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Abstract— Robotic systems have been introduced in surgery
to increase the intervention accuracy. In this framework, the
ROBOCAST system is an optically controlled multi-robot
chain aimed at enhancing the accuracy of surgical probe
insertion during keyhole neurosurgery procedures. The system
is composed by three robots, connected as a multiple kinematic
chain (serial, parallel and linear) totaling 13 degrees of freedom
(DoFs) and is it is used to automatically align the probe onto
the desired trajectory.

This paper presents an iterative approach for aligning the
surgical probe with the planned target pose, reducing both the
translation and the rotation errors. An experimental protocol
was designed, in order to assess the system performances in
terms of residual targeting errors and convergence ratio.

The proposed targeting procedures allows obtaining
(0.06± 0.02)mm and (0.8± 0.2)× 10−3 rad as residual median
errors, thus satisfying the operational requirements (1mm).
The performances proved to be independent upon the robots
calibration accuracy.

I. INTRODUCTION

In keyhole neurosurgery, probes or electrodes (e.g. for
biopsy, deep brain stimulation, stereo-EEG) are inserted into
the brain through a small burr-hole in the skull. Robotic
systems have been used to automatically position and insert
such probes into the brain [1].

Passive systems autonomously move to a predefined posi-
tion (e.g. the probe’s entrance location) before locking and
powering off. The probe is then manually inserted. Examples
are Neuromate (Renishaw ltd., UK) and ROSATM (MedTech,
France) [2].

Semi-active robotic systems can be tele-operated, i.e. the
surgeon interacts with the remote slave robot through a
master handling device. In semi-active systems the probe is
driven by actuators, such as in the NeuroArm, developed for
microsurgery and stereotaxy brain procedures [3].

When using robots, the pre-operative plan and the patients
images must be registered with the robot reference frame.
To this aim, tracking systems are used for guiding the
surgical robotic arm (for total hip replacement [4], for neuro-
surgery [5] and for bone ablation [6]). The integration of the
robot and tracking systems requires a calibration procedure.
Optical tracking systems, exploited for registration, were
also used to further correct the position of the robot when
deviations between the actual and the planned position are

This work was supported by the EU Project Grant FP7-ICT-215190
ROBOCAST

detected [7]. In robotic endoscopy applications, in order to
decrease the noise in the signals provided by the tracking
system and to correct possible robot inaccuracies, Kalman
filters were applied to correct the position of the trochar
point [8]. Kalman filters were also used for data fusion of
redundant sensory information (from encoders and optical
tracking systems) [9]. Tracking systems performances for
robot control can be improved by the addition of inertial
measurements units [10] in order to increase the control
robustness with respect to marker occlusions, to compensate
for delay of the optical system and to reduce noise.

The approach herein presented combines navigation and
robotic assistance through three series connected robots for
keyhole neurosurgery.

Serial robots have excellent repeatability, but their absolute
positioning accuracy is low because of modeling errors in
their kinematics. On the contrary, parallel robots have greater
accuracy but they suffer of a limited workspace, if compared
with their footprint. The multi-robot cell approach, having
a large number of DoFs, allows performing the surgical
task while optimizing the kinematic chain. Multi-robot ap-
proach for neurosurgery applications was already proposed
in the Evolution I [11], designed for micro-neurosurgical and
micro-endoscopic applications. A parallel kinematic machine
(PKM) was coupled with an articulated mobile platform
achieving 20 µm as positioning accuracy. The system was
validated on six patients and then commercialized, but even-
tually the company failed.

In this paper we present the experimental results of a new
control scheme for optical-controlled multi-robot targeting
by using the ROBOCAST system as test-bench [12]. A
biopsy probe is positioned by the modular robotic system
at the entry point on the patient skull and then inserted in
the brain via tele-operation control through an haptic device.
In this approach, the optical tracking system allows iterative
corrections of the pose of all the three robots, in case errors
between the desired and the actual poses of the probe are
detected. It also checks the overall system safety: whenever
inconsistency is detected among the redundant sensors, the
system raises a warning and blocks the advancement of the
probe in the brain.

The paper is organized as follows: section II-A presents
the ROBOCAST sensors and actuators; section II-B de-
scribes the spatial relations among internal robotic sensors
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(encoders) and external sensors (optical tracking); section
II-C introduces the iterative targeting algorithms; section II-
D presents the experimental protocol, and section II-E the
metrics for performance evaluations. In section III and IV
the results of the experiments are presented and discussed.

