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Chapter 1

Introduction

Since their first appearance the use of computers has spread widely. From mainframes
in the early days, computers evolved to desktop- and laptop computers, and more re-
cently, tablet devices. The majority of software is, however, found as embedded software
in devices ranging from small home appliances such as telephones, televisions and stereo
sets, to safety critical systems such as the vehicle control systems in cars and airplanes, or
systems controlling (access to) infrastructure such as bridges and tunnels. Complex soft-
ware also occurs in large corporate systems, where decisions are made by these software
systems autonomously.

The amount of embedded software increases by 10 to 20 percent per year [EJ09]. The
increase in complexity of embedded software is, e.g., illustrated by the on board software
in cars. Today, cars can contain close to 100 million lines of code, and run on up to 100
different computation units [Cha09]. Currently, this software is still mainly concerned
with support tasks and engine management, but manufacturers are also pioneering drive-
by-wire technology [Bre01], in which e.g., steering is controlled by a combination of
electronics and embedded software connected to the steering wheel. In avionics, these
technologies are already commonplace, and, for fighter aircraft, fly-by-wire techniques
are necessary due to the inherent instability of the aircraft [Col99]. It is expected that in
the upcoming years cars will increasingly use drive-by-wire technology.

The omnipresence of software, and the rapid increase in the amount of software,
results in the challenge for computer science to develop techniques for constructing large
dependable systems. Since the early days of computers, scientists have been looking for
formal techniques to facilitate this. This has resulted in a wide variety of verification
approaches, of which we discuss the history in the next section.

Some of the verification approaches we discuss have also been used to verify hard-
ware designs. More recently, verification techniques have been employed to analyse
biological models [Hea+08].
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Chapter 1. Introduction

1.1 Historical Context

The need for software verification was observed as early as the 1940s by Alan Turing and
John von Neumann [Tur49; MJ84; GN47] who proved correctness of small programs by
hand. Consequently further proof-based techniques were developed, such as Floyd’s as-
sertional reasoning on flowcharts [Flo67], Hoare’s axiomatic semantics for programming
constructs [Hoa69], popularly known as Hoare triples, and Dijkstra’s weakest precon-
dition calculus [Dij75; Dij76]. In these early times, programs were typically viewed as
input/output functions, i.e., the program reads an input, performs a number of compu-
tation steps, and then produces an output. We still find such programs today in the form
of command line applications. With this type of program we typically associate Turing
machines [Tur37] as the standard model of computation. In this model of computation,
we essentially view the program as a function on the input. Turing showed that every
computable function can be computed using a Turing machine.

In the 1980s, the view of computer programs shifted from these input/output func-
tions to interactive processes. Instead of a function that computes such an input/output
relation, a computer program becomes a collection of concurrent processes, interacting
with each other and with the environment. In this setting processes themselves can again
be the result of composing other processes. Arguably, this view of programs is more nat-
ural in our environment, in which computers operate autonomously, and interact with
the environment every now and then. Models of computation were established to reason
about concurrent processes. Prominent examples of such models are Petri nets [Pet62],
process algebras such as ACP [BK84], CSP [Hoa85] and CCS [Mil80], and the π-calculus
[MPW92a; MPW92b]. In these models, computations and interactions of processes can be
specified, such that their behaviour can be studied.

Methods have been developed to automatically establish correctness of concurrent
processes using these models of computation. This process is typically referred to as
verification. We can roughly distinguish three verification approaches: theorem proving,
equivalence checking and model checking. All three of them are used to improve reli-
ability of critical systems such as the on-board systems of cars, and avionics systems.
Ultimately, these methodologies are employed to verify that undesired behaviour never
occurs, i.e., that a model of the system is safe, or that desired behaviour occurs eventu-
ally, also referred to as liveness. We next discuss the most important aspects of each of
the approaches.

Theorem proving. In theorem proving, properties about programs—or models of these
programs—are proven with the help of theorem provers. Theorem provers come in two
categories, automated theorem provers and interactive theorem provers. Automated the-
orem provers [Har09], typically SAT solvers such as Chaff [Mos+01] or Minisat [ES04],
and SMT solvers such as Yices [DM06] or Z3 [MB08], can prove properties without user
interaction. These techniques are powerful for proving some classes of properties, but in
general fail once the properties get more complicated. When automated theorem provers
are insufficient for proving correctness of a system, one can resort to the use of interact-
ive theorem provers [Rob01]—also referred to as proof assistants—such as PVS [ORS92],
Coq [BC04], or Isabelle [Pau89]. These are generic tools that allow the user to prove
mathematical properties in a rigorous way. The main disadvantage of these tools is that

2



1.1. Historical Context

proving properties requires a great effort from the user.

Preorder- and Equivalence checking. An alternative approach to establishing pro-
gram correctness is preorder- or equivalence checking [CS01]. In this approach, a com-
pact description—the specification—of the system under analysis is constructed. Due to
its compact representation, correctness of the specification can be easily established. It is
then checked whether a more detailed description—the implementation—supersedes the
specification, in case of preorder checking, or is equivalent to the specification, in case of
equivalence checking.

An equivalence or a preorder is a relation between a specification and an implement-
ation. The specific relation that is used depends on the type of property that one wants to
verify. In case we are only interested in linear-time properties, i.e., properties that reason
about traces, or executions of the program, trace equivalence or trace inclusion [Hoa80]
can be used. If branching-time properties need to be considered, then typically strong
bisimulation is used [Par81; Mil89]. In addition, some relations allow to abstract from
behaviour that is considered to be internal to a process. Prominent examples of such
relations are weak traces [BHR84], branching bisimulation [GW96] and stuttering equi-
valence [BCG88]. The choice for a relation is not restricted to the ones we mentioned so
far. In fact, the choice is virtually unlimited, as was nicely illustrated by van Glabbeek in
his seminal papers [Gla90; Gla93].

Some of the relations serve as the underlying semantics of process algebras, for
example, traces and failures underlie CSP [Hoa85], and strong bisimulation underlies,
e.g., CCS [Mil80] and ACP [BK84]. Several tools, based on these process algebras, use
preorder- and equivalence checking techniques. Some examples of such tools are FDR
[For], CADP [Gar+11], the Concurrency workbench [CPS93] and mCRL2 [Cra+13].

Model checking. In model checking [BK08], a model is developed together with the
properties that it should satisfy. The properties are typically expressed as formulae in
a modal or temporal logic such as LTL [Pnu77], CTL [CE82], CTL∗ [EH86], or the µ-
calculus [Koz83]. The model is represented as a finite state machine, also called labelled
transition system. The approach then relies on checking whether the model satisfies the
property in a fully automated fashion. Model checking was pioneered by Emerson, Clarke
and Sifakis [EC80; CE82; QS82; CES86], who were awarded the A.M. Turing award for
their groundbreaking work on model checking in 2007 [ACM07].

The classical approach to model checking, which is still commonly used in the veri-
fication of embedded systems, is explicit-state model checking, in which state spaces are
stored explicitly. The main drawback of this approach is that it suffers from the infamous
state space explosion problem: the number of states in the system grows exponentially
with the number of parallel components. For real-life systems it is typically not possible
to store all states in memory.

A vast number of different approaches has been developed to counter the state space
explosion problem. A popular technique, especially in the verification of hardware sys-
tems, is symbolic model checking [Bur+90], which uses BDDs [Bry86] for compactly stor-
ing state spaces. Popular tools using symbolic model checking are nuSMV [Cim+00]
and Prism [KNP11], of which the latter mainly focusses on verification of probabilistic
systems, including biological models.

3



Chapter 1. Introduction

Another approach, that is particularly effective for bug hunting [vGK99], but less
adequate for showing the absence of bugs, is bounded model checking [Bie+99]. Here
a description of the state space, up to a bounded depth, is combined with the property
under investigation, and encoded as a satisfiability problem. The resulting problem is
then solved using one of the popular satisfiability solvers. The strength of this sound
approach is that it typically finds bugs quickly, even in extremely large systems. This,
however, comes at the cost of losing completeness, i.e., if a bug is hidden in the system
beyond the depth for which is checked, the bug will not be uncovered.

In model checkers based on process algebra, techniques have been developed that
allow symbolic manipulation of an abstract, process algebraic description of a model be-
fore generating the state space. These manipulations aim to preserve validity of entire
classes of properties, e.g. all properties formulated in the modal µ-calculus, and can lead
to dramatic reductions in the size of the explicit state space that is eventually generated.
These techniques have been implemented in, e.g. the tool sets mCRL2 [Cra+13] and
CADP [Gar+11].

Verification using intermediate representations. In the search for more effective veri-
fication methodologies, alternative model checking and equivalence checking approaches
have been developed in which intermediate representations such as parity games and
Boolean equation systems (BESs) are used. Mapping multiple verification problems onto
a single intermediate representation ensures that advances in solving the intermediate
representation immediately result in advances in solving these different verification prob-
lems.

The main advantage of this approach is that all available information is translated
into a single representation. The model checking problem, e.g., is translated into an
intermediate representation in polynomial time. The information of both the state space
and the property that is being checked is combined into a single representation. As a
result of this translation, information that is not needed for deciding the outcome of the
verification problem is automatically removed from the result. As a consequence, solving
the resulting parity game or equation system is potentially more effective than solving
the original verification problem directly.

A parity game [EJ91; McN93; Zie98; GTW02] is a two-player game played on a finite
directed graph, which, in general, is assumed to be total. Every vertex in the graph is
owned by one of two players, typically referred to as even and odd, and every vertex gets
assigned a non-negative integer priority. The game is played by placing a token on some
initial vertex, and moves are made according to the following simple rule. If the token is
on a vertex owned by player even, then she moves the token along one of the outgoing
edges of the vertex, otherwise odd decides the move. Since the graph is assumed to
be total, this game can be played indefinitely. We refer to an infinite path in this game
as a play. The play is won by player even if the parity of the least priority that occurs
infinitely often in the play is even, otherwise it is won by player odd. If player even has
a strategy with which she can win every play that starts in a given vertex, regardless of
the moves made by her opponent, we say that this vertex is won by player even. It is
well-known that parity games are determined, i.e., every vertex is won by exactly one of
the two players, and that for this it is sufficient to consider memoryless strategies, i.e.,
every time the token hits a vertex, the player that owns the vertex makes the same choice
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1.2. Reduction of (Parameterised) Boolean Equation Systems and Parity Games

[Mar75; GH82; EJ91; McN93]. The problem of solving parity games, i.e. deciding for
every vertex by which player it is won, is known to be in NP∩ co-NP. A lot of authors
have investigated the question whether a polynomial time algorithm exists [Jur00; VJ00;
BV01; PV01; BSV03; Lan05; JPZ06; Obd06a; Sch07; GS08; Sch08a; CGR12; FL12]. It has
been long thought that some of these algorithms might be polynomial, however, Oliver
Friedmann has provided classes of examples for which these algorithms indeed require
an exponential running time [Fri09; Fri10; Fri13; Fri11c; Fri11a; FHZ11; Fri11b], hence
the question whether parity games can be solved polynomially is still open. Parity games
and their background are introduced in detail in Section 2.6.

Instead of explicitly constructing the arena, like in the translation to parity games,
equivalence checking and model checking can also be phrased as a two-player game
[Sti97]. For model checking, e.g., the game proceeds by simultaneously traversing states
of the system and subformulae. Rules and winning criteria are similar to those in parity
games.

Parity games are known to be linear time equivalent to Boolean equation systems
[Lar93; Mad97]. These are systems of fixed point equations over the Boolean lattice.
Boolean equation systems allow for a more compact representation of model check-
ing problems than parity games by mixing Boolean connectives in the right hand sides
of equations—in some cases there is no need for introducing intermediate equations,
whereas in parity games intermediate vertices are needed. However, every Boolean equa-
tion system can be transformed to an equation system in which each right hand side con-
tains only conjunctions or only disjunctions in polynomial time. If then also occurrences
of the Boolean constants are removed, there is a direct one-to-one correspondence with
parity games. Note that the only reason to remove the Boolean constants is to satisfy the
totality requirement for the resulting parity game. Boolean equation systems are intro-
duced in detail in Section 2.5; in Section 2.6 we detail the correspondence with parity
games.

Parameterised Boolean equation systems (PBESs) generalise Boolean equation systems
by parameterising equations with variables, and allowing universal and existential quan-
tifications in right hand sides. This allows for more compact descriptions of a verification
problem—part of the problem is encoded in the data. Furthermore, verification problems
of symbolic process descriptions can be translated to parameterised Boolean equation
systems [GW05a; GW05b].

1.2 Reduction of (Parameterised) Boolean Equation Sys-
tems and Parity Games

Like state spaces, (parameterised) Boolean equation systems and parity games happen to
suffer from the state space explosion problem. This means that in practice they become
too large to be effectively solvable. In order to deal with this, it seems natural to study
reduction techniques for PBESs, BESs and parity games that counter this state space
explosion problem. Such reduction techniques are studied in this thesis.

For labelled transitions systems and symbolic process descriptions equivalences and
reduction techniques have been widely studied, see e.g., [Par81; Gla90; Gla93; GL02].
However, for the intermediate representations that we consider in this thesis, reduc-
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Chapter 1. Introduction

tion techniques have hardly been investigated. For parity games heuristics have been
described that can be used to reduce the games, see, e.g., [FL09]. Furthermore, the no-
tions of direct- and delayed simulation were studied [FW06]. For parameterised Boolean
equation systems basic static analysis techniques were described in [OWW09].

In Chapters 3 and 4 we combine the intermediate representations, in particular par-
ity games and Boolean equation systems, with reduction techniques inspired by strong
bisimulation [Par81] and branching bisimulation [Gla93] of labelled transition systems.
Using this approach, we address the state space explosion apparent in Boolean equation
systems and parity games. The potential of this method is established experimentally in
Chapter 5.

The drawback of this approach is that it requires the explicit construction of the equa-
tion system or parity game before actually doing the reduction. Ultimately, we are looking
for ways in which we can perform an a priori reduction of parameterised Boolean equa-
tion systems, such that the state space explosion is avoided altogether. As a step towards
this goal we investigate static analysis techniques that are able to reduce parameterised
Boolean equation systems symbolically in Chapter 6. Here we improve upon existing
symbolic reduction techniques that were studied in [OWW09], and we rely on a gener-
alisation of the equivalences from Chapter 3, due to Willemse [Wil10], for proving the
correctness of our static analysis technique.

We are confident that the state space explosion problem can be addressed even
more effectively by symbolic reductions based on the weaker equivalence notions that
we describe in Chapter 4. Essentially, the equivalences in that chapter are inspired by
branching-bisimulation equivalence of labelled transition systems. As a consequence,
these equivalences essentially serve as a semantical basis for reduction techniques for
PBESs that are inspired by, e.g., cones and foci [GS01; FP03; FPP06] and confluence
reduction [GS95; GS96; GP00; BP02].

Next we discuss the contributions made in this thesis in more detail. From a complexity-
theoretic point of view, Boolean equation systems and parity games are equivalent. How-
ever, it is unclear how the transformation from Boolean equation systems to parity games
affects the effectiveness of heuristics. Towards understanding this, in Chapter 3 we in-
vestigate the following question.

Can the structure of arbitrary Boolean equation systems be systematically
captured by a graph?

This question is answered positively by introducing the notion of structure graphs. In-
spired by the equivalence checking approach to model checking, we propose strong bisim-
ulation reduction of structure graphs as a technique to reduce the size of the underlying
equation systems. The effect of the translation of Boolean equation systems to parity
games—later referred to as normalisation—is then investigated in the context of strong
bisimulation reduction.

Does normalisation of a structure graph affect the reducing capabilities of
strong bisimulation?

It turns out that normalisation does not negatively affect the reduction that can be
achieved using strong bisimulation, and, in fact, we show that there are examples in
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which normalisation results in a reduction by an arbitrarily larger factor than in the ori-
ginal equation system.

We generalise the weaker notion of idempotence identifying bisimilarity that was pro-
posed in [KW11] to structure graphs. We investigate whether, also on structure graphs,
this is indeed capable of identifying vertices representing idempotent formulae. So, are
vertices representing f ∧ f and f equivalent modulo idempotence identifying bisimilar-
ity? We answer this question negatively for the general case, and we show that idem-
potence is only identified in structure graphs corresponding to the subset of equation
systems in simple recursive form.

Another question that beckons answering once a notion of strong bisimilarity for
structure graphs is established is the following.

Do bisimilar states in the state space give rise to bisimilar states in the Boolean
equation systems encoding model checking problems?

To answer this question, we fix a translation of the model checking problem to Boolean
equation systems. Given this translation, we prove the even stronger result that given a
model checking problem, bisimilar states in state spaces that have been abstracted with
abstractions safe with respect to the model checking problem lead to bisimilar states in
the Boolean equation systems encoding the model checking problem.

Since structure graphs come with quite a heavy notational overhead, and, at least for
the bisimulation setting, normalising a Boolean equation system before reduction using
strong bisimulation can be beneficial, in Chapter 4 we turn our attention to parity games.
In this chapter we investigate two main questions. The first one is the following.

Can stuttering equivalence be used to reduce parity games?

We answer this question positively, and show that reduction modulo stuttering equival-
ence is sound. Since our notion of stuttering equivalence only allows vertices to be related
if they are owned by the same player and have the same priority, vertices with a single
outgoing edge, but owned by different players, may not be related. Intuitively, if a vertex
in a parity game has a single outgoing edge, there is no real choice to be made in that
vertex, hence the player is irrelevant.

Can stuttering equivalence on parity games be weakened to take forced moves
into account?

This second question leads to the notion of governed stuttering equivalence. We develop an
algorithm for deciding governed stuttering equivalence. Also, we describe strong bisim-
ulation and governed bisimulation—which is the parity game equivalent of idempotence
identifying bisimulation, on parity games, and we present the lattice of equivalences that
this results in.

The development of this lattice inevitably raises the following question.

How effective are the equivalences that we introduce in reducing the size of
parity games, and in reducing the time required for model checking?

These questions are investigated in Chapter 5. However, since there are no standard
benchmarks for parity game solvers, and heuristics for reducing parity games, we start
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Chapter 5 by proposing a standard benchmark suite that subsumes the set of parity games
that have been used for experiments in the literature.

The drawback of using equivalence reductions on parity games—or structure graphs
for that matter—is that the approach still requires the graph to be constructed explicitly.
In Chapter 6 we study parameterised Boolean equation systems, which essentially are
symbolic descriptions of, possibly infinite, Boolean equation systems, i.e., they are fixed
point equation systems where the variables are parameterised with data. Some static
analysis techniques for reducing parameterised Boolean equation systems were described
in [OWW09]. In this thesis, we study the following question.

Can the static analysis techniques for parameterised Boolean equation sys-
tems be improved by taking the control flow into account?

We define a notion of control flow for PBESs, and on top of this we build such a static
analysis technique. In proving the correctness of our static analysis we use a generalisa-
tion of the bisimulation results of Chapter 3. We evaluate the static analysis using the
part of the benchmarks in Chapter 5 in which parameterised Boolean equation systems
are used as an intermediate format in the parity game generation process.

To summarise, the results that are presented in Chapters 3 and 4 provide a semantical,
coinductive basis for techniques for reducing parity games. In Chapter 5, we show that
indeed, significant reductions in the sizes of parity games are possible. In Chapter 6
we show that reductions can also be achieved by a syntactic analysis of parameterised
Boolean equation systems, while maintaining equivalence of the underlying parity games.

The work in this thesis contributes to the understanding of the inherent complexity
of parity games and Boolean equation systems. The final chapter shows that the equi-
valences are suitable for the development of static analysis techniques of parameterised
Boolean equation systems. The weak equivalences described in Chapter 4 open up the
way for the development of more advanced symbolic reduction techniques for PBESs,
improving our ability to combat the state space explosion problem in the verification of
embedded software.

1.3 Origin of the Chapters

All chapters in this thesis have been written in such a way that they are mostly self-
contained. We provide a common background for the techniques and formalisms that
are used in Chapter 2. For each of the chapters we give their origin, and the relevant
sections in Chapter 2 below.

Chapter 3

The idea of using bisimilarity and idempotence identifying bisimilarity to reduce Boolean
equation systems was first described in:

[KW11] J.J.A. Keiren and T.A.C. Willemse. Bisimulation Minimisations for Boolean Equa-
tion Systems. In HVC 2009. LNCS, Vol. 6405, pp. 102–116. Springer. 2011

Structure graphs generated from Boolean equation systems using structural operational
semantics were described in:
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[KRW12] J.J.A. Keiren, M.A. Reniers and T.A.C. Willemse. Structural Analysis of Boolean
Equation Systems. In ACM TOCL 13(1): 8-1/35, 2012.

This chapter uses the latter paper as a basis, and extends the paper with the ideas on
idempotence identifying bisimilarity from the first paper.

For this chapter it is recommended that Sections 2.2, 2.4 and 2.5 are read first.

Chapter 4

This chapter combines the results from the following two papers:

[CKW11] S. Cranen, J.J.A. Keiren and T. A. C. Willemse. Stuttering Mostly Speeds Up
Solving Parity Games. In NFM 2011, LNCS, Vol. 6617, pp. 207–221. Springer.
2011.

[CKW12b] S. Cranen, J.J.A. Keiren and T. A. C. Willemse, A Cure for Stuttering Parity
Games. In ICTAC 2012, LNCS, Vol. 7521, pp.198–212. Springer. 2012.

Both papers are collaborative work with Sjoerd Cranen and Tim Willemse. In the first
paper, the contributions of the author are the definition of stuttering bisimilarity, the
proof that stuttering bisimilar vertices are won by the same player, and the experimental
evaluation. This paper is, therefore, entirely contained in Chapter 4.

In the second paper, the author contributed to the definition of governed stuttering
bisimilarity. The author’s main effort in the paper resulted in the decidability results, on
which we focus in this thesis. The remaining results, especially equivalence results of
governed stuttering bisimilarity, and the proof that governed stuttering bisimilar vertices
are won by the same player were contributed by Sjoerd Cranen; for these results, we
refer to [CKW12b], and Sjoerd Cranen’s forthcoming PhD thesis.

For this chapter it is recommended that Section 2.6 is read first.

Chapter 5

Part of the benchmark sets that we describe in this chapter were used to evaluate the
effect of stuttering equivalence and governed stuttering equivalence in [CKW11] and
[CKW12b]. Some of the Boolean equation system examples were also used in [KW11].
Additional details are given in Appendix A.

The novel contribution of this chapter is the description of a benchmark set for parity
games that subsumes the benchmarks used in the literature that we are aware of, and
the implementation of a framework that can be used to generate these parity games and
run experiments on them.

It is recommended that Sections 2.4, 2.5 and 2.6 are read first.

Chapter 6

The static analysis technique—stategraph—that is presented in Chapter 6 was described
in the following paper, that is currently under submission.
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[KWW13] J.J.A. Keiren, J.W. Wesselink and T.A.C. Willemse. Improved Static Analysis
of Parameterised Boolean Equation Systems using Control Flow Reconstruction.
Submitted.

The experimental evaluation in this chapter is based on the relevant part of the bench-
marks in Chapter 5.

This chapter is completely self-contained, apart from the fixed point theory of Sec-
tion 2.3.

1.4 Other Contributions

This thesis focusses on the theoretical contributions to verification using parity games
and parameterised Boolean equation systems. A number of contributions are not part of
this thesis. These contributions mainly come in two categories: (1) practical results that
are of importance to the implementation of model checking tools—especially mCRL2—
or academic software development in general, and (2) applications of model checking to
industrial cases.

The publications related to the implementation of model checkers are:

[Gro+11] J.F. Groote, J.J.A. Keiren, F.P.M. Stappers, J.W. Wesselink and T.A.C. Willemse.
Experiences in developing the mCRL2 toolset. In Software: Practice and Experi-
ence, 41(2): 143–153, 2011.

[Cra+13] S. Cranen, J.F. Groote, J.J.A. Keiren, F.P.M. Stappers, E.P. de Vink, J.W. Wes-
selink and T.A.C. Willemse. An Overview of the mCRL2 Toolset and its Recent
Advances. In: TACAS 2013.

Applications of model checking are described in the following papers:

[KK12] J.J.A. Keiren, M.D. Klabbers. Modelling and verifying IEEE Std 11073-20601
session setup using mCRL2. Proc. 12th International Workshop on Automated
Verification of Critical Systems (AVoCS 2012). In ECEASST, 2012.

[Hwo+13] Y.L. Hwong, J.J.A. Keiren, V.J.J. Kusters, S. Leemans, T.A.C. Willemse. Form-
alising and Analysing the Control Software of the Compact Muon Solenoid Experi-
ment at the Large Hadron Collider. Accepted for publication in Science of Computer
Programming.
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Chapter 2

Model Checking

The work in this thesis is motivated by solving the model checking problem. Solving this
problem means deciding whether a given behavioural specification satisfies a temporal
or modal formula.

We describe behavioural specifications using labelled transition systems, which are
introduced in Section 2.1. These can be compared and reduced using strong bisimulation,
which is introduced in Section 2.2. We introduce basic fixed point theory in Section 2.3.
This serves as a basis for the modal µ-calculus, that we use to formulate model checking
problems. The µ-calculus is introduced in Section 2.4. The required fixed point theory is
introduced in Section 2.3.

The work in this thesis is based on (parameterised) Boolean equation systems and
parity games. These formalisms can be used for solving various verification problems
such as the model checking problem and the equivalence checking problem. Boolean
equation systems are introduced in Section 2.5, in which we also show how the model
checking problem can be encoded as an equation system. In Section 2.6 we introduce
parity games and their relation to Boolean equation systems. Parameterised Boolean
equation systems generalise Boolean equation systems, by allowing abstract data types.
They are only used in Chapter 6, and we therefore defer their introduction to that chapter.

2.1 Labelled Transition Systems

The behaviour of reactive systems is typically described using Kripke structures or la-
belled transition systems. In this thesis, we use labelled transitions systems (LTSs) to
provide a formal, semantical model for the behaviour of a reactive system.

Definition 2.1. A labelled transition system (LTS) is a tuple L = 〈S, s0, Act,→〉, consisting
of a non-empty set of states S, an initial state s0, a non-empty set of actions Act and a
transition relation→⊆ S× Act× S.

For most of the theory in this thesis the initial state is irrelevant, hence we typically
omit it. In Chapters 3–5 we assume that S and Act are finite—effectively this assumes that
LTSs are finitely branching—whereas in Chapter 6 we also allow infinite-state systems in
which also Act is infinite.
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Chapter 2. Model Checking

We visualise labelled transition systems by directed, edge-labelled graphs. In line
with this graphical notation, we write s

a−→ s′ if and only if (s, a, s′) ∈→.

Example 2.2. An LTS modelling mutual exclusion between two readers and a single
writer is given below. The identity of the readers is immaterial to the validity of the
mutual exclusion property, and is therefore excluded from the LTS.

s0 s1 s2s3

rs rs

rerews

we

Reading is started using an action rs and action re indicates its termination. Likewise for
writing. The states in this LTS are {s0, s1, s2, s3}.

2.2 Bisimulation

One common verification method is based on checking equivalence between LTSs. For
equivalence checking there is a large number of equivalences that we can choose from,
depending on the kind of properties that should be preserved by the equivalence, and
whether we are interested in linear-time or branching-time properties. For linear-time
properties, trace equivalence [Hoa80] is popular, for branching-time properties common
choices are strong bisimulation [Par81] and branching bisimulation [GW96].

In this thesis we are mainly concerned with strong bisimulation.

Definition 2.3. Let L = 〈S, Act,→〉 be a labelled transition system. A symmetric relation
R⊆ S× S is a strong bisimulation if for all (s, s′) ∈ R

∀a ∈ Act, t ∈ S : s
a−→ t =⇒ ∃t ′ ∈ S : s′

a−→ t ′ ∧ (t, t ′) ∈ R

States s, s′ ∈ S are bisimilar, denoted s ↔ s′, if and only if there is a bisimulation relation
R that relates states s and s′.

We say that two labelled transition systems are bisimilar if their initial states are
bisimilar.

Example 2.4. Consider the following three LTSs, in which the labels on the states are
just for reference. The first two are bisimilar, witnessed by the relation relating (a1, b1),
(a2, b2), (a3, b2), (a4, b3) and (a5, b4). The second and the third are not related; for any
bisimulation relation, b1 and c1 must be related, which in turn requires that b2 is related
to c2 and c3. However, the condition from the definition of bisimulation fails, since, e.g.,
c2 cannot mimic the c action that can be done from b2.

a1

a2 a3

a4 a5

a a

b
c b

c

b3

b2

b4

b1

a

b c

c4

c2

c1

c3

c5

a a

b c
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2.3 Lattices and Fixed Points

A large part of this work is based on the theory of fixed points, of which we first introduce
the basics.

A binary relation ≤ on a set S is a partial order if and only if it is reflexive, antisym-
metric and transitive. A set S equipped with a partial order ≤ is called a partially ordered
set or poset (S,≤). Given a poset (S,≤), and T ⊆ S, the least- and greatest elements do
not necessarily exist. If it exists, the least element of T is x ∈ T such that for all y ∈ T ,
x ≤ y , and similarly the greatest element of T is x ∈ T such that for all y ∈ T , y ≤ x .

For a poset (S,≤) and T ⊆ S, x ∈ S is an upper bound of T if and only if for all y ∈ T ,
y ≤ x , similarly, x ∈ S is a lower bound of T if and only if for all y ∈ T , x ≤ y . If
the set of upper bounds of S has a least element, we refer to it as the least upper bound,
or supremum, denoted by

∨

S. Similarly, if the set of lower bounds of S has a greatest
element, we refer to it as the greatest lower bound, or infimum, denoted by

∧

S.

Definition 2.5. A poset (S,≤) is called a lattice if and only if for every pair of elements
x , y ∈ S the least upper bound and the greatest lower bound exist. If

∨

T and
∧

T exist
for all subsets T ⊆ S, then (S,≤) is a complete lattice.

We denote the least element in S in a complete lattice (S,≤) with ⊥ and its greatest
element with >.

Example 2.6. In particular, given a set S, the power set of S, denoted P(S), with the
subset relation, i.e., (P(S),⊆), is a complete lattice.

For ordered sets (S,≤) and (T,≤), a function f : S→ T is monotone if and only if for
all x , y ∈ S with x ≤ y , also f (x)≤ f (y).

Definition 2.7. Let (S,≤) be a lattice, and f : S → S be a function. Element x ∈ S is a
fixed point of f if f (x) = x .

We have the following key properties of monotone functions over complete lattices.
Note that the history of these properties is interesting in its own right, and is nicely
described by Lassez et al. in [LNS82]. These results were obtained by Knaster and Tarski
[Kna28; Tar55].

Theorem 2.8 (Knaster-Tarski). Let (S,≤) be a complete lattice, and f : S→ S a monotone
function. Let F be the set of all fixed points of f . Then:

• F 6= ;, i.e., a fixed point exists,

• (F,≤) is a complete lattice,

• the least fixed point is µX . f (X )
∆
=
∧

{x ∈ S | f (x)≤ x}, and

• the greatest fixed point is νX . f (X )
∆
=
∨

{x ∈ S | x ≤ f (x)}.

Throughout this thesis we write σ to denote an arbitrary fixed point sign µ or ν . In
a constructive way, fixed points of monotone functions can be obtained using fixed point
iteration starting from the least or greatest element of S, i.e., ⊥ or >. If the domains S
are finite, an iteration scheme based on mathematical induction suffices.
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Chapter 2. Model Checking

Definition 2.9. Let (S,≤) be a complete lattice, with a finite domain S, and let f : S→ S
be a monotone function. Then we define the σn-approximant, with n a natural number,
inductively as follows:

• µ0X . f (X )
∆
=⊥,

• ν0X . f (X )
∆
=>, and

• σn+1X . f (X )
∆
= f (σnX . f (X )).

For finite domains, the use of fixed point iteration for computing the fixed point is
formalised in the following proposition.

Proposition 2.10. Let (S,≤) be a complete lattice, with finite domain S, and let f : S→ S
be a monotone function. Then

• µX . f (X ) =
∨

n∈Nµ
nX . f (X ), and

• νX . f (X ) =
∧

n∈N ν
nX . f (X ).

In this thesis, especially in Chapter 6, we consider domains that may be uncountably
large; hence we need to resort to transfinite induction instead of the ordinary mathem-
atical induction. The following is a generalisation of Definition 2.9.

Definition 2.11. Let (S,≤) be a complete lattice, with a possibly infinite domain S, and
let f : S → S be a monotone function. Then we define the σα-approximant, with α an
ordinal and λ a limit ordinal, by transfinite induction as follows:

• µ0X . f (X )
∆
=⊥,

• ν0X . f (X )
∆
=>,

• σα+1X . f (X )
∆
= f (σαX . f (X )),

• µλX . f (X )
∆
=
∨

α<λµ
αX . f (X ), and

• νλX . f (X )
∆
=
∧

α<λ ν
αX . f (X ).

We can again use this approximation scheme to compute the fixed points.

Proposition 2.12. For a complete lattice (S,≤) and a monotone function f : S → S, with
Ord the class of all ordinals, the fixed points can also be characterised as follows:

• µX . f (X ) =
∨

α∈Ordµ
αX . f (X ), and

• νX . f (X ) =
∧

α∈Ord ν
αX . f (X ).

Also, there exists an ordinal α with cardinality at most the cardinality of S such that for all
ordinals β ≥ α:

• µX . f (X ) = µβX . f (X ), and dually

14



2.4. Modal µ-calculus

• νX . f (X ) = νβX . f (X ).

Lattices on sets can be extended to lattices on functions. An order on functions S→ T
is inherited from the codomain T , i.e., for f , g : S→ T , f ≤ g if and only if for all x ∈ S,
f (x)≤ g(x).

If S and T are complete lattices, then also the set of functions S → T is a complete
lattice, and the supremum and infimum are obtained pointwise.

2.4 Modal µ-calculus

Desired properties that a behavioural specification should adhere to are typically ex-
pressed using formulae in a temporal logic. For linear-time properties LTL [Pnu77] is a
popular choice. For branching-time properties a logic like CTL [CE82] can be used. The
logic CTL∗ [EH86] subsumes both logics.

The propositional modal µ-calculus, originally defined by Kozen [Koz83], again sub-
sumes CTL∗. It is a highly-expressive language for analysing behaviours that are defined
through a labelled transition system, that extends propositional modal logic with least-
and greatest fixed point operators. We first present its syntax.

Definition 2.13. We assume the existence of a sufficiently large, countable set of propos-
ition variables X̃ . Let Act be a finite set of actions. The set of modal µ-calculus formulae
is defined through the following grammar, which is given directly in positive form:

φ,ψ ::= true | false | X̃ | φ ∧ψ | φ ∨ψ | [A]φ | 〈A〉φ | ν X̃ .φ | µX̃ .φ

where X̃ ∈ X̃ is a proposition variable; A⊆ Act is a set of actions; µ is a least fixed point
sign and ν is a greatest fixed point sign.

Here the modal operators bind stronger than the binary operators, i.e. [A]φ ∧ ψ
is interpreted as ([A]φ) ∧ ψ, and likewise for 〈A〉φ and ∨. The binary operators bind
stronger than the fixed points, i.e., µX̃ .φ ∧ψ is interpreted as µX̃ .(φ ∧ψ), and likewise
for ν and ∨.

In standard expositions of the µ-calculus operators [a]φ and 〈a〉φ are used instead
of the generalised modal operators [A]φ and 〈A〉φ that we present here. Our use of the
generalised modal operators is merely for reasons of notational convenience, and has no
implications for the presented theory in this thesis. They could easily be defined in terms
of the standard modal operators as follows:

[A]φ
∆
=
∧

a∈A

[a]φ 〈A〉φ ∆
=
∨

a∈A

〈a〉φ

where
∧

a∈A[a]φ is true if A = ;, and likewise,
∨

a∈A〈a〉φ is false if A = ;. Henceforth,
we write [a]φ instead of [{a}]φ and [a]φ instead of [Act \ {a}]φ.

We give a few examples of µ-calculus formulae and their intuitive meaning in the
following example. Validity of µ-calculus formulae is illustrated at the end of this section.

15



Chapter 2. Model Checking

Example 2.14. Let L = 〈S, Act,→〉 be an LTS. Absence of deadlock is expressed using

νX .[Act]X ∧ 〈Act〉true

The following expression illustrates that the formula f holds in every state of the system:

νX .[Act]X ∧ f

Absence of deadlock is simply an instance of this, where f = 〈Act〉true expresses that at
least one transition is enabled. The formula

[r](νX .µY.([s]X ∧ [s]Y ))

expresses that after every r action all non-s sub-paths are finite. Typical fairness proper-
ties are more complicated. The following property states that invariantly, if an r action is
enabled infinitely often, then it is also taken infinitely often.

νW.[Act]W ∧ νX .µY.νZ([r]X ∧ ([r]false ∨ [r]Y ) ∧ [r]Z)

The set of occurring propositional variables, i.e. the proposition variables that syn-
tactically occur in φ, is denoted occ(φ) , and defined as:

occ(true)
∆
= ; occ(φ ∧ψ) ∆= occ(φ)∪ occ(ψ)

occ(false)
∆
= ; occ(φ ∨ψ) ∆= occ(φ)∪ occ(ψ)

occ(X̃ )
∆
= {X̃ } occ(µX̃ .φ)

∆
= occ(φ) \ {X̃ }

occ([A]φ)
∆
= occ(φ) occ(ν X̃ .φ)

∆
= occ(φ) \ {X̃ }

occ(〈A〉φ) ∆= occ(φ)

The set of bound proposition variables is defined inductively as follows.

bnd(true)
∆
= ; bnd(φ ∧ψ) ∆= bnd(φ)∪ bnd(ψ)

bnd(false)
∆
= ; bnd(φ ∨ψ) ∆= bnd(φ)∪ bnd(ψ)

bnd(X̃ )
∆
= ; bnd(µX̃ .φ)

∆
= bnd(φ)∪ {X̃ }

bnd([A]φ)
∆
= bnd(φ) bnd(ν X̃ .φ)

∆
= bnd(φ)∪ {X̃ }

bnd(〈A〉φ) ∆= bnd(φ)

With free(φ)
∆
= occ(φ) \ bnd(φ) we refer to the set of free proposition variables.

Formula φ is said to be closed if and only if free(φ) = ;. We only consider µ-calculus
formulae φ that are well-formed, i.e.:

1. there are no two distinct subformulae of φ that bind the same proposition variable,
formally for all σ1X̃1.ψ1 and σ2X̃2.ψ2 that are distinct subformulae of φ, X̃1 6= X̃2;

2. for every free proposition variable X̃ ∈ free(φ), no subformula σX̃ .ψ (binding X̃
locally) occurs in φ.
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2.4. Modal µ-calculus

The well-formedness requirement is a technicality and does not incur a loss of generality
of the theory.

Modal µ-calculus formulae φ are interpreted in the context of a labelled transition system
〈S, Act,→〉 and an environment θ : X̃ → P(S) that assigns sets of states to proposition
variables. We write θ[X̃ := S′] to represent the environment in which X̃ receives the
value S′, and all other proposition variables have values that coincide with those given
by θ .

Definition 2.15. Let L = 〈S, Act,→〉 be a labelled transition system and let θ : X̃ →
P(S) be a proposition environment. The semantics of a µ-calculus formula φ is defined
inductively as follows:

¹trueºθ
∆
= S

¹falseºθ
∆
= ;

¹X̃ºθ
∆
= θ(X̃ )

¹φ ∧ψºθ ∆
= ¹φºθ ∩¹ψºθ

¹φ ∨ψºθ ∆
= ¹φºθ ∪¹ψºθ

¹[A]φºθ
∆
= {s ∈ S | ∀s′ ∈ S : ∀a ∈ A : s

a−→ s′ =⇒ s′ ∈ ¹φºθ}
¹〈A〉φºθ ∆

= {s ∈ S | ∃s′ ∈ S : ∃a ∈ A : s
a−→ s′ ∧ s′ ∈ ¹φºθ}

¹ν X̃ .φºθ
∆
= νT ∈ P(S).¹φºθ[X̃ := T]

¹µX̃ .φºθ
∆
= µT ∈ P(S).¹φºθ[X̃ := T]

Note that for the fixed point formulae the semantics is defined through a predicate trans-
former from sets of states to sets of states, of which we consider the fixed point.

The global model checking problem, denoted L,θ |= φ, is to answer for all states s ∈ S
of a given labelled transition system L = 〈S, Act,→〉, whether or not s ∈ ¹φºθ , for given
formula φ and environment θ . The local model checking problem, denoted L, s,θ |= φ,
is the problem whether s ∈ ¹φºθ for a given state s ∈ S. Often, one is only interested in
closed formulae, in which θ is immaterial to the solution; in these cases we typically omit
θ , and write L, s |= φ instead. Small examples of model checking problems can be found
throughout the remainder of this thesis.

There is a close correspondence between bisimulation and the µ-calculus, which is
formalised in the following theorem.

Theorem 2.16. Let L = 〈S, Act,→〉, be a finitely branching labelled transition system with
s, s′ ∈ S. Then s ↔ s′ if and only if for all closed modal µ-calculus formulae φ, L, s |= φ ⇐⇒
L, s′ |= φ.

An obvious strategy for solving a typical model checking problem is through the use
of the fixed point approximation schemes for computing the solution to the fixed points
of monotone operators in a complete lattice as given in Definition 2.9. We demonstrate
this approach using the following example.

Example 2.17. Recall the labelled transition system from Example 2.2 (depicted below),
modelling mutual exclusion between two readers and a single writer.
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Chapter 2. Model Checking

s0 s1 s2s3

rs rs

rerews

we

The verification problem we consider is ν X̃ .µỸ . 〈rs〉X̃ ∨ 〈rs〉Ỹ , modelling that on some
path, a reader can infinitely often start reading. We illustrate the solution of this model
checking problem using fixed point iteration. We give the approximants.

X0 = {s0, s1, s2, s3}
X1 = Y1 Y1,0 = ;

Y1,1 = {s0, s1}
Y1,2 = {s0, s1, s2, s3}

= {s0, s1, s2, s3}

Initially, since X is a greatest fixed point, we assume the property holds for all states (X0).
For X1 we use X0 to compute the nested occurrence of Y , Y1,0 is, initially, the empty set
due to the least fixed point. We now iterate until we reach a fixed point. In Y1,1, observe
that s0 and s1 can do an rs step to states in X0. For Y1,2, the s3 can do a we step to state
s0 and s2 can do an re step to s1. Since both s0 and s1 are in Y1,1 we also add s2 and s3 in
this step. Since we now added all vertices, the computation for Y is stable. Observe that
X1 = X0, so also the computation for X is stable, and we find that the property holds in
all states of the system.

In this example, using fixed point iteration for solving the µ-calculus model checking
problem works efficiently. In general, however, this approach is naive, since innermost
fixed points are recomputed in every iteration of the outermost fixed point, even if the
innermost fixed point does not depend on the current approximation of the outermost
fixed point. More efficient solutions that avoid unnecessary recomputations have been
described in the literature by, e.g., Emerson and Lei [EL86].

2.5 Boolean Equation Systems

A Boolean equation system [Lar93; Mad97] is a sequence of fixed point equations, in
which all equations range over the Boolean lattice. The interest in equation systems
has both practical and theoretical origins. On the practical side, equation systems have
been used as a uniform framework for solving traditional verification problems. The
model checking problem of several variations and sublogics of the µ-calculus have been
mapped on the Boolean equation systems. This varies from the alternation free fragment
of the µ-calculus [Dic86], to the full modal µ-calculus [Mad97], and several subclasses
of intermediate complexity.

Furthermore checking of a large number of behavioural equivalences and preorders
has been mapped to BESs. This ranges from the prebisimulation- [CS91] and simulation
preorder [Lar93], to strong bisimulation [Lar93; Mat03], branching bisimulation [VL94;
Mat03], observational, τ∗.a and safety equivalence [Mat03]. For more contemporary
descriptions of these problems the reader is also referred to [Mat06; Che+07]. All of
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these problems can be mapped onto Boolean equation systems with at most two blocks
of equations with different fixed point signs.

Computation of fixed points over systems of equations has a rich history in the context
of verification. Dicky expresses properties as least fixed points over systems of mutually
recursive equations [Dic86]. The algorithm that is presented in ibid. runs in time quad-
ratic in both the size of the transition system and the size of the equation system. Arnold
and Crubille improved upon this algorithm in [AC88], by presenting an algorithm that is
linear in the size of the transition system, yet quadratic in the size of the equation sys-
tem. Vergauwen and Lewi [VL92] finally gave an algorithm for solving alternation free
equation systems in time linear in both the size of the transition system and the equation
system. A similar improvement was presented independently by Cleaveland and Steffen
in [CS91]. In [VL94] Vergauwen and Lewi present an algorithm that works for Boolean
equation systems with two blocks of like-signed equations, but of which one of the de-
scribed restore strategies was shown to be incorrect by Liu and Smolka [LS98, Appendix
A].

Larsen presented a local algorithm for alternation free BESs that runs in time quad-
ratic in the size of the BES [Lar93]. Boolean Graphs are introduced in [And94], in an
attempt to use graphs for representing the (implicit) equation systems (in simple form),
underlying model checking problems obtained by verifying µ-calculus formulae on state
spaces. Equations are represented by vertices, and dependencies on variables are repres-
ented by the edges. In addition, each vertex is labelled with either ∨ or ∧, representing
the fact that the right-hand side of the equation is disjunctive or conjunctive, respectively.
On the basis of the graph representation, Andersen describes a global model checking
algorithm for alternation-free equation systems that runs in linear time. In the same
paper, he also generalises the algorithm to equation systems underlying the full modal µ-
calculus. Also, Andersen shows a local, on-the-fly algorithm for alternation-free equation
systems that improves over the running time complexity Larsen’s approach.

The on-the-fly techniques by Andersen are generalised to the full modal µ-calculus
in [LRS98]. The graphs underlying the latter approach, called Partitioned Dependency
Graphs, generalise Andersen’s Boolean Graphs, by considering hyper-edges from vertices
to sets of vertices. Liu and Smolka in [LS98] propose an improvement over this approach
for the special case of alternation-free equation systems, using dependency graphs. The
latter simplify the Partitioned Dependency Graphs, and, at the same time, generalise
the Boolean Graphs of Andersen, giving rise to simpler equation system resolution al-
gorithms. In addition, Liu and Smolka show that their dependency graphs are useful for
solving Horn clauses.

During the past decade research has again focussed on the solving of subclasses of
Boolean equation systems. Mateescu presented several results on alternation-free BESs
[Mat03; Mat06; MO08b; MO08a]. Keinänen extends the Boolean Graphs of Andersen by
decorating each vertex, in addition to the labelling with ∧ or ∨, with a natural number
that abstractly represents the fixed point sign of the equation, see [Kei06]. These graphs
are also referred to as dependency graphs. Groote and Keinänen use the dependency
graphs to give efficient algorithms for solving conjunctive and disjunctive equation sys-
tems with alternating fixed points [GK05]. Recently Kumar, Ramakrishnan and Smolka
showed that the solutions of BESs can be characterised in terms of models of logic pro-
grams [KRS01].
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2.5.1 Theory of Boolean Equation Systems

As far as we are aware, the presentation of Boolean equation systems that we use in this
thesis is due to Mader [Mad97], who also presented an algorithm for globally solving
Boolean equation systems that is akin to Gauß elimination, see Lemmata 2.25 and 2.26.

Definition 2.18. Assume the existence of a sufficiently large, countable set of proposition
variables X , disjoint from X̃ . A Boolean equation system (BES) E is defined by the
following grammar:

E ::= ε | (νX = f ) E | (µX = f ) E
f , g ::= true | false | X | f ∧ g | f ∨ g

where ε is the empty BES; X ∈ X is a proposition variable; and f , g are proposition for-
mulae. We sometimes write b, c for arbitrary Boolean constants, i.e., b, c ∈ {true, false}.

We only consider equation systems that are well-formed, i.e., equation systems E , in
which a proposition variable X occurs at the left-hand side of at most a single equation
in E .

Semantically, a Boolean equation system is a fixed point equation system over the
Boolean lattice (B,v) where f v g if f implies g. Proposition formulae are interpreted
in the context of an environment η: X → B, which assigns a Boolean value to every
proposition variable. The ordering v on environments is defined as η v η′ if and only
if η(X ) v η′(X ) for all X . For reading ease, we do not formally distinguish between
a semantical Boolean value and its representation by true and false; likewise, for the
operands ∧ and ∨.

Definition 2.19 ([Mad97]). Let η: X → B be an environment. The interpretation ¹ f ºη
maps a proposition formula f to true or false:

¹Xºη
∆
= η(X )

¹trueºη
∆
= true ¹ f ∧ gºη

∆
= ¹ f ºη∧¹gºη

¹falseºη
∆
= false ¹ f ∨ gºη

∆
= ¹ f ºη∨¹gºη

We define logical equivalence between to proposition formulae f , g, denoted f ≡ g, as
¹ f ºη= ¹gºη for all η.

The solution of a BES, given an environment η, is inductively defined as follows:

¹εºη
∆
= η

¹(σX = f ) Eºη ∆
=

�

¹Eº(η[X := ¹ f º(¹Eºη[X := false])]) if σ = µ
¹Eº(η[X := ¹ f º(¹Eºη[X := true])]) if σ = ν

A solution to an equation system verifies every equation, in the sense that the value at
the left-hand side is logically equivalent to the value at the right-hand side of the equa-
tion. At the same time, the fixed point signs of left-most equations outweigh the fixed
point signs of those equations that follow, i.e., the fixed point signs of left-most equations
are more important. The latter phenomenon is a result of the nested recursion for evalu-
ating the proposition f of the left-most equation (σX = f ), assuming an extremal value
for X . As a consequence, the solution is order-sensitive as indicated in the following
example.
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Example 2.20. Consider equation systems E1 = (νX = Y )(µY = X ), and E2 = (µX =
Y )(νY = X ). Note that the fixed point symbols in the equations have been exchanged. In
E1 the solution for both X and Y is true, because the greatest fixed point sign got priority,
and prefers true as a solution, whereas in E2 the solution for both variables is false due
to the least fixed point in the equation for X .

It is exactly the tree-like recursion in Definition 2.19 that makes the solution concept
of BESs intricately complex.

If no disjunctions occur in the right-hand sides of the equations in a BES, we say that
the BES is in conjunctive form, likewise, if no conjunctions occur the BES is in disjunctive
form. For every equation system, we can construct equation systems in conjunctive and
disjunctive form with the same solution. This approach is based on a purely syntactic
ordering on formulae and equation systems. We first introduce this ordering.

Definition 2.21 ([Mad97, Definition 3.15]). Let n ∈ N, E = (σ1X1 = f1) . . . (σnXn = fn),
and F = (σ1X1 = g1) . . . (σnXn = gn), then E âF ∆

= fi v gi for all 1≤ i ≤ n.

The syntactic ordering on BESs, and the ordering on environments are related as
follows.

Lemma 2.22 ([Mad97, Lemma 3.16]). Let E and F be equation systems, then E â F
implies for all environments η, ¹Eºηv ¹Fºη.

The ordering on equation systems gives rise to the following proposition, that non-
constructively shows that for every BES there exist equation systems in conjunctive and
disjunctive form with the same solution.

Proposition 2.23 ([Mad97, Proposition 3.36]). Let E be a Boolean equation system, and
let η be an environment. There exist Boolean equation systems E ′,E ′′ such that:

• ¹Eºη= ¹E ′ºη= ¹E ′′ºη,

• E ′ â E â E ′′, and

• E ′ and E ′′ are in conjunctive form and disjunctive form, respectively.

Since we can do this for every BES, we can also find equation systems in which every
right hand side is neither conjunctive nor disjunctive.

Corollary 2.24 ([Mad97, Corollary 3.37]). Let E be a Boolean equation system, and let η
be an environment. There exists a Boolean equation system F such that ¹Eºη = ¹Fºη
and F is derived from E by selecting one variable of the right hand side in every equation.

For equation systems in which every right hand side contains occurrences of at most
one binary connective, the above boils down to selecting one conjunct for every equation
or one disjunct for every equation, depending on whether we construct a conjunctive or
a disjunctive equation system in Proposition 2.23.

Equation systems can be solved using Gauß elimination, which combines elimination
steps and substitution steps. This method was defined by Mader [Mad97] through the
following two lemmata.

In an elimination step, the right hand side of a single equation is simplified based on
the following lemma.
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Lemma 2.25 ([Mad97, Lemma 6.2]). Let E1,E2 be Boolean equations, X a proposition
variable, and f be a propositional formula, then for all environments η

¹E1(νX = f )E2ºη = ¹E1(νX = f [X := true])E2ºη

¹E1(µX = f )E2ºη = ¹E1(µX = f [X := false])E2ºη

In the substitution step, the right hand side of an equation in the BES is substituted
for its left hand side in an equation occurring before it in the equation system. This is
based on the following lemma.

Lemma 2.26 ([Mad97, Lemma 6.3]). Let E1, E2 and E3 be Boolean equation systems, then
for all environments η

¹E1(σX X = f )E2(σY Y = g)E3ºη= ¹E1(σX X = f [Y := g])E2(σY Y = g)E3ºη.

