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Samenvatting

In onze samenleving worden robots steeds meer gebruikt voor het uitvoeren van
gevaarlijke, repetitieve en/of zware taken, waarbij bovendien een hoge precisie
is vereist. Vanwege deze vereisten worden dergelijke robots vaak opgebouwd uit
krachtige motoren en stevige materialen, waardoor ze gevaarlijk kunnen zijn voor
de mens. In een autofabriek bijvoorbeeld wordt een grote kooi geplaatst rondom
de werkruimte van de robot, waardoor mensen niet in de omgeving van de robot
kunnen komen. Gedurende enkele decennia bestaat een toenemende belangstelling
om de interactie tussen mens en robot te verbeteren. De bewegingen van robots
worden vaak gezien als niet-vloeiende bewegingen waarin duidelijk deelbewegin-
gen zijn te onderscheiden. Dit maakt acties van robots moeilijk voorspelbaar voor
mensen. Daarom is de behoefte aanwezig om de bewegingsgeneratie van robots
te verbeteren, met als doel een betere mens-robotinteractie te verkrijgen. Een inte-
ressant onderzoeksdomein in dit verband is het leren door imitatie, hierbij worden
bewegingen opgenomen bij mensen en getoond aan de robot. Hoewel de robot in
staat is om deze bewegingen te reproduceren, kan hij ze echter niet veralgemenen
naar andere situaties. Hiervoor is een oplossing voorgesteld, waarbij gebruik wordt
gemaakt van een dynamisch systeem om de opgenomen bewegingen in onder te
brengen. Door het modificeren van de niet-lineaire dynamica van een dergelijk
systeem, wordt het mogelijk om ook bewegingen te genereren voor andere onge-
ziene situaties.

In dit onderzoek is een Reservoir Computing (RC)-techniek gebruikt om een
dynamisch systeem te creëren, waarin zulke voorbeeldbewegingen kunnen worden
ondergebracht. Reservoir Computing-systemen zijn methoden gebaseerd op Re-
currente Neurale Netwerken, die op een efficiënte manier worden getraind. Hierbij
wordt alleen de training van de uitleesgewichten in beschouwing genomen, terwijl
de andere connectiegewichten niet veranderen ten opzichte van hun willekeurig ge-
ïnitialiseerde waarden. Hoewel dergelijke RC-systemen reeds werden gebruikt om
ritmische patronen te genereren, zijn ze in dit verband uitgebreid voor het genereren
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van discrete bewegingen of beide. Dit proefschrift beschrijft hoe een dergelijk pa-
troon genererend systeem wordt gebouwd, bestudeert de onderliggende dynamica
en evalueert de robuustheid tijdens verstoringen. Daarnaast wordt een dynamische
systeembenadering van objectontwijking gepresenteerd, die onder meer is geïnspi-
reerd door potentiaalstromen rond een sferisch object. Deze techniek kan worden
gebruikt om de bewegingsmogelijkheden van een robot uit te breiden zonder wij-
zigingen aan te brengen aan de getrainde patroongenerator. Hierdoor kan deze me-
thode worden toegepast op elk systeem dat een bewegingstraject genereert, waarbij
een zeer snelle objectontwijking is vereist.

Veronderstel nu dat het patroongenererend systeem wordt toegepast op een in-
dustriële robotarm, vergelijkbaar met deze die wordt gebruikt in een autofabriek:
hoewel de voorgestelde objectontwijkingsstrategie in staat is om botsingen met de
grijper te vermijden, is het nog steeds mogelijk dat botsingen voorkomen met de
andere onderdelen van de robot. Om dit te voorkomen, zijn ingenieurs overgescha-
keld op geavanceerde controletechnieken, die gebruikmaken van krachtsensoren
om een indicatie te krijgen hoeveel koppel (maat voor het rotatie-effect van een
kracht) op elk gewricht wordt uitgeoefend. Dankzij deze krachtmetingen is de ro-
bot in staat volgzaam te reageren op externe verstoringen. Het blijkt echter dat,
zelfs met snelle regelkringen, de nodige compensaties voor een plotse storing te
traag zijn om grote interactiekrachten te voorkomen. Om deze interactiekrachten
te verminderen, maken onderzoekers recent gebruik van flexibele elementen (zo-
als veren) en lichte elastische materialen voor het construeren van robots. Hoewel
dergelijke robots veel veiliger zijn, is het niet evident om hun dynamische eigen-
schappen te bepalen, waardoor de controle van deze robots zeer moeilijk wordt.
De meeste controletechnieken maken gebruik van modelinformatie (bijvoorbeeld:
gewichtsdistributie en vorm), wat niet eenvoudig is te bepalen bij dit type robots.
Daarom wordt in dit proefschrift een controletechniek voorgesteld, die geen voor-
kennis of modelinformatie van de robot nodig heeft. Door het interageren met
de robot zelf, leert de voorgestelde controller een invers robotmodel dat vervol-
gens kan worden gebruikt voor controle. Hoe meer de controller interageert met
de robot, hoe beter de controle wordt. Hierdoor heeft deze techniek de volgende
toepasselijke naam gekregen: Inverse Modeling Adaptive (IMA)-controller. Ik heb
deze IMA-controller op een groot aantal taken geëvalueerd, waardoor de mode-
lonafhankelijkheid en stabiliteit konden worden onderzocht. Verder is de snelle
leercapaciteit van de IMA-controller aangetoond, tezamen met zijn vergelijkbare
prestatie ten opzichte van speciaal ontworpen en taakgebonden controllers.

Wanneer zowel de voorgestelde patroongenerator en de IMA-controller worden
gebruikt, wordt het mogelijk om deze moeilijk controleerbare robots te controleren
in een mensvriendelijke omgeving. Wanneer het wenselijk wordt geacht dat der-
gelijke robots menselijke bewegingen genereren voor een groot aantal taken, dan
zouden in principe voor alle mogelijke taken voorbeeldbewegingen moeten wor-
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den opgenomen. Biologisch onderzoek naar de bewegingsgeneratie bij mensen en
dieren heeft echter aangetoond dat een beperkte set van basisbewegingen, genaamd
bewegingsprimitieven, worden gemodificeerd en gecombineerd om uiteindelijk alle
mogelijke bewegingen te genereren. In dit onderzoek is verder gewerkt met deze
interessante bevindingen, door te onderzoeken of één enkel bewegingsprimitief in-
derdaad kan worden gemodificeerd, zodat gewenste bewegingseigenschappen kun-
nen worden verkregen. Door enkele basisexperimenten uit te voeren waarbij een
patroongenerator wordt gecontroleerd door een IMA-controller, wordt de haalbaar-
heid van dit concept gepresenteerd. Verder wordt een generieke controlehiërarchie
geïntroduceerd, die beschrijft hoe een robot op een biologisch geïnspireerde manier
kan worden gecontroleerd. Bovendien is onderzocht op welke manier bewegings-
primitieven kunnen worden gecombineerd om tot een gewenst gedrag te komen.
Binnen de beperkte tijd dat ik dit aspect onderzocht heb ben ik er echter niet in ge-
slaagd om meer geavanceerdere implementaties werkend te krijgen. In de appendix
van dit proefschrift zijn wel de resultaten weergegeven van een aantal basisexperi-
menten.

Een ander denkpiste die ik onderzocht heb, benadert de biologische bevindin-
gen van de bewegingsgeneratie op een andere manier. Hierbij wordt ervan uitge-
gaan dat de bewegingsprimitieven zelf ongedefinieerd zijn. In plaats daarvan wordt
alleen een beschrijving op hoog niveau gegeven. Die beschrijft dat elke bewegings-
primitief, gemiddeld gezien, evenveel moet bijdragen aan de beweging, terwijl toch
nog ruimte wordt gelaten voor specialisatie in een deel van de beweging. Zonder
het gedrag van een primitief te bepalen, wordt slechts een aantal ongetrainde IMA-
controllers gebruikt, die uiteindelijk de primitieven moeten voorstellen. Door deze
heuristische beschrijving wordt de taakruimte van de robot op een ongesupervi-
seerde (zonder voorbeelden) manier opgedeeld in deelregio’s. Deze Modulaire Ar-
chitectuur met Controleprimitieven (MACOP) is toegepast op een robotarm waar-
van de inverse kinematica moet worden geleerd. Dankzij deze opdeling van de
taakruimte wordt het mogelijk om met redundante oplossingen om te gaan. Binnen
één bepaalde deelregio van de taakruimte is één enkele bewegingsprimitief nauw-
keuriger dan in de andere regio’s. Hierdoor wordt de complexiteit van de taak
opgedeeld in eenvoudiger deeltaken.

Ten slotte is het gebruik van de IMA-controller uitgebreid naar ondergeactu-
eerde systemen. Door het gebruik van een bemonstering-gebaseerde planningstech-
niek wordt het mogelijk om de taak dynamica te verkennen en een pad te plannen
naar de oplossing. Vervolgens wordt MACOP gebruikt om terugkoppeling te in-
troduceren en om de bijhorende controlesignalen te leren op basis van dit geplande
pad. Deze techniek blijkt bestand te zijn tegen onnauwkeurigheden in het geplande
pad. Middels deze techniek wordt de geïnverteerde pendel-taak opgelost, boven-
dien wordt een concept van een simulatie-gebaseerd raamwerk beschreven dat in
staat is om zowel de dynamica als de controle van de taak simultaan te leren.





Summary

In modern society, robots are increasingly used to handle dangerous, repetitive
and/or heavy tasks with high precision. Because of the nature of the tasks, either
being dangerous, high precision or simply repetitive, robots are usually constructed
with high torque motors and sturdy materials, that makes them dangerous for hu-
mans to handle. In a car-manufacturing company, for example, a large cage is
placed around the robot’s workspace that prevents humans from entering its vicin-
ity. In the last few decades, efforts have been made to improve human-robot interac-
tion. Often the movement of robots is characterized as not being smooth and clearly
dividable into sub-movements. This makes their movement rather unpredictable for
humans. So, there exists an opportunity to improve the motion generation of robots
to enhance human-robot interaction. One interesting research direction is that of
imitation learning. Here, human motions are recorded and demonstrated to the
robot. Although the robot is able to reproduce such movements, it cannot be gen-
eralized to other situations. Therefore, a dynamical system approach is proposed
where the recorded motions are embedded into the dynamics of the system. Shap-
ing these nonlinear dynamics, according to recorded motions, allows for dynamical
system to generalize beyond demonstration. As a result, the robot can generate mo-
tions of other situations not included in the recorded human demonstrations.

In this dissertation, a Reservoir Computing approach is used to create a dy-
namical system in which such demonstrations are embedded. Reservoir Computing
systems are Recurrent Neural Network-based approaches that are efficiently trained
by considering only the training of the readout connections and retaining all other
connections of such a network unchanged given their initial randomly chosen val-
ues. Although they have been used to embed periodic motions before, they were
extended to embed discrete motions, or both. This work describes how such a
motion pattern-generating system is built, investigates the nature of the underlying
dynamics and evaluates their robustness in the face of perturbations. Additionally,
a dynamical system approach to obstacle avoidance is proposed that is based on
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vector fields in the presence of repellers. This technique can be used to extend
the motion abilities of the robot without need for changing the trained Motion Pat-
tern Generator (MPG). Therefore, this approach can be applied in real-time on any
system that generates a certain movement trajectory.

Assume that the MPG system is implemented on an industrial robotic arm,
similar to the ones used in a car factory. Even though the obstacle avoidance strat-
egy presented is able to modify the generated motion of the robot’s gripper in such
a way that it avoids obstacles, it does not guarantee that other parts of the robot
cannot collide with a human. To prevent this, engineers have started to use ad-
vanced control algorithms that measure the amount of torque that is applied on
the robot. This allows the robot to be aware of external perturbations. However,
it turns out that, even with fast control loops, the adaptation to compensate for a
sudden perturbation, is too slow to prevent high interaction forces. To reduce such
forces, researchers started to use mechanical elements that are passively compli-
ant (e.g., springs) and light-weight flexible materials to construct robots. Although
such compliant robots are much safer and inherently energy efficient to use, their
control becomes much harder. Most control approaches use model information
about the robot (e.g., weight distribution and shape). However, when constructing
a compliant robot it is hard to determine the dynamics of these materials. There-
fore, a model-free adaptive control framework is proposed that assumes no prior
knowledge about the robot. By interacting with the robot it learns an inverse robot
model that is used as controller. The more it interacts, the better the control be-
comes. Appropriately, this framework is called Inverse Modeling Adaptive (IMA)
control framework. I have evaluated the IMA controller’s tracking ability on sev-
eral tasks, investigating its model independence and stability. Furthermore, I have
shown its fast learning ability and comparable performance to taskspecific designed
controllers.

Given both the MPG and IMA controllers, it is possible to improve the inter-
actability of a compliant robot in a human-friendly environment. When the robot
is to perform human-like motions for a large set of tasks, we need to demonstrate
motion examples of all these tasks. However, biological research concerning the
motion generation of animals and humans revealed that a limited set of motion
patterns, called motion primitives, are modulated and combined to generate ad-
vanced motor/motion skills that humans and animals exhibit. Inspired by these
interesting findings, I investigate if a single motion primitive indeed can be mod-
ulated to achieve a desired motion behavior. By some elementary experiments,
where an MPG is controlled by an IMA controller, a proof of concept is presented.
Furthermore, a general hierarchy is introduced that describes how a robot can be
controlled in a biology-inspired manner. I also investigated how motion primitives
can be combined to produce a desired motion. However, I was unable to get more
advanced implementations to work. The results of some simple experiments are
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presented in the appendix.
Another approach I investigated assumes that the primitives themselves are un-

defined. Instead, only a high-level description is given, which describes that every
primitive on average should contribute equally, while still allowing for a single
primitive to specialize in a part of the motion generation. Without defining the be-
havior of a primitive, only a set of untrained IMA controllers is used of which each
will represent a single primitive. As a result of the high-level heuristic description,
the task space is tiled into sub-regions in an unsupervised manner. Resulting in
controllers that indeed represent a part of the motion generation. I have applied this
Modular Architecture with Control Primitives (MACOP) on an inverse kinematic
learning task and investigated the emerged primitives. Thanks to the tiling of the
task space, it becomes possible to control redundant systems, because redundant
solutions can be spread over several control primitives. Within each sub-region of
the task space, a specific control primitive is more accurate than in other regions
allowing for the task complexity to be distributed over several less complex tasks.

Finally, I extend the use of an IMA-controller, which is tracking controller, to
the control of under-actuated systems. By using a sample-based planning algorithm
it becomes possible to explore the system dynamics in which a path to a desired
state can be planned. Afterwards, MACOP is used to incorporate feedback and
to learn the necessary control commands corresponding to the planned state space
trajectory, even if it contains errors. As a result, the under-actuated control of a cart
pole system was achieved. Furthermore, I presented the concept of a simulation-
based control framework that allows the learning of the system dynamics, planning
and feedback control iteratively and simultaneously.





Glossary

Compliant robot A robot that is able to perform its designated tasks while
compensating for unknown perturbations. The degree of
compliance can range between fully compliant and fully
stiff (not included). For every level of compliance there
exists two types of compliance: Active compliance and
Passive compliance

Control primitive A primitive is a building block that is combined, by an ap-
propriate transformation, with a limited number of other
primitives to generate a wide variety of movements. A
control primitive is the control signals produced by a sin-
gle controller within MACOP.

Dynamical system Is a system that evolves over time and is described by a
fixed formulation, called a differential equation.

Neuron state A neuron is fully described by its activation function and
when this activation function depends on time, the value
of such activation function defines the neuron state. This
is similar to a system state.

Network state The state of a network is fully described by all neuron
states and the connections between them. When the net-
work connections are fixed over time, the network state
is fully defined by all neuron states.

System state Is a set of variables that fully describes the state of a dy-
namical system. These variables are used by a differential
equation to describe how a dynamical system evolves.





List of Abbreviations

AI Artificial Intelligence
ANN Artificial Neural Network
BIBO Bounded Input Bounded Output
CNS Central Nervous Systems
CPG Central Pattern Generator
DMP Dynamic Movement Primitive
DOF Degrees Of Freedom

DS Dynamical System
ESN Echo State Network
ESP Echo State Property

FORCE First-Order Reduced and Controlled Error
GMR Gaussian Mixture Regression

GP Gaussian Process
GPR Gaussian Process Regression

IK Inverse Kinematics
IMA Inverse Modeling Adaptive (control)
LMC Linear Memory Capacity
LQR Linear Quadratic Regulator

MACOP Modular Architecture with Control Primitives
ML Machine Learning

MLP Multi Layer Perceptron
MPG Motion Pattern Generator
MSE Mean Square Error

NMSE Normalized Mean Square Error
NN Neural Network

NRMSE Normalized Root Mean Square Error
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PID Proportional-Integral-Derivative (control)
RC Reservoir Computing
RG Reachability Guided
RL Reinforcement Learning

RLS Recursive Least Squares
RMSE Root Mean Square Error

RNN Recurrent Neural Network
RRT Rapidly-exploring Random Tree
SEA Series Elastic Actuator
SVR Support Vector Regression

WAM Whole Arm Manipulator



List of Symbols and
Notations

∆t Time step size or sample period

y(t) Observation
x(t) Action

�· Measured value

N Number of neurons
γ Leak rate
ρ Spectral radius
ν Regularization parameter

f r
b Input bias scaling factor

f r
i Input scaling factor

f r
o Output feedback scaling factor

u(k) Network input
a(k) Network state
o(k) Network output
e(k) Error

Wr
i Input weights of an RNN

Wr
b Bias weights of an RNN

Wr
r Recurrent weights of an RNN

Wo
r Ouput weights of an RNN

Wr
o Output feedback weights of an RNN
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ΦΦΦ Design matrix: concatenation of feature vectors

ϒc Cartesian reference frame
ϒs Spherical reference frame

KP Proportional scaling factor PID
KI Integral scaling factor PID

KD Derivative scaling factor PID

δ Time delay IMA controller
Nc Number of controllers (MACOP)

V(t) Projection matrix (MACOP)
ζi Responsibility or scaling factor (MACOP)

ηg Learning rate of growing property (MACOP)
ηs Learning rate of scaling property (MACOP)

P(k) Running estimate of the inverted covariance matrix (RLS)
λ Forgetting factor (RLS)
α Learning rate (RLS)

� · �F Frobenius norm
I Identity matrix
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1
Introduction

This PhD thesis investigates the design and evaluation of an adaptive control ap-
proach for compliant robots. The underlying mechanism of this controller uses
a Recurrent Neural Network that is trained by a Reservoir Computing technique.
Although it is applicable to a wide variety of tasks, the motivation of the research
presented in this dissertation is the need for new control approaches that can con-
trol robots that are hard or even impossible to model. After elaborating on the use
of robots, and compliant robots in particular, this chapter will give an overview of
some of the properties of compliant robots in which the motivation of this PhD
thesis is situated. Afterwards, I will introduce the Machine Learning context in
which the successive chapters are written. Finally, this chapter concludes with an
overview of the dissertation’s structure, the main research contributions and a pub-
lication list.