II. MATERIALS AND METHODS

A. The robotic system
The ROBOCAST system is a robotic chain of three

robots totalling 13 DoFs. As described in [12], the system
encompasses (see Table I for details):

• the Gross Positioner, GP, (PathFinder, Prosurgics Ldt,
UK); a serial 6 DoFs arm, which is used to approach
the patient head [13];

• the Fine Positioner, FP, (MARS, Mazor, Israel); a par-
allel 6 DoFs PKM, used to further correct the targeting.
It is rigidly connected to the GP via a quick release
interlock;

• the Linear Actuator, LA; 1-DoF piezo-actuator, which
makes the biopsy linear probe advance through a tele-
operated haptic interface (Omega, Force Dimension,
Switzerland) [14]. The LA is attached to the FP end
effector (EE) upper plate.

The Certus optical tracking system (NDI, Ontario,
Canada), with 0.15mm stated accuracy, is used for survey-
ing the overall robotic chain. Dynamical Reference Frames
(DRFs), rigid bodies composed of four active markers each,
are attached to all the bases and the end-effectors of the
robots. The tracking system is interfaced with the ROBO-
CAST control system through the Sensor Manager, which is
based on the IGSTK framework [16].

B. Spatial relations
In order to compute the spatial transformations between

the robot internal sensors (encoders) and the optical tracking
system, the approach described in [17] was used to calibrate
both the GP and the FP. XGP, YGP, XFP and YFP represent the
transformations between the DRFs in the optical reference
frame and the robots internal reference frame (see Fig. 1),
in particular:

• XGP is the transformation between the GP end-effector
and the origin of the DRF attached to the GP end-
effector;

• YGP is the transformation between the GP base and the
origin of the DRF attached to the GP base;

• XFP is the transformation between the FP end-effector
and the origin of the DRF attached to the FP end-
effector;

• YFP is the transformation between the FP base and the
origin of the DRF attached to the FP base.

To calibrate, the GP working volume was sampled acquir-
ing 27 poses (in a sphere of 173.21mm radius). In order
to sample the FP working volume as well, 27 poses were
acquired (in a sphere of 7.86mm in radius).

In order to calibrate the LA, the probe was advanced for
50mm (back and forth with 2mm spacing) and 3D coordi-
nates of the tip position sampled using a custom built divot
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Fig. 1. Spatial transformations between the robots internal reference system
and the three DRFs
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Fig. 2. Spatial transformations used during targeting. M is the spatial
relation between the tool and the robot end-effector; for the GP robot it
is M = X−1

GP · XFP · BGP · X−1
FP · YLA · BLA and for the FP robot it is

M = X−1
FP · YLA ·BLA

DRF. Principal Component Regression was applied in order
to compute the line approximating the probe advancement in
the 3D space.

“Targeting” brings the probe tip Tj reference frame in the
desired Target Pose Td outside the patient skull as planned
in the pre-operative phase (trochar position). From there, in
the hypothesized surgical scenario, the probe is advanced by
the surgeon by using the haptic interface [12].

In order for the Tj reference frame to reach the Td, the
i-th robot (i = 1 . . . 2) has to change its pose from Bj to
Bj+1 (Fig. 2).

If M represents the transformation between Tj and the i-
th robot end-effector reference frame, the transformation to
be applied to the i-th robot end effector C is:

C = M ·Rj ·M−1 (1)

where Rj is the transformation between the PT reference
frame and the Target Pose (Td). Therefore the robot pose
Bj+1 is:
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TABLE I
DESCRIPTION OF THE ROBOTS

ROBOT Architecture # DoFs Accuracy Velocity Workspace

GP serial 6 0.5mm [15] 50mm s−1* (0.75× 0.75× 0.75)m3*

FP parallel 6 <0.1mm 1.3mm s−1,
4.3 ◦ s−1

(40× 40× 10)mm3,
(12× 12× 12)◦

LA linear 1 8 µm 2mm s−1 110mm
* Fixed by ROBOCAST specification
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Fig. 3. Iterative corrections algorithm (i indices refer to robots and j indices
refer to iteration numbers). Residuals (Rj ) represents the error between
the actual PT pose (Tj ) and the Target Pose (Td). Global threshold is the
targeting threshold for the LA.

Bj+1 = Bj · C (2)

C. The closed loop targeting algorithms

The translation error (T) has been defined as the Euclidean
distance between the desired (Td) and the actual (Tj) poses
[18], while the rotation error is the first component of the
quaternion (A) representing the rotation part of the transfor-
mation between Td and Tj .