In line with the notions of bound and occurring proposition variables for µ-calculus
formulae, we introduce analogous notions for equation systems. Let E be an arbitrary
equation system. The set of bound proposition variables of E , denoted bnd(E ), is the set
of variables occurring at the left-hand side of the equations in E . The set of occurring
proposition variables, denoted occ(E ), is the set of variables occurring at the right-hand
side of some equation in E . We define them formally as follows.

bnd(ε)
∆
= ; bnd((σX = f ) E ) ∆= bnd(E )∪ {X }

occ(ε)
∆
= ; occ((σX = f ) E ) ∆= occ(E )∪ occ( f )

where occ( f ) is defined inductively as follows:

occ(c)
∆
= ; occ(X )

∆
= {X }

occ( f ∨ g)
∆
= occ( f )∪ occ(g) occ( f ∧ g)

∆
= occ( f )∪ occ(g)

For an equation σX = f , we write ϕX to denote its right hand side, in this case ϕX =
f . We write occ(ϕX ) to denote the set of variables occurring in the right hand side of
the defining equation of X . The free proposition variables of an equation system E are

defined as free(E ) ∆= occ(E ) \ bnd(E ).
We say an equation system E is closed whenever occ(E ) ⊆ bnd(E ). Intuitively, a

(closed) equation system uniquely assigns truth values to its bound proposition variables.
Closed equation systems enjoy the property that the solution to the equation system is
independent of the environment in which it is defined, i.e., for all environments η,η′,
we have ¹Eºη(X ) = ¹Eºη′(X ) for all X ∈ bnd(E ). For this reason, we henceforth often
refrain from writing the environment explicitly in our considerations dealing with closed
equation systems, i.e., we write ¹Eº, and ¹Eº(X ) instead of the more verbose ¹Eºη
and ¹Eºη(X ).

If the variables in two equation systems are disjoint we call them compatible.

Definition 2.27. Let E and F be Boolean equation systems. Then E and F are compat-
ible if and only if

bnd(E )∩ bnd(F ) = bnd(E )∩ occ(F ) = occ(E )∩ bnd(F ) = ;.
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Compatible equation systems may be combined. This is formalised by the following
lemma.

Lemma 2.28 ([Mad97, Lemma 3.10]). Let E and F be compatible BESs, then for all
environments η, ¹Eº¹Fºη= ¹EFºη.

The following lemma relates the semantics for open equation systems to that of closed
equation systems. We write E[X := b], where X /∈ bnd(E ) and b ∈ {true, false} is
a constant, to denote the equation system in which each syntactic occurrence of X is
replaced by b.

Lemma 2.29. Let E be an equation system, and let η be an arbitrary environment. Assume
X /∈ bnd(E ) is a proposition variable, and let b be such that η(X ) = ¹bº. Then ¹Eºη =
¹E[X := b]ºη.

Proof. We show this by induction on the size of E . The base case for E = ε follows
immediately. As our induction hypothesis, we take

∀η, b, X /∈ bnd(E ) : ¹bº= η(X ) =⇒ ¹Eºη= ¹E[X := b]ºη (IH)

Assume our induction hypothesis holds for E , and let η and b be such that ¹bº = η(X ).
Consider the equation system (νY = f ) E , and assume X /∈ bnd((νY = f ) E ). Using the
semantics of equation systems, we reason as follows:

¹(νY = f )Eºη
= ¹Eºη[Y := ¹ f º(¹Eºη[Y := true])]
=2×IH

¹E[X := b]ºη[Y := ¹ f º(¹E[X := b]ºη[Y := true])]
=‡

¹E[X := b]ºη[Y := ¹ f [X := b]º(¹E[X := b]ºη[Y := true])]
= ¹((νY = f ) E ) [X := b]ºη

where at ‡, we have used that ¹ f ºη = ¹ f [X := b]ºη for ¹bº = η(X ). The case for
(µY = f ) E follows the exact same line of reasoning and is therefore omitted. ut

We define the free variable closure of an equation system E , given an environment
η, as the equation system Ec , which is the equation system in which all free predicate
variables have been replaced with the syntactic counterpart of the value they are assigned
in η, according to the lemma above. The free variable closure of a formula is defined
analogously.

Corollary 2.30. Let E be a BES, and η an environment. Let Ec be the free variable closure
of E using η. Then ¹Eºη= ¹Ecº.

The rank of a proposition variable X ∈ bnd(E ), notation rankE (X ), is defined as
follows:

rank(σY= f )E (X )
∆
=
�

rankE (X ) if X 6= Y
Eeσ otherwise

where Eeσ is defined as:

εeσ ∆=
�

0 if σ = ν
1 otherwise (σ′Y = f )Eeσ ∆=

�

Eeσ if σ = σ′

1+ Eeσ′ if σ 6= σ′
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Informally, the rank of a variable X is the ith block of like-signed equations, containing
X ’s defining equation, counting from right-to-left and starting at 0 if the last equation is
a greatest fixed point sign, and 1 otherwise.

Willemse presented an elegant method to show that the solutions of two equation
systems in the more general setting of parameterised Boolean equation systems are the
same [Wil10]. We introduce this approach in its full generality in Chapter 6. At this point
we present a simplified version of this theory, tailored to Boolean equation systems, that
was presented by Gazda and Willemse [GW12].

Definition 2.31 ([GW12]). Given a relation R ⊆ X ×X , an environment η is an R-
correlation if and only if X R Y implies η(X ) = η(Y ).

The set of all R-correlating environments is denoted by ΘR

Definition 2.32 ([GW12, Definition 4]). Let E be a BES. Relation R ⊆ X × X is a
consistent correlation if, for X , Y ∈ bnd(E ), X R Y implies:

• rankE (X ) = rankE (Y ), and

• for all η ∈ΘR, ¹ϕXºη= ¹ϕYºη

We say that X , Y ∈ bnd(E ) consistently correlate if and only if X R Y for some consistent
correlation R⊆ bnd(E )× bnd(E ).

Consistent correlations allow to prove that the solutions of variables in an equation
system coincide.

Theorem 2.33 ([GW12, Theorem 1]). Let E be a BES, and let R⊆X ×X be a consistent
correlation on E , then for all R-correlating environments η, ¹Eºη is also a correlating
environment.

For some purposes it is convenient to work with equation systems in a restricted
syntax. Among others, we use this syntax to relate parity games and Boolean equation
systems in the next section.

Definition 2.34. Let E be an equation system. E is in simple recursive form (SRF) if
the right-hand sides f of every one of its equations can be written using the following
grammar:

f ::= X |
∨

F |
∧

F, where F ⊆X , with |F |> 0.

where the interpretation is given by the following rules:

¹Xºη
∆
= η(X ) ¹

∨

Fºη
∆
=
∨

{η(X ) | X ∈ F} ¹

∧

Fºη
∆
=
∧

{η(X ) | X ∈ F}

If, in addition, also the Boolean constants true and false are allowed in the above
syntax, we say that an equation system is in simple form [Mad97].

Every closed equation system E can be rewritten to an equation system Ẽ in SRF such
that ¹Eº(X ) = ¹Ẽº(X ) for all X ∈ bnd(E ), i.e., the transformation to SRF preserves the
solution of bound variables. The transformation to SRF allows for some freedom with
respect to the relative placement of newly introduced equations. In this thesis we obtain
a BES in SRF by repeatedly applying the following transformations:
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• Alternating conjunctions and disjunctions in a single right hand side of an equation
can be removed by appending an additional equation to the end of the BES.

– E0(σX = f ∧ g)E1, where g is disjunctive, is replaced by E0(σX = f ∧
X ′)E1(σ′X ′ = g), likewise if f is disjunctive, and

– E0(σX = f ∨ g)E1, where g is conjunctive, is replaced by E0(σX = f ∨
X ′)E1(σ′X ′ = g), likewise if f is conjunctive.

• Constants occurring in the right hand side of an equation may also be removed by
introducing additional equations:

– if true occurs in the right hand side of some equation in E it may be removed
by replacing E with E[true := Xtrue](νXtrue = Xtrue), and

– if false occurs in the right hand side of some equation in E it may be removed
by replacing E with E[false := Xfalse](µXfalse = Xfalse),

where E[true := Xtrue] denotes the syntactic replacement of all occurrences of true
in E with Xtrue, likewise for false.

This transformation leads to a linear blow-up of the original equation system, and its
correctness follows from Lemmata 2.25 and 2.26. Note that we fix one definition of the
transformation to SRF, however, the lemmata leave room for alternative transformations
that may be more suitable in some contexts. Especially the placement of the newly
introduced equations may impact the effectiveness of some heuristics on the resulting
equation system in SRF.

Finally, we introduce some generic shorthand notation. The operators
d

and dare
used as shorthand for nested applications of ∧ and ∨. Formally, these are defined as
follows. Let l be a total order on X ∪ {true, false}. Assuming that l is lifted to a total
ordering on formulae, we define for formula f l-smaller than all formulae in a finite,
non-empty set F ( f 6∈ F):

l
; ∆= true

l
{ f } ∆= f ∧ f

l
({ f } ∪ F)

∆
= f ∧

�l
F
�

l;
∆
= false l{ f }

∆
= f ∨ f l({ f } ∪ F)

∆
= f ∨

�

lF
�

Note that the duplication introduced by this definition does not have any semantic influ-
ence, i.e.,

d
F ≡

∧

F and dF ≡
∨

F for all F ⊆X . However, compared to the standard
operators

∧

and
∨

these newly introduced operators preserve some additional informa-
tion in case they are applied to a singleton set of variables. We use these operators in the
translation of the model checking problem to BESs, and they are instrumental in some of
the proofs in Chapter 3. At the cost of a more complex definition, duplication of the least
element could be avoided in the case that F contains at least two elements.

We also define an equation system obtained from a set of equations. Let X = f be
an equation, where f is a proposition formula and X is a proposition variable. Assuming
that X is l-smaller than all left-hand side variables in the equations in a finite set of
equations E, we define:

σ{X = f } ∆= (σX = f ) σ({X = f } ∪ E)
∆
= (σX = f )σE

This notation is, e.g., used to concisely present classes of equation systems in Section 3.5.
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2.5.2 Boolean Equation Systems for Model Checking

Below, we provide the translation of the model checking problem to the problem of solv-
ing a Boolean equation system. The transformer E reduces the global model checking
problem L,η |= φ to the problem of solving an equation system.

Definition 2.35. Assume L = 〈S, Act,→〉 is a labelled transition system. Let φ be an
arbitrary modal µ-calculus formula over Act. Suppose that for every proposition variable
X̃ ∈ occ(φ)∪ bnd(φ), we have a set of fresh proposition variables {Xs | s ∈ S} ⊆ X .

EL(b)
∆
= ε

EL(X̃ )
∆
= ε

EL( f ∧ g)
∆
= EL( f ) EL(g)

EL( f ∨ g)
∆
= EL( f ) EL(g)

EL([A] f )
∆
= EL( f )

EL(〈A〉 f ) ∆
= EL( f )

EL(σX̃ . f )
∆
= (σ{(Xs = RHSs( f )) | s ∈ S}) EL( f )

RHSs(b)
∆
= b

RHSs(X̃ )
∆
= Xs

RHSs( f ∧ g)
∆
= RHSs( f )∧RHSs(g)

RHSs( f ∨ g)
∆
= RHSs( f )∨RHSs(g)

RHSs([A] f )
∆
=

d
{RHSt( f ) | a ∈ A, s

a−→ t}
RHSs(〈A〉 f )

∆
= d{RHSt( f ) | a ∈ A, s

a−→ t}
RHSs(σX̃ . f )

∆
= Xs

Observe that the definition of E provided here coincides semantically with the defini-
tion given in [Mad97] for modal µ-calculus formulae φ; the only deviation is a syntactic
one, ensuring that the [_] and 〈_〉modalities are mapped onto proposition formulae with
∧, and ∨ as their main logical connectives in case there is a non-empty set of emanating
transitions, by using

d
and dinstead of

∧

and
∨

.
The relation between the original local model checking problem and the problem of

solving a Boolean equation system is stated by the theorem below.

Theorem 2.36 ([Mad97]). Assume L = 〈S, Act,→〉 is a labelled transition system. Let
σX̃ . f be an arbitrary modal µ-calculus formula, and let θ be an arbitrary environment.
Then:

L, s,θ |= σX̃ . f if and only if (¹EL(σX̃ . f )ºη)(Xs) = true

where for all proposition variables Yt we set η(Yt) = true if t ∈ θ(Ỹ ), and false for all other
proposition variables.

Informally, the theorem expresses that a state s satisfies a modal µ-calculus for-
mula σX̃ . f if, and only if, the associated proposition variable Xs in the equation sys-
tem EL(σX̃ . f ) has true as its solution. The environment η ensures that free proposition
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variables are correctly dealt with. The correspondence between the global model check-
ing problem and the solution to an equation system then follows immediately from the
latter’s correspondence to the local model checking problem.

The example below illustrates the above translation and theorem.

Example 2.37. Recall the labelled transition system from Example 2.2 (depicted below),
modelling mutual exclusion between two readers and a single writer.

s0 s1 s2s3

rs rs

rerews

we

The verification problem ν X̃ .µỸ . 〈rs〉X̃ ∨ 〈rs〉Ỹ , modelling that on some path, a reader
can infinitely often start reading, translates to the following equation system using the
translation E:

νX s0
= Ys0

νX s1
= Ys1

νX s2
= Ys2

νX s3
= Ys3

µYs0
= (X s1

∨ X s1
)∨ (Ys3

∨ Ys3
)

µYs1
= (X s2

∨ X s2
)∨ (Ys0

∨ Ys0
)

µYs2
= false∨ (Ys1

∨ Ys1
)

µYs3
= false∨ (Ys0

∨ Ys0
)

Observe that, like the original µ-calculus formula, which has mutual dependencies
between X̃ and Ỹ , the resulting equation system has mutual dependencies between the
indexed X and Y variables. Solving the resulting equation system leads to true for all
bound variables; Xsi

= true, for arbitrary state si , implies that the property holds in state
si . Furthermore, note that the right-hand sides of the resulting equation system can be
rewritten using standard rules of logic, removing, e.g., all occurrences of false. It is not
hard to check that this does not affect the solution to the equation system.

2.6 Parity Games

Parity games [EJ91; McN93; Zie98] are played by two players, called even and odd,
represented by � and �. Note that in the literature they are also sometimes referred to
as Abelard and Eloise or as Duplicator and Spoiler. The game is played on a total, finite
directed graph in which vertices have been assigned priorities. Every vertex in the graph
belongs to exactly one of these two players. The game is played by moving a token along
the edges in the graph indefinitely; the edge that is moved along is chosen by the player
owning the vertex on which the token currently resides. Priorities that appear infinitely
often along such infinite plays then determine the winner of the play. If the parity of the
greatest priority that occurs infinitely often is even then player � wins the play, otherwise
player � wins. We say that a vertex is won by a player if that player can play the game
in such a way that, regardless of the moves made by her opponent, she can win every
play through that vertex. In this case, she has a winning strategy from that vertex. The
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objective of the game is to find the partitioning that separates the vertices won by � from
those won by �.

By solving a parity game we mean computing the set of vertices that, if the token is
initially placed on a vertex in this set, allows player even (resp. odd) to win. This problem
is known to be in NP∩ co-NP, and even in UP∩ co-UP [Jur98]; it is still an open problem
whether a polynomial time algorithm exists for the problem, but even in case such an
algorithm is found, it may not be the most efficient algorithm in practice.

The complexity of parity game solving, and the practical interest in the model check-
ing problem, has resulted in lots of researchers investigating efficient algorithms for solv-
ing parity games. In the following let n be the number of vertices in a parity game, m the
number of edges, and d the number of priorities.

The classical parity game solving algorithm stems from the proof that parity games are
memoryless determined in the form presented by McNaughton [McN93] and Zielonka
[Zie98]. Other algorithms are based on strategy improvement, i.e., they assign some ini-
tial strategy, and then iteratively improve the strategy until a fixed point is reached. The
classical version of this algorithm is due to Vöge and Jurdziński [VJ00], with a variation
due to Schewe [Sch08a] with an improved complexity. Randomised versions of strategy
improvement have been presented by Petersson and Vorobyov [PV01], Björklund, Sand-
berg and Vorobyov [BSV03; BV07]. Another algorithm following an iterative approach
is the small progress measures algorithm due to Jurdziński [Jur00], which attaches a
measure characterising the reachable cycles to every vertex, and iteratively changes that
measure. Additionally there are algorithms that combine features of different approaches
such as the bigstep algorithm due to Schewe [Sch07] which uses small progress measures
to compute small winning regions for one of the players, and then uses this as basic step
in the recursive algorithm. Jurdziński, Paterson and Zwick use an alternative approach
to compute dominions of a guaranteed size [JPZ06], leading to a deterministic subex-
ponential algorithm which runs in nO (

p
n) time. These algorithms all solve parity games

globally. A local algorithm was presented by Stevens and Stirling [SS98]. Apart from the
dominion decomposition algorithm from [JPZ06], the algorithms are exponential in the
number of priorities d of the parity game, where the best complexity is that of the bigstep
algorithm, viz. O (mnd/3).

For some of these algorithms, tightness of the worst-case running time has long been
an open problem. Upper bounds were established, but it was unknown whether classes
of problems exist for which the algorithm indeed behaves exponentially. Friedmann has
given classes of parity games for these algorithms that indeed show that all known parity
game solving algorithms are exponential [Fri09; Fri10; Fri11b; Fri13; Fri11c; Fri11a;
FHZ11]. In practice the recursive algorithm, probably due to its simplicity, is among the
best algorithms although it does not have the best worst-case complexity [Kei09; FL09].

Definition 2.38. A parity game G is a directed graph (V,→,Ω,P ), where

• V is a finite set of vertices,

• →⊆ V × V is a total edge relation (i.e., for each v ∈ V there is at least one w ∈ V
such that (v, w) ∈→),

• Ω : V → N is a priority function that assigns priorities to vertices,
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2.6. Parity Games

• P : V → { �,�} is a function assigning vertices to players.

Instead of (v, w) ∈→ we usually write v → w. If i is a player, then ¬i denotes the
opponent of i, i.e., ¬ � = � and ¬� = �. Note that, for the purpose of readability later
in this thesis, our definition deviates from the conventional one: instead of requiring a
partitioning of V into vertices owned by player even and vertices owned by player odd,
we achieve the same through the function P .

Example 2.39. We depict a parity game in the figure below. Note that we have labelled
the vertices v0, . . . , v4 purely for notational convenience. We refer back to this example
when we introduce concepts in the rest of this section.

1
v0

0

v1

2
v2

3
v3

4
v4

In this parity game vertices v1, v3 and v4 are owned by player �, and v0 and v2 are owned
by �, i.e., P (v1) =P (v3) =P (v4) = � and P (v0) =P (v2) =�. Priorities are assigned
as follows: Ω(v0) = 1, Ω(v1) = 0, Ω(v2) = 2, Ω(v3) = 3 and Ω(v4) = 4. Observe that
vertices owned by player � may be assigned priorities of an odd parity and vice versa.

2.6.1 Paths

A sequence of vertices v1, . . . , vn for which vi → vi+1 for all 1≤ i < n is called a path, and
may be denoted using angular brackets: 〈v1, . . . , vn〉. The concatenation p · q of paths p
and q is again a path, provided there is a transition from the last vertex in p to the first
vertex in q. We use pn to denote the nth vertex in a path p. The set of paths of length n,
for n≥ 1 starting in a vertex v is defined inductively as follows.

Π1(v)
∆
= {〈v〉}

Πn+1(v)
∆
= {〈v1, . . . , vn, vn+1〉 | 〈v1, . . . , vn〉 ∈ Πn(v) ∧ vn→ vn+1}

We use Πω(v) to denote the set of infinite paths starting in v. The set of all paths starting
in v, both finite and infinite is defined as follows:

Π(v)
∆
= Πω(v)∪

⋃

n∈N

Πn(v)

We liberally refer to an infinite path as a play.

Example 2.40. Let p be a path such that there is an edge from its last vertex to its
first vertex, then we use pω to denote the infinite repetition of p. Now 〈v0, v1, v2, v3〉,
〈v2〉 · 〈v3〉ω, 〈v0, v1, v2, v3, v2, v4〉ω, and 〈v0, v1, v4〉ω are examples of paths in the parity
game of Example 2.39—the list is not exhaustive. Observe that the first path is finite,
and the others are infinite. The second path visits v2 once and v3 infinitely many times,
and the last two paths visit all vertices on the path infinitely often.
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2.6.2 Winner of a Play

A game starting in a vertex v ∈ V is played by placing a token on v, and then moving
the token along the edges in the graph. Moves are taken indefinitely according to the
following simple rule: if the token is on some vertex v, player P (v) moves the token to
some vertex w such that v → w. The result is an infinite path p in the game graph. The
parity of the greatest priority that occurs infinitely often on p defines the winner of the
path. If this priority is even, then player � wins, otherwise player � wins.

Note that in this thesis, by using the greatest priority that occurs infinitely often to
decide the winner, we consider max-parity games; min-parity games are completely dual,
and look at the parity of the least priority that occurs infinitely often on a path to determ-
ine the winner of the path. Converting one into the other is a simple linear transforma-
tion.

Example 2.41. Consider the infinite paths from Example 2.40 on the parity game from
Example 2.39. On the first infinite path the only priority that occurs infinitely often is 3,
hence this is won by player �. On the second infinite path the priorities 0, 1, 2, 3 and 4
occur infinitely often. The greatest priority is 4, which is even, hence this play is won by
player �. The last path contains priorities 0, 1 and 4 infinitely often, hence this is also
won by �.

2.6.3 Strategies

A strategy for player i is a partial function σ : V ∗ → V , that for each path ending in
a vertex owned by player i determines the next vertex to be played onto. The set of
strategies for player i in a game G is denoted S∗G ,i , or simply S∗i if G is clear from the
context. If a strategy yields the same vertex w for every pair of paths that end in vertex
v, then the strategy is said to be memoryless. The set of memoryless strategies for player
i in a game G is denoted SG ,i , abbreviated to Si when G is clear from the context. A
memoryless strategy is usually given as a partial function σ : V → V .

A path p of length n is consistent with a strategy σ ∈ S∗i , denoted σ � p, if and
only if for all 1 ≤ j < n it is the case that 〈p1, . . . , p j〉 ∈ dom(σ) and P (p j) = i imply
p j+1 = φ(〈p1, . . . , p j〉). The definition of consistency is extended to infinite paths in the
obvious manner. We denote the set of paths that are consistent with a given strategy σ,
starting in a vertex v by Πσ(v); formally, we define:

Πσ(v)
∆
= {p ∈ Π(v) | σ � p}

We write Πn
σ(v) for paths of length n consistent with σ.

A strategy σ ∈ S∗i is said to be a winning strategy from a vertex v if and only if i is the
winner of every infinite path consistent with σ. A vertex is won by i if i has a winning
strategy from that vertex.

Example 2.42. Recall the parity game from Example 2.39. We only give the strategies
from vertices for which there is more than one outgoing edge, the other strategies are
defined implicitly.

Consider a strategy such that � plays the token from v1 to v4 if the token has been on
v1 an even number of times, and to v2 otherwise, and from v3 to v3 every 10th time, and

30



2.6. Parity Games

to v2 all other times. � always plays from v2 to v4. Observe that player � wins all plays
consistent with these strategies, and that the strategy for player � uses memory.

Alternatively consider memoryless strategies in which � always plays from v1 to v4
and from v3 to v2, and where player � always plays from v2 to v3. Observe that every
play consistent with these strategies, and starting in vertices v0, v1 or v4 is won by �, and
every play consistent with these strategies starting in v2 or v3 is won by player �. These
strategies are optimal, i.e., both player cannot improve upon their strategy such that they
can win from additional vertices.

It is well-known that parity games are memoryless determined, i.e., each vertex in
the game is won by exactly one player, and if a winning strategy for a player exists from
a vertex, then also a winning memoryless strategy exists.

Theorem 2.43 ([Mar75; GH82; EJ91; McN93]). For every parity game there is a unique
partition (W �, W�) such that winning strategies σ � ∈ S

∗
�

from W � and σ� ∈ S∗� from W�
exist. Furthermore, if σ � ∈ S

∗
�

is winning from W � also a memoryless strategy σ′
�
∈ S �

that is winning from W � exists, likewise for �.

2.6.4 Ordering

We assume that V is ordered by an arbitrary, total ordering À. The minimal element
of a non-empty set U ⊆ V with respect to this ordering is denoted u(U). Note that this
element always exists, since we consider finite parity games. This ordering plays a crucial
role in, e.g., proving correctness of stuttering equivalence in Chapter 4, where it is used
to construct a strategy that mimics a given strategy.

2.6.5 Relation to Boolean Equation Systems

There is a one-to-one correspondence between Boolean equation systems in simple re-
cursive form to parity games. In Chapter 3 we investigate graph structures for Boolean
equation systems without restrictions on the right hand sides, and we show the con-
sequences of translating a BES to SRF.

Definition 2.44. Let E be a closed Boolean equation system in SRF. We construct a parity
game GE = (V,→,Ω,P ) as follows.

• V
∆
= {vX | X ∈ bnd(E )} are the vertices of the game,

• →∆= {vX → vY | Y ∈ occ(ϕX )} are the edges of the game,

• ranks are used as priorities Ω(vX )
∆
= rankE (X ), and

• players are determined using the operator in the right hand side, i.e. P (vX )
∆
=

¨

� if ϕX =
∧

F , for some F ⊆X
� otherwise.

Example 2.45. Consider the BES from Example 2.37. This is translated to the following
parity game.
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2

vXs0

2

vXs1

2

vXs2

2

vXs3

1

vYs0

1

vYs1

1

vYs2

1

vYs3

The following lemma [Mad97; Kei06; Kei09] formalises the correspondence.

Lemma 2.46. Let E be a Boolean equation system in SRF, then player � wins from vX in
GE if and only if ¹Eº(X ) = true.

The translation from a parity game to a BES is similar.

Definition 2.47. Let G = (V,→,Ω,P ) be a parity game. The corresponding BES EG
contains equations σX v

X v =
∧

{Xw | v→ w} for v ∈ V such that P (v) =�, and σX v
X v =

∨

{Xw | v → w} for v ∈ V such that P (v) = �. Furthermore σX v
= ν if and only if Ω(v)

is even, and if Ω(v)> Ω(w), then rankE (X v)< rankE (Xw).

Example 2.48. The parity game from Example 2.39 is translated to the following BES.

νX v4
= X v0

µX v3
= X v3

∨ X v2

νX v2
= X v3

∧ X v4

µX v0
= X v1

νX v1
= X v4

∨ X v2

The correspondence is formalised in the following lemma, which was described in
[Mad97; Kei06; Kei09].

Lemma 2.49. Let G = (V,→,Ω,P ) be a parity game. Let v ∈ V , then ¹EGº(X v) = true if
and only if player � wins from v.
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Chapter 3

Structural Operational Semantics
for Boolean Equation Systems

Graph structures and Boolean equation systems have been widely studied as intermedi-
ate formats for verification problems such as model checking. In Section 2.5 we have
given an overview of these graph structures, and we introduced parity games as a spe-
cific instance of such graphs in Section 2.6. In this chapter we limit ourselves to graph
structures that represent Boolean equation systems.

The one thing all these graph representations have in common is that they require
the right hand sides of the equations in the BES to be either purely conjunctive or purely
disjunctive. As such they all closely represent subsets of parity games or, equivalently,
Boolean equation systems in SRF. The graphs are also closely related to the games pro-
posed by Stirling (see e.g. [Sti97; SS98]), in which players aim to win an infinite game.
It has been shown on several occasions that the latter problem is equivalent to solving an
equation system. Stirling’s game graphs were implemented in various tools, most notably
in the Concurrency Workbench.

From a practical viewpoint, the class of equation systems in SRF does not pose any
limitations since arbitrary BESs can be translated into SRF in linear-time. Henceforth we
refer to this transformation process as normalising a BES. In this chapter we study the
effects of normalisation in more detail. To this end we first investigate the question.

Is there a graph structure for Boolean equation systems capturing BESs in
their full generality?

Solving a Boolean equation system is expensive, and depends on the size of the equa-
tion system. In [KW11] strong bisimulation reduction for equation systems in SRF was
studied. In this chapter we investigate whether we can effectively reduce equation sys-
tems by reducing their structure graphs using a similar notion of strong bisimulation. We
therefore desire that our structure graphs are such that we can:

Define bisimilarity for structure graphs, and show that BESs obtained from
bisimilar structure graphs have the same solution.
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The main problem in obtaining our results is that it is hard to elegantly capture the struc-
ture of an equation system, without resulting in a parse-tree of the equation system. As
a matter of fact, bisimilarity on structure graphs is required to reflect associativity and
commutativity of Boolean operators such as ∧ and ∨ in order to obtain our second res-
ult; this cannot be achieved using parse-trees. In addition, the arbitrary nesting levels of
Boolean operators in equation systems complicate a straightforward definition of bisimil-
arity for such general equation systems. We solve these issues by using a set of deduction
rules in Plotkin style [Plo04] to map the equation systems onto structure graphs. The lat-
ter generalise the dependency graphs for equation systems by dropping the requirement
that each vertex necessarily represents a proposition variable occurring at the left-hand
side of some equation and adding facilities for reasoning about Boolean constants true
and false, and unbound variables.

We use bisimilarity to study the effects of normalisation. Particularly we investigate
the effects of normalisation on the minimising capabilities of bisimulation. This leads to
the following question:

What is the effect of normalising an equation system on the minimising cap-
abilities of bisimulation? In other words: how does the size of the bisimula-
tion quotient of an equation system compare to the size of the bisimulation
quotient of its normalised counterpart?

We answer this question in favour of the process of normalisation: the size of the quo-
tient of the normalised equation system will be at most the size of the quotient of the
original equation system (see Theorem 3.27). In addition, we provide an example (see
Example 3.28) in which the quotient is strictly smaller in size.

In [KW11], a weaker notion of bisimulation, idempotence identifying bisimulation was
studied for equation systems in SRF. Using this notion, equations such as (νX = X ∧
X )(νY = X ), in which the right hand sides are equivalent modulo idempotence, can be
related. We generalise the definition of idempotence identifying bisimilarity to structure
graphs, and we study whether it is indeed true to its name.

Does idempotence identifying bisimilarity indeed reflect idempotence?

We answer this question negatively, and in answering this question, we show that a mean-
ingful idempotence identifying bisimilarity only exists for a subset of structure graphs.

It is well-known that the modal µ-calculus is preserved under bisimulation minimisation
of the behavioural state space, see Theorem 2.16. As the size of the BES encoding a model
checking problem is proportional to the size of the state space, minimising the state space
prior to verification (by whatever global method) can be a useful pre-computation step,
provided that the state space is available. In some methodologies, BESs are however
generated from symbolic state spaces, see e.g. [GW05a; GW05b]. It is unknown whether
state space minimisation and minimisation of equation systems encoding a model check-
ing problem are comparable, in the sense that bisimilar states in an LTS, when combined
with the same model checking problem, give rise to bisimilar vertices in the resulting
structure graph, see also the picture below.
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L L′

E ′

E E ′′

↔

|= φ
|= φ

↔

?

This naturally leads to the following question:

Do bisimilar states in a state space give rise to bisimilar equations in the
equation systems encoding model checking problems?

The answer to this question is stated by Proposition 3.55, confirming that pairs of bisim-
ilar states in some state space L induce equations in E that can also be related through
an appropriate bisimulation relation underlying the equation system encoding the model
checking problem L |= φ. This result remains valid when considering ‘safe’ abstractions
on the original state space. This is shown in Theorem 3.59. We moreover provide an ex-
ample, see Example 3.61, in which we show that the bisimulation reduction of equation
systems can be arbitrarily larger than the reduction of state spaces, even in the presence
of safe abstractions.

Structure of this chapter. Section 3.1 introduces structure graphs, defines bisimulation
for structure graphs, and presents the deduction rules for generating structure graphs
from an equation system. In Section 3.2 we give deduction rules for normalisation of
equation systems. Bisimulation on structure graphs, its effect on the solution of the
underlying equation system, and the interplay with normalisation are studied in Sec-
tion 3.3. In Section 3.4 we weaken bisimulation to cater for some forms of idempotence.
The relation between bisimulation on processes and bisimulation on structure graphs is
investigated in Section 3.5. The chapter is concluded with an application of our theory
in Section 3.6.

3.1 Structure Graphs for Boolean Equation Systems

A large part of the complexity of equation systems is attributed to the mutual dependen-
cies between the equations. These intricate dependencies are neatly captured by structure
graphs.

A structure graph is defined in the context of a set of proposition variables X , which
generally contains at least the bound and occurring proposition variables in an equation
system.

Definition 3.1. Given a set of proposition variables X . A structure graph over X is a
vertex-labelled graph G = 〈T, t,→, d, r,↗〉, where:

• T is a finite set of vertices;
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• t ∈ T is the initial vertex;

• →⊆ T × T is a dependency relation, and

partial functions d, r and↗ are such that

• d : T → {Î,È,>,⊥} is a vertex decoration mapping;

• r : T → N is a vertex ranking mapping;

• ↗ : T →X is a free variable mapping.

We refer to the domain of partial functions d, r and ↗ using dom(d), dom(r) and
dom(↗), respectively.

A structure graph can be used to capture the dependencies between bound variables
and (sub)formulae occurring in the equations of such bound variables. Intuitively, the
decoration mapping d reflects whether the top symbol of a proposition formula is true
(represented by >), false (represented by ⊥), a conjunction (represented by Î), or a
disjunction (represented by È). The vertex ranking mapping r indicates the rank of a
vertex. The free variable mapping indicates whether a vertex represents a free variable.
Note that each vertex can have at most one rank, at most one decoration ? ∈ {Î,È,>,⊥},
and at most one free variable ↗X . We sometimes write t to refer to a structure graph
〈T, t,→, d, r,↗〉, where t is in fact the initial vertex of the structure graph.

We define the size of a structure graph G = 〈T, t,→, d, r,↗〉 as |G |= |T |, i.e., the size
of a structure graph is the number of vertices in the graph.

In Section 3.1.1, we show how a structure graph can be obtained systematically from
a formula and an equation system. In Section 3.1.2, we present the reverse, i.e., we
define how an equation system can be associated with a structure graph assuming that it
satisfies some well-formedness constraints.

One can easily define strong bisimilarity on structure graphs using the standard no-
tion of bisimulation, and requiring that the decorations are the same for related vertices.

Definition 3.2. Let G = 〈T, t,→, d, r,↗〉 be a structure graph. A symmetric relation
R⊆ T × T is a strong bisimulation relation if for all (u, u′) ∈ R

• d(u) = d(u′), r(u) = r(u′), and↗ (u) =↗ (u′);

• for all v ∈ T , if u→ v, then u′→′ v′ for some v′ ∈ T such that (v, v′) ∈ R.

Two vertices u and u′ are bisimilar, notation u ↔ u′ if and only if there exists a strong
bisimulation relation R such that (u, u′) ∈ R.

Note that in the above definition, we abuse notation to require that r(u) = r(u′) also
if u, u′ 6∈ dom(r), likewise for d and ↗. Strong bisimulation equivalence on structure
graphs is an equivalence relation.

Proposition 3.3. ↔ is an equivalence relation.

Using the notion of bisimilarity, we also define the strong bisimulation quotient of a
structure graph.
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Definition 3.4. Let G = 〈T, t,→, d, r,↗〉 be a structure graph. The bisimulation quotient
G/↔= 〈T ′, t ′,→′, d ′, r ′,↗′〉 of G is defined as follows:

• T ′
∆
= T/↔= {[t i]↔ | t i ∈ T} with [t i]↔= {t j ∈ T | t i ↔ t j};

• t ′
∆
= [t]↔;

• →′∆= {[t i]↔→′ [t j]↔ | t i → t j}

• d ′([t i]↔)
∆
= d(t i), if t i ∈ dom(d), and undefined otherwise;

• r ′([t i]↔)
∆
= r(t i), if t i ∈ dom(r), and undefined otherwise;

• ↗′ ([t i]↔)
∆
=↗ (t i), if t i ∈ dom(↗), and undefined otherwise.

The decorations in the quotient are uniquely defined because of the first requirement
in the definition of bisimulation.

3.1.1 Structural Operational Semantics for Equation Systems

Next, we define structure graphs 〈 f ,E〉 generated by an arbitrary equation system E and
proposition formula f . In defining our structure graphs, we use Plotkin-style Structural
Operational Semantics [Plo04] to associate a structure graph to a formula f in the con-
text of an equation system E , notation 〈 f ,E〉. The deduction rules define a relation _→ _
and predicates _ ô n (for n ∈ N), _↗X (for X ∈ X ), _>, _⊥, _Î, and _È. The rules are
presented in the form P

C
where P describes the premise, and C the conclusion. Intuitively,

we can generate C if P holds. In the deduction rules also negative premises are used.
When we use negative premises, we need to take care that we do this in such a way that
the rules are still well-defined. See [MRG05] for an overview of negative premises in
structural operational semantics.

We would like the structure graphs to be such that bisimilarity is able to relate logic-
ally equivalent vertices. To simplify this, we restrict ourselves to detecting some simple
logical equivalences. Bisimilarity of structure graphs should at least reflect symmetry
and associativity of the proposition formulae, i.e., the structure graphs of formulae f ∧ g
and g ∧ f in the context of equation system E should be bisimilar. Likewise, structure
graphs for f ∧ (g ∧ h) and ( f ∧ g) ∧ h in the context of E should be bisimilar. Intuit-
ively, for equation systems in SRF this choice allows us to derive a structure graph that is
very much like the parity game that corresponds to the equation system, and we do not
introduce any unnecessary complexity.

The notations used in the deduction rules deviate slightly from those used in the
structure graphs to provide a more graphical notation. The predicate t↗X represents
↗ (t) = X , the predicate t ô n represents r(t) = n, for ? ∈ {Î,È,>,⊥}, t? represents
d(t) = ?. The notation t 6ô represents ¬(t ô n) for all n ∈ N.

The basic building blocks of formulae in an equation system are the proposition variables.
Since we are dealing with possibly open equation systems, free variables may occur. We
label nodes representing free variables occurring in an equation system as such using
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↗ in rule 1 below. Furthermore, the rank of bound proposition variables is relevant
to the solution of the BES. We use this rank to label vertices representing such bound
proposition variables in rule 2.

(1)
X ∈ occ(E ) \ bnd(E )

〈X ,E〉 ↗X

(2)
X ∈ bnd(E )

〈X ,E〉 ô rankE (X )

In Boolean equation systems, the right-hand sides are built up of binary conjunctions
and disjunctions. The next question that needs to be answered is ‘How to capture this
structure in the structure graph?’ One way of doing so would be to precisely reflect the
structure of the proposition formula. For a formula of the form X ∧ (Y ∧ Z) in the context
of an empty equation system this results in the first structure graph depicted below:

〈X ∧ (Y ∧ Z),ε〉 Î

〈X ,ε〉 ↗X

〈Y ∧ Z ,ε〉 Î

〈Y,ε〉 ↗Y

〈Z ,ε〉 ↗Z

〈(Y ∧ X ) ∧ Z ,ε〉 Î

〈Y ∧ X ,ε〉 Î

〈Y,ε〉 ↗Y

〈Z ,ε〉 ↗Z

〈X ,ε〉 ↗X

A drawback of this solution is that, in general, the logical equivalence between X ∧
(Y ∧ Z) and (Y ∧ X ) ∧ Z (see the second structure graph above) is not reflected by bisim-
ilarity. As discussed before, retaining this logical equivalence, and hence associativity and
commutativity of both conjunction and disjunction is desirable. We therefore present a
set of deduction rules that uses the context in which conjunctions and disjunctions occur
to decide whether intermediate vertices should be introduced or not.

The main difficulty is that the logical connectives for conjunction (∧) and disjunction
(∨) may occur nested in a formula. A change in leading operator in the formula is
reflected by introducing an intermediate vertex in the structure graph. As a consequence
the anticipated structure of the structure graph for X ∧ (Y ∧ (Z ∨ X )), in the context of
the empty equation system, is:

〈X ∧ (Y ∧ (Z ∨ X )),ε〉 Î 〈Z ∨ X ,ε〉 È 〈Z ,ε〉 ↗Z

〈Y,ε〉 ↗Y 〈X ,ε〉 ↗X
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We next formalise the dependency relations in structure graphs. This can be eleg-
antly achieved by means of the following deduction rules for the decorations and the
dependency relation→:

(3)
〈true,E〉>

(4)
〈false,E〉⊥

(5)
〈 f ∧ f ′,E〉Î

(6)
〈 f ∨ f ′,E〉È

(7)
〈 f ,E〉Î 〈 f ,E〉 6ô 〈 f ,E〉 → 〈g,E〉

〈 f ∧ f ′,E〉 → 〈g,E〉

(8)
〈 f ′,E〉Î 〈 f ′,E〉 6ô 〈 f ′,E〉 → 〈g ′,E〉

〈 f ∧ f ′,E〉 → 〈g ′,E〉

(9)
〈 f ,E〉È 〈 f ,E〉 6ô 〈 f ,E〉 → 〈g,E〉

〈 f ∨ f ′,E〉 → 〈g,E〉

(10)
〈 f ′,E〉È 〈 f ′,E〉 6ô 〈 f ′,E〉 → 〈g ′,E〉

〈 f ∨ f ′,E〉 → 〈g ′,E〉

Rules (3-6) describe the axioms for decorations. The deduction rules (7-10) for → are
introduced to flatten the nesting hierarchy of the same connective, i.e., they are designed
to take care of associativity of ∧ and ∨. They can be used to deduce that X ∧ (Y ∧ Z)→
Y . Commutativity of ∧ and ∨ is implicit because the structure graph does not impose an
order on the edges.

Deduction rules 7-10 work for the situation that the subformula has a Î or È, but
the subformula itself is not a recursion variable (see the second premise of the deduction
rules in combination with deduction rules 19 and 20).

(11)
¬〈 f ,E〉Î

〈 f ∧ f ′,E〉 → 〈 f ,E〉
(12)

¬〈 f ′,E〉Î

〈 f ∧ f ′,E〉 → 〈 f ′,E〉

(13)
¬〈 f ,E〉È

〈 f ∨ f ′,E〉 → 〈 f ,E〉
(14)

¬〈 f ′,E〉È

〈 f ∨ f ′,E〉 → 〈 f ′,E〉

(15)
〈 f ,E〉 ô n

〈 f ∧ f ′,E〉 → 〈 f ,E〉
(16)

〈 f ′,E〉 ô n

〈 f ∧ f ′,E〉 → 〈 f ′,E〉

(17)
〈 f ,E〉 ô n

〈 f ∨ f ′,E〉 → 〈 f ,E〉
(18)

〈 f ′,E〉 ô n

〈 f ∨ f ′,E〉 → 〈 f ′,E〉

Deduction rules 11-18 describe the dependencies in case there is no flattening possible
anymore (by absence of structure). The deduction rules 11-14 deal with the case that
a subformula has no Î or È. The deduction rules 15-18 deal with the case that the
subformula represents a bound variable.

39



Chapter 3. Structural Operational Semantics for Boolean Equation Systems

Finally, we present deduction rules that describe how the structure of a vertex rep-
resenting a variable is derived from the right-hand side of the corresponding equation.
Observe that the deduction rules only have to deal with the case that a defining equation
for the recursion variable X has been found in the Boolean equation system. Deduction
rules 19 and 20 define the predicates Î and È for the case that the right-hand side is a
variable or a constant. Deduction rules 21 and 22 define the dependency relation→ for
the case that the right-hand side is a variable or a constant. Deduction rules 23 and 24
do this for the cases in which the right-hand side is a proposition formula that is neither
a variable nor a constant.

(19)
σX = f ∈ E 〈 f ,E〉Î 〈 f ,E〉 6ô

〈X ,E〉Î
(20)

σX = f ∈ E 〈 f ,E〉È 〈 f ,E〉 6ô

〈X ,E〉È

(21)
σX = f ∈ E ¬〈 f ,E〉È ¬〈 f ,E〉Î

〈X ,E〉 → 〈 f ,E〉
(22)

σX = f ∈ E 〈 f ,E〉 ô n

〈X ,E〉 → 〈 f ,E〉

(23)
σX = f ∈ E 〈 f ,E〉 → 〈g,E〉 〈 f ,E〉Î 〈 f ,E〉 6ô

〈X ,E〉 → 〈g,E〉

(24)
σX = f ∈ E 〈 f ,E〉 → 〈g,E〉 〈 f ,E〉È 〈 f ,E〉 6ô

〈X ,E〉 → 〈g,E〉

Since we are using negative premises, we need to provide a stratification, i.e., a map-
ping from transitions and predicates to ordinals such that for any closed instance of every
deduction rule the positive premises are not larger than the conclusion and (the positive
instances of) the negative premises are strictly smaller than the conclusion. This ensures
that the SOS uniquely defines a collection of transition relations and predicates. In this
case, providing such a stratification is easy. As long as the weights of all transitions are
larger than the weights of all predicates and the weights of the predicates Î and È are
larger than the weights of ô predicates, the SOS is stratified. This immediately results in
the following proposition.

Proposition 3.5. The set of operational rules to obtain structure graphs from equation
systems is meaningful.

Example 3.6. An equation system E (see left) and its associated structure graph (see
right). Observe that the term X ∧ Y is shared by the equations for X and Y , and appears
only once in the structure graph as an unranked vertex. There is no equation for Z;
this is represented by the term Z , decorated only by the label ↗Z . The subterm Z ∨
W in the equation for W does not appear as a separate vertex in the structure graph,
since the disjunctive subterm occurs within the scope of a disjunction at the top level.

40



3.1. Structure Graphs for Boolean Equation Systems

µX = (X ∧ Y ) ∨ Z
νY = W ∨ (X ∧ Y )
µW = Z ∨ (Z ∨W )

〈X ,E〉 È 3 〈Z ,E〉 ↗Z〈X ∧ Y,E〉 Î

〈Y,E〉 È 2 〈W,E〉 È 1

Given a formula f and an equation system E , 〈 f ,E〉 denotes the part of the structure
graph generated by the deduction rules that is reachable from the vertex 〈 f ,E〉.

3.1.2 Translating Structure Graphs to Equation Systems

Next, we show how, under some mild conditions, a formula and equation system can be
obtained from a structure graph. Later in this chapter, we show that, when a structure
graph is constructed from a formula in the context of an equation system, and the cor-
responding vertex is transformed to a new formula with an equation system, then both
formulae have the same solution in their respective equation systems.

A structure graph G = 〈T, t,→, d, r,↗〉 is called BESsy if it satisfies the following
constraints:

• a vertex t decorated by >,⊥ or↗X for some X has no successor w.r.t.→.

• a vertex is decorated by Î or È or a rank if and only if it has at least one successor
w.r.t.→.

• a vertex with multiple successors w.r.t.→, is decorated with Î or È.

• every cycle contains a vertex with a rank.

The following lemma states that any structure graph obtained from a formula and an
equation system is BESsy.

Lemma 3.7. For any formula f and equation system E , the structure graph 〈 f ,E〉 is BESsy.

Proof. We have to establish that the structure graph 〈 f ,E〉 is BESsy. Thereto it has to be
shown that the four requirements of the definition of BESsyness are satisfied.

The first one trivially follows by considering all the possibilities for generating a vertex
labelled by either >, ⊥, or↗X . In each case it turns out that f is of a form that does not
allow the derivation of a→-transition.

The proof of the second requirement requires induction on the depth of the proof of
〈 f ,E〉Î, 〈 f ,E〉È, or 〈 f ,E〉 ô, respectively. Inside this induction there is a case distinction
on the deduction rule that has been applied last in the proof.

For the proof of the third requirement it suffices to consider all possibilities for gen-
erating multiple successors and it follows easily that in these cases the vertex is also
labelled by Î or È.

The last requirement follows trivially from the observation that a cycle of successor
relations can never be generated without using a bound variable along the cycle. This
would inevitably introduce a rank for that vertex. ut
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To show that our notion of structure graph is meaningful, we next present functions
that, given a BESsy structure graph, produce a proposition formula and an equation
system corresponding to the reachable part of the structure graph. In Section 3.3.2 we
use this same notion to show that for bisimilar BESsy structure graphs, the equation
systems they induce have the same solution.

For a BESsy structure graph G = 〈T, t,→, d, r,↗〉 the function ϕ is defined as follows:
for u ∈ T

ϕ(u)
∆
=































d
{ϕ(u′) | u→ u′} if d(u) = Î and u 6∈ dom(r),

d{ϕ(u′) | u→ u′} if d(u) = È and u 6∈ dom(r),
true if d(u) =>,

false if d(u) =⊥,

X if↗ (u) = X ,

Xu otherwise.

The function ϕ introduces variables for those vertices that are in the domain of the
vertex rank mapping or the free variable mapping. In the second case, the associated
variable name is used. In the former case, a fresh variable name is introduced to represent
the vertex. For other vertices the structure that is offered via vertex decoration mapping
d is used to obtain a formula representing such a structure. In particular, for vertices
decorated with Î (resp. È), the use of

d
(resp. d) ensures that the resulting formula is

conjunctive (resp. disjunctive) by duplicating conjuncts (resp. disjuncts).

Definition 3.8. Let G = 〈T, t,→, d, r,↗〉 be a BESsy structure graph. The equation
system associated to G , denoted β(G ), is defined below.

To each vertex u ∈ T ∩ dom(r), we associate an equation of the form:

σXu = rhs(u)

Here σ is µ in case the rank associated to the vertex is odd, and ν otherwise. The formula
rhs(u) is defined as follows:

rhs(u)
∆
=







d
{ϕ(u′) | u→ u′} if d(u) = Î

d{ϕ(u′) | u→ u′} if d(u) = È
ϕ(u′) if d(u) 6= Î, d(u) 6= È, and u→ u′

The equation system β(G ) is obtained by ordering the equations from left-to-right ensur-
ing the ranks of the vertices associated to the equations are descending.

The definition of rhs and ϕ are closely related. This is formalised by the following
lemma.

Lemma 3.9. Let E be a BES, (σX = f ) ∈ E . Then it holds that ϕ(〈 f ,E〉) = rhs(〈X ,E〉).

Proof. Assume that (σX = f ) ∈ E . Observe that 〈X ,E〉 ∈ dom(r). We proceed by
distinguishing the cases in the definition of rhs.
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• d(〈X ,E〉) = Î. Then according to rule (19) also d(〈 f ,E〉) = Î, and furthermore
〈 f ,E〉 6∈ dom(r). We derive:

rhs(〈X ,E〉)
= {Definition of rhs}d

{ϕ(u′) | 〈X ,E〉 → u′}

=
�

d(〈 f ,E〉) = Î and 〈X ,E〉 6∈ dom(r), hence 〈X ,E〉 → u′

if and only if 〈 f ,E〉 → u′ according to rule (23)

�

d
{ϕ(u′) | 〈 f ,E〉 → u′}

= {Definition of ϕ}
ϕ(〈 f ,E〉)

• d(〈X ,E〉) = È. Analogous to the previous case.

• d(〈X ,E〉) 6= Î and d(〈X ,E〉) 6= È. We know that there is exactly one u′ such that
〈X ,E〉 → u′, hence using rule (21) we find 〈X ,E〉 → 〈 f ,E〉. By definition of rhs,
rhs(〈X ,E〉) = ϕ(〈 f ,E〉).

ut

We illustrate the use of the functions ϕ and β for obtaining a formula and a BES from
a structure graph in the following example.

Example 3.10. Consider the structure graph below.

t È 3 s ↗Zu Î

v È 2 w È 1

In this structure graph we find, e.g., that ϕ(t) = X t ,ϕ(v) = X v , and the more complex
ϕ(u) =

d
{ϕ(v),ϕ(t)} = X v ∧ (X t ∧ X t). The corresponding equation system, obtained

using β is
µX t = (X t ∧ (X v ∧ X v)) ∨ (Z ∨ Z)
νX v = (X t ∧ (X v ∧ X v)) ∨ (Xw ∨ Xw)
µXw = Xw ∨ (Z ∨ Z)

Observe that the BES that we obtained in the previous example is equivalent to the
BES from Example 3.6, modulo renaming of bound proposition variables, and simplifica-
tion of the right hand sides. This should not be surprising, since the structure graph also
was the same, except for renaming of the vertices. We next formalise this correspondence
between a BES and the BES obtained from its structure graph.

We show this in two stages. Given a BES E we show the correspondence between the
right hand side of an equation in E , and the right hand side obtained from the structure
graph of E . We then generalise this to equation systems.

First we show that the function ϕ distributes over the Boolean connectives when we
consider the semantics.
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Lemma 3.11. Let f , g be formulae, E a BES, and η an arbitrary environment, then we
have the following semantic equivalences:

¹ϕ(〈 f ,E〉) ∧ ϕ(〈g,E〉)ºη = ¹ϕ(〈 f ∧ g,E〉)ºη
¹ϕ(〈 f ,E〉) ∨ ϕ(〈g,E〉)ºη = ¹ϕ(〈 f ∨ g,E〉)ºη

Proof. We prove the first statement. Proof of the second statement is completely symmet-
ric. We prove that each conjunct in the formula on the left-hand side is also a conjunct
of the formula on the right hand side, and vice versa. We interpret the = in our goal as a
bi-implication, and we split the proof obligation in two implications.