1.1 Why Robots?

Although most people have an idea about the definition of a robot, there probably
does not exist a single definition on which everyone can agree. Most people asso-
ciate the word robot with a human-like machine, called humanoid, which moves
around exhibiting intelligent behavior. However, some of these robots are remotely
controlled by humans, explaining the source of their intelligence. On the other hand
there exist machines that do not resemble humans, but perform complex automated
tasks, e.g., an elevator that minimizes the waiting time by planning which floor to
visit first. So before discussing the underlying motivation for building and using
robots in the first place, I briefly introduce a general definition of a robot and what it
actually means. The word “robot” originates from the Czech word “robota” which
means corvée or unpaid labor and was first used in a 1920’s Czech play, called
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Rossum’s Universal Robots, to denote artificial people who can think for them-
selves and are eager to serve (Zunt, 2002). Given this initial interpretation, I define
a robot as an automated device that can perform a wide variety of tasks and/or a
task autonomously. Within this definition the following objects are robots: a not
necessarily autonomously controlled manipulator that performs multiple tasks, or
an autonomous device that performs a single task, e.g., a robot that cleans your
floor. However, devices that perform a single task and are not fully autonomously
controlled, e.g., an airplane or a remote-controlled car, are not defined as being a
robot.

In this dissertation the word plant will be used generally to define all devices
on which actions can be performed and for which the corresponding response can
be observed, including robots.

Throughout history, the use of robots has become increasingly important in our
society. They reduce the production time of goods, improve the accuracy of cer-
tain tasks, perform dangerous manipulations and save lives. Robots have become
useful tools in our quest to discover and go beyond new frontiers. For example,
the Mars rover Curiosity which successfully landed in the Gale Crater on August 6,
2012 helps us gain new insights in Mars’s climate and geology. This evolution will
continue to approach today’s seemingly impossible frontiers while we have caught
up with some science fiction stories of a few decades ago. Traces of the existence
of machines which we refer to as “robot” can be found in many ancient mytholo-
gies. For instance the mechanical helper built by the Greek god Hephaestus or the
statue of Pygmalion that came to life. Also in ancient China traces can be found
of human-shaped mechanical devices or artificial animals such as the wooden birds
that could successfully fly (Needham, 1976). We might never known the true moti-
vations that drove humans to design and build robots. Often it is argued that man’s
greatest ambition is to create a living being from the ground up, in order to validate
his understanding of life itself. However, another possible motivation is related to
evolution. Every biological system tries to minimize its energy consumption on
non-instantly-rewarding tasks in order to increase its chances to survive. For in-
stance, humans have learned to use tools to reduce the tedious time to access some
food sources. One can argue that although we have dramatically affected the evo-
lutionary process, we still design new devices which allow us to make life more
“easy” so that we can concentrate our energy on more interesting and challenging
endeavors instead of washing dishes.

According to Siciliano and Khatib (2008), the field of robotics was defined in
the 1980’s as the science that studies the intelligent connection between percep-
tion and action. The perception is represented by the information provided by a
set of sensors while the action results from a set of actuators into the robot’s loco-
motion or manipulation. A control architecture, which encapsulates the planning
and control of a robot based on the available information (e.g., sensor informa-
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Figure 1.1: A illustrates a bar attached to a motor with an
encoder (gray disc). B illustrates a series elastic actuator at-
tached to a bar. The red spiral represents a spring. In this
setup two encoders are used: one to measure the rotation in-
duced by the passive element (spring) and one to measure
the actual rotation of the motor. C shows a compact serial
elastic actuator design used in the COMAN humanoid plat-
form.

tion, model information, ...), defines the before mentioned intelligent connection.
During the 1990’s, research in the field of robotics expanded with for example the
introduction of field robotics to fulfill a new desire to explore hazardous environ-
ments. At the same time the idea of having a robot in one’s home to do some chores
became more attractive. During the last decade, there has been a clear transition
from having a large and heavy robot in a factory to smaller robots that can reside
in an environment occupied by humans. Robots within a factory environment are
built to perform repetitive and heavy tasks with high accuracy and speed. This is
achieved by having high control gains that ensure the desired position of the ac-
tuators. Furthermore, these robots operate in a fenced deterministic environment
where the position of every object that needs to be manipulated is known. Allow-
ing such robots to work in an uncertain environment would cause very dangerous
situations in which the presence of humans should be prevented. The transition to
an uncertain environment has led researchers to investigate a new kind of robots
called Compliant Robots.

1.2 Compliant Robots

When humans and/or animals interact with each other, they take the movements of
each other into account. For instance, when we shake hands, we sense the forces
applied by our counterpart and jointly comply to each other’s movement. When we
caress a dog, we follow the shape of the body in a manner that the applied forces
are as gentle as possible. When we write a letter, we ensure that the pen point is
resting on the paper, and we guide our movements according to the plane of the



4 1 Introduction

table. When learning tennis, we allow our motion to be guided by a teacher. In
everything we do, we can consciously prioritize certain aspects of our motion to
comply with desired restrictions. However, some perturbations happen so fast that
we only realize them later on (Kandel et al., 2000; Dhamala et al., 2004). In such
cases the body’s morphology is able to compensate. For example, when riding a
bike on a rough terrain our muscles need to absorb many vibrations, in such a way
that our perception and control is not too much affected.

When a robot is able to perform its designated tasks and comply to such exter-
nally enforced restrictions, it is called a compliant robot.

1.3 Nuances in compliance

Compliant robots exist in many forms and shapes, some of which are more compli-
ant than others, or are just compliant in a different way. As shown in Figure 1.2 the
stiffness or compliance can range from fully rigid to fully compliant. Quantifying
this degree of compliance and its contribution to human safety is not straightfor-
ward. In the context of the potential dangers associated with industrial robots, the
International Organization for Standardization (ISO) introduced a safety standard
ISO 10218 in the year 1992 and an updated version (ISO 10218-1) in 2006 to meet
new and emerging technologies (Harper and Virk, 2010). Evaluating human safety
is not yet standardized when collisions can occur at higher speeds than defined by
ISO 10218-1 (Haddadin, 2014). However, in order to evaluate the safety perfor-
mance of a robot, currently the head injury criterion (HIC) (Bicchi and Tonietti,
2004; Versace, 1971) and abbreviated injury scale (AIS) (Gennarelli and Wodzin,
2006) are most commonly used.

Although the development of compliant robots is mostly driven by the safety
properties of physical human robot interaction, it is not the motivation of this dis-
sertation. As illustrated in Figure 1.2, the motivation of this PhD thesis is the con-
trollability of compliant robots for which it is hard or even impossible to determine
model information. It does not mean that model-based controllers are rendered use-
less. On the contrary, as I will discuss later on, they have demonstrated to be very
suitable for controlling compliant robots. However, for some robots the degree of
compliance might cause difficulties for model-based controllers at which model-
free controllers could take over. They are in fact complementary, and depending on
the task requirements, robot design, dynamic properties or other requirements, one
class of controllers can be chosen over the other or even combined.

For any degree of compliance, between being fully compliant and fully rigid
(not included), there exist two types of compliance: active compliance and passive
compliance. In the following I will discuss these types briefly.



Fully 
Rigid
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Model based control

Model-free control

Motivation of this thesis
Figure 1.2: Illustration of some example compliant robots
located on a scale ranging from fully rigid to fully compliant.
The applicability of model based and model-free controllers
is depicted on this range and corresponds to the availability
of a prior model. The motivation of this thesis is situated
at the right part of this illustration, where no or inaccurate
model information is available.
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1.3.1 Active compliance
Active compliance is attained when the control of a rigid actuator is adjusted in
such a way that a seemingly compliant behavior is achieved. In order to illustrate
this idea, the example shown in panel A of Figure 1.1 is used. The motor is driven
by a controller which applies a certain current allowing the measured encoder1

value to correspond to the desired position. By measuring the current on the motor
(notice the bidirectional arrow between controller and motor), the controller gets
a sense of the amount of torque applied on the attached bar. When the controller
adapts its control based on these measurements, this actuator is actively controlled
to be compliant.

Several approaches have been proposed to implement and improve active com-
pliance on actuators. Majority of actuators are electro magnetic actuators, which
offer low output torque with high speeds. Most applications require some sort of
transmission to improve the torque requirements. However, these transmissions
cause friction and an increased inertia, making it harder to back-drive2 the motor.
Asada and Youcef-Toumi (1987) developed a direct drive actuator where the trans-
mission between the actuator and the moving part of the robot is removed. As a
result, it became possible to use current information as an accurate torque measure-
ment. Due to their increased size to ensure sufficient torque, their applicability is,
however, limited. Townsend and Salisbury (1989) uses cable transmissions in order
to move most of the actuators out of the moving parts of the robot, providing a low-
friction and light-weight solution. The whole arm manipulator (WAM) (Townsend
and Salisbury, 1993) or the PHANToM (Massie and Salisbury, 1994) for example,
use such a transmission. However, from personal experience with the WAM, slack
in these cables (caused by extensive use) makes it much harder to accurately con-
trol the robot. Other type of actuators such as pneumatic and hydraulic actuators
have their own advantages and disadvantages. For example, the compressibility
of air makes a pneumatic actuator intrinsic compliant but as a result less accurate
than using hydraulic actuation. Using hydraulics, on the other hand is less safe
because of its non-compressibility. Furthermore, both approaches suffer from ther-
modynamic effects. Morrell and Salisbury (1998); Zinn et al. (2004) proposed to
use a combination of pneumatic (high torque) and electromagnetic (low-torque)
actuators3 to compensate for the inaccuracies caused by the compressibility of air.
The Hydraulic Quadruped (HyQ) robot by Semini et al. (2011) is a quadruped robot
that uses hydraulic actuation to achieve a high power to weight ratio in combination

1Measures the rotation angle of the motor shaft.
2When moving a compliant robot by hand, external forces are induced on the actuators.

Often, the resulting encoder and/or torque changes are measured and used as a teacher signal.
This reversed use of an actuator is called back-driving an actuator.

3The electro motors can be placed in parallel to the pneumatic actuator or distributed to
other parts of the robot.
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with electric motors placed in the joints where high velocity control and size is im-
portant, but the power to weight ratio is less important. A more detailed discussion
of the different actuation approaches is given in Ahmed (2011).

Instead of using torque/current measurements at the actuator side, Vischer and
Khatib (1995) proposed to use torque measurements on the moving part of the
robot. In combination with a low gear ratio transmission, a high back driveability
was achieved.

When stiffness control is implemented, a static behavior of the interaction is
achieved, meaning that there exists a static stiffness that does not depend on the
velocity or acceleration of the motion. A more demanding objective is that of
impedance control, where a dynamic behavior is achieved (Siciliano and Khatib,
2008). By implementing a second order mechanical system, e.g., a spring damper,
within this controller, it becomes possible to absorb introduced perturbations sim-
ilar to the effect of a spring damper system within a car. A nice overview of force
control and its use in compliant robot control is given in De Schutter et al. (1998).

Active compliant actuators improve the safety in human-robot interaction be-
cause the robot can sense the interaction forces and react compliantly. Furthermore,
they can adapt the compliant behavior during operation, depending on the context
of the task. However, the effect of such compliant response depends on the reaction
time of the controller, which is often referred to as the control bandwidth. When the
control loop is too slow, the actual interaction forces will increase dramatically as
if there was no compliance present (Lefebvre et al., 2005; Kim et al., 2004). Most
controllers today are fast enough to react when slow perturbations are induced. For
instance, when back-driving the actuator the external forces are applied gradually
and relatively slowly. However, when a sudden perturbation is induced, the control
loop is often too slow to react. Even though active compliance has clear limitations,
it is still widely used because the desired compliant behavior can be programmed in
software. However, the main drawbacks of using active compliance can be solved
by adding passive compliant elements to the actuator.

1.3.2 Passive compliance
In order to reduce the reaction delay of an active compliant system, passive elas-
tic elements such as springs are added because their mechanical properties al-
low them to react instantaneously (Chew et al., 2004; Vanderborght, 2010). In
panel B of Figure 1.1 an example of a Series Elastic Actuator (SEA) (Pratt and
Williamson, 1995) is shown which is a typical example of a passive compliant
actuator. Here, the motor shaft drives the rotation of the bar via a spring that
compensates for sudden changes in the bar’s angular position. This spring has a
fixed spring constant that can not be adjusted during operation. Furthermore, note
that all physical springs have a damping loss which is equivalent to a damper act-
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ing in parallel to an ideal spring. In the example of Figure 1.1 (B) an encoder is
added at the bar’s side of the setup such that the actual rotation of the bar can be
measured. Given the spring constant and the difference in measured rotation be-
tween both encoders gives an indication of the amount of force applied on the bar.

Figure 1.3: COMAN
platform developed by IIT.

Although passive elements react instantaneously,
the range in which they can compensate for external
disturbances is small because of the physical limita-
tions e.g., length of the spring. Therefore, the com-
bination of passive elements with active compliant
control is often used such that larger but slower
changes can be partially compensated by an active
compliant control (Schiavi et al., 2009). For exam-
ple, when current measurements are used to deter-
mine the shaft torque at the motor side, the actua-
tor shown in panel B of Figure 1.1 is a compliant
(active and passive) actuator. Furthermore, the use
of passive elements within an actuator has the abil-
ity to store energy, that can be reused afterwards to
reposition the arm without the need of the motor to
deliver too much power (Scarfogliero et al., 2009;
Van Der Linde, 1998; Vanderborght et al., 2009b).
An often used example is that of a jumping kanga-
roo where the energy stored within the tendons by
landing after a jump can be reused for the propul-
sion in the next jump. Robots equipped with such actuators are often referred to as
a flexible joint robots

However, adding passive elements generally reduces the accuracy of the con-
trol. For example, consider the desired target angle that the bar should reach as fast
and accurately as possible. Because of the bar’s inertia, the spring will cause the
bar to oscillate as soon as it reaches the target position. If a factory robot would
be equipped with such actuators, the accuracy requirements needed to build for
instance a car would not be met. Adaptive compliant designs Albu-Schaffer et al.
(2008) are being used more recently in which the amount of stiffness can be adapted
while still having passive elements to store energy and to react to fast perturbations.

Let us consider again the actuator shown in panel B of Figure 1.1 where the
compliance due to the spring should be reduced. By actively rotating the motor
shaft into the opposite direction of the external disturbance, the actuation becomes
stiffer. When the motor moves in the same direction as the disturbance, the stiffness
is reduced (Tsagarakis et al., 2009).

Laurin-Kovitz et al. (1991) developed a programmable passive impedance con-
trol approach where a non back-drivable actuator was used in combination with
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programmable (adjustable) passive elements. This approach reduces the contact
instability caused by the feedback loop time delay while keeping the programma-
bility of the passive elements.

Another approach, called Mechanically Adjustable Compliance and Control-
lable Equilibrium Position Actuator (MACCEPA) (Van Ham et al., 2007), uses a
separate actuator to adjust the equilibrium position of the passive element. The sec-
ond actuator controls the actual motion of the joint by pulling the spring. The torque
generated by the joint depends linearly on the compliance and the angle between
the actual position and the equilibrium position. As a result, the equilibrium posi-
tion and compliance, can be controlled independently. This design was extended
by Vanderborght et al. (2009a) such that the torque-angle curve can be modified
by choosing an appropriate shape that guides the cable between the spring and the
actuator that controls the movement.

Tonietti et al. (2005) developed a Variable Impedance Approach (VIA) where
the actuators stiffness, damping and/or gear ratio can be adjusted during the exe-
cution of the task. As stated in Ahmed (2011), this approach yields a significant
gain in safety performance of the robot for safe physical human-robot interaction.
This design comes with the cost of control complexity due to the more complex
non-linear springs inside the actuation mechanism. The Actuator with Mechanical
Adjustable Series Compliance (AMASC), is inspired by the antagonistic actuation
used by humans (Hurst et al., 2010). Similar to MACCEPA the compliance and
equilibrium position can be controlled independently. However, as with the VIA
design, it comes at the cost of control complexity. For a more detailed overview
of VIA actuator designs I would like to refer to Vanderborght et al. (2013). The
DLR LWR-III arm is constructed with harmonic drives, which are actuators that
follow the Variable Impedance Approach. By having such elastic joints that can be
adjusted during operation, the robot is able to react fast enough to avoid high im-
pact forces during a collision. De Luca et al. (2006) proposed a collision detection
approach that only uses proprioceptive robot sensors. Furthermore, the approach
additionally provides directional information for a safe robot reaction after a colli-
sion.

Often pneumatic muscles are used because of their inherent passive compliance
caused by the compressibility of air. The McKibben muscle (Tondu and Lopez,
2000) is the most well known pneumatic artificial muscle but suffers from hys-
teresis effects caused by friction and a high minimum pressure to generate any
contracting force. The Pleated Pneumatic Artificial Muscle (PPAM) (Daerden and
Lefeber, 2001) improves the MCKibben muscle, significantly reducing hysteresis
effect and omitting the need of a minimum pressure. Its design does not need a
heavy/complex gear transmission allowing for a direct coupling with the joint. For
instance, the biped robot called Lucy, developed at the University of Brussels, uses
several PPAMs in an antagonistic configuration demonstrating an effective power
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Fig. 1.i-HY is an underactuated hand capable of performing a wide range of tasks, including fingertip grasping and manipulation. 

2 Task Analysis and Hand Design 

We define ‘bottom up hand design’ to mean defining the hand specification in terms of tasks the 
hand must perform, rather than high-level mathematical sufficient conditions. This is not a strictly 
empirical process; mathematical rules can (and should) be applied to the design of the hand, but these 
rules should arise from analysis of the primitive operations required for the execution of each task, and 
should be biased to provide a minimalistic set of design constraints. These tasks are then distilled into 
grasping and manipulation primitives, and the hand layout, actuation, and finger structure are designed to 
meet them. This section describes the tasks that i-HY was designed to perform, and overviews the major 
structure of the robot hand design. The subsequent section will then discuss some of the key analytical 
questions addressed in the design of i-HY, particularly in the development of multi-purpose underactuated 
fingers. 

