20 research outputs found

    Control of Redundant Joint Structures Using Image Information During the Tracking of Non-Smooth Trajectories

    Get PDF
    Visual information is increasingly being used in a great number of applications in order to perform the guidance of joint structures. This paper proposes an image-based controller which allows the joint structure guidance when its number of degrees of freedom is greater than the required for the developed task. In this case, the controller solves the redundancy combining two different tasks: the primary task allows the correct guidance using image information, and the secondary task determines the most adequate joint structure posture solving the possible joint redundancy regarding the performed task in the image space. The method proposed to guide the joint structure also employs a smoothing Kalman filter not only to determine the moment when abrupt changes occur in the tracked trajectory, but also to estimate and compensate these changes using the proposed filter. Furthermore, a direct visual control approach is proposed which integrates the visual information provided by this smoothing Kalman filter. This last aspect permits the correct tracking when noisy measurements are obtained. All the contributions are integrated in an application which requires the tracking of the faces of Asperger children

    Learning Probabilistic Generative Models For Fast Sampling-Based Planning

    Get PDF
    Due to their simplicity and efficiency in high dimensional space, sampling-based motion planners have been gaining interest for robotic manipulation in recent years. We present several new learning approaches using probabilistic generative models for fast sampling-based planning. First, we propose fast collision detection in high dimensional configuration spaces based on Gaussian Mixture Models (GMMs) for Rapidly-exploring Random Trees (RRT). In addition, we introduce a new probabilistically safe local steering primitive based on the probabilistic model. Our local steering procedure is based on a new notion of a convex probabilistically safety corridor that is constructed around a configuration using tangent hyperplanes of confidence ellipsoids of GMMs learned from prior collision history. For efficient sampling, we suggest a sampling method with a learned Q-function with linear function approximation based on feature representations such as Radial Basis Functions. This sampling method chooses the optimal node from which to extend the search tree via the softmax function of learned state values. We also discuss a novel constrained sampling-based motion planning method for grasp and transport tasks with redundant robotic manipulators, which allows the best grasp configuration and approach direction to be automatically determined. Since these approaches with the learned probabilistic models require large size data and time for training, it is essential that they are able to be adapted to environmental change in an online manner. The suggested online learning approach with the Dirichlet Process Mixture Model (DPMM) can adapt the complexity to the data and learn new Gaussian clusters with streaming data in newly explored areas without batch learning. We have applied these approaches in a number of robot arm planning scenarios and have shown their utility and effectiveness in simulation and on a physical 7-DoF robot manipulator

    Accurate multi-robot targeting for keyhole neurosurgery based on external sensors monitoring

    Get PDF
    Robotics has recently been introduced in surgery to improve intervention accuracy, to reduce invasiveness and to allow new surgical procedures. In this framework, the ROBOCAST system is an optically surveyed multi-robot chain aimed at enhancing the accuracy of surgical probe insertion during keyhole neurosurgery procedures. The system encompasses three robots, connected as a multiple kinematic chain (serial and parallel), totalling 13 degrees of freedom, and it is used to automatically align the probe onto a desired planned trajectory. The probe is then inserted in the brain, towards the planned target, by means of a haptic interface. This paper presents a new iterative targeting approach to be used in surgical robotic navigation, where the multi-robot chain is used to align the surgical probe to the planned pose, and an external sensor is used to decrease the alignment errors. The iterative targeting was tested in an operating room environment using a skull phantom, and the targets were selected on magnetic resonance images. The proposed targeting procedure allows about 0.3 mm to be obtained as the residual median Euclidean distance between the planned and the desired targets, thus satisfying the surgical accuracy requirements (1 mm), due to the resolution of the diffused medical images. The performances proved to be independent of the robot optical sensor calibration accuracy