We first prove that ¹ϕ(〈 f ∧ g,E〉)ºη =⇒ ¹ϕ(〈 f ,E〉) ∧ ϕ(〈g,E〉)ºη by induction
on the structure of ϕ(〈 f ∧ g,E〉).

• ϕ(〈 f ∧ g,E〉) =
d
{ϕ(u′) | 〈 f ∧ g,E〉 → u′}. It follows that d(〈 f ∧ g,E〉) = Î and

〈 f ∧ g,E〉 6∈ dom(r) from the definition of ϕ. As d(〈 f ∧ g,E〉) = Î and 〈 f ∧ g,E〉
is BESsy, there must be at least one u′ such that 〈 f ∧ g,E〉 → u′. We need to show
that for each conjunct u′ ∈ {ϕ(u′′) | 〈 f ∧ g,E〉 → u′′} either:

– u′ ∈ {ϕ(u′′) | 〈 f ,E〉 → u′′}, or

– u′ ∈ {ϕ(u′′) | 〈g,E〉 → u′′}, or

– u′ = ϕ(〈 f ,E〉), or

– u′ = ϕ(〈g,E〉).

Let v = ϕ(u′) be an arbitrary conjunct in {ϕ(u′′) | 〈 f ∧ g,E〉 → u′′}. So we know
〈 f ∧ g,E〉 → u′. We apply case distinction on the inference rules that can introduce
this edge.

– 〈 f ∧ g,E〉 → u′ is introduced through rule (7). Then we may assume that
d(〈 f ,E〉) = Î, 〈 f ,E〉 6∈ dom(r) and 〈 f ,E〉 → u′. According to the definition of
ϕ we find that ϕ(〈 f ,E〉) =

d
{ϕ(u′′) | 〈 f ,E〉 → u′′}. Hence by induction we

find that v is a conjunct of ϕ(〈 f ,E〉). As d(〈 f ,E〉) = Î, every conjunct of this
formula is also a conjunct of ϕ(〈 f ∧ g,E〉).

– 〈 f ∧ g,E〉 → u′ is introduced through rule (8). This case is analogous to the
previous case.

– 〈 f ∧ g,E〉 → u′ is introduced through rule (11). We may assume that
¬〈 f ,E〉Î. Therefore, u′ = 〈 f ,E〉, and the corresponding formula is ϕ(〈 f ,E〉).

– The cases where 〈 f ∧ g,E〉 → u′ is introduced through rules (12), (15) or
(16) are analogous to the previous case.

• ϕ(〈 f ∧ g,E〉) = d{ϕ(u′) | 〈 f ∧ g,E〉 → u′}. According to rule (5) it must be
the case that 〈 f ∧ g,E〉Î. According to BESsyness then d(〈 f ∧ g,E〉) 6= È, hence
ϕ(〈 f ∧ g,E〉) 6= d{ϕ(u′) | 〈 f ∧ g,E〉 → u′}, hence this case cannot apply.

• the cases where ϕ(〈 f ∧ g,E〉) ∈ {true, false, X } are analogous to the previous case.

• ϕ(〈 f ∧ g,E〉) = X〈 f ∧g,E〉. Appealing to rule (5) it must be the case that ϕ(〈 f ∧
g,E〉)Î. Furthermore we know 〈 f ∧ g,E〉 ∈ dom(r). According to the operational
rules all ranked terms are of the form 〈Y,E〉, for some Y . This contradicts the
assumption that the term we are considering is 〈 f ∧ g,E〉.
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The reverse case, showing that ¹ϕ(〈 f ∧ g,E〉)ºη⇐ ¹ϕ(〈 f ,E〉) ∧ ϕ(〈g,E〉)ºη com-
mences by a case distinction on the structure of ϕ(〈 f ,E〉) and ϕ(〈g,E〉). We show that
each conjunct of ϕ(〈 f ,E〉) is also a conjunct of ϕ(〈 f ∧ g,E〉). The proof that every con-
junct of ϕ(〈g,E〉) is a conjunct of ϕ(〈 f ∧ g,E〉) if completely analogous, and therefore
omitted.

• case ϕ(〈 f ,E〉) =
d
{ϕ(u′) | 〈 f ,E〉 → u′}. In this case we know that d(〈 f ,E〉) = Î,

and 〈 f ,E〉 6∈ dom(r). Let 〈 f ,E〉 → u′, so ϕ(u′) is a top level conjunct of ϕ(〈 f ,E〉).
From rule (7) it follows immediately that 〈 f ∧ g,E〉 → u′, and d(〈 f ∧ g,E〉) = Î
according to (5), hence ϕ(〈 f ∧ g,E〉) =

d
{ϕ(u′) | 〈 f ∧ g,E〉 → u′}, and ϕ(u′) is a

conjunct of ϕ(〈 f ∧ g,E〉).

• ϕ(〈 f ,E〉) = d{ϕ(u′) | 〈 f ,E〉 → u′}. So we know that d(〈 f ,E〉) = È and 〈 f ,E〉 6∈
dom(r). Observe that the only conjunct of ϕ(〈 f ,E〉) is ϕ(〈 f ,E〉) itself. We show
that ϕ(〈 f ,E〉) is a conjunct of ϕ(〈 f ∧ g,E〉). According to rule (11), 〈 f ∧ g,E〉 →
〈 f ,E〉. Furthermore d(〈 f ∧ g,E〉) = Î according to (5) and 〈 f ∧ g,E〉 6∈ dom(r)
according to (2), hence ϕ(〈 f ∧ g,E〉) =

d
{ϕ(u′) | 〈 f ∧ g,E〉 → u′}, and ϕ(〈 f ,E〉)

is a conjunct of ϕ(〈 f ∧ g,E〉).

• cases ϕ(〈 f ,E〉) ∈ {true, false, X } follow a similar line of reasoning as the previous
case.

• ϕ(〈 f ,E〉) = X〈 f ,E〉, where 〈 f ,E〉 ∈ dom(r). This again follows a similar line of reas-
oning. We use the observation that the only edge that is generated from 〈 f ∧ g,E〉
induced by 〈 f ,E〉 is the edge 〈 f ∧ g,E〉 → 〈 f ,E〉 because f is ranked, according to
(15), and in case also d(〈 f ,E〉) 6∈ {Î,È} the same edge is generated (according to
rule (11)).

ut

Using this lemma we show that the solution of a formula evaluated in the context of
a BES and the formula obtained from its node in a structure graph coincide.

Lemma 3.12. Let E be a BES, η an environment, such that η(Y ) = η(X〈Y,E〉) for all
Y ∈ bnd(E ). Let f be a formula, such that occ( f ) ⊆ {Y | X〈Y,E〉 ∈ bnd(β(〈 f ,E〉)) ∪
free(β(〈 f ,E〉))}. Then it holds that ¹ f ºη= ¹ϕ(〈 f ,E〉)ºη.

Proof. Let E be this BES, and f a formula, and let η(Y ) = η(〈X ,E〉). Assume that
occ( f ) ⊆ {Y | X〈Y,E〉 ∈ bnd(β(〈 f ,E〉)) ∪ free(β(〈 f ,E〉))}. We show by induction on the
structure of f that ¹ f ºη= ¹ϕ(〈 f ,E〉)ºη.

• f = true. By definition of ϕ, ¹ϕ(〈true,E〉)ºη= ¹trueºη.

• f = false. Analogous to the previous case.

• f = Y . We distinguish two cases, either Y is bound, or Y is free:
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– Y is bound, i.e., X〈Y,E〉 ∈ bnd(β(〈 f ,E〉)). We derive:

¹ϕ(〈Y,E〉)ºη
= {X〈Y,E〉 ∈ β(〈 f ,E〉), hence 〈Y,E〉 ∈ dom(r), use definition of ϕ}

¹X〈Y,E〉ºη
= {Semantics of BES}

η(X〈Y,E〉)
= {Assumption η(X〈Y,E〉) = η(Y )}

η(Y )
= {Semantics of BES}

¹Yºη

– Y ∈ free(β(〈 f ,E〉)). This case is easy, as Y ∈ free(β(〈 f ,E〉)), also ↗〈Y,E〉 Y ,
hence using the definition of ϕ we immediately find ¹ϕ(〈Y,E〉)ºη= ¹Yºη.

• f = g ∧ g ′. Based on the SOS we know that d(〈g ∧ g ′,E〉) = Î. As induction
hypothesis we assume that the lemma holds for all subformulae. We derive:

¹ϕ(〈g ∧ g ′,E〉)ºη
= {Lemma 3.11}

¹ϕ(〈g,E〉) ∧ ϕ(〈g ′,E〉)ºη
= {Semantics of BES}

¹ϕ(〈g,E〉)ºη ∧ ¹ϕ(〈g ′,E〉)ºη
= {Induction hypothesis}

¹gºη ∧ ¹g ′ºη
= {Semantics of BES}

¹g ∧ g ′ºη

l l

• f = g ∨ g ′. Analogous to the previous case.
ut

All of the above ultimately allows us to prove that the right hand side of an equation
in a BES, and the corresponding formula obtained from its structure graph, coincide.

Proposition 3.13. Let E be a BES such that σY = f ∈ E . Then for all environments η for
which η(Y ) = η(X〈Y,E〉), ¹ f ºη= ¹rhs(〈Y,E〉)ºη.

Proof. The proof proceeds by a distinction on the cases of rhs(〈Y,E〉). We show the case
for d(〈Y,E〉) = Î, the others are completely analogous.

If d(〈Y,E〉) = Î, then ¹rhs(〈Y,E〉)ºη= ¹ϕ(〈 f ,E〉)ºη according to Lemma 3.9, using
that σY = f ∈ E . Using Lemma 3.12 we find that this is equivalent to ¹ f ºη. ut

Finally we show that evaluating a formula f in a BES E , and evaluating the formula
ϕ(〈 f ,E〉) in the BES β(〈 f ,E〉) are equivalent.

Theorem 3.14. Let E be a BES and η an environment. Then for all formulae f it holds
that ¹ f º¹Eºη= ¹ϕ(〈 f ,E〉)º¹β(〈 f ,E〉)ºη.
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Proof. Let F abbreviate the equation system β(〈 f ,E〉), and let g abbreviate the formula
ϕ(〈 f ,E〉). By construction, F consists of equations of the form σX〈Z ,E〉 = rhs(〈Z ,E〉), for
Z ∈ bnd(E ).

Denote the free-variable closure of E , F , f and g, using η by Ec , Fc , fc and gc ,
respectively. According to Corollary 2.30, we have ¹Ecº = ¹Eºη, and ¹Fcº = ¹Fºη,
and, likewise, ¹ f º¹Eºη = ¹ fcº¹Ecº and ¹gº¹Fºη = ¹gcº¹Fcº. Let E ′ be the
equation system obtained by merging all equations of Ec and Fc , such that:

1. rankE ′(X ) = rankE (X ) for all X ∈ bnd(Ec);

2. rankE ′(X〈Z ,E〉) = rankE (Z) for all X〈Z ,E〉 ∈ bnd(Fc).

Observe that the resulting E ′ is well-formed, since we have bnd(Ec) ∩ bnd(Fc) = ;.
Moreover, since bnd(Ec) ∩ occ(Fc) = bnd(Fc) ∩ occ(Ec) = ; also ¹E ′º = ¹Ecº¹Fcº

according to Lemma 2.28, i.e., we can find the solution to Ec and Fc by solving E ′. Using
Proposition 3.13, we find that the relation R, defined as

R= {(Z , X〈Z ,E〉), (X〈Z ,E〉, Z) | X〈Z ,E〉 ∈ Fc}

is a consistent correlation. According to Theorem 2.33 we therefore find that for all
X〈Z ,E〉 ∈ bnd(Fc), we have ¹Zº¹E ′º = ¹X〈Z ,E〉º¹E ′º. More specifically, ¹Zº¹Ecº =
¹X〈Z ,E〉º¹Fcº, and hence also ¹ fcº¹Ecº= ¹gcº¹Fcº. Our claim now follows. ut

We illustrate the various translations described in this section through the following
example.

Example 3.15. Consider the labelled transition system L given below.

s0 s1

s2

b

b

b

bba
b

Let φ = νX .[a]X ∧ 〈b〉X be the formula that encodes that along every a path an
infinite b path is enabled. Consider the following equation system E = EL(φ), encoding
the model checking problem whether L satisfies φ, together with the structure graph
〈Xs0

,E〉:

(νXs0
= (Xs2

∧ Xs2
) ∧ (Xs0

∨ (Xs1
∨ Xs1

)))
(νXs1

= true ∧ (Xs0
∨ (Xs2

∨ Xs2
)))

(νXs2
= true ∧ (Xs0

∨ (Xs1
∨ Xs1

)))
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〈Xs0
,E〉 Î 0

〈Xs0
∨ (Xs2

∨ Xs2
),E〉 È

〈Xs0
∨ (Xs1

∨ Xs1
),E〉 È〈Xs1

,E〉 Î 0 〈Xs2
,E〉 Î 0

〈true,E〉 >

Observe that the above structure graph can be minimised with respect to bisimilarity,
identifying vertices 〈Xs1

,E〉 and 〈Xs2
,E〉, as well as 〈Xs0

∨ (Xs1
∨ Xs1

),E〉 and 〈Xs0
∨ (Xs2

∨
Xs2
),E〉. This leads to the following bisimilar, minimal structure graph:

〈Xs0
∨ (Xs1

∨ Xs1
),E〉

/↔
È〈Xs0

,E〉
/↔
Î 0 〈Xs1

,E〉
/↔
Î 0

〈true,E〉/↔ >

The above structure graph induces the following equation system, using the translation
of Definition 3.8.

(νX〈Xs0
,E〉

/↔
= (X〈Xs0

,E〉
/↔
∨ (X〈Xs1

,E〉
/↔
∨ X〈Xs1

,E〉
/↔
)) ∧ (X〈Xs1

,E〉
/↔
∧ X〈Xs1

,E〉
/↔
))

(νX〈Xs1
,E〉

/↔
= (X〈Xs0

,E〉
/↔
∨ (X〈Xs1

,E〉
/↔
∨ X〈Xs1

,E〉
/↔
)) ∧ (true ∧ true))

The size of the original structure graph is 6. By comparison, the size of the minimal
structure graph is 4. As will become clear in Section 3.3.2, solving the above equation
system enables one to deduce the solution to the original equation system.

3.1.3 Solution Equivalence of Structure Graphs

The interpretation of a structure graph as a BES using functions ϕ and β gives rise to
the notion of solution equivalence. We say that two BESsy structure graphs are solution
equivalent if the formulae obtained from the initial vertices in these structure graphs,
evaluated in the corresponding BESs, have the same solution. Formally this is defined as
follows.

Definition 3.16. Let t and t ′ be arbitrary BESsy structure graphs. Structure graphs t and
t ′ are solution equivalent, denoted t ≡ t ′ if and only if, for all environments η:

¹ϕ(t)º¹β(t)ºη= ¹ϕ(t ′)º¹β(t ′)ºη
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In a possible lattice of equivalence relations on BESsy structure graphs, ≡ is the
coarsest equivalence relation of interest. Deciding ≡ is in NP∩ co-NP.

3.2 Normalisation of Structure Graphs

In BESsy structure graphs, a vertex that is decorated by a rank typically represents a
proposition variable that occurs at the left-hand side of some equation in the associated
equation system, whereas the non-ranked vertices can occur as subterms in right-hand
sides of equations with mixed occurrences of ∧ and ∨. Normalisation of a structure
graph assigns a rank to each non-ranked vertex that has successors. The net effect of
this operation is that the structure graph obtained this way induces an equation system
in simple form. In choosing the rank, one has some degree of freedom; an effective and
sound strategy is to ensure that all equations in the associated equation system end up in
the very last block. This is typically achieved by assigning 0 as a rank. This normalisation
is achieved using the following set of deduction rules.

(25)
tÎ

norm(t)Î
(26)

tÈ

norm(t)È
(27)

t → t ′

norm(t)→ norm(t ′)

(28)
t>

norm(t)>
(29)

t⊥

norm(t)⊥
(30)

t ↗X

norm(t)↗X

(31)
t ô n

norm(t) ô n
(32)

t 6ô t → t ′

norm(t) ô 0
The last deduction rule expresses that in case a vertex t does not have a rank, rank

0 is associated to the normalised version of t, provided, of course, that the vertex has
a successor. Observe that normalisation preserves BESsyness of the structure graph, i.e.,
any BESsy structure graph that is normalised again yields a BESsy structure graph.

Proposition 3.17. Let t be an arbitrary BESsy structure graph.

1. ϕ(norm(t)) ∈ X ∪ {true, false};

2. β(norm(t)) is in simple form.

Proof. Follows immediately from the definitions. ut

The well-definedness of the extended SOS is obtained by adapting the stratification
from the previous SOS by requiring that t ô n is larger than u ô m in all cases where the
number of occurrences of norm in t is larger than in u.

The lemmata below formalise that the solution to an equation system that is induced
by a BESsy structure graph, is preserved and reflected by the equation system associated
to the normalised counterpart of that structure graph.

Lemma 3.18. Let t be a BESsy structure graph. Then, there is a total injective mapping
h : bnd(β(t))→ bnd(β(norm(t))), such that for all η:

∀X ∈ bnd(β(t)) : ¹β(t)ºη(X ) = ¹β(norm(t))ºη(h(X ))
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Proof. Observe that for each ranked vertex u in t, vertex norm(u) has the same rank in
norm(t). Following Definition 3.8, these vertices both induce equations in the equation
systems that appear in the same block of identical fixed point equations. All unranked
vertices u′ in t that are ranked in norm(t), induce ν-equations at the end of the equation
system induced by norm(t). References to these latter equations can be eliminated, fol-
lowing Lemmata 2.25 and 2.26. ut

Lemma 3.19. Let t be a BESsy structure graph. Then t ≡ norm(t).

Proof. Follows from Lemma 3.18. ut

The example below illustrates an application of normalisation, and it provides a
demonstration of the above lemmata and its implications.

Example 3.20. The BESsy structure graph depicted at the left contains a single vertex
that is not decorated with a rank. Normalisation of this structure graph yields the struc-
ture graph depicted at the right.

u È 3

v 1

t Î

w È 2

x È 1

=⇒

norm(u) È 3

norm(v) 1

norm(t) Î 0

norm(w) È 2

norm(x) È 1

Assuming that vertex t is the initial vertex, β(t) is as follows:

(µXu = (Xu ∧ (Xw ∧ Xw)) ∨ (X v ∨ X v))
(νXw = (Xu ∧ (Xw ∧ Xw)) ∨ (X x ∨ X x))
(µX v = X v)
(µX x = X v ∨ (X x ∨ X x))

β(norm(t)) has similar top-level logical operands as β(t), but contains an extra greatest
fixed point equation trailing the other four equations, and references to this equation:

(µXnorm(u) = Xnorm(t) ∨ (Xnorm(v) ∨ Xnorm(v)))
(νXnorm(w) = Xnorm(t) ∨ (Xnorm(x) ∨ Xnorm(x)))
(µXnorm(v) = Xnorm(v))
(µXnorm(x) = Xnorm(v) ∨ (Xnorm(x) ∨ Xnorm(x)))
(νXnorm(t) = Xnorm(u) ∧ (Xnorm(w) ∧ Xnorm(w)))

According to Lemma 3.18, there is an injection h : bnd(β(t))→ bnd(β(norm(t))), such
that for all X ∈ bnd(β(t)), we have ¹β(t)º(X ) = ¹β(norm(t))º(h(X )); h(Xz) = Xnorm(z)
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for z ∈ {u, v, w, x} is such an injection. Following Lemma 3.19, we find ¹ϕ(t)º¹β(t)º=
¹Xu ∧ (Xw ∧ Xw)º¹β(t)º = ¹Xnorm(t)º¹β(norm(t))º = ¹ϕ(norm(t))º¹β(norm(t))º,
which is false.

3.3 Properties of Strong Bisimilarity of Structure Graphs

Now that we have introduced structure graphs, the concept of bisimilarity for structure
graphs, and normalisation, it is time to study the effects of bisimilarity on the norm-
alisation of structure graphs. In this section we first show that bisimulation preserves
BESsyness. We then continue with a number of congruence results. Finally we determ-
ine whether bisimilarity of structure graphs indeed reflects associativity as we desired in
Section 3.1.1.

BESsyness is preserved under bisimilarity, as shown in the following lemma.

Lemma 3.21. Let G be a BESsy structure graph, then G/↔ is BESsy.

Proof. This follows immediately from the transfer conditions of bisimilarity. ut

The converse, however, does not hold, as is witnessed by the following example.

Example 3.22. Consider the normalised structure graph to the left. Observe that this
graph is not BESsy because node norm(v) has multiple successors, but is not decorated
by Î or È. Its bisimulation quotient, shown to the right, is BESsy.

norm(u) È 1

norm(v) 0

norm(w) È 0

norm(t) È 0

norm(u′) È 1

norm(v′) 0 norm(w′) È 0

3.3.1 Congruence

Bisimilarity on structure graphs is a congruence for ∧ and ∨, as shown in Lemma 3.23.
This allows us to reason about bisimilarity of vertices representing conjuncts and disjuncts
in terms of bisimilarity of vertices representing their subformulae.

Lemma 3.23. Let E be an equation system. Let f , f ′, g and g ′ be arbitrary proposition
formulae such that 〈 f ,E〉 ↔〈 f ′,E〉 and 〈g,E〉 ↔〈g ′,E〉. Then the following hold:

〈 f ∧ g,E〉 ↔〈 f ′ ∧ g ′,E〉, 〈 f ∨ g,E〉 ↔〈 f ′ ∨ g ′,E〉

Proof. Suppose that bisimilarity of 〈 f ,E〉 and 〈 f ′,E〉 is witnessed by R and the bisimilarity
of 〈g,E〉 and 〈g ′,E〉 is witnessed by S. The relation {(〈 f ∧ g,E〉, 〈 f ′ ∧ g ′,E〉)} ∪ R∪ S is
a bisimulation relation that proves bisimilarity of 〈 f ∧ g,E〉 and 〈 f ′ ∧ g ′,E〉. Similarly,
{(〈 f ∨ g,E〉, 〈 f ′ ∨ g ′,E〉)} ∪ R ∪ S is a bisimulation relation that proves bisimilarity of
〈 f ∨ g,E〉 and 〈 f ′ ∨ g ′,E〉. ut
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The following lemma indicates that bisimilarity on structure graphs indeed respects
logical equivalences such as commutativity, associativity and a weak form of idempotence
for the ∧ and ∨ operators.

Lemma 3.24. Let E be an equation system. Let f , f ′, and f ′′ be arbitrary proposition
formulae. Then the following hold:

〈( f ∧ f ′) ∧ f ′′,E〉 ↔ 〈 f ∧ ( f ′ ∧ f ′′),E〉,
〈( f ∨ f ′) ∨ f ′′,E〉 ↔ 〈 f ∨ ( f ′ ∨ f ′′),E〉,

〈 f ∧ f ′,E〉 ↔ 〈 f ′ ∧ f ,E〉,
〈 f ∨ f ′,E〉 ↔ 〈 f ′ ∨ f ,E〉,

〈( f ∧ f ) ∧ f ′,E〉 ↔ 〈 f ∧ f ′,E〉,
〈( f ∨ f ) ∨ f ′,E〉 ↔ 〈 f ∨ f ′,E〉

Proof. The proofs are easy. For example, the bisimulation relation that witnesses bisim-
ilarity of 〈( f ∧ f ′) ∧ f ′′,E〉 and 〈 f ∧ ( f ′ ∧ f ′′),E〉 is the relation that relates all for-
mulae of the form 〈(g ∧ g ′) ∧ g ′′,E〉 and 〈g ∧ (g ′ ∧ g ′′),E〉 and additionally contains
the identity relation on structure graphs. Proofs of the ‘transfer conditions’ are easy as
well. As an example, suppose that 〈(g ∧ g ′) ∧ g ′′,E〉 → 〈h,E〉 for some formula h. In
case this transition is due to 〈g ∧ g ′,E〉Î and 〈g ∧ g ′,E〉 → 〈h,E〉, one of the cases
that occurs for 〈g ∧ g ′,E〉 → 〈h,E〉 is that 〈g,E〉Î and 〈g,E〉 → 〈h,E〉. We obtain
〈g ∧ (g ′ ∧ g ′′),E〉 → 〈h,E〉. Since 〈h,E〉 and 〈h,E〉 are related, this finishes the proof of
the transfer condition in this case. All other cases are similar or at least equally easy. ut

Corollary 3.25. Let E be an equation system. Let F and G be arbitrary finite sets of
proposition formulae such that (1) for all f ∈ F there exists g ∈ G with 〈 f ,E〉 ↔ 〈g,E〉,
and, vice versa, (2) for all g ∈ G there exists f ∈ F with 〈g,E〉 ↔ 〈 f ,E〉. Then, 〈

d
F,E〉 ↔

〈
d

G,E〉 and 〈 dF,E〉 ↔〈 dG,E〉.

Proof. The corollary follows immediately from the congruence of ∧ and ∨ (Lemma 3.23)
and commutativity and associativity of those (Lemma 3.24). ut

Idempotence of ∧ and ∨, and more involved logical equivalences such as distribution
and absorption are not captured by isomorphism or even bisimilarity on the structure
graphs. The reason is that, for an arbitrary equation system E and variable X , the vertex
associated with 〈X ∧ X ,E〉 will be decorated by Î, in contrast to the vertex associated
with 〈X ,E〉.

The below proposition states that bisimilarity on structure graphs is a congruence for
normalisation.

Proposition 3.26. Let t, t ′ be arbitrary, but bisimilar structure graphs. Then norm(t) ↔
norm(t ′).

Proof. Let R be a bisimulation relation witnessing t ↔ t ′. We define the relation Rn
as {(norm(u),norm(u′)) | (u, u′) ∈ R}. Then Rn is a bisimulation relation witnessing
norm(t)↔norm(t ′). ut

Observe that normalising the same structure graph multiple times still leads to bisim-
ilar structure graphs, i.e., norm(norm(t))↔norm(t).
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Ultimately, the above proposition implies that the simple form is not harmful from
a strong bisimulation perspective: normalisation does not lead to larger quotients of
structure graphs. This addresses the question concerning the effect of normalisation on
the reductive capabilities of bisimulation. Formally, we have:

Theorem 3.27. Let t be an arbitrary structure graph. Then t/↔ is at least as large as
norm(t)/↔.

Proof. The theorem follows immediately from the fact that norm(t) and t are equal in
size, and Proposition 3.26. ut

The example below illustrates that normalisation can in fact sometimes be beneficial
for the minimising capabilities of bisimulation.

Example 3.28. Consider the following equation system E , with the associated structure
graph 〈X ,E〉 (represented by vertex u) depicted next to it.

(µX = X ∧ (Y ∨ X ))
(νY = Y ∨ X )

u Î 1

v È 0

w È

Clearly, the structure graph is already minimal. Normalisation upcasts vertex w to a
ranked vertex, assigning rank 0 to it. It is then easy to check that vertices norm(w) and
norm(v) are bisimilar. Hence, the quotient of norm(u) has size 2, compared to size 3 for
u.

3.3.2 Bisimilarity Implies Solution Equivalence

In this section we state one of our main results, proving that equation systems corres-
ponding to bisimilar BESsy structure graphs essentially have the same solution. This
allows one to safely use bisimulation minimisation of the structure graph, and solve
the equation system induced by the minimal structure graph instead. Before we give
our main theorem, we first lift the results that allow constructing purely conjunctive
and purely disjunctive equation systems, see Proposition 2.23, from equation systems to
structure graphs.

Definition 3.29. Let 〈T, t,→, d, r,↗〉 be a structure graph. A partial function γ:T 7→ T
is a •-choice function, with • ∈ {Î,È}, when both:

• dom(γ) = {u ∈ T | d(u) = • ∧ u→};

• u→ γ(u) for all u ∈ dom(γ).

Given a •-choice function γ, with • ∈ {Î,È}, for a structure graph, we can obtain a
new structure graph by choosing one successor among the successors for vertices decor-
ated with a •, viz., the one prescribed by γ. This is formalised next.

53



Chapter 3. Structural Operational Semantics for Boolean Equation Systems

Definition 3.30. Let G = 〈T, t,→, d, r,↗〉 be an arbitrary structure graph. Let • ∈
{Î,È}, and γ a •-choice function. The structure graph Gγ , obtained by applying the
•-choice function γ on G , is defined as the six-tuple 〈T, t,→γ , dγ , r,↗〉, where:

• for all u /∈ dom(γ), u→γ u′ if and only if u→ u′;

• for all u ∈ dom(γ), only u→γ γ(u);

• dγ(t) = d(t) and dom(dγ) = {u | d(u) 6= •}

Observe that a structure graph obtained by applying a Î-choice function entails a
structure graph in which no vertex is labelled with Î. Similarly, applying a È-choice
function yields a structure graph without È labelled vertices.

Property 3.31. Let t be an arbitrary BESsy structure graph. Assume an arbitrary •-choice
function γ on t. Then norm(tγ) is again BESsy.

The effect that applying, e.g., a Î-choice function has on the solution of the equation
system associated to the structure graph to which it is applied, is characterised by the
proposition below, which is the modification of Proposition 2.23 to structure graphs.

Proposition 3.32. Let t be a normalised, BESsy structure graph, with no vertex labelled↗.

1. For all Î-choice functions γ applied to t, we have ¹β(t)ºv ¹β(tγ)º;

2. There exists a Î-choice function γ, such that ¹β(t)º= ¹β(tγ)º.

3. For all È-choice functions γ applied to t, we have ¹β(t)ºw ¹β(tγ)º;

4. There exists a È-choice function γ, such that ¹β(t)º= ¹β(tγ)º.

Proof. Follows immediately from Proposition 2.23, and the correspondence between
structure graphs and Boolean Equation Systems. ut

In some cases, viz., when a structure graph is void of any vertices labelled È or void
of vertices labelled Î, the solution of an equation system associated to a structure graph
can be characterised by the structure of the graph. While one could consider these to be
degenerate cases, they are essential in our proof of the main theorem in this section. A
key concept used in characterising the solution of equation systems in these degenerate
cases is that of a ν-dominated lasso, and its dual, µ-dominated lasso.

Definition 3.33. Let t be a BESsy structure graph. A lasso starting in t is a finite sequence
t0, t1, . . . , tn, satisfying t0 = t, tn = t j for some j ≤ n, and for each 1 ≤ i ≤ n, t i−1 → t i .
A lasso is said to be ν-dominated if max{r(t i) | j ≤ i ≤ n} is even; otherwise it is µ-
dominated.

The following lemma is loosely based on [Kei06, Lemmata 40 and 41].

Lemma 3.34. Let t be a normalised, BESsy structure graph in which no vertex is labelled
with↗. Then:

1. if no vertex in t is labelled withÎ then ¹ϕ(t)º¹β(t)º= true if and only if some lasso
starting in t is ν-dominated, or some maximal, finite path starting in t terminates in
a vertex labelled with >;
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2. if no vertex in t is labelled withÈ then ¹ϕ(t)º¹β(t)º= false if and only if some lasso
starting in t is µ-dominated, or some maximal, finite path starting in t terminates in
a vertex labelled with ⊥

Proof. We only consider the first statement; the proof of the second statement is dual.
Observe that since no vertex in t is labelled with Î, ϕ(u) 6=

d
{u1, . . . , un} for all u. We

distinguish two cases:

1. Assume there is a ν-dominated lasso t0, t1, . . . , tn, starting in t. BESsyness of t im-
plies that there is a ranked vertex t i on the cycle of the lasso. Without loss of gen-
erality assume that t i has the highest rank on the cycle of the ν-dominated lasso.
By definition, this highest rank is even. This means that it induces an equation
νX t i

= gi in β(t), that precedes all other equations σX tk
= gk induced by the other

vertices on the cycle. Consider the path snippet starting in t i , leading to t i again:
t i , t i+1, . . . , tn−1, t j , t j+1, t i−1. Lemma 2.26, i.e., Gauß elimination, allows one to
substitute gi+1 for X t i+1

in the equation for X t i
, yielding νX t i

= gi[X t i+1
:= gi+1].

Repeatedly applying Gauß elimination on the path snippet ultimately allows one
to rewrite νX t i

= gi to νX t i
= g ′i ∨ X t i

, since X t i−1
depends on X t i

again, and none
of the formulae is conjunctive. The solution to νX t i

= g ′i ∨ X t i
is easily seen to be

X t i
= true. This solution ultimately propagates through the entire lasso, and back

to t, leading to ϕ(t) = X t = true.

2. Suppose there is a finite path t0, t1, . . . , tn starting in t, where tn is labelled with
>. This means that there is an equation σX tn

= true on which X t depends. As
the equation σX tn

= true is solved, we may immediately substitute the solution in
all other formulae on the path. As none of the formulae is conjunctive, we find
ϕ(t) = true.

Conversely, observe that due to Proposition 3.32, there is a structure graph tÈ, void
of any vertices labelled È, that has an equation system associated to it with a solution
equivalent to that of the equation system associated to t. This means that tÈ has no
branching structure, but is necessarily a set of lassos and maximal, finite paths. In case
the initial vertex of t is on a lasso, ¹ϕ(t)º¹β(t)º = true holds because the cycle on the
lasso has an even highest rank. In the other case, ¹ϕ(t)º¹β(t)º = true can only be the
case because ultimately tÈ leads to a vertex labelled true. ut

We prove that, for BESsy structure graphs that do not have vertices labelled with↗,
bisimilar structure graphs are also solution equivalent.

Lemma 3.35. Let t, t ′ be normalised BESsy structure graphs in which no vertex is labelled
with↗. Assume t is minimal w.r.t strong bisimilarity. Then t ↔ t ′ implies ¹ϕ(t)º¹β(t)º=
¹ϕ(t ′)º¹β(t ′)º.

Proof. The case where the initial vertex of t is decorated with a > or ⊥ is trivial and
therefore omitted. Assume that the initial vertex of t is not decorated with > nor ⊥.
Suppose that ¹ϕ(t)º¹β(t)º = true. By Proposition 3.32 we know that there is a È-
choice function γ such that ¹β(tγ)º = ¹β(t)º. We next construct a È-choice function
γ′ for t ′ that satisfies the following condition:

∀u ∈ dom(γ), u′ ∈ dom(γ′) : u ↔u′ =⇒ γ(u)↔γ′(u′)
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Note that the minimality of t implies that γ satisfies γ(w) ↔ γ(w′) for all w ↔ w′ with
w, w′ ∈ dom(γ). We then have tγ ↔ tγ′ , as the choice for successors chosen in previously
bisimilar È-labelled vertices is synchronised by the È-choice function. Because of this
bisimilarity and the finiteness of t ′, any ν-dominated lasso starting in a vertex u reachable
in t implies the existence of a similar ν-dominated lasso starting in vertices u′ reachable
in t ′ that are bisimilar to u, and, of course, also vice versa. Likewise for maximal finite
paths. Suppose the initial vertex of tγ has only ν-dominated lassos and finite maximal
paths ending in >-labelled vertices. Then, by construction, so has t ′

γ′
. This means that

¹ϕ(t)º¹β(t)º= ¹ϕ(tγ)º¹β(tγ)º=
† true= ¹ϕ(t ′γ′)º¹β(t

′
γ′)º

where at †, Lemma 3.34 is used. Using Proposition 3.32, we find:

¹ϕ(t ′γ′)º¹β(t
′
γ′)º=⇒ ¹ϕ(t

′)º¹β(t ′)º

Combining the above, we can conclude that we have:

¹ϕ(t ′)º¹β(t ′)º= true

The case where ¹ϕ(t)º¹β(t)º = false follows the same line of reasoning, constructing
a structure graph with a Î-choice function γ, resulting in a structure graph containing
no vertices labelled Î. ut

We set out to prove that arbitrary bisimilar structure graphs t and t ′ always give rise
to equation systems and formulae with the same truth value. The above lemma may
seem like a roundabout way in proving this property. In particular, the assumption in
Lemma 3.35 that t is minimal with respect to bisimilarity may seem odd. The reason for
using the quotient is due to our appeal to the non-constructive Proposition 3.32, as we
illustrate through the following example.

Example 3.36. Consider the two bisimilar BESsy structure graphs t and t ′ below:

t È 1

w 2

v È 1 t ′ È 1

w′ 2

Following Lemma 3.34, we know that all vertices will be associated to proposition vari-
ables with solution true, as both structure graphs are normalised and contain no Î-
labelled vertices. Appealing to Proposition 3.32, we know that there is a structure graph
tÈ that gives rise to an equation system with the same solution as the one that can be
associated to t. In fact, there are three choices for tÈ:

t 1

w 2

v 1 t 1

w 2

v 1 t 1

w 2

v 1
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Note that all three structure graphs are associated to equation systems with the same
solution as the equation system for t. However, while the middle structure graph would
allow us to construct a È-choice function that resolves the choice for successors for ver-
tex t ′, the other two structure graphs do not allow us to do so, simply because they have
bisimilar vertices whose only successor leads to different equivalence classes. Such con-
flicts do not arise when assuming that t is already minimal, in which case each vertex
represents a unique class.

Regardless of the above example, we can still derive the desired result. Based on the
previous lemma, the fact that bisimilarity is an equivalence relation on structure graphs
and the fact that quotienting is well-behaved, we find the following theorem, which holds
for arbitrary BESsy structure graphs.

Theorem 3.37. Let t, t ′ be arbitrary bisimilar BESsy structure graphs. Then for all envir-
onments η, ¹ϕ(t)º¹β(t)ºη= ¹ϕ(t ′)º¹β(t ′)ºη.

Proof. Let η be an arbitrary environment. Let t and t ′ be the structure graphs obtained
from t and t ′ by replacing all decorations of the form ↗X of all vertices with > if
η(X ) = true, and ⊥ otherwise. Note that we have t ↔ t ′. Based on Lemma 2.29 and
Definition 3.8, we find:

¹ϕ(t)º¹β(t)ºη= ¹ϕ(t)º¹β(t)º

Likewise, we can derive such an equivalence for t ′ and t ′. By Lemma 3.19, we find:

¹ϕ(t)º¹β(t)º= ¹ϕ(norm(t))º¹β(norm(t))º

Again, a similar equivalence can be derived for t ′ and norm(t ′). Observe that by Pro-
position 3.26, we find that t ↔ t ′ implies norm(t) ↔ norm(t ′). Observe that norm(t) ↔
norm(t)/↔ ↔ norm(t ′). Finally, since all three are still BESsy structure graphs, that fur-
thermore do not contain vertices labelled with ↗, we can apply Lemma 3.35 twice to
find:

¹ϕ(norm(t))º¹β(norm(t))º
= ¹ϕ(norm(t)/↔)º¹β(norm(t)/↔)º
= ¹ϕ(norm(t ′))º¹β(norm(t ′))º

But this necessitates our desired conclusion:

¹ϕ(t)º¹β(t)º= ¹ϕ(t ′)º¹β(t ′)º

ut

Example 3.38. Consider the bisimilar BESsy structure graphs from Example 3.36. We
obtain the following equation systems for β(t) and β(t ′), respectively.

νXw = Xw νXw′ = Xw′

µX t = X v ∨ Xw µX t ′ = X t ′ ∨ Xw′

µX v = X t ∨ Xw

Observe that in both equation systems all variables are true. The formulae are ϕ(t) =
X v ∨ Xw and ϕ(t ′) = X t ′ ∨ Xw′ , and ¹X v ∨ Xwº¹β(t)º= ¹X t ′º¹β(t ′)º= true.
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3.4 Idempotence Identifying Bisimilarity of Structure
Graphs

In the previous section we have seen that bisimulation respects a weak form of idem-
potence. The notion of idempotence identifying bisimulation was studied for equation
systems in SRF in [KW11]. In ibid. it was shown that variables in such equation sys-
tems may be related if all variables in their right hand sides are related, regardless of the
Boolean operands in these right hand sides. In this section we generalise idempotence
identifying bisimulation to the setting of structure graphs, and we study the extent to
which it is able to relate idempotent formulae. The following example shows that, in-
deed, strong bisimulation is not capable of relating idempotent formulae in situations
where we desire to do so.

Example 3.39. Consider the structure graph corresponding to the equation system E ,
defined as (νY = X ∨ X )(νX = X ), depicted below. Observe that the vertex for Y is
decorated by È, and the vertex for X is not decorated, therefore it is minimal modulo
strong bisimulation.

〈Y,E〉 È 0 〈X ,E〉 0

Intuitively, we could simplify the right hand side of Y to X due to idempotence of ∨.

For equation systems in SRF this was resolved by the introduction of idempotence
identifying bisimilarity in [KW11]. This is generalised to structure graphs as follows.

Definition 3.40. Let G = 〈T, t,→, d, r,↗〉 be a structure graph. A symmetric relation
R⊆ T × T is an idempotence identifying bisimulation relation if for all (u, u′) ∈ R

• r(u) = r(u′),↗ (u) =↗ (u′);

• d(u) ∈ {>,⊥} =⇒ d(u) = d(u′);

• d(u) 6= d(u′) implies for all v, v′ ∈ T if u→ v and u′→ v′, then (v, v′) ∈ R;

• for all v ∈ T , if u→ v, then u′→ v′ for some v′ ∈ T such that (v, v′) ∈ R.

Two vertices u and u′ are idempotence identifying bisimilar, notation u ↔u′ if there exists
an idempotence identifying bisimulation relation R such that (u, u′) ∈ R.

Observe that in the structure graph of Example 3.39 the vertices for X and Y are
indeed idempotence identifying bisimilar.

3.4.1 Properties of Idempotence Identifying Bisimilarity

A maximal idempotence identifying bisimulation relation exists. This relation is the union
of all possible idempotence identifying bisimulation relations.

Property 3.41. Let R, S be two idempotence identifying bisimulation relations over norm-
alised structure graphs. The union R∪S is again an idempotence identifying bisimulation
relation.
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We next show that idempotence identifying bisimilarity is an equivalence relation.
We also show that it only has a natural quotienting operation if we restrict ourselves to
normalised structure graphs.

Proposition 3.42. idempotence identifying bisimilarity is an equivalence relation on struc-
ture graphs.

Proof. Reflexivity and symmetry follow immediately. We therefore focus on transitivity.
Assume that u ↔ v and v ↔w for some u, v and w. This means that there are idempotence
identifying bisimulation relations R and S such that u R v and v S w. Assume that R and
S are such. Without loss of generality, assume that these relations are maximal. Then, (i)
u S ◦ R w, which follows by definition of S ◦ R (viz., applying relation S after R), and, (ii)
S ◦ R is an idempotence identifying bisimulation relation, which we prove next.

Assume that u S ◦ R w for some u, w. Note that this means there has to be some v,
such that u R v and v S w. We show that S ◦ R satisfies the idempotence identifying
bisimulation conditions.

• ad r(u) = r(w). Observe that we have u R v and v S w. From this, both r(u) = r(v)
and r(v) = r(w) follow, proving r(u) = r(w);

• ad↗ u=↗ w. Analogous to the previous case;

• ad d(u) ∈ {>,⊥} =⇒ d(u) = d(w). Observe that we have u R v and v S w.
From this, it follows that d(u) ∈ {>,⊥} ⇐⇒ d(v) ∈ {>,⊥}, d(u) ∈ {>,⊥} =⇒
d(u) = d(v) and d(v) ∈ {>,⊥} =⇒ d(v) = d(w). From this it follows that
d(u) ∈ {>,⊥} =⇒ (d(u) = d(v) ∧ d(v) = d(w)), proving d(u) ∈ {>,⊥} =⇒
(d(u) = d(w)) by transitivity of =;

• ad d(u) 6= d(w) implies for all u′, w′ if u → u′ and w → w′, then (u′, w′) ∈S ◦ R.
Assume that d(u) 6= d(w). Observe that d(u), d(w), if defined, are not elements of
{>,⊥}. Towards a contradiction, assume there are u′, u′′ such that u→ u′, u→ u′′

and u′ 6R u′′. Due to maximality of R, there are v′, v′′ such that

v→ v′, v→ v′ and v′ 6R v′′. (3.1)

Due to maximality of S, there also exist v′, v′′ such that v → v′ and v → v′′ for
which v′ 6S v′′. Likewise we derive that there exist w′, w′′ such that w → w′ and
w → w′′, for which w′ 6S w′′. From (3.1) and the fact that R is an idempotence
identifying bisimulation relation, the requirements from Definition 3.40 necessitate
that d(u) = d(v), and likewise d(v) = d(w). This contradicts our assumption that
d(u) 6= d(w), hence for all u′, u′′ such that u→ u′ and u→ u′′, we have that u′Ru′′.
Then also for all v′, v′′ for which v → v′ and v → v′′, v′Rv′′. Therefore, all u′ such
that u→ u′ are related to all w′ for which w→ w′, via S ◦ R;

• ad for all u′ s.t. u → u′, there is a w′ with w → w′, such that u′ S ◦ R w′. Let u′

be such that u → u′. Since R is an idempotence identifying bisimulation relation,
there is some v′, v → v′, such that u′ R v′. Likewise, for this v′ there is some w′,
w→ w′, such that v′ S w′, hence u′ S ◦ R w′. ut
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Using this notion of idempotence identifying bisimilarity, we also define the idem-
potence identifying bisimulation quotient of a structure graph.

Definition 3.43. Let G = 〈T, t,→, d, r,↗〉 be a structure graph. The idempotence identi-
fying bisimulation quotient G/↔= 〈T ′, t ′,→′, d ′, r ′,↗′〉 of G is defined as follows:

• T ′
∆
= T/↔= {[t i]↔ | t i ∈ T} with [t i]↔= {t j ∈ T | t i ↔ t j};

• t ′
∆
= [t]↔;

• →′∆= {[t i]↔→′ [t j]↔ | t i → t j};

• d ′([t i]↔)
∆
=







d(t i) if t i ∈ dom(d) and |{[t j]↔ | [t i]↔→′ [t j]↔}| 6= 1

d(t i) if d(t i) ∈ {>,⊥}
undefined otherwise;

• r ′([t i]↔)
∆
= r(t i), if t i ∈ dom(r), and undefined otherwise;

• ↗′ ([t i]↔)
∆
=↗ (t i), if t i ∈ dom(↗), and undefined otherwise.

We showed that the strong bisimulation quotient of a BESsy structure graph is again
BESsy in Lemma 3.21. The following example illustrates that this result does not hold
for the idempotence identifying bisimulation quotient.

Example 3.44. Consider the following equation system E , defined as µX = X ∨ ((X ∨
X ) ∧ (X ∨ X )), with the associated structure graph for 〈X ,E〉, represented by u, in the left
structure graph below. Observe that this structure graph is BESsy, and that it is minimal
modulo strong bisimulation.

u È 1

v Î w È

u′ È 1

v′ w′

The structure graph depicted to the right is the idempotence identifying bisimulation
quotient of the graph to the left. The relation is depicted using dashed lines. Observe that
the structure graph to the right is not BESsy, since it contains vertices with an outgoing
edge that are not decorated with Î, È or a rank. Essentially, idempotence identifying
bisimulation allows the removal of idempotence from unranked nodes in the structure
graph, this removes all decorations from these nodes, whereas they retain at least one
outgoing edge.
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If, instead, we consider the normalised structure graph, we ensure that every vertex is
ranked. In the following figure, we present the normalised structure graph corresponding
to the previous BES. Its idempotence identifying bisimilarity quotient is shown to the
right. The corresponding relation is again indicated.

norm(u) È 1

norm(v) Î 0 norm(w) È 0

norm(u′) È 1

norm(v′) 0 norm(w′) 0

Since the minimal idempotence identifying bisimilar structure graph that corresponds to
the normalised BES is again BESsy, we can extract the following BES using β(u′):

µXnorm(u′) = Xnorm(u′) ∨ (Xnorm(v′) ∨ Xnorm(v′))
νXnorm(v′) = Xnorm(w′)
νXnorm(w′) = Xnorm(u′)

This gives rise to the following property of the idempotence identifying bisimilarity
quotient, which is more restrictive than for strong bisimulation.

Lemma 3.45. Let G be a normalised structure graph, then G/↔ is BESsy if G is BESsy.

Proof. Let G be a normalised structure graph. Observe that in G every vertex is labelled
by a rank or a free variable marking, and both are preserved in G/↔, satisfying the second
and fourth requirement of BESsyness. If, in the quotient, a decoration Î or È of a vertex
u is removed, this means that all successors of u are related, hence in the quotient, the
vertex corresponding to u has only one successor, satisfying the third requirement of
BESsyness. ut

Observe that the converse of this lemma does not hold, i.e., a minimal normalised
BESsy structure graph can be equivalent to structure graphs that are not BESsy. This
is witnessed by the structure graphs in Example 3.22 if we remove the decoration from
vertex norm(w′).

For Boolean equation systems in SRF, idempotence identifying bisimilarity was shown
to relate equations of which the right hand sides are equivalent modulo idempotence.
We first prove that this is still the case if we consider structure graphs.

Lemma 3.46. Let E be a BES in SRF, such that σX = f ∧ f and σY = f are equations in
E satisfying rankE (X ) = rankE (Y ). Then we have 〈X ,E〉 ↔〈Y,E〉.

Proof. Suppose that rankE (X ) = n. Since E is in SRF, either f is conjunctive, or f is a
variable. We distinguish both cases.
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• f is conjunctive. Then the vertices 〈 f ∧ f ,E〉 and 〈 f ,E〉 are both decorated by
Î according to rule (5). Furthermore, both are not ranked. According to rule
(19), the vertices 〈X ,E〉 and 〈Y,E〉 are both labelled by Î, and they are labelled
by ô n according to (2). Furthermore, since f is conjunctive, 〈 f ∧ f ,E〉 → 〈g,E〉
if and only if 〈 f ,E〉 → 〈g,E〉, and all edges are inherited by the vertices for X and
Y according to rule (23). Therefore, the identity relation extended with the pair
(〈X ,E〉, 〈Y,E〉) is an idempotence identifying bisimulation relation.

• f is a variable. Observe that either 〈 f ,E〉 ô m for some m, or 〈 f ,E〉 ↗Z for some
Z . According to rules (21) and (22), 〈Y,E〉 → 〈 f ,E〉, and 〈Y,E〉 is not decorated
by Î or È. We also find that 〈X ,E〉 → 〈 f ,E〉, because 〈 f ∧ f ,E〉 → 〈 f ,E〉, and
the fact that 〈 f ∧ f ,E〉 is decorated by Î and not ranked. Furthermore, 〈X ,E〉 is
decorated by Î according to (19). Again, the identity relation extended with the
pair (〈X ,E〉, 〈Y,E〉) is an idempotence identifying bisimulation relation.

In both cases, we find that 〈X ,E〉 ↔〈 f , Y 〉, hence the result follows. ut

The following lemma, showing idempotence for disjunctive right hand sides in equa-
tion systems in SRF is symmetric.

Lemma 3.47. Let E be a BES in SRF, such that σX = f ∨ f and σY = f are equations in
E satisfying rankE (X ) = rankE (Y ). Then we have 〈X ,E〉 ↔〈Y,E〉.

The previous lemmata show that earlier results directly on equation systems in SRF
carry over to the corresponding structure graphs. The question remains whether we can
relate all idempotent formulae, i.e., given an arbitrary equation system E , and a formula
f , is it the case that 〈 f ∧ f ,E〉 ↔ 〈 f ,E〉 ↔ 〈 f ∨ f ,E〉? The following example shows that
this is, in general not the case.

Example 3.48. Consider the formulae (Y ∧ Z) ∨ (Y ∧ Z) an (Y ∧ Z) in the empty
equation system. This gives rise to the following structure graph.

〈(Y ∧ Z) ∨ (Y ∧ Z),ε〉 È 〈Y ∧ Z ,ε〉 Î

〈Y,ε〉 ↗Y

〈Z ,ε〉 ↗Z

There is no idempotence identifying bisimulation relation relating the vertices for 〈(Y ∧
Z) ∨ (Y ∧ Z),ε〉 and 〈Y ∧ Z ,ε〉, due to the sensitivity of idempotence identifying bisimil-
arity to counting.

In essence, this example shows that for two vertices in the structure graph to be
related, the number of intermediate vertices on paths to vertices labelled ↗ or ô must
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be the same. Generally, this is not satisfied if we try to relate vertices that represent
formulae with idempotent right hand sides in which Boolean connectives occur mixed.
In particular, if we consider the formulae X and X ∧ X in the empty equation system, we
do not have 〈X ,ε〉 ↔ 〈X ∧ X ,ε〉. This follows immediately from the following structure
graph. Similar examples using ranked vertices are as easy to construct.

〈X ∧ X ,ε〉 Î 〈X ,ε〉 ↗X

We already observed in Example 3.44 that quotienting is only well-defined for nor-
malised structure graphs. The combination of Lemma 3.46 and the previous examples
shows that for structure graphs, in general, idempotence identifying bisimulation does
not live up to its name. This answers the question that we set out with: the extent to
which idempotence identifying bisimilarity is able to relate vertices representing idem-
potent formulae is extremely limited in arbitrary structure graphs, but it is able to relate
vertices representing equations with idempotent right hand sides in equation systems in
SRF.