2.1 Task Requirements  

To apply a task-centric design approach, the first step is to define a representative set of tasks that the 
hand should be able to perform. These can be tailored to a specific setting (e.g. an industrial application), 
but they can also instead be selected to span a wide range of useful behavior, based by careful selection of 
representative tasks that span a range of capabilities. Existing studies on Activities of Daily Living may 
be helpful in this [33, 34]. The i-HY Hand was developed through the hardware track of the DARPA 
Autonomous Robotic Manipulation program (ARM-H), a broad effort to reduce the cost and increase the 
capabilities of hands for mobile manipulation. The requirements for ARM-H were delivered to 
participating teams as a list of challenge tasks: 

• Pick up a key and putting it into a lock, then unlock and open a door 
• Open a zipper on a backpack and remove the contents 
• Pick up a pair of wire cutters and cut a wire 
• Pick up and write with a whiteboard marker 
• Grasp a radio handset and activate the push-to-talk button 
• Grasp a drill and use it to drill a hole 
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Figure 1.4: A Depicts the Oncilla quadruped robot which
our lab developed together with the Biorob Lab at EPFL. B
The i-HY robot hand with its flexible fingers. C iRobot’s
Chembot consists of a silicone sphere.

to weight ratio (Vanderborght, 2010). Van Damme et al. (2010) concluded based
on his experiments that his pneumatic manipulator was unsafe under PID control.
Additionally, he noted that the intrinsic passiveness of a pneumatic actuator is in-
sufficient for safety when potential control errors are present. In fact, the passive-
ness of the the pneumatic actuator improves safety in some cases of sudden impact,
but its ability to store energy can also make it more dangerous. Van Damme et al.
(2010) also observed that at the moment of impact, the contact forces are almost
independent of the joint stiffness and mostly influenced by the inertia of the robot
link.

Within the European AMARSi project, a compact SEA module, shown in panel
C of Figure 1.1, was designed and developed by the Advanced Robotic department
of the Italian Institute of Technology (IIT) (Tsagarakis et al., 2009). This module
was later on used within IIT’s Compliant Humanoid Platform (Tsagarakis et al.,
2013) shown in Figure 1.3, which belongs to the state-of-the-art in compliant hu-
manoid design.

There exist many adaptive compliant actuator designs, of which a detailed
overview is given in Ham et al. (2009); Albu-Schaffer et al. (2008).

The trend of compliant robotics is being extended even further to the other
parts of the robot. Flexible materials are being used as structural parts of the
robot making them more robust against unanticipated disturbances. This type of
robots is often called flexible link robots. In collaboration with our lab, the Biorob
Lab at Ecole Polytechnique Fédérale de Lausanne (EPFL) designed a compliant
quadruped robot, called Oncilla (Sproewitz et al., 2011), shown in panel A of Fig-
ure 1.4. This cat-like robot has passive elements within its legs. A key advantage
over its counterparts such as DARPA’s little dog (Murphy et al., 2011), is that these
passive elements allow the robot to move over irregular terrain without the need of
adjusting its control. This also the case for the COMAN robot (Tsagarakis et al.,
2013) , where the springs forgive small differences, making the robot more stable.
One can argue that the complexity of the required control is split up between the
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Figure 1.5: An overview of the used taxonomy to describe
a control problem.

controller, the body and its environment(Pfeifer and Bongard, 2007). In the Oncilla
it is, however, not possible to adjust the stiffness of its springs, making it hard to
achieve accurate control when needed. Another example is that of the i-HY hand
developed at the Harvard Biorobotics Lab within DARPA’s Autonomous Robotic
Manipulation - Hardware Track (ARM-H) program (panel B of Figure 1.4). It con-
sists of flexible fingers which are able to manipulate a wide variety of objects while
reducing interaction forces with its environment (Odhner et al., 2013). iRobot’s
Chembot (panel C of Figure 1.4) is entirely built from flexible materials and selec-
tively changes the rigidity of individual sectors of its silicone sphere such that air
within the sphere can deform the robot as desired. Adding all these structural pas-
sive compliant elements comes with a cost. The more passive elements, the harder
it becomes to control.

1.4 Adaptive control

As mentioned in the previous section, the compliance/stiffness is often adapted
during operation (Bicchi et al., 2005). However, reducing the compliance when
accuracy is needed is not a good solution because it reduces the safety purpose of
having compliance in the first place. A need exists for adaptive control algorithms
which allow compliant robots to accurately interact with their environment even
though they consist partially or fully out of flexible materials such as silicone or
springs of which the dynamic and kinematic properties are hard to determine.

Before continuing, I will briefly give an overview of the taxonomy used con-
cerning robot control or plant control in general. As shown in Figure 1.5, The input
which drives the plant is denoted by x while the response to this input is denoted
by y. The state of the plant describes the plant in terms of parameters at a partic-
ular moment in time. For instance, the motion of a train on a rail is fully defined
by its position and velocity. In some control tasks this state is (partially or fully)
observable and is part of the observed plant output.
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An adaptive controller tries to estimate uncertain plant and control parame-
ters during operation by using measured plant responses (Åström and Wittenmark,
2008).

Research in adaptive control started in the 1950’s, mainly to design autopilots
for military aircrafts which are inherently unstable. However, this interest dimin-
ished after the crash of an X-15 experimental aircraft equipped with an adaptive
controller which produced too high gains after going into a pilot induced oscilla-
tion. As a result the pitch angle of the aircraft started to oscillate with an increasing
amplitude, eventually causing the airplane to crash and killing the pilot. During
the last decade, however, many new approaches emerged with many practical ap-
plications as result. For example, the use of gyroscopic stabilizers and inertial
measurement units has enabled the development of drones.

In the following sections I will discuss the benefits of having an adaptive con-
troller and how it can be applied with or without prior information about the robot
that needs to be controlled. For a more detailed overview of this separation between
controllers that use prior information, and others that do not, I would like to refer
to Rigatos (2009).

1.4.1 Model based control

Model based control methods forms a class of control strategies in which prior
knowledge about the plant (e.g., robot) is used. This prior knowledge can be rep-
resented by an equation which describes the evolution of the plant’s state and/or
knowledge about physical properties such as mass, geometric information, mass
distribution, among others. The collection of all this information is called a model
of the plant. Having a model does not mean that it accurately describes how the
plant evolves over time. However, one of the advantages of having a model-based
controller is the ability to reason about the underlying physical properties to for
example identify possible causes of control problems more easily.

The control of linear systems has been extensively studied (Kwakernaak and
Sivan, 1972; Lewis et al., 2012). However, more complex and nonlinear systems
are hard to model correctly. Due to friction, heat or other phenomena, which are
not taken into account, the model is an approximation of the real physical system.
Instead of having complete model information in the form of analytical equations,
it is possible to create an model approximation prior to control. This is a data driven
approach called system identification where the plant is identified by acquiring and
processing raw data. One can then choose from a set of function approximation
algorithms that learn the system model. These models are of course approximations
of the real physical plant. In order to improve the accuracy, feedback information
is often incorporated to compensate for the modeling errors. This can be written
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more formally as:

control input = model based control+ feedback control (1.1)

Often a Proportional-Integral-Derivative (PID) controller is used to reduce the con-
trol error. A PID controller only uses a measurement of the control error to generate
an additive control signal which is sufficient to bring the measured error down to
zero. This controller is model-independent and requires only a limited set of pa-
rameters to be tuned. This is also one of the main reasons why a PID controller
is widely used in industrial applications. For compliant control, however, it is less
useful because during a sudden perturbation of the robot’s motion the control error
would increase fast, causing the PID-controller to generate a proportional gain and
more importantly a derivate gain with large interaction forces as a consequence. In
order to prevent such large interaction force, a more intelligent feedback controller
is necessary. An example is Active Disturbance Rejection Control (ADRC) (Han,
2009), which is a robust control approach that extends the model of the plant with
an extra state variable that represents everything for which the internal plant model
is insufficient, similar to how the above PID controller compensates for inaccu-
rate model information. Albu-Schaffer et al. (2007) proposed a control framework
for flexible joint robots which incorporates gravity compensation, and a desired
Cartesian stiffness relation based on the joint angles. In Van Damme et al. (2009)
a proxy-based sliding mode controller was presented to reduce the slow response
to position errors when using a pneumatic manipulator. In Todorov et al. (2010) a
parametric model identification was performed by fitting the model to experimental
data and optimizing model-based feedback controllers. In Tsagarakis et al. (2009)
a PD controller is used in combination with a compliance regulation filter that al-
lows the compliant actuator to be controlled with a desired impedance setting. This
control compliant regulation filter takes into account model information of the used
springs and the inertia and axial damping coefficients of the link. These are just a
few examples of model-based controllers that are able to control robots with flexi-
ble joints. Many more controllers exist some of which achieving remarkable results
(Agachi et al., 2007; Brosilow and Joseph, 2002).

1.4.2 Biologically inspired control
Humans and biological systems in general are able to develop advanced motor
skills, allowing them to interact compliantly with each other, constantly antici-
pating an uncertain environment. Biological research has partially unveiled the
underlying processes that makes such interesting control possible. Inspired by
these biological findings, scientists and engineers are building robots, often built
from compliant materials, which are driven by biologically inspired control ap-
proaches, e.g., the salamander-like robot, called Salamandra Robotica 2 and shown
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Figure 1.6: An abstraction of how the Central Nervous Sys-
tem (CNS), the body and the environment are interacting
with each other.

in Figure 1.7,A, developed by researchers of the Biorob Laboratory (EPFL) under
guidance of Auke Ijspeert (Crespi et al., 2013). The control of this robot is based
on coupled oscillators to mimic Central Pattern Generators (CPGs) found in the
spinal cord of biological systems. Furthermore, this controller is distributed over
the entire robot in such a way that separate segments can move independently. The
same research group designed the Cheetah Cub (shown in Figure 1.7, panel B),
also driven by a coupled oscillator that enables the robot to reach speeds up to 1.42
m/s (Sproewitz et al., 2013). Its brother, the Oncilla quadruped robot (Sproewitz
et al., 2011) which I discussed before, has more degrees of freedom, allowing it to
move all legs sideways as if the robot had shoulder blades. In the last 10 years,
the development of biologically inspired robots and control has gained a lot of in-
terest within the robotics community, yielding many intriguing robots of which the
Eccerbot (Potkonjak et al., 2010) (tendon driven humanoid) and the octopus robot
(Margheri et al., 2012) are a few examples.

In Figure 1.6, I have tried to make an abstraction of how one interacts with its
environment. In general, one can state that based on sensory information the Cen-
tral Nervous System (CNS) actuates the body, resulting in an environmental change
that in turn affects the information flow. From a philosophical point of view, the
compliance is acting here as an interface between the body and the environment.
At the actuation side it allows for the body to act upon the environment robustly,
forgiving small errors in the CNS’s anticipation of the environment. At the sen-
sory side, the compliance is filtering/preprocessing the information flow from the
environment to the CNS.

The CNS is a flexible entity that tries constantly to distribute and outsource
the complexity of a task over multiple elements. Even though it constantly tries
to simplify its use, the most adaptable element is the CNS itself. The environ-
ment can also be changed relatively quickly. For example we use tools (e.g., a
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Figure 1.7: An overview of robots with biologically in-
spired controllers and/or mechanics. A and B are the Sala-
mandra Robotica 2 and Cheeah Cub, respectively, developed
at the Biorobotics Laboratory of EPFL. C Tendon driver
robot called Eccerbot.

pen, a knife, roads, cars, computers) to simplify tasks. However, some environ-
mental phenomena (possibly caused by our collective) are, due to their complexity
and our lack of understanding, not yet controllable. When these environmental
changes are insufficiently handled by our compliance and affect our survival, the
body will start to adapt through the process of evolution. However, such adapta-
tion takes place over the course of several generations and is therefore much slower
than the duration at which the CNS can adapt itself or parts of the environment.
The changes of the body are thus directly influenced by the environment and indi-
rectly by the CNS. Our CNS is in turn affected by our body and environment. It is
this interplay between the CNS, body and the environment which is investigated in
the domain of morphological computing (Pfeifer and Iida, 2005). However, based
on the above reasoning this interplay is working at different time scales, allow-
ing one part to adapt without being to much affected by the other. Therefore, in
my opinion, simplifying the control complexity by modifying a compliant robot’s
morphology should be investigated from an evolutionary point of view and thus
a slower time scale. In contrast, when a certain morphology is given, the control
should be learned by interacting with the robot and its environment.

Developing a biologically inspired control hierarchy for such compliant robots
with highly non-linear behavior that is able to adapt to dynamical changes argu-
ments the need of a model-free approach that can partially4 or fully learn the un-
known properties.

4In combination with a model based approach.
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1.4.3 Model free control

In model free control, the assumption is made that no prior knowledge about the
plant is available, e.g., when the dynamics are too complex or when the physical
process is not well understood. Often the analogy with a black box is used be-
cause the internal processes of the plant are unknown. One can only observe the
control signal going into the black box and the response coming out. In order to
make control possible, information about the plant is gathered by interacting with
the plant itself. Due to its model independence, a model free controller is applica-
ble to a wide variety of tasks without the need for complicated manual tuning of
parameters or modifying them when the plant dynamics change during operation.
A model-free adaptive controller is in fact a nonlinear dynamical system with on-
line (during operation) parameter estimation. If the controller is calculating control
parameters based on estimations of the plant parameters, this controller is called
an indirect adaptive controller. The performance of such a controller depends on
the convergence of the estimated plant parameters to their true values. When only
control parameters are estimated, such a controller is called a direct adaptive con-
troller. Their exists a wide variety of model free control approaches, for instance,
the above mentioned PID controller or the Model Free Adaptive (MFA) control by
Cheng (2000) for plants with slowly changing states or a modified versions of MFA
(Karoń, 2012) for rapidly changing states. This MFA controller uses a multilayer
perceptron neural network that is trained online, which makes the controller inher-
ently robust for changes in plant behavior or other uncertainties. Yazdizadeh et al.
(2000) demonstrated that his proposed neuro-dynamic structure was able to iden-
tify highly nonlinear without any a priori information about the nonlinearities of the
system and without any off-line training. In Su and Khorasani (2001) a control ap-
proach is presented where a classical rigid body inverse dynamic model approach is
used, but where the unknown non-linearities are learned by neural networks. This
is a nice example of how model-based and model-free approaches can be comple-
mentary used to get the benefits of both sides. In Section 1.5.5 I will explain what
a neural network is and describe its use for control. In Jalali et al. (2013) a sliding
mode controller is optimized using particle swarm optimization and used to control
a robotic manipulator.

The main assumption made within this dissertation is that no prior knowledge
about the robot or plant is available. This knowledge concerns the physical proper-
ties (e.g., mass, density distribution, geometric properties) of the plant. However,
when other information is used this will be mentioned explicitly.

In order to make model-free adaptive control possible, I have employed tech-
niques from the domain of machine learning. In the following section, an introduc-
tion to machine learning is presented in which I highlight some important concepts
on which the proposed ideas in the remainder of this dissertation are built.
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1.5 Machine learning

There exist many definitions that try to describe what Machine Learning (ML) ac-
tually is. For instance, Samuel (2000), one of the pioneers in the field of computer
gaming and self learning programs, defined ML as a “Field of study that gives
computers the ability to learn without being explicitly programmed”. He created
a checkers program that could learn from experience and so improved its perfor-
mance by playing against itself, eventually surpassing Samuel’s own chess abilities.
A more modern definition by Mitchell (2006) describes ML as follows: “A com-
puter program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E”. Often ML and Artificial Intelligence are mistaken for
being one and the same thing. However, AI as we know it from science fiction sto-
ries such as the HAL 9000 in Arthur Clarke’s book Space Odyssey, is defined as an
intelligent, self thinking, machine, often assigned to an entity/agent. Its rather hard
to define when such an entity exhibits autonomous thinking or intelligent behavior.
ML on the other hand uses a more scientific taxonomy in which the performance
of a learning program can be measured objectively instead of trying to relate to
human-like behavior.

1.5.1 Creating a model approximation

Within Mitchell’s definition of ML, experience is represented by observations that
are the result of an underlying unknown process. Consider for instance noisy ve-
locity and altitude measurements made during the final minutes of the approach
landing of NASA’s Curiosity, shown in Figure 1.8 and indicated by black circles.
Now suppose that we want to know the velocity of Curiosity for every possible
altitude and not only for the ones that were measured. The measured data provides
us with observations from which one can learn the underlying relationship between
the measured velocity and altitude. Such a relationship is represented by a model
that tries to describe the data as well as possible and allows us to generalize to un-
seen information. Actually this is very similar to what humans do on a daily basis.
We try to find patterns in everything we perceive. For instance, when reading a
book we are provided with descriptions of characters and details about their sur-
rounding from which our imagination generates a model that fills in the missing
pieces.
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Figure 1.8: This illustration shows altitude and velocity
measurements based on little data published on the landing
of NASA’s Curiosity. This published data was augmented
with fictive data to suit the purpose of having a good re-
gression example. The data point indicated by black circles
represent the velocity and altitude measurements. The green
and blue line/curve indicate a model which under-fits and
over-fits the data, respectively. The red curve represents a
model that generalizes velocity approximations well to un-
seen altitudes. The actual phases of the landing are shown
as well, explaining the non-linear relationship between both
altitude and velocity measurements.
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1.5.2 Representation vs generalization
When a model is learned based on measurements, the generalization capabilities
for unseen information depend on the complexity of the system. As shown in Fig-
ure 1.8, fitting a line to the observed measurements (shown by a green line) does
not give good results. Such linear regression on the data is insufficient to explain
the data itself and to generalize to unseen altitudes. This problem, where the com-
plexity of the model is too low compared to the number of data points, is called
under-fitting. Having a model that is too complex, in contrast, is also not a good
solution because the model will describe the noisy measurements too well, yielding
bad generalizations for unknown altitudes. This problem of over-fitting the mea-
surements is depicted by the blue curve in Figure 1.8. So there exists a trade-off
between representing the observations and having a model that generalizes well.

The red curve shows a possible good fit. The performance of such a fit needs to
be determined by comparing the model approximation to an actual measurement.
When new measurements, not used to fit the model, are unavailable the original
dataset should be divided into two parts: one part to fit the model and another to
test the model. In the remainder of this dissertation, fitting a model to a set of data
is called training a model with data. When the performance of the model depends
on a certain parameter that should be optimized for the task at hand, the data is
divided into 3 parts, one to train the model, one to validate the parameter and one
to test the model with the optimized parameter. In Section 2.1.5.3 this process is
explained in much more detail.

