41,598 research outputs found

    Local wavelet features for statistical object classification and localisation

    Get PDF
    This article presents a system for texture-based probabilistic classification and localisation of 3D objects in 2D digital images and discusses selected applications. The objects are described by local feature vectors computed using the wavelet transform. In the training phase, object features are statistically modelled as normal density functions. In the recognition phase, a maximisation algorithm compares the learned density functions with the feature vectors extracted from a real scene and yields the classes and poses of objects found in it. Experiments carried out on a real dataset of over 40000 images demonstrate the robustness of the system in terms of classification and localisation accuracy. Finally, two important application scenarios are discussed, namely classification of museum artefacts and classification of metallography images

    Choosing Wavelet Methods, Filters, and Lengths for Functional Brain Network Construction

    Full text link
    Wavelet methods are widely used to decompose fMRI, EEG, or MEG signals into time series representing neurophysiological activity in fixed frequency bands. Using these time series, one can estimate frequency-band specific functional connectivity between sensors or regions of interest, and thereby construct functional brain networks that can be examined from a graph theoretic perspective. Despite their common use, however, practical guidelines for the choice of wavelet method, filter, and length have remained largely undelineated. Here, we explicitly explore the effects of wavelet method (MODWT vs. DWT), wavelet filter (Daubechies Extremal Phase, Daubechies Least Asymmetric, and Coiflet families), and wavelet length (2 to 24) - each essential parameters in wavelet-based methods - on the estimated values of network diagnostics and in their sensitivity to alterations in psychiatric disease. We observe that the MODWT method produces less variable estimates than the DWT method. We also observe that the length of the wavelet filter chosen has a greater impact on the estimated values of network diagnostics than the type of wavelet chosen. Furthermore, wavelet length impacts the sensitivity of the method to detect differences between health and disease and tunes classification accuracy. Collectively, our results suggest that the choice of wavelet method and length significantly alters the reliability and sensitivity of these methods in estimating values of network diagnostics drawn from graph theory. They furthermore demonstrate the importance of reporting the choices utilized in neuroimaging studies and support the utility of exploring wavelet parameters to maximize classification accuracy in the development of biomarkers of psychiatric disease and neurological disorders.Comment: working pape

    Detection and Classification of Stator Short-Circuit Faults in Three-Phase Induction Motor

    Get PDF
    Induction motors are the backbone of the industries because they are easy to operate, rugged, economical and reliable. However, they are subjected to stator’s faults which damage the windings and consequently lead to machine failure and loss of revenue. Early detection and  classification of these faults are important for the effective operation of induction motors. Stators faults detection and classification based on  wavelet Transform was carried out in this study. The feature extraction of the acquired data was achieved using lifting decomposition and reconstruction scheme while Euclidean distance of the Wavelet energy was used to classify the faults. The Wavelet energies increased for all three conditions monitored, normal condition, inter-turn fault and phase-to-phase fault, as the frequency band of the signal decreases from D1 to A3. The deviations in the Euclidean Distance of the current of the Wavelet energy obtained for the phase-to-phase faults are 99.1909, 99.8239 and 87.9750 for phases A and B, A and C, B and C respectively. While that of the inter-turn faults in phases A, B and C are 77.5572, 61.6389 and 62.5581 respectively. Based on the Euclidean distances of the faults, Df and normal current signals, three classification points were set: K1 = 0.60 x 102, K2 = 0.80 x 102 and K3 = 1.00 x 102. For K2 ≥ Df ≥ K1 inter-turn faults is identified and for K3 ≥ Df ≥ K2 phase to phase fault identified. This will improve the induction motors stator’s fault diagnosis. Keywords: induction motor, stator fault classification, data acquisition system, Discrete Wavelet Transfor

    A first approach to a taxonomy-based classification framework for hand grasps

    Get PDF
    Many solutions have been proposed to help amputated subjects regain the lost functionality. In order to interact with the outer world and objects that populate it, it is crucial for these subjects to being able to perform essential grasps. In this paper we propose a preliminary solution for the online classification of 8 basics hand grasps by considering physiological signals, namely Surface Electromyography (sEMG), exploiting a quantitative taxonomy of the considered movement. The hierarchical organization of the taxonomy allows a decomposition of the classification phase between couples of movement groups. The idea is that the closest to the roots the more hard is the classification, but on the meantime the miss-classification error is less problematic, since the two movements will be close to each other. The proposed solution is subject-independent, which means that signals from many different subjects are considered by the probabilistic framework to modelize the input signals. The information has been modeled offline by using a Gaussian Mixture Model (GMM), and then testen online on a unseen subject, by using a Gaussian-based classification. In order to be able to process the signal online, an accurate preprocessing phase is needed, in particular, we apply the Wavelet Transform (Wavelet Transform) to the Electromyography (EMG) signal. Thanks to this approach we are able to develop a robust and general solution, which can adapt quickly to new subjects, with no need of long and draining training phase. In this preliminary study we were able to reach a mean accuracy of 76.5%, reaching up to 97.29% in the higher levels

    Using combination of lifting wavelet and multiclass SVM based on global optimization class strategy for fault pattern identification