3.4.2 Idempotence Identifying Bisimilarity Implies Solution Equival-
ence

It remains to be shown that idempotence identifying bisimilarity preserves solution equi-
valence for normalised BESsy structure graphs. This is the first result of this section. In
Theorem 3.51 we give an overview of the relationship between our equivalences.

We first show that normalised BESsy structure graphs without ↗ labelled vertices,
that are idempotence identifying bisimilar, are solution equivalent.

Lemma 3.49. Let t, t ′ be normalised BESsy structure graphs in which no vertex is labelled
with ↗. Assume t is minimal with respect to idempotence identifying bisimilarity. Then
t ↔ t ′ implies t ≡ t ′.

Proof. Since no vertex is labelled with ↗, β(t) and β(t ′) are closed, and we need to
show that ¹ϕ(t)º¹β(t)º = ¹ϕ(t ′)º¹β(t ′)º. Like in Lemma 3.35 we omit the case
where the initial vertex of t is marked with > or ⊥, since it is trivial. Assume that the
initial vertex of t is not decorated with > nor ⊥, and suppose that ¹ϕ(t)º¹β(t)º= true.
According to Proposition 3.32 we know that there is a È-choice function γ such that
¹β(tγ)º= ¹β(t)º. As in the proof of Lemma 3.35, one can construct aÈ-choice function
γ′ for t ′ satisfying:

∀u ∈ dom(γ), u′ ∈ dom(γ′) : u ↔u′ =⇒ γ′(u)↔γ(u′)

Note that a vertex u′ decorated with Î or È in t ′ may be related to an undecorated vertex
in u in t with u→ v, in which case an arbitrary v′ such that u′→ v′ may be chosen such
that u′ ↔ v′. The proof that tγ and t ′

γ′
have the same paths follows the same line of

reasoning as in the proof of Lemma 3.35, and results in ¹ϕ(t ′)º¹β(t ′)º = true, hence
t ≡ t ′. The case ¹ϕ(t)º¹β(t)º= false is again fully dual. ut
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The next theorem generalises this result to structure graphs with vertices labelled↗.
Due to Example 3.44 we only consider normalised BESsy structure graphs, whereas The-
orem 3.37 reasoned about arbitrary BESsy structure graphs. The intent of both theorems
is similar, however.

Theorem 3.50. Let t, t ′ be BESsy structure graphs, then norm(t) ↔ norm(t ′) implies
t ≡ t ′.

Proof. Follows the exact same line of reasoning as the proof of Theorem 3.37, using
Lemma 3.49. ut

We can now summarise the relationships between the equivalences for normalised,
BESsy structure graphs.

Theorem 3.51. On normalised, BESsy structure graphs, we have:

1. the relation ↔ is strictly finer than ↔;

2. the relation ↔ is strictly finer than ≡.

Proof. We show each property separately.

1. ad ↔ ⊆ ↔; observe that ↔ is finer than ↔ as an immediate consequence of the
weakening of the first requirement of bisimilarity: for all bisimilar vertices u, u′

having the same decorations, i.e., d(u) = d(u′), the third requirement of idem-
potence identifying is trivially satisfied. Strictness follows from the fact that in the
following two structure graphs u and u′ are idempotence identifying bisimilar, but
not bisimilar.

u Î 0 u′ 0

2. ad ↔ ⊆ ≡; follows immediately from t ↔ t/↔ for all t, the fact that ↔ and ≡
are equivalence relations, and Theorem 3.50. Strictness follows from the fact that
in the following two structure graphs u and u′ are solution equivalent, but not
idempotence identifying bisimilar.

u 2 v 1 u′ 2

ut

The following proposition demonstrates that using idempotence identifying bisimil-
arity subgraphs sometimes reduce to a single vertex. In essence, this shows that for this
class of structure graphs, idempotence identifying bisimilarity computes the solution.

Proposition 3.52. Let t be normalised, BESsy structure graph, in which no vertex is labelled
↗,> or⊥. Let u be a subgraph of t, that is closed with respect to→, and in which all vertices
have the same rank. Then for all v, w in u, v ↔w and v ≡ w.

64



3.5. Bisimilarity on Processes vs Bisimilarity on Structure Graphs

Proof. The relation R relating all vertices in u is an idempotence identifying bisimulation.
Observe that, in such a graph u all paths are infinite, and dominated by a single priority,
hence, according to Lemma 3.34, the formulae corresponding to the vertices in u all have
the same solution. From these two observations the result follows immediately. ut

In other words, a subgraph without outgoing edges, consisting of vertices all labelled
with the same rank, and without decorations ↗, > or ⊥, can be reduced to a single
vertex. The following example shows that idempotence identifying bisimilarity can yield
a substantially greater reduction, by an arbitrarily large factor, than bisimilarity.

Example 3.53. Consider the following class of structure graphs in which we have a
sequence of vertices with alternating decorations È and Î of arbitrary length. Due the
presence of the decorations, every structure graph in this class is minimal with respect to
bisimulation. Under idempotence identifying bisimulation every structure graph in this
class reduces to a single vertex with priority 0 and a self-loop.

v1 È 0 v2 Î 0 v3 È 0 vn−1 Î 0 vn 0

This structure graph (modulo naming of the vertices) can, e.g., be obtained from the BES
(νX1 = X2 ∨ X2)(νX2 = X3 ∧ X3) · · · (νXn−1 = Xn ∧ Xn)(νXn = Xn)

3.5 Bisimilarity on Processes vs Bisimilarity on Structure
Graphs

The µ-calculus and bisimilarity of finitely branching labelled transition systems are in-
timately related: two states in a transition system are bisimilar if and only if the states
satisfy the same set of µ-calculus formulae. As a result, one can rely on bisimulation min-
imisation techniques for reducing the complexity of the labelled transition system, prior
to analysing whether a given µ-calculus formula holds for that system. Unfortunately, in
practice, bisimulation reductions are often disappointing, and have to be combined with
abstractions that are safe with respect to the formula in order to be worthwhile.

We show that minimising an equation system that encodes a model checking prob-
lem is, size-wise, always at least as effective as first applying a safe abstraction to the
labelled transition system, subsequently minimising the latter and only then encoding
the model checking problem in an equation system. An additional example illustrates
that bisimulation minimisation for equation systems can in fact be more effective.

We first prove that, if for all bisimilar states s, s′ in a labelled transition system, the
corresponding Xs and Xs′ are also bisimilar, that then the vertices representing the right
hand sides of s and s′ in the structure graph are also bisimilar. Note that we consider
arbitrary equation systems. In Proposition 3.55 we use this lemma to prove that bisimilar
states in a labelled transition system give rise to bisimilar vertices in the structure graph
corresponding to the equation system encoding the model checking problem on the LTS.
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Lemma 3.54. Assume L = 〈S, Act,→〉 is an arbitrary labelled transition system. Let φ be
an arbitrary µ-calculus formula. Then, for arbitrary equation systems E , we have:

if ∀s, s′ ∈ S : s ↔ s′ =⇒ ∀X̃ ∈ bnd(φ)∪ occ(φ) : 〈Xs,E〉 ↔〈Xs′ ,E〉
then ∀s, s′ ∈ S : s ↔ s′ =⇒ 〈RHSs(φ),E〉 ↔〈RHSs′(φ),E〉

Proof. Assume a given equation system E . We proceed by means of an induction on the
structure of φ.

• Base cases. Assume that for all s, s′ ∈ S, satisfying s ↔ s′, and all X̃ ∈ bnd(φ) ∪
occ(φ), we have 〈Xs,E〉 ↔ 〈Xs′ ,E〉. Assume that t, t ′ ∈ S are arbitrary states satis-
fying t ↔ t ′.

– ad φ ≡ b, where b ∈ {true, false}. Clearly, since 〈RHSt(φ),E〉 = 〈b,E〉 =
〈RHSt ′(φ),E〉, bisimilarity is guaranteed by unicity of the term, regardless of
the states t and t ′;

– ad φ ≡ X̃ . Clearly, X̃ ∈ occ(φ), so, the required conclusion follows immedi-
ately from the fact that 〈RHSt(φ),E〉= 〈X t ,E〉 ↔〈X t ′ ,E〉= 〈RHSt ′(φ),E〉;

• Inductive cases: we assume the following induction hypothesis:

if ∀s, s′ ∈ S : s ↔ s′ =⇒ ∀X̃ ∈ bnd(φi)∪ occ(φi) : 〈Xs,E〉 ↔〈Xs′ ,E〉
then ∀s, s′ ∈ S : s ↔ s′ =⇒ 〈RHSs(φi),E〉 ↔〈RHSs′(φi),E〉

(IH)

From hereon, assume that we have a pair of bisimilar states t, t ′ ∈ S.

– ad φ ≡ φ1 ∧ φ2. Assume that for any pair of bisimilar states s, s′ ∈ S, and for
all X̃ ∈ bnd(φ1 ∧ φ2) ∪ occ(φ1 ∧ φ2) = (bnd(φ1) ∪ occ(φ1)) ∪ (bnd(φ2) ∪
occ(φ2)), we have 〈Xs,E〉 ↔ 〈Xs′ ,E〉. By our induction hypothesis, we have
〈RHSt(φ1),E〉 ↔ 〈RHSt ′(φ1),E〉 and 〈RHSt(φ2),E〉 ↔ 〈RHSt ′(φ2),E〉. Ac-
cording to Lemma 3.23 we get 〈RHSt(φ1) ∧ RHSt(φ2),E〉 ↔ 〈RHSt ′(φ1) ∧
RHSt ′(φ2),E〉. By definition of RHS, we have the required 〈RHSt(φ1 ∧
φ2),E〉 ↔〈RHSt ′(φ1 ∧ φ2),E〉.

– ad φ ≡ φ1 ∨ φ2. Follows the same line of reasoning as the previous case.

– ad φ ≡ [A]φ1. Assume that for all pairs of bisimilar states s, s′ ∈ S, and all
X̃ ∈ bnd([A]φ1)∪occ([A]φ1) = bnd(φ1)∪occ(φ1), we have 〈Xs,E〉 ↔〈Xs′ ,E〉.
By induction, we find that 〈RHSs(φ1),E〉 ↔ 〈RHSs′(φ1),E〉 holds for all pairs
of bisimilar states s, s′ ∈ S. This includes states t and t ′. Since t and t ′ are
bisimilar, we have t

a−→ if and only if t ′
a−→ for all a ∈ A. We distinguish two

cases:

1. Case t
a
−/−→ for any a ∈ A. Then also t ′

a
−/−→ for any a ∈ A. Hence,

RHSt([A]φ1) = true = RHSt ′([A]φ1). We thus immediately have the
required 〈RHSt([A]φ1),E〉 ↔〈RHSt ′([A]φ1),E〉;

2. Case t
a−→ for some a ∈ A. Assume that t

a−→ u. Since t ↔ t ′, we have
t ′

a−→ u′ for some u′ ∈ S satisfying u ↔ u′ (and vice versa). Because of our
induction hypothesis, we then also have 〈RHSu(φ1),E〉 ↔〈RHSu′(φ1),E〉
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(and vice versa). We thus find that for every term in the non-empty set
{〈RHSu(φ1),E〉〉 | a ∈ A, t

a−→ u}, we can find a bisimilar term in the set
{〈RHSu′(φ1),E〉 | a ∈ A, t ′

a−→ u′} and vice versa. Then, by Corollary 3.25,
also 〈

d
{RHSu(φ1) | a ∈ A, t

a−→ u},E〉 ↔ 〈
d
{RHSu′(φ1) | a ∈ A, t ′

a−→
u′},E〉. This leads to 〈RHSt([A]φ1),E〉 ↔〈RHSt ′([A]φ1),E〉.

Clearly, both cases lead to the required conclusion.

– ad φ ≡ 〈A〉φ1. Follows the same line of reasoning as the previous case.

– ad φ ≡ σX̃ . φ1. Since X̃ ∈ bnd(φ), this case follows immediately from the
assumption on X̃ and the definition of RHS.

ut

The above lemma is at the basis of the following proposition:

Proposition 3.55. Let L = 〈S, Act,→〉 be a labelled transition system. Let φ be an arbitrary
closed µ-calculus formula. Let s, s′ ∈ S be an arbitrary pair of bisimilar states. We then have:

∀X̃ ∈ bnd(φ) : 〈Xs,E
L(φ)〉 ↔ 〈Xs′ ,E

L(φ)〉

Proof. Let φ be an arbitrary closed formula, i.e., occ(φ) ⊆ bnd(φ); since φ is a closed
formula, EL(φ) will be a closed equation system. In case bnd(φ) = ;, the statement
holds vacuously. Assume bnd(φ) = {X̃ 1, . . . , X̃ n}, for some n ≥ 1. Clearly, for each
variable X̃ i ∈ bnd(φ), we obtain equations of the form σiX

i
s = RHSs( f i) in EL(φ). Let I

be the relation on vertices, defined as follows:

I = {(〈X i
s ,E

L(φ)〉, 〈X i
s′ ,E

L(φ)〉) | s, s′ ∈ S, X̃ i ∈ bnd(φ), s ↔ s′}

According to Lemma 3.54, I underlies the bisimilarity between 〈RHSs( f i),EL(φ)〉 and
〈RHSs′( f i),EL(φ)〉 for pairs of bisimilar states s, s′ ∈ S. Assume R f i is the bisimulation
relation underlying said equivalence. Let R be defined as follows:

R= I ∪
⋃

f i

R f i

R is again a bisimulation relation, as can be checked using the SOS rules 19–24 for
equations and Lemma 3.54. Clearly, R relates 〈Xs,E

L(φ)〉 and 〈Xs′ ,E
L(φ)〉 for arbitrary

X̃ ∈ bnd(φ) and bisimilar states s, s′ ∈ S. ut

As a result of the above proposition one can argue that bisimulation on processes
is less powerful than bisimulation on equation systems. However, one may be inclined
to believe that combined with abstraction, bisimilarity on processes can lead to greater
reductions. Below, we show that even in the presence of safe abstractions, bisimilarity on
equation systems still surpasses bisimilarity on processes.

We first formalise the notion of safe abstraction for processes. Assume τ is a constant,
not present in any set of actions Act.

Definition 3.56. An abstraction of a labelled transition system L = 〈S, Act,→〉 with re-
spect to a set of actions A⊆ Act, is the labelled transition system LA = 〈S, Act∪ {τ},→A〉,
where:
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• for all actions a /∈ A, s
a−→A s′ if and only if s

a−→ s′;

• s
τ−→A s′ if and only if s

a−→ s′ for some a ∈ A;

In effect, an abstraction relabels an action that decorates a transition to τ only if that
action appears in the set A. Clearly, if s ↔ s′ holds in L, then also s ↔ s′ in LA, but the
converse does not hold necessarily.

Definition 3.57. An abstraction LA of L is said to be safe with respect to a closed modal
µ-calculus formula φ if and only if for each subformula [A′]ψ and 〈A′〉ψ of φ, A′∩A= ;.

It follows from the semantics of the modal µ-calculus that all actions of some L,
disjoint with the actions found inside the modalities in φ can be renamed to τ without
affecting the validity of the model checking problem.

Proposition 3.58. Let L = 〈S, Act,→〉 be a labelled transition system. Let φ be a closed
modal µ-calculus formula, and assume LA is a safe abstraction of L. Then for each state
s ∈ S, we have L, s |= φ if and only if LA, s |= φ.

The below theorem strengthens the result we obtained in Proposition 3.55, by stating
that even in the presence of safe abstractions, bisimilarity for equation systems is as
powerful as bisimilarity taking abstractions into account.

Theorem 3.59. Let L = 〈S, Act,→〉 be an arbitrary labelled transition system. Let φ be an
arbitrary closed modal µ-calculus formula over Act. Then for every safe abstraction LA of L,
we have for every pair of bisimilar states s, s′ ∈ S in LA:

∀X ∈ bnd(φ) : 〈Xs,E
L(φ)〉 ↔ 〈Xs′ ,E

L(φ)〉

Proof. The proof is similar to the proof of Proposition 3.55. In particular, it relies on the
definition of a safe abstraction to ensure that 〈RHSs([A′]ψ),E〉 and 〈RHSs′([A′]ψ),E〉
for states s, s′ that are bisimilar in LA, but not in L, are mapped onto 〈true,E〉 for both
LTSs. ut

Theorem 3.59 positively shows that bisimilar states in a state space indeed give rise
to bisimilar equations in the equation systems encoding model checking problems, even
when considering ‘safe’ abstractions on the original state space.

Using Theorem 3.27 and Theorem 3.51 we immediately get the following as a corol-
lary of Theorem 3.59.

Corollary 3.60. Let L = 〈S, Act,→〉 be an arbitrary labelled transition system. Let φ be an
arbitrary closed µ-calculus formula over Act. Then for every safe abstraction LA, we have for
every pair of bisimilar states s, s′ ∈ S in LA:

∀X̃ ∈ bnd(φ) : norm(〈Xs,E
L(φ)〉)↔norm(〈Xs′ ,E

L(φ)〉)

Lastly, we provide an example that demonstrates that bisimulation reduction of equa-
tion systems can lead to arbitrarily larger reductions compared to the reductions achiev-
able through safe abstractions and minimisation of a given LTS.
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Example 3.61. Let N be an arbitrary positive number. Consider the process described
by the following set of recursive processes (using process algebra style notation):

{P1 = a ·QN , Pn+1 = a · Pn, Q1 = b · PN , Qn+1 = b ·Qn | n< N}

Process PN induces an LTS L that performs a sequence of a actions of length N , followed
by a sequence of b actions of length N , returning to process PN . Observe that the process
PN cannot be reduced further modulo bisimulation. Let φ be the modal µ-calculus for-
mula φ = ν X̃ . 〈{a, b}〉X̃ , asserting that there is an infinite sequence consisting of a’s, b’s,
or a’s and b’s. Clearly, there is no safe abstraction of process PN with respect to φ, other
than process PN itself. The equation system EPN (φ) is as follows:

ν{(XP1
= XQN

∨ XQN
), (XPn+1

= XPn
∨ XPn

),
(XQ1

= XPN
∨ XPN

), (XQn+1
= XQn

∨ XQn
) | n< N}

We find that 〈XPN
,EPN (φ)〉 and 〈Y, (νY = Y ∨ Y )〉 are bisimilar, which demonstrates a

reduction of a factor 2N . As the labelled transition system can be scaled to arbitrary size,
this demonstrates that bisimilarity for equation systems can be arbitrarily more effective.

3.6 Application

Equation systems that are not immediately in simple form can be obtained through
the reduction of process equivalence checking problems such as the branching bisim-
ulation problem, see e.g. [Che+07], and the more involved model checking problems.
As a slightly simplified example of the latter, we analyse an unreliable channel using µ-
calculus model checking. The channel can read messages from its environment through
the r action, and send or lose these next through the s action and the l action, respect-
ively. Losing a message happens because of noise affecting the reliability of the channel;
we model this using an internal action i preceding action l. In case the message is lost,
subsequent attempts are made to send the message until this finally succeeds. The la-
belled transition system, modelling this system is given below.

s0 s1 s2

r

s

i

l

Suppose we wish to verify for which states it holds whether along all paths consisting
of reading and sending actions, it is infinitely often possible to potentially never perform
a send action. Intuitively, this should be the case in all states: from states s0 and s1,
there is a finite path leading to state s1, which can subsequently produce the infinite path
(s1 s2)ω, along which the send action does not occur. For state s2, we observe that there
is no path consisting of reading and sending actions, so the property holds vacuously in
s2. We formalise this problem as follows:1

φ ≡ ν X̃ . µỸ . (([{r, s}]X̃ ∧ (ν Z̃ . 〈s〉Z̃)) ∨ [{r, s}]Ỹ )
1Alternative phrasings are possible, but this one nicely projects onto an equation system with non-trivial

right-hand sides, clearly illustrating the theory outlined in the previous sections in an example of manageable
proportions.
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Verifying which states in the labelled transition system satisfy φ is answered by solving
the equation system below. Note that the equation system was obtained through Defini-
tion 2.35. The solution to Xsi

answers whether si |= φ.

(νXs0
= Ys0

)
(νXs1

= Ys1
)

(νXs2
= Ys2

)
(µYs0

= ((Xs1
∧ Xs1

) ∧ Zs0
) ∨ ((Ys1

∧ Ys1
) ∨ (Ys1

∧ Ys1
)))

(µYs1
= ((Xs0

∧ Xs0
) ∧ Zs1

) ∨ ((Ys0
∧ Ys0

) ∨ (Ys0
∧ Ys0

)))
(µYs2

= (true ∧ Zs2
) ∨ true)

(νZs0
= Zs1

∨ Zs1
)

(νZs1
= Zs2

∨ Zs2
)

(νZs2
= Zs1

∨ Zs1
)

An answer to the global model checking problem would be encoded by the structure
graph 〈Xs0

∧ Xs1
∧ Xs1

,EL(φ)〉. Here we only depict the structure graph encoding the
local model checking problem s0 |= φ, encoded by the structure graph 〈Xs0

,EL(φ)〉,
which has initial vertex t1. Note that the ranked vertices t i originate from the ith equation
in the equation system. Likewise, the unranked vertices ui originate from the right-hand
side of the ith equation.

t1 2t4 È 1

u4 Î

t5 È 1

t2 2

u5 Î

t7 0

t8 0 t9 0

Observe that we have t1 ↔ t2, t7 ↔ t8 ↔ t9, t4 ↔ t5 and u4 ↔ u5. Minimising the above
structure graph with respect to bisimulation leads to the structure graph depicted below:

t1/↔ 2 t4/↔ È 1 u2/↔ Î t7/↔ 0

Note that the structure graph is BESsy, and, hence, admits a translation back to an equa-
tion system. Using the translation provided in Definition 3.8 results in the following
equation system:

(νX t1/↔
= X t4/↔

)
(µX t4/↔

= (X t7/↔
∧ (X t1/↔

∧ X t1/↔
)) ∨ (X t4/↔

∨ X t4/↔
))

(νX t7/↔
= X t7/↔

)
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Answering the verification problem s0 |= φ can thus be achieved by solving 3 equations
rather than the original 9 equations. Using standard algorithms for solving equation sys-
tems, one quickly finds that all equations of the minimised equation system (and thereby
all of the equations from the original equation system they represent) have true as their
solutions. Note that the respective sizes of the structure graphs underlying the required
equations in the original equation systems are 9 before minimisation and 4 after min-
imisation, which is almost a 55% gain. Such gains (and larger) appear to be typical in
this setting (see also [KW11]), and often surpass those in the setting of labelled trans-
ition systems. Similar gains are found for the global model checking problem. Observe,
moreover, that the original labelled transition system already is minimal, demonstrat-
ing once more that the minimisation of an equation system can be more effective than
minimising the original labelled transition system.

3.7 Closing Remarks

We presented a set of deduction rules for deriving structure graphs from proposition for-
mulae and Boolean equation systems, following the regime of [Plo04]. In defining these
rules, we focussed on simplicity. We carefully selected a small set of computationally
cheap logical equivalences that we wished to be reflected by bisimilarity in our structure
graphs, and subsequently showed that we met these goals.

Structure graphs generalise the dependency graphs of e.g. [Mad97; Kei06]. The latter
formalism is incapable of capturing all the syntactic riches of Boolean equation systems,
and is only suited for a subset of closed equation systems in simple form. A question,
put forward in [KW11], is how the restriction to equation systems in simple form affects
the power of reduction of strong bisimulation. In Section 3.3, we showed that these re-
strictions are in fact beneficial to the identifying power of bisimilarity. This result follows
immediately from the meta-theory for structured operational rules, see e.g. [MRG05]. We
furthermore proved that also in our richer setting, bisimulation minimisation of a struc-
ture graph, induced by an equation system, preserves and reflects the solution to the ori-
ginal equation system. This generalises [KW11, Theorem 1] for dependency graphs. In
Section 3.4 we showed that, by weakening the definition of bisimulation, we can equate
vertices representing conjunctive and disjunctive formulae. However, this idempotence
identifying bisimilarity is only meaningful on a subset of the structure graphs. This may
be a fair price to pay, since for some subclasses of structure graphs the reduction achieved
using idempotence identifying bisimilarity is arbitrarily larger than that achieved using
strong bisimilarity.

Beyond the aforementioned results, we studied the connection between bisimilarity
for labelled transition systems, the µ-calculus model checking problem and (idempotence
identifying) bisimilarity for structure graphs. In Section 3.5, we showed that bisimula-
tion minimisation of a structure graph (associated to an equation system encoding an
arbitrary model checking problem on an arbitrary labelled transition system) is at least
as effective as bisimulation minimisation of the labelled transition system prior to the
encoding. This relation even holds when bisimilarity is combined with safe abstractions
for labelled transition systems. We moreover show that this relation is strict through an
example formula φ and a labelled transition system L of 2N (N ≥ 1) states that is already
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minimal (even when considering safe abstractions with respect to φ), whereas the struc-
ture graph induced by the equation system encoding the model checking problem can be
reduced by a factor 2N . These results provide the theoretical underpinning for the huge
reductions observed in [KW11]. Results of similar experiments, applied to parity games
instead of Boolean equation systems, are presented in Chapter 5. Reducing a labelled
transition system (if available explicitly), prior to encoding the verification problem as a
Boolean equation system, can still be useful, as the encoding is proportional in the size
of the labelled transition system.

The structure graphs that we considered in this chapter are of both theoretical and
practical significance. They generalise various graph-based models, including the afore-
mentioned dependency graphs, but also Parity Games [Zie98], and there are strong links
between our structure graphs and Switching Graphs [GP09] which have two kinds of
edges: ordinary edges and switches, which can be set to one of two destinations. Switch-
ing Graphs are more general than the dependency graphs of [Kei06], but are still inad-
equate for directly capturing the structure of the entire class of equation systems. Note
that in the Switching Graph setting, the v-parity loop problem is equivalent to the problem
of solving Boolean equation systems.

Given these links, a game-based characterisation of the concept of solution for equa-
tion systems, stated in terms of our choice functions and structure graphs is open for
investigation.

Simulation relations for Parity Games have been studied in, e.g., [FW06]. Some of
those are computationally expensive, or do not have well-defined quotients. In the next
chapter, we study equivalences weaker than bisimilarity and idempotence identifying
bisimilarity for parity games, striking a balance between expressivity and computational
complexity. We refrain from presenting that theory in the more general framework of
structure graph. We have shown that for bisimilarity, normalising the structure graph—
effectively turning it into a parity game—is beneficial to the reduction, and for idem-
potence identifying bisimulation it is even essential. This suggests that weakening equi-
valences for parity games might be beneficial. Furthermore, the notational overhead of
structure graphs turns out to be quite large; restricting ourselves to parity games allows
us to focus on the essence of the problem.
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Chapter 4

Equivalences on parity games

In the previous chapter we studied the notion of structure graph for Boolean equation
systems. We observed that normalisation of the structure does not negatively influence
the capabilities of bisimulation; in fact, bisimulation can reduce structure graphs by an
arbitrarily larger factor.

Normalised BESsy structure graphs in which no vertex is labelled with >, ⊥ or ↗
directly induce Boolean equation systems in simple recursive form. These Boolean equa-
tion systems in turn have a direct one-to-one correspondence with parity games, as we
showed in Chapter 2. Strong bisimulation (↔) and idempotence identifying bisimulation
can easily be recast in terms of parity games. In this setting we use the term governed
bisimulation (↔) instead of idempotence identifying bisimulation—the notion of idem-
potence does not exist in the context of parity games. These are the first two equivalences
for parity games that we introduce.

In the literature, other equivalences and preorders for parity games have been de-
scribed. The notion of direct simulation (≡dir) for parity games is hinted at in, e.g.,
[FW06]. Fritz and Wilke observed that, under some restrictions, we do not care whether
taking a certain step is postponed a finite number of times—the winner of a play in a par-
ity game only depends on the priorities that occur infinitely often, and these priorities are
preserved. This observation is used in their definition of delayed simulation preorder and
-equivalence (≡de) [FW06]. Delayed simulation does not have a well-defined quotient.
They introduced �-biased (≡e

de) and �-biased (≡o
de) variations of delayed simulation that

do have a well-defined quotient.
Similar to the observation by Fritz and Wilke, we observe that finite stretches of

vertices with the same priority on a play may be compressed into a single vertex. In this
chapter we use this observation to define two additional equivalences on parity games.

In defining our equivalences we draw inspiration from process theory. The notion of
stuttering equivalence ('), also referred to as stuttering bisimulation, is well-known for
Kripke structures. Stuttering equivalence allows for compressing sequences of vertices
with the same state label, as long as none of the possible future behaviours is removed.
Furthermore, it only relates two vertices if either both have the possibility to diverge, i.e.,
stay within the same equivalence class indefinitely, or both do not have this possibility.

If we assume that we may only relate vertices if they are owned by the same player
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and they have the same priority, this idea carries over to parity games. We show that
stuttering equivalent vertices are won by the same player in the parity game. As a side
result, given a winning strategy for a player from a particular vertex, we obtain winning
strategies for all stuttering equivalent vertices. This is of particular interest in case one is
seeking an explanation for the solution of the game, for instance as a means of diagnosing
a failed verification.

Stuttering equivalence enables us to reduce the parity game shown at the left below,
which is minimal with respect to strong bisimulation and governed bisimulation, to the
parity game shown to the right.

1 0 0 0 0 1 0 0

Stuttering equivalence, however, performs poorly in parity games with a high degree of
alternation between vertices owned by different players. The parity game shown to the
left in the following example is minimal using stuttering equivalence, however, it can
easily be seen that player � does not have any choice to make.

1 0 0 0 0 1 0 0

We therefore weaken the requirements of stuttering equivalence to allow for alternation
between players. The relation that we obtain is dubbed governed stuttering bisimilarity,
and relates both parity games in the picture above. Note that any equivalence notion, in
the reduced game to the right above, may not relate both vertices with priority 0, since
the rightmost vertex with priority 0 is won by player �, whereas the other is won by
player �.

Governed stuttering bisimilarity, still requires related vertices to have the same pri-
ority. This modification is similar in spirit to the change from strong bisimulation to
governed bisimulation. The main complication in relating vertices owned by different
players is correctly treating divergences within equivalence classes containing vertices
owned by different players.

We investigate the relationship between each of the equivalences that we have discussed.
This gives rise to the lattice of equivalences depicted in Figure 4.1. For each of the edges
in the lattice, we have indicated the theorem which shows the existence of the edge, and
the corresponding strictness result. Note that this lattice includes winner equivalence
(∼w), which is the coarsest meaningful equivalence on parity games, and isomorphism
(∼iso), which is the finest meaningful equivalence on parity games.

The equivalences in this lattice have varying running time complexities. Deciding
winner equivalence, which effectively means solving a parity game, is known to be in
NP∩ co-NP; most currently known algorithms require time exponential in the number of
priorities in the game. The subexponential algorithm due to Jurdziński et al. [JPZ06]
is a notable exception. In the following, assume that n, m, and d are the numbers of
vertices, edges, and priorities in a parity game, respectively. Deciding strong bisimilarity
can be done in O (n log m) time using Paige and Tarjan’s partition refinement algorithm
[PT87]. Existing strong bisimulation algorithms can straightforwardly be modified to
decide governed bisimulation without resulting in a worse running time complexity. Fritz
and Wilke showed that delayed simulation can be decided in O (n3d2m).
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∼iso

↔

↔'

∼

≡dir

≡o
de ≡e

de

≡de

∼w

1

12

3
3

3

1

44

4

4

4

1. Theorem 4.19, page 82;
2. Theorem 4.35, page 89;
3. Theorem 4.45, page 93;
4. Theorem 4.8, page 80.

Figure 4.1: Lattice of equivalences for parity games. The numbers on the edges refer
to the legend shown to the right, which in turn refers to the theorems that witness the
existence of the edge.

Stuttering equivalence can be decided in O (nm) time using the partition refinement
algorithm due to Groote and Vaandrager [GV90]. In addition to its complexity, stuttering
equivalence has several other traits that make it appealing: quotienting is straightfor-
ward, distributed algorithms for computing stuttering equivalence have been developed
(see e.g. [BO03]), and it admits efficient, scalable implementations using BDD techno-
logy [Wim+06].

In Section 4.5 we investigate an algorithm for deciding governed stuttering equi-
valence in O (n2m) time, which is inspired by this algorithm. Note that modifying this
algorithm to decide governed stuttering bisimilarity is not as straightforward as modify-
ing the strong bisimilarity algorithm to decide governed bisimilarity due to the subtleties
caused by divergence. In Section 4.5 we also indicate the case that is responsible for the
extra factor n in the worst-case running time complexity that we prove. The question
whether governed stuttering equivalence can be decided in O (nm) time is still open.

Structure of this chapter. The remainder of this chapter is organised as follows. In
Section 4.1 we first introduce some basic concepts that ease reasoning about parity
games. We introduce winner equivalence and direct- and delayed simulation equivalence
in Section 4.2. In Section 4.3 we recast strong bisimilarity and idempotence identifying
bisimilarity in concepts natural to parity games. These simply specialise the equivalence
presented in the previous chapter. Note that in the parity game setting we have dubbed
the latter governed bisimulation, since idempotence is not a natural concept here. In
Section 4.4 we define stuttering equivalence in the setting of parity games; we show that
it can be used for minimising parity games. We weaken stuttering equivalence to allow
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relating vertices owned by different players in Section 4.5, where we introduce the notion
of governed stuttering equivalence.

4.1 Properties of Parity Games

Although it is convenient to reason about parity games in terms of players that move
towards certain areas of the graph, it proves to be difficult to find a notation that defines
intuitive concepts and also allows compact proofs. In this section, we introduce a notation
that characterises the concept of a player being able to force the play towards a set of
vertices. After that, some lemmata are given that express basic properties of parity games
in terms of this extended notation.

We have several reasons to include these lemmata; first and foremost because they are
instrumental for the proofs in this chapter, but also because we think that these lemmata
are interesting in their own right, as they are fundamental and not always trivial to prove.

Throughout this whole section, fix some parity game (V,→,Ω,P ). Furthermore, we
let R⊆ V × V be a relation on vertices in the game.

We overload the notation used for the edge relation in a natural manner to deal with
a set of vertices U ⊆ V :

v→ U
∆
= ∃u ∈ U : v→ u

The relation R can be taken into account in the edge relation. This results in the edge
relation→R that only connects related vertices.

v→R u
∆
= v→ u ∧ v R u

We generalise the edge relation→R to its transitive closure. Furthermore, we define what
it means for a vertex to be divergent.

v 7→R u
µ
= v→R u ∨ (∃w ∈ V : v→R w ∧ w 7→R u)

v 7→R
ν
= ∃u ∈ V : v→R u ∧ u 7→R

The fixed point notation above expresses that 7→R u and 7→R are least and greatest func-
tions from (pairs of) vertices to Booleans, respectively, such that the equations hold.
Intuitively, the first equation says that v can reach u through a finite number of R-related
vertices, whereas the second states that from v it is possible to take an infinite sequence
of steps through R-related vertices.

This notation allows us to reason about computation paths. In the rest of this section
we introduce notation that allows us to reason about computation trees.

Given a memoryless strategy σ for some player, a move from vertex v to another
vertex u may be allowed or disallowed by that strategy. We introduce the following
notation:

v σ→u
∆
=

¨

v→ u ∧ σ(v) = u, if σ(v) is defined

v→ u, otherwise

We can now express that all plays allowed by σ eventually reach some set U from a
vertex v, denoted v σ 7→ U . This notation is generalised to v σ 7→R U to be able to express
that additionally all plays allowed by σ reach U immediately when they follow an edge
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to a vertex that is no longer related under relation R. The notation v σ 7→R is in a sense
the dual: it expresses that no play allowed by σ can reach a vertex that is not related
under R to the previous vertex in that play:

v σ 7→R U
µ
= ∀u : v σ→u =⇒ u ∈ U ∨ (v R u ∧ uσ 7→R U)

v σ 7→R
ν
= ∀u : v σ→u =⇒ v R u ∧ uσ 7→R

In the same way as before, the fixed point notation above expresses that σ 7→R U (resp.
σ 7→R) is the least (resp. greatest) function from vertices to Booleans such that the equa-
tion holds, and corresponds essentially to the standard notions of inevitability and invari-
ance. Using these definitions, we define what it means for a player to be able to force the
play to a set of vertices U , or for a player to be able to force the play to diverge within a
class of R:

x i 7→R U
∆
= ∃σ ∈ Si : x σ 7→R U

x i 7→R
∆
= ∃σ ∈ Si : x σ 7→R

We leave out R if R is the relation that relates all vertices in V . Note that v i 7→R ; never
holds, and that v i 7→R V is trivially true. Furthermore, v i 7→ is always true. We write
v i 67→R U for ¬(v i 7→R U), and likewise for the other arrows. If U ⊆ V/R, then we write
v i 7→RU to denote v i 7→R

⋃

C∈U C .

We are now ready to formalise some intuitions about parity games. One of the most basic
properties we expect to hold is that a player can force the play towards some given set of
vertices, or otherwise her opponent can force the play to the complement of that set.

Lemma 4.1. Let v ∈ V , U ⊆ V , i a player and R an equivalence relation on V , then

v i 7→R U ∨ v ¬i 7→R V \ U .

Proof. We prove the equivalent v i 67→R U =⇒ v ¬i 7→R V \ U . Assume that v i 67→R U . We
show that v ¬i 7→R V \ U . We distinguish on the player of v.

• P (v) = i. As v i 67→R U , we know ∀v′ : v → v′ =⇒ v′ 6∈ U , hence also ∀v′ : v →
v′ =⇒ v′ ∈ V \ U , so v ¬i 7→R V \ U .

• P (v) = ¬i. As v i 67→R U , and the parity game is total, we know ∃v′ : v → v′ ∧
v′ 6∈ U . Let v′ be such, and define σ ∈ S¬i such that σ(v) = v′. σ is a witness for
v ¬i 7→R V \ U . ut

In a similar train of thought, we expect that if from a single vertex, each player can
force the play towards some target set, then the players’ target sets must contain related
vertices. Note that for this we need that R is an equivalence relation. In particular,
transitivity is used in the repetition of the argument.

Lemma 4.2. Let R be an equivalence relation, let v ∈ V , U , U ′ ⊆ V and let i be a player,
then

v i 7→R U ∧ v ¬i 7→R U ′ =⇒ ∃u ∈ U , u′ ∈ U ′ : u R u′ ∨ u R v ∨ u′ R v.
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Proof. Assume v i 7→R U ∧ v ¬i 7→R U ′. Then there must be strategies σ ∈ S∗i and σ′ ∈ S∗¬i
such that v σ 7→R U ∧ v σ′ 7→R U ′. Assume that P (v) = ¬i (the other case is symmetric).
Then we have that σ(v) is undefined and σ′(v) = v′ for some v′ ∈ V . Obviously, v σ→ v′

and v σ′→ v′.
From the definitions of v σ 7→R U and v σ′ 7→R U ′ we obtain v′ ∈ U ∨ (v R v′ ∧ v′ σ 7→R U)

and v′ ∈ U ′ ∨ (v R v′ ∧ v′ σ′ 7→R U ′). This leads to four cases:

1. v′ ∈ U ∧ v′ ∈ U ′

2. v′ ∈ U ∧ (v R v′ ∧ v′ σ′ 7→R U ′)

3. (v R v′ ∧ v′ σ 7→R U) ∧ v′ ∈ U ′

4. (v R v′ ∧ v′ σ 7→R U) ∧ (v R v′ ∧ v′ σ′ 7→R U ′)

The first three cases directly imply the desired result. The fourth case gives rise to a repe-
tition of the same argument. The argument cannot be repeated infinitely long, because
then v σ 7→R U would not hold. ut

If we consider sets of classes U ⊆ V/R in R that a player can force to, rather than
arbitrary sets of vertices, we arrive at a much stronger version of Lemma 4.1; the result
follows directly from Lemmata 4.1 and 4.2.

Corollary 4.3. v i 67→RU ⇐⇒ v ¬i 7→R V/R \U .

The above lemmata reason about players being able to reach vertices. The following
lemma is essentially about avoiding vertices: it states that if one player can force diver-
gence, then this is the same as saying that the opponent cannot force the play outside the
class of the current vertex.

Lemma 4.4. Let v ∈ V , i a player and R an equivalence relation on V , then

v i 7→R⇐⇒ v ¬i 67→R V \ [v]R

Proof. Note that the truth values of v i 7→R and v ¬i 67→R V \ [v]R only depend on edges
that originate in [v]R, and that these truth values do not depend on priorities at all.
Therefore, the truth value of these predicates will not change if we apply the following
transformations to our graph:

• For all u ∈ V \ [v]R, replace all outgoing edges by a single edge u→ u.

• Make the priorities of all vertices in [v]R such that they are even iff i = �, and the
priorities of all other vertices odd iff i = �.

In the resulting graph, player i wins if and only if v i 7→R, and player ¬i wins if and only
if v ¬i 7→R V \ [v]R. Since v can only be won by one player, the desired result follows. ut

Lastly, we want to formalise the idea that if a player can force the play to a first set of
vertices, and from there he can force the play to a second set of vertices, then he must be
able to force the play to that second set.
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Lemma 4.5. Let v ∈ V , U , T ⊆ V , i a player and R an equivalence relation.

(v i 7→R U ∧ (∀u ∈ U \ T : v R u ∧ u i 7→R T )) =⇒ v i 7→R T

Proof. Assume v i 7→R U ∧ (∀u ∈ U \ T : v R u ∧ i 7→R T ). There must be a strategy σ ∈ Si
such that v σ 7→R U and for each u ∈ U \ T a strategy σu ∈ Si such that uσu

7→R T . We
define strategy σ′ ∈ S∗i as follows:

σ′(πv) =

¨

σ(v) if ∀u ∈ U \ T : u 6∈ πv
σ(vu) if πv = π′uπ′′v ∧ u ∈ U \ T ∧ ∀u′ ∈ U \ T : u′ 6∈ π′

Observe that a memoryless strategy σ′′ ∈ Si can be found that has the same effect as σ′.
Furthermore v σ′′ 7→R T , and hence v i 7→R T . ut

Note that again the lemma is generalised to use a relation R. In practice, this R can
be used to provide extra information on the paths towards U ′.

4.2 Winner Equivalence, Direct-, and Delayed Simulation

The coarsest meaningful equivalence on parity games is that of winner equivalence. We
state that two vertices in a parity game are winner equivalent if and only if they are won
by the same player. Essentially, every parity game reduced using winner equivalence has
at most two equivalence classes, one containing vertices won by player �, the other won
by player �. This is effectively induced by determinacy of parity games.

Definition 4.6. Let G = (V,→,Ω,P ) be a parity game. Two vertices v, v′ ∈ V are said to
be winner equivalent, denoted v ∼w v′ iff v and v′ are won by the same player.

Because every vertex is won by exactly one player (see, e.g., [Zie98]), winner equival-
ence partitions V into a subset won by player � and a subset won by player �. Clearly,
winner equivalence is an equivalence relation on the set of vertices of a given parity
game.

Direct simulation preorder and its weaker versions are defined along the lines of
Stirling’s bisimulation games [Sti97], through a game played on an auxiliary graph re-
ferred to as simulation game-graph. We here use the exposition of direct simulation
preorder as given by Gazda and Willemse [GW12]. The simulation game for a parity
game (V,→,Ω,P ) is played by the players Duplicator and Spoiler, further referred to
as D and S, respectively. The game graph (V ′,→′) has vertices in V × V and edges in
→ ×→. There is an edge from (v, w)→′ (v′, w′) if v → v′ and w → w′. The moves are
made according to the rules in Table 4.1.

Duplicator wins an infinite play (v0, w0), (v1, w1), . . . if, for all k, Ω(vk) = Ω(wk), i.e.,
Duplicator was always able to mimic the moves with a move to a vertex with equal
priority. In all other cases the play is won by Spoiler. Formally, direct simulation preorder
is defined as follows.

Definition 4.7 ([FW06; GW12]). Let (V,→,Ω,P ) be a parity game. Vertex v is directly
simulated by w, denoted v vdir w, if Duplicator has a winning strategy for the simulation
game starting in (v, w). We say that v and w are direct simulation equivalent, denoted
v ≡dir w, if v vdir w and w vdir v.
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(v, w) ∈ 1st move plays on 2nd move plays on

V � × V � S v D w
V � × V� S v S w
V� × V � D w D v
V� × V� S w D v

Table 4.1: Allowed moves in a simulation game, where Vi = {v ∈ V | P (v) = i}.

The notion of delayed simulation, denoted vde with its corresponding equivalence
≡de, introduced by Fritz and Wilke, weakens direct simulation. For delayed simulation a
modified arena is used for playing the game, in which they keep track of the obligations
that still need to be fulfilled, i.e., the steps that still need to be mimicked, but that were
postponed so far. They also introduce even- and odd biased versions of delayed simula-
tion, that we denote ve

de and vo
de, with equivalences ≡e

de and ≡o
de, respectively. We refrain

from presenting the details of delayed simulation, but we just state the main results from
[FW06] that are of interest to this section.

Theorem 4.8 ([FW06]). We have the following relationships between the equivalences
presented in [FW06].

• ≡de is strictly finer than ∼w;

• ≡e
de and ≡o

de are strictly finer than ≡de;

• ≡dir is strictly finer than ≡e
de and ≡o

de.

4.3 Strong Bisimilarity and Governed Bisimilarity

In the previous chapter we have introduced the notions of solution equivalence, strong
bisimilarity and idempotence identifying bisimilarity. In this section we rephrase them
in the terminology native to parity games. We basically interpret the priorities and play-
ers of vertices as state labels, and we define strong bisimilarity analogously to strong
bisimilarity in the previous chapter.

Definition 4.9 (Strong bisimulation). Let G = (V,→,Ω,P ) be a parity game. A symmet-
ric relation R⊆ V × V is a strong bisimulation relation if v R v′ implies

• Ω(v) = Ω(v′) and P (v) =P (v′);

• for all w ∈ V such that v → w, there should be a w′ ∈ V such that v′ → w′ and
w R w′.

Vertices v and v′ are said to be strongly bisimilar, denoted v ↔ v′, if and only if a strong
bisimulation relation R exists such that v R v′.

The following results, showing that strong bisimilarity is an equivalence relation on
vertices; that quotienting with respect to strong bisimilarity is well-defined, and that it is
strictly finer than winner equivalence, follow immediately from the results in the previous
chapter.
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Proposition 4.10. Relation ↔ is an equivalence relation on parity games.

This specialises Proposition 3.3. The definition of quotienting is more compact than
it is for structure graph, because we do not have to consider free variables and Boolean
constants.

Definition 4.11. Let (V,→ Ω,P ) be a parity game. Its strong bisimulation quotient is
the parity game (Vm,→m,Ωm,Pm) adhering to the following:

• Vm = {[v]↔ | v ∈ V},

• Ωm([v]↔) = Ω(v),

• Pm([v]↔) =P (v), and

• [v]↔→ [v′]↔ iff v→ v′.

Using the standard algorithm for deciding strong bisimulation due to Paige and Tar-
jan, quotienting with respect to strong bisimulation can be done effectively.

Theorem 4.12 ([PT87]). Relation ↔ can be decided in O (n log n), where n is the number
of vertices in the game.

In the previous chapter we showed how, in structure graphs, vertices labelled Î and
È can sometimes be related using the notion of idempotence identifying bisimilarity. We
can directly carry this notion over to parity games. In this setting, instead of looking at
idempotence of the formulae in a label, we look at the choices that a player can make
in a vertex. If all successors of a vertex are related, the choice for a successor vertex in
the quotient is effectively forced. Therefore, two vertices may be related if all of their
successors are related. We dub the relation that we thus obtain governed bisimulation.

Definition 4.13 (Governed bisimulation). Let G = (V,→,Ω,P ) be a parity game. A
symmetric relation R⊆ V × V is a governed bisimulation relation if v R v′ implies

• Ω(v) = Ω(v′);

• P (v) 6=P (v′) implies that for all w, w′ ∈ V such that v→ w and v′→ w′, it is the
case that w R w′; and

• for all w ∈ V such that v → w, there should be a w′ ∈ V such that v′ → w′ and
w R w′.

Vertices v and v′ are said to be governed bisimilar, denoted v ↔ v′, if and only if a governed
bisimulation relation R exists such that v R v′.

Note that governed bisimulation is an equivalence relation on parity games. This
follows immediately from Proposition 3.42.

Theorem 4.14. Relation ↔ is an equivalence relation on parity games.

Quotienting using governed bisimilarity is again well-defined. However, we need a
suitable ordering on players to choose a representative vertex in case vertices owned by
different players are in the same equivalence class. Let l be this ordering on players such
that �l �, where minl is the corresponding minimum.
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Definition 4.15. Let (V,→ Ω,P ) be a parity game. Its governed bisimulation quotient is
the parity game (Vm,→m,Ωm,Pm) adhering to the following:

• Vm = {[v]↔ | v ∈ V},

• Ωm([v]↔) = Ω(v),

• Pm([v]↔) =minl{P (v′) | v′ ∈ [v]↔}, and

• [v]↔→ [v′]↔ iff v→ v′.

Algorithms that decide strong bisimilarity can easily be modified to yield an algorithm
for deciding governed bisimilarity without a penalty in terms of complexity.

Theorem 4.16. Relation ↔ can be decided in O (n log n) time, where n is the number of
vertices in the parity game.

We next investigate how strong bisimilarity and governed bisimilarity compare to
direct- and delayed simulation equivalence. Gazda and Willemse [GW12] introduced
consistent consequences, which are simulation relations for parameterised Boolean equa-
tion systems. They showed that, for the specialised case of parity games, consistent con-
sequences coincide with direct simulation. From the results in [GW12], we immediately
obtain the following correspondence.

Proposition 4.17 ([GW12, Proposition 2]). Let G be an arbitrary parity game. The largest
governed bisimulation on G is the largest symmetric direct simulation on G , and is contained
in ≡dir. Furthermore, the largest governed bisimulation on G is strictly finer than ≡dir.

The following example was used by Gazda an Willemse to show strictness in the
above proposition.

Example 4.18. Consider the following parity game.

1v1 1

v0

1

v4

1v3 1

v2

0
v5

In this game, among others v0 vdir v2, v1 vdir v3, v3 vdir v1, and v4 vdir v0. However,
v1 6↔ v3, hence governed bisimulation is strictly finer than the symmetric version of direct
simulation.

We derive the following correspondence between the equivalences directly from The-
orem 3.51 and Proposition 4.17.

Theorem 4.19. We have the following relationship between the equivalences on parity
games from this section:

• ∼iso is strictly finer than ↔,

• ↔ is strictly finer than ↔,
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• ↔ is strictly finer than ≡dir, and

• ↔ is strictly finer than ∼w .

The major drawback of both strong bisimilarity and governed bisimilarity is their
sensitivity to counting—in the sense that they will not identify vertices that require a
different number of steps to reach a next equivalence class—preventing them from com-
pressing the game graph any further. Recall, e.g., the following parity game. This game
is minimal with respect to strong bisimulation and governed bisimulation; it is, however,
not hard to verify that the rightmost vertices with priority 0 are won by �, and the other
two vertices with priority 0 are won by player �. We might therefore want to relate these
vertices.

1 0 0 0 0

In the following two sections we introduce weaker equivalences that indeed allow us to
reduce such sequences of vertices.

4.4 Stuttering Equivalence

Stuttering equivalence shares many of the characteristics of strong bisimilarity, and de-
ciding it has only a slightly worse worst-case time complexity. However, it is insensitive
to counting, and is therefore likely to lead to greater reductions. Given these observa-
tions, we hypothesise that using stuttering equivalence parity games can often be reduced
significantly further than using strong bisimilarity.

We first introduce stuttering bisimilarity [NV95], a coinductive alternative to the stut-
tering equivalence of Browne, Clarke and Grumberg; we shall use the terms stuttering
bisimilarity and stuttering equivalence interchangeably. We restate the well-known res-
ult that stuttering bisimilarity is coarser than strong bisimilarity. The remainder of this
section is then devoted to showing that it is still finer than winner equivalence. The
latter result allows one to pre-process a parity game by quotienting it using stuttering
equivalence.

Stuttering bisimulation is defined using the notation on computation paths introduced
in the previous section.

Definition 4.20 (Stuttering bisimulation). Let G = (V,→,Ω,P ) be a parity game. Let
R ⊆ V × V be a symmetric relation on vertices; R is a stuttering bisimulation if v R v′

implies

• Ω(v) = Ω(v′) and P (v) =P (v′);

• if v→ u then either:

– (v R u ∧ u R v′), or

– there are u′, w such that v′ 7→R w→ u′ and v R w ∧ u R u′;

• v 7→R iff v′ 7→R.
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Two states v and v′ are said to be stuttering bisimilar, denoted v ' v′ iff there is a
stuttering bisimulation relation R, such that v R v′.

Stuttering bisimilarity adheres to the following key property, that was proven for
Kripke structures, and carries over to the setting of parity games.