1.5.3 Learning approaches
In the example described above we had both altitude and velocity measurements
available from which we could train a model to infer the velocity given the altitude,
or the other way around. However, in some learning tasks, there are no training
examples available that contain the desired model output. Based on this distinction,
the learning approaches in ML can be classified as follows:

• Supervised learning: The training data in this case consists of example input
and desired output data such as for the Curiosity example above. A supervised
learning algorithm will produce a approximation of the output corresponding to
a certain input, based on the training data. Most algorithms described in this
dissertation are of the supervised learning type.

• Unsupervised learning: As the name suggests, the data now only contains ob-
servations of the input. There is no data available about the desired output of
the algorithm. Such algorithms try to find hidden structure within the available
data without examples on how to achieve this. Clustering algorithms (e.g., k-
means) are an example of unsupervised learning algorithms. Here, the centers
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of a number of clusters are chosen randomly. Each data sample is assigned to a
cluster, depending on its distances to those centers. Whenever a new data sample
is added, the closest cluster center is updated in such a way that it moves more
towards the newly added data point.

• Semi-supervised learning: Having a dataset with pairs of example input/target
pairs is often hard to realize. Within the class of semi-supervised learning algo-
rithms the training data is similar to the unsupervised approach. However, a few
examples of the desired output are added as well. The idea here is that a model
can be trained on the few data samples for which an example output is available,
and that this model can be improved by the data for which no desired target is
accessible.

• Reinforcement learning (RL): Is similar to unsupervised learning. Here, no de-
tailed description of the desired output is available, but a general quality measure
can be given. The learning algorithm now receives a reward signal that evaluates
the performance of the generated solution. Based on this reward, the algorithm
can be adapted. RL approaches are often used in robotic applications where a
number of actions needs to be taken to solve a certain task. As it is unknown
how to solve this task, the performance of the model can only be evaluated at the
end (after all necessary actions have been taken). In Section 6.6 I will explain
RL into more detail.

1.5.4 From linear to non-linear regression
As shown before, fitting a line to measurements of Curiosity’s landing is insuffi-
cient to create a mapping that approximates the velocity v for a certain altitude a
because there exists a non-linear relationship between them. Finding the underlying
non-linear relation seems hard. However, by non-linearly transforming the altitude
measurements, one can still use a linear regression method to find a model. More
formally we want to find a function Φ(a) that transforms the altitude measurements
a in such a way that the velocities v are linearly related to Φ(a). A simple example
of such a function would be Φ(a) = [a,a2,a3] or Φ(a) = [a,sin(a),a2]. Instead of
having one value to correlate v with, we have 3 values in both examples. Whether
or not this increase in dimension is sufficient to find a good linear model, depends
on the chosen features of a (square, sine, ...). Which type of features5 (e.g., polyno-
mials, Gaussians, ...) are good in turn depends on the data and is quite specific for
the algorithm that is used. Well known non-linear regression approaches such as
Gaussian Process Regression (GPR), Gaussian Mixture Regression (GMR), Sup-
port Vector Regression (SVR) and many others can be formulated as being a linear

5Is an individual measurable property of the process that is being observed.
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Figure 1.9: This illustration depicts a biological neuron A
and its corresponding mathematical representation B. The
synapses (red circles) are represented by weights which
modulate the input signals of the neuron.

model on a set of non-linear features which are calculated based on the input data
(altitude measurements in the used example).

Another well known approach is called Artificial Neural Networks (ANN) and
uses a set of processing units that are connected with each other, similar to how
neurons are interconnected in the brain. Like other machine learning approaches,
ANNs have been successfully applied to solve a wide variety of tasks, including
fault detection and diagnosis in industrial processes (Maki and Loparo, 1997), tor-
nado prediction (Marzban and Stumpf, 1996), optical character recognition (Avi-
Itzhak et al., 1995) and non-linear flight control using neural networks (Kim and
Calise, 1997) among many others.

In this dissertation I use a modeling approach called Reservoir Computing
(RC), that is based on concepts of Artificial Neural Networks. I will therefore
introduce ANN in much more detail before giving a thorough description of RC in
Chapter 2.

1.5.5 Artificial neural networks
In order to interact with an environment, sensory information is processed and a
possible response is transfered to the corresponding actuators. Humans and animals
use a central nervous system for the information flow and processing. The brain is
the most complex, non-linear and not yet fully understood part of this central ner-
vous system. It is located close to the primary sensory organs to have fast process-
ing of visual and auditory information, among other reasons. The brain consists of
glial cells, used for several functions such as structural purposes, and neuron cells,
called neurons. The human brain contains in total 15-33 billion neurons. As shown
in panel A of Figure 1.9, a neuron gathers signals from other neurons through tree
like structures called dendrites. The soma of the neuron processes these signals and
transmits a response along its axons. These axons can carry the signals over long
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Figure 1.10: This illustration depicts examples of a single-
hidden-layered, multi-hidden-layered and recurrent network
architecture. The white circles are input or output nodes
while the hidden nodes are represented by gray circles.

distances, targeting distant cells of the brain or body. The axons are connected to
dendrites of other neurons through synapses. Every synapse can modulate, or even
obstruct, the signals passing through. A large number of these synapses modulate
the signals depending on properties of the signal itself, giving the brain the ability
to reuse structures for different purposes. It is believed that such modifications are
associated with memory and learning (Shepherd et al., 2004). This insight into the
brain’s learning mechanism inspired McCulloch and Pitts (1943) to create a sim-
plified mathematical model of a brain. They proposed an artificial neuron of which
an illustration is shown in panel B of Figure 1.9. The corresponding equation is
formulated as follows:

a = f

�
N

∑
i=1

wiui

�
, (1.2)

where ui represent the input signal from a particular dendrite which is modulated
by a synapse, represented by a weight wi. The result of processing all the input
signals in the soma is simplified by a non-linear activation function f . The axon
output is denoted by a. Originally McCulloch and Pitts (1943) proposed to use
a threshold function for f , which is high when the accumulation of the signals
reaches a threshold, or low when it doesn’t. However, other activation functions
have been shown to be useful as well.

Within the artificial intelligence community, there existed a large interest in
such artificial neurons because, similarly to a brain, such neurons can be intercon-
nected to form a network-like structure, an Artificial Neural Network (ANN), that is
capable of solving a large number of tasks. The simplest network structure is called
a single hidden layer feed-forward architecture, shown in Figure 1.10. In this feed-
forward neural network the information propagates in one direction from the input
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through the single hidden layer to the output. The layer in the middle is called a
hidden layer because only the inputs and outputs of the network are observed. In-
stead of having a single hidden layer it is possible to have multiple hidden layers
where one layer is connected to the next one (Figure 1.10). When each layer (input,
output and one or more hidden layers) is fully connected to the next one and each
neuron’s activation function is non-linear, such a network is called a Multi-Layer
Perceptron (MLP) (Rosenblatt, 1961) and it is proven to be able to approximate
any continuous function of real variables arbitrarily well depending on the number
of neurons (Cybenko, 1989). This means that when too many neurons are used,
it becomes possible for the MLP to over-fit the training data. Training such net-
works requires that every weight wi that corresponds to a synapse is adapted, such
that the desired function is approximated. One of the many training algorithms
is called Back-Propagation (Rumelhart et al., 2002). It essentially propagates the
error between the approximation and the desired output backwards through each
layer, adapting the weights appropriately. One of the main criticisms about this ap-
proach is its slow convergence and the fact that it is not guaranteed to find a globally
optimal solution. After the publication of a book by Minsky and Papert (1969), the
advances in neural network research stagnated because it revealed that a single hid-
den layer network is incapable of learning an exclusive-or function and that the
computers at the time were not advanced enough to handle long running times
needed to train large neural networks. As the development of computing systems
advanced, the interest in using NN increased again. Also within the control-related
research community the use of NN became more and more popular (Cessac, 2010).
For instance, Kawato et al. (1987) used a NN to change the motor commands by
predicting the possible errors of a movement. Since the publication of Narendra
and Parthasarathy (1989), the use of NNs for identification and control of nonlinear
systems has gained a lot of interest. For instance, Nguyen and Widrow (1989) used
a NN to control the truck backer-upper6 problem. In Hung and Chung (2007) and
Spooner and Passino (1996), NNs are used in combination with a classical Sliding
Mode Control approach. Other approaches such as Ge et al. (2008) and Yang et al.
(2008) use a NN to train a predictor that is used to construct output feedback con-
trol. In these works, NNs are used as static function approximators or, when their
input is a tapped delay line7, to model a finite memory functional dependence.

With the advent of deep learning approaches, the use of NN became popular
again. Deep learning is a trendy word for an architecture were multiple hidden
layers are stacked upon each other. Hinton et al. (2006) showed that each hidden
layer could be trained separately by treating each layer as a restricted Boltzmann
machine, after which the training is fine tuned with back-propagation. Although

6Here a truck needs to be driven backwards given a desired target position.
7At any moment in time the network input contains several time instances of the input

signal. For instance, the network input contains the current and previous value of the input
signal.



24 1 Introduction

this publication generated much interest, the underlying concepts themselves are
not new. For instance, the Neocognitron architecture by Fukushima (1980) intro-
duced a stacked neural network to build a pattern recognition mechanism. Fur-
thermore, Schmidhuber (1992) already demonstrated that it is possible to train a
stacked network layer by layer in combination with a final optimization step with
back-propagation. In this publication, however, each layer is a Recurrent Neural
Network instead of a feed-forward NN.

1.5.5.1 Neuron and network state

Previously I defined a system/plant state as being a set of parameters that com-
pletely describe the system at a particular moment in time. Given this general
description, a neuron state can be defined as follows: A neuron is completely de-
scribed by its activation function and when this activation function depends on
time, the value of such activation function defines the neuron state. The network,
on the other hand, is completely described by all neuron states and the connections
between them. When these network connections are time independent the current
network state is defined by the current state of all the neurons.

1.5.5.2 Recurrent Neural Networks

Feed-forward NNs are useful to create a static mapping between the network out-
put and input. The mapping of this network does not depend on time, preventing
the network to sustain a certain degree of contextual information. However, many
modeling tasks, such as time series prediction or unsegmented connected hand-
writing recognition (Graves et al., 2009), exhibit a dynamic temporal behavior. A
workaround for feed-forward NNs is to use a time window such that information
from previous time steps is incorporated into the static input-output mapping. A
more natural and biological plausible way is to add internal feedback connections,
called recurrent connections, into the feed-forward network causing the neuron
states of the network to depend on previous states. In other words, such Recurrent
Neural Networks (RNNs) exhibit a memory-like behavior due to these recurrent
connections.

Within the field of non-linear control, the RNNs also provide a more natural
and richer alternative to using tapped delay lines or NNs. These RNNs have been
used very successfully to control non-linear dynamic systems (Levin and Narendra,
1996; Su and McAvoy, 1997; Pan and Wang, 2011). In recent work, Prokhorov
(2007) superbly demonstrates the very rich modeling capabilities of RNNs in a
neurocontroller for the electric throttle of a hybrid vehicle. Although several neu-
rocontrollers incorporate some prior knowledge, some approaches achieve control
without any prior information about the plant or robot. For instance in (Wang and
Hill, 2006) and (Wang and Hill, 2007), an adaptive neural controller is used to em-
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bed the unknown system dynamics into the control process. In (Chow and Fang,
1998), two RNNs are used: one for approximately modeling the nonlinear plant,
the other to control towards the desired plant response.

Training such RNNs is a bit more complicated than training a feed-forward
neural network. However, Werbos (1990) developed a generalization of the Back-
Propagation algorithm of Rumelhart et al. (2002) based on the following insight.
An RNN can be represented by a single hidden layer where the input also includes
the previous neuron states. These previous states can in turn be represented by
again a single hidden layer that depends on the previous input and neuron states.
An RRN can thus be unfolded over time such that it resembles a multi-layered feed-
forward NN. The number of hidden layers within such an unfolded RNN depends
on the number of time steps of the training data. The error on the output can again
be propagated backwards through the unfolded network and thus time, hence the
name for the entire process: Back-Propagation-Trough-Time (BPTT). However,
this algorithm is based on the stochastic gradient descent learning approach, caus-
ing BPTT to suffer from the same weaknesses: slow convergence times and the
possibility to get stuck into a local optimum (not the overall best solution). Addi-
tionally, there exists the possibility that gradient information calculated with BPTT
fades away due to the number of hidden layers which introduce a large number of
non-linearities between the past and present. This fading gradients problem, and
the regular bifurcations encountered during training using stochastic gradient de-
scent (Bengio et al., 1994; Pearlmutter, 1995; Suykens and Osipov, 2008) make
RNNs notoriously difficult to train.

1.5.5.3 Reservoir Computing

To overcome the difficulties of training a RNN, researchers have found an alter-
native solution. Instead of training all the connection weights of a RNN, only the
connections to the output layer, often called readout, are trained. All other connec-
tion weights, are randomly initialized and kept fixed during training. This approach
simplifies the training of an RNN such that any regression or classification ap-
proach can be used to train the readout layer. Often, linear approaches are used be-
cause they ensure convergence and yield a globally optimal solution. When a linear
method is applied, the neurons’ states within the RNN provide features which are
non-linear transformations of the input data. This is similar to the underlying mech-
anisms of most non-linear regression methods, as described in Section 1.5.4. This
concept of simplifying the training of a RNN has been introduced independently
by Jaeger (2001) as Echo State Networks (ESNs), Maass et al. (2002) as Liquid
State Machines (LSMs) and a few years later by Steil (2004) as Back-Propagation
Decorrelation, all under different names due to their subtle differences. For in-
stance, ESNs are used for analog neurons, while LSMs are more general and can
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be used for both analog and spiking neurons8. Due to their similarity, Verstraeten
et al. (2007) unified these three approaches under the name Reservoir Computing
(RC), which is now commonly used. The randomly connected network within a
RC-system is called the reservoir. For a detailed overview I would like to refer
to Lukosevicius and Jaeger (2009). Within this dissertation I will only consider
the ESN approach, of which a detailed description is given in Chapter 2. The
insight that an ESN maps the input onto a high-dimensional feature space, more
specifically onto the reservoir states, allows us to consider the reservoir as a spa-
tiotemporal kernel of which the feature space is calculated explicitly. Hermans and
Schrauwen (2011) extended this idea to infinitely sized recurrent neural networks
by using recursive kernels. ESNs have been proven to be successful on tasks such
as time-series prediction (Jaeger and Haas, 2004; wyffels and Schrauwen, 2010),
speech recognition (Skowronski and Harris, 2004; Triefenbach et al., 2010), epilep-
tic seizure detection (Buteneers, 2012) and robot navigation (Antonelo, 2011). In
Verstraeten et al. (2005) stochastic bitstream neurons were used to build a reser-
voir system suitable for hardware implementations. In fact, a reservoir does not
need to be a neural network. Any dynamical system creates a feature mapping
from a given input. For many of them, the state space dynamics can be tuned in
such a way that this mapping becomes useful for computations. This allows the
concept of Reservoir Computing to be applied on physical systems such as analog
electronics (Schürmann et al., 2004; Schrauwen et al., 2008), optical computers
(Vandoorne et al., 2008), biological neural tissue (Nikolić et al., 2006), or a water
surface (Fernando and Sojakka, 2003). Considering Pfeifer and Iida (2005), robots
can also provide a similar mapping to a high dimensional state space, allowing the
morphology of the robot to be used for computational purposes. Caluwaerts and
Schrauwen (2011) showed that high-level environmental information can be ex-
tracted form the state of a tensegrity robot. Nakajima et al. (2013) demonstrated
that the body of an octopus robot is behaving as a reservoir with which computa-
tions can be performed.

1.5.6 Controlling a robot
In order to learn a model, every modeling approach such as an ESN needs to be
provided with data (e.g., observations and experience). However, a robot or plant
in general, is a real world system on which the physical laws act in continuous time.
The controllers that drive these systems, on the other hand, are implemented on dig-
ital computing units which operate in discrete time. This difference in time domain
should be taken into account when controlling a plant. As shown in Figure 1.11,
the observations of the plant response to a control signal are made by a sensor. This

8A spiking neuron represent a more accurate neuron model where the neuron activity
depends on the number of spikes that enter the neuron.
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Figure 1.11: Schematic overview of how continuous time
information from the plant is observed by the controller, and
how the discrete time control signal is converted to a contin-
uous time signal which drives the actuation of the plant.

sensor converts the continuous time observation to a discrete version by sampling
the observations every ∆t. In this dissertation, ∆t represents the control period at
which the plant is controlled. This corresponds to the rate at which sensor samples
are used. To indicate the difference in time domain, t is used for continuous time
and k for discrete time. They are related to each other through:

t = k∆t such that t +∆t corresponds to k +1 (1.3)

After recording observing the sensor value, the controller calculates a control com-
mand which is converted to a continuous time actuator signal. This actuator signal
is constructed by keeping the calculated discrete values constant during an entire
time step ∆t (zero-order hold). This means that a new control command is sent
every time step ∆t. When controlling a real robot, the time step size is important
because the controller can not take longer than ∆t to produce a new command (real
time constraint). Increasing the control period is not a good solution if fast respon-
sive behavior is required. When using a simulation model, however, it is possible to
halt the integration of the physical simulation environment during which the con-
troller can take as much time as needed to calculate a new control signal. As a
result, it is possible that complex control algorithms that work well in simulation
do not necessarily work well in real time. Therefore, control approaches that can
benefit from parallel computations, e.g., Echo State Networks, are better suited.
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1.6 Dissertation structure and contribu-
tions

Reservoir Computing (Chapter 2)

A Reservoir Computing approach (RC) is a technique that efficiently trains a Recur-
rent Neural Network by only training the output connection while keeping all other
connections fixed. Although there exist several RC approaches, only the Echo State
Network (ESN) technique is considered. As most approaches within this disserta-
tion depend on ESNs, this chapter provides a detailed description of the technique,
the influence of its most important parameters and different training algorithms that
can be applied.

Motion Pattern Generator (Chapter 3)

This chapter gives a brief introduction to dynamical systems and how the dynamics
can be exploited to embed motion demonstrations. An ESN based Motion Pattern
Generator (MPG) is described that can generalize beyond the motion demonstra-
tions. Although the embedding of periodic motions existed before, I extended its
use to learn multiple discrete motions into a single ESN. Additionally, it is demon-
strated that both periodic and discrete motions can be embedded at the same time
and with the ability to switch between them. The underlying dynamics of these
motions are investigated as well. Finally, I proposed a dynamical system approach
to obstacle avoidance that is inspired on vector fields in the presence of repellers.
This method is able to modify any motion trajectory in real-time, without the need
of knowing the entire trajectory beforehand.