The targeting algorithm is described in Fig. 3: first the
i-th robot approaches the target with an iterative approach
until the error Rj (both the translation (T) and the rotations

(A) components) is below a threshold (specifically defined
for each robot) or if the maximum number of iterations is
reached. Then the (i+ 1)-th robot is moved and the loop
continues until success or failure are met.

The robot arm pose (dashed block represented in Fig. 3)
was computed using two different approaches:

1) (Total) The i-th robot was moved in order to com-
pletely correct the residual transform Rj ;

2) (Sigmoid) The Rj transform correction was reduced
in magnitude in order to allow the robot to get closer
to Td, avoiding instabilities. The Rj translation com-
ponent was scaled multiplying T times a value n
computed as follows:

n (ẋ) =
1

1 + e
ẋ
10

(3)

where ẋ is the estimation of the error (Euclidean
distance among Tj and Td) first derivative, computed
using finite differences method between subsequent
iterations.

As an example, the Sigmoid correction n is 0.5 when the
error is not changing from the previous iteration. When the
error is decreasing, thus ẋ < 0, the correction n is close to
1, while if the error increases the correction n is reduced.
The parameter 1

10 of the Sigmoid was empirically chosen.

D. The experimental protocol

Fig. 4. Targeting set up; the red-and-yellow dot is the target.

As shown in Fig. 4, 22 Target Poses (Td) were acquired
in the working volume (in a sphere of 750mm diameter),
i.e. the operating theatre. Then the modular-robotic system
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TABLE II
TEST PERFORMED

Test performed Targeting
Targeting XGP
Targeting XFP

Number of trials 22

GP threshold 2mm (T), 0.1 rad (A)

FP threshold 0.08mm (T), 0.01 rad (A)

Maximum iteration per robot 10

Acquisition frequency 30Hz

was moved in order to reach the Target Poses using the two
algorithms described in § II-C. The test was named Targeting.

The GP threshold was set to 2mm for translation (T) and
0.1 rad for rotation (A) with 10 iterations maximum allowed,
after which the FP was moved towards the Target Pose.
The FP threshold was set to 0.08mm (corresponding to the
expected accuracy of DRFs [19]) for translation and 0.01 rad
for rotation with 10 iterations maximum.

In order to test the algorithm robustness, the calibration
(§ II-B) was altered on purpose by multiplying the cali-
bration matrix (XGP) by transformation matrices randomly
chosen in a population of (0-100)mm range of translation
and (0-0.26) rad of rotation (uniform distribution); this test
was named Targeting XGP. Another test was performed by
multiplying the calibration matrix (XFP) by transformation
matrices randomly chosen in a population of (0-5)mm
range of translation and (0-0.03) rad of rotation (uniform
distribution). The test was named Targeting XFP. The test
protocol is summarized in Table II.

For each targeting trial, all DRFs poses were acquired at
30Hz.

E. Data analysis

In order to compare the overall targeting accuracy, the
following metrics were computed:

• Residual Error (RE): Euclidean distance between the
actual and the desired pose;

• Convergence Rate (CR): ratio between number of tar-
geting under threshold (“Success” in Fig. 3) and all the
trials (22).

The two algorithms (Total and Sigmoid) performances
(RE and CR) were compared using non-parametric Kruskal-
Wallis tests with p < 0.05 significance (STATISTICA,
StatSoft).

III. RESULTS

Fig. 5a and Fig. 6a show the error decreasing during
the iterations in the Targeting test. The GP approaches the
Target Pose in the first iteration, from the second iteration the
control is left to the FP by both the algorithms (RE is below
the 1st robot threshold, 2mm). While the T component of the
RE converges almost monotonically towards the minimum,
the A component is oscillating and can be unstable in case
of Total correction (at iteration 7th and 8th). The Sigmoid

algorithm has better performances in terms of CR (Fig. 7),
but this is not statistical significant with respect to the
Total algorithm. Even if better absolute performances were
achieved in terms of T component of RE with the Sigmoid
approach (0.05± 0.01)mm, no statistical significant differ-
ence is found (Fig. 8a). The angular component (A) of the
RE is comparable, but the Sigmoid algorithm has a lower
inter-quartile range (Fig. 8b).