Theorem 4.21 ([NV95; BCG88]). Relation ' is an equivalence relation.

Proving transitivity of stuttering bisimilarity is particularly difficult, but the result is
well-known. Quotienting with respect to stuttering bisimilarity is formally defined as
follows.

Definition 4.22. The stuttering bisimulation quotient of a parity game (V,→,Ω,P ) is
defined as a game (V ′,→′,Ω′,P ′), that satisfies the following conditions:

• V ′ = {[v]' | v ∈ V}

• Ω′([v]') = Ω(v)

• P ′([v]') =P (v)

• [v]'→′ [v]' iff v 7→'

• [v]'→′ [v′]' iff there exists a w such that v 7→' w→ v′ and [v′]' 6= [v]'
Note that, in this definition, the priorities and players of the quotient vertices are

uniquely defined due to the first requirement of stuttering bisimulation, i.e., related ver-
tices always have the same priority and the same player.

Decidability of stuttering equivalence is well-known.

Theorem 4.23 ([GV90]). ' can be decided in O (nm) time, where n is the number of
vertices, and m the number of edges in the game.

Stuttering bisimilarity between vertices extends naturally to finite paths. Paths of
length 1 are equivalent if the vertices they consist of are equivalent. If paths p and q
are equivalent, then p · 〈v〉 ' q iff v is equivalent to the last vertex in q. Equivalence of
extensions q · 〈w〉 with p is defined analogously. Finally, if both paths are extended, we
have p · 〈v〉 ' q · 〈w〉 iff v ' w. An infinite path p is equivalent to a (possibly infinite)
path q if for all finite prefixes of p there is an equivalent prefix of q and vice versa. Recall
that Πn

σ(v) is the set of paths of length n starting in vertex v, allowed by strategy σ, and
Πωσ(v) denotes the infinite paths starting in v, consistent with σ.

We aim to prove that stuttering equivalence refines winner equivalence. Our proof relies
on the observation that, for vertices v, w that are related using stuttering equivalence,
strategy σ and an infinite path starting in v, consistent with σ, we can construct a mim-
icking strategy ψ for which there is a path starting in w, that is consistent with ψ such
that both paths are stuttering equivalent. This is formalised by the following proposition.

Proposition 4.24. Given some v, w ∈ V such that v ' w, then for every strategy σ ∈ S∗i we
have a strategy ψ ∈ S∗i such that

∀p ∈ Πωψ(w) : ∃q ∈ Πωσ(v) : p ' q.
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This result immediately proves that stuttering bisimilarity is finer than winner equi-
valence: if a vertex v is won by player �, a winning strategy σ for player � from that
vertex exists; for all related vertices w we can construct a mimicking strategy ψ, such
that all infinite paths consistent with ψ are related to an infinite path consistent with
σ; this means that ψ is also winning for player �. The symmetric argument holds for
vertices won by player �.

Before we go on to prove this proposition, we first show how to explicitly construct
such a mimicking strategy, and we study its properties. Afterwards we return to the proof
of this proposition.

In the following, assume that there is a strategy σ for player i from a vertex v. We
define a strategy mimicσ,v , that from vertices stuttering equivalent to v schedules only
paths that are stuttering bisimilar to a path starting in v that is consistent with σ.

Let σ be a strategy, v a vertex owned by the player for which σ defines a strategy,
and let p be an arbitrary path. The set reachσ,v(p) determines the set of vertices u in new
classes reachable by traversing σ consistent paths that start in v and that are stuttering
bisimilar to p. Note that if this set is empty, then there is no stuttering equivalent path
q that can be extended to a vertex u that is not equivalent to the last vertex of p. This
means that p must be divergent.

Definition 4.25. Let i be a player, with σ ∈ S∗i , let v ∈ V such that P (v) = i, and let p
be an arbitrary path consistent with σ.

reachσ,v(p) = {u ∈ V | ∃m ∈ N : ∃q ∈ Πm
σ(v) : p ' q ∧ σ � q · 〈u〉 ∧ q · 〈u〉 6' q}

Observe that not all vertices in reachσ,v(p) have to be in the same equivalence class,
because it is not guaranteed that all paths q ∈ Πσ(v), stuttering bisimilar to p, are exten-
ded by σ towards the same equivalence class.

In the following two definitions suppose that reachσ,v(p) is non-empty; the case
where it is empty is treated separately in Definition 4.28.

The strategy that we construct should select a target class to which p should be exten-
ded. Because stuttering bisimilar vertices can reach the same classes, it does not matter
which class present in reachσ,v(p) is selected as the target class. We do however need
to make a unique choice to guarantee that all stuttering bisimilar paths are extended to
the same path by our strategy; to this end we use the ordering À on vertices, and its
minimum u, introduced in Section 2.6.

Definition 4.26. Let i be a player with strategy σ ∈ S∗i , let v ∈ V such that P (v) = i,
and let p be an arbitrary path consistent with σ, then

targetclassσ,v(p) = [u(reachσ,v(p)]'

is the target class to which p should be extended.

Not all vertices in the target class have to be reachable from p, but there exists at
least one vertex that is reachable due to the definition of reachσ,v(p), and the stuttering
equivalence it uses. We next determine a target vertex, by selecting a unique, reachable
vertex in the target class. This target of p, given a strategy σ and a vertex v is denoted
τσ,v(p).
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Definition 4.27. Let i be a player with strategy σ ∈ S∗i , let v ∈ V such that P (v) = i,
and let p be an arbitrary path consistent with σ, then τσ,v(p) is the vertex satisfying all
of the following:

1. τσ,v(p) ∈ targetclassσ,v(p),

2. ∀u ∈ targetclassσ,v(p) : (∃w ∈ V : p 7→' w→ u) =⇒ τσ,v(p)À u, and

3. ∃w ∈ V : p 7→' w→ τσ,v(p).

Note that in the above definition the ordering À is again used to uniquely determine
a vertex from the set of reachable vertices. The third clause ensures that τσ,v(p) is
reachable from p, and, in fact, that it is an element of reachσ,v(p).

Finally, we are ready to define a strategy mimicσ,v for player i that, given some
strategy σ for player i and a vertex v allows only paths to be scheduled that have a
stuttering bisimilar path starting in v that is scheduled by σ.

Let |v, u| denote the least number of edges required to move from vertex v to vertex u
in the graph. We define |v, u| =∞ if u is unreachable from v. For each vertex u ∈ V , we
define an ordering ≺u⊆ V × V on vertices, that intuitively orders vertices based on their
proximity to u, with a subjugate role for the vertex ordering À:

v ≺u v′iff |v, u|<
�

�v′, u
�

� or (|v, u|=
�

�v′, u
�

� and v À v′)

Observe that u ≺u v for all v 6= u. The minimal element of U ⊆ V with respect to ≺u is
written æu(U).

Definition 4.28. Let i be a player with strategy σ ∈ S∗i , let v ∈ V such that P (v) = i,
and let p be an arbitrary path consistent with σ, then mimic is defined as follows.

mimicσ,v(p) =































æt{u ∈ V | p→' u},
t = τσ,v(p)
p 6→ τσ,v(p)
reachσ,v(p) 6= ;

τσ,v(p)
p→ τσ,v(p)
reachσ,v(p) 6= ;

u{u ∈ V | p→' u}, reachσ,v(p) = ;

The mimicking strategy constructed in this definition is, intuitively, built as follows.
If reachσ,v(p) = ; this means that p diverges; then the mimicking strategy is constructed
such that it selects the least successor of p that is stuttering equivalent. If reachσ,v(p) 6= ;
we consider two cases. If p can be extended to the target of p given σ and v in one step,
then we select this target. In case the target is not reachable from p in a single step,
then we choose the stuttering equivalent successor of p that is the closest to this target.
Using the ordering on targets in this definition effectively ensures that progress is made
towards the target. In the following lemma we prove that the mimicking strategy is able
to mimic finite paths p consistent with strategy σ starting in v.

Lemma 4.29. Let i be a player, with σ ∈ S∗i an arbitrary strategy in a parity game. Assume
that v, w ∈ V and v ' w, and let ψ=mimicσ,v(p). Then

∀l ∈ N : ∀p ∈ Πl+1
ψ (w) : ∃k ∈ N : ∃q ∈ Πk

σ(v) : p ' q
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Proof. We proceed by induction on l. For l = 0, the desired implication follows immedi-
ately. For l = n+ 1, assume that we have a path p ∈ Πn+2

ψ
(w). Clearly, 〈p1, . . . , pn〉 is also

consistent with ψ. The induction hypothesis yields us, for some k ∈ N, a q ∈ Πk
σ(v) such

that 〈p1, . . . , pn〉 ' q. Let q be such. We distinguish the following cases:

1. pn ' pn+1. In this case, clearly p ' 〈p1, . . . , pn〉 ' q, which finishes this case.

2. pn 6' pn+1. We again distinguish two cases:

(a) P (pn) 6= i. Since pn ' qk, we find that there must be states u, w ∈ V such
that qk 7→' w→ u and pn+1 ' u. So there must be a path r and vertex u such
that p ' q · r · 〈u〉, for which we know that r ' qk. Therefore, all vertices in
r are owned by P (qk) = P (pn), so σ is not defined for the extensions of q
along p. We can therefore conclude that σ � q · r · 〈u〉.

(b) P (pn) = i. Then it must be the case that pn+1 = τσ,v(〈p1, . . . , pn〉). By defini-
tion, that means that there is a σ-consistent path r ∈ Πσ(v), such that r ' p.

ut

It is now time to revisit Proposition 4.30. We restate the proposition, and prove that
that mimicσ,v is a witness in this proposition.

Proposition 4.30. Given some v, w ∈ V such that v ' w, then for every strategy σ ∈ S∗i we
have a strategy ψ ∈ S∗i such that

∀p ∈ Πωψ(w) : ∃q ∈ Πωσ(v) : p ' q.

Proof. Let v, w ∈ V be arbitrary such that v ' w, and consider an arbitrary strategy σ.
Let ψ=mimicσ,v . We show that ψ is a witness of the existence of a strategy such that

∀p ∈ Πωψ(w) : ∃q ∈ Πωσ(v) : p ' q.

Suppose we have an infinite path p ∈ Πωψ(w). Using Lemma 4.29 we can obtain a path
q starting in v that is stuttering bisimilar, and that is consistent with σ. The lemma does
not guarantee, however, that q is of infinite length. We show that if q is finite, it can
always be extended to an infinite path that is still consistent with σ.

Notice that paths can be partitioned into segments of vertices from the same equi-
valence class, and that two stuttering bisimilar paths must have the same number of
segments. This also follows from the original definition of stuttering equivalence given
in [BCG88].

Suppose now that q is of finite length, say k+1. Then p must contain such a segment
that has infinite size. In particular, there must be some n ∈ N such that pn+ j ' pn+ j+1 for
all 0≤ j ≤ |V |. We distinguish two cases.

1. P (pn) = i. We show that then also reachσ,v(〈p0, p1, . . . pn〉) = ;. Suppose this
is not the case. Then we find that for some u ∈ V , u = τσ,v(p) exists, and
therefore pn+ j ≺u pn+ j+1 for all j ≤ |V |. Since ≺u is total, this means that the
longest chain is of length |V |, which contradicts our assumptions. So, necessarily
reachσ,v(〈p0, p1, . . . pn〉) = ;, meaning that no path that is consistent with σ leaves
the class of pn. But this means that the infinite path that stays in the class of pn is
also consistent with σ.
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2. P (pn) 6= i. Since pn ' qk, also P (qk) 6= i. Since pn ' pn+ j for all j ≤ |V |+ 1, this
means that there is a state u, and l, l ′, such that u = pn+l = pn+l ′ . But this means
that u is divergent. Since P (u) 6= i, and u ' qk, we find that also qk is divergent.
Therefore, there is an infinite path with prefix q that is consistent with σ and that
is stuttering bisimilar to p. ut

As we described before, this effectively proves that stuttering equivalence refines win-
ner equivalence.

Theorem 4.31. Let v, w ∈ V , then v ' w implies v ∼w w.

Proof. Let v, w ∈ V be vertices such that v ' w. Without loss of generality, assume that
v is won by �. There exists a winning strategy σ for player � from v vertex; let p be an
arbitrary infinite path, consistent with σ. According to Proposition 4.30, there exists an
infinite path q, consistent with ψ=mimicσ,v such that p ' q. Since stuttering equivalent
infinite paths have the same priorities that occur infinitely often, p and q are won by the
same player. The symmetric argument holds for vertices won by player �. ut

Strictness is shown in the following example.

Example 4.32. Consider the parity game below. All vertices in this game are winner
equivalent —they are won by player �—but the vertex with priority 1 is not related to
the vertices with priority 0 under stuttering equivalence.

1 0 0 0

Stuttering equivalence and governed bisimulation are incomparable. This is demon-
strated in the following example.

Example 4.33. Consider the parity game below. All vertices with priority 1 can be related
using stuttering equivalence, and not using governed bisimulation, on the other hand,
the vertices with priority 0 can be related using governed bisimulation, but not using
stuttering equivalence.

2 1 1

0

0

The parity game in Example 4.18, that we used to show that direct simulation is finer
than governed bisimulation also illustrates that direct simulation is able to relate vertices
that cannot be related using stuttering equivalence, since v1 6' v3 in that example. On
the other hand, stuttering equivalence can relate vertices that cannot be related using
delayed simulation, as is illustrated by the following example.

Example 4.34. Consider the parity games below. In both parity games, all vertices with
equal priority can be related using stuttering equivalence, but they cannot be related by
direct simulation equivalence.
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0 0 2 0 2 2

We summarise the relationships of stuttering bisimilarity with the other equivalences
in the following theorem.

Theorem 4.35. For stuttering bisimilarity we have the following results:

• Strong bisimilarity strictly refines stuttering bisimilarity, i.e., ↔⊆';

• stuttering bisimilarity strictly refines winner equivalence, i.e., '⊆∼w;

• stuttering bisimilarity and governed bisimilarity are incomparable;

• stuttering bisimilarity is incomparable with direct simulation, delayed simulation, and
the biased variations of delayed simulation.

Proof. The first result is well-known, and follows immediately from the observation that
in stuttering equivalence we just weaken the third condition of strong bisimulation.
Strictness follows from the parity game in Example 4.32, which is minimal modulo strong
bisimilarity, but in which all vertices with priority 0 can be related using stuttering bisim-
ilarity.

The observation that stuttering bisimilarity is finer than winner equivalence follows
immediately from Theorem 4.31. Strictness follows from the game in Example 4.32.

Incomparability of stuttering bisimilarity and governed bisimilarity follows from the
game in Example 4.33. Finally, incomparability of stuttering bisimilarity with the equi-
valences by Fritz and Wilke follows from Examples 4.18 and 4.34. ut

Note that the proof that strong bisimilarity strictly refines winner equivalence can
now be simplified using transitivity of the above.

As an aside, we point out that our proof of Proposition 4.30 relies on the construction
of the strategy mimic; its purpose, however, exceeds that of the proof. If, by solving the
stuttering bisimilar quotient of a given parity game G , one obtains a winning strategy
σ for a given player, mimic defines the winning strategies for that player in G . This is
of particular importance in case an explanation of the solution of the game is required,
for instance when the game encodes a verification problem for which a strategy helps
explain the outcome of the verification (see e.g. [SS98]). It is not immediately obvious
how a similar feature could be obtained in the setting of, say, the delayed simulations of
Fritz and Wilke [FW06], because vertices that belong to different players and that have
different priorities can be identified through such simulations.

4.5 Governed stuttering equivalence

We have adapted the notion of stuttering bisimilarity to the setting of parity games, and
proven that this equivalence relation can be safely used to minimise a parity game before
solving the reduced game.

Stuttering bisimulation, however, is inept when faced with alternations between play-
ers along the possible plays: it cannot relate vertices belonging to different players. Turn-
based games, controller synthesis problems, see e.g. [AVW03], tree automata emptiness,
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and, in general, constructs such as �◊φ and ◊�φ in µ-calculus verification, all give rise
to such parity games.

Strong bisimulation was modified to governed bisimulation to relate vertices owned
by different players. The resulting equivalence is incomparable to stuttering equivalence.
A natural question is, therefore, whether stuttering bisimulation can also be modified so
that it is able to relate vertices that belong to different players, resulting in a relation
that subsumes both governed bisimulation as well as stuttering equivalence. Here we
report on the research conducted in [CKW12b], showing that, indeed, it is possible to
relax this definition. We give the definition of the resulting relation governed stuttering
bisimulation, along with its key properties. In this chapter, however, we focus on the
algorithmic aspects of deciding governed stuttering bisimilarity.1

We show that governed stuttering bisimilarity is decidable in O (n2m) time using a
partition refinement algorithm that specialises Groote and Vaandrager’s algorithm for
deciding stuttering equivalence. Observe that the time complexity for deciding governed
stuttering bisimilarity is a factor n worse than that for stuttering bisimilarity; this is due
to a single type of class in a partition for which our algorithm requires O (mn) rather
than O (m) time to check its stability. We hypothesise, however, that in most practical
cases this factor does not manifest itself. This hypothesis is further investigated in the
next chapter, where we investigate both the effect of all equivalences that we defined on
the sizes of the parity games, as well as the practical impact they have on solving parity
games.

In [CKW12b], the objective was to weaken stuttering bisimulation so that it is able to re-
late vertices of different players. However, simply weakening clause a) in Definition 4.20
to Ω(v) = Ω(v′) without modifying the remaining clauses, does not suffice as this would
enable us to relate vertices won by different players. This is illustrated by the following
example.

Example 4.36. Consider the following parity game.

2 2 1 2 2

The suggested weakening would allow us to relate all vertices with priority 2; the two
left vertices, however are won by player �, whereas the other vertices are won by player
�.

The problem in the above example is that the computation paths that appear in
clauses b) and c) may consist of vertices owned by different players. This means that
a fixed player is at the mercy of her opponent to stay on a computation path: the oppon-
ent may simply choose an alternative next vertex if that would better suit her. We are
therefore forced to reason about computation trees, taking all of the opponent’s choices
into account. Effectively, clause b) must be strengthened to ensure that a player eventu-
ally reaches class C along some computation tree, and clause c) must be strengthened to
ensure that a player can construct an infinite computation tree not leaving its own class.

1The equivalence defined in this section was the result of collaborative work with Sjoerd Cranen. The con-
tributions of the author of this thesis are the definition of governed stuttering bisimulation and its decidability,
as included in this thesis. Alternative characterisations, the equivalence proof, and the proof that governed
stuttering bisimilarity refines winner equivalence will be part of Sjoerd Cranen’s forthcoming PhD thesis. The
results can also be found in [CKW12b; CKW12a].
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The notation introduced in Section 4.1 allows us to adapt the definition of stuttering
equivalence from computation paths to computation trees. We here provide the symmet-
ric definition that we presented in [CKW12b], in which some alternative definitions are
described as well. This version of the definition nicely facilitates the presentation of the
algorithm.

Definition 4.37. Let R ⊆ V × V and v, v′ ∈ V . Then R is a governed stuttering bisimula-
tion iff R is an equivalence relation and v R v′ implies:

a) Ω(v) = Ω(v′);

b) v i 7→RC iff v′ i 7→RC for all i ∈ { �,�},C ∈ V/R \ {[v]R};

c) v i 7→R iff v′ i 7→R for all i ∈ { �,�}.

In this definition, observe that we have dropped the restriction on players in clause
a), and instead in clause b) we require that, if from vertex v player i can force play to
class C , then from v′ the same player must also have a strategy to force the game to this
class, regardless of the moves of the opponent. In clause c) we require for both players
that, if the player can force the game to diverge from vertex v, then he must also be able
to do so from related vertices v′. This last restriction precisely allows us to circumvent
the problem illustrated in Example 4.36.

4.5.1 Properties of Governed Stuttering Equivalence

Next we repeat the key properties of governed stuttering bisimulation that were described
in [CKW12b].

First, observe that, if in Definition 4.37 we additionally require that P (v) = P (v′),
we find that v 7→R U iff v P (v) 7→R U , and, likewise, v 7→R iff v P (v) 7→R. This is the basis for
the following proposition, which shows that indeed governed stuttering bisimulation is
coarser than stuttering equivalence.

Proposition 4.38. Let R ⊆ V × V be a governed stuttering bisimulation, such that v R v′

implies P (v) =P (v′). Then R is a stuttering bisimulation.

Like the other relations we have studied, governed stuttering bisimulation is an equi-
valence relation, as is witnessed by the following theorem.

Theorem 4.39. ∼ is an equivalence relation.

Proving that ∼ is an equivalence relation on parity games is far from straightforward:
transitivity no longer bows to the standard proof strategies that work for stuttering bisim-
ilarity and branching bisimilarity [GW96; Bas96]. Proving that the equivalence closure of
the union of two governed stuttering bisimulation relations is again a governed stutter-
ing bisimulation relation is equally problematic. For the details of the equivalence proof,
which follows [Bas96] on a high level, the reader is referred to [CKW12b].

Not all equivalence relations admit a quotienting operation; in particular, delayed sim-
ulation [FW06] fails to have a natural quotienting operation. In contrast to this, the
quotient for governed stuttering bisimulation can be defined.
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Like we have seen in the quotient for governed bisimulation, the governed stuttering
bisimulation quotient allows some freedom in choosing the player for the vertex repres-
enting a class that contains vertices owned by different players. In this definition, we
furthermore need to take computation trees into account. We therefore first define a
notion of minimality, and subsequently use this to define our quotient.

Definition 4.40 (Minimality). A minimal governed stuttering bisimilar representation
of a parity game (V,→,Ω,P ) is defined as a game (Vm,→m,Ωm,Pm), that satisfies the
following conditions (where c, c′, c′′ ∈ Vm):

Vm = { [v]∼ | v ∈ V}
Ωm(c) = Ω(v) for all v ∈ c

Pm(c) = i, if for all v ∈ c, and some c′ 6= c we have v i 7→∼ c′ and v ¬i 67→∼V \ c′

c→m c iff v i 7→∼ for all v ∈ c for some player i

c→m c′ iff v i 7→∼ c′ for all v ∈ c for some player i and c′ 6= c

The third clause above leaves some freedom in defining the quotient. If from some
vertex v the play could be forced to c′ by i without ¬i having the opportunity to diverge,
player i is in charge of the game when the play arrives in c. This requires the represent-
ative in the quotient to be owned by player i. In all other cases, none of the players—or
both of the players, depending on your point of view—is in charge of the game when
the play arrives in c, hence the player that we choose is irrelevant. As a consequence
a parity game may have multiple ∼-minimal representations. Observe that every par-
ity game contains at least as many vertices and edges as its ∼-minimal representations,
and ∼-minimal representations are equal, except for the players that are assigned to
the vertices. Moreover, any parity game is governed stuttering bisimulation equivalent
to all its ∼-minimal representations. The intricacies in quotienting governed stuttering
bisimulation, and the existence of multiple minimal representations of parity games are
illustrated in the following example.

Example 4.41. Consider the parity game in Figure 4.2a. Two of its four minimal repres-
entations are in Figure 4.2b and 4.2c. Observe that the particular player chosen for the 0
and 1 vertices is arbitrary and does not impact the solution to the games.

0 0

1 1

(a)

0

1

(b)

0

1

(c)

Figure 4.2: Both (b) and (c) are minimal representations of (a).

We define the ∼-quotient of a parity game as the least ∼-minimal representation ac-
cording to the following ordering. For ∼-minimal representation we define an ordering
≪ as follows. Let G = (V,→,Ω,P ) and G ′ = (V ′,→′,Ω′,P ′) be ∼-minimal represent-
ations of the same parity game. We say that G ≪ G ′, if for all v ∈ V and v′ ∈ V ′ such
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that v ∼ v′, it is the case that P (v)lP (v′), where l is the ordering on players from
Section 4.3. To≪, we associate the minimum min≪. This finally allows us to define a
unique governed stuttering bisimulation quotient.

Definition 4.42 (Quotient). Let G be a parity game. Its governed stuttering bisimulation
quotient G ′ is defined as min≪{Gm | Gm is a ∼-minimal representation of G}.

Governed stuttering bisimulation refines winner equivalence, as illustrated by the fol-
lowing proposition, and therefore we are allowed to reduce parity games using governed
stuttering bisimulation prior to solving.

Proposition 4.43. Governed stuttering bisimulation refines winner equivalence.

This proposition can be proven along the same lines as Theorem 4.31, i.e., for v ∼w,
and a strategy ϕ from v we construct a corresponding strategy ψ from w. In this case
however, the proof is more involved, since we have to ensure that computation trees can
be mimicked, instead of computation paths. For details of the proof see [CKW12b].

It should not come as a surprise that governed stuttering bisimulation is able to relate
vertices that cannot be related using stuttering bisimulation or governed bisimulation.

Example 4.44. Consider the parity game depicted below.

0 1 2

21

The equivalence relation that relates vertices with equal priorities is a governed stuttering
bisimulation. Stuttering bisimulation and governed bisimulation do not relate any of the
vertices. Winner equivalence relates the vertex with priority 0 to no other vertex, and all
other vertices are related.

We summarise the relationship with other equivalences in the following theorem.

Theorem 4.45. Governed stuttering equivalence

• is strictly refined by stuttering equivalence, i.e., '⊆∼;

• is strictly refined by governed bisimulation, i.e., ↔⊆∼;

• strictly refines winner equivalence, i.e., ∼⊆∼w;

• is incomparable to direct simulation, delayed simulation, and the biased variations of
delayed simulation.

Proof. Refinement by stuttering bisimulation and governed bisimulation follows immedi-
ately from the definitions. The fact that governed stuttering bisimulation refines winner
equivalence is a consequence of Proposition 4.43. Strictness in all three cases follows
from the parity game given in Example 4.44. Incomparability with direct simulation fol-
lows from Example 4.34. ut
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4.5.2 Decidability

We present an algorithm for deciding governed stuttering bisimilarity inspired by Groote
and Vaandrager’s O (nm) algorithm for deciding stuttering bisimilarity [GV90]. Before we
provide the details, we introduce the necessary additional concepts.

The algorithm follows a partition refinement approach. A partition P of a set of
vertices V is a set of non-empty, disjoint subsets of V . Formally, P = {B | B ⊆ V}, where
⋃

B∈P = V , and for all B, B′ ∈ P, it holds that B ∩ B′ 6= ; =⇒ B = B′. Furthermore ; 6∈ P.
We refer to the elements of a partition as blocks. A partition P induces a relation in which
vertices are related if and only if they are in the same block. By abuse of notation we
refer to this relation as P as well.

Our algorithm requires a generalisation of the notion of attractor sets [McN93] along
the lines of the generalisation used for the computation of the Until in the alternating-
time temporal logic ATL [AHK02]. The generalisation introduces a parameter restricting
the set of vertices that are considered in the attractor sets.

Definition 4.46. Let (V,→,Ω,P ) be a parity game, let B, U ⊆ V , and let i be a player.
The attractor set for player i into U , extended only with vertices in B, is defined induct-
ively as follows.

BAttr0
i (U)

∆
= U

BAttrn+1
i (U)

∆
= BAttrn

i (U)
∪ {v ∈ B | P (v) = i ∧ ∃v→ v′ : v′ ∈ BAttrn

i (U)}
∪ {v ∈ B | P (v) 6= i ∧ ∀v→ v′ : v′ ∈ BAttrn

i (U)}

BAttri(U)
∆
= BAttrωi (U)

Observe that this definition satisfies the following property.

Property 4.47. Let (V,→,Ω,P ) be a parity game, let B, U ⊆ V , and let i be a player, then
V \ (B \ BAttr¬i(V \ B)) = BAttr¬i(V \ B).

The set Leavei(B, U) captures the vertices of B from which player i can leave B, and
move to U .

Definition 4.48. Let (V,→,Ω,P ) be a parity game, let B, U ⊆ V , and let i be a player.
The subset of B from which player i can force the game to U is defined as follows.

Leavei(B, U)
∆
= BAttri(U)∩ B

We use Leave as an algorithmic characterisation of i 7→. Their correspondence is form-
alised in Propositions 4.50 and 4.53 below; this allows for restating the criteria from
Definition 4.37 in terms of Leave. We first capture some general properties about Attr
and Leave.

The first lemma describes that from some vertices player i can evade the attractor set,
and that from some vertices player ¬i cannot reach the attractor set.

Lemma 4.49. Let P partition V , and let B ∈ P be a block. Define U = B \ BAttr¬i(V \ B),
then:

1. ∀u ∈ U :P (u) = i =⇒ (∃u→ u′ : u′ ∈ U)
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2. ∀u ∈ U :P (u) 6= i =⇒ (∀u→ u′ : u′ ∈ U)

Proof. We prove the two properties separately.

1. Let u ∈ U and P (u) = i. Towards a contradiction, suppose that ∀u→ u′ it holds
that u′ 6∈ U . Because of totality of→ there must be at least one such u′. It follows
that ∀u → u′ : u′ ∈ V \ (B \ BAttr¬i(V \ B)). Hence u′ ∈ BAttr¬i(V \ B), for all
u′ such that u → u′, according to Property 4.47. By definition of Attr, then also
u ∈ BAttr¬i(V \ B), but then u 6∈ B \ BAttr¬i(V \ B), which contradicts u ∈ U , hence
(∃u→ u′ : u′ ∈ U).

2. Let u ∈ U and P (u) 6= i. Towards a contradiction, suppose that ∃u → u′ such
that u′ 6∈ U . Let u′ be such. Observe that u′ ∈ V \ (B \ BAttr¬i(V \ B)), and thus
u′ ∈ BAttr¬i(V \ B). By definition of Attr, then also u ∈ BAttr¬i(V \ B), thus u 6∈ U ,
which contradicts the assumption that u ∈ U , hence ∀u→ u′ : u′ ∈ U . ut

The computation of Leave can be used to establish the divergence criterion for all
vertices in a block, as formalised by the following proposition.

Proposition 4.50. Let P be a partition of V , and let B ∈ P be a block. Then for all u ∈ B:
u ∈ Leave¬i(B, V \ B) if and only if u i 67→P .

This proposition follows immediately from the following two lemmata.

Lemma 4.51. Let P partition V , and let B ∈ P be a block. Then for all u ∈ B : u ∈
Leave¬i(B, V \ B) =⇒ u i 67→P .

Proof. Let P partition V , and let B ∈ P be a block, and suppose that u ∈ Leave¬i(B, V \B).
By definition of Leave, Leave¬i(B, V\B) = BAttr¬i(V\B)∩B. Observe that, if u ∈ BAttr¬i(V\
B)∩ B, there is some least n such that u ∈ BAttrn

¬i(V \ B)∩ B. We show by induction on n
that ∀u ∈ B : u ∈ BAttrn

¬i(V \ B)∩ B =⇒ u i 67→P .

• n= 0. We find that BAttr0
¬i(V \B) = V \B, and (V \B)∩B = ;, hence the statement

vacuously holds.

• n= m+1. As induction hypothesis assume that ∀u ∈ B : u ∈ BAttrm
¬i(V \B)∩B =⇒

u i 67→P .

Let u ∈ BAttrm+1
¬i (V \ B)∩ B. By definition of Attr, we find three cases.

– u ∈ BAttrm
¬i(V \B)∩B. This follows immediately from the induction hypothesis.

– u ∈ {v ∈ B | P (v) 6= i ∧ ∃v → v′ : v′ ∈ BAttrm
¬i(V \ B)} ∩ B. So we know

that P (u) 6= i, and ∃u→ v′ : v′ ∈ BAttrm
¬i(V \ B). Let u′ be such, and observe

that either u′ ∈ BAttrm
¬i(V \ B)∩ B or u′ ∈ V \ B because (V \ B) ⊆ BAttrm

¬i(V \
B). In the latter case there is a strategy for player ¬i such that u¬i 7→P V \
B, and by Lemma 4.4 we find u i 67→P . In the first case, observe that by the
induction hypothesis, u′ i 67→P . According Lemma 4.4, we find that u′ ¬i 7→P V \
B. Application of Lemma 4.5 gives us that u¬i 7→P V \ B, and again using
Lemma 4.4, we have u i 67→P .
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– u ∈ {v ∈ B | P (v) = i ∧ ∀v → v′ : v′ ∈ BAttrm
¬i(V \ B)} ∩ B. So we know that

P (u) = i, and ∀u→ v′ : v′ ∈ BAttrm
¬i(V \ B). By totality of→ there is at least

one such v′. Observe that u¬i 7→P BAttrm
¬i(V \ B). According to the induction

hypothesis, we know ∀v ∈ B : v ∈ BAttrm
¬i(V \ B) ∩ B =⇒ v i 67→P . Applying

Lemma 4.4 we also know that ∀v ∈ B : v ∈ BAttrm
¬i(V \B)∩B =⇒ v ¬i 7→P(V \

B). Using Lemma 4.5 we find that u¬i 7→P(V \ B). Another application of
Lemma 4.4 gives us the desired result u i 67→P . ut

Lemma 4.52. Let P be a partition of V , and let B ∈ P be a block. Then for all u ∈ B : u 6∈
Leave¬i(B, V \ B) =⇒ u i 7→P .

Proof. Define U ⊆ B to be the subset of B that cannot be forced by player ¬i to leave B,
i.e. U = B \ Leave¬i(B, V \ B) = B \ BAttr¬i(V \ B). Observe that for all u ∈ V : u ∈ U
iff u 6∈ Leave¬i(B, V \ B), so we reformulate our goal as ∀u ∈ B : u ∈ U =⇒ u i 7→P . We
define strategy σ ∈ Si that is defined for vertices in U , such that

σ(u) = u{u′ ∈ U | u→ u′}

Observe that {u′ ∈ U | u → u′} 6= ; due to Lemma 4.49, hence σ(u) is well-defined.
Furthermore for all v ∈ U with P (v) 6= i, all successors are in U due to Lemma 4.49. As
a result, uσ 7→P , and hence u i 7→P . ut

Now we can establish whether all vertices in a block diverge by consider Leave. It
remains to decide what vertices in a block can reach some other block. This can be
decided in a similar way.

Proposition 4.53. Let P partition V , and let B, B′ ∈ P such that B 6= B′. Let v ∈ B such that
v→ B′. Then for all w ∈ B it holds that w P (v) 7→P B′ if and only if w ∈ LeaveP (v)(B, B′).

Proof. The proof of this lemma follows the same line of reasoning as the proof of Propos-
ition 4.50. ut

Using the correspondence proven in these propositions we can redefine governed
stuttering equivalence in terms of Leave. This results in the following characterisation of
governed stuttering bisimulation that is more readily converted into an algorithm.

Theorem 4.54. Let P partition V , and let v, v′ ∈ V . P is a governed stuttering bisimulation
if and only if v P v′ implies:

a) Ω(v) = Ω(v′);

b) v ∈ LeaveP (v)(B,C ) iff v′ ∈ LeaveP (v)(B,C ), where v, v′ ∈ B, B,C ∈ P, and B 6=C ;

c) v 6∈ Leave¬i(B, V \ B) iff v′ 6∈ Leave¬i(B, V \ B) for all i ∈ { �,�}, and for v, v′ ∈ B
with B ∈ P.

Proof. The first requirement has been left unchanged. The second requirement has been
reformulated according to Proposition 4.53, and the last requirement has been expressed
in terms of Leave according to Proposition 4.50. ut
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Groote and Vaandrager’s algorithm for stuttering bisimulation repeatedly refines a
carefully chosen initial partition P0 using a so-called splitter. We apply the same principle,
choosing P0 such that for all v, v′ ∈ V , v P0 v′ if and only if Ω(v) = Ω(v′) as our initial
partition. As our splitter, we define a function pos that returns the set of vertices in B
from which a given player i can force the play to reach B′, or, in case B = B′, force the
play to diverge:

posi(B, B′) =

¨

Leavei(B, B′) if B 6= B′

Leave¬i(B, V \ B) if B = B′

In line with [GV90], we say that B′ is a splitter of B if and only if ; 6= posi(B, B′) 6= B for
some player i. A partition P is stable with respect to a block B ∈ P if B is not a splitter of
any block in P. The partition itself is stable if it is stable with respect to all its blocks.

A high-level description of our algorithm for governed stuttering bisimulation, is given
as Algorithm 1. The current partitioning is repeatedly refined until it stabilises. In a
refinement step, the splitter is initially undefined (denoted ⊥), we then determine, for
each block B, whether a splitter for B exists. If a splitter is found, B is split into two new
blocks, and we iterate.

Algorithm 1 Decision procedure for ∼ (high-level view)

n← 0
repeat

splitter←⊥
for each B ∈ Pn and player i do { Find splitter in O (nm) }

if there exists v ∈ B with v→ B′ and ; 6= posi(B, B′) 6= B for B′ ∈ Pn then
splitter← (B, posi(B, B′))

end if
end for
if splitter= (B, Pos) then { Refine partition in O (m) }

Pn+1← (Pn \ {B})∪ {Pos, B \ Pos}
end if
n← n+ 1

until Pn−1 = Pn

Algorithm 1 merely gives a conceptual overview of the partition refinement algorithm.
However, an implementation of this algorithm is not efficient, since it considers too many
blocks. We now optimise the algorithm using the approach from [GV90].

Given the nature of the definition of divergence in governed stuttering bisimulation,
we cannot remove divergent states in a preprocessing step as is done in [GV90]. Note
that this preprocessing is not necessary, even in the original algorithm. This was shown
by Vu [Vu07], who modified the algorithm to decide orthogonal bisimulation. In ibid.,
the algorithm does not perform a preprocessing for divergent states, yet the algorithm
still runs in O (nm) time.

The algorithm we describe maintains a partition P, which is initially chosen to be
P = P0. Algorithm 2 then computes the largest governed stuttering bisimulation. For
every block B, the incoming edges from another block are recorded in B.incoming.
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Algorithm 2 Algorithm for computing ∼ (detailed view)

todo← P0; stable← ;;
repeat

B′← head(todo)
for each v→ v′ ∈ B′.incoming do

if v 6∈ B then
BL.append(v)

end if
end for
repeat

B← BL.pop() {Determine for each B whether B′ is a splitter for B}
(foundsplitter, inert_becomes_non_inert, B1, B2)← TrySplit(B, B′)

until foundsplitter or BL= ;
if foundsplitter then

todo.remove(B)
todo.append(B1, B2)
if inert_becomes_non_inert then

todo← todo+ stable; stable← ;
end if

else
todo.remove(B′)
stable.append(B′)

end if
until todo= ;

Given a parity game, our algorithm maintains two lists of blocks, todo and stable.
A block B is in stable if the current partition is known to be stable with respect to B,
otherwise B is in todo. Initially all blocks in P0 are in todo. While the todo list is not
empty, we check for each block B′ in the list whether it is a splitter of any block B using
the routine TrySplit(B, B′). If a splitter is found, the todo list is updated accordingly, and
if some inert transition has become non-inert, i.e., a transition that was internal to a block
now points to a different block, all stable blocks are added to the todo list in accordance
with Lemma 4.56 on page 99.

We next elaborate on TrySplit(B, B′), which is given as Algorithm 3. This routine
determines whether B′ is a splitter of B using Leave. If a splitter is found, the actual
splitting is performed; the non-inert edges are added to the appropriate block, and for
all inert edges it is checked whether they are still inert, and if not they are also added as
non-inert edges to the appropriate block.

Our algorithm indeed computes ∼ as witnessed by the following lemma.

Lemma 4.55. If P is a stable partition refining P0, then P is a governed stuttering bisimu-
lation. If P is the largest such partition then P coincides with ∼.

Proof. We first prove the first part of the statement. Let P be a stable partition refining
P0, and let v, v′ ∈ V such that v P v′. We show that P satisfies the three properties
described in Definition 4.37. Ω(v) = Ω(v′) follows immediately as P is a refinement of
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Algorithm 3 TrySplit(B, B′)

foundsplitter← false; inert_becomes_non_inert← false
i← 0
repeat

B1← posi(B, B′)
i← i+ 1
foundsplitter← ; 6= B1 6= B

until i > 1 or foundsplitter
if foundsplitter then

B2← B \ B1
for v→ v′ ∈ B.incoming do

if v′ ∈ B1 then
B1.incoming.append(v→ v′)

else
B2.incoming.append(v→ v′)

end if
end for
for C ∈ {B1, B2} do

for v ∈ C do
for v′→ v ∈ v.incoming do

if v′ 6∈ C then
inert_becomes_non_inert← true
v.incoming.remove(v′→ v)
C .incoming.append(v′→ v)

end if
end for

end for
end for
return (foundsplitter, inert_becomes_non_inert, B1, B2)

else
return (foundsplitter, inert_becomes_non_inert,;,;)

end if

P0. The transfer and divergence properties follow immediately from the observation that
P is stable, the definition of pos and Theorem 4.54.

For the second part of the statement observe that ∼ is an equivalence relation ac-
cording to Theorem 4.39. Furthermore it is defined to be the largest governed stuttering
bisimulation, and it induces a stable refinement of P0. As any stable refinement is a gov-
erned stuttering bisimulation our result follows. ut

Algorithm 2 relies on the observation that stable blocks only have to be reconsidered
if inert transitions become non-inert, which is shown in the following lemma.

Lemma 4.56. Let Pn and Pn+1 be partitions of V , such that Pn and Pn+1 have the same
inert transitions. Assume that Pn+1 refines Pn. Let B′ ∈ Pn, Pn+1 such that Pn is stable with
respect to B′. Then also Pn+1 is stable with respect to B′.
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Proof. Towards a contradiction, suppose that there exists a block B ∈ Pn+1 such that
B′ ∈ Pn, Pn+1 is a splitter of B, we show that than Pn is not stable with respect to B′. We
distinguish two cases.

1. B = B′. As B′ is a splitter of itself under Pn+1, and B′ ∈ Pn, we immediately find
that B′ is a splitter of itself under Pn, which is a contradiction.

2. B 6= B′. As B′ is a splitter of B, we know that v, v′ ∈ B such that v i 7→Pn+1
B′ ∧

v′ i 67→Pn+1
B′ for some player i. Let v, v′ be such. Observe that there is a block

B′′ ∈ Pn such that B ⊆ B′′. In case B = B′′, then immediately we find that B′ is
a splitter of B′′, which violates the stability of Pn. Suppose B ⊂ B′′. As Pn and
Pn+1 have the same inert transitions, there are no u ∈ B, u′ ∈ B′′ such that u→ u′.
From this, and the assumption that v′ i 67→Pn+1

B′ it follows that v′ i 67→Pn
B′. Likewise

we have that v i 7→Pn
B′, and hence B′ is a splitter of B′′ under Pn, which contradicts

stability of Pn.

In both cases we find a contradiction, hence Pn+1 is stable with respect to B′. ut

The number of iterations the algorithm requires to compute ∼ is bounded in the
following theorem.

Theorem 4.57. Algorithm 2 terminates after at most n−|P0| refinement steps. The resulting
partition Pf is the coarsest stable partition refining P0.

Proof. Termination of the algorithm after at most n− |P0| refinement steps is straightfor-
ward. Next we show that the resulting partition Pf is the coarsest stable partition refining
P0. We prove, by induction on the number of refinement steps j, that any stable partition
refining P0 is also a refinement of the current partition Pj . Clearly the statement holds
initially. Let R be a stable refinement of P0. By the induction hypothesis, R is a refinement
of Pj . Let Pj+1 be the refinement of Pj , after refining using splitting pair (B, B′) (i.e., B′ is
a splitter of B). We show that R is also a refinement of Pj+1. Let C be a block in R. Then
there is a block D in Pj such that C ⊆ D. We show that C is included in a block of Pj+1.
In case D 6= B we are done. In case D = B, assume that splitting was done with respect
to player i, then we have to show that either C ⊆ posi(B, B′), or C ⊆ B \ posi(B, B′).

Towards a contradiction, suppose that there are v, v′ ∈ C such that v ∈ posi(B, B′) and
v′ 6∈ posi(B, B′). We distinguish two cases:

• B 6= B′. As v ∈ posi(B, B′), we know v i 7→Pj
B′. We know there is a sequence of

classes C1, . . . , Cn in R, with C1 = C , Cn = C ′, and C j i→C j+1, in other words, in
each of the classes C j , the game can be forced to C j+1 by player i. Since R is a
stable refinement of P0, and v, v′ ∈ C we find that also v′ ∈ posi(B, B′), which is a
contradiction.

• B = B′. As v ∈ posi(B, B′), we know v i 7→Pj
. We know there is a sequence of classes

C1, . . . , Cn in R such that C j i 7→R C j+1, and C = C1 = Cn. Following a similar line
of reasoning as in the previous case, we find that then v′ ∈ posi(B, B′), which is a
contradiction.

ut
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Given the above considerations, we can determine the running time complexity of
our algorithm as follows.

Theorem 4.58. Algorithm 1 decides ∼ in O (n2m) time for a parity game that contains n
vertices and m edges.

Proof. Let nB and mB be the number of vertices and the number edges in block B. De-
ciding whether a block B′ is a splitter of block B in Algorithm 3 takes O (mB + nB) time
(the time required to compute the attractor set). If a splitter is found, the actual splitting
takes O (m) time. As a result, deciding whether a block B′ is a splitter for the current
partition takes ΣB(O (mB + nB)) = O (m) time. Finding a splitter of the current partition
(if it exists) hence has time complexity O (nm). As only n − |P0| refinement steps are
possible (Lemma 4.57), the time complexity of O (n2m) follows. ut

Our time complexity is worse than the O (nm) achieved by the original algorithm for
deciding stuttering bisimulation. The extra factor O (n) is due to the complexity required
to search for a splitter which, in our case, requires O (nm) time, instead of the original
O (m) time.

Investigating the origins of this extra factor of the number of vertices in searching a
splitter, and carefully analysing all cases, uncovers a single problematic case: finding a
splitter for a block B that consists of a single strongly connected component in which all
vertices in B are divergent for exactly one player. For this case, we only have an O (nmC)
algorithm, leading to the O (nm) time bound for a single iteration. The following problem
statement formalises this ‘hard case’.

Problem 4.59. Let P be a partition, and let C ∈ P be a block, such that C is a strongly
connected component, and for all v ∈ C we have v i 7→P , and v ¬i 67→P . Determine, in O (m)
time, whether there exist v, v′ ∈ C and a block B ∈ P such that v i 7→P B and v′ i 67→P B.

0· · ·

B1

Bk

0

0 0

0

00

B1

. . .

Bk

In the situation sketched above, containing a single SCC with 2k + 1 vertices, in which
player � can enforce divergence, whereas player � cannot, we need O (kmC) to determ-
ine that there is no splitter for this block, where mC is the number of edges in the SCC.
To achieve the desired running time bounds, we should be able to solve this in O (mC)
time instead.

Claim 4.60. Given a solution to Problem 4.59, the largest governed stuttering bisimulation
can be computed in O (nm) time.

Given that the problematic case is extremely specific, we hypothesise that, in practice,
this case does not occur often, and that the algorithm for governed stuttering bisimulation
will be competitive with that for stuttering equivalence. This hypothesis is tested in the
next chapter.
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4.6 Closing Remarks

In this chapter we have restated the equivalences from Chapter 3 in terms of parity
games. We investigated weaker equivalences, and their applicability to parity games.
In particular, we modified stuttering equivalence so that it can be used to reduce parity
games, and proved that stuttering bisimilar vertices in a parity game have the same
winner. Actually, our result is even stronger: given a strategy in one parity game, a
mimicking strategy in a stuttering bisimilar parity game can be constructed.

The ideas of governed bisimulation and stuttering equivalence were combined into
a novel relation, dubbed governed stuttering bisimulation, in which vertices owned by
different players may be related. We showed that this relation is an equivalence relation
that can be decided in O (n2m) time using a partition refinement algorithm. This time
complexity is worse than the O (nm) time complexity for deciding stuttering bisimulation,
but we expect that in practice the algorithm will be largely competitive with the one for
stuttering bisimilarity, since the worst case is mainly due to a single degenerate case.

We have not proven a lower bound on the running time complexity of our algorithm.
This leaves the question open whether our algorithm decides governed stuttering equi-
valence in O (nm) time, instead of the O (n2m) that we have proven. There are two
alternative formulations of this problem that can be investigated to answer this question.
First, towards a positive answer, the analysis can be improved to show that governed
stuttering bisimulation can be decided in O (nm) time. This most likely involves solving
Problem 4.59. Second, towards a negative answer, a class of examples must be provided
for which our algorithm indeed exhibits an O (n2m) worst case running time.

In this chapter we have shown the relations between all equivalences that we have
defined, as well as the relation between our equivalences and direct simulation and Fritz
and Wilke’s delayed simulation [FW06]. The corresponding lattice was presented in the
introduction of this chapter.

An obvious question is whether elements of delayed simulation and governed stut-
tering bisimulation can be combined. Given the complexity of the proofs of most of our
results for governed stuttering bisimulation and our attempts to weakening governed
stuttering bisimulation along these lines, we are rather sceptic about the chances of suc-
cess. Even if one would manage to define such a relation, it would likely have little
practical significance due to the prohibitive complexity, O (n3d2m), of delayed simula-
tion, where n, m and d are the number of vertices, edges and priorities in the game,
respectively.

An interesting extension of our work could be to generalise the concepts of governed
stuttering bisimilarity to games with other winning conditions that are insensitive to
stuttering such as Muller, Rabin and Streett conditions. We expect such a generalisation
to be reasonably straightforward, as long as the winning conditions only reason about
the infinitely often recurring priorities.

Finally, we observe that stuttering bisimulation (also known as branching bisimulation
in labelled transition systems) underlies several confluence reduction techniques for syn-
tactic system descriptions, see e.g. [GS95; GS96; GP00; BP02]. Such reductions partly
side-step the state-space explosion problem. We believe that our study offers the required
foundations for bringing similar-spirited confluence reduction techniques to a setting of
symbolic representations of parity games.
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Benchmarking Parity Games

In the previous chapter we have introduced four solution-preserving reductions for parity
games. So far we have not systematically studied their practical significance. In this
chapter we study how well our equivalences are able to reduce the size of parity games
that are created for typical verification problems. Furthermore, we investigate whether
our reductions are helpful in reducing the time required for solving parity games, i.e., is
first reducing a parity game, and subsequently solving it, faster than outright solving the
original parity game.

We would like to investigate the practical significance of our reductions using a stand-
ard set of benchmarks. Friedmann and Lange [FL09] observed in 2009 that no such
standard benchmark set for parity games was available, and they introduced a small
benchmark set. To the best of our knowledge, the situation has not improved since then,
and their benchmarks still are the most comprehensive benchmarks observed in a single
paper. The diversity of the parity games in this set is still very limited. Therefore, in this
chapter we first develop a set of parity games for benchmarking. This benchmark set
should be diverse, contain games that originate from different verification problems, and
contain those games that have been used to experimentally evaluate algorithms in the
literature.

A large number of parity game solving algorithms and related heuristics have been
described in the literature, and some efforts have been made to compare them. Most
notably, Friedmann and Lange evaluated the effect of heuristics in their generic solver.
They considered parity games originating from decision procedures, two model check-
ing problems, and random games [FL09]. In [KW11; CKW11; CKW12b] model checking
problems and equivalence checking problems are used to evaluate the reducing capabil-
ities of the equivalences they present. In general, parity game examples1 in the literature
can be classified in one of the following three classes:

1. Encodings of problems such as model checking, equivalence checking and com-
plementation of Büchi automata to parity games. Such examples can be found in
[Mad97; Mat03; PW08; Kei09; KW11; CKW11; CKW12b; FL09].

1In this thesis we also consider examples originally formulated as Boolean equation systems.
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2. Parity games for which a certain solving algorithm requires exponential time, see,
e.g., [Mad97; Jur00; Obd06a; Fri09; FL10b; Fri11c; GW13].

3. Random games, of which a few different variations have been described, see [BV01;
Lan05; Sch08a; Sch08b; FL09; FL10b].

Our benchmarks include examples from each of the categories described above.
The benchmarking setup is inspired by the explicit state model checking benchmarks

described in [Pel06; Pel07]. These benchmarks were analysed with respect to a set of
structural properties that was described in [Pel04]. In this chapter we first describe a
similar set of structural properties for parity games, and we show that, with respect to
these properties, our benchmark set is diverse. Note that we do not reuse the benchmarks
from [Pel06; Pel07], because the properties that are considered are simple, leading to a
set of parity games that is too restricted.

Structure of this chapter. We describe structural properties of parity games in Sec-
tion 5.1. The implementation used for generating the benchmarks is briefly described in
Section 5.3. The set of benchmarks is described in Section 5.2, of which we analyse the
structure in Section 5.4. Subsequently, the effect of the equivalence relations described
in Chapter 4 is studied in Section 5.5. We conclude this chapter in Section 5.6.

5.1 Structural Properties of Parity Games

Parity games are graphs in which the vertices are partitioned in two sets; therefore, struc-
tural properties of graphs can directly be used to characterise parity games. We describe
a number of these properties in Section 5.1.1. The partitioning of vertices between two
players, as well as the priorities in parity games, give rise to a number of more specific
properties. These are described in Section 5.1.2.

5.1.1 Generic Graph Properties

We first describe a number of structural properties of graphs, that were also studied for
state spaces in [Pel04; Pel06; Pel07]. In this section, let (V,→) be a graph.