Adaptive Feedback Controller (Chapter 4)

The design of the Inverse Modeling Adaptive (IMA) control framework is pre-
sented of which an ESN-based implementation is evaluated on several control tasks.
Its model independence is demonstrated by applying it on control tasks, each with
different dynamics. I investigate its convergence and stability properties, and com-
pare its performance with specifically designed task-depending control techniques.

Control Hierarchies (Chapter 5)

In this chapter two control hierarchies are presented. The first hierarchy intro-
duces the concept of a biologically inspired control approach that tries to represent
rich motion skills by the modulation and combination of a limited and predefined
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set of motion primitives. By some elementary experiments this modulation con-
cept is evaluated. The second hierarchy, called Modular Architecture with Control
Primitives (MACOP), takes another direction. Instead of predefining the motion
primitives, only a number of untrained IMA controllers are designated to repre-
sent the primitives. By defining a high level description of how these primitives
should cooperate, the actual control primitives emerge unsupervised. Thanks to
such heuristic definition it is shown that the complexity of the task is divided over
several less complex tasks. MACOP is evaluated on an inverse kinematic learning
task for a both a simulated and real-world robot.

Motion Planning and Control (Chapter 6)

The use of the previously proposed IMA controller is extended to the control of
underactuated systems by incorporating a sample-based planning algorithm. By
learning a forward model of the task, it is shown that the dynamics can be explored
to find a state space trajectory that solves the task. Given this trajectory, MACOP is
used to learn the corresponding control command. It is revealed that this approach
introduces feedback in such a way that the approach becomes robust against inac-
curate state space paths or noise. Furthermore, the concept of a simulation-based
control framework is presented which learns both the dynamics and control iter-
atively and simultaneously. Finally, I discuss how this simulation-based control
framework resembles to the underlying mechanisms of Reinforcement Learning.

Conclusions and Future Perspectives (Chapter 7)

Finally, an overview of this dissertation is given together with the corresponding
contributions and conclusions. I also present some interesting future research di-
rections that build upon the work in this dissertation.
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2
Reservoir Computing

As mentioned in the Introduction, using linear regression as a modeling approach
has the advantage of being easy and fast. However, the achieved modeling perfor-
mance strongly depends on the task. When there exists a linear mapping from the
observations to the desired outcome, a linear model suffices. On the other hand,
when there only exists a non-linear mapping, more advanced regressors are needed
to produce a good result. Approaches like Gaussian Process Regression, Gaussian
Mixture Regression or Support Vector Regression are often used in such cases. Al-
though they have a stronger modeling ability, they are more difficult and slower to
train. Another approach to solving non-linear modeling problems is to transform
the observations in such a way that, after the transformation, they can be linearly
combined to achieve the desired non-linear mapping between the observation and
the outcome. In this case, the difficulty is shifted to finding the right non-linear
transformation.

The concept of Reservoir Computing (RC) is based on the observation that lin-
early combining the states of a Recurrent Neural Network with certain algebraic
properties suffices to achieve competitive performance on a wide variety of practi-
cal applications (linear and non-linear).

I start this chapter by describing an Echo State Network (ESN) which is one of
the original incarnations of RC. Although I have only used ESN in this dissertation,
the chapter is concluded with a brief overview of some of the other techniques
belonging to the RC paradigm together with a short enumeration of some of the
application fields.
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Figure 2.1: Description of an Echo State Network. Dashed
arrows are the connections which can be trained. Solid ar-
rows are fixed. Wh

g is a matrix representing the connections
from g to h, where r, i,o,b denote reservoir, input, output,
bias, respectively. u(k), o(k) and a(k) represent the input,
output and neuron states, respectively.

2.1 Echo State Networks

2.1.1 General network topology
An Echo State Network consists of an input layer, a Recurrent Neural Network
(RNN), referred to as reservoir, and an output layer (often called readout). The
connections between these parts determine the topology of the ESN. There exist
many possible topologies/hierarchies, each with their own interesting properties.
However, the description in this section is limited to a topology which is used as a
building block for the control approaches described in this book. As show in Fig-
ure 2.1, an ESN has connections running from the input layer to the reservoir and
from the reservoir to the output layer. Furthermore, the use of output feedback con-
nections is integrated in this topology description. Why and when these feedback
connections are necessary will be described later on in this section.

2.1.2 Internal network state
One of the main purposes of using ESNs in this dissertation is to create a model of
a plant. This requires that the timescale of the network dynamics matches to that of
the plant dynamics. In this work most input signals driving an ESN are generated
by plants, which are continuous dynamical systems. However, as we mentioned
in the introduction, computer processing of such signals requires them to be dis-
cretized by sampling at a fixed sample rate. Choosing a sample rate that preserves
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sufficient information in the input signal to create a good model is therefore very
important. For instance, when the sample rate is too high, the intrinsic dynamics
of an ESN with a neuron model described in Equation (1.2) might be too fast. To
improve the modeling capability of an ESN, the underlying dynamics over a much
longer time window need to be modeled as well. Down-sampling the input signal
might reduce the length of the needed time window. It is possible, however, that
essential information is lost when down-sampling the input signal. The sampling
rate should be above the Niquist rate in order to get an alias-free signal sampling.
Therefore, a more intelligent and continuous approach is needed. To slow down
the ESN’s dynamics, we take a look at a continuous time version of differential
equation (Jaeger et al., 2007):

ȧ =
1
c

(tanh(Wr
ra(t)+Wr

iu(t)+Wr
oo(t)+Wr

b)−a(t)) , (2.1)

where c > 0 denotes a time scale global to the ESN and where ai(t) denotes the
neuron state of the ith neuron of all N neurons in the reservoir. Furthermore, u(t)
is the input signal and o(t) the output produced by the ESN with a dimensionality
of respectively Nin and Nout. The feedback signal (from output to reservoir) has a
dimensionality of Nout which allows the reservoir to use its own generated output
signal o(k) as input. Additionally, an input and output bias are assumed. The
input bias can be considered as an extra input dimension with a constant signal
equal to one. The output bias can be considered as an extra reservoir state with
a constant value equal to one. The weight matrices Wh

g represent the connections
from g to h, where r, i,o,b denote reservoir, input, output and bias, respectively.
The corresponding matrices Wr

r, Wr
i , Wr

o and Wr
b have a dimensionality of N×N,

N×Nin, N×Nout and N×1, respectively. Throughout this work we use the tanh()
function as a non-linearity that bounds the states a(t) to values between −1 and 1.
An Euler discretization with a step size of ∆t (assumed to be small) approximates
the derivative of an activation function as follows:

ȧ≈ a(t +∆t)−a(t)
∆t

. (2.2)

By introducing an extra parameter γ = ∆t
c , called leak rate, the continuous time

neuron dynamics are approximated by the following update equation:

a(t +∆t) = a(k +1) = (1− γ)a(k)+ γ tanh(Wr
ra(k)+Wr

iu(k)+Wr
oo(k)+Wr

b) .
(2.3)

These neuron states are also called echos because they are non-linear transforma-
tions of the current and past inputs. The input signal u(k) is assumed to be a finite
sequence of data. This is needed if we want to train the ESN in a finite amount of
time. However, as I will discuss later on, it is possible to train the ESN incremen-
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Figure 2.2: Both plots illustrate the influence of the leak
rate parameter γ on two neuron states (left plot: 1st neu-
ron, right plot: 20th neuron) over a course of 100 time sam-
ples. The gray scale of each signal indicates the choice of a
γ from the range [0.01,0.0141,0.0200, · · · ,0.6310,0.8913]
from light gray to black. The red signal represents γ = 1 (no
leak rate).

tally (or online) where new data is provided during operation of the ESN.
By tuning the leak rate, the dynamics of the network can be slowed down in

such a way that they match the intrinsic timescale which is needed to model the
plant. To illustrate the influence of this leak rate, I show in Figure 2.2 how the
network state dynamics are affected by γ . It is interesting to note the temporal
smoothing of the neuron state and its effect on the amplitude. Using no leak rate
allows for high frequencies within the neuron states to persist. Although such a
ESN has fading memory1 due to its recurrent connections, this fading memory is
often too small to hold the necessary modeling information. A low leak rate on the
other hand, allows for the past state to have its effect on the current state yielding a
smoother signal with less high frequencies but a larger fading memory.

2.1.3 Input connections
The connections between the input layer and the reservoir are represented by the
Wr

i matrix with a size of N×Nin. Each column contains weights drawn from a stan-
dard normal distributionN (0,1)2 and represent the connections from a single input
dimension to all N neurons. When such a weight is equal to zero, the corresponding

1In order for the ESN concept to work, the reservoir is conditioned in order to obtain the
Echo Sate Property (ESP). In Section 2.1.4.1 this will be explained in more detail. However,
less formally, when the ESP is fulfilled, the reservoir has a fading memory in which any
information from initial conditions diminishes asymptotically over time.

2Other choices are possible, e.g., U(−1,1).
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neuron is unaffected by the value of this input dimension which is equivalent to not
having a connection.

2.1.3.1 Input scaling

The non-linearity used in Equation 2.3 has an approximately linear and a very non-
linear part. Which part is activated depends on the input signal u(t) and the input
weights Wr

i , among others. When they are too small, the ESN will have more
linear dynamics and when they are larger more non-linear network dynamics will
be present. However, making them too large causes the saturation of the tanh()-
function, in such a way that the neuron states become constant and prevent them
to encode the needed dynamics for the task. The scaling of the input also depends
on the number of input signals as more inputs sum to a larger value and thus can
saturate the used non-linearity more easily. Therefore, normalizing the input signal
and choosing an input scaling factor that regulates the global scaling is important.
Throughout this work, unless mentioned otherwise, we will normalize the input
signal as follows:

un(k) =
u(k)−µ

σ
, (2.4)

where µ and σ denote the mean and standard deviation of un(k) value’s range. The
weights Wr

i are scaled by the input scaling factor f r
i which is equivalent to drawing

the weights from the normal distribution N (0, f r
i ). As the output feedback weights

Wr
o have the same purpose as the input weights, they are chosen from the distri-

bution N (0, f r
o) where f r

o is called the feedback scaling factor. In Figure 2.3, two
neuron states are shown for different input scaling factors. It is clear that there ex-
ists no temporal smoothing effect when modulating the input scaling. Furthermore,
one can notice that the non-linear changes in shape are caused by the properties of
the used hyperbolic tangent function (e.g., signal saturation near 1 and −1). The
right plot of Figure 2.3 shows an unexpected scaling behavior in the neuron state
compared to the left plot. When we neglect input scaling (red signal) the impact
of the previous neuron state is longer than the current input. However, by increas-
ing the input scaling the input becomes more dominant and as a result the specific
neuron is affected more by the larger neuron activity of the other neurons and its
own input, compared to its own state. This also depends on the weights between
the neurons and with what magnitude they can change the neuron state.

2.1.3.2 Bias

In Equation 2.3 we use a tanh()-function as non-linearity. This is an odd (antisym-
metric) function:

tanh(−x) =− tanh(x). (2.5)
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Figure 2.3: Both plots demonstrate how 2 neuron
states change by the input scalings factor f r

i over a
course of 100 time samples. The gray scale of each
signal indicates the choice of a f r

i from the range
[0.1,0.1585,0.2512, · · · ,6.3096,10] from light gray to
black. The red signal represents f r

i = 1 (the input is not
globally scaled over all input weights).

Although for some tasks an antisymmetric function as non-linearity might be suf-
ficient, for most tasks it is needed to use a non-antisymmetric non-linearity. Intro-
ducing an extra input bias parameter breaks this antisymmetry by shifting the origin
upwards or downwards depending on its value. Furthermore, the Taylor expansion
of the tanh function consists of odd powers, and introducing a bias term causes
the occurrence of even powers in its expansion. The introduced input bias can be
considered as an extra input dimension with a constant value f r

b . In Equation 2.3
the input bias is denoted by Wr

b of dimensionality N × 1 where its elements are
drawn from the N (0, f r

b) normal distribution. In Figure 2.4, two neuron states are
shown for different bias values. The red signal represents the neuron state without
bias. When bias is added increasingly, the neuron state signal changes from black
to light gray.

2.1.4 Recurrent network connections

As stated in Section 2.1.1, an ESN contains a Recurrent Neural Network, called
reservoir, which is represented by a square connection matrix Wr

r. Each element
Wr

r,i j represents the connection weight from the i-th to the j-th neuron. In this work
the connection weights are drawn from a standard normal distribution N (0,1).
However, other distribution choices are also possible (e.g., uniform distribution
U(−1,1)).
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Figure 2.4: In this graph we demonstrate how 2 neuron
states are influenced by the use of a bias constant f r

b where t
represents the time in number of samples. The choice of a f r

b
from the range [1,0.8, · · · ,0.2,0] is represented by the gray
scale of each signal from light gray to black, respectively.
The red signal represents f r

b = 0 (when no bias is used).

2.1.4.1 Spectral radius

Together with the bias terms, the recurrent connection weights mainly define the
dynamical regime in which the network operates. In order for ESNs to useful,
these recurrent connections should obey the echo state property. As described in
Lukosevicius and Jaeger (2009) this property states that the effect of the current
input u(k) and reservoir state a(k) on the future state a(k + j) should gradually
diminish over time ( j → ∞). Furthermore, the influence should not persist or get
amplified. Because of the used non-linearity it is quite difficult to investigate the
influence of the chosen connection weights on the dynamical regime of the network.
However, by linearly approximating the tanh() non-linearity, the reservoir state can
be considered stable if all the eigenvalues of Wr

r are smaller than or equal to one.
If there exist eigenvalues that are larger than one, the neuron state will start to
grow exponentially until they get saturated by the used non-linearity. To prevent
this from happening, the recurrent connection weights Wr

r are scaled by the largest
absolute eigenvalue so that the largest absolute eigenvalue becomes equal to one.
Next, by scaling all weights with a parameter ρ called spectral radius, the dynamic
regime of the network can be regulated. Although for most practical applications
the echo state property is satisfied when ρ < 1, this is not a necessary nor sufficient
condition for the presence of the echo state property and should therefore rather
be used as a rule of thumb. As stated in Verstraeten et al. (2007); Lukosevicius
and Jaeger (2009); Caluwaerts et al. (2013b); Yildiz et al. (2012), the echo state
property can still hold for ρ > 1 with non-zero inputs and maybe lost for smaller
networks even when ρ < 1. In Figure 2.5 two neuron states are shown for several
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Figure 2.5: In this graph we demonstrate how 2 neuron
states change for different choices of spectral radius ρ where
t represents the time in number of samples. The choice of a
ρ from the range [0.5,0.5610,0.6295, · · · ,1.2560,1.4093] is
represented by the gray scale of each signal from light gray
to black, respectively. The red signal represents ρ = 0.99
(default spectral radius).

of ρ choices. A large spectral radius causes high aperiodic frequency changes in
the neuron state which is a typical observation of chaotic behavior. The lower the
spectral radius the more damped the system becomes.

2.1.4.2 Connection fraction

As mentioned in Section 2.1.2 each element Wr
r,i j of Wr

r represents the weight
of the connection from neuron i to neuron j. When this weight is equal to zero,
there exists no connection between both neurons. The sparser the matrix Wr

r,i j be-
comes, neurons become less and less connected to the other neurons. The fraction
of neurons a single neuron is connected to is regulated/indicated by the connection
fraction. When the connection fraction is 100%, each neuron is connected to itself
and to all other neurons. When a lower connection fraction is employed, randomly
distributed connection weights will be zeros. One of the reasons researchers use
sparse weight matrices, is because the execution of the computations can be per-
formed much faster. For instance in Triefenbach et al. (2010), the use of a sparse
connection matrix allowed the researchers to use ESNs of up to 20,000 neurons.
It has been shown in Büsing et al. (2010) and Drossel (2008) that the connection
fraction in non-linear networks with saturated neurons and neurons with a thres-
hold function as non-linearity, respectively, have a large influence on the network’s
performance. However, as long as the neurons operate in a quasi linear regime, the
connection fraction has little to no influence. This experience matches with the ex-
periments performed in Sun et al. (2012); Strauss et al. (2012); wyffels (2013) that
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show that the echo state property of the network is more essential than the topology
of the connections. Because in this work the ESNs are rather small in size, and
computational advantages are limited, I always use fully connected networks.

2.1.4.3 Linear memory capacity

The reservoir of an ESN is actually a high dimensional dynamical system and as
the word ‘dynamic’ suggests that its current state depends on a fading history of
previous reservoir states. In other words, the dynamical system has a certain mem-
ory of its previous states and also of the inputs which influence these states. If we
want to consider the use of ESNs for modeling/control applications, we need to be
able to quantify the amount of memory a reservoir has, and how this memory ca-
pacity is affected by the parameters of the reservoir. Consider an ESN with a single
input u(k) and output o(k) that is trained to produce a delayed version of its input
as output (o(k) = u(k−δ )). When only the linear part of the used non-linearity is
considered one can arguably consider, the linear memory capacity of this ESN as
a rough indicator of how long the history of the input signal is remembered by the
ESN. In order to measure the ESN’s ability to remember the history of the input,
the correlation between the input and the output signal is used. This correlation can
be written more formally as:

C(δ ) =
cov(u(k−δ ),o(k))

σuσo
, (2.6)

with σu and σo the standard deviation of the input and output signal, respectively.
When there is no correlation for a delay δ , C(δ ) = 0. Note that the applied input
signal should be uncorrelated noise because we only want to measure the memory
properties of the reservoir and any correlation within the input signal itself will
clutter these measurements. If we take the square of C(δ ), any correlation will be
indicated by a value that is bigger than zero but smaller than or equal to one. The
resulting function m(δ ) = (C(δ ))2 is called the memory function. Furthermore, the
linear memory capacity M is defined as:

M =
∞

∑
δ=0

m(δ ). (2.7)

The memory capacity of the reservoir is influenced by the properties which cause
the dynamical system to have a memory in the first place. For instance, the use of
recurrent connections allows a neuron state to depend on its previous state and on
that of other neurons. Additionally, we showed before that the use of leaky integra-
tor neurons modulates the temporal dependency of a reservoir state to its history.
In Figure 2.6 the memory function is plotted for different leak rates and input scal-
ings in the left and right plot, respectively. For every experiment 50 neurons were
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used. The red curve represents the use of no leak rate (γ = 1). As γ decreases in
value from dark to light gray, the tail of the memory function becomes increasingly
longer. The impact of the input scaling upon the memory function is more dramat-
ical. Lowering the value of the input scaling (from dark to light gray) causes the
reservoir to behave more linearly (linear region of hyperbolic tangent), yielding a
bigger area under the corresponding memory curve and thus a larger memory ca-
pacity. There exists of course an upper limit to the amount of memory a ESN can
have. As been suggested by Hermans (2012), one can encode at most N numbers
from a set of N uncorrelated other numbers without loosing precision. This means,
that the memory capacity is at most equal to N. Therefore, increasing the reservoir
size also increases the potential memory capacity of the ESN. In Figure 2.7 several
memory functions are shown, each for a different spectral radius. In the left plot
the influence of the spectral radius is less clear because of the non-linear behav-
ior of the network. However, by lowering the input scaling f r

i = 0.001 the network
becomes more linear and, as shown in the middle plot, the impact of the spectral ra-
dius on the memory function becomes more clear. In both the left and middle plot,
the spectral radius ρ changes from 0.5 (light gray) to 1.5 (black) or from linear to
possible chaotic behavior. The red curve represents ρ = 0.99. It is interesting to
note that in the middle plot the memory capacity increases for a larger ρ as long as
it is smaller or equal to one. When the spectral radius becomes larger than one, the
memory capacity rapidly decreases, although the network still retains some past in-
formation. The right plot of Figure 2.7 demonstrates how the reservoir size affects
the corresponding memory function. The light gray and black curves represent 20
and 80 neurons, respectively, while the red curve corresponds to a reservoir of 50
neurons. Again to clarify the influence f r

i = 0.001 is used. The main drawback of
analyzing linear memory capacity, is that it ignores any non-linear transformation
of the input signal. An interesting approach to include non-linear transformations
into the analysis of memory capacity, is by additionally investigating how well non-
linear functions of the input signal can be reproduced (Dambre et al., 2012). In this
work, however, only linear memory capacity is considered.