    Adaptive control of compliant robots with Reservoir Computing

    Get PDF
    In modern society, robots are increasingly used to handle dangerous, repetitive and/or heavy tasks with high precision. Because of the nature of the tasks, either being dangerous, high precision or simply repetitive, robots are usually constructed with high torque motors and sturdy materials, that makes them dangerous for humans to handle. In a car-manufacturing company, for example, a large cage is placed around the robot’s workspace that prevents humans from entering its vicinity. In the last few decades, efforts have been made to improve human-robot interaction. Often the movement of robots is characterized as not being smooth and clearly dividable into sub-movements. This makes their movement rather unpredictable for humans. So, there exists an opportunity to improve the motion generation of robots to enhance human-robot interaction. One interesting research direction is that of imitation learning. Here, human motions are recorded and demonstrated to the robot. Although the robot is able to reproduce such movements, it cannot be generalized to other situations. Therefore, a dynamical system approach is proposed where the recorded motions are embedded into the dynamics of the system. Shaping these nonlinear dynamics, according to recorded motions, allows for dynamical system to generalize beyond demonstration. As a result, the robot can generate motions of other situations not included in the recorded human demonstrations. In this dissertation, a Reservoir Computing approach is used to create a dynamical system in which such demonstrations are embedded. Reservoir Computing systems are Recurrent Neural Network-based approaches that are efficiently trained by considering only the training of the readout connections and retaining all other connections of such a network unchanged given their initial randomly chosen values. Although they have been used to embed periodic motions before, they were extended to embed discrete motions, or both. This work describes how such a motion pattern-generating system is built, investigates the nature of the underlying dynamics and evaluates their robustness in the face of perturbations. Additionally, a dynamical system approach to obstacle avoidance is proposed that is based on vector fields in the presence of repellers. This technique can be used to extend the motion abilities of the robot without need for changing the trained Motion Pattern Generator (MPG). Therefore, this approach can be applied in real-time on any system that generates a certain movement trajectory. Assume that the MPG system is implemented on an industrial robotic arm, similar to the ones used in a car factory. Even though the obstacle avoidance strategy presented is able to modify the generated motion of the robot’s gripper in such a way that it avoids obstacles, it does not guarantee that other parts of the robot cannot collide with a human. To prevent this, engineers have started to use advanced control algorithms that measure the amount of torque that is applied on the robot. This allows the robot to be aware of external perturbations. However, it turns out that, even with fast control loops, the adaptation to compensate for a sudden perturbation, is too slow to prevent high interaction forces. To reduce such forces, researchers started to use mechanical elements that are passively compliant (e.g., springs) and light-weight flexible materials to construct robots. Although such compliant robots are much safer and inherently energy efficient to use, their control becomes much harder. Most control approaches use model information about the robot (e.g., weight distribution and shape). However, when constructing a compliant robot it is hard to determine the dynamics of these materials. Therefore, a model-free adaptive control framework is proposed that assumes no prior knowledge about the robot. By interacting with the robot it learns an inverse robot model that is used as controller. The more it interacts, the better the control be- comes. Appropriately, this framework is called Inverse Modeling Adaptive (IMA) control framework. I have evaluated the IMA controller’s tracking ability on sev- eral tasks, investigating its model independence and stability. Furthermore, I have shown its fast learning ability and comparable performance to taskspecific designed controllers. Given both the MPG and IMA controllers, it is possible to improve the inter- actability of a compliant robot in a human-friendly environment. When the robot is to perform human-like motions for a large set of tasks, we need to demonstrate motion examples of all these tasks. However, biological research concerning the motion generation of animals and humans revealed that a limited set of motion patterns, called motion primitives, are modulated and combined to generate advanced motor/motion skills that humans and animals exhibit. Inspired by these interesting findings, I investigate if a single motion primitive indeed can be modulated to achieve a desired motion behavior. By some elementary experiments, where an MPG is controlled by an IMA controller, a proof of concept is presented. Furthermore, a general hierarchy is introduced that describes how a robot can be controlled in a biology-inspired manner. I also investigated how motion primitives can be combined to produce a desired motion. However, I was unable to get more advanced implementations to work. The results of some simple experiments are presented in the appendix. Another approach I investigated assumes that the primitives themselves are undefined. Instead, only a high-level description is given, which describes that every primitive on average should contribute equally, while still allowing for a single primitive to specialize in a part of the motion generation. Without defining the behavior of a primitive, only a set of untrained IMA controllers is used of which each will represent a single primitive. As a result of the high-level heuristic description, the task space is tiled into sub-regions in an unsupervised manner. Resulting in controllers that indeed represent a part of the motion generation. I have applied this Modular Architecture with Control Primitives (MACOP) on an inverse kinematic learning task and investigated the emerged primitives. Thanks to the tiling of the task space, it becomes possible to control redundant systems, because redundant solutions can be spread over several control primitives. Within each sub region of the task space, a specific control primitive is more accurate than in other regions allowing for the task complexity to be distributed over several less complex tasks. Finally, I extend the use of an IMA-controller, which is tracking controller, to the control of under-actuated systems. By using a sample-based planning algorithm it becomes possible to explore the system dynamics in which a path to a desired state can be planned. Afterwards, MACOP is used to incorporate feedback and to learn the necessary control commands corresponding to the planned state space trajectory, even if it contains errors. As a result, the under-actuated control of a cart pole system was achieved. Furthermore, I presented the concept of a simulation based control framework that allows the learning of the system dynamics, planning and feedback control iteratively and simultaneously

