732

JAN AD 2017

JAN AD 2018 74794

JAN AD 2019 76177

JAN AL 2008 2958266

JAN AL 2009 2936355

JAN AL 2010 2918674

Base Dataset: dataset 2

Augmenting Dataset: dataset 1

NEXT CANCEL

Join Datasets 


Create as a new dataset

Figure H.4: Yavaa user interface: Select datasets to join.

 SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2

Demographic indicator Geopolitical entity (reporting) Time Population

JAN AD 2008 83137

JAN AD 2009 84484

JAN AD 2010 84082

JAN AD 2011 78115

JAN AD 2012 78115

JAN AD 2013 76246

JAN AD 2014

JAN AD 2015

JAN AD 2016 71732

JAN AD 2017

JAN AD 2018 74794

JAN AD 2019 76177

JAN AL 2008 2958266

JAN AL 2009 2936355

JAN AL 2010 2918674

dataset 2

Demographic indicator

Geopolitical entity (reporting)

Time

Population

dataset 1

Live animals

Month

Unit of measure

Geopolitical entity (reporting)

Time

Number of sheep

JOIN CANCEL

Join Datasets 


Add Connections ⇔ Remove Connections suggest

Figure H.5: Yavaa user interface: Join condition.

419



APPENDIX H. YAVAA USER INTERFACE

 SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2 dataset 3

Demographic
indicator

Geopolitical entity
(reporting)

Time Population Live
animals

Month Unit of
measure

Number of
sheep

JAN AD 2008 83137

JAN AD 2009 84484

JAN AD 2010 84082

JAN AD 2011 78115

JAN AD 2012 78115

JAN AD 2013 76246

JAN AD 2014

JAN AD 2015

JAN AD 2016 71732

JAN AD 2017

JAN AD 2018 74794

JAN AD 2019 76177

JAN AL 2008 2958266 A4100 M12 THS_HD

JAN AL 2009 2936355 A4100 M12 THS_HD

JAN AL 2010 2918674 A4100 M12 THS_HD

 / 

RESOLVE CANCEL

Resolve codelist(s) 

Demographic indicator

Geopolitical entity (reporting)

Live animals

Month

Unit of measure
Select all Select none

Figure H.6: Yavaa user interface: Resolve value labels.

 SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2 dataset 3

Demographic
indicator

Geopolitical entity
(reporting)

Time Population Live
animals

Month Unit of
measure

Number of
sheep

JAN Andorra 2008 83137

JAN Andorra 2009 84484

JAN Andorra 2010 84082

JAN Andorra 2011 78115

JAN Andorra 2012 78115

JAN Andorra 2013 76246

JAN Andorra 2014

JAN Andorra 2015

JAN Andorra 2016 71732

JAN Andorra 2017

JAN Andorra 2018 74794

JAN Andorra 2019 76177

JAN Albania 2008 2958266 A4100 M12 THS_HD

JAN Albania 2009 2936355 A4100 M12 THS_HD

JAN Albania 2010 2918674 A4100 M12 THS_HD

  Excluded values will be removed from the dataset!

Include  

<<

>>

 

APPLY CANCEL

Filter by this column 


Germany Iceland Ireland Romania

Spain

Exclude

Albania Andorra Armenia Austria

Azerbaijan Belarus Belgium

Bosnia and Herzegovina Bulgaria

Croatia Cyprus Czechia Denmark

Estonia EU27_2007 EU27_2020

Euro area - 18 countries (2014)

Euro area - 19 countries (from 2015)

European Union - 28 countries (2013-2020)

Finland France France (metropolitan)

Georgia Greece Hungary Italy

Figure H.7: Yavaa user interface: Filtering a categorical column.

420



 SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2 dataset 3

Demographic
indicator

Geopolitical entity
(reporting)

Time Population Live
animals

Month Unit of
measure

Number of
sheep

JAN Germany 2008 82217837 A4100 M12 THS_HD 1919.9

JAN Germany 2009 82002356 A4100 M12 THS_HD 1851.7

JAN Germany 2010 81802257 A4100 M12 THS_HD 1799.7

JAN Germany 2011 80222065 A4100 M12 THS_HD 1657.81

JAN Germany 2012 80327900 A4100 M12 THS_HD 1641.01

JAN Germany 2013 80523746 A4100 M12 THS_HD 1569.96

JAN Germany 2014 80767463 A4100 M12 THS_HD 1600.78

JAN Germany 2015 81197537 A4100 M12 THS_HD 1579.79

JAN Germany 2016 82175684 A4100 M12 THS_HD 1574.27

JAN Germany 2017 82521653 A4100 M12 THS_HD 1579.79

JAN Germany 2018 82792351 A4100 M12 THS_HD 1569.9

JAN Germany 2019 83019213 A4100 M12 THS_HD 1556.5

JAN Spain 2008 45668939 A4100 M12 THS_HD 19952.28

JAN Spain 2009 46239273 A4100 M12 THS_HD 19718.2

JAN Spain 2010 46486619 A4100 M12 THS_HD 18551.64

  Excluded values will be removed from the dataset!