2.1.5 Output connections
The output connections are the connections between the reservoir and the output
layer, and are represented by the weight matrix Wo

r with dimension N + 1×Nout.
These weights are the only weights in the ESN that are modified to achieve the
desired network behavior. Modifying these weights is called training and in this
section we will describe an offline and an online approach to train them. Both ap-
proaches are linear in the sense that they try to find a linear combination of features
given by the ESN’s reservoir states and an output bias term. By extending the reser-
voir states with a constant value, the value of this bias term is trained as well. Each
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Figure 2.6: The left plot illustrate the influence of the leak
rate parameter γ on the memory capacity. The gray scale
of each curve indicates the choice of a γ from the range
[0.01,0.0141,0.0200, · · · ,0.6310,0.8913] from light gray to
black. The right plot demonstrate how the memory func-
tion changes by the input scalings factor f r

i . Here, the gray
scale of each signal indicates the choice of a f r

i from the
range [0.001,0.0016,0.0025, · · · ,6.3096,10] from light gray
to black. In both plots the red curve represents γ = 1 and
f r
i = 1 (no leak rate and input scaling).
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Figure 2.7: The left and middle plot illustrate the impact of
the spectral radius upon the memory capacity. However, the
left and middle plot differ in the used input scaling factor
(left plot f r

i = 1, middle plot f r
i = 0.001). The choice of a

ρ from the range [0.5,0.5610,0.6295, · · · ,1.2560,1.4093] is
represented by the gray scale of each curve from light gray
to black. The red curve in both plots represents ρ = 0.99.
The right plot demonstrates the effect of the reservoir size
on the memory capacity. The gray, red and black line denote
a reservoir size of 20, 50 and 80 neurons, respectively.
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column in the design matrix ΦΦΦ is a concatenation of all used features at time k:

ΦΦΦ =

�
a(0) . . . a(k) . . . a(K)

1 . . . 1 . . . 1

�
(2.8)

Given this design matrix, the ESN output o(k) is defined by each column in the
following matrix:

O = Wo
r

T ΦΦΦ. (2.9)

2.1.5.1 Output feedback

Work by Jaeger and Haas (2004), has demonstrated that ESN perform well in pre-
dicting time series. In order to simplify this task, the ESN’s output is fed back to
the reservoir. When output feedback is present in the ESN, the feedback signal
during training does not correspond to the actual produced output but is clamped
to the target output. Therefore, this procedure has the appropriate name teacher
forcing. To improve robustness and generalization capabilities a small amount of
noise is added to this teacher forced signal. I would like to refer to wyffels (2013),
for a more in depth study of Reservoir Computing systems with output feedback

In the following sections, I will present two different procedures for training
the output connection weights.

2.1.5.2 Linear regression

In order to train the output weights in such a way that the network output o(k) cor-
responds to a target output otarget(k), a quadratic error is typically minimized. Often
the Mean Square Error (MSE) is used as an error metric to define the quadratic dif-
ference between the network output and its target signal averaged over time. More
formally:

MSE =
1
K

K

∑
k=1

�o(k)−otarget(k)�2 (2.10)

=
1
K
�Wo

r
T ΦΦΦ−Otarget�F , (2.11)

with � · �F the Frobenius norm. Minimizing the MSE with respect to the output
weights is achieved by linear regression:

Wo
r = (ΦΦΦT ΦΦΦ)−1(ΦΦΦT Otarget). (2.12)

Calculating (ΦΦΦT ΦΦΦ)−1 to solve a system of linear equations explicitly is computa-
tionally demanding and does not give a good numerical solution when there exists
no unique solution for this system. Therefore, the Moore-Penrose pseudoinverse
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(Albert, 1972) ΦΦΦ+ = (ΦΦΦT ΦΦΦ)−1ΦΦΦT is often applied to compute a numerically sta-
ble least squares solution for the system of linear equations even if ΦΦΦT ΦΦΦ is ill
conditioned.

2.1.5.3 Regularization

Training an ESN to approximate an unknown relationship between certain obser-
vations and a corresponding output has the advantage that the underlying processes
need not be known explicitly to achieve a good model. Instead, based on a limited
set of acquired (observations, outcome) examples, an ESN implements the model
implicitly. On the other hand, the disadvantage of such an approach is that the
model is based on a limited number of examples, resulting in a model that might be
very accurate for the training examples but really bad when it needs to generalize
to unseen observations. Often, this poor generalization is related to the modeling
power of the learning approach. For instance, fitting a simple linear model to some
noisy data will generalize better than a model that uses all data points and in a sense
has learned all examples by heart instead of finding an underlying relationship be-
tween the model input and output.

This problem of fitting the data too well is called overfitting. To prevent the
model from being to sensitive to noise and thus overfitting the data, a trade-off has
to be made between modeling complexity and generalization ability. The modeling
power of an ESN is largely influenced by the size of its reservoir. Therefore, in
the past, the size of the reservoir was constrained in order that it was not too large
or too small, avoiding it to overfit or underfit the model, respectively. Optimizing
the reservoir size is computationally costly. Another approach to prevent overfit-
ting is to regularize the network by imposing some other constrains on the model
(e.g., some smoothness constraints). Often, normally distributed noise is added to
each neuron state during training so that the network becomes more robust to small
variations in the neuron state. As a result, the ESN becomes more robust against
small variations in the input, which allows the network to generalize better. A more
commonly used approach of regularization is to impose constrains on the norm of
the trained connection weights in such a way that they can not become too large.
More formally, the cost function J that we try to minimize becomes:

J (Wo
r ) = MSE+ν�Wo

r �F (2.13)

= �Wo
r

T ΦΦΦ−Otarget�F +ν�Wo
r �F , (2.14)

with �·�F the Frobenius norm and ν the regularization parameter, which regulates
the trade-off between the norm of the trained connection weights and the error
on the training data. Minimizing the cost function above is also known as ridge
regression or Tikhonov regression (Tikhonov and Arsenin, 1979; wyffels et al.,
2008). Given the cost function above, the resulting output weights can be calculated
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Figure 2.8: Illustration of the K-fold cross-validation pro-
cess for K = 3. V denotes a predefined set of possible reg-
ularization parameters νi. For each configuration k of vali-
dation (defined as ‘VAL’) and train set the validation error
ei,k is determined by calculating the MSE. The average error
ēi over all K configurations is compared to the average val-
idation error of the other regularization parameters. If νi is
smaller than the other options, νi becomes the optimal reg-
ularization parameter νopt. When all possible regularization
parameters are picked νopt is used to train the network with
all available train data and is consecutively evaluated on the
test data (not used before).

in one shot by modifying Equation (2.12) to:

Wo
r = (ΦΦΦT ΦΦΦ+νI)−1(ΦΦΦT Otarget), (2.15)

where I denotes the identity matrix. The regularization parameter ν needs to be
optimized for the used ESN and training data so that it optimally generalizes to
unseen data. Commonly, a grid-search is employed to find parameters that perform
optimally for a task. I will explain this optimization process for the case of the
regularization parameter although it is applicable for any ESN-parameter. During
grid-search every value among a set of possible regularization parameter values is
picked and used to train an ESN using only a part of the data (the training set). Its
performance is validated on an unseen part of the data. To remove the chance of
choosing the training and validation set badly, K-fold cross-validation is applied.
As shown in Figure 2.8, the available data for training is divided into K equally
sized folds/parts of which K−1 parts are used for training the ESN, and 1 part for
evaluating the performance of the chosen ν . Next, the process is repeated K times
until all folds are used once for validation for a given ν . The average performance
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of the chosen ν on all the validation folds determines when the chosen parameter is
optimal compared to the others. After finding an optimal regularization parameter,
the ESN is trained again, but on all parts used in the K-fold cross-validation and
tested on yet another unseen part of the data (the test set).

2.1.5.4 RLS and FORCE-learning

Equation 2.15 allows us to train the output weights Wo
r in one shot when all the data

is known. Such an approach is called an offline learning method. In a task where
new data becomes available during the task (online learning), it is possible to add
this new data and calculate the output weights again. However, the covariance ma-
trix need to be recalculated as well, which becomes more and more computationally
intensive.

RECURSIVE LEAST SQUARES
Other approaches such as Recursive Least Squares (RLS) (Plackett, 1950) ap-

proximate the inverse of the covariance matrix iteratively. As a result, such an
incremental approach can adjusts the output weights Wo

r every time new data is
provided without having the burden of becoming slower as more data becomes
known.

Similar to the described offline linear regression approach, the error we want to
minimize is the difference between the predicted model output o(k) and the target
output otarget(k):

e(k) = o(k)−otarget(k) (2.16)

= Wo
r (k−1)T ΦΦΦ(k)−otarget(k). (2.17)

The running estimate of the inverted covariance matrix (ΦΦΦT ΦΦΦ)−1 is calculated as
follows:

P(k) =
P(k−1)

λ
− P(k−1)ΦΦΦ(k)ΦΦΦT (k)P(k−1)

λ (λ +ΦΦΦT (k)P(k−1)ΦΦΦ(k))
. (2.18)

where λ denotes the forgetting factor that controls the rate at which the influence
of historical data diminishes. Choosing λ depends on the task at hand. The smaller
λ is, the smaller the contribution of previous data points and the larger the changes
to the output weights. If λ becomes too small, the RLS algorithm can become
unstable. In contrast, if λ = 1, the algorithm will take all data points into account
equally. Commonly, λ is chosen between 0.98 and 1 (Ifeachor and Jervis, 2002).
Whenever I apply RLS, I use λ = 1 unless mentioned differently. After calculat-
ing both equations the output weights are updated such that they take the newly
provided data into account:

Wo
r (k) = Wo

r (k−1)− e(k)P(k)ΦΦΦ(k). (2.19)
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For both update Equations (2.18) and (2.19) the initial conditions are set to P(0) =
I
α and Wo

r (0) = N (0,1), respectively. Here, the parameter α acts as a learning
rate and should be tuned depending on the particular task. However, in practice, α
is chosen arbitrarily but < 1. These initial conditions are called soft constraints in
literature. RLS is equivalent to ridge regression if the forgetting factor λ = 1 (Ismail
and Principe, 1996). Therefore, α is sometimes referred to as a regularization
parameter instead of a learning rate.

RLS is very similar to the Kalman filter which is in fact a generalization of
RLS. When the variance of the process and measurement noise are equal to respec-
tively zero and one, the Kalman filter is equivalent to RLS with λ = 1.

The weight updates calculated by RLS are initially very large for a few algo-
rithm iterations after which the magnitude of the weight changes gradually becomes
smaller. In other words, RLS tries to minimize e(k) as fast as possible by making
rapid and effective weight modifications.

FORCE LEARNING
This property of minimizing the error as fast as possible, makes RLS suitable for

the FORCE (first-order reduced and controlled error) learning procedure proposed
by Sussillo and Abbott (2009). The FORCE learning approach modifies connection
weights either external to or within a recurrent neural network so that chaotic spon-
taneous activity (spectral radius ρ > 1 ) is changed into a wide variety of desired
activity patterns. This is in contrast to standard ESN learning approaches where
the network activity ought to be non-chaotic (rule of thumb ρ < 1). Furthermore,
in FORCE learning, the feedback loop from the output layer to the network are
left intact and unclamped during training. Even if the produced output is incorrect
during the first few algorithm iterations, the algorithm is robust enough to handle
such differences together with the chaotic network activity. The FORCE procedure
closely approximates the desired target signal but it does not clamp it. These small
numerical differences between the actual and target network output during training
allows the approach to sample instabilities in the recurrent neural network and sta-
bilize them. Another interesting observation made by Sussillo and Abbott (2009) is
that the magnitude of the trained weights becomes smaller if the chosen spectral ra-
dius of the network is larger. One can thus argue that the spontaneous and chaotic
network activity is needed for regularization purposes to achieve robustness and
generalization capabilities. Additionally, the number of trials needed to train the
network is lower when the spectral radius is larger. Given these observations, one
could consider to choose the spectral radius around ρ = 1.5. However, it depends
on the speed at which the training information is provided in the form of training
examples. An algorithm that learns too fast will over-fit on the limited data seen
during training. For control tasks, where useful training data becomes available at
a slower rate than when trying to learn a simple pattern generator, it is important
not to choose a spectral radius that is too large.
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2.2 Other Reservoir Computing flavors

I mentioned before that around 2001 the ESN approach was proposed to tackle the
several shortcomings of which classical training approaches of Recurrent Neural
Networks suffer. Around the same time Wolfgang Maas independently proposed a
similar approach, called Liquid State Machines (LSM) (Maass et al., 2002), with
the same conceptual idea of only training the readout but for spiking neurons in-
stead of analog neurons. Both ESN and LSM had predecessors in computational
neuroscience (Dominey, 1995) and subsequent branches in machine learning such
as Backpropagation-Decorrelation by Steil (2004). They are now commonly known
as Reservoir Computing approaches. Although in this work, all modeling problems
are solved by using ESNs, we briefly describe some of the other RC flavors.

2.2.1 Liquid State Machines
LSMs originate from a computational neuroscience background where their pur-
pose was to clarify principal computational properties of neural microcircuits. The
internal dynamical system, referred to as liquid, follows the analogy of the ex-
cited network state as being ripples on a water surface. Instead of using simple
sigmoid neurons, more sophisticated spiking neuron models are used. This ap-
proximates the physical brain neuron and its dynamical synaptic connections more
accurately. Furthermore, the internal topology of the recurrent neural network is
more restricted resulting in a more realistic from a biological point of view. The
internal connections are randomly chosen within these biological constraints and
remain fixed. All training occurs in the output connections. As a result, LSMs can
perform more complicated information processing and they are more suited than
ESNs to transfers natural neural mechanisms to. However, this comes at the cost
of being harder to implement, to tune and to emulate. All this added complexity
compared to ESNs makes them less popular for engineering applications.

2.2.2 Backpropagation-Decorellation
Backpropagation-Decorellation (BPDC) is a learning rule that resembles the idea
of separating the reservoir and readout and only train the latter. However, BPDC is
based on an analysis of the weight dynamics of a RNN trained with a special error
gradient method (Atiya and Parlos, 2000). Steil (2004) observed that the output
weights were changing quickly compared to the rate at which the internal weights
were changing. BPDC exploits this observation by keeping the RNN weights fixed
after being chosen randomly and only training the output weights in an iterative
and online fashion.
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2.2.3 Other types of reservoirs

The reservoir within a Reservoir Computing system does not necessarily have to be
a recurrent neural network. As mentioned previously, an RNN behaves like a dy-
namical system. Therefore, other high dimensional dynamical systems with a fully
or partially observable state that can be influenced by an external input, can be used
as well. For instance, Fernando and Sojakka (2003) took the word ‘reservoir’ or
‘liquid’ quite literally and used a bucket of water as a replacement for the reservoir.
They perturbed the water with mechanical actuators and used the observed surface
ripples as a feature vector. Based on these features, a simple readout perceptron was
trained to solve the XOR problem and to undertake speech recognition. Temporal
patterns of excitation are converted by the water to observable spatial patterns. To
clarify this, one can think about 2 consecutive drops perturbing a water surface in
the middle of a bucket. The ripple effect of the first drop followed by the second
drop allows the difference in time between both drops to be observable at any point
in time after the drops have touched the water and before the ripples have faded
away. Next to the inherent stability of water, local interference between the ripples
caused by simultaneous sensory inputs allows for non-linear parallel computing.

The idea of morphological computation, where the properties of the body are
exploited to offload computations needed for locomotion (or other processes), so
that control is simplified, has been linked to Reservoir Computing as well. Here,
the body acts as the observable dynamical system, i.e., the reservoir. Researchers
have investigated how abstract representations (e.g., mass-spring-damper systems)
of a biological system can be used to do computations (Caluwaerts and Schrauwen,
2011; Hauser et al., 2012; Caluwaerts et al., 2013a). Instead of using a structurally
different physical representation of a reservoir, Vandoorne et al. (2008) made a pho-
tonic implementation of a RNN in which each neuron is represented by a Semicon-
ductor Optical Amplifier (SOA). Although the behavior of a single neuron differs
drastically from a hyperbolic tangent neuron, the researchers have demonstrated
that they can successfully learn classification tasks. Whether the use of an optical
SOA network is beneficial in terms of power consumption and processing speed,
however, remains to be seen. Other hardware implementations of a reservoir use
analog computing devices, such as a VLSI neural network, with which they can
achieve similar results as when using a software RC implementation (Schürmann
et al., 2004). Surely, the concept of RC can be transferred to a wide variety of fields
in which its use still needs to be discovered.
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2.3 Applications

ESN and Reservoir Computing (RC) approaches in general have many applications
in a wide variety of fields. I would like to conclude this chapter by giving a brief
overview of some of these applications and their results.

• Time series prediction: In Jaeger and Haas (2004) an RC approach is used
to predict the behavior of chaotic systems such as the Mackey-Glass and
Lorenz attractors (Mackey and Glass, 1977; Lorenz, 1963), in both cases set-
ting a new state-of-the-art performance. Here the RC approach was trained
to predict the system state one time step ahead. However, by using the
trained approach recursively, it becomes possible to predict more than one
step ahead. Consequently, for predicting the weather or stock market be-
havior such an approach becomes really attractive (wyffels and Schrauwen,
2010).

