320 research outputs found

    A Deep Learning Approach to Structured Signal Recovery

    Full text link
    In this paper, we develop a new framework for sensing and recovering structured signals. In contrast to compressive sensing (CS) systems that employ linear measurements, sparse representations, and computationally complex convex/greedy algorithms, we introduce a deep learning framework that supports both linear and mildly nonlinear measurements, that learns a structured representation from training data, and that efficiently computes a signal estimate. In particular, we apply a stacked denoising autoencoder (SDA), as an unsupervised feature learner. SDA enables us to capture statistical dependencies between the different elements of certain signals and improve signal recovery performance as compared to the CS approach

    Facial Component Detection in Thermal Imagery

    Get PDF
    This paper studies the problem of detecting facial components in thermal imagery (specifically eyes, nostrils and mouth). One of the immediate goals is to enable the automatic registration of facial thermal images. The detection of eyes and nostrils is performed using Haar features and the GentleBoost algorithm, which are shown to provide superior detection rates. The detection of the mouth is based on the detections of the eyes and the nostrils and is performed using measures of entropy and self similarity. The results show that reliable facial component detection is feasible using this methodology, getting a correct detection rate for both eyes and nostrils of 0.8. A correct eyes and nostrils detection enables a correct detection of the mouth in 65% of closed-mouth test images and in 73% of open-mouth test images

    Unsupervised spectral sub-feature learning for hyperspectral image classification

    Get PDF
    Spectral pixel classification is one of the principal techniques used in hyperspectral image (HSI) analysis. In this article, we propose an unsupervised feature learning method for classification of hyperspectral images. The proposed method learns a dictionary of sub-feature basis representations from the spectral domain, which allows effective use of the correlated spectral data. The learned dictionary is then used in encoding convolutional samples from the hyperspectral input pixels to an expanded but sparse feature space. Expanded hyperspectral feature representations enable linear separation between object classes present in an image. To evaluate the proposed method, we performed experiments on several commonly used HSI data sets acquired at different locations and by different sensors. Our experimental results show that the proposed method outperforms other pixel-wise classification methods that make use of unsupervised feature extraction approaches. Additionally, even though our approach does not use any prior knowledge, or labelled training data to learn features, it yields either advantageous, or comparable, results in terms of classification accuracy with respect to recent semi-supervised methods

    Computer Vision from Spatial-Multiplexing Cameras at Low Measurement Rates

    Get PDF
    abstract: In UAVs and parking lots, it is typical to first collect an enormous number of pixels using conventional imagers. This is followed by employment of expensive methods to compress by throwing away redundant data. Subsequently, the compressed data is transmitted to a ground station. The past decade has seen the emergence of novel imagers called spatial-multiplexing cameras, which offer compression at the sensing level itself by providing an arbitrary linear measurements of the scene instead of pixel-based sampling. In this dissertation, I discuss various approaches for effective information extraction from spatial-multiplexing measurements and present the trade-offs between reliability of the performance and computational/storage load of the system. In the first part, I present a reconstruction-free approach to high-level inference in computer vision, wherein I consider the specific case of activity analysis, and show that using correlation filters, one can perform effective action recognition and localization directly from a class of spatial-multiplexing cameras, called compressive cameras, even at very low measurement rates of 1\%. In the second part, I outline a deep learning based non-iterative and real-time algorithm to reconstruct images from compressively sensed (CS) measurements, which can outperform the traditional iterative CS reconstruction algorithms in terms of reconstruction quality and time complexity, especially at low measurement rates. To overcome the limitations of compressive cameras, which are operated with random measurements and not particularly tuned to any task, in the third part of the dissertation, I propose a method to design spatial-multiplexing measurements, which are tuned to facilitate the easy extraction of features that are useful in computer vision tasks like object tracking. The work presented in the dissertation provides sufficient evidence to high-level inference in computer vision at extremely low measurement rates, and hence allows us to think about the possibility of revamping the current day computer systems.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Sparse Transfer Learning for Interactive Video Search Reranking

    Get PDF
    Visual reranking is effective to improve the performance of the text-based video search. However, existing reranking algorithms can only achieve limited improvement because of the well-known semantic gap between low level visual features and high level semantic concepts. In this paper, we adopt interactive video search reranking to bridge the semantic gap by introducing user's labeling effort. We propose a novel dimension reduction tool, termed sparse transfer learning (STL), to effectively and efficiently encode user's labeling information. STL is particularly designed for interactive video search reranking. Technically, it a) considers the pair-wise discriminative information to maximally separate labeled query relevant samples from labeled query irrelevant ones, b) achieves a sparse representation for the subspace to encodes user's intention by applying the elastic net penalty, and c) propagates user's labeling information from labeled samples to unlabeled samples by using the data distribution knowledge. We conducted extensive experiments on the TRECVID 2005, 2006 and 2007 benchmark datasets and compared STL with popular dimension reduction algorithms. We report superior performance by using the proposed STL based interactive video search reranking.Comment: 17 page

    A Hybrid Spam Detection Method Based on Unstructured Datasets

    Get PDF
    This document is the accepted manuscript version of the following article: Shao, Y., Trovati, M., Shi, Q. et al. Soft Comput (2017) 21: 233. The final publication is available at Springer via http://dx.doi.org/10.1007/s00500-015-1959-z. © Springer-Verlag Berlin Heidelberg 2015.The identification of non-genuine or malicious messages poses a variety of challenges due to the continuous changes in the techniques utilised by cyber-criminals. In this article, we propose a hybrid detection method based on a combination of image and text spam recognition techniques. In particular, the former is based on sparse representation-based classification, which focuses on the global and local image features, and a dictionary learning technique to achieve a spam and a ham sub-dictionary. On the other hand, the textual analysis is based on semantic properties of documents to assess the level of maliciousness. More specifically, we are able to distinguish between meta-spam and real spam. Experimental results show the accuracy and potential of our approach.Peer reviewedFinal Accepted Versio
    • 

    corecore