Basic Sizes. As basic characteristics, we consider the number of vertices |V |, and the
number of edges | → |.

Degrees. Typical structural properties in the graph are the in- and out-degrees of ver-
tices, i.e., the number of incoming and outgoing edges of vertices. Formally, for vertex
v ∈ V , the in-degree indeg(v) is defined as |{u ∈ V | u→ v}|, the out-degree outdeg(v) is
|{w ∈ V | v → w}|, and the degree deg(v) is |{w ∈ V | v → w ∨ w → v}|. We record the
minimum, maximum and average of these values.

The correspondence between in-degree, out-degree and the degree is characterised
as v→ v =⇒ deg(v) = outdeg(v)+ indeg(v)−1, and v 6→ v =⇒ deg(v) = outdeg(v)+
indeg(v).
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Strongly Connected Components. The strongly connected components (SCCs) of a
graph are the maximal strongly connected subgraphs. More formally, a strongly connec-
ted component a maximal set C ⊆ V for which, for all u, v ∈ C , u→∗ v, i.e., each vertex
in C can reach every other vertex in C .

The strongly connected components in a graph induce a quotient graph. Let sccs(V )
denote the strongly connected components of the graph, then the quotient graph is the
graph (sccs(V ),→′) and for C1,C2 ∈ sccs(V ), there is an edge C1 →′ C2 if and only if
C1 6= C2 and there exist u ∈ C1 and v ∈ C2 such that u→ v. Observe that the quotient
graph is a directed acyclic graph.

We say that an SCC C is trivial if |C |= 1 and C 6→ C , i.e., it only contains one vertex
and no edges, and we say that C is terminal if C 6→′, i.e., its outdegree in the quotient
graph is 0. The SCC quotient height of a graph is the length of the longest path in the
quotient graph.

Properties of Search Strategies. Given some initial vertex v0 ∈ V , breadth-first search
(BFS) and depth-first search (DFS) are search strategies that can be used to systematically
explore all vertices in the graph. The fundamental difference between BFS and DFS is
that the BFS maintains a queue of vertices that still need to be processed, whereas the
DFS maintains a stack of vertices. We record the queue and stack sizes during the search.

Breadth-first search induces a natural notion of levels, where a vertex is at level k if
it has least distance k to v0. The BFS height of a graph is k if k is the maximal non-empty
level of the BFS. For each level the number of vertices at that level is recorded. During
a BFS, three kinds of edges can be detected, viz. edges that go to a vertex that was not
yet seen, edges that go to a vertex that was seen, but has not yet been processed (i.e.,
vertices in the queue) and edges that go back to a vertex on a previous level. This last
type of edges is also referred to as a back-level edge. Formally it is and edge u→ v where
the level of u, say ku is larger than the level of v, say kv . The length of a back-level edge
u→ v is ku − kv .

Distances. The diameter of a graph is the maximal length of a shortest path between
any pair of vertices. The girth is the length of the shortest cycle in the graph. Both
measures basically require computing the all-sources-shortest path problem with unit
weights on the edges, which is quadratic in the size of the graph.

For undirected graphs the diameter can be computed more efficiently using the tech-
niques from Takes and Koster [TK11]. For directed graphs, however, no more efficient
algorithm is known.

Local Structure. Pélanek also studied some local graph properties. A diamond rooted
at a vertex u is a quadruple (u, v, v′, w) such that v 6= v′, u → v, u → v′, v → w, and
v′→ w.

The k-neighbourhood of v is the set of vertices that can be reached from v in at most k
steps (not counting v). The k-clustering coefficient of v is the ratio of the number of edges
and the number of vertices in the k-neighbourhood of v. The k-neighbourhood can be
thought of as a generalisation of the out-degree, except that we exclude a vertex from its
own neighbourhood.

105



Chapter 5. Benchmarking Parity Games

Width-measures on Graphs. Width-measures of graphs are based on cops-and-robbers
games, where different measures are obtained by varying the rules of the game. Most
of the measures have an alternative characterisation using specific sorts of graph decom-
positions. Cops and robber games were introduced by Nowakowski and Winkler [NW83]
and, independently by Quilliot [Qui78], and have been well-studied, see e.g., [ST93;
Bar06; DKT97; GLS01; BG05; Hun07].

The classical width notion for undirected graphs is treewidth, which was originally
defined by Robertson and Seymour [RS86], see also [Bod97]. Intuitively, the treewidth
of a graph expresses how tree-like the graph is—the treewidth of a tree is 1. This cor-
responds to the idea that some problems are easier to solve for trees, or graphs that are
almost trees, than for arbitrary graphs. For directed graphs, the treewidth is defined as
the treewidth of the graph obtained by forgetting the direction of the edges. The com-
plexity for solving parity games is bounded in the treewidth, as shown by Obdržálek
[Obd03]; this means that, for parity games with a small, constant treewidth, parity game
solving is polynomial.

It is not clear how treewidth should be generalised from undirected graphs to directed
graphs. This question has led to a number of different width measures for directed
graphs, of which we give an overview below.

Directed treewidth was introduced by Johnson et al. [Joh+01]. For a directed graph,
its directed treewidth is bounded by its treewidth [Adl07].

DAG-width was proposed by Obdržálek [Obd03; Obd06b; Obd06a] and independ-
ently by Berwanger et al. [Ber+06], see also [Ber+12b]. This measure describes how
much a graph is like a directed acyclic graph. It was shown that the DAG-width of a
graph bounds the directed tree width of a graph from above, and that it is at most the
tree-width of a graph.

Kelly-width was introduced by Hunter and Kreutzer [HK08]. It is known that if the
Kelly-width of a graph is bounded, then also a bound on its directed tree-width can be
given, however, classes of directed graphs with bounded directed treewidth and unboun-
ded Kelly-width exist.

Entanglement, introduced by Berwanger and Grädel [BG05; Ber+12a], is a graph
measure that aims to express how much the cycles in a graph are intertwined. If an un-
directed graph has bounded treewidth, say k, then it also has an entanglement bounded
by (k+ 1) log |G|. Furthermore, if a graph has DAG-width k, then it has entanglement at
most (k+ 1) log |G|.

Clique-width, introduced by Courcelle and Olariou [CO00], measures how close a
graph is to a complete bipartite graph. For every directed graph with treewidth k, we
know that its clique width is at most 22k+1 + 1. Unlike the other width measures that
we discussed, this measure does not have a characterisation in terms of cops-and-robbers
games.

5.1.2 Parity Game Specific Properties

In addition to the above, we develop a number of additional characteristics of parity
games, that use the player and priority information that is available. Henceforth, let
(V,→,Ω,P ) be a parity game. We write V � (resp. V�) as an abbreviation for {v ∈ V |
P (v) = �} (resp. {v ∈ V | P (v) =�}).
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Basic Sizes. As basic parity game properties, we consider the numbers of vertices |V �|
and |V�| owned by the two players. We write Ω(V ) for the set of priorities {Ω(v) | v ∈ V},
and represent the number of priorities in the game by |Ω(V )|. Likewise, we represent the
number of vertices with priority k by |Ω−1(k)|.

Local Structure. For parity games, we characterise two more specific classes of dia-
monds. A diamond (u, v, v′, w) is defined to be even if P (u) = P (v) = P (v′) = �, and
odd if P (u) =P (v) =P (v′) = �. These structures might prove interesting in the sense
that from vertex u, P (u) has at least two strategies to play to w in two steps.

Alternation Depth. Typically, the complexity of parity game algorithms is expressed
in the number of vertices, the number of edges, and the number of priorities in the
game. If we look at other verification problems, such as µ-calculus model checking, or
solving Boolean equation systems, the complexity is typically expressed in terms of the
alternation depth. Intuitively, the alternation depth captures the number of alternations
between different fixed point symbols. We first describe classical notions of alternation
depth for µ-calculus formulae. Subsequently we adapt this notion to parity games.

The original notion of alternation depth of a µ-calculus formula was described by
Emerson and Lei [EL86]. They used this notion to describe the complexity of their model
checking algorithm. Some alternative definitions have also been described in the liter-
ature. Each of the definitions counts alternations in a subtly different way. The most
popular alternatives are due to Niwinski [Niw86] and Anderson [And93].

The following overview of three notions of alternation depth is due to Bradfield and
Stirling in [BS00]. This combines the notion of simple-minded alternation depth (S),
Emerson-Lei alternation depth (EL), and Niwinski alternation depth (N). Bradfield de-
scribed a slightly more involved definition of Emerson-Lei alternation depth in [Bra91].
The only difference between the three notions is clause 3 in the definition below.

Definition 5.1. [BS00] For C ∈ {S, EL, N} We define classes
∑C

n and
∏C

n of least– and
greatest fixed point expressions inductively as follows:

• φ ∈
∑C

0 and φ ∈
∏C

0 iff φ does not contain fixed point operators;

•
∑C

n+1 is the smallest set such that, if φ ∈
∑C

n ∪
∏C

n then φ ∈
∑C

n+1, and further-
more

1. if φ,ψ ∈
∑C

n+1, then φ ∨ψ, φ ∧ψ, ¬φ, 〈a〉φ, [a]φ ∈
∑C

n+1;

2. if φ ∈
∑C

n+1 then µZ .φ ∈
∑C

n+1;

3. – if C = EL, we have that if φ(Z),ψ ∈
∑EL

n+1, and ψ is a closed formula,

then φ(ψ) ∈
∑EL

n+1.

– if C = N we have that if φ(Z),ψ ∈
∑N

n+1, and no free variable of ψ is

captured by a fixed point operator in φ, then φ(ψ) ∈
∑N

n+1

∏C
n+1 is defined symmetrically, using ν instead of µ in the second clause above.
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These classes give rise to the following three notions of alternation depth:

• simple minded alternation depth adS(φ) is the least n such that φ ∈
∑S

n+1∩
∏S

n+1,

• Emerson-Lei alternation depth adEL(φ) is the least n such that φ ∈
∑EL

n+1∩
∏EL

n+1,
and

• Niwinski alternation depth adN(φ) is the least n such that φ ∈
∑N

n+1∩
∏N

n+1.

Observe that simple-minded alternation depth simply counts the alternations between
fixed point symbols in a formula. Emerson-Lei alternation depth ignores closed subfor-
mulae, i.e., it only counts alternations if one of the surrounding bound variables occurs
within a subformula. Niwinski alternation depth is even more restrictive.

In coining a notion of alternation depth for parity games, we draw inspiration form
alternation depth for modal equation systems as it was defined by Cleaveland et al.
[CKS93].

The notion of alternation depth that we define comes in two stages. First we define
the nesting depth of a strongly connected component within a parity game, next we
define the alternation depth of the parity game as the maximum of the nesting depths of
its strongly connected components.

Definition 5.2. Let G = (V,→,Ω,P ) be a parity game, and let C be the set of strongly
connected components of G. Let C ∈ C be a strongly connected component. The nesting
depth of vi in C is given by

nd(vi , C)
∆
=max{1,

max{nd(v j , C) | v j →∗C ,Ω(vi)
vi , v j 6= vi and Ω(vi)≡2 Ω(v j)},

max{nd(v j , C) + 1 | v j →∗C ,Ω(vi)
vi and Ω(vi) 6≡2 Ω(v j)}

}

where v j →C ,k vi if v j → vi is an edge in the SCC C with Ω(v j) ≤ k and Ω(vi) ≤ k.
Intuitively, the nesting depth of a vertex v counts the number of alternations between
even and odd priorities on paths of descending priorities in the SCC of v. Note that
this is well-defined since we forbid paths between identical nodes. The nesting depth
of an SCC C ∈ C is defined as the maximum nesting depth of any vertices in C , i.e.,

nd(C)
∆
=max{nd(v, C) | v ∈ C}.

The alternation depth of a parity game is defined as the maximal nesting depth of its
SCCs.

Definition 5.3. Let G = (V,→,Ω,P ) be a parity game, and let C be the set of strongly

connected components of G. Then the alternation depth of G is defined as ad(G)
∆
=

max{nd(C) | C ∈ C}.

Cleaveland et al. showed that their notion of alternation depth for modal equation
systems corresponds to Emerson-Lei alternation depth for formulae [CKS93, Theorem
3.8].
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In Section 2.6 we already observed that for normalisation we have different possibil-
ities. For the following proposition, consider a normalisation routine where alternating
conjunctions and disjunctions are removed by introducing an additional equation imme-
diately after the original one, instead of at the end of the BES. For example, the equation
system E0(σX = f ∧ g)E1 where g is disjunctive, is replaced by E0(σX = f ∧ X ′)(σX ′ =
g)E1.

The following proposition follows immediately from the result in [CKS93], and the
encoding of model checking problems to parity games via EL(_), and subsequent norm-
alisation using the above procedure.

Proposition 5.4. Let φ be a modal µ calculus formula with alternation depth adEL(φ)≥ 1,
and let L be an arbitrary labelled transition system. Let G be a parity game obtained from
EL(φ) after normalisation. Then ad(G)≤ adEL(φ).

Observe that using the original encoding can both lead to both smaller alternation
depths as well as larger alternation depths.

5.1.3 Discussion

The graph properties that we described in Section 5.1.1 provide some basic character-
istics of graphs. A high maximal degree, in a graph with a low average degree, e.g.,
characterises that the graph contains a number of hubs that are incident to a lot of other
vertices.

Algorithms and heuristics can benefit from a decomposition into strongly connected
components (SCCs). One prominent example is the global parity game solving algorithm
presented by Friedmann and Lange [FL09], for which it was shown that SCC decompos-
ition generally works well in practice. Furthermore, Berwanger and Grädel showed that,
for certain subclasses of parity games, all vertices in a strongly connected component are
included in the same winning set [BG04].

Graph algorithms are typically based on a search strategy such as breadth-first search
(BFS) or depth-first search (DFS), given some initial vertex v0 ∈ V . This is the main
reason to study characteristics for these measures.

The diameter and the girth characterise global properties of graphs. Intuitively, they
describe how hard it gets to get from one vertex in the graph to another, or back to itself.
A girth of 1 denotes that the graph contains a self-loop. We expect to see this value quite
often when analysing parity games due to the occurrence of vertices that are trivially won
by one of the two players.

Even- and odd diamonds could be interesting in parity games. Consider, e.g., an even
diamond (u, v, v′, w). This means that from vertex u, player � has two strategies to reach
w. The question is open whether these kinds of structures can be used to improve parity
game solving.

Width-measures of graphs are interesting to consider for parity games due to the
availability of specialised algorithms that can solve games polynomially if their width is
bounded.

Our notion of alternation depth is an attempt to devise a complexity measure for
parity games that is more accurate than the number of priorities.
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Most of the measures that we have described above can be computed efficiently. How-
ever, the diameter and girth are quadratic in the number of vertices—effectively they re-
quire computing a solution to the all-sources shortest path problem. This is not feasible
for even relatively small graphs.

The situation for the width-measures is even worse. Computing the exact value for
these measures is known to be NP-complete [ACP87]. Approximation algorithms are
known that compute upper- and lower bound for these measures; especially for treewidth
these have been thoroughly studied [BK10; BK11]. However, even these algorithms are
not practical for the sizes of graphs that we consider, for these algorithms, even graphs
with only 1000 vertices are considered large. Due to the availability of specialised al-
gorithms, we would have liked to include the width-measures in the statistics of our
benchmarks. Regretfully, due to the poor running times, including this information is not
feasible.

5.2 Parity Games

For benchmarking parity game algorithms, it makes sense to distinguish three classes of
parity games, (1) the games that are the result of encoding a problem into parity games,
(2) games that represent hard cases for certain algorithms, and (3) random games. All
three classes of games occur in the literature, and our benchmark set contains games
from each of these classes. In the rest of this section we discuss the set of benchmarks
that we have used.

5.2.1 Encodings

A broad range of verification problems can be encoded as a parity game. The most prom-
inent examples of these are the µ-calculus model checking problem—does a model satisfy
a given property?—, equivalence checking problems—are two models equivalent?—, de-
cision procedures—is a formula valid or satisfiable?— and synthesis—given a property,
give a model that satisfies the property.

Model Checking

The set of model checking problems we consider is mainly selected from the literature.
All of the systems are encodings that, given a model L of a system, and a property ϕ,
encode the model checking problem L |= ϕ, i.e., does L satisfy property ϕ. Most sens-
ible encodings of model checking problems typically lead to a low number of priorities,
corresponding to the low alternation depths of these properties. We verify fairness, live-
ness and safety properties. This set includes, but is not limited to, the model checking
problems described in [Mat03; PW08; FL09; CKW11; CKW12b].

We considered a number of communication protocols from the literature, see, e.g.,
[BSW69; CK74; KM90; GP96]: two variations of the Alternating Bit Protocol (ABP), the
Concurrent Alternating Bit Protocol (CABP), the Positive Acknowledgement with Retrans-
mission Protocol (PAR), the Bounded Retransmission Protocol (BRP), the Onebit sliding
window protocol, and the Sliding Window Protocol (SWP). All of these protocols are para-
meterised with the number of messages that can be sent, furthermore the sliding window
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protocol is parameterised by the window size. For these protocols a number of proper-
ties of varying complexity was considered, ranging from alternation free properties, e.g.
deadlock freedom, to fairness properties.

A Cache Coherence Protocol (CCP) [Vel+01] and a wait-free handshake register (Hes-
selink) [Hes98] are considered. For the cache coherence protocol we consider a number
of properties from [Pan+07] and for the register we consider properties from [Hes98].
Additionally we consider a leader election protocol for which we verify whether it eventu-
ally stabilises.

To obtain parity games with a high degree of alternation between vertices owned
by different players we also consider a number of two-player board games, viz. Clobber
[Alb+05], Domineering [Gar74], Hex, see e.g. [BBC00; Maa05], Othello, also known as
reversi, see e.g. [Ros05], and Snake. For these games we check for each of the players
whether the player has a winning strategy starting from the initial configuration of the
game. The games are parameterised by their board size.

Additionally, we consider a number of industrial model checking problems. The first
is a system for lifting trucks (Lift) [GPW03], of which we consider both a correct and
an incorrect version. We verify the liveness and safety properties described in [GPW03].
For the IEEE 1394 Link Layer Protocol (1394) we verify the properties from [Lut97]. We
translated the ACTL properties from [SM98] to the µ-calculus.

Finally, we check the Elevator described by Friedmann and Lange, in a version in
which requests are treated on a first-in-first-out basis (FIFO), and on a last-in-first-out
basis (LIFO). We then check whether, globally, if the lift is requested on the top floor,
then it is eventually served. This holds for the FIFO version, but does not hold for the
LIFO version of the model. The elevator model is parameterised by the strategy and
the number of floors. Furthermore we consider the parity games generated using an
encoding of an LTS with a µ-calculus formula, as well as the direct encoding presented in
[FL09]. In a similar way we consider the Hanoi towers from [FL09] as well as our own
version of this problem. An overview of the µ-calculus formulae that we considered is
provided in Appendix A.1.

Equivalence Checking

Given two processes L1, L2, the problem whether L1 ≡ L2, for relations ≡, denoting that
L1 and L2 are equivalent under some process equivalence, can be encoded as a parity
game [Lar93; VL94; Mat03; Che+07]. We consider strong bisimulation, weak bisimula-
tion, branching bisimulation and branching simulation equivalence in our benchmarks,
using the approach described in [Che+07]. The number of different priorities in these
parity games is limited to 2. The games do, however, include alternations between ver-
tices owned by different players.

Here we again use the specifications of the communication protocols that we also
used for model checking, i.e., two ABP versions, CABP, PAR, Onebit and SWP. In addition
we include a model of a buffer. We vary the capacity of the buffer, and the number
of messages that can be transmitted, as well as the window size in the sliding window
protocol. We compare each pair of protocols using all four equivalences. This gives rise
to both positive and negative cases. These cases are a superset of the ones described in
[CKW11; CKW12b].
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In addition, we include a comparison of the implementation of the wait-free hand-
shake register with a possible specification. The implementation is trace equivalent to the
specification, but it is not equivalent with respect to the equivalences that we consider
here.

Decision Procedures

Parity games can also be obtained from decision procedures for temporal logics such as
LTL, CTL, CTL∗, PDL and the µ-calculus. Classical approaches rely on testing non-
emptiness of a tree automaton, see, e.g., [EJ99]. Friedmann, Latte and Lange presented
a decision procedure that is based on a combination of infinite tableaux in which the
existence of a tableau is coded as a parity game [FLL10]. The priorities in the parity
game originate from a deterministic parity automaton that is the result of complementing
a non-deterministic Büchi automaton. In ibid., the authors also present a tool that, for
a given formula, checks whether it is (1) valid, i.e., whether the formula holds in all
models, or (2) satisfiable, i.e., whether the formula is satisfiable in some model.

Our benchmark set includes a number of scalable satisfiability and validity problems
that are provided as examples for the MLSolver tool [FL10a], including, but not limited
to, the benchmarks used in [FL10a]. The formulae are provided in Appendix A.2.

Synthesis

Another problem that involves solving parity games is the LTL synthesis problem. Tradi-
tional synthesis approaches convert a formula into a non-deterministic Büchi automaton,
which is, in turn, transformed into a deterministic parity automaton using Safra’s con-
struction [Saf88]. Emptiness of this deterministic parity automaton can then be checked
using parity games. Implementations of this approach suffer from the high cost of de-
terminisation, even for small automata.

Synthesis tools have been implemented that employ parity games internally. GOAL
[Tsa+08], e.g., converts an LTL formula to an equivalent deterministic parity automaton.
This can be converted into a parity game using, e.g., Gist [Cha+10]. All synthesis tools
that we are aware of, however, are research quality tools, of which we have not been
able to obtain working versions on current computing platforms. As a result, we do not
currently include parity games obtained from the synthesis problem.

5.2.2 Hard Games

The interesting complexity of solving parity games, and its link to the model checking
problem, have led to the conception of a large number of parity game solving algorithms.
For most of these algorithms it has long been an open problem whether they have expo-
nential lower bounds.

We consider the games described by Jurdziński that shows the exponential lower
bound for small progress measures [Jur00], the ladder games described by Friedmann
[Fri11a] with the variation of recursive ladder games that give a lower bound for the
strategy improvement algorithms [VJ00; Sch07], as well as model checker ladder games
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for which the local algorithm by Stevens and Stirling [SS98] requires exponential time
as described in [Fri10].

In our benchmarks, we include these families of games.

5.2.3 Random Games

The final class of games that is typically used in publications that empirically evaluate the
performance of algorithms on parity games are random parity games. In the literature
[BV01; Sch08b; Sch08a; Lan05; FL09], random games we discussed. We study three
classes of random parity games. We expect that the structural properties of random
games are, typically, different from parity games obtained in the previous classes. This
class is, therefore, unlikely to give insights in the performance of parity game algorithms
on practical problems.

5.3 Implementation

All experiments were executed on a 1TB main memory, 56-core Linux machine, where
each core was running at 2.27GHz. Executions of tools generating, reducing and solving
parity games, as well as executions of tools collecting statistics about parity games, were
limited to running times of 1 hour and their memory usage was limited to 32GB.

To systematically generate the benchmarks, and perform experiments, we have im-
plemented tooling to drive the experiments that allows the parallel execution of indi-
vidual cases. Here a case is either generating, solving or reducing a game, or collecting
a single measure. Each individual case only uses a single core. The tools are available
from https://github.com/jkeiren/paritygame-generator. Care was taken to implement
the tooling in an extensible way, i.e., additional parity games, additional encodings, as
well as additional measures can be added straightforwardly.

5.3.1 Generating Parity Games

For the generation of our benchmarks we rely on a number of external tools. We used
version 3.3 of PGSolver [FL10b] for generating random games, and games that prove to
be hard for certain algorithms. Version 1.2 of MLSolver was used to generate the games
for satisfiability and validity problems [FL10a]. For the model checking and equivalence
checking problems we used revision 11703 of the mCRL2 toolset [Cra+13]. This toolset
is based on (parameterised) Boolean equation systems, and hence requires a conversion
to parity games. Results can differ for different translations to simple recursive form,
that are used in this conversion. The implementation uses the transformation described
in Section 2.5.

We have applied the reductions from Chapter 4 to each of the parity games gener-
ated using the tools described above. For all games we have collected the information
described in Section 5.1.
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5.3.2 Collecting Statistics

We developed the tool pginfo for collecting structural information from parity games.
The tool is available from https://github.com/jkeiren/pginfo and accepts parity games
in the file format used by PGSolver. It reads a parity game, and writes statistics out to a
file in a structured way.

The implementation is built on top of the Boost Graph library [SLL02], which provides
data structures and basic algorithms for manipulating graphs. Most of the measures
can be effectively computed using the BFS and DFS algorithms implemented in the lib-
rary. To determine feasibility of computing width-measures for our benchmarks we have
implemented three approximation algorithms. For computing upper and lower bounds
on treewidth we implemented the greedy degree algorithm [BK10] and the minor min-
width algorithm [GD04], respectively. For computing an upper bound of the Kelly-width
we implemented the elimination ordering described in [HK08]. These approximation al-
gorithms have proven to be impractical due to their complexity. Computing (bounds) on
the other width measures is equally complex.

5.3.3 Equivalence Reductions

The equivalence reductions described in Chapter 4 have been implemented in the tool
pgconvert, which is available from https://github.com/tue-mdse/pgconvert. This tool
implements the algorithm described in the previous chapter for deciding governed stut-
tering bisimilarity. For stuttering equivalence the classical algorithm by Groote and
Vaandrager was implemented. The algorithms for strong bisimulation and governed
bisimulation are also simplifications of the same algorithm, as a consequence the run-
ning time is not the O (n log n) that can be achieved theoretically, but instead it is an
O (nm). However, since all algorithms were implemented in the same framework, we are
able to compare the effect of the specific equivalences. Note that for strong bisimulation
and governed bisimulation a more efficient implementation could be made on top of the
partition refinement algorithm by Paige and Tarjan [PT87].

We have validated the implementation using the translation from [RSW12], using
existing tools for strong- and divergence-preserving branching bisimulation for reducing
labelled transition systems, for a subset of the parity games.

5.4 Analysis of Benchmarks

We have presented a diverse set of benchmarks by considering games originating from
different problems. Next we analyse our benchmarks with respect to the measures de-
scribed in Section 5.1. This way we illustrate that the benchmarks we have chosen con-
tain games with a wide variety of properties. Furthermore, this gives us some insights
in the characteristics of typical parity games. Note that for each of the statistics that we
present, we consider only the parity games for which that specific statistic could be com-
puted within an hour. We used this bound to avoid timeouts for computing the measures
that are expensive to compute, such as the diameter and the girth. All graphs in this
section, as well as the next, are labelled by their class. Note that the satisfiability and
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validity problems are labelled by “mlsolver” and the games that are hard for some solv-
ing algorithms are labelled by “specialcases”. The full data presented in this chapter is
available as [Kei13].

We have considered 951 parity games that range from 2 vertices to 4.9 million ver-
tices, and on average they have about 90,000 vertices. The number of edges ranges from
2 to 100 million, with an average of about 465,000. The games are a mixture of parity
games in which all vertices are owned by a single player, the so called solitaire games
[BG04], and parity games in which both players own non-empty sets of vertices. The
parity games that we consider have differing degrees. There are instances in which the
average degree is 1, the average degree is maximally 9999, but it is typically below 10.
The ratio between the number of vertices and the number of edges is, therefore, relat-
ively small in general. This can also be observed from Figure 5.1, which displays the
correlation between the two. The games in which these numbers coincide are on the line
x = y , the other games lie around this line due to the log scale that we use. Our parity
games generally contain a vertex with in-degree 0, which is the starting vertex. Typically
the games contain vertices with a high in-degree—typically representing vertices that are
trivially won by either of the players—, and vertices with a high out-degree.
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Figure 5.1: Relation between number of vertices and number of edges

In general, the SCC quotient height ranges up to 513 for the parity games that we
consider. The number of non-trivial SCCs, can grow large, up to 125,000 for our games.

The diameter and girth have been computed only for smaller parity games, and the
data we present for them, therefore, considers a subset of the parity games only.

We expect that typical parity games contain self-loops, which leads to a small girth—
the girth is 1 if the game contains a self-loop. This is confirmed by the data in Figure 5.2.
Note that the girth is large for some of the hard cases that we consider. A closer investig-
ation shows that this is solely due to the model checker ladder games [Fri10].

The diameters of the parity games, i.e., the maximal length of any shortest path in
the game, are nicely distributed over the sizes of the game. Figure 5.3 shows that for
every size of game we have parity games of a large range of different diameters. Observe
that for the hard cases the diameter is, generally, large. Again, this is due to variations
of ladder games. Generally, the diameter for satisfiability and validity problems is larger
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Figure 5.2: Girths
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Figure 5.3: Diameters. Note the logarithmic scale for the diameter

than the diameter for model checking problems. For random games the diameter is
typically small.

Figure 5.4 indicates that the diameter and the number of BFS levels are correlated,
the number of BFS levels is therefore likely to be a good approximation of the diameter,
also for larger instances. Note that this corresponds to a similar observation made by
Pélanek, who stated that typically the diameter is smaller than 1.5 times the number of
BFS levels for state spaces [Pel04].

Of the parity games that we consider, 725 contain diamonds. Of these, 483 contain
even diamonds, and 624 contain odd diamonds, 382 contain both. This indicates that it
is worth investigating techniques, such as confluence reduction, that use these diamonds
to either simplify parity games or speed up solving. In general, the number of diamonds
is independent of the number of vertices in the game.

The 3-neighbourhoods range from 3 to 3000 across the sizes of the games, as can
be seen from Figure 5.5. Note that the average size of the 3-neighbourhoods is typically
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Figure 5.4: Correlation between BFS levels and diameter
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Figure 5.5: 3 Neighbourhoods

high for random games, and limited to 100 for most other classes of games.

We have included parity games with alternation depths up to 10,000 as shown in
Figure 5.6. Observe that the games for model checking and equivalence checking all
have alternation depth at most 2—which is lower than alternation depth 3 of some of
the formulae due to the normalisation procedure that we have used. For model checking
properties could be formulated that have a higher alternation depth—up to arbitrary
numbers—however, in practice properties have limited alternation depth because they
become too hard to understand otherwise. The satisfiability and validity properties have
alternation depths between 1 and 4. The alternation depths of the random games are
between 10 and 15. All parity games with more than 50 priorities represent special cases.
Closer investigation shows that these special cases are the clique games and recursive
ladder games.
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Figure 5.6: Alternation depths

5.5 Evaluation of Equivalence Reductions

Now that we have established a representative set of parity games, we can evaluate the
effect of the equivalence reductions developed in the previous chapter. We first look at
the sizes of the reduced parity games, and then study the impact on the time required for
solving.

In Figure 5.7 we present an overview of the size reduction for each of our four equival-
ences as a box plot. The boxes indicate the median with the lower- and upper quartiles,
such that a quarter of the measurements is between the lower quartile and the median,
and another quarter is between the median and the upper quartile. The lower- and upper
whiskers are determined by subtracting (resp. adding) 1.5 times the distance between
the upper and lower quartile. The average reductions are shown as solid diamonds,
outliers are marked as ×.

Reductions are presented as percentages, where e.g., a reduction of 90% means that
the size of the resulting system is 10% of the original. Note that the size considered is
the sum of the number of vertices and the number of edges in the parity game.

The results show that all of the equivalences are able to reduce the size of parity
games obtained from model checking problems by about 90% on average. For strong
bisimulation and governed bisimulation there are cases in which there is no reduction
at all, and for all equivalences there are instances where the reduction effectively solves
the parity game, i.e., the reduction reduces the game to a single vertex with a self-loop,
shown as (approximately) 100% in the figures. For model checking cases, observe that
stuttering equivalence and governed stuttering equivalence always achieve a reduction
of at least 25% for the cases that we considered; the average reduction has increased to
about 95%, and the median approaches 100%.

For satisfiability and validity examples the average reduction using strong bisimula-
tion is only 50%. This reduction is improved to 65 to 70% by governed bisimulation
and stuttering bisimulation, and up to 80% by governed stuttering bisimulation. This is
expected due to the alternations between vertices owned by different players in this type
of parity game.
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Figure 5.7: Reduction percentages compared to original.

The parity games that were obtained for equivalence checking show large reductions
using all algorithms, with medians of over 90%, and averages ranging from roughly 75%
for strong bisimulation, to 85% for governed stuttering equivalence. Random games can,
in general, not be reduced using our reduction techniques, which is shown by the narrow
range of values in the figures for random games. This should not come as a surprise,
since equivalence reductions rely on regularities in the structure of parity games. This
regularity is absent in random games.

The games representing special cases can, on average, be reduced by about 25%. The
ladder games [Fri11a] are reduced to 2 vertices, with 2 edges by our reductions. Note
that the model checker ladder games are not reduced by any of our reductions, and from
the recursive ladder games governed stuttering is able to remove only 3 vertices, whereas
the other equivalences do not result in any reduction.

From the graphs in Figure 5.7 the relative reductions of the different equivalences
are hard to judge. We therefore present the relative reductions in Figure 5.8. Observe
that governed bisimulation does not prove to be an improvement beyond strong bisim-
ulation in most cases, confirming the results from [KW11]. As expected, the most sig-
nificant effect is observed in the satisfiability and validity cases, where we know there
are alternations between vertices owned by different players. Stuttering bisimulation is
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Figure 5.8: Relative reductions.

an improvement over strong bisimulation; on average it is able to reduce the games by
an additional 50%. For model checking, the median is around 85%. The improvement
of governed stuttering equivalence over governed bisimulation is similar. For the prob-
lem sets in which there are a lot of alternations between vertices owned by different
players, i.e., equivalence checking and satisfiability and validity checking, we see that
governed stuttering bisimulation still improves over stuttering equivalence, sometimes
up to 100%. Note that there are examples in which governed stuttering equivalences
is unable to achieve a reduction, most likely due to alternations between vertices with
different priorities. The reduction using governed stuttering equivalence for the model
checking and equivalence checking cases might be improved by altering the transform-
ation to SRF, which is used in mCRL2, to add newly added equations to the block from
which they were created, instead of to the end of the equation system.

In Table 5.1 we present a representative selection of our benchmarks that shows the
absolute sizes of the corresponding parity games.

So far we have seen that the equivalences are able to dramatically reduce the size of
parity games. It remains to be seen, however, whether first reducing the parity game,
and only then solving it, also speeds up parity game solving. In Figure 5.9 we show the
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Table 5.1: Absolute sizes of a selection of parity games. The numbers reported reflect the
number of vertices in the parity games. Verdict

p
means the outcome of the verification

problem is true; × means the outcome is false. The buffers are of capacity 1.

Original ↔ ↔ ' ∼ verdict

Model Checking Problems

No deadlock
Onebit |D|= 2 81 921 1 1 1 1

p

|D|= 3 289 297 1 1 1 1
p

No spontaneous generation of messages
Onebit |D|= 2 185 089 1 1 1 1

p

|D|= 3 1 278 433 1 1 1 1
p

|D|= 4 5 588 481 1 1 1 1
p

Messages that are read are inevitably sent
Onebit |D|= 2 153 985 1 746 1 746 2 2 ×

|D|= 3 579 745 1 746 1 746 2 2 ×

Black has a winning strategy
Snake 4× 4 4 860 655 482 465 230 ×
Clobber 4× 4 564 914 29 200 26 725 28 357 23 796

p

Values written to the register can be read
Hesselink |D|= 2 1 093 761 1 1 1 1

p

Equivalence Checking Problems

Branching bisimulation equivalence
ABP-CABP |D|= 2 57 905 6 143 6 143 4 124 4 070

p

|D|= 4 134 097 6 143 6 143 4 124 4 070
p

Buf(1)-Onebit |D|= 2 604 354 12 826 12 826 9 258 9 258 ×

Weak bisimulation equivalence
ABP-CABP |D|= 2 50 865 2 286 2 286 846 846

p

|D|= 4 118 225 2 286 2 286 846 846
p

Buf(1)-Onebit |D|= 2 631 474 6 657 6 657 3 140 3 140 ×

Satisfiability and validity checking problems

Limit closure
CTL n= 4 38 075 3 679 3 665 1 083 306

p

n= 5 60 011 8 223 8 202 2 888 916
p

CTL∗ n= 1 174 667 80 656 80 632 26 876 12 471 ×

Binary counter
PDL n= 7 1 031 612 9 928 9 925 3 164 3 ×

n= 8 4 924 413 21 961 21 958 7 250 3 ×

Parity vs. Büchi condition
Original n= 2 2 497 1 238 1 236 710 541

p

n= 3 33 969 14 311 14 252 5 601 4 520
p

Compacted n= 2 456 207 207 207 155
p

n= 3 6 182 1 683 1 683 1 683 1 281
p

solving times of the original, compared to the sum of the reduction and solving times
of the reduced games modulo governed bisimulation. The comparison with the other
equivalences is similar. We have used a timeout of an hour for reducing + solving, and
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timeouts are shown in the graphs as a value of an hour, i.e., 3,600 seconds.
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Figure 5.9: Solving (and reduction) times of the original games compared to governed
stuttering bisimulation reduced games.

Points below the line x = y indicate games in which first reducing and then solving
the games is beneficial, whereas points above this line indicate that directly solving the
original game is faster. In this graph, we can observe that a large number of parity games
has been analysed, and that the majority of times is above the line x = y . For other
equivalences the graphs are similar, and therefore omitted.

Figure 5.9 suggests that, in general, it is not wise to reduce a parity game. To fur-
ther study this observation, we provide box plots showing the speed-up of reducing and
solving compared to solving the original game in Figure 5.10. The speed-up is com-
puted as time for solving original/(time for reduction+ time for solving reduced game),
the vertical line in plots indicates a speed-up of 1. The speed-up corresponding to the
results in Figure 5.9 can be found in Figure 5.10d.

The results again indicate that, in general, solving the original game is faster than first
reducing a game, and subsequently solving the reduced game. For model checking and
satisfiability and validity problems, and the games that are hard for certain algorithms,
the median speed-up is around 1 for all reductions that we have investigated. For the
other problems the median indicates a slow-down. Note that the range of speed-up
values is large. From Figure 5.9 we learn that in a large number of cases, both running
times are below 5 seconds. Inaccuracy of measurements could lead to extremely high or
extremely low speed-up values for these small running times. To investigate whether the
speed-up changes if these low running times are ignored, we show those cases in which
at least one of the two approaches takes 5 seconds in Figure 5.11. Here we see that for
the model checking problems, the median value shows a speed-up in favour of governed
stuttering equivalence reduction, over applying no reduction at all, whereas for the other
problems applying governed stuttering equivalence reduction causes a slow down, with
a small distribution of the values.

Our observations differ from the observations made earlier in [CKW11; CKW12b],
in which it was shown that first reducing and then solving the game was competitive
with directly solving the game, i.e., most of the points were around the diagonal in plots
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Figure 5.10: Speed-up with respect to original. Note the log-scale of the x-axis.

similar to Figure 5.9. If we translate these observations to the speed-ups, we observe that
the range of speed-ups was much tighter in these earlier experiments. The observation
that, using reduction, we are sometimes able to solve games that could not be solved
efficiently with the tested implementations is, however, confirmed by our results.

The main difference between the experiments carried out in this chapter and those
in [CKW11] and [CKW12b], is that here we have used a C++ implementation of the
recursive algorithm in the tool pbespgsolve, which was not yet available at the time
of writing of the previous papers. Earlier results were, therefore, based on a C++ im-
plementation of the small progress measures algorithm in pbespgsolve, as well as the
implementations of both algorithms and the big step algorithm in PGSolver [FL10b].

The implementation of the recursive algorithm that we have used here proves to be
much more efficient than the implementations that were used in earlier experiments.
This also proves the warning that was made in [CKW12b] to be just, i.e., the results from
such comparisons can change dramatically when different implementations of the same
algorithm are used.

In Chapter 4 we hypothesised that, although the worst-case running time for gov-
erned stuttering equivalence is worse than that of stuttering equivalence, the extra factor
will generally not manifest itself in practice. To investigate this hypothesis we show the
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Figure 5.11: Speed-up of governed stuttering bisimulation with respect to original, for
cases in which the running time of at least one of the two exceeds 5 seconds.
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Figure 5.12: Speed-up of governed stuttering bisimulation with respect to stuttering equi-
valence.

speed-up of governed stuttering bisimilarity reduction + solving, with respect to stutter-
ing equivalence reduction + solving, in Figure 5.12. The only case in which a small ad-
ditional overhead is apparent, is in the parity games for equivalence checking problems.
Observe, however, that in all other cases the mean speed-up is close to one, indicating no
difference. Furthermore, the range of speed-up values is small, with some outliers. Based
on these observations, we conclude that our hypothesis is supported by the data, i.e. the
higher theoretical complexity of the algorithm for governed stuttering bisimilarity does
generally not show in practice.

Finally, we have investigated whether any of the measures that we introduced has
an effect on the reduction and solving times, i.e., are the reduction and solving times
correlated with one of the measures that we have described. No such correlation was
observed, so none of the measures seems to have a clear impact on reduction and solving
times.
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5.6 Closing Remarks

In this chapter we have presented a set of benchmarks for parity game algorithms, and
analysed the parity games based on their structural properties. These games were used to
determine the reducing capabilities of the reductions presented in the previous chapter.

Our experiments show that the size reductions that can be obtained using the equival-
ences are significant, especially for practical problems like model checking, equivalence
checking, as well as satisfiability and validity checking. Size reductions of all equivalences
are significant, but governed stuttering equivalence is capable of achieving a significantly
larger reduction of parity games, especially when alternation between vertices owned by
different players is present.

The running times are, generally, negatively impacted by the reductions. There are,
however, cases where directly solving the original game results in a timeout, whereas
first reducing the game and subsequently solving it finishes quickly.

With the current solving techniques, in practice more time is spent generating the
parity game for a verification problem, e.g. from a symbolic description, than is spent on
solving the parity game. The generation time could potentially be reduced by reducing
this symbolic description prior to generating the parity game. The large size reductions
that we have shown in this chapter indicate that this is a viable alternative. We explore
such symbolic reductions in the next chapter.

We described a set of measures for parity games, and studied their effect on the time
required for reducing and solving the games. We were unable to establish a correlation
between these measures and the required times. This leads to the question whether
there are more suitable measures for parity games, for which such correlations can be
established.

Finally, we proposed a notion of alternation depth for parity games. The alternation
depth is always at most the number of priorities in a parity game. It is an open problem
whether the complexity of any of the existing algorithms is such that it solves parity
games exponentially in the alternation depth, instead of the number of priorities in the
game.
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Chapter 6

Liveness Analysis for
Parameterised Boolean Equation
Systems

So far we have studied equivalence relations for parity games and Boolean equation
systems. In the previous chapter we have seen that these reductions have the potential
to dramatically reduce the size of parity games. Looking at the time improvements,
results are disappointing. Yet there are parity games that can be solved effectively with
equivalence reductions, that cannot be solved without them. The main drawback of
the approaches that we have considered thus far is that they still require the explicit
construction of the complete parity game, prior to reduction. In this chapter, we focus on
symbolic descriptions of parity games, and we describe a static analysis technique that is
able to reduce the underlying parity game prior to generation.

It is well-known in explicit model checking that first generating the state space and
reducing it a posteriori can be inefficient, since the state space is large, and its generation
time consuming. A static analysis of a symbolic representation of a system may be able
to reduce the state space size a priori [HM97; GL02]. For instance, in [PT09] the con-
trol flow in a system was used to analyse its data flow, leading to significant reductions
compared to other known static analysis techniques.

In [FBG03], it has been suggested that by including the properties to be verified in
the analysis, the effectiveness of the static analysis techniques can be improved. This
is a challenging task, since both the property and the specification need to be analysed
simultaneously.

A natural formalism for exploring such static analysis techniques are Parameterised
Boolean Equation Systems (PBESs) [GW05b; GW05a]. These generalise Boolean equation
systems and can be used for solving a variety of verification problems, such as the en-
coding of first order µ-calculus model checking problems over (possibly infinite) labelled
transition systems [GW05b; GW05a] and equivalence checking of various behavioural
equivalences on labelled transition systems [Che+07]. For model checking, e.g., the sys-
tem and the property are translated into a PBES, which hence includes the information of
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both the system and the property that is being verified. As a consequence static analysis
techniques automatically include the information from the property, without having to
take multiple formalisms into account.

A basic static analysis is already performed when encoding a model checking problem
into a PBES. Intuitively, those parts of the system that do not influence validity of the
property that is checked are automatically excluded from the PBES during the translation.

The main contribution in this chapter is a static analysis method for PBESs. This
method consists of three separate phases. First, we compute a control flow graph for a
given PBES. Second, we use this control flow graph to analyse which data parameters
are relevant at which control flow locations. The final step in the method consists of
assigning those data parameters that are not relevant for a control flow location some
default, fixed value.

The notion of a control flow graph for PBESs is not self-evident, as a PBES does not
have an obvious graph structure. Instead, the control flow is typically encoded in the
parameters of the equations, which may come from both the property and the specific-
ation. An additional complication is that equations in PBESs can be mutually recursive,
which means that parameters of one equation may affect parameters in another equation.

We propose a notion of a control flow parameter that allows for identifying a mean-
ingful control flow graph of a PBES. Moreover, we provide efficient heuristics for identi-
fying control flow parameters. Using these parameters, we define two different types
of control flow graphs. The first—global—control flow graph considers all control flow
parameters, and the values these can take on, simultaneously. Its size can grow exponen-
tially in the number of control flow parameters. Drawing inspiration from [PT09], we
therefore also define a second—local—type of control flow graph consisting of one graph
per control flow parameter.

For both types of control flow graph we define a dedicated data flow analysis that
conservatively marks data parameters that may influence the solution of the PBES. The
global control flow graph permits a more fine-grained data flow analysis; the data flow
analysis for the local flow graph uses a trick that permits some information to be trans-
ferred between different control flow parameters.

The markings obtained by the data flow analysis are used to reset irrelevant data
parameters to a default value as soon as possible. This leads to a reduction of the size
of the underlying Boolean equation system. We prove that both versions of our data
flow analysis, and the consequent resetting of irrelevant data parameters, are sound,
i.e., they preserve the solution of the equation system, and, therefore the answer to
the encoded verification problem. The soundness proof that we present relies on the
notion of consistent correlations due to Willemse [Wil10], which is a generalisation of
idempotence identifying bisimilarity, see Definition 3.40, to PBESs.

We implemented our reduction in the context of the mCRL2 toolset [Cra+13] and
applied these to the applicable subset of examples from Chapter 5. Our results show that
reductions of about 90% of the size of the underlying Boolean equation systems can be
achieved.

For our analysis we draw inspiration from [GL02], which presents static analysis for
state spaces in general, and [PT09] where live variable analysis is applied to reduce
state spaces. In the latter, a reconstruction of the control flow is described for symbolic
descriptions of processes without mutual recursion.
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Liveness analysis techniques are well-known in compiler construction [ASU86]where
they are used for reducing execution time. The idea of using liveness analysis techniques
for state space reduction was first described by Bozga et al. [FBG03]. In [YG04] a similar
technique was presented, using an analysis of the control flow graph.

The aforementioned techniques are restricted to an analysis of state spaces. A number
of static analysis techniques, inspired by [GL02], were developed in [OWW09]. These
allow the automatic reduction of the complexity of PBESs, hence also taking the property
into account. In ibid. the authors also showed that intractable verification problems can
become tractable because of their static analysis techniques. Our methods generalise
these techniques.

Structure of this chapter. In Section 6.1 we give an introduction to the PBES theory. In
Section 6.2 we describe our construction of control flow graphs for PBESs. These are used
in Section 6.3 to determine live variables and reset irrelevant parameters. We present an
optimisation of the analysis in Section 6.4. The approach is evaluated in Section 6.5, and
we conclude in Section 6.6.

6.1 Parameterised Boolean Equation Systems

Parameterised Boolean equation systems are fixed point equation systems in which the
equations are parameterised by abstract data types. They generalise the Boolean equation
systems described in Section 2.5.

Throughout this chapter, we assume non-empty abstract data types that are represen-
ted by data sorts D1, D2, . . ., and operations on these sorts. Let D be a set of sorted data
variables. We write vectors in boldface, e.g. d is used to denote a vector of data variables.
We write d[i] to denote the ith element of a vector d.

A semantic set D is associated to every sort D, such that every term of sort D, and
all operations on D are mapped to the elements and operations of D they represent. We
assume an interpretation function ¹_º that maps every closed term t of sort D to the
data element ¹tº that it represents. For open terms we utilise an environment δ that
maps each variable from D to a data element of the associated type. The interpretation
¹tºδ of an open term is given by δ(t), where the extension of δ to arbitrary terms is
standard. Environments may be updated, such that (δ[v/d])(d ′) results in v if d ′ = d,
and δ(d ′) otherwise.

We specifically assume the existence of a sort B with elements true and false rep-
resenting the Booleans B and a sort N = {0, 1,2, . . .} representing the natural numbers
N. For these sorts, we assume that the usual operators are available and, for readability,
these are written the same as their semantic counterparts.

Before we formally define the notion of a parameterised Boolean equation system, we
formalise the notion of predicate formulae. An example of a PBES is given in Example 6.8
on page 132.

Definition 6.1. Predicate formulae are defined through the following grammar:

ϕ,ψ ::= b | X (e) | ϕ ∧ψ | ϕ ∨ψ | ∀d : D.ϕ | ∃d : D.ϕ
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in which b is a data term of sort B, X is a predicate variable of sort D→ B, taken from
some sufficiently large set P of predicate variables, and e is a vector of data terms of sort
D.

We assume that ∧ and ∨ associate to the left, and that ∧ binds stronger than ∨. Note
that predicate formulae are directly in positive form, ensuring monotonicity.

Freely occurring data variables in ϕ are denoted by free(ϕ). Predicate formulae
without predicate variables are called simple. We assume that if a data variable is bound
by a quantifier in a formula ϕ, it does not also occur free within ϕ.

Definition 6.2. The interpretation of a predicate formula ϕ in the context of a predicate
environment η: P → D→ B and data environment δ is denoted as ¹ϕºηδ, where:

¹bºηδ
∆
= ¹bºδ ¹X (e)ºηδ

∆
= η(X )(¹eºδ)

¹ϕ ∧ψºηδ ∆= ¹ϕºηδ ∧ ¹ψºηδ ¹ϕ ∨ψºηδ ∆= ¹ϕºηδ ∨ ¹ψºηδ

¹∀d : D.ϕºηδ
∆
= ∀v ∈ D.¹ϕºηδ[v/d] ¹∃d : D.ϕºηδ

∆
= ∃v ∈ D.¹ϕºηδ[v/d]

We define logical equivalence between two predicate formulae ϕ,ψ, denoted ϕ ≡ ψ,
as ¹ϕºηδ = ¹ψºηδ for all η,δ.

Parameterised Boolean equation systems (PBESs), or equation systems for short, are
sequences of fixed point equations ranging over predicate formulae.

Definition 6.3. Equation systems are defined by the following grammar:

E ::= ε | (νX (dX : D) = ϕ)E | (µX (dX : D) = ϕ)E

in which ε denotes the empty equation system; µ and ν are the least and greatest fixed
point signs, respectively; X is a sorted predicate variable of sort D→ B, dX is a vector of
formal parameters, and ϕ is a predicate formula.

By convention, we write ϕX to denote the right-hand side of the defining equation for
X in a given equation system E . The set of formal parameters of a predicate variable X is
denoted par(X ) and we assume that free(ϕX )⊆ par(X ). We typically omit the superscript
X from dX if it is clear from the context.

Let bnd(E ) denote the set of predicate variables occurring at the left hand sides of the
equations in E ; we refer to these variables as E ’s bound predicate variables. In a similar
way, we denote the set of occurring predicate variables by occ(E ). The formal definitions
of bnd and occ are analogous to those for proposition variables, see page 22. Throughout
this chapter, we deal with equation systems that are both well-formed and closed: every
bound predicate variable occurs in the left hand side of exactly one equation of E , and
all predicate variables occurring at the right-hand side are taken from the set of bound
predicate variables, respectively.

To each PBES E we associate a top assertion, denoted init X (v), where we require
X ∈ bnd(E ). For a parameter d[m] ∈ par(X ) for the top assertion init X (v) we define the
value init(d[m]) as v[m].

We next define a PBES’s semantics. Let BD denote the set of functions f : D → B, and
consider the ordering v on its elements, defined as f v g iff for all v ∈ D, f (v) implies
g(v). Observe that (BD,v) is a complete lattice.
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An equation gives rise to a predicate transformer on this lattice as follows: a pre-
dicate formula ϕ can be viewed (syntactically) as a functional λd: D.ϕ, abbreviated
by λd.ϕ. The interpretation of λd.ϕ, denoted ¹λd.ϕºηδ, is the functional (λv ∈
D.¹ϕºηδ[v/d]), which is a function in BD. The predicate transformer associated to
a functional ¹λd.ϕºηδ is given by λ f ∈ BD.¹λd.ϕºη[ f /X ]δ. Since the predicate
transformers defined this way are monotonic and (BD,v) is a complete lattice, the ex-
tremal fixed points of these predicate transformers exist. We denote these by σ f ∈
BD.¹λd.ϕºη[ f /X ]δ, for σ ∈ {µ,ν}. We now extend the semantics of individual equa-
tions to PBESs.