• Epileptic seizure detection: The good modeling abilities of RC approaches
allow, their use in medical signal processing applications such as the detec-
tion of epileptic seizures in animal and human EEG data where they can
compete with state-of-the-art solutions (Buteneers et al., 2012).

• Speech recognition: A more advanced application that exploits RC’s mod-
eling abilities concerns the classification of speech signals. In Verstraeten
et al. (2006) for instance, the at the time state-of-the-art Hidden Markov
Model (HMM) based recognizer was outperformed by a Liquid State Ma-
chine implementation. Later on, researchers from the Speech Lab in Ghent
university proposed a large scale RC based hierarchy that is able to recog-
nize the elementary sounds of speech (the so-called phonemes) with state-of-
the-art performance while still leaving room for improvements (Triefenbach
et al., 2013).

• Robotic applications: Another application field that is more related to the
topic of this dissertation is that of robotics. In Reinhart (2011), a number
of Back-Propagation De Correlation based approaches are applied in several
robotics applications. The authors demonstrated the approach’s ability to
learn the inverse kinematics of a robot arm. In Antonelo (2011), ESNs are
used to model a navigation system for autonomous mobile robots.
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2.4 Conclusions

In this chapter, the Echo State Network (ESN) approach was presented, which is
a particular Reservoir Computing approach. An ESN consists of an input layer, a
randomly connected Recurrent Neural Network (RNN) and an output layer. Algo-
rithms that train a RNN adapt all connection weights, which is a slow and tedious
procedure of which the convergence can not be guaranteed. Furthermore, training
all connection weights makes the learning process vulnerable to become disturbed
by bifurcations. Instead of training all connections of the RNN, the ESN approach
only trains the connection weights to the output layer. As a result, ESNs are easy to
implement and the training can be achieved in one shot. The randomly connected
RNN behaves as a dynamical system and, apparently, random dynamical systems
are good non-linear dynamical models that outperform other methods on a number
of tasks, e.g., time series prediction. ESNs and RNNs in general, are able to create
a state representation of the time context in the data. It is also possible to use a Time
Delayed Neural Network (TDNN) for this purpose. However, its modeling capacity
is limited due to the fixed size of the time window (Trebatickỳ, 2009). Furthermore,
TDNNs require a large number of parameters, especially when a large number of
input/output dimensions are used (Ozturk, 2007). Based on these advantages, I will
use ESNs to learn non-linear dynamical models.



3
Designing a Motion Pattern

Generator (MPG)

In the introduction I mentioned that traces of self-operating machines, including
artificial people, can be found in ancient mythologies. Engineers and inventors
from ancient civilizations such as ancient China, Greece and Egypt tried to build
such automated machines (robots), some of which resembled humans and animals.
We might never know what the early motivations were for building such robots.
A possible motivation might be that humans (biological systems) have an urge to
minimize their labor by optimizing certain tasks. Arguably, this urge is rooted in
evolution itself, where natural selection causes species to evolve in such a way that
survival becomes possible.

Today robots can be found in most factories, increasing the accuracy and pro-
duction speed of many products while reducing the labor. These robots operate in a
fully structured and closed environment where the presence of workers is avoided.
During the last century, however, researchers began to investigate how robots can be
introduced in unstructured (non-deterministic) environments where human-robot
interaction is possible. In such environments the complexity of the required control
increases dramatically, making the use of classical programming approaches much
more difficult.

Another more popular approach is that of imitation learning or learning by ex-
ample, where the rich motion/motor skills of for instance humans are transferred
to robots. Robots performing such movements are often perceived as being real-
istic and skillful, and are commonly used to bring robotic toys to ‘life’. However,
evaluation of the accuracy of these movements shows that they are not adaptive in
any way. They are in fact recorded open loop movements; even when one records
a large set of movements for a wide variety of situations, it is impossible to antic-
ipate for all possible scenarios. To solve this problem, the recorded motions need
to be extended to a more continuous space to allow generalization beyond the pre-
defined context. When such a generalization exists, the robot can be connected in
a closed loop yielding modified movements depending on the interaction with the
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environment.

In this chapter I will describe the design of a motion pattern generator (MPG)
that is able to generalize beyond demonstrated motion examples. This chapter starts
with a short introduction to dynamical systems and some of their related properties,
because these properties are important for understanding the underlying mecha-
nisms of the presented MPG. Afterwards, the presented MPG is applied and eval-
uated on a simple robotic task and the generalization, robustness and modulating
abilities are demonstrated on a set of recorded motions. Finally, I present a method
of modifying the dynamics of the MPG so that obstacles can be avoided in real time
while the motions are generated.

3.1 Dynamical system (DS)

Everything around us evolves over time. Because of the different magnitudes or
time scales at which such changes occur, some of these time-dependent transfor-
mations are more apparent than others. For instance, when observing a plant from
a macroscopic point of view, changes are visible at a slower time scale than when
looking at the molecular (or even the cellular) level. Since the conceptual intro-
duction of describing the motion of a physical object with the equations of Sir
Isaac Newton, we have tried to mathematically formalize how everything around
us evolves. A fixed formulation that describes how one or more variables evolves
over time is said to describe a dynamical system and the variables are called the
system’s state. For instance, if we want to formalize the trajectory of a rotational
pendulum, the variables are the angle of the pendulum θ and angular velocity θ̇ .
The way the observed system state y = [θ , θ̇ ]T evolves over time can thus be gen-
erally described as the following differential equation:

dy(t)
dt

= f (y(t), t). (3.1)

Note that the above equation is written generally and includes a time dependency,
not only of the system state but also of the evolution rule f (·) itself. However,
for some systems the evolution rule is independent of an external unknown input,
in which case we refer to autonomous dynamical systems. Whenever the evolu-
tion rule depends on an external and undefined input, and thus implicitly time, the
system is called a non-autonomous dynamical system. The set of all possible com-
binations of state variables (in our example θ ,θ̇ and t) that affect the dynamical
system is called the state/phase space. It describes a manifold in which one can
move from one state to another.
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3.1.1 Attractor
Most physical DSs in the real world tend to dissipate energy to their surroundings,
for instance by friction and thermodynamic processes. Even when an external force
is introduced, the system’s energy loss combines with this external force to suppress
the initial transients and results in a ‘normal’ behavior. In other words, most real
world systems have damped dynamics. This ‘normal’ behavior corresponds to a
sub-set of the state space, and the part on the manifold to which the dynamics
are drawn is called the attractor. In the non-autonomous case the manifold can
be different from one time step to another. In that case, the notions described in
this section still hold when they are accompanied by a specific time constraint. In
contrast, it is possible that a sub-set of the state space exists from which points
within its neighborhood move away. Such a sub-set behaves like the opposite of an
attractor and is called a repeller.

Basin of attraction

The basin of attraction is a neighborhood around the attractor consisting of all the
states that eventually converge to this attractor.

Types of attractors

Attractors can have many shapes in the state space of the DS. However, in this
section a brief overview of the most common attractor types is provided.

fixed point attractor: A fixed point attractor is a single point (and thus a single
state) in the manifold of the state space in which the DS remains. This
means that the evolution rule f (·) in Equation (3.1) is equal to zero resulting
in an unchanged state. All states within its basin of attraction will eventu-
ally converge to this single state. If one considers a damped pendulum, the
fixed point attractor corresponds to the downwards rest position, which is a
stable equilibrium position. The manifold of this pendulum also contains a
non attracting fixed point, which corresponds to the upwards and unstable
equilibrium position.

limit cycle attractor: A limit cycle attractor is a periodic (closed) trajectory in
the manifold to which points from both sides of the trajectory converge.
An example of a system with this behavior is a pendulum clock. Given the
random initial state of the pendulum, the amplitude and speed will eventually
converge to a precise periodic movement that depends on the length and
mass of the pendulum itself. In contrast, an ideal pendulum (no damping)
has no limit cycle attractor because given the initial state the pendulum will
move on a closed trajectory that will include this initial state. As every
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initial state has its own closed trajectory they are not attracted to an isolated
attractor.

chaotic attractor: Sometimes the DS can behave unpredictably1. Such chaotic
behavior can even be present in very simple systems (e.g., logistic map).
Although they seem to be a random process, they are fundamentally deter-
mined by the dynamical system’s evolution rule (Provenzale et al., 1992).

Bifurcation

If the evolution rule in Equation (3.1) depends on a certain parameter, the manifold
of the corresponding DS will also depend on this parameter. Normally, changing
the value of this parameter slightly causes no dramatic changes to its state space.
However, in some cases, a small change in parameter value suffices to cause a
qualitative change to the structure of this state space. Such a transformation is
called a bifurcation.

3.2 Exploiting the dynamical system

In our goal of learning rich motion and motor skills from biological systems, we
can parameterize the recorded motions by identifying them with a DS allowing
for the generated motions to become adaptable. For instance, if we want to learn
locomotion, which is often a periodic movement, we can adapt a DS (such as Equa-
tion (3.1)) in such a way that a limit cycle attractor exists with the desired shape,
amplitude and frequency. Reaching movements, on the other hand, are called dis-
crete because at some point in time the movement stops. Such stopping behavior
can be generated by a DS with a fixed point attractor. However, the shape of the
manifold needs to be modified in such a way that before reaching the target, the
movement resembles the recorded motion.

Dynamic Movement Primitives

One of the most popular approaches that uses the concept of learning a dynamical
system to expand a limited set of recorded motions to a full parameterized range of
motions is called Dynamic Movement Primitives (DMPs). DMPs were introduced
by Schaal et al. (2000). Here, the attractor landscape was shaped so that its basin
of attraction had certain desired properties. The key contribution of this approach
is the formalization of nonlinear dynamic equations so that they can be flexibly

1Not all unpredictable behavior can be considered as being chaotic. For example, a
quasiperiodic attractor is unpredictable but not the cause of chaotic behavior.
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adjusted to represent arbitrarily complex motor behaviors, without losing the sta-
bility of the system. Here, a globally stable linear DS with a unique fixed point
attractor is used that converges exponentially towards this fixed point. By aug-
menting this system with a nonlinear function h(·), this exponential trajectory can
be converted into a more complex and desired trajectory. To guarantee monotonic
global convergence, an additional canonical DS (linear) is used to find the appro-
priate h(·). In Schaal et al. (2000), it has been shown that the combined system
converges asymptotically to the unique point attractor. Learning periodic motions,
such as in Ijspeert et al. (2002) is also possible with DMPs. However, to the best of
my knowledge, combined learning of both a limit cycle and a fixed point attractor
within a single system has not been demonstrated. Furthermore, for each degree
of freedom (DOF), a separate DS needs to be learned, which means that learning
implicit coupling between two DOF becomes impossible. Defining an explicit cou-
pling between two separate motions, on the other hand, is possible. DMPs and
variants are extensively used to learn both discrete and periodic motions.

Stable Estimator of Dynamical Systems

Another approach, the Stable Estimator of Dynamical Systems (SEDS) was pro-
posed by Khansari-Zadeh and Billard (2011) to model a motion as a nonlinear
autonomous DS under sufficient conditions to ensure global asymptotic stability at
the target. Similar to DMPs, the DS is exploited so that all generated motions fol-
low the demonstrations closely. With SEDS it becomes possible to encode several
discrete motions into a single globally stable dynamical system. However, with
SEDS a static mapping is created that prevents it to learn motions with intersecting
parts. At such an intersection, SEDS is unable to distinguish between both possible
directions. It has been demonstrated that using velocity information as an addi-
tional input overcomes this problem. However, the learning of periodic motions
has not been demonstrated.

3.3 Reservoir Computing approach

I have mentioned before that we can consider an ESN to be a dynamical system. To
exploit the network dynamics in a similar manner to DMPs and SEDS, we need to
train the network so that the desired attractive behavior is achieved. The topology
described in the previous chapter is used (shown in Figure 2.1) to learn a DS that
maps the current position, velocity and/or acceleration value onto the next one. I
will first consider the autonomous case where no external input is used (Wr

i = 0)
except for the output feedback. To show that using output feedback and no input
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corresponds to an autonomous DS, we can write Equation (2.3) with γ = 1 as:

a(k +1) = tanh(Wr
ra(k)+Wr

oo(k)+Wr
b) (3.2)
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The output feedback can thus be internalized into the reservoir itself by changing
the reservoir weights (Wr

r = Wr
r + Wr

oWo
r

T ), which demonstrates the autonomy
of this network topology. Introducing leaky integrator neurons does not change
this. In Sussillo and Abbott (2012), such internalization of the output feedback was
investigated while retaining sparseness conditions for the reservoir weights. They
argued that it is more biologically plausible from a neuroscience point of view
that a neural network can sense its own output, instead of needing external output
feedback.

To actually train the network, we need to decide which mapping we want to
learn. It is possible to learn one or more of the following mappings f (·) with a
single ESN where o(t) represents the recorded position:

position: o(t +dt) = f (o(t)) (3.4)

velocity: ȯ(t) = f (o(t)) (3.5)

acceleration: ö(t) = f (o(t)). (3.6)

Each mapping has its own advantages and disadvantages. For instance, position
mapping only controls the position and the velocity of the resulting motion can
fluctuate. In contrast, when learning velocity mapping, similar fluctuations can
cause the resulting movement to fail to reach the target position. When controlling
robots, the velocity, position and even the acceleration should be tightly controlled.
Therefore, it is advisable to learn multiple mappings in order to produce a smooth
and accurate control signal. In the case of the velocity and acceleration mapping,
the generated output should be integrated before it can be used as a feedback signal.
As this complicates the explanation, I will limit this chapter to a description of the
position mapping.

Usually task space movements recorded from human motions are in 6 dimen-
sions (3 dimensions for position and 3 for rotation). However, for visualization and
interpretation purposes the description in this chapter is limited to 2 output dimen-
sions that describe the position in a plane. To train the network to produce the next
(x,y) position given the previous one, the recorded data needs to be provided as the
target output. As previously explained, when using ridge regression the feedback
line is clamped with the same training data as the output, unlike FORCE learning
where the actually produced output is fed back. Both learning algorithms described
in Section 2.1.5 can be applied to train the output weights Wo

r of the network; how-
ever, the description and evaluation of the proposed MPG will only be presented
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Figure 3.1: Illustration of the composition of the training
data before it is used for training. Different examples of the
same motion are shown for both periodic and discrete pat-
terns. A dashed line indicates the moment at which the reser-
voir states are reinitialized. For discrete patterns, the gray
areas before the dashed lines illustrate the added padding
that consists of the last value of the associated discrete pat-
tern. The corresponding attractor types are illustrated on the
right.

for the ridge regression case. When using ridge regression, the feedback training
data is shifted one time step compared to the training data used for the output. It
turns out that the structuring of this recorded data and the actual neurons’ states
during training are important for achieving the desired attractor. In the following
section we will describe this in more detail.

3.3.1 Training procedure
The training of a periodic pattern in the context of a CPG was investigated exten-
sively by wyffels and Schrauwen (2009). Here, a periodic pattern was used for
training. In the presented approach the training of periodic patterns is achieved in a
similar manner. However, to allow for the training of different examples (generated
by back-driving2 the robot) the reservoir states are reinitialized after each exam-
ple3 (a(ke) = 0 with ke the first time step of a new example). This reinitialization

2A back-drivable mode allows the robot to be moved by hand. As a result, the imposed
movement can be captured by recording the encoder values.

3Containing multiple periods.
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Figure 3.2: Plot on the left shows a schematic representa-
tion of the 3 DOF planar manipulator together with the as-
sociated angles θi and link lengths li, i = 1,2,3. The actual
implementation of the robotic manipulator is shown on the
right.

is denoted in Figure 3.1 by a vertical dashed line.
The training of a discrete motion differs in the sense that after each example a

random sized padding of the last value of an example is added. By applying this
padding, the output weights of the ESN are also trained on the transients of the
demonstrated motion to its fixed target position. Similar to periodic motions, the
reservoir states are reinitialized at the beginning of an example after the padding of
the previous example. This process is illustrated at the bottom of Figure 3.1.

3.3.2 Robotic task
In order to evaluate the proposed motion pattern generator (MPG), I have conducted
some experiments on a planar manipulator with 3 rotational joints. I used 3 joints
to increase the complexity of the kinematics, although this was not the main focus
of the experiments. As shown in Figure 3.2, the manipulator was constructed with
Bioloid components and Dynamixel AX-12 servos that are controlled by a RS-485
serial bus. Several demonstrations of multiple motions were recorded by moving
each servo by hand (in a back-drivable modus) and by reading the corresponding
encoder values. These angular values were converted into a task space trajectory
by applying a transformation from joint to task space called forward kinematics.
The several resulting trajectories were saved and used as training data for the ESN.
After training, the ESN’s attractor landscape is shaped by the demonstrated task
space trajectories and should be able to generalize beyond this training data. To al-
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Figure 3.3: Illustration of the control loop in which the ma-
nipulator is controlled by joint angles θθθ(k) that correspond
to a task space position o(k). The hat symbol is used to in-
dicate a measured value. The other symbols are consistent
with those introduced in Figure 2.1.

low investigation of this property the robot is integrated in the feedback loop of the
ESN allowing for a closed loop control. As shown in Figure 3.3, the control loop
consists of the initial task space position of the manipulator, which can be measured
by applying forward kinematics for the joint encoder values. This task space posi-
tion is given to the trained ESN via its feedback connection, after which the ESN
produces a new position. This generated task space position is converted to angular
values by applying inverse kinematics. By using a P-controller these angular posi-
tions are converted to their corresponding current values that will actually move the
robot’s end-effector4 towards its desired task space position. The necessary details
for calculating the inverse/forward kinematics are presented in Appendix A.1.

3.3.3 Task and network settings
To train the ESN, several writing motions of the letters A,I,R,O,B,T and S were
recorded. As mentioned above, each writing motion was demonstrated by moving
the manipulator by hand in a back-drivable mode. During training, each letter was
shown 7 times, each with different starting positions. In order to have the same
target point for every example, each writing motion’s example was subtracted from
its last value. By doing so the target point of each example becomes zero. This
makes the motion generation invariant of the desired target. In order to limit the
magnitude of the values used for training the ESN, all training data is normalized
as described in previous chapter. When applying the trajectory to the robot, the

4The part of the robot that interacts with the environment. This corresponds to the gripper
when using a robotic arm.
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Table 3.1: Network parameters

Parameter Value
N 400 neurons
ρ 0.99
γ 0.3
f r
b 0

f r
o 1

ESN’s output must be converted back to the correct range.
To demonstrate the ability to learn periodic motions, I have used 7 examples of

a figure-8, not by back-driving the robot but by imposing the following equation:

x = 13+3cos(ψ)

y = −5+3sin(2ψ) (3.7)

ψ = t +
π
2

.