Also in case the GP is mis-calibrated (Targeting XGP),
from the second iteration the control is left to the FP by both
the algorithms. The Sigmoid algorithm has slightly worse
performances in terms of CR (Fig. 7), but this is not statistical
significant with respect to the Total algorithm. Even if better
absolute performances were achieved in terms of T compo-
nent of RE with the Total approach (0.060± 0.015)mm, no
statistical significant difference is found (Fig. 8a). Using the
Sigmoid algorithm, the angular component (A) of the RE is
lower and it is reached with a lower number of iterations
(Fig. 8b and Fig. 6b).

In case the FP is mis-calibrated (Targeting XFP), the Total
algorithm happened to require 10 iterations of GP corrections
and the T component of the RE is not converging monotoni-
cally towards the minimum error. Differently, the GP exit
the control loop after the first iteration with the Sigmoid
algorithm. The Sigmoid algorithm has slightly better perfor-
mances in terms of CR (Fig. 7), but this is not statistically
significant with respect to the Total algorithm. Even if better
absolute performances were achieved in terms of T compo-
nent of RE with the Total approach, (0.05± 0.01)mm, no
statistical significant difference is found (Fig. 8a). Using the
Sigmoid algorithm, the angular component (A) of the RE is
lower (Fig. 8b).

Comparing the same algorithms performances among dif-
ferent testing conditions, no statistical significant difference
was found, either in terms of T component, or in term of A
component.

IV. DISCUSSION

In this paper we show the experimental evaluation of a
multi-robot system (three series connected robots) for key-
hole neurosurgery. Kinematic redundancy allows optimizing
the robot approach towards the patient. The miniaturized
parallel robot (FP) mounted on the serial robot (GP) provides
a more accurate surgical probe pose, due to its greater
accuracy and resolution. In order to apply such an hybrid
configuration to the operating room, a smaller and more
compact system has to be designed in the future (i.e. a
smaller gross positioner), but results reported here still hold.

With regards to targeting performances, it is worth re-
calling that the system was specially designed for keyhole
approaches, where a straight surgical probe is inserted in the
brain tissue and the robot acts as an assistant providing an
accurate holder for guiding insertion. Therefore the aim of
the study is to improve the accuracy of targeting in terms of
position and rotation errors.

Two algorithms were developed and tested in order to
optimize the targeting accuracy. The residual error, detected
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(a) Targeting (b) Targeting XGP (c) Targeting XFP

Fig. 5. Median values of Rj T component versus the iteration number. Quartiles ranges are also shown in case numerosity is greater than 1

(a) Targeting (b) Targeting XGP (c) Targeting XFP

Fig. 6. Median values of Rj A component versus the iteration number. Quartiles ranges are also shown in case numerosity is greater than 1

Fig. 7. CR performance indices

as difference from the actual pose of the tip of the surgical
probe with respect to the desired position in the optical
reference system, is corrected iteratively, first approaching
with the gross positioner and then refining the targeting with
the fine positioner, before leaving the control to the tele-
operation modality. The optical feedback approach proposed
by [8] allowed reaching (2.6± 0.8)mm as maximum error
at the first iteration and (0.60± 0.36)mm as final targeting
error, while [9] reached 0.5mm of accuracy in 99.9% of
the cases, without previous calibration. Our approach proved
to be independent from the calibration residuals: even if
the calibration transformation is inaccurate, the iterative
algorithm allows reaching comparable residual errors with
the accurate calibrations for both the serial and the parallel
robots.

The feedback control scheme is based on kinematics and

does not take into account the dynamics of the system, but
the low speed and the update at discrete times quite distant
in time does not require it. Stability problems were tackled
by modulating the correction amplitude with the Sigmoid
algorithm. Also, the target is considered fixed since the
patient head is framed in a head-ring.

Stated optical system accuracy is 0.15mm, which is the
worse 3D localization error. When using a 4 markers DRF,
the target error in the center of mass is 0.08mm [19].
When approaching the target, distortion and optical system
calibration errors concurring to the accuracy are reduced, and
only quantization errors of the linear CCD sensors remain.

The tracking system, which provides overall surveillance,
allows also increasing the safety of the application since
the consistency of the calibration loop, together with the
visibility of all DRFs, is continuously checked at 10Hz by a
Safety Check (similarly to what proposed in [9]). Whenever
inconsistency is detected, the probe advancement in the brain
is stopped and the system placed in safe state.

Future work will be directed towards the optimization of
the parameters of the Sigmoid function for error correction,
e.g. to increase the correction in case the error is constant be-
tween two subsequent iteration steps without causing system
oscillations.
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