Range
2014

to
2019

APPLY CANCEL

Filter by this column 


Figure H.8: Yavaa user interface: Filtering a numerical/time column.

 SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2 dataset 3

Demographic
indicator

Geopolitical entity
(reporting)

Time Population Live
animals

Month Unit of
measure

Number of
sheep

JAN Germany 2014 80767463 A4100 M12 THS_HD 1600.78

JAN Germany 2015 81197537 A4100 M12 THS_HD 1579.79

JAN Germany 2016 82175684 A4100 M12 THS_HD 1574.27

JAN Germany 2017 82521653 A4100 M12 THS_HD 1579.79

JAN Germany 2018 82792351 A4100 M12 THS_HD 1569.9

JAN Germany 2019 83019213 A4100 M12 THS_HD 1556.5

JAN Spain 2014 46512199 A4100 M12 THS_HD 15431.83

JAN Spain 2015 46449565 A4100 M12 THS_HD 16026.37

JAN Spain 2016 46440099 A4100 M12 THS_HD 15962.89

JAN Spain 2017 46528024 A4100 M12 THS_HD 15963.11

JAN Spain 2018 46658447 A4100 M12 THS_HD 15852.53

JAN Spain 2019 46937060 A4100 M12 THS_HD 15478.62

JAN Ireland 2014 4637852 A4100 M12 THS_HD 3324.9

JAN Ireland 2015 4677627 A4100 M12 THS_HD 3324.84

JAN Ireland 2016 4726286 A4100 M12 THS_HD 3438.23

Are you sure to drop the column 

Demographic indicator

?

APPLY CANCEL

Drop Column 

Figure H.9: Yavaa user interface: Dropping columns.

421



APPENDIX H. YAVAA USER INTERFACE

 SessionId: BYzgtvVgkF49MaCyAAAi

dataset 1

Geopolitical entity (reporting) Time Population Number of sheep

Germany 2014 80767463 1600.78

Germany 2015 81197537 1579.79

Germany 2016 82175684 1574.27

Germany 2017 82521653 1579.79

Germany 2018 82792351 1569.9

Germany 2019 83019213 1550.9

Spain 2014 46512199 15431.83

Spain 2015 46449565 16026.37

Spain 2016 46440099 15962.89

Spain 2017 46528024 15963.11

Spain 2018 46658447 15852.53

Spain 2019 46937060 15371.42

Ireland 2014 4637852 3324.9

Ireland 2015 4677627 3324.84

Ireland 2016 4726286 3438.23

Figure H.10: Yavaa user interface: Merged and filtered dataset.

 SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2 dataset 3

Geopolitical entity (reporting) Time Population Number of sheep

Germany 2014 80767463 1600.78

Germany 2015 81197537 1579.79

Germany 2016 82175684 1574.27

Germany 2017 82521653 1579.79

Germany 2018 82792351 1569.9

Germany 2019 83019213 1556.5

Spain 2014 46512199 15431.83

Spain 2015 46449565 16026.37

Spain 2016 46440099 15962.89

Spain 2017 46528024 15963.11

Spain 2018 46658447 15852.53

Spain 2019 46937060 15478.62

Ireland 2014 4637852 3324.9

Ireland 2015 4677627 3324.84

Ireland 2016 4726286 3438.23

  Hide Shortcuts

Enter formula to apply:

APPLY CANCEL

col0 Geopolitical entity (reporting)

col1 Time

col2 Population

col3 Number of sheep

Apply Function 


Create as new column sheep per person
Label

Drop source columns

col3 / col2 

Figure H.11: Yavaa user interface: Adding derived columns.