    Get PDF
    This paper presents a new method based on lifting wavelet for obtaining a fast multiclass SVM classification based on global optimization class strategy for fault diagnosis of roller bearing. Decision making was performed in two stages: feature extraction by computing the lifting wavelet coefficients and classification using the multiclass SVM classifiers trained on the extracted features. Experiments demonstrate that in comparison to discrete wavelet transform the lifting wavelet feature extraction can speed up the identification phase as well as achieve higher accuracy of multiclass SVM that is based on global optimization class strategy. Experimental results also reveal that the proposed multiclass SVM of global optimization is better than strategy of one against one and DAGSVM

    Analysis of observed chaotic data

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2004Includes bibliographical references (leaves: 86)Text in English; Abstract: Turkish and Englishxii, 89 leavesIn this thesis, analysis of observed chaotic data has been investigated. The purpose of analyzing time series is to make a classification between the signals observed from dynamical systems. The classifiers are the invariants related to the dynamics. The correlation dimension has been used as classifier which has been obtained after phase space reconstruction. Therefore, necessary methods to find the phase space parameters which are time delay and the embedding dimension have been offered. Since observed time series practically are contaminated by noise, the invariants of dynamical system can not be reached without noise reduction. The noise reduction has been performed by the new proposed singular value decomposition based rank estimation method.Another classification has been realized by analyzing time-frequency characteristics of the signals. The time-frequency distribution has been investigated by wavelet transform since it supplies flexible time-frequency window. Classification in wavelet domain has been performed by wavelet entropy which is expressed by the sum of relative wavelet energies specified in certain frequency bands. Another wavelet based classification has been done by using the wavelet ridges where the energy is relatively maximum in time-frequency domain. These new proposed analysis methods have been applied to electrical signals taken from healthy human brains and the results have been compared with other studies

    On the classification of time series and cross wavelet phase variance

    Get PDF
    The continuous wavelet transform (CWT) is arguably one of the best tools to explore underlying characteristic features of time series data. Its application in large time series classification experiments, however, has been severely limited due to the large amount of redundant associated information. By extending the capabilities of the CWT to perform cross wavelet analysis (CWA), common frequency behaviour between two time series is highlighted, and the potential to extract amplitude modulated (AM) and frequency modulation (FM) characteristics in an automated way is possible. Characterisation of AM is relatively straightforward and can be resolved by any number of Euclidean based techniques in both the time and frequency domains. FM on the other hand, is somewhat more difficult as it transcends multiple wavelet scales. In this study, linear combinations of scales are used to extract both AM similarity (derived from global wavelet power spectra) and FM coherency, using a new method developed called cross wavelet phase variance (CWPV). The methodology is applied to large scale classification problems (using benchmark time series), in which the method clearly outperforms other common distance-based measures. Lastly, the approach provides a powerful framework in which AM and FM characteristics common between time series can be explicitly mapped to their corresponding scales, and with some initial optimisation, can be applied to any classification problem

    Unbalanced load flow with hybrid wavelet transform and support vector machine based Error-Correcting Output Codes for power quality disturbances classification including wind energy

    Get PDF
    Purpose. The most common methods to designa multiclass classification consist to determine a set of binary classifiers and to combine them. In this paper support vector machine with Error-Correcting Output Codes (ECOC-SVM) classifier is proposed to classify and characterize the power qualitydisturbances such as harmonic distortion,voltage sag, and voltage swell include wind farms generator in power transmission systems. Firstly three phases unbalanced load flow analysis is executed to calculate difference electric network characteristics, levels of voltage, active and reactive power. After, discrete wavelet transform is combined with the probabilistic ECOC-SVM model to construct the classifier. Finally, the ECOC-SVM classifies and identifies the disturbance type according tothe energy deviation of the discrete wavelet transform. The proposedmethod gives satisfactory accuracy with 99.2% compared with well known methods and shows that each power quality disturbances has specific deviations from the pure sinusoidal waveform,this is good at recognizing and specifies the type of disturbance generated from the wind power generator.Наиболее распространенные методы построения мультиклассовой классификации заключаются в определении набора двоичных классификаторов и их объединении. В данной статье предложена машина опорных векторов с классификатором выходных кодов исправления ошибок(ECOC-SVM) с целью классифицировать и характеризовать такие нарушения качества электроэнергии, как гармонические искажения, падение напряжения и скачок напряжения, включая генератор ветровых электростанций в системах передачи электроэнергии. Сначала выполняется анализ потока несимметричной нагрузки трех фаз для расчета разностных характеристик электрической сети, уровней напряжения, активной и реактивной мощности. После этого дискретное вейвлет-преобразование объединяется с вероятностной моделью ECOC-SVM для построения классификатора. Наконец, ECOC-SVM классифицирует и идентифицирует тип возмущения в соответствии с отклонением энергии дискретного вейвлет-преобразования. Предложенный метод дает удовлетворительную точность 99,2% по сравнению с хорошо известными методами и показывает, что каждое нарушение качества электроэнергии имеет определенные отклонения от чисто синусоидальной формы волны, что способствует распознаванию и определению типа возмущения, генерируемого ветровым генератором
    corecore