Definition 6.4. The solution of an equation system in the context of a predicate environ-
ment η and data environment δ is defined inductively as follows:

¹εºηδ
∆
= η

¹(σX (d: D) = ϕX )Eºηδ
∆
= ¹Eº(η[σ f ∈ BD.¹λd.ϕXº(¹Eºη[ f /X ]δ)δ/X ])δ

The solution prioritises the fixed point signs of equations that come first over the fixed
point signs of equations that follow, while respecting the equations. The solution to a
predicate variable in a closed PBES is independent of the predicate and data environments
in which it is evaluated. We therefore typically leave out these environments and write
¹Eº instead of ¹Eºηδ for closed equation systems.

Observe that the semantics of PBESs is similar to that of Boolean equation systems,
yet it is more complicated due to the inclusion of the data types and the corresponding
data environment.

For the correctness proofs of our transformation we rely on consistent correlations.
Note that the definition presented here generalises the consistent correlations for Boolean
equation systems from Definition 2.32.

The signature [Wil10] of a predicate variable X of sort D→ B, sgt(X ), is the product
{X } × D. The notion of signature is lifted to sets of predicate variables P ⊆ P in the
natural way, i.e. sgt(P) =

⋃

X∈P sgt(X ).
1

Definition 6.5 ([Wil10, Definition 6]). Let R⊆ sgt(P )×sgt(P ) be an arbitrary relation.
A predicate environment η is an R-correlation iff (X ,v) R (X ′,v′) implies η(X )(v) =
η(X ′)(v′).

A block is a non-empty equation system of like-signed fixed point equations. Given
an equation system E , a block B is maximal if its neighbouring equations in E are of a
different sign than the equations inB . The ith maximal block in E is denoted by Eei. For
relations R we write ΘR for the set of R-correlations.

Definition 6.6 ([Wil10, Definition 7]). Let E be an equation system. A relation R ⊆
sgt(P )× sgt(P ) is a consistent correlation on E , if for X , X ′ ∈ bnd(E ), (X ,v) R (X ′,v′)
implies:

1. for all i, X ∈ bnd(Eei) iff X ′ ∈ bnd(Eei)
1Note that in [Wil10] the notation sig is used to denote the signature. Here we deviate from this nota-

tion due to the naming conflict with the significant parameters of a formula, which also is standard notation
introduced in [OWW09], and which we introduce in Section 6.3.
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2. for all η ∈ΘR, δ, we have ¹ϕXºηδ[v/d] = ¹ϕ′Xºηδ[v
′/d′]

For X , X ′ ∈ bnd(E ), we say (X ,v) and (X ′,v′) consistently correlate, denoted as (X ,v) «
(X ′,v′) iff there exists a correlation R ⊆ sgt(bnd(E )) × sgt(bnd(E )) such that (X ,v) R
(X ′,v′) .

If the variables in two equation systems do not overlap we call them compatible.
Consistent correlations can be lifted to variables in different, compatible equation systems
E and E ′. This can, e.g., be achieved by merging the equation systems to an equation
system F , in which X ∈ bnd(Fei) if and only if X ∈ bnd(Eei), and likewise for E ′. The
consistent correlation can then be defined on F .

The following theorem [Wil10] shows the relation between consistent correlations
and the solution of a PBES.

Theorem 6.7 ([Wil10, Theorem 2]). Let E , E ′ be compatible equation systems, and « a
consistent correlation. Then for all X ∈ bnd(E ), X ′ ∈ bnd(E ′) and all η ∈ Θ«, we have
(X ,v)« (X ′,v′) =⇒ ¹Eºηδ(X )(v) = ¹E ′ºηδ(X ′)(v′)

In Section 2.5 we have seen how a Boolean equation systems can be obtained from
model checking problems. In a similar way, PBESs can be obtained from a variety of veri-
fication problems such as model checking or equivalence checking [GW05a; Che+07]. To
solve a PBES, and thereby the verification problem it encodes, it is typically instantiated
into a Boolean equation system [DPW08], using a process similar to explicit state space
generation. Reducing the time spent on instantiation is therefore instrumental in speed-
ing up solving such problems. The example below, which we use as a running example
throughout this chapter, illustrates how a model checking problem can be reduced to a
PBES solving problem.

Example 6.8. Consider the following specification of a lossy one place buffer that, when
s = 1, can read a data element through receive, and then, non-deterministically (by means
of the τ transitions), loses the data element when s = 3, or forwards the data element
through send when s = 4. After this, it is back in its initial state. For messages we use a
type D, containing at least the element d1.

proc P(s : N , d : D) =
∑

e : D(s = 1)→ receive(e).P(2, e)
+(s = 2)→ τ.P(3, d) + (s = 2)→ τ.P(4, d)
+(s = 3)→ lost.P(1, d) + (s = 4)→ send(d).P(1, d1);

init P(1, d1);

The (first order) modal µ-calculus formula below asserts that invariantly, if a message v
is received through receive, then, as long as no other message is read through receive, all
messages delivered must match message v.

νX .[true]X ∧
(∀v : D.[receive(v)]νY.([∃w : D.receive(w)]Y ∧∀u: D.[send(u)](v = u))).

The model checking problem whether the lossy buffer satisfies the above formula is con-
verted to the following PBES. Observe that in this PBES, the equation for X depends on
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that of Y : in the first conjunct of the equation for X , there is a recursion to the equation
for Y through Y (2, e, e).

νX (s : N , d : D) = (∀e : D.s = 1 =⇒ Y (2, e, e)) ∧ (∀e : D.s = 1 =⇒ X (2, e))
∧ (s = 2 =⇒ X (3, d)) ∧ (s = 2 =⇒ X (4, d)) ∧ (s = 3 =⇒ X (1, d))
∧ (s = 4 =⇒ X (1, d1))

νY (s : N , d, v : D) = (s = 4 =⇒ d = v) ∧ (s = 2 =⇒ Y (3, d, v))
∧ (s = 2 =⇒ Y (4, d, v)) ∧ (s = 3 =⇒ Y (1, d, v)) ∧ (s = 4 =⇒ Y (1, d1, v))

init X (1, d1);

6.2 Reconstructing Control Flow

Our static analysis techniques presented in the next sections are based on a notion of
control flow in a PBES. In traditional settings, the artefacts analysed have a clear graph
structure, and the notion of control flow is more or less a commonly understood concept.
However, in our setting of PBESs, this is not the case. This is largely due to the fact that
a PBES consists of sequences of equations over predicate formulae, for which there is no
obvious graph structure.

In Section 6.2.1, we propose a notion of control flow parameters that permits us to
define a control flow graph that is meaningful in our setting in Section 6.2.3. We describe
heuristics for computing control flow graphs efficiently in Section 6.2.2.

6.2.1 Control Flow Parameters

The parameters of an equation in a PBES typically encode (parts of) the state space of
a system and the information vital for the property that is verified in a model checking
problem. Similarly, in the encoding of equivalence checking problems, the parameters of
a PBES typically encode (parts of) the state spaces of both systems that are compared.
It is therefore to be expected that the control of a system is reflected by the changes of
values of a subset of the parameters in a PBES equation. The predicate variable instances
of the form X (e), present in the right-hand sides of the equations in a PBES, essentially
dictate how the values of the parameters change.

In view of these observations, we are interested in identifying how the predicate vari-
able instances affect the values of parameters. A complication is that there can be many
different occurrences of syntactically indistinguishable predicate variable instances that,
due to the context in which they are contained in a predicate formula, can be semantically
different. We therefore first introduce notation to identify individual predicate variable
instances in a formula.

We denote the number of predicate variable instances occurring in a predicate for-
mula ϕ by npred(ϕ). We assume that predicate variable instances in ϕ are assigned a
unique natural number between 1 and npred(ϕ), counting from left to right.

Definition 6.9. Let ϕ be a predicate formula and let i be between 1 and npred(ϕ).
The functions pred(ϕ, i), data(ϕ, i) and PVI(ϕ, i) are such that the predicate variable
instance PVI(ϕ, i) is the ith predicate variable instance in ϕ, syntactically present as
pred(ϕ, i)(data(ϕ, i)).

133



Chapter 6. Liveness Analysis for Parameterised Boolean Equation Systems

We define the syntactic replacement of the predicate variable instance at position i by
ψ in formula ϕ, denoted as ϕ[i 7→ψ], as follows.

Definition 6.10. Letψ be a predicate formula, and let i ≤ npred(ϕ), ϕ[i 7→ψ] is defined
inductively as follows.

b[i 7→ψ] ∆= b

Y (e)[i 7→ψ] ∆=
¨

ψ if i = 1

Y (e) otherwise

(∀d : D.ϕ)[i 7→ψ] ∆= ∀d : D.ϕ[i 7→ψ]

(∃d : D.ϕ)[i 7→ψ] ∆= ∃d : D.ϕ[i 7→ψ]

(ϕ1 ∧ ϕ2)[i 7→ψ]
∆
=

¨

ϕ1 ∧ ϕ2[(i− npred(ϕ1)) 7→ψ] if i > npred(ϕ1)
ϕ1[i 7→ψ] ∧ ϕ2 if i ≤ npred(ϕ1)

(ϕ1 ∨ ϕ2)[i 7→ψ]
∆
=

¨

ϕ1 ∨ ϕ2[(i− npred(ϕ1)) 7→ψ] if i > npred(ϕ1)
ϕ1[i 7→ψ] ∨ ϕ2 if i ≤ npred(ϕ1)

A control flow parameter is, intuitively, a parameter whose exact value we always
know before and after recursing via a predicate variable instance. That is, we require of a
control flow parameter that a recursion through the predicate variable instance is possible
only when the control flow parameter has a fixed, known value, and, at the same time,
we know the effect this recursion has on the value of the control flow parameter. We now
make this idea more precise, by employing a collection of partial functions.

Definition 6.11. Let s : P × N× N → D, t : P × N× N → D, and c : P × N× N → N
be partial functions, where D is the union of all ground data sort expressions. The triple
(s, t, c) is a unicity constraint for PBES E if, for all X ∈ bnd(E ) and 1≤ i ≤ npred(ϕX ):

• if s(X , i, j)=e then ϕX ≡ ϕX [i 7→ (d[ j] = e ∧PVI(ϕX , i))],

• if t(X , i, j)=e then ϕX ≡ ϕX [i 7→ (data(ϕX , i)[ j] = e ∧PVI(ϕX , i))],

• if c(X , i, j)=k then ϕX ≡ ϕX [i 7→ (data(ϕX , i)[k] = d[ j]∧PVI(ϕX , i))].

The function s in a unicity constraint exactly captures that, when defined for s(X , i, j),
the ith predicate variable instance in ϕX only needs to be considered in case variable d[ j]
has the value s(X , i, j). In particular, for any other value of the variable d[ j], the truth of
the predicate variable instance is immaterial to the truth of ϕX . In the same vein, when
t(X , i, j) is defined, then the jth data expression that is an argument to the ith predicate
variable instance in ϕX has a fixed value, given by t(X , i, j). The function c allows us to
establish that, whenever c(X , i, j) is defined to be k, then the value of variable d[ j] is
copied to the data expression on position k in the ith predicate variable instance of ϕX .
Note that whenever a function is not defined (denoted by⊥), we can draw no meaningful
information from that.

134



6.2. Reconstructing Control Flow

Example 6.12. Reconsider Example 6.8. The triple (s, t, c) in which s(X , 1, 1) = 1,
s(X , 2, 1) = 1, t(X , 1, 1) = 2, t(X , 3, 1) = 3 and c(X , 4, 2) = 2 is a unicity constraint. By
extending the mapping c by defining c(X , 5, 2) = 2, (s, t, c) remains a unicity constraint,
but c(X , 6, 2) may only be defined when D contains only elements equal to d1.

The requirements allow unicity constraints to be underspecified. In practice, it is de-
sirable to choose the constraints as complete as possible. If, in a unicity constraint (s, t, c),
s and c are defined for a predicate variable instance, it can immediately be established
that we can define t as well. This is formalised by the following assumption.

Assumption 6.13. Let X be a predicate variable, i ≤ npred(ϕX ), let (s, t, c) be a unicity
constraint, and let e be a value, then

(s(X , i, n) = e ∧ c(X , i, n) = m) =⇒ t(X , i, m) = e.

Henceforth we assume that all unicity constraints satisfy this assumption. The overlap
between t and c is now straightforwardly formalised in the following lemma.

Lemma 6.14. Let X be a predicate variable, i ≤ npred(ϕX ), and let (s, t, c) be a unicity
constraint, then if (s(X , i, n) and t(X , i, m) are both defined,

c(X , i, n) = m =⇒ s(X , i, n) = t(X , i, m).

Proof. Immediately from the definitions and Assumption 6.13. ut

The existence of a unicity constraint provides sufficient information for establishing a
meaningful set of control flow parameters in a PBES. In the rest of this chapter we assume
the existence of a unicity constraint source, dest and copy. We characterise the set of
control flow parameters by imposing additional restrictions on the unicity constraints.

We incrementally construct the set of control flow parameters by first locally estab-
lishing requirements on parameters. This set is then further restricted by requirements
that take the global structure of the equation system into account.

Locally, a parameter is a control flow parameter if, in every self-recursion, it is either
copied, or a destination value is known.

Definition 6.15. Let E be a PBES, with X ∈ bnd(E ). Parameter d[n] ∈ par(X ) is a local
control flow parameter (LCFP) if for all i such that pred(ϕX , i) = X , either source(X , i, n)
and dest(X , i, n) are defined, or copy(X , i, n) = n.

Towards defining a set of control flow parameters, we add a global consistency re-
quirement on LCFPs. A set of LCFPs is globally consistent if every control flow parameter
is only ever set to a constant, or the value of another control flow parameter.

Definition 6.16. Let E be a PBES. A set C of LCFPs is globally consistent if, for all
X ∈ bnd(E ), and all dX [n] ∈ par(X ), we have for all Y ∈ bnd(E ) \ {X } and all i such
that pred(ϕY , i) = X , either dest(Y, i, n) is defined, or copy(Y, i, m) = n for some LCFP
dY [m] ∈ par(Y ).

Remark 6.17. Control flow parameters and data parameters can be separated completely
by adding the following requirement to Definition 6.16: for all dX [n] ∈ par(X ), we have
for all i such that pred(ϕX , i) = Y 6= X , whenever dX [n] a�ects data(ϕX , i)[m] then
dY [m] ∈ C .
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Additionally, a control flow parameter for an equation is not allowed to (indirectly)
influence other control flow parameters in the same equation. We formalise this in two
steps by relating control flow parameters.

Definition 6.18. Let E be a PBES. With C a set of globally consistent LCFPs. We say
that dX [n],dY [m] ∈ C are related, denoted dX [n] ∼ dY [m], if either pred(X , i) = Y ,
m = copy(X , i, n) and dest(X , i, m) is undefined, or pred(Y, i′) = X , n = copy(Y, i′, m)
and dest(Y, i′, n) is undefined for some i, i′.

The relation ∼ relates control flow parameters that syntactically influence each other,
and are therefore related. For developing effective heuristics we often need to be able to
relate control flow parameters that only ‘influence’ each other by passing constants. Any
relation that we can construct has to satisfy the following consistency requirement.

Definition 6.19. Let C be a set of globally consistent LCFPs and let ≈ be an arbitrary
equivalence relation on C satisfying ∼∗⊆≈. Then the pair 〈C ,≈〉 defines a set of control
flow parameters (CFPs) if for all X ∈ bnd(E ) and all d, d ′ ∈ C ∩ par(X ), if d ≈ d ′, then
d = d ′.

The set [d]≈, defined as {d ′ ∈ C | d ≈ d ′} is the set of identical control flow parame-
ters.

Useful heuristics in constructing the relation ≈ in the definition above are relating
parameters with the same names in different equations, or relating parameters with the
same positions in different equations.

Given a set of CFPs 〈C ,≈〉 and a control flow parameter c, repr〈C ,≈〉(c) produces
a variable that represents c’s equivalence class, such that for CFPs c, c′, if c ≈ c′, then
repr〈C ,≈〉(c) = repr〈C ,≈〉(c

′). We generalise repr to sequences of CFPs in the obvious way.
We say that a set of CFPs 〈C ,≈〉 is meaningful for E if, for every c ∈ C , there exists

some cX [n] s.t. c ≈ cX [n], for which either a value is assigned in the initial value of the
PBES, or for which there exist X , i such that dest(X , i, n) is defined. This ensures that for
a set of meaningful CFPs, we can find at least one value in values(repr〈C ,≈〉(c)) after the
following transformation.

Definition 6.19 ensures that we can transform our PBES in such a way that every
equation has the same control flow parameters. We formalise this transformation.

Definition 6.20. Let E ∆= (σ1X1(cX1 ,dX1) = ϕX1
) · · · (σnXn(cXn ,dXn) = ϕXn

), with a mean-
ingful set of CFPs 〈C ,≈〉 where cX i are sequences of CFPs in C , and dX i are sequences of
data parameters. We unify the control flow parameters in E using unify, which is defined
inductively as follows.

unify(ε) = ε

unify((σX (cX ,dX ) = ϕ)E ) = (σX̄ (c′,dX ) = unifyX (ϕ))unify(E )

Here c′ is the sequence of variables containing exactly the representative for each equi-
valence class in 〈C ,≈〉. For formulae, unify is defined inductively as follows.

unifyX (b) = b[cX := repr〈C ,≈〉(c
X )] unifyX (Y (v,w)) = Ȳ (v′,w′)

unifyX (ϕ ∧ψ) = unifyX (ϕ) ∧ unifyX (ψ) unifyX (ϕ ∨ψ) = unifyX (ϕ) ∨ unifyX (ψ)
unifyX (∀d : D.ϕ) = ∀d : D.unifyX (ϕ) unifyX (∃d : D.ϕ) = ∃d : D.unifyX (ϕ)
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Here w′ =w[cX := repr〈C ,≈〉(c
X )], and v′ in the unification of predicate variable instance

ensures that every new control flow parameter gets the value of the CFP that it represents,
if any, and otherwise it is copied. Positionally v′ is defined as follows.

v′[i] =

¨

v[ j][cX := repr〈C ,≈〉(c
X )] if c′[i] = repr〈C ,≈〉(c

Y [ j])
c′[i] otherwise

In the unification of the initial value of a PBES, in the definition of v′[i], the value
min{values(c′[i])} is introduced instead of c′[i].

This transformation preserves the solution of the equation system, as indicated by the
following theorem.

Theorem 6.21. Let E be a closed PBES, with set of CFPs 〈C ,≈〉, then for all X , v, v′

and w: ¹Eº(X (¹vº,¹wº) = ¹unify(E )º(X̄ (¹v′º,¹wº), provided that v′ satisfies that
¹v′[i]º= ¹v[ j]º if c′[i] = repr〈C ,≈〉(c

X [ j]).

Proof. We prove this theorem by giving a relation R, and showing that it is a consistent
correlation. The statement then follows immediately.

Let R be the relation such that (X ,¹vº,¹wº) R (X̄ ,¹v′º,¹wº) for all X , v, v′, w,
provided that v′ satisfies that ¹v′[i]º = ¹v[ j]º if c′[i] = repr〈C ,≈〉(c

X [ j]). Relation R is
a consistent correlation. ut

Furthermore, control flow parameters are indeed preserved by the transformation.

Proposition 6.22. Let E be an equation system with a meaningful set of CFPs 〈C ,≈〉, and
let unify(E ) be such that c′ are the parameters that represent the control flow parameters in
C . For every i, c′[i] is a meaningful CFP in unify(E ).

Proof of this proposition follows by induction on the structure of the PBES. Again
using a simple inductive argument, we can prove that for a set of meaningful control
flow parameters, all values that the control flow parameters can attain lie within the set
values.

Proposition 6.23. Let E be a PBES, with a meaningful set of CFPs, and letF = unify(E ) =
(σ1X̄1(c′,dX̄1) = ϕX̄1

) · · · (σnX̄n(c′,dX̄n) = ϕX̄n
). If for all i, c′[i] there is at least one X̄ , j

such that dest(ϕX̄ , j, i) is defined, or the initial value of c′[i] is a constant, then all reachable
values of c′ are in values(c′).

Given the above considerations, and to simplify the presentation in the rest of this
chapter, we make the following assumption.

Assumption 6.24. The set of control flow parameters is the same for every equation
in a PBES; that is, for all X , Y ∈ bnd(E ) in a PBES E we have d ∈ par(X ) is a CFP iff
d ∈ par(Y ) is a CFP.

Example 6.25. The unicity constraint of Example 6.12 can be extended in such a way
that the parameters (X , s) and (Y, s) satisfy all requirements of CFP, and hence are both
control flow parameters. Note that there is no unicity constraint that enables us to mark
parameters (X , d), (Y, v) and (Y, d) as control flow parameters, as these always violate
the second requirement of a CFP. (X , s) and (Y, s) may be related by some ≈, as this will
not violate Definition 6.19.
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Henceforth, any parameter that is not a control flow parameter is called a data para-
meter. For ease of reasoning, we make this distinction explicit by partitioning D into
DCFP and DDP, containing the control flow parameters and the data parameters re-
spectively. We occasionally write equations as σX (c: C,dX : DX ) = ϕX (c)(dX ), where c
are the CFPs, and dX are the DPs of the equation for X . Observe that c is not superscrip-
ted (in line with Assumption 6.24). If the equation X is clear from the context, we also
omit the superscript of d.

6.2.2 Heuristics

The control flow parameters are not necessarily efficiently or effectively computable. We
therefore look for cheap heuristics that permit us to build the unicity constraints. For
this, we analyse the syntactic conditions present in the predicate formulae that allow us
to approximate under which conditions predicate variable instances are still relevant to
the truth of the predicate formula. Such conditions, which we refer to as guards, are
subsequently used to heuristically determine a good unicity constraint. These guards are
defined as follows.

Definition 6.26. Let ϕ be a predicate formula. We define the guard of predicate variable
instance PVI(ϕ, i) for i ≤ npred(ϕ) inductively as follows:

guardi(b) = false

guardi(Y ) = true

guardi(∀d : D.ϕ) = guardi(ϕ)

guardi(∃d : D.ϕ) = guardi(ϕ)

guardi(ϕ ∧ψ) =
¨

s(ϕ) ∧ guardi−npred(ϕ)(ψ) if i > npred(ϕ)
s(ψ) ∧ guardi(ϕ) if i ≤ npred(ϕ)

guardi(ϕ ∨ψ) =
¨

ns(ϕ) ∧ guardi−npred(ϕ)(ψ) if i > npred(ϕ)
ns(ψ) ∧ guardi(ϕ) if i ≤ npred(ϕ)

where

s(ϕ) =

¨

ϕ if npred(ϕ) = 0

true otherwise
ns(ϕ) =

¨

¬ϕ if npred(ϕ) = 0

true otherwise

Intuitively, the value of a predicate variable instance PVI(ϕ, i) in a formula ϕ is irrel-
evant if guardi(ϕ) is unsatisfiable. This is formalised in the lemmata below.

To show that, indeed, we compute a guard, we first show that we can guard every
predicate variable instance with its guard, without changing the solution.

Lemma 6.27. Let ϕ be a predicate formula, and let i ≤ npred(ϕ), then for every predicate
environment η and data environment δ,

¹ϕºηδ = ¹ϕ[i 7→ (guardi(ϕ) =⇒ PVI(ϕ, i))]ºηδ.
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Proof. Let η and δ be arbitrary. We proceed by induction on ϕ. The base cases where
ϕ = b and ϕ = Y (e) are trivial, and ∀d : D.ψ and ∃d : D.ψ follow immediately from the
induction hypothesis. We describe the case where ϕ = ϕ1 ∧ ϕ2 in detail, the ϕ = ϕ1 ∨ ϕ2
is completely analogous.

Assume that ϕ = ϕ1 ∧ ϕ2. Let i ≤ npred(ϕ1 ∧ ϕ2). Without loss of generality assume
that i ≤ npred(ϕ1), the other case is analogous. According to the induction hypothesis,

¹ϕ1ºηδ = ¹ϕ1[i 7→ (guard
i(ϕ1) =⇒ PVI(ϕ1, i))]ºηδ (6.1)

We distinguish two cases.

• occ(ϕ2) 6= ;. Then ¹guardi(ϕ1)ºδη = ¹guard
i(ϕ1 ∧ ϕ2)ºδη according to the

definition of guard. Since i ≤ npred(ϕ1), we find that ¹ϕ1 ∧ ϕ2ºηδ = ¹(ϕ1 ∧
ϕ2)[i 7→ (guard

i(ϕ1 ∧ ϕ2) =⇒ PVI(ϕ1 ∧ ϕ2, i))]ºηδ.

• occ(ϕ2) = ;. We have to show that

¹ϕ1 ∧ ϕ2ºηδ = ¹ϕ1[i 7→ (guard
i(ϕ1 ∧ ϕ2) =⇒ PVI(ϕ1, i))] ∧ ϕ2ºηδ

From the semantics, it follows that ¹ϕ1 ∧ ϕ2ºηδ = ¹ϕ1ºηδ ∧ ¹ϕ2ºηδ. Com-
bined with (6.1), and an application of the semantics, this yields

¹ϕ1 ∧ ϕ2ºηδ = ¹ϕ1[i 7→ (guard
i(ϕ1) =⇒ PVI(ϕ1, i))] ∧ ϕ2ºηδ.

According to the definition of guard, guardi(ϕ1 ∧ ϕ2) = ϕ2 ∧ guard
i(ϕ1). Since ϕ2

is present in the context, using monotonicity and an application of the semantics,
the desired result follows. ut

We can generalise the above, and guard every predicate variable instance in a formula
with its guard, which preserves the solution of the formula. To this end we introduce the
function guarded.

Definition 6.28. Let ϕ be a predicate formula, then

guarded(ϕ)
∆
= ϕ[i 7→ (guardi(ϕ) =⇒ PVI(ϕ, i))]i≤npred(ϕ)

where [i 7→ ψi]i≤npred(ϕ) is the simultaneous syntactic substitution of all PVI(ϕ, i) with
ψi .

The following corollary follows immediately from Lemma 6.27.

Corollary 6.29. For all formulae ϕ, and for all predicate environments η, and data envir-
onments δ, ¹ϕºηδ = ¹guarded(ϕ)ºηδ

This corollary confirms our intuition that indeed the guards we compute effectively
guard the recursions in a formula.

A good heuristic for defining the unicity constraints is by looking for positive occur-
rences of constraints of the form d = e in the guards, where d is a parameter and e a
constant; these can be used to define the source function. For determining the dest func-
tion, one can replace a data parameter by the value dictated by source for this parameter
for a predicate variable instance and check whether data expressions in a recursion re-
duce to a constant under this substitution. The copy function can be defined through
simple syntactic checks that determine which data expressions in a predicate variable
instance consist of data parameters only. In case a variable reappears in multiple data
expressions in the predicate variable instance, the copy function is left undefined.
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6.2.3 Control Flow Graph

We next construct a control flow graph that describes how the values of the control
flow parameters are affected by the predicate variable instances that occur in the predic-
ate formulae of the PBES. The edge relation is determined using the unicity constraint
(source,dest,copy) that witnesses the set of control flow parameters of the PBES. The
locations are determined by the possible values that the control flow parameters can
assume.

Definition 6.30. Let c[k] be a control flow parameter. The set of values c[k] can attain,
denoted values(c[k]), is defined as:

{init(c[k])} ∪ {v | ∃i ∈ N : ∃X ∈ bnd(E ) : source(X , i, k) = v ∨ dest(X , i, k) = v}.

Note that |values(c[k])| is finite. We generalise values to vectors of control flow
parameters in the obvious way. Using the set of attainable values for the control flow
parameters, we construct a control flow graph.

Definition 6.31. Let E be a PBES with control flow parameters c, witnessed by unicity
constraint (source,dest,copy). The control flow graph (CFG) of E is a graph (V ,−→)
with:

• V = bnd(E )× values(c), and

• −→ ⊆ V ×N× V is the least relation for which, if (X ,v)
i−→(pred(ϕX , i),w) then for

every k either:

– source(X , i, k) = v[k] and dest(X , i, k) =w[k], or

– source(X , i, k) =⊥, copy(X , i, k) = k and v[k] =w[k], or

– source(X , i, k) =⊥, and dest(X , i, k) =w[k].

Henceforth, we refer to the vertices in the control flow graph as control flow locations,
or locations, for short.

Example 6.32. Reconsider the PBES from Example 6.8 and its control flow parameters,
determined in Example 6.25. Its control flow graph is depicted below.

X , 3 X , 1

X , 4X , 2

Y, 2 Y, 4

Y, 1Y, 3

1

2
3

4

5

6 1

2

3

4

Control flow graphs are complete in the sense that all predicate variable instances
that can influence the solution of ϕX at location v are neighbours of the vertex (X ,v) in
control flow graphs.

Lemma 6.33. Let E be a PBES with control flow graph (V ,−→). Then for all (X ,v) ∈ V
and all predicate environments η,η′ and data environments δ:

¹ϕX (c)(d)ºηδ[¹vº/c] = ¹ϕX (c)(d)ºη
′δ[¹vº/c]

provided that η(Y )(w) = η′(Y )(w) for all (Y,w) satisfying (X ,v)
i−→(Y,w).
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Proof. Let η,η′ be predicate environments and δ be a data environment, and let (X ,v) ∈
V . Suppose that for all (Y,w) for which (X ,v)

i−→(Y,w), we know that η(Y )(w) =

η′(Y )(w).
Towards a contradiction, let ¹ϕX (c)(d)ºηδ[¹vº/c] 6= ¹ϕX (c)(d)ºη′δ[¹vº/c], then

there must be a predicate variable instance PVI(ϕX , i,) such that

η(pred(ϕX , i))(¹data(ϕX , i)ºδ[¹vº/c])
6= η′(pred(ϕX , i))(¹data(ϕX , i)ºδ[¹vº/c]). (6.2)

Let data(ϕX , i) = (e,e′), where e are the values of the control flow parameters, and e′

are the values of the data parameters.
Consider an arbitrary control flow parameter c[`]. We distinguish two cases:

• source(X , i,`) 6= ⊥. Then we know dest(X , i,`) 6= ⊥, and the requirement for the

edge (X ,v)
i−→(pred(ϕX , i),e) is satisfied for `.

• source(X , i,`) = ⊥. Since c[`] is a control flow parameter, we can distinguish two
cases based on Definitions 6.15 and 6.16:

– dest(X , i,`) 6= ⊥. Then parameter ` immediately satisfies the requirements

that show the existence of the edge (X ,v)
i−→(pred(ϕX , i),e) in the third clause

in the definition of CFG.

– copy(X , i,`) = `. According to the definition of copy, we now know that

v[`] = e[`], hence the edge (X ,v)
i−→(pred(ϕX , i),e) exists according to the

second requirement in the definition of CFG.

Since we have considered an arbitrary `, we know that for all ` the requirements

are satisfied, hence (X ,v)
i−→(pred(ϕX , i),e). Then according to the definition of η and

η′, η(pred(ϕX , i))(¹eºδ[¹vº/c]) = η′(pred(ϕX , i))(¹eºδ[¹vº/c]). This contradicts
assumption (6.2), hence we find that ¹ϕX (c)(d)ºηδ[¹vº/c] = ¹ϕX (c)(d)ºη′δ[¹vº/c].

ut

6.3 Data Flow Analysis

We now formalised the notion of a control flow parameter, and established heuristics to
determine those parameters. Next we analyse the flow of data within an equation system.
Intuitively, a data parameter d of X is potentially relevant if it can influence the truth of
ϕX . The influence is direct if d occurs in a Boolean expression in ϕX . Such parameters
are called significant [OWW09]; they can be determined as follows.

sig(b)
∆
= free(b) sig(Y (e))

∆
= ;

sig(ϕ ∧ψ) ∆= sig(ϕ)∪ sig(ψ) sig(ϕ ∨ψ) ∆= sig(ϕ)∪ sig(ψ)

sig(∃d : D.ϕ)
∆
= sig(ϕ) \ {d} sig(∀d : D.ϕ)

∆
= sig(ϕ) \ {d}
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Indirect influences are the result of parameters affecting the value of other parameters
through predicate variable instances.

Definition 6.34. Let X (e) be a predicate variable instance. We say that a variable
d a�ects e[i] if d ∈ free(e[i]).

Suppose we have a function simplify that converts ϕ into an equivalent formula with
lower or equal number of significant parameters; i.e., simplify(ϕ) ≡ ϕ, and sig(ϕ) ⊇
sig(simplify(ϕ)). Typically simplify can be implemented by rewrite rules.

First, observe that if we assign values to some parameters, the likelihood that simplify
can reduce the number of significant parameters in a formula increases. Second, observe
that we have a good set of candidate parameters for which we know they can assume
only a finite set of values: the control flow parameters of the previous section. In other
words, given a location (X ,v) in a control flow graph, we can better approximate the set
of significant parameters by considering simplify(ϕX [c := v]). This will be the basis for
our analysis. Then, through a backwards reachability using our control flow graph, we
identify parameters that indirectly influence the values of significant parameters in the
locations of the graph.

The above informal exposition is formalised in the definition below; the set M that is
constructed approximates the set of parameters that are potentially relevant in a location.
Parameters that end up in M for some location are not guaranteed to be relevant, and
parameters that do not end up in M for some location are guaranteed to be irrelevant.

Definition 6.35. Let E be a PBES and let (V ,−→) be its control flow graph. We define

marking M : V → P(DDP) inductively as follows:

M0(X ,v) = sig(simplify(ϕX [c := v]))
M n+1(X ,v) = M n(X ,v)

∪{d ∈ par(X ) | ∃i ∈ N, (Y,w) ∈ V : (X ,v)
i−→(Y,w)

∧ ∃d[`] ∈ M n(Y,w) : d a�ects data(ϕX , i)[`]}
M (X ,v) =

⋃

n∈NM n(X ,v)

Example 6.36. Analysing our running example using the control flow graph of Ex-
ample 6.32 we find that, initially, data parameters d and v are marked in vertex (Y, 4)
only. In the next step the same parameters are marked in vertex (Y, 2) due to the predic-
ate variable instance at index 2. This is also the final marking.

The syntactic marking from Definition 6.35 induces a relation RM on signatures as
follows.

Definition 6.37. Let M : V → P(DDP) be a marking. Every marking M induces a relation
RM such that (X ,¹vº,¹wº)RM (Y,¹v′º,¹w′º) if and only if X = Y , ¹vº = ¹v′º, and
∀d[k] ∈ M (X ,v) : ¹w[k]º= ¹w′[k]º.

Observe that the relation RM allows for relating all instances of the non-marked data
parameters at a given control flow location. We prove that, if locations are related using
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the relation RM , then the corresponding instances in the PBES have the same solution by
showing that RM is a consistent correlation.

In order to prove this, we first show that given a predicate environment and two
data environments, if the solution of a formula differs between those environments, and
all predicate variable instances in the formula have the same solution, then there must
be a significant parameter d in the formula that gets a different value in the two data
environments.

Lemma 6.38. For all formulae ϕ, predicate environments η, and data environments δ,δ′,
if we know that ¹ϕºηδ 6= ¹ϕºηδ′ and ¹PVI(ϕ, i)ºηδ = ¹PVI(ϕ, i)ºηδ′ for all i ≤
npred(ϕ), then ∃d ∈ sig(ϕ) : δ(d) 6= δ′(d).

Proof. We proceed by induction on ϕ.

• ϕ = b. Trivial.

• ϕ = Y (e). In this case the two preconditions contradict, and the result trivially
follows.

• ϕ = ∀e : D.ψ. Assume that ¹∀e : D.ψºηδ 6= ¹∀e : D.ψºηδ′, and furthermore,
∀i ≤ npred(∀e : D.ψ) : ¹PVI(∀e : D.ψ, i)ºηδ = ¹PVI(∀e : D.ψ, i)ºηδ′.

According to the semantics, ∀u ∈ D.¹ψºηδ[u/e] 6= ∀u′ ∈ D.¹ψºηδ′[u′/e], so
∃u ∈ D such that ¹ψºηδ1[u/e] 6= ¹ψºηδ2[u/e]. Choose an arbitrary such u.
Observe that also for all i ≤ npred(ψ), we know that ¹PVI(ψ, i)ºηδ[u/e] =
¹PVI(ψ, i)ºηδ′[u/e]. According to the induction hypothesis, ∃d ∈ sig(ψ) such
that δ[u/e](d) 6= δ′[u/e](d). Choose such a d, and observe that d 6= e since oth-
erwise u 6= u, hence d ∈ sig(∀e : D.ψ), which is the desired result.

• ϕ = ∃e : D.ψ. Analogous to the previous case.

• ϕ = ϕ1 ∧ ϕ2. Assume that ¹ϕ1 ∧ ϕ2ºηδ 6= ¹ϕ1 ∧ ϕ2ºηδ
′, and suppose that

that for all i ≤ npred(ϕ1 ∧ ϕ2), we know that ¹PVI(ϕ1 ∧ ϕ2, i)ºηδ = ¹PVI(ϕ1 ∧
ϕ2, i)ºηδ′. According to the first assumption, either ¹ϕ1ºηδ 6= ¹ϕ1ºηδ

′, or
¹ϕ2ºηδ 6= ¹ϕ2ºηδ

′.

Without loss of generality, assume that ¹ϕ1ºηδ 6= ¹ϕ1ºηδ
′, the other case is

completely analogous. Observe that from our second assumption it follows that
∀i ≤ npred(ϕ1) : ¹PVI(ϕ1, i)ºηδ = ¹PVI(ϕ1, i)ºηδ′. According to the induction
hypothesis, we now find some d ∈ sig(ϕ1) such that δ(d) 6= δ′(d). Since sig(ϕ1)⊆
sig(ϕ1 ∧ ϕ2), our result follows.

• ϕ = ϕ1 ∨ ϕ2. Analogous to the previous case. ut

This is now used in proving the following proposition, that shows that related signa-
tures have the same solution. This result follows from the fact that RM is a consistent
correlation.

Proposition 6.39. Let E be a PBES, with global control flow graph (V ,−→), and marking

M . For all predicate environments η and data environments δ,

(X ,¹vº,¹wº)RM (Y,¹v′º,¹w′º) =⇒ ¹Eºηδ(X (v,w)) = ¹Eºηδ(Y (v′,w′)).
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Proof. We show that RM is a consistent correlation. The result then follows immediately
from Theorem 6.7.

Let n be the smallest number such that for all X ,v, M n(X ,v) = M n(X ,v), and hence
M n(X ,v) = M (X ,v). Towards a contradiction, suppose that RM is not a consistent cor-
relation. Since RM is not a consistent correlation, there exist X , X ′,v,v′,w,w′ such that
(X ,¹vº,¹wº)RM n

(X ′,¹v′º,¹w′º), and

∃η ∈ΘRMn ,δ : ¹ϕXºηδ[¹vº/c,¹wº/d] 6= ¹ϕ′Xºηδ[¹v′º/c,¹w′º/d].

By definition of RM n
, X = X ′, and ¹vº= ¹v′º, hence this is equivalent to

∃η ∈ΘRMn ,δ : ¹ϕXºηδ[¹vº/c,¹wº/d] 6= ¹ϕXºηδ[¹vº/c,¹w′º/d]. (6.3)

Let η and δ be such, and let δ1 = δ[¹vº/c,¹wº/d] and δ2 = δ[¹vº/c,¹w′º/d].
Define ϕ′X

∆
= simplify(ϕX [c := v]). Since the values in v are closed, and from the defini-

tion of simplify, we find that ¹ϕXºηδ1 = ¹ϕ′Xºηδ1, and likewise for δ2. Therefore, we
know that

¹ϕ′Xºηδ1 6= ¹ϕ′Xºηδ2. (6.4)

Observe that for all d[k] ∈ M , ¹w[k]º = ¹w′[k]º by definition of RM . Every pre-
dicate variable instance that might change the solution of ϕ′X is a neighbour of (X ,v) in
the control flow graph, according to Lemma 6.33. Take an arbitrary predicate variable
instance PVI(ϕX , i) = Y (e,e′) in ϕ′X . We first show that ¹e′[`]ºδ1 = ¹e′[`]ºδ2 for all
`.

Observe that ¹eºδ1 = ¹eºδ2 since e are expressions substituted for control flow
parameters, and hence are either constants, or the result of copying.

Furthermore, there is no unmarked parameter d[k] that can influence a marked para-
meter d[`] at location (Y,u). If there is a d[`] ∈ M n(Y,u) such that d[k] ∈ free(e′[`]),
and d[k] 6∈ M n(X ,v), then by definition of marking d[k] ∈ M n+1(X ,v), which contradicts
the assumption that the marking is stable, so it follows that

¹e′[`]ºδ1 = ¹e′[`]ºδ2 for all `. (6.5)

From (6.5), and since we have chosen the predicate variable instance arbitrarily, it
follows that for all 1 ≤ i ≤ npred(ϕ′X ), ¹X (e,e′)ºηδ1 = ¹X (e,e′)ºηδ2. Together with
(6.4), according to Lemma 6.38, this implies that there is some d ∈ sig(ϕ′X ) such that
δ1(d) 6= δ2(d). From the definition of M0, however, it follows that d must be marked
in M0, and hence also in M n. According to the definition of RM n

it then is the case that
δ1(d) = δ2(d), which is a contradiction. Since also in this case we derive a contradiction,
the original assumption that RM is not a consistent correlation does not hold, and we
conclude that RM is a consistent correlation. ut

A data parameter d that is irrelevant at location (X ,v) can be assigned a default, fixed,
value init(d) in any predicate variable instance PVI(ϕY , i) in any equation Y ∈ bnd(E )
for which pred(ϕY , i) = X and for which the control flow parameters have value v. This
is exactly what the function Reset, defined below, achieves.
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Definition 6.40. Let E be a PBES, let (V,→) be its control flow graph, with marking M.
Resetting a PBES is inductively defined on the structure of E .

ResetM (ε)
∆
= ε

ResetM (σX (c: C,d: D) = ϕ)E ′) ∆
= (σX̄ (c: C,d: D) = ResetM (ϕ))ResetM (E ′)

Resetting for formulae is defined inductively as follows:

ResetM (b)
∆
= b

ResetM (ϕ ∧ψ)
∆
= ResetM (ϕ) ∧ ResetM (ψ)

ResetM (ϕ ∨ψ)
∆
= ResetM (ϕ) ∨ ResetM (ψ)

ResetM (∀d : D.ϕ)
∆
= ∀d : D.ResetM (ϕ)

ResetM (∃d : D.ϕ)
∆
= ∃d : D.ResetM (ϕ)

ResetM (X (e,e′))
∆
=

∧

v∈values(c)(e= v =⇒ X̄ (v,Reset
M
(X ,v)(e

′)))

With e = v we denote that for all i, e[i] = v[i]. The function Reset
(X ,v)
M (e′) is defined

positionally as follows:

Reset
(X ,v)
M (e′)[i] =

¨

e′[i] if d[i] ∈ M (X ,v)
init(d[i]) otherwise.

Remark 6.41. We can reduce the number of equivalence we introduce in resetting a
recurrence. This effectively reduces the guard as follows.

Let X ∈ bnd(E ), such that Y (e,e′) = PVI(ϕX , i), and let I = { j | dest(X , i, j) = ⊥}
denote the indices of the control flow parameters for which the destination is undefined.

Define c′ = c[i1], . . .c[in] for in ∈ I , and f= e[i1], . . .e[in] to be the vectors of control
flow parameters for which the destination is undefined, and the values that are assigned
to them in predicate variable instance i. Observe that these are the only control flow
parameters that we need to constrain in the guard while resetting.

We can redefine ResetM (X (e,e′)) as follows.

ResetMloc
(X (e,e′))

∆
=

∧

v′∈values(c′)

(f= v′ =⇒ X̄ (v,Reset
Mloc

(X ,v)(e
′))).

In this definition v is defined positionally as

v[ j] =

¨

v′[ j] if j ∈ I
dest(X , i, j) otherwise

Resetting irrelevant parameters preserves the solution of the PBES. We formalise this
in Theorem 6.46 below. Our proof is based on consistent correlation. We first define the
relation RReset, and we show that this is indeed a consistent correlation. Soundness then
follows from Theorem 6.7. Note that RReset uses the relation RM from Definition 6.37 to
relate predicate variable instances of the original equation system. The latter is used in
the proof of Lemma 6.44.
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Definition 6.42. Let RReset be the relation defined as follows.
(

X (¹vº,¹wº))RResetX̄ (¹vº,¹Reset(X ,v)
M (w))º)

X (¹vº,¹wº)RResetX (¹vº,¹w′º) if X (¹vº,¹wº)RM X (¹vº,¹w′º)

Towards showing that RReset is a consistent correlation, we first show that we can
unfold the values of the control flow parameters in every predicate variable instance, by
duplicating the predicate variable instance, and substituting the values of the CFPs.

Lemma 6.43. Let η and δ be environments, and X ∈ bnd(E ), then for all i ≤ npred(ϕX ),
such that PVI(ϕX , i) = Y (e,e′),

¹Y (e,e′))ºηδ = ¹
∧

v∈values(c)

(e= v =⇒ Y (v,e′)ºηδ

Proof. Straightforward; observe that e = v for exactly one v ∈ values(c), using that v is
closed. ut

Next we are establishing that resetting irrelevant parameters is sound, i.e., it preserves
the solution of the PBES. We do this by showing that RReset is a consistent correlation.
We first show that resetting a predicate variable instance in an RReset-correlating envir-
onment and a given data environment is sound.

Lemma 6.44. Let E be a PBES, let (V,→) be its CFG, with marking M such that RM is a
consistent correlation, then

∀η ∈ΘRReset ,δ : ¹Y (e,e′)ºηδ = ¹ResetM (Y (e,e′))ºηδ

Proof. Let η ∈ΘRReset , and δ be arbitrary. We derive this as follows.

¹ResetM (Y (e,e′)))ºηδ
= {Definition 6.40}

¹

∧

v∈CFL(Y )(e= v =⇒ Ȳ (v,Reset(Y,v)
M (e′)))ºηδ

=†
∧

v∈CFL(Y )(¹eºδ = ¹vº =⇒ ¹Ȳ (v,Reset(Y,v)
M (e′)ºηδ))

=†
∧

v∈CFL(Y )(¹eºδ = ¹vº =⇒ η(Ȳ )(¹vºδ,¹Reset(Y,v)
M (e′)ºδ))

= {η ∈ΘRReset}
∧

v∈CFL(Y )(¹eºδ = ¹vº =⇒ η(Y )(¹vºδ,¹e′ºδ)))
=†

∧

v∈CFL(Y )(¹eºδ = ¹vº =⇒ ¹Y (v,e′)ºηδ))
=†

¹

∧

v∈CFL(Y )(e= v =⇒ Y (v,e′))ºηδ
= {Lemma 6.43}

¹Y (e,e′))ºηδ

Here at † we have used the semantics. ut

By extending this result to the right-hand sides of equations, we can prove that RReset

is a consistent correlation.
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Proposition 6.45. Let E be a PBES, and let (V,→) be a CFG, with marking M such that
RM is a consistent correlation. Let X ∈ bnd(E ), with v ∈ CFL(X ), then for all w, and for all
η ∈ θRReset and δ

¹ϕXºηδ[¹vº/c,¹wº/d] = ¹ResetM (ϕX )ºηδ[¹vº/c,¹Reset(X ,v)
M (w)º/d]

Proof. Let η and δ be arbitrary, and define δr
∆
= δ[¹vº/c,¹Reset(X ,v)

M (w)º/d]. We first
prove that

¹ϕXºηδr = ¹ResetM (ϕX )ºηδr (6.6)

We proceed by induction on ϕX .

• ϕX = b. Since ResetM (b) = b this follows immediately.

• ϕX = Y (e). This follows immediately from Lemma 6.44.

• ϕX = ∀y : D.ϕ. We derive that ¹∀y : D.ϕºηδr = ∀v ∈ D.¹ϕºηδr[v/y]. Ac-
cording to the induction hypothesis, and since we applied only a dummy trans-
formation on y , we find that ¹ϕºηδr[v/y] = ¹ResetM (ϕ)ºηδr[v/y], hence
¹∀y : D.ϕºηδr = ¹ResetM (∀y : D.ϕ)ºηδr .

• ϕX = ∃y : D.ϕ. Analogous to the previous case.

• ϕX = ϕ1 ∧ ϕ2. We derive that ¹ϕ1 ∧ ϕ2ºηδr = ¹ϕ1ºηδr ∧ ¹ϕ2ºηδr . If we ap-
ply the induction hypothesis twice we get ¹ϕ1 ∧ ϕ2ºηδr = ¹ResetM (ϕ1)ºηδr ∧
¹ResetM (ϕ2)ºηδr . Applying the semantics, and the definition of Reset we find
this is equal to ¹ResetM (ϕ1 ∧ ϕ2)ºηδr .

• ϕX = ϕ1 ∨ ϕ2. Analogous to the previous case.

Hence we find that ¹ResetM (ϕX )ºηδr = ¹ϕXºηδr . It now follows immediately from
the observation that RM is a consistent correlation, and Definition 6.40, that ¹ϕXºηδr =
¹ϕXºηδ[¹vº/c,¹wº/d]. Our result follows by transitivity of =. ut

The theory of consistent correlations now gives an immediate proof of soundness of
resetting irrelevant parameters, which is formalised by the following theorem.

Theorem 6.46. Let E be a PBES, with control flow graph (V,→) and marking M. For all
X , v and w:

¹Eº(X (¹vº,¹wº)) = ¹ResetM (E )º(X̄ (¹vº,¹wº)).

Proof. Relation RReset is a consistent correlation, as witnessed by Proposition 6.45. From
Theorem 6.7 the result now follows immediately. ut

The effect of resetting is that equations σX (d: D) = ϕX with different instances v
for their formal parameters d may become more ‘alike’ after resetting, resulting in a
potential reduction of the underlying Boolean equation system. This is nicely illustrated
by applying the reset function on our running example.
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Example 6.47. Applying Reset using the marking from Example 6.36 on the PBES of
Example 6.8 results in the PBES below. Note that we have simplified the PBES slightly
by removing the redundant conditions introduced by Reset, and by removing quantifiers
that quantified over unused variables.

ν X̄ (s : N , d : D) = (∀e : D.s = 1 =⇒ Ȳ (2, e, e)) ∧ (s = 1 =⇒ X̄ (2, d1))
∧ (s = 2 =⇒ X̄ (3, d1)) ∧ (s = 2 =⇒ X̄ (4, d1)) ∧ (s = 3 =⇒ X̄ (1, d1))
∧ (s = 4 =⇒ X̄ (1, d1))

ν Ȳ (s : N , d, v : D) = (s = 4 =⇒ d = v) ∧ (s = 2 =⇒ Ȳ (3, d1, d1))
∧ (s = 2 =⇒ Ȳ (4, d, v)) ∧ (s = 3 =⇒ Ȳ (1, d1, d1)) ∧ (s = 4 =⇒ Ȳ (1, d1, d1))

init X̄ (1, d1);

Note that Y (2, d, v) depended on Y (3, d, v); on the other hand, Ȳ (2, d, v) depends on
Ȳ (3, d1, d1). In a way, the equations for Ȳ (2, d, v) are more alike than those for Y (2, d, v).
This resemblance is also reflected in the size reduction after instantiation: for |D| = 8,
the BES underlying the original PBES has 71 equations; the BES underlying the above
PBES has 22 equations only.

6.4 Optimisation

The size of a CFG can grow exponentially in the number of control flow parameters in
the worst case, hampering the efficiency of the static analysis. To counter this, we define
a notion of local control flow. Then, we tailor the data flow analysis to this new situation
to partly counter the loss of information that comes with these new control flow graphs.

We first illustrate that, indeed, the analysis as conducted in the previous section can
suffer from an exponential blow-up. Typical scenarios that lead to such a blow-up are
model checking problems of systems that consist of N similar parallel components. In a
worst-case situation, all the control flow parameters in the resulting PBES evolve ortho-
gonally.

Example 6.48. Consider a system consisting of N lossy buffers (from Example 6.8) run-
ning in parallel, not synchronising. Suppose we encode the deadlock freedom model
checking problem, expressed by νX .[true]X ∧ 〈true〉true as a PBES. In the resulting
PBES (omitted due to its size), consisting of one equation only, each independent lossy
buffer can have a control flow parameter that can take on 4 different values. Then, de-
pending on the choice of the set of control flow parameters, the resulting global control
flow graph can have up-to 4N locations.

Drawing inspiration from [PT09], we next define a variant of the control flow graphs
of Section 6.2 that do not suffer from this blow-up. This permits trading of the power
of the subsequent data flow analysis and the computational complexity. The terminology
for the concepts we use in the remainder of this section and the next is borrowed largely
from [PT09].

From hereon, assume that E is a fixed PBES, (source,dest,copy) is a unicity con-
straint, and the vector c is a vector of control flow parameters. The local control flow
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graph, which we define next, is a collection of unconnected graphs. Each connected sub-
graph represents a control flow parameter, and, in particular, the values it can assume,
the equation in which it is considered, and which predicate variable instances it governs.