422



 SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2 dataset 3

Geopolitical entity (reporting) Time Population Number of sheep sheep per person

Germany 2014 80767463 1600.78 0.019819614737682178

Germany 2015 81197537 1579.79 0.019456132025285447

Germany 2016 82175684 1574.27 0.019157370202114776

Germany 2017 82521653 1579.79 0.019143945165519164

Germany 2018 82792351 1569.9 0.018961896612888792

Germany 2019 83019213 1556.5 0.018748672069440119

Spain 2014 46512199 15431.83 0.33178027123593963

Spain 2015 46449565 16026.37 0.345027343097830948

Spain 2016 46440099 15962.89 0.34373074872213343

Spain 2017 46528024 15963.11 0.343085921723217818

Spain 2018 46658447 15852.53 0.339756914755435388

Spain 2019 46937060 15478.62 0.329773956869049744

Ireland 2014 4637852 3324.9 0.716905153506407708

Ireland 2015 4677627 3324.84 0.710796307614950914

Ireland 2016 4726286 3438.23 0.72746972993170536

Figure H.12: Yavaa user interface: Dataset ready to be visualized.

 SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2 dataset 3

Geopolitical entity (reporting) Time Population Number of sheep sheep per person

Germany 2014 80767463 1600.78 0.019819614737682178

Germany 2015 81197537 1579.79 0.019456132025285447

Germany 2016 82175684 1574.27 0.019157370202114776

Germany 2017 82521653 1579.79 0.019143945165519164

Germany 2018 82792351 1569.9 0.018961896612888792

Germany 2019 83019213 1556.5 0.018748672069440119

Spain 2014 46512199 15431.83 0.33178027123593963

Spain 2015 46449565 16026.37 0.345027343097830948

Spain 2016 46440099 15962.89 0.34373074872213343

Spain 2017 46528024 15963.11 0.343085921723217818

Spain 2018 46658447 15852.53 0.339756914755435388

Spain 2019 46937060 15478.62 0.329773956869049744

Ireland 2014 4637852 3324.9 0.716905153506407708

Ireland 2015 4677627 3324.84 0.710796307614950914

Ireland 2016 4726286 3438.23 0.72746972993170536

   

NEXT CANCEL

Visualize Dataset 


M M

?
?
?

M M

?
?
?

?
?
?

Figure H.13: Yavaa user interface: Selecting a visualization.

423



APPENDIX H. YAVAA USER INTERFACE

 SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2 dataset 3

Geopolitical entity (reporting) Time Population Number of sheep sheep per person

Germany 2014 80767463 1600.78 0.019819614737682178

Germany 2015 81197537 1579.79 0.019456132025285447

Germany 2016 82175684 1574.27 0.019157370202114776

Germany 2017 82521653 1579.79 0.019143945165519164

Germany 2018 82792351 1569.9 0.018961896612888792

Germany 2019 83019213 1556.5 0.018748672069440119

Spain 2014 46512199 15431.83 0.33178027123593963

Spain 2015 46449565 16026.37 0.345027343097830948

Spain 2016 46440099 15962.89 0.34373074872213343

Spain 2017 46528024 15963.11 0.343085921723217818

Spain 2018 46658447 15852.53 0.339756914755435388

Spain 2019 46937060 15478.62 0.329773956869049744

Ireland 2014 4637852 3324.9 0.716905153506407708

Ireland 2015 4677627 3324.84 0.710796307614950914

Ireland 2016 4726286 3438.23 0.72746972993170536

VISUALIZE CANCEL

Visualize Dataset 


Population Number of sheep

* multitude of lines
  Geopolitical enti…

* x-axis
  Time

* y-axis
  sheep per person

* … mandatory binding

  Available Columns
suggest  reset

Figure H.14: Yavaa user interface: Binding columns to visual artifacts.

 SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2 dataset 3

2014 2015 2016 2017 2018 2019
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

sh
ee

p 
pe

r p
er

so
n

Romania

Iceland

Ireland

Spain

Germany

Figure H.15: Yavaa user interface: Visualized dataset.

424



Population on 1 JanuaryNumber of sheep

loadData

Live animals Month Unit of measure Geopolitical enti… Time Number of sheep

loadData

Demographic in… Geopolitical enti… Time Population

Geopolitical enti… Time

join

filterData

filterData

Demographic in…

dropColumns

Live animals

dropColumns

Month

dropColumns

Unit of measure

dropColumns

compute

Geopolitical enti… Time PopulationNumber of sheep sheep per person

Result

 SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2 dataset 3

Figure H.16: Yavaa user interface: Workflow view.