    The Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992)

    Get PDF
    This document contains papers presented at the Space Operations, Applications, and Research Symposium (SOAR) hosted by the U.S. Air Force (USAF) on 4-6 Aug. 1992 and held at the JSC Gilruth Recreation Center. The symposium was cosponsored by the Air Force Material Command and by NASA/JSC. Key technical areas covered during the symposium were robotic and telepresence, automation and intelligent systems, human factors, life sciences, and space maintenance and servicing. The SOAR differed from most other conferences in that it was concerned with Government-sponsored research and development relevant to aerospace operations. The symposium's proceedings include papers covering various disciplines presented by experts from NASA, the USAF, universities, and industry

    Stochastic optimal control with learned dynamics models

    Get PDF
    The motor control of anthropomorphic robotic systems is a challenging computational task mainly because of the high levels of redundancies such systems exhibit. Optimality principles provide a general strategy to resolve such redundancies in a task driven fashion. In particular closed loop optimisation, i.e., optimal feedback control (OFC), has served as a successful motor control model as it unifies important concepts such as costs, noise, sensory feedback and internal models into a coherent mathematical framework. Realising OFC on realistic anthropomorphic systems however is non-trivial: Firstly, such systems have typically large dimensionality and nonlinear dynamics, in which case the optimisation problem becomes computationally intractable. Approximative methods, like the iterative linear quadratic gaussian (ILQG), have been proposed to avoid this, however the transfer of solutions from idealised simulations to real hardware systems has proved to be challenging. Secondly, OFC relies on an accurate description of the system dynamics, which for many realistic control systems may be unknown, difficult to estimate, or subject to frequent systematic changes. Thirdly, many (especially biologically inspired) systems suffer from significant state or control dependent sources of noise, which are difficult to model in a generally valid fashion. This thesis addresses these issues with the aim to realise efficient OFC for anthropomorphic manipulators. First we investigate the implementation of OFC laws on anthropomorphic hardware. Using ILQG we optimally control a high-dimensional anthropomorphic manipulator without having to specify an explicit inverse kinematics, inverse dynamics or feedback control law. We achieve this by introducing a novel cost function that accounts for the physical constraints of the robot and a dynamics formulation that resolves discontinuities in the dynamics. The experimental hardware results reveal the benefits of OFC over traditional (open loop) optimal controllers in terms of energy efficiency and compliance, properties that are crucial for the control of modern anthropomorphic manipulators. We then propose a new framework of OFC with learned dynamics (OFC-LD) that, unlike classic approaches, does not rely on analytic dynamics functions but rather updates the internal dynamics model continuously from sensorimotor plant feedback. We demonstrate how this approach can compensate for unknown dynamics and for complex dynamic perturbations in an online fashion. A specific advantage of a learned dynamics model is that it contains the stochastic information (i.e., noise) from the plant data, which corresponds to the uncertainty in the system. Consequently one can exploit this information within OFC-LD in order to produce control laws that minimise the uncertainty in the system. In the domain of antagonistically actuated systems this approach leads to improved motor performance, which is achieved by co-contracting antagonistic actuators in order to reduce the negative effects of the noise. Most importantly the shape and source of the noise is unknown a priory and is solely learned from plant data. The model is successfully tested on an antagonistic series elastic actuator (SEA) that we have built for this purpose. The proposed OFC-LD model is not only applicable to robotic systems but also proves to be very useful in the modelling of biological motor control phenomena and we show how our model can be used to predict a wide range of human impedance control patterns during both, stationary and adaptation tasks

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world
    corecore