Definition 6.49. The local control flow graph is a graph (V loc,−→
loc
) with:

• V loc = {(X , n, v) | X ∈ bnd(E ) ∧ n≤ |c| ∧ v ∈ values(c[n])}, and

• −→
loc
⊆ V loc×N× V loc is the least relation such that (X , n, v)

i−→
loc
(pred(ϕX , i), n, w) if:

1. source(X , i, n) = v and dest(X , i, n) = w, or

2. source(X , i, n) =⊥, pred(ϕX , i) 6= X and dest(X , i, n) = w, or

3. source(X , i, n) =⊥, pred(ϕX , i) 6= X and copy(X , i, n) = n and v = w.

Note that the size of a local control flow graph is linear in the number of equations,
the number of control flow parameters and the size of the set of values each individual
control flow parameter can assume. In particular, the size of the local control flow graph
for Example 6.48 would be O (4N) instead of O (4N ).

Observe that for the local control flow graph, the structural property that is similar
to the one in Lemma 6.33 does not hold due to the absence of self-loops through copied
control flow parameters in the local control flow graphs. The local control flow graph
does contain self-loops in case both source and destination are defined.

The information we can obtain from a location in a local control flow graph is limited:
it only tells the value of the control flow parameter it represents. Yet, the unicity con-
straint underlying the control flow parameter can be used to determine which predicate
variable instances are potentially enabled in a location of the local control flow graph for
a fixed control flow parameter; in this case, we say that the predicate variable instance
is ruled by this control flow parameter. From hereon, we assume that X ∈ bnd(E ) is an
arbitrary bound predicate variable in the PBES E unless stated otherwise.

Definition 6.50. Control flow parameter c[ j] rules PVI(ϕX , i) whenever there is a value

v for which (X , j, v)
i−→

loc
.

The predicate variable instances that are potentially enabled by a control flow para-
meter form a cluster of predicate variable instances. These clusters will be used to guide
us in our data flow analysis. We first identify which data parameters are potentially used
in the scope of a predicate variable instance.

Definition 6.51. Variable d is used for PVI(ϕX , i) if d ∈ free(guardi(ϕX )).

Parameters whose own values are potentially modified through a recursion are iden-
tified as changed. Observe that this only makes sense for self-recursions.

Definition 6.52. Parameter d[ j] ∈ par(X ) is changed for pred(ϕX , i) if X = pred(ϕX , i)
and d[ j] 6= data(ϕX , i)[ j].

We can now formalise which data parameters have their data flow (i.e., their use and
their changes) entirely subsumed by such a cluster. If this is the case, we say that such a
data parameter belongs to the cluster.
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Definition 6.53. Let c be a control flow parameter and let d ∈ par(X )∩DDP be a data
parameter. We say that d belongs to c if either:

1. d is neither used nor changed for all PVI(ϕX , i) ruled by c, or

2. both the following hold:

• whenever d is used in PVI(ϕX , i), c rules PVI(ϕX , i), and

• whenever d is changed for PVI(ϕX , i), c rules PVI(ϕX , i).

The set of data parameters that belong to c is denoted by belongs(c).

For ease of reasoning, we continue to work under the following assumption.

Assumption 6.54. Each right-hand side predicate formula in a PBES contains at least
one predicate variable instance and each data parameter in an equation belongs to at
least one CFP; CFPs belong to no parameter.

Observe that this assumption imposes no restrictions: equations σX (d: D) = ϕX
where ϕX contains no predicate variable instances, can be strengthened to ϕX ∧ X (d)
in case σ = ν and weakened to ϕX ∨ X (d) otherwise, without affecting the solution to X
or any of the other equations in an equation system. By adding a dummy parameter b of
sort B to every equation σX (d: D) = ϕX , initialising it to true, strengthening each ϕX to
ϕX ∧ b = true, and never changing b in predicate variable instances, we effectively turn
b into a control flow parameter to which each data parameter can belong.

We identify relevant parameters in the local control flow graph in a way that is similar
to how it is done in Section 6.3. First, in a control flow location (X , n, v), those para-
meters that belong to control flow parameter c[n] are marked that may be significant
in ϕX [c[n] := v]. Then, additional data parameters are identified as being relevant by
determining whether they can (indirectly) affect a parameter that was already determ-
ined to be significant. For the soundness of the analysis, care must be taken that this also
works in case a data parameter d that belongs to one control flow parameter affects a
data parameter d ′ that belongs to another: in case the latter is already marked relevant,
this requires that d is marked relevant too.

Definition 6.55. Let (V loc,−→
loc
) be a local control flow graph for PBES E . We define local

marking Mloc : V loc→ P(DDP) inductively as follows:

M0
loc(X , n, v) = {d ∈ belongs(c[n]) | d ∈ sig(simplify(ϕX [c[n] := v]))}

M k+1
loc (X , n, v) = M k

loc(X , n, v)
∪{d ∈ belongs(c[n]) | ∃w ∃dY[`] ∈ M k

loc(Y, n, w)

(X , n, v)
i−→

loc
(Y, n, w) ∧ d a�ects data(ϕX , i)[`]}

∪{d ∈ belongs(c[n]) | ∃m, w ∃dY[`] ∈ M k
loc(Y, m, w)

d[`] 6∈ belongs(c[n]) ∧ Y = pred(ϕX , i) ∧
d a�ects data(ϕX , i)[`]}

Mloc(X , n, v) =
⋃

k∈NM k
loc(X , n, v)
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The local marking can again be used to reset data parameters using function Reset.
We first define the induced marking for (global) control flow locations.

Definition 6.56. The induced marking Mloc(X ,v) is defined as d ∈ Mloc(X ,v) iff ∀ j : d ∈
belongs(c[ j]) =⇒ d ∈ Mloc(X , j,v[ j]).

This induced marking overapproximates the marking computed in Section 6.3, as is
shown by the following lemma.

Lemma 6.57. Let E be a PBES with global CFG (V ,−→) with marking M , and local CFG

(V loc,−→
loc
) with marking Mloc. For all natural numbers n it holds that ∀(X ,v) ∈ V ,∀d ∈

M n(X ,v) : (∀ j : d ∈ belongs(c[ j]) =⇒ d ∈ M n
loc(X , j,v[ j])).

Proof. We proceed by induction on n.

• n = 0. Let (X ,v) and d ∈ M0(X ,v) be arbitrary. We need to show that ∀ j : d ∈
belongs(c[ j]) =⇒ d ∈ M0

loc(X , j,v[ j]).

Let j be arbitrary such that d ∈ belongs(c[ j]). Since d ∈ M0(X ,v), by definition d ∈
sig(simplify(ϕX [c := v])), hence also d ∈ sig(simplify(ϕX [c[ j] := v][ j])). Com-
bined with the assumption that d ∈ belongs(c[ j]), this gives us d ∈ M0

loc(X , j,v[ j])
according to Definition 6.49.

• n = m+ 1. As induction hypothesis assume ∀(X ,v) ∈ V : ∀d : d ∈ M m(X ,v) =⇒
(∀ j : d ∈ belongs(c[ j]) =⇒ d ∈ M m

loc(X , j,v[ j])). Now let (X ,v) be arbitrary, and
let d ∈ M m+1(X ,v). Also let j be arbitrary, and assume that d ∈ belongs(c[ j]).
We need to show that d ∈ M m+1

loc (X , j,v[ j]). We proceed by distinction on the
cases of Definition 6.35. If d ∈ M m(X ,v) the result follows immediately from the
induction hypothesis.

Now suppose there is an i ≤ npred(ϕX ) such that (X ,v)
i−→(pred(ϕX , i),w), and

there is some d[`] ∈ M m(pred(ϕX , i),w) with d ∈ free(data(ϕX , i)[`])

Let i and d[`] be such.

According to the induction hypothesis, ∀k : d[`] ∈ belongs(c[k]) =⇒ d[`] ∈
M m

loc(pred(ϕX , i), k,w[k]).

– d[`] belongs to c[ j]. According to the induction hypothesis we have d[`] ∈
M m

loc(pred(ϕX , i), j,w[ j]). We have d ∈ free(data(ϕX , i)[`]), so we only need

to show that (X , j,v[ j])
i−→

loc
(pred(ϕX , i), j,w[ j]). We distinguish the cases for

j from Definition 6.31.

∗ source(X , i, j) = v[ j] and dest(X , i, j) = w[ j], then according to Defini-

tion 6.49 the edge (X , j,v[ j])
i−→

loc
(pred(ϕX , i), j,w[k]) also exists.

∗ source(X , i, j) = ⊥, copy(X , i, j) = j and v[ j] = w[ j]. If pred(ϕX , i) 6= X
the edge exists locally, and we are done. Now suppose that pred(ϕX , i) =
X . Then PVI(ϕX , i) is not ruled by c[ j]. Furthermore, d[`] is changed in
PVI(ϕX , i), hence d[`] cannot belong to c[ j], which is a contradiction.
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∗ source(X , i, j) = ⊥, copy(X , i, j) = ⊥ and dest(X , i, j) = w[ j]. This is
completely analogous to the previous case.

– d[`] does not belong to c[ j]. Recall that there must be some c[k] such that
d[`] belongs to c[k], and by assumption now d[`] does not belong to c[ j].
Then according to Definition 6.55, d is marked in M m+1

loc (X , j,v[ j]), which is
what we need to prove.

ut

Note that the above lemma is stronger than what we rely on for proving correctness of
the local analysis in order to facilitate the inductive proof. For correctness, the following
corollary is sufficient.

Corollary 6.58. Let, for given PBES E , (V ,−→) be a global control flow graph with mark-
ing M , and let (V loc,−→

loc
) be a local control flow graph with induced marking Mloc. Then

M (X ,v)⊆ Mloc(X ,v) for all (X ,v).

The marking induced by the local analysis can again be used to reset data parameters
without affecting the solution to the equation system.

Theorem 6.59. Let E be a PBES, with local control flow graph (V loc,−→
loc
) and induced

marking Mloc. Then for all X , v and w:

¹Eº(X (v,w)) = ¹ResetMloc
(E )º(X̄ (v,w)).

Proof. Correctness of this theorem follows from Corollary 6.58 and Theorem 6.46. ut

6.5 Case Studies

We implemented the techniques described in the previous sections in the context of the
mCRL2 toolset [Cra+13], in the tool pbesstategraph. Here, we report on the tool’s
effectiveness in simplifying the PBESs originating from model checking problems and
behavioural equivalence checking problems: we compare sizes of the BESs underly-
ing the original PBESs to those underlying the PBESs obtained after running the tool
pbesparelm, which implements the techniques from [OWW09], to those underlying
the PBESs obtained after running our tool. The techniques implemented in pbesparelm

effectively perform an analysis that removes parameters from an equation if they neither
occur significantly, nor influence other parameters that in turn occur significantly.

Our cases are taken from the case studies presented in the previous chapter. We
restrict ourselves to the cases in that chapter that use parameterised Boolean equation
systems as an intermediate format. We present a representative selection of the results in
Table 6.1. The full results are available on GitHub.2 For the model checking problems, we
consider the Onebit protocol, which is a sliding window protocol, and Hesselink’s hand-
shake register [Hes98]. Both protocols are parametric in the set of values that can be
read and written. A selection of properties of varying complexity and varying nesting de-
gree, expressed in the data-enhanced modal µ-calculus are checked. For the behavioural

2https://github.com/jkeiren/pbesstategraph-experiments
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equivalence checking problems, we consider a number of communication protocols such
as the Alternating Bit Protocol (ABP), the Concurrent Alternating Bit Protocol (CABP), a
two-place buffer (Buf) and the aforementioned Onebit protocol. Moreover, we compare
an implementation of Hesselink’s register to a specification of the protocol that is cor-
rect with respect to trace equivalence (but for which currently no PBES encoding exists)
but not with respect to the two types of behavioural equivalence checking problems we
consider here: branching bisimilarity and weak bisimilarity.

Our experiments reveal that the reductions achieved by our technique can lead to
BESs that are about 90% smaller than those obtained after pbesparelm, see the model
checking problems and equivalence checking problems for Hesselink’s register. Compared
to the sizes of the BESs underlying the original PBESs, the reductions can be immense.

6.6 Closing Remarks

In this chapter we described a static analysis technique inspired by [PT09], and applied
to PBESs, that employs a notion of control flow to determine when data parameters
become irrelevant. Using this information, the PBES can be simplified, leading to smaller
underlying Boolean equation systems. Compared to existing techniques, our new static
analysis technique can lead to greater reductions (up-to 90% in extreme cases), as also
demonstrated in our case studies.

Several techniques described in this chapter can be used to enhance existing reduc-
tion techniques for PBESs. For instance, our notion of a guard of a predicate variable
instance in a PBES can be put to use to cheaply improve on the heuristics for constant
elimination [OWW09]. Moreover, we believe that our (re)construction of control flow
graphs from PBESs can be used to automatically generate invariants for PBESs. The the-
ory on invariants for PBESs is well-established [OW10], but still lacks tool support that
can use invariants in automated solvers.

The correctness proofs of our static analysis techniques rely on the notion of consist-
ent correlation. Consistent correlations generalise idempotence identifying bisimulation
from Chapter 3. Our experimental results show that static analysis of PBESs allows for
large reductions of the underlying Boolean equation systems. In the previous chapter,
we have seen that weaker notions of equivalence allow for larger reductions of parity
games. It is therefore interesting to explore generalisations of, especially, governed stut-
tering equivalence, to obtain equivalence notions for PBESs that are more general than
consistent correlations. This can give rise to more advanced techniques for the a priori
reduction in the context of verification using PBESs.
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Table 6.1: Sizes of the BESs underlying the original PBESs, the PBESs reduced using
pbesparelm and the PBESs reduced using pbesstategraph. The numbers reported
reflect the number of equations generated using instantiation. Verdict

p
means the out-

come of the verification problem is true; × means the outcome is false.

Original pbesparelm pbesstategraph verdict

Model Checking Problems

No deadlock
Onebit |D|= 2 81 921 11 409 9 089

p

|D|= 3 289 297 11 409 9 089
p

|D|= 4 742 401 11 409 9 089
p

Hesselink |D|= 2 540 737 2 065 2 065
p

|D|= 3 13 834 801 2 065 2 065
p

No spontaneous generation of messages
Onebit |D|= 2 185 089 30 593 22 145

p

|D|= 3 1 278 433 57 553 39 169
p

|D|= 4 5 588 481 92 289 60 161
p

Messages that are read are inevitably sent
Onebit |D|= 2 153 985 57 553 41 473 ×

|D|= 3 579 745 115 489 78 817 ×
|D|= 4 1 549 057 192 865 127 233 ×

Messages can overtake one another
Onebit |D|= 2 164 353 61 441 44 609 ×

|D|= 3 638 065 127 153 88 225 ×
|D|= 4 1 735 681 216 193 146 049 ×

Values written to the register can be read
Hesselink |D|= 2 1 093 761 1 081 345 89 089

p

|D|= 3 27 876 961 27 656 641 561 169
p

Equivalence Checking Problems

Branching bisimulation equivalence
ABP-CABP |D|= 2 31 265 31 265 30 225

p

|D|= 4 73 665 73 665 69 681
p

Buf-Onebit |D|= 2 844 033 706 561 511 554
p

|D|= 4 8 754 689 5 939 201 3 707 138
p

Hesselink I-S |D|= 2 21 062 529 21 062 529 1 499 714 ×

Weak bisimulation equivalence
ABP-CABP |D|= 2 50 713 49 617 47 481

p

|D|= 4 117 337 113 361 106 089
p

Buf-Onebit |D|= 2 966 897 706 033 552 226
p

|D|= 4 9 868 225 5 869 505 3 862 402
p

Hesselink I-S |D|= 2 29 868 273 28 579 137 2 067 650 ×
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Conclusions

Parity games and parameterised Boolean equation systems are frameworks that are suit-
able for the verification of complex software systems. Their main advantage is that they
combine a model of the system and the desired properties into a single framework. Solv-
ing the verification question hence requires the analysis of a single artefact. The draw-
back of the approach is the state space explosion that occurs when generating a parity
game.

In this thesis we have investigated reduction techniques for parity games and para-
meterised Boolean equation systems, in which our main focus has been on those games
and equation systems encoding model checking and equivalence checking problems.

In Chapter 3 we have provided a graph structure for Boolean equation systems with
arbitrary right hand sides, and allowing the occurrence of free variables, answering the
thus far unanswered question whether such a graph structure could be provided. In the
same chapter, we have investigated the effects of normalisation, i.e. the transformation
of a Boolean equation system into simple recursive form, in which the right hand side of
an equation contains occurrences of at most one binary operator, i.e. conjunctions and
disjunctions do not occur mixed in a single right hand side, and the equation system does
not contain occurrences of true and false. We have demonstrated that this transformation
does not negatively impact the reducing capabilities of strong bisimulation reduction; in
fact, it can lead to an arbitrarily larger reduction.

Strong bisimulation on structure graphs satisfies the nice property that bisimilar states
in the state space lead to bisimilar states in the structure graph underlying the Boolean
equation system encoding a model checking problem. To obtain this result, it is crucial
that the translation of the model checking problem into a Boolean equation system pre-
serves conjunctions and disjunctions. This is achieved using a harmless modification of
Mader’s translation. The resulting equation systems look awkward at times; they contain
vertices of, e.g., the form f ∨ f , which we easily see can be simplified further. To achieve
this, we have presented a weakening of strong bisimulation on structure graph that we
dub idempotence identifying bisimulation.

The investigation of structure graphs suggests that the translation to restricted for-
mats that has been commonly used in the literature is a useful one. In Chapter 4 we have
therefore studied weaker equivalences for parity games. First we showed that stuttering
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equivalence can be used to reduce parity games, and we weaken this equivalence further
allowing vertices in a parity game that are owned by different players to be related under
some circumstances.

The practical use of the equivalences that we have defined was investigated in Chap-
ter 5. Here it was shown that, in general, reduction using our equivalences is able to
reduce parity games by a large factor. In some cases it is even able to effectively solve
parity games by reducing them to a single vertex. Unfortunately, in general the reduc-
tions do not prove to reduce the time required for model checking, although in general
reducing and then solving a parity game is competitive with outright solving the original
parity game. Note that no standard benchmark set for parity games is available. In this
chapter we have presented a set of benchmarks for games that subsumes all parity game
benchmarks in the literature. We have illustrated that the parity games that we present
contain a nice mixture of games from different application domains, and of varying com-
plexity.

In our final chapter, Chapter 6 we have improved the known static analysis techniques
for parameterised Boolean equation systems by taking their control flow into account.
Parameterised Boolean equation systems are, effectively, symbolic descriptions of Boolean
equation systems, and their verification is undecidable. We have shown that using our
control flow reconstruction, the size of the underlying equation system can be reduced
by about 90% in some cases. The proof technique that we used to show the correctness
of this static analysis technique is closely related to the equivalences that we presented
in Chapter 3. In fact, Willemse showed [Wil10] that consistent correlations on Boolean
equation systems correspond to idempotence identifying bisimulation.

Future Work. The work in this thesis serves as a basis for addressing the state space
explosion problem in the verification of complex software systems using intermediate
representations. To advance the practical verification of such systems, further research is
required. In the rest of this chapter we discuss this future work.

In this thesis we have restricted ourselves to studying equivalences that only relate
vertices if they have the same priority. Fritz and Wilke [FW06] studied preorders and
equivalences that are able to relate vertices with different priorities that are incomparable
to our equivalences. The drawback of these is their poor worst-case running time com-
plexity. To enhance the understanding of the fundamental complexity of parity games,
it could be investigated whether preorders corresponding to stuttering equivalence and
governed stuttering equivalence can be developed that preserve or approximate the solu-
tion of parity games. Weak equivalences could also be developed that relate vertices with
different priorities, but given our experiences in defining governed stuttering equival-
ence, proving its correctness, and preliminary explorations in this area, we expect that
this proves extremely challenging.

We have shown that, in terms of size reductions, our equivalences are an effective tool
in software verification. The drawback of the approach presented in Chapters 3 and 4 is
that it still requires the explicit construction of a parity game, before it can be reduced.
In Chapter 6 we showed that symbolic techniques are promising, and large reductions
of the underlying parity game can be obtained a priori. The effort required in proving
correctness of this transformation was greatly reduced by the coinductive nature of con-
sistent correlations. Classical correctness proofs would require tedious and error-prone
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proofs using transfinite induction. Consistent correlations, however, are a generalisation
of the equivalences presented in Chapter 3, and hence do not compress sequences of
equivalent vertices in the induced parity games. Our benchmarks indicate that reduc-
tions using governed stuttering equivalence lead to much smaller parity games than the
reductions based on governed bisimulation. Techniques similar to consistent correlations,
and corresponding static analysis for parameterised Boolean equation systems, are hence
an interesting topic to explore. This should lead to more advanced techniques for the a
priori reduction of parity games underlying parameterised Boolean equation systems.

We feel that the specific directions in which these techniques are developed should
mainly be driven by the need observed when applying the theory to practical case studies.
Interesting domains to focus on are, e.g., the verification of distributed systems—in which
often the degree of synchronisation between components is low— and the verification
of low-level components in operating system kernels—in which parallel access to data
structure is required, and in which locking is increasingly becoming problematic, hence
introducing the need for more complex, wait-free data structures. In both areas intricate
problems arise due the concurrency that is involved, giving rise to verification questions.
Especially in distributed systems, the algorithms and protocols involved are becoming
increasingly complex, and the number of nodes involved is growing rapidly, see e.g. the
case study on verification of the detector controls software of the CMS detector of the
large hadron collider at CERN [Hwo+13].

Currently, we foresee two candidates that might prove useful in these practical ap-
plications: confluence and cones and foci, which we discuss in more detail below. Both
techniques are generalisations of existing techniques that were developed for labelled
transition systems, along with their symbolic, process algebraic descriptions. In their ori-
ginal form, both were developed out of a clear practical need while doing case studies,
and their generalisations to equation systems might prove effective as well.

In the generation of labelled transition systems from abstract, process algebraic spe-
cifications, the notion of confluence has proven to be an effective tool for reducing the
size of the state space. Techniques have been developed to prove confluence based on
a symbolic description of a state space, see e.g. [GS95; GS96; GP00; BP02]. Correct-
ness of confluence reduction relies on branching bisimilarity of the underlying transition
systems. We think that our notion of governed stuttering equivalence could be used to
develop a notion of confluence for parity games, that in turn may lead to a definition of
confluence reduction techniques for parameterised Boolean equation systems.

A related direction of research can be found in generalising the cones and foci ap-
proach [GS01; FP03; FPP06], that was originally developed for symbolic descriptions of
processes to parameterised Boolean equation systems. It is expected that here the control
flow graphs, and the notion of guards that we have developed in Chapter 6 prove as a
helpful means for defining the required proof rules and analysing the equation systems.
Note that the cones and foci method relies on a notion of invariants for symbolic de-
scriptions of processes. A similar notion for parameterised Boolean equation systems has
already been established [OW10].
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Appendix A

Benchmarks

In this appendix we provide the formulae of the benchmarks that we described in Chap-
ter 5. Specifically, we list the formulae for the model checking examples that we used
in Chapters 5 and 6, and the formulae used for satisfiability and validity checking in
Chapter 5.

The scripts used to generate the results, and the complete data of the experiments in
Chapter 5 and Chapter 6 are available from their GitHub repositories.12

A.1 Model Checking

All formulae used for model checking are denoted in the first order modal µ-calculus, an
mCRL2-native data extension of the modal µ-calculus. The formulae assume that there is
a data specification defining a non-empty sort D of messages, and a set of parameterised
actions that are present in the protocols.

A.1.1 Communication Protocols

We verify a number of communication protocols. Here we give the generic versions of
the properties that we verify. For specific protocols, the action names and the properties
that apply may vary. We assume that the protocol receives messages via action r and tries
to send these to the other party. The other party can receive these via action s.

General Properties

• No deadlock:
νX .[true]X ∧ 〈true〉true

Invariantly, over all reachable states at least one action is enabled.

1https://github.com/jkeiren/paritygame-generator
2https://github.com/jkeiren/pbesstategraph-experiments
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• Invariantly, if a message can be read infinitely often it is read infinitely often:

∀d : D.(νW.[true]W ∧
(νX .µY.νZ .([r(d)]X ∧ ([r(d)]false ∨ [r(d)]Y ) ∧ [r(d)]Z)))

• There is a path along which a message can be lost infinitely often:

µW 〈true〉W ∨ (∃d : D.〈r(d)〉(νX .µY.(〈c(e)〉X ∨ 〈c(e) ∨ s(d)〉Y )))

This formula assumes that losing a message is represented by the action c(e).

• Along every path in which a message is read infinitely often, also a message is sent
infinitely often:

νX .µY.νZ .([∃d : D.s(d)]X ∧ [∃d : D.r(d)]Y ∧ [∃d : D.r(d) ∨ s(d)]Z)

That is, any sequence that contains infinitely many r actions contains infinitely
many s actions.

• Message d1 can be received infinitely often:

νX .µY.(〈r(d1)〉X ∨ 〈r(d1)〉Y )

From the initial state of the protocol, there is a path along which d1 is received
infinitely often.

• All messages can be received infinitely often:

∀d : D.νX .µY.(〈r(d)〉X ∨ 〈r(d)〉Y )

This generalises the previous property to all messages.

• From any reachable state, there exists a path with infinitely many τ-steps, and
possibly some other steps [PW08].

νX .([true]X ∧ νZ .µY.(〈true〉Y ∨ 〈τ〉Z))

• The protocol does not duplicate messages:

νX .[true]X ∧
∀d : D.[r(d)](νY.[r(d) ∨ s(d)]Y ∧ [s(d)](νZ .[r(d)]Z ∧ [s(d)]]false))

This property states that, after reading a message d, and subsequently sending the
same d, it cannot be sent again, unless it has been read again.

• The protocol does not generate new messages:

∀d : D.νX .[r(d)]X ∧ [s(d)]false

From the initial state, no message can be sent unless a message has been read first.
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• Messages that are read are inevitably sent:

νW.[true]W ∧ (∀d : D.([r(d)](νX .µY.([s(d)]X ∧ [s(d)]Y ))))

• Messages that are read are inevitably sent along i-fair paths:

νX .[true]X ∧ ∀d : D.([r(d)](νY.µZ .([s(d) ∨ i]Z ∧ [i]Y )))

This generalises the previous property to take fairness into account. The ABP, e.g.,
non-deterministically (using an i action) chooses whether to loose the message, or
to forward it. This property only considers paths in which this choice is resolved
fairly.

Onebit Protocol

For the onebit protocol we verify two additional properties. Note that the onebit protocol
uses actions ra and sb instead of r and s.

• Messages can be overtaken by other messages:

µX .〈true〉X ∨ ∃d : D.〈ra(d)〉µY.
�

〈sb(d)Y ∨ ∃d ′ : D.d 6= d ′ ∧ 〈ra(d′)〉µZ .

(〈sb(d)〉Z ∨ 〈sb(d′)〉true)
�

That is, there is a trace in which message d is read, and is still in the protocol
when another message d ′ is read, which then is sent to the receiving party before
message d.

• No spontaneous messages are generated:

νX .[∃d : D.ra(d)]X ∧
∀d ′ : D.[ra(d′)]νY (m1 : D = d ′).

�

[∃d : D.ra(d) ∨ sb(d)]Y (m1) ∧
∀e : D.[sb(e)]((m1 = e) ∧ X ) ∧
∀e′ : D.[ra(e′)]νZ(m2 : D = e′).
�

[∃d : D.ra(d) ∨ sb(d)]Z(m2) ∧
∀ f : D.[sb(f)](( f = m1) ∧ Y (m2))
�

�

Since the onebit protocol can contain two messages at a time, the formula states
that only messages that are received can be subsequently sent again. This requires
storing messages that are currently in the buffer using parameters m1 and m2.
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Bounded Retransmission Protocol

The bounded retransmission protocol only allows a finite number of retransmissions,
before finally giving up. The following property nicely shows the expressive power of the
data-enhanced µ-calculus.

νX .[true]X ∧ ∀l : List(D).
�

l 6= [] =⇒ [r1(l)]

νY (n: Nat= 0, l ′ : List(D) = l).
�

[c9(lost)]Y (n+ 1, l ′)
∧ [c9(lost) ∨ s1(I_nok) ∨ s1(I_dk) ∨ ∃d : D, i : Ind.s4(d, i)]Y (n, l ′)
∧ (l ′ 6= [] =⇒ ∀d : D.[∃i : Ind.s4(d, i)](d = head(l ′) ∧ Y (0, tail(l ′))))
∧ ((n<MAX ∧ l ′ 6= []) =⇒ (µZ .〈true〉Z ∨ 〈∃i : Ind.s4(head(l ′), i)〉true))

�

�

This states that, invariantly, if a non-empty list of messages is received through r1, it is
possible to send a message. The inner equation for Y is parameterised by the number of
times n sending has been retried, and the list of messages l ′ that still need to be send. If
a message is lost, then the counter is incremented and the list is unchanged. For internal
steps, the counter and the list remain unchanged. If there still is a message to be sent,
then the only message that can be sent is the first message in l ′, and afterwards the
property again holds for the remaining messages. As long as the maximum number of
retries has not been reached, and their still is a message to be sent, there indeed is a path
to a state in which the first message in l ′ can be sent.

A.1.2 Cache Coherence Protocol

For the cache coherence protocol, we verify a number of properties from [Pan+07].

• Each region has at most one home node. νX .[true]X ∧ [c_home]false Note that
here c_home is an action that is the result of communication in the model.

• If the system is stable, each region has no more than n− 1 copies, where n is the
number of processors.

∀p : ProcessId.¬
�

µX .〈true〉X ∨
�

〈c_copy〉true ∧
〈lockempty(p)〉true ∧
〈homequeueempty(p)〉true ∧
〈remotequeueempty(p)〉true
�

�
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This property works for a model with two processors, checking that there is no state
in which the actions c_copy, lockempty, homequeueempty and remotequeueempty are
enabled simultaneously.

• Every thread eventually finishes writing to a region:

∀t : ThreadId.

νX .[true]X ∧ [iamaccessing(t)]
�

νY.
�

[accessover(t)]Y ∧

µZ .(〈accessover(t) ∧ iamaccessing(t)〉Z ∨ 〈accessover(t)〉true)
�

�

• Every thread eventually finishes its flush of a region:

∀t : ThreadId.

νX .[true]X ∧ [iamflushing(t)]
�

νY.
�

[flushover(t)]Y ∧

µZ .(〈flushover(t) ∧ iamflushing(t)〉Z ∨ 〈flushover(t)〉true)
�

�

A.1.3 Hesselink’s Register

• Values that are written to the register can be read from the register if no other value
is written to the register in the meantime.

νX .[true]X ∧ ∀w : D.[begin_write(w)]νY.
�

[end_write]Y ∧ [end_write]νZ .
�

[∃d : D.begin_write(d)]Z ∧ [begin_read]νW.

([∃d : D.begin_write(d)]W ∧
∀w′ : D.[end_read(w′)](w = w′))

�

�

A.1.4 Elevator

For the elevator we verify the µ-calculus version of the property that is checked in [FL09].
We verify whether, if a request is made for the top floor, denoted storeys, then the elevator
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eventually is at the top floor.

νX .µY.νZ .[move ∨ close]X ∧
�

〈isAt(storeys)〉true ∨
�

[move ∨ close]Z ∧
(¬(〈isPressed(storeys)〉true) ∨ [move ∨ close]Y )

�

�

A.1.5 Hanoi Towers

For the Hanoi towers we check whether a final configuration can be reached in a finite
number of steps.

µX .〈done〉X ∨ 〈done〉true

A.1.6 Two Player Board Games

For the two-player board games, we express for each player whether he has a winning
strategy. For all games, these are variations of the following two formulae. Note that
these formulae assume that the model of the game guarantees strict alternation between
the two players.

• White has as winning strategy, assuming that the opponent makes the first move:

µX .〈WhiteWins〉true ∨ [true]〈true〉X

• Black has a winning strategy, assuming that he makes the first move:

µX .〈BlackWins〉true ∨ 〈true〉[true]X

A.1.7 IEEE 1394 Link-Layer

For the IEEE 1394 link-layer protocol we verify the properties described by Luttik [Lut97].
We here give a µ-calculus version of the properties as they were described in ACTL in
[SM98].

• P1394(n) is deadlock free:

νX .[true]X ∧ [arbresgap ∨ (∃l : LDC, id: Nat.id≤ N ∧ LDcon(id, l))]
(νY.〈true〉true ∧ [∃l : LDC, id : Nat.id≤ N ∧ LDcon(id, l)]Y )

This denotes that the protocol is deadlock free under some added assumptions.

164



A.1. Model Checking

• Between two subsequent “subaction gap” signals at most two asynchronous packets
have travelled over the BUS.

νW.[true]W ∧ [somecPDind]νX .
[somecPDind ∨ ∃l : LDC .LDcon(0, l) ∨ LDcon(1, l) ∨ LDcon(2, l)]X
∧ [∃l : LDC.LDcon(0, l) ∨ LDcon(1, l) ∨ LDcon(2, l)]νY.
[somecPDind ∨ ∃l : LDC.LDcon(0, l) ∨ LDcon(1, l) ∨ LDcon(2, l)]Y

∧ [∃l : LDC.LDcon(0, l) ∨ LDcon(1, l) ∨ LDcon(2, l)]
νZ[somecPDind]Z

∧ [∃l : LDC.LDcon(0, l) ∨ LDcon(1, l) ∨ LDcon(2, l)]false

Note that the occurrence of any “subaction gap” signal is encoded by the action
somecPDind.

• If a node 0≤ id ≤ n−1 emitted a request on the LDreq gate, and node id commu-
nicates a request on the PAreq gate each time it receives a subactgap signal on the
PDind gate (and before an arbresgap occurs), it also eventually receives a confirm-
ation on the LDcon gate.

∀id : Nat.id≤ N =⇒
νX .[true]X ∧
[(∃n: Nat, h: HEADER, d : DATA.n≤ N ∧ LDreq(id, n, h, d))]
νY.[cPDind(id, subactgap) ∨ arbresgap]Y ∧
[(∃p : PAR.cPAreq(id, p))]
µX .((〈arbresgap〉true ∧ [arbresgap]X

∧ [arbresgap ∨ ∃l : LDC.LDcon(id, l)]false) ∨
(〈∃l : LDC.LDcon(id, l)〉true ∧ [∃l : LDC.LDcon(id, l)]false))

• Every request emitted by a node 0 ≤ id ≤ n − 1 on gate PAreq with parameter
immediate is followed by a matching confirmation on gate PAcon with parameter
won.

∀id : Nat.id ≤ N =⇒ νX .[true]X ∧ [cPAreq(id, immediate)]

µY.
�

(〈cPAreq(id, immediate)〉true
∧ [cPAreq(id, immediate)]Y
∧ [cPAreq(id, immediate) ∨ cPAcon(id, won)]false)
∨ (〈cPAcon(id, won)〉true ∧ [cPAcon(id, won)]false)
�

• Between two subsequent “arbitration reset gap” signals no node 0 ≤ id ≤ n − 1
receives a confirmation on gate PAcon with parameter won upon a request on gate
PAreq with parameter fair more than once:

∀id : Nat.id≤ N =⇒ νX .[t rue]X ∧ [arbresgap]
νY.[arbresgap]Y ∧ [cPAreq(id, fair).cPAcon(id, won)]
νZ .[arbresgap]Z ∧ [cPAreq(id, fair).cPAcon(id, won)]false
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A.1.8 Truck Lift

For the truck lift, we verify the properties formulated in [GPW03].

• It is always possible for the system to get to a state in which pressing the UP button
of any lift will yield the appropriate response:

νX .[true]X ∧ µY.(〈true〉Y ∨ 〈∃n: Nat.n< N ∧ up(n)〉true

• It is always possible for the system to get to a state in which pressing the DOWN
button of any lift will yield the appropriate response:

νX .[true]X ∧ µY.(〈true〉Y ∨ 〈∃n: Nat.n< N ∧ down(n)〉true

• In any execution sequence contain only one button-pressed action, and containing
no button-released action of the pressed button, the whole system always begins to
move. This is the formulae for the up button.

νW.[∃id: Nat.id< N ∧ (up(id) ∨ down(id))]W ∧ [up(address)]
νX .([∃id: Nat.id< N ∧ (up(id) ∨ down(id)) ∨ released(address)]X ∧
µY.(〈∃id: Nat.id< N ∧ (up(id) ∨ down(id) ∨ released(address)〉Y ∨
〈∃id: Nat.id< N ∧move(id, UP)〉true)))

• In any execution sequence contain only one button-pressed action, and containing
no button-released action of the pressed button, the whole system always begins to
move. This is the formulae for the down button.

νW.[∃id: Nat.id< N ∧ (up(id) ∨ down(id))]W ∧ [down(address)]
νX .([∃id: Nat.id< N ∧ (up(id) ∨ down(id)) ∨ released(address)]X ∧
µY.(〈∃id: Nat.id< N ∧ (up(id) ∨ down(id) ∨ released(address)〉Y ∨
〈∃id: Nat.id< N ∧move(id, DOWN)〉true)))

• As long as all other lifts move up, the last one cannot move down:

νX (n: Nat= 0).
((n< N − 1 =⇒ )
νX .[∃id: Nat.id< N ∧move(id, UP)]X ∧ [move(n, UP)]X (n+ 1)) ∧
((n= N − 1) =⇒
νY.[∃id: Nat.id< N ∧move(id, UP)]Y ∧ [move(n, DOWN)]false)

• If no up button is pressed, the system cannot move up:

νX .[∃id: Nat.id< N ∧ up(id)]X ∧
[∃id′ : Nat.id′ < N ∧move(id′, UP)]false

• If no down button is pressed, the system cannot move down:

νX .[∃id: Nat.id< N ∧ down(id)]X ∧
[∃id′ : Nat.id′ < N ∧move(id′, DOWN)]false
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A.1.9 Leader Election Protocol

For the leader election protocol we specify that it eventually stabilises.

νX (n: Int= 0).
([Add]X (n+ 1) ∧ [Remove]X (n− 1) ∧ [τ ∨ Trigger]X (n)
∧ (n= N ∨ µY.(
(µCount(i : Nat= 0).
(i < n ∧ ([leader]Count(i+ 1)) ∧ (〈leader〉true)) ∨
(i = n ∧ [leader]false))
∨ (〈τ〉true ∧ [τ]Y ))))

A.2 Decision Procedures

In [FL09] classes of formulae are considered for validity and satisfiability checking. Fur-
thermore, some formulae are provided as test cases for the tool MLsolver [FL09]. In our
benchmarks, we consider the following classes of formulae that are checked for validity.

• The first class expresses that non-deterministic Büchi conditions and deterministic
parity conditions are equi-expressive.

ψn
∆
= νX .© X ∧

n
∨

i=1

qi ∧
∧

j 6=i

¬q j

is the subformula that expresses that in every state one of the propositions qi is
true. The formula

ϕn
∆
=ψn =⇒

�

(σXn . . .νX2.µX1.
∧n

i=1 qi =⇒ ©X i) ⇐⇒
∨

i even(νX .(µY.qi ∨©Y ) ∧©X ) ∧
∧

j>i,j oddµX .(νY.¬q j ∧©Y ) ∨©X
�

then expresses equi-expressivity of the conditions.

• We also consider the families of formulae where Kleene stars are nested in PDL. Let
α0

∆
= true?∗ and αn+1

∆
= (a∗αn b∗)∗. This is used in the following three families of

formulae:

– ϕn
∆
= 〈(a ∪ b)∗〉q ∨ [αn]¬q.

– ψn
∆
= 〈αn〉q ∨ [(a ∪ b)∗]¬q.

– γn
∆
= 〈αn〉q ∨ [αn]¬q.

• The limit of an infinite sequence of prefix-sharing paths in a system is, again, a path
in the system. This is referred to as the limit closure. For CTL∗, this can be ex-

pressed as LC∗(ϕ,ψ)
∆
= AG(Eψ =⇒ EX ((Eϕ)U Eψ)) ∧ Eψ =⇒ EG((Eϕ)U Eψ).

We consider, among others, the formula LC∗(ϕn,ψn), where ϕn
∆
= G(

∨

i≤n¬qi),

ψ0
∆
= q0, ψ2n+1

∆
= q2n+1 ∧ Xψ2n, andψ2n+2

∆
= q2n+2 ∨ Xψ2n+1. We consider similar

formulae for CTL.
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In addition some simpler formulae are considered, as well as formulae that describe bin-
ary counters and a fair scheduler. For the details of those we refer to the implementation
of the benchmarks.
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⊥, see vertex decoration mapping
È, see vertex decoration mapping
↗, see free variable mapping
P , see player
µ-calculus, 15

semantics, 17
syntax, 15

Ω, see priority
τ, see target vertex
>, see vertex decoration mapping
Î, see vertex decoration mapping

abstraction, 67
a�ects, 142
alternation depth

of a formula, 107
of a parity game, 108

Attr, see attractor set
attractor set, 94

back-level edge, 105
belongs to, 150
BES, see Boolean equation system
BESsy, 41
BFS, see breadth-first search
bisimulation, see strong bisimulation
block

in a BES, 24
in a partition, 94
in a PBES, 131

bnd, see bound variables
Boolean equation system, 20

associated to structure graph, 42
semantics, 20
syntax, 20
well-formedness, 20

bound variables
bound predicate variables, 130

bound proposition variables
in a µ-calculus formula, 16
in a BES, 22

breadth-first search, 105
height, 105

CFG, see control flow graph
CFP, see control flow parameters
changed, 149
choice function, 53
clique-width, 106
closed

µ-calculus formula, 16
BES, 22
PBES, 130, 131

clustering coefficient, 105
compatible

BESs, 22
PBESs, 132

complete lattice, 13
computation path, 76
computation tree, 76
conjunctive form, 21
consistency, 30
consistent correlation

on BESs, 24
on PBES, 131

control flow graph, 140
control flow location, 140
control flow parameter, 136
correlating environment

on BES, 24
on PBES, 131

d, see vertex decoration mapping
DAG-width, 106
data, 133
deduction rules, 38
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deg, see degree
degree, 104
delayed simulation

equivalence, 80
preorder, 80

depth-first search, 105
DFS, see depth-first search
diameter, 105
diamond, 105

even diamond, 107
odd diamond, 107

direct simulation
equivalence, 79
preorder, 79

directed treewidth, 106
disjunctive form, 21

E, 26
entanglement, 106

fixed point, 13
iteration scheme, 13

transfinite, 14
formal parameters, 130
free, see free variables
free variable closure, 23
free variable mapping, 36
free variables

free data variables, 130
free proposition variables

in a µ-calculus formula, 16
in a BES, 22

Gauß elimination, 21
girth, 105
global consistency, 135
global marking, 142
governed bisimulation, 81

quotient, 82
governed stuttering bisimulation, 91

algorithm, 97
minimality, 92
quotient, 93

greatest element, 13
greatest lower bound, 13
guard, 138
guarded, 139

idempotence identifying bisimulation, 58
quotient, 60

in-degree, 104
indeg, see in-degree
infimum, see greatest lower bound
isomorphism, 74

Kelly-width, 106
Knaster-Tarski theorem, 13

labelled transition system, 11
lasso, 54
lattice, 13
LCFP, see local control flow parameter
least element, 13
least upper bound, 13
Leave, 94
local control flow graph, 149
local control flow parameter, 135
local marking, 150
location, see control flow location
lower bound, 13
LTS, see labelled transition system

M , see global marking
meaningful, 136
memoryless determinacy, 31
mimic, 86
Mloc, see lcal marking150
model checking problem, 11
monotone function, 13

nd, see nesting depth
neighbourhood, 105
nesting depth, 108
norm, see normalisation
normalisation, 49
npred, 133

occ, see occurring variables
occurring variables

occurring predicate variables, 130
occurring proposition variables

in a µ-calculus formula, 16
in a BES, 22

out-degree, 104
outdeg, see out-degree
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par, see formal parameters
parameterised Boolean equation system, 130

semantics, 131
syntax, 130
top assertion, 130

parity game, 28
partial order, 13
partially ordered set, 13
partition, 94
path, 29
PBES, see parameterised Boolean equation

system
player, 29
pos, 97
poset, see partially ordered set
pred, 133
predicate formula

logical equivalence, 130
semantics, 130
simple, 130
syntax, 129

predicate variable, 130
predicate variable instance, 133
priority, 28
proposition formula

induced by structure graph, 42
logical equivalence, 20
semantics, 20
syntax, 20

PVI, see predicate variable instance

r, see vertex ranking mapping
rank, 23
reach, 85
Reset, 145
rhs, 42
RReset, 146
rules, 149

safe abstraction, 68
SCC, see strongly connected component
sccs, see strongly connected component
sgt, see signature
sig, see significant parameters
signature, 131
significant parameters, 141

simple form, 24
simple recursive form, 24
solution equivalence

of structure graphs, 48
splitter, 97
SRF, see simple recursive form
stable partition, 97
strategy, 30
strong bisimulation

for LTSs, 12
for parity games, 80

quotient, 81
for structure graphs, 36

quotient, 37
strongly connected component, 105

quotient height, 105
terminal, 105
trivial, 105

structure graph, 35
stuttering bisimulation, 83

quotient, 84
supremum, see least upper bound

target class, 85
target vertex, 85
targetclass, see target class
treewidth, 106

unicity constraint, 134
unify, 136
upper bound, 13
used, 149

values, 140
vertex decoration mapping, 36
vertex ranking mapping, 36

well-formed
µ-calculus formula, 16
PBES, 130

winner
of a game, 30
of a path, 30

winner equivalence, 79
winning strategy, 30
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Summary

Advanced Reduction Techniques for Model Checking

Modern-day software systems are highly complex, and typically consist of a number of in-
teracting components running in parallel. Verification methods aim to prove correctness
of such systems. Model checking is a commonly used verification technique, in which a
model of the system under investigation is created. Subsequently, it is checked whether
this model satisfies certain properties.

Model checking suffers from the infamous state space explosion problem: the number
of states in a system grows exponentially in the number of parallel components. Part
of the blow-up is also due to the presence of data in descriptions of model checking
problems. Typically model checkers construct the full state space, causing the approach
to break down already for a small number of parallel components. Properties are then
checked on the state space, either directly, or by first combining the state space with a
property, leading to, for example, a Boolean equation system or a parity game. The latter
step leads to a further blow up.

In this thesis techniques are developed to counter this state space explosion problem
in (parameterised) Boolean equation systems and parity games. The main contributions
are as follows:

• A structural operational semantics is presented that can equip Boolean equation
systems with arbitrary right hand sides with a graph structure, called structure
graph. Classical graph structures for analysing Boolean equation systems typically
restrict right hand sides to purely conjunctive or disjunctive form, essentially redu-
cing the equation system to a parity game. We use our graphs to study the effects of
this restriction on right hand sides, and show that, in the context of bisimulation,
this reduction never poses a disadvantage.

• We investigate the reductions that can be achieved using strong bisimulation reduc-
tion of structure graphs, and we investigate idempotence identifying bisimulation.
We show that, although it indeed identifies idempotence in a restricted subset of
equation systems, it does not live up to its name for full-blown structure graphs.

• The insights we gain by studying structure graphs motivate further investigation
of weaker equivalences in the setting of parity games. Since the winner in parity
games is determined by the infinitely often recurring priorities, intuitively, finite
stretches of similar vertices can be compressed. We define the notions of stuttering
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equivalence and governed stuttering equivalence, and show that they preserve the
winner in a parity game.

• A new set of benchmarks for parity games is developed due to the unavailability
of standard benchmarks. These benchmarks subsume the examples that are used
for performance evaluation of solving algorithms in the literature. We provide a
description of the benchmarks, and we analyse their characteristics.

The efficacy of our equivalences for reducing parity games is evaluated using this
set of benchmarks. It is shown that large reductions are possible, even reducing
parity games to a single vertex with a self-loop. Average reductions of about 50%
are achieved. Sometimes the technique allows solving parity games which cannot
be solved directly; in general, however, the timing results do not show a clear
advantage.

• Finally, we move from a posteriori reduction of parity games, to static analysis tech-
niques for parameterised Boolean equation systems, that allow the a priori reduc-
tion of the induced parity games. Essentially, we present a heuristic that performs
a live variable analysis. We show that this analysis is more effective at reducing the
complexity than existing techniques, i.e. the reductions that we obtain are larger.
Correctness of our analysis is shown using a generalisation of the equivalences that
we introduced for parity games and Boolean equation systems.
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Geavanceerde Reductietechnieken voor Model Checking

Moderne computersystemen zijn uiterst complex, en bestaan gewoonlijk uit een aantal
componenten die in parallel worden uitgevoerd, en die interactie met elkaar aangaan.
Met verificatiemethoden beogen we correctheid van dit soort systemen aan te tonen.
Model checking is een veel gebruikte verificatietechniek, waarbij gebruik gemaakt wordt
van een model van het systeem dat geverifieerd moet worden. Van dit model wordt
nagegaan of het aan de gewenste eigenschappen voldoet.

Een belangrijk probleem bij model checking is de explosie van de toestandsruimte:
het aantal toestanden waarin het systeem zich kan bevinden groeit exponentieel in het
aantal parallelle componenten. Deels wordt deze explosie in het aantal toestanden ook
veroorzaakt door de aanwezigheid van data in de beschrijving van een model check pro-
bleem. De meeste model checkers construeren eerst een volledige representatie van de
toestandsruimte, waardoor de aanpak al faalt voor systemen die uit slecht enkele pa-
rallelle componenten bestaan. Wanneer er wel een representatie gevormd is, worden
de eigenschappen hierop geverifieerd, hetzij rechtstreeks, hetzij door eerst de toestands-
ruimte met de gewenste eigenschap te combineren tot een parity game of een stelsel van
Boolse vergelijkingen. Dit combineren leidt tot een extra toename in het aantal toestan-
den.

In dit proefschrift ontwikkelen we technieken die de explosie van de toestandsruimte
tegengaan in stelsels van Boolse vergelijkingen en parity games. De belangrijkste bijdra-
gen zijn als volgt:

• We koppelen een graaf structuur aan een stelsel van Boolse vergelijkingen met
behulp van een operationele semantiek. Bestaande graaf structuren die gebruikt
worden in de analyse van dit soort stelsels van vergelijkingen beperken zich tot
een subset waarin elke rechterkant van een vergelijking puur conjunctief danwel
puur disjunctief is. We gebruiken onze graafstructuur om de gevolgen van deze
beperkingen te bestuderen, en we tonen aan dat, in de context van bisimulatie,
deze beperking nooit nadelig werkt.

• We onderzoeken de reducties van stelsels van Boolse vergelijkingen door middel
van sterke bisimulatie reductie van de structuurgrafen, en we introduceren de
zwakkere notie van idempotentie identificerende bisimulatie. We laten zien dat
deze verzwakking idempotentie slechts in een subset van stelsels van vergelijkin-
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gen identificeert, maar dat het voor structuurgrafen in algemene zin zijn naam niet
verdient.

• De inzichten die we verkrijgen door het bestuderen van deze structuurgrafen geven
aanleiding tot het verder bestuderen van zwakkere equivalenties in parity games,
welke gezien kunnen worden als een subset van deze structuurgrafen. Aangezien
de winnaar in dit soort spellen bepaald wordt door de prioriteiten die oneindig
vaak voorkomen kunnen we eindige sequenties van vergelijkbare knopen samen-
nemen tot een enkele knoop. We definieren de noties van stuttering equivalentie
en governed stuttering equivalentie, en we tonen aan dat deze de winnaar in een
spel behouden.

• Bij gebrek aan een standaard set van voorbeelden, ontwikkelen we een benchmark
set voor parity game algorithmen, die de spellen in bestaande experimenten uit de
literatuur omvat. We beschrijven de invoer van deze experimenten, en bestuderen
de karakteristieken.

De effectiviteit van onze equivalenties wordt bestudeerd aan de hand van deze
set van voorbeelden. Onze experimenten tonen aan dat met de technieken die
we beschrijven grote reducties haalbaar zijn. Sommige spellen reduceren tot een
enkele knoop met een lus, en gemiddeld genomen worden reducties van ongeveer
50% behaald. Soms leiden onze technieken er toe dat spellen die voorheen niet
rechtstreeks opgelost konden worden na reductie wel op te lossen zijn. Echter,
over het algemeen leiden de technieken niet tot een duidelijke versnelling in het
oplossen van parity games.

• Tot slot bekijken we, in plaats van de a posteriori reductie van parity games, stati-
sche analyse technieken voor stelsels van Boolse vergelijkingen die geparameteri-
seerd zijn met data. Deze technieken stellen ons in staat om de parity games die
uit deze stelsels gegenereerd worden a priori te reduceren. Onze techniek is, in es-
sentie, een heuristiek die ongebruikte variabelen opspoort. We laten zien dat deze
analyse tot een grotere reductie leidt dan bestaande technieken. De correctheid
van de statische analyse wordt aangetoond met behulp van een generalisatie van
de equivalenties die we eerder gedefinieerd hebben op parity games en stelsels van
Boolse vergelijkingen.
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