 SessionId: pQ7PNSOXlEui0TAjAAAS

dataset 1 dataset 2 dataset 3

2014 2015 2016 2017 2018 2019
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

sh
ee

p 
pe

r p
er

so
n

Romania

Iceland

Ireland

Spain

Germany

EXPORT CANCEL

Export results 


Dataset (TSV)

Workflow (PROV)

Workflow Graph (SVG)

Visualization (SVG)

Figure H.17: Yavaa user interface: Export dialog.

425



APPENDIX H. YAVAA USER INTERFACE

 SessionId: BYzgtvVgkF49MaCyAAAi

SEARCH CANCEL

Construct dataset 


Specify Result Distribution Adjust

Construct a dataset by specifying columns and/or their contents: 

 Geopolitical entity (report… Germany Iceland Ireland Romania Spain

 Time    

 Population    

 Number of sheep    

add column

value
Value

2014-01-01
Between

2019-12-31
and

from
Between

to
and

from
Between

to
and

EXECUTE

Figure H.18: Yavaa user interface: Constructing a dataset.

 SessionId: BYzgtvVgkF49MaCyAAAi

We were able to find the following parts of your request: 

Geopolitical entity (report… Germany ✔ Iceland ✔ Ireland ✔ Romania ✔ Spain ✔

Time 2014.01.01

 

2014.01.01

2019.12.31

 

2019.01.01

Population  

31269

 

513481690

Number of sheep  

0

 

86088.82

SEARCH EXECUTE CANCEL

Construct dataset 


Specify Result Distribution Adjust

 
   

    

    

    

Figure H.19: Yavaa user interface: Search result for a constructed dataset.

426



 SessionId: BYzgtvVgkF49MaCyAAAi

We use the following sources to fill your request:

Eurostat

Population on 1 January

Number of sheep

SEARCH EXECUTE CANCEL

Construct dataset 


Specify Result Distribution Adjust

Figure H.20: Yavaa user interface: Source distribution for a constructed dataset.




	Dedication
	Zusammenfassung
	Abstract
	Acknowledgments
	Ehrenwörtliche Erklärung
	Table of Contents
	Prolog
	Overview
	Objectives
	Thesis Structure

	Requirements
	Functional Requirements
	Non-Functional Requirements
	Summary

	Common Strategies
	Eurostat
	Spreadsheet Software
	Google Fusion Tables
	Tableau
	Jupyter Notebooks
	Taverna
	VisTrails
	Discussion


	Dialog
	Approach
	Overall System
	Search
	Modification
	Visualization
	Provenance
	Final Considerations
	Summary

	Datamodel - Data Types
	Related Work
	Discussion
	Approach

	Datamodel - Tables
	Related Work
	Discussion
	Approach

	Visualization Description
	Related Work
	Discussion
	Approach
	Examples


	Dataset Description
	Requirements
	Related Work
	Discussion
	Approach

	Handling of units
	Related Work
	Discussion
	Approach
	Example
	Limitations
	Optimizations


	Dataset combinations
	Related Work
	Discussion
	Approach
	Searching dataset descriptions
	Ranking Datasets
	Splitting Queries
	Assembling Workflows
	Optimizations
	Example


	Selection of Visualization
	Related Work
	Discussion
	Approach
	Weighted Bipartite Matching
	Scoring Function
	Ranking
	Special Case: Nested Visualizations
	User Interface
	Summary


	Provenance Management
	Related Work
	Database Provenance
	Script Provenance
	Documenting Provenance

	Discussion
	Approach


	Genesis & Analysis
	Implementation
	Architecture
	Data Store
	Computation Engine
	Simple Operations
	Aggregations and Expansions
	Joins

	Unit Store
	Graphical Workflow Layout
	Communication Layer
	Visualizations
	Provenance and Reenactment
	User Interface
	Summary

	Evaluation
	Evaluation Setup
	User Evaluation
	Assessment
	Technical Evaluation
	Search Strategies Performance
	Compute Engine Performance



	Epilogue
	Retrospective
	Conclusion
	Future Work
	Conceptual Foundations
	Software Engineering


	List of Tables
	List of Figures
	List of Code-listings
	Bibliography
	References
	Web Resources
	Dataset Resources
	Author's Publications

	Appendices
	RDF Namespaces
	Testing Software for Unit-Support
	Added Units and Dimensions
	Yavaa: List of Supported Messages
	Formula Parsing Grammar
	Supported Visualizations
	User Evaluation
	Yavaa User Interface