Because every example of the figure-8 has the same equation, the need for state
reinitialization can be omitted. Essentially, one long periodic pattern can be used
for training.

As an alternative to training a separate ESN for each motion, it is possible to
learn multiple motions in a single ESN. Learning multiple periodic patterns in a sin-
gle network has been shown before in wyffels and Schrauwen (2009). In contrast,
for discrete motions it is possible to shape the attractor landscape in such a way
that they all converge to the same fixed point attractor. The initial position, how-
ever, determines which motion is generated before reaching this fixed point. The
training of such a system is achieved by interleaving the examples of the different
motions into a single dataset (Section 3.3.1).

For both motion types (periodic and discrete) the same network settings are
used. The parameter values are shown in Table 3.1. In this ESN configuration,
the optimal regularization parameter ν was determined by optimizing it with 4-
fold cross-validation (Section 2.1.5.3). The other described parameters could be
optimized by applying a grid search; however, the hand tuned parameters were
sufficient for demonstrating the ESN’s capabilities.

3.3.4 Generating Motion Patterns
For each letter, for which several demonstrations are available, a single ESN is
trained.



3.3 Reservoir Computing approach 63

After training, the generated motion is applied to the robot manipulator by
converting task space positions to joint space positions according to the inverse
kinematic model. Figure 3.4 shows the resulting trajectories, after training, for the
I, R and figure-8 writing motions (shown in black). The shown trajectories are those
that are generated by the robot manipulator by applying forward kinematics to the
actual actuator positions in joint space. Due to small deviations in the precision of
the internal PID controller, these produced trajectories are not smooth. However,
the motions generated by the RC-networks are smooth.

In order to qualitatively evaluate the generalization capabilities, the generated
motions for different starting positions are shown in Figure 3.5. The blue colored
grid for each letter indicates the different starting positions from which a motion
trajectory has been generated towards the fixed point attractor at (0,0). These tra-
jectories are colored from gray to black as time progresses to denote the generation
direction and the actual resulting attractor. As a result, the final limit cycle attractor
of the figure-8 motion is clearly distinguishable from the initial parts of the trajec-
tory. One example of the demonstrated motions is shown in red for each letter as a
reference.

To demonstrate the need for memory in the generation of a discrete motion,
examples of the letters A and R that contain intersecting points are used. At such
an intersecting point the direction of the motion generation (knowledge about pre-
vious positions) is necessary to allow successful completion of the motion. This
means that the transients of the ESN, due to its recurrent connections and its leak
rate, are critical for producing such writing motions. A periodic motion like the
figure-8 clearly requires a certain amount of memory for the same reasons. Gener-
ating such motions with simple memoryless mapping from one position to the next
would be impossible because there are multiple successors to the current intersect-
ing position. SEDS (Khansari-Zadeh and Billard, 2011) uses memoryless mapping
(Gaussian Process Regression), which makes it impossible to generate a limit cy-
cle attractor. However, by adding second order information, such as velocity and
acceleration, SEDS has demonstrated its ability to overcome the problem of self
intersecting trajectories.

3.3.5 Robustness
To investigate the robustness of a trained ESN, the output feedback was perturbed
for 10 time steps by holding the y-coordinate at a fixed position and moving the
x-coordinate to another position. This is demonstrated in Figure 3.6 for a discrete
motion, the letter R and a periodic figure-8 motion. The shown motion patterns
are those that are generated by the ESN, not the ones produced by the manipulator.
However, apart from producing less smooth trajectories, there is no difference with
the unperturbed case. The top of the figure shows the generated motion in a 2D
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Figure 3.4: These plots show the demonstrated motions
recorded by back-driving the manipulator in its compliant
modus (gray lines). Furthermore, the actual produced ma-
nipulator motions after training on the examples are shown
by black lines. The origin and target point of each motion is
represented by a square and triangle, respectively. Because
of the lack of a target position for periodic motions, only the
starting point of figure-8 is shown.
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Figure 3.5: This plot shows the generalized motion trajecto-
ries for the ESNs trained with discrete patterns A,I,R,O,B,T
and S, starting from 9 different locations (indicated by the
blue dots) towards the same fixed point attractor (green
cross). These trajectories are colored from gray to black
as time progresses to give a sense of direction. This also
allows one to distinguish more clearly between the final at-
tractor behavior and initial parts of the generated trajectory.
For the periodic figure-8 motion, only the starting positions
are shown as its target is a limit cycle attractor. Additionally,
a single example motion for each movement is shown in red
as a reference. In some cases, however, this example is cov-
ered by the generated motions. The vertical and horizontal
axis are both in cm and represent the Y and X-axis, respec-
tively. I subtract the last value from each writing motion so
that the final target is located at (0,0).
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plane. To reduce the size of the plot the horizontal axis represents the Y -axis. The
other plots illustrate the effects of a perturbation on each dimension separately.

For the discrete motion, two perturbations were introduced, for two generation
attempts respectively (one illustrated by a gray line, the other by a black one). The
perturbation point at which each motion was held during 10 time steps is illustrated
with a triangle (the perturbation is at time step 30 for the gray pattern and 80 for
the black pattern). These described plots demonstrate that the motion generation
is robust against perturbations and that after a certain amount of transient behavior
the target position is reached. Furthermore, it is evident that the motion remains in
its fixed point attractor for as long as the experiments last (300 time steps).

For the evaluation of periodic motion generation, the motion was again per-
turbed at different time steps (100, 338, 516 and 690). The perturbation frequency
was small enough to allow convergence to the limit cycle attractor between two per-
turbations. To illustrate the transient motions, a different color was used between
every two perturbations. It is evident that, after some transient behavior, the motion
converges back to its limit cycle attractor. Additionally, because of this limit cycle
attractor, the periodic motion will continue until the experiment stops (600 time
steps).

Using a dynamical system to represent a recorded motion, allows for the mo-
tion generation to be adapted based on feed back of the actual manipulator. Thanks
to the closed loop control of the robotic manipulator, the motion generation is put
on hold when the end-effector is interrupted or pulled towards a resting position.
Although a new target motion position is given to the interrupted manipulator, the
feedback position does not change. The new desired position that is generated will
thus depend on this feedback information, causing lower control gains than when
a motion is blindly commanded to the robot (open loop). Due to these lower con-
trol gains, interacting with the manipulator will become less dangerous. Holding
the manipulator in a fixed position can disturb the memory of the ESN. However,
this anticipated effect was not visible in the conducted experiments. Depending on
the length of the ESN’s memory, holding the robot manipulator fixed exactly at an
intersection point might cause it to loose its sense of direction.

3.3.6 Modulation
So far I have demonstrated that an ESN is able to shape its basin of attraction ac-
cording to recorded demonstrations, and as a result it can generalize beyond them.
The general dynamic behavior of the DS is of course not only regulated by the train-
ing of the output weights; adding an input to the network, regulating the leak rate
or controlling the bias of each neuron independently influences the properties of
the motion pattern generator as well. When these modulation signals change over
time (i.e., they are not constant), the resulting basin of attraction is in fact affected
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Figure 3.6: These plots demonstrate the effect of pertur-
bations on the generation of both discrete (left) and peri-
odic patterns (right). The top plot illustrates the robustness
against such perturbations in a 2D plane. The plots at the
bottom illustrate the robustness for each dimension. A per-
turbation is introduced during 10 time steps by keeping the
y-coordinate constant but dragging the x-coordinate to a cer-
tain position (illustrated by the triangles). For the discrete
pattern, 2 generation attempts for the letter R are shown (in
black and gray) with a different perturbation. For the peri-
odic motion, 4 perturbations were applied at the same mo-
tion. Between each perturbation (time steps 100, 338, 516
and 690) the generator has time to converge back to its limit
cycle attractor. After each perturbation the color is changed
to a different shade of gray.
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by a unknown input signal and therefore the dynamical system is non-autonomous.
In the following section I will give a brief overview of the modulation effects upon
the attractor landscape.

3.3.6.1 Input driven modulation

Adding an input u[k] to the network allows the ESN to learn the relationship be-
tween a certain input and a desired behavior at the output of the pattern generator.
For instance, if we want to switch from one periodic motion to another we can as-
sign a different input value to each motion. To illustrate this, the presented MPG
has been extended with a one dimensional input so that a discrete motion is gener-
ated for one input value and a periodic pattern for another.

The training data for this task was constructed by interleaving periodic and dis-
crete motion examples, with padding and state initialization included, and setting
the input to 0 or 1 for a discrete or periodic example, respectively. All training pa-
rameters were kept the same as in Table 3.1. However, because of the added input
a hand-tuned input scaling factor f r

i of 0.7 was used.
The top of Figure 3.7 presents the results of the experiment. The plots at

the bottom show each dimension separately, together with the timing of the input
switching (dashed line, low when u[k] = 0 and high when u[k] = 1). The arbitrarily
chosen initial position in this experiment is located at (0,20) and u[k] = 0. After
some transient behavior (light gray color), the generation of a self intersecting letter
R is achieved during the convergence to its fixed point attractor. This trained writing
motion is shown in black. After switching the input (from 0 to 1) and some tran-
sient behavior, the ESN goes to its limit cycle attractor until the input is switched
again to 0. Interestingly, due to symmetry5 in the network, the generated discrete
pattern is a rotated version of the trained one. In Figure 3.8 the generalization for
a large grid of initial positions is shown. Again the intensity of the trajectory in-
creases as time progresses. Panels A and C show the attractor landscape of the ESN
with a 0 and 1 input, respectively. In contrast, Panels B and D give an indication
of the attractor landscape of an ESN with added bias ( f r

b = 0.2). It is clear that the
symmetry in panel A is removed by the added bias.

The velocity of the discrete and periodic motions depends on the velocity of the
training examples; however, the transients between these patterns are unpredictable
and can therefore exhibit large velocity bumps. Learning the velocity profile of the
desired motion with the same ESN will reduce such undesired behavior.

It is clear that the change in input value causes the attractor landscape of the
trained ESN to go through a bifurcation. Often a bifurcation plot is used to get an
indication of how the attractor landscape is transformed in function of a parameter.

5When no input bias is used, a symmetry in the network states exists when the input is
shifted in sign.
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Figure 3.7: These plots demonstrate the switching capabili-
ties between discrete and periodic patterns. The dashed line
in the bottom two plots illustrates the switching moment, set
by changing the network input (time steps 400 and 700), be-
tween the generation of the letter R a figure-8 and again a
letter R. The transients between these patterns are shown in
a lighter gray color while the discrete and periodic patterns
are shown in darker gray. The red curve represents an exam-
ple of the letter R.
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In order to create such a plot, the trained ESN for a given input was initiated from
400 different positions. For every starting position, the ESN was allowed to gen-
erate a trajectory of 1000 samples. Next, for every trajectory, the average value of
the last 500 samples was taken. Finally, a histogram was created from these values
for that particular input value. The actual values of this histogram are denoted by
the gray scale in the plot. Figure 3.9(a) shows the bifurcation plot of the symmet-
ric ESN (without bias) for each motion dimension. If the input is around −1 the
attractor landscape contains a single limit cycle attractor. When the input gradually
increases towards 0 this limit cycle slowly disappears until, after several bifurca-
tions, a single fixed point attractor is reached at the 0 input. When the input value is
increased even further, the symmetric limit cycle reappears after some bifurcations.
For a few input values, the corresponding attractor landscape is shown at the top.
In Figure 3.9(b) a similar bifurcation plot is shown, but now for an ESN with bias.
In the left bifurcation plot there is a single fixed point attractor when the input is
set to −1.

When gradually increasing the input value towards 0 several bifurcations occur,
including one where two different fixed point attractors are present. When reaching
0, the attractor landscape only contains the fixed point attractor to which the desired
discrete motion converges. Increasing the input further will cause the ESN to expe-
rience bifurcations again, until a limit cycle attractor is reached that corresponds to
the periodic motion behavior. The motion generation is robust against input noise,
as long as this noise is not causing the occurrence of a bifurcation.

3.3.6.2 Changing bias weights

In Li and Jaeger (2011), a new method for modulating the shape of a learned period-
ical pattern was illustrated based on tuning the bias weights of the neurons instead
of using additional inputs. In summary, the influence of adding a small bias to each
neuron is determined after training. Therefore, each neuron is perturbed separately
with a small constant bias. After perturbing each neuron, one can observe the influ-
ence of this on the properties of the output signal. For each property that one wants
to modulate (e.g., amplitude, phase, shape) a control vector can be composed that
can be used to modulate the output signal. Frequency modulation of the periodic
motion, on the other hand, is more difficult to achieve. In more recent work by my
colleague (wyffels et al., 2013), we proposed a generic method for modulating the
frequency. This solution is based on the insight that there is a mutual dependency
between the frequency of a periodic pattern and the geometrical shape of the attrac-
tor’s orbit6. As a result, the orbit’s shape can be changed to modulate the frequency.
In Chapter 5 this method will be used to modulate an MPG that controls a robot

6Orbit: the curved and closed path within the basin of attraction that forms the limit cycle
attractor.
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Figure 3.9: This Figure shows the bifurcation plots of two
trained and input driven ESNs for each dimension of the mo-
tion (X ,Y ). The ESN in panel (b) uses input bias. The ESN
in panel (a), however, does not use input bias and as a re-
sults exhibits symmetric behavior. In order to obtain a bet-
ter understanding of how these bifurcation plots are created,
I added a visualization of the corresponding attractor land-
scape for a few input values. The corresponding position in
the bifurcation plot is indicated by vertical dashed lines. The
vertical axis units are in cm.
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Figure 3.10: The left figure illustrates how a generated mo-
tion path is modified to avoid an object. The Cartesian and
spherical frames of reference are indicated by ϒc and ϒs,
respectively. The dashed black line illustrates the original
path, while the modified path is illustrated by a solid line.
The right plot demonstrates the obstacle avoiding behavior
in 3 dimensions and in the presence of multiple spherical
obstacles. The coloring of the lines changes from cyan to
purple when the obstacle avoiding algorithm intervenes.

leg.

3.3.7 Obstacle avoidance

After training an MPG, the basin of attraction of the dynamical system is shaped
according to its training examples. Due to the regularization used, this shaping
has an effect on the entire dynamical system even outside the regions in which the
training data is located. As a result the MPG can generalize beyond its training ex-
amples which makes anticipation for all possible situations unnecessary, especially
when closed loop control is desired.

When a robot on which such an MPG is applied interacts with its environment,
it is possible that these motions are perturbed by an obstacle. We do not want
to anticipate for all possible obstacle locations and train the DS with correspond-
ing obstacle avoiding motion examples. Therefore, in Ajallooeian et al. (2010) I
proposed a dynamical system approach to obstacle avoidance, where the trained
dynamics are transformed in the presence of an obstacle. More formally, we need
to find the nonlinear function χ(·) in the following equation with respect to Equa-
tion (3.5):

o(t +∆t) = χ( f (o(t))), (3.8)
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in order to shape the dynamics to avoid an obstacle. Furthermore, as obstacles
are often introduced in very short time periods, it is important that the MPG can
react fast enough. Inspired by vector fields in the presence of repellers (e.g., force
fields, fluid flows), the generated motion can be considered as a stream of particles.
Due to the forces caused by an obstacle, the particles will deviate from their initial
direction and avoid the obstacle. In that case, neither the initial path nor any history
of the particle state is necessary for avoiding the obstacle.

Now consider such a particle to be defined within a Cartesian frame of refer-
ence ϒc. The coordinates of a particle p within ϒc are denoted by Ξp = [x,y,z]T . In
order to simplify the problem, the shape of the obstacle is assumed to be a sphere,
large enough to encapsulate the real obstacle. This is illustrated in the left part of
Figure 3.10. While a particle is moving in the direction of an obstacle, it can be de-
scribed according to a spherical frame of reference ϒs that is located at the center of
the obstacle. If the center of the obstacle is denoted by Ξo, then the corresponding
transformation from ϒc to ϒs can be written as:

[r,θ ,ϕ]T = Γ(Ξp−Ξo). (3.9)

Consequently, each particle within ϒs can be described by a radial distance r, po-
lar angle θ and azimuth angle ϕ . In this frame of reference it is much easier to
condition the motion of the particles when they enter the vicinity of the obstacle
(origin). Although many solutions are possible, I was inspired by the laminar flow
of fluids around spherical obstacles. In the field of fluid dynamics, such flows are
often explained by incompressible steady Stokes flows (Acheson, 1990), under the
assumption that all surfaces are smooth and the particles do not interfere with each
other. Furthermore, vorticity is omitted, otherwise the resulting motions would
show vortexes after the obstacles. Such Stokes flows are regularly used in a wide
variety of applications (e.g., determining electron charges, explaining the physics
of aerosols). According to this model, where ϕ is assumed to be 0 at all times, the
resulting velocity components are described by:

dr
dt

= V cos(θ)
�

1+
R3

2r3 −
3R
2r

�
, (3.10)

dθ
dt

= −V sin(θ)
�

1− R3

4r3 −
3R
4r

�
, (3.11)

with R the radius of the spherical obstacle and V = � dΞp
dt � (i.e., the norm of the

particle’s velocity) (Kundu and Cohen, 2008). Blindly applying this model will not
result in the desired behavior because particles going precisely through the center
of the sphere can get caught within the sphere, yielding a very large dr

dt . Instead of
increasing dr

dt the closer the particle gets, dr
dt should converge to 0 when the particle



3.3 Reservoir Computing approach 75

comes close to the obstacle. Therefore, the following expression for dr
dt is proposed:

dr+

dt
=

�
1− tanh2(−r−+R+1) dr−

dt , r ≤ R+1,

0, otherwise,
(3.12)

where r. denotes before− or + after the changes. Furthermore, a similar expression
for dϕ

dt is used as Equation (3.11):

dϕ
dt

=−V sin(ϕ)
�

1− R3

4r3 −
3R
4r

�
, (3.13)

because a generated motion can approach an obstacle from any direction, even
those where ϕ �= 0. After modifying [r,θ ,ϕ]T with [ dr

dt ,
dθ
dt , dϕ

dt ]T , respectively, the
updated particle position in ϒs is converted back to Ξ̃p. The nonlinear transforma-
tion χ(·) in Equation (3.8) can thus be defined as:

χi(Ξp) = Ξ̃p = Γ−1(Γ(Ξp−Ξo,i)+∆t[
dr
dt

,
dθ
dt

,
dϕ
dt

]T )+Ξo,i, (3.14)

for the i-th obstacle. The right plot of Figure 3.10 demonstrates the avoiding be-
havior in 3 dimensions for a set of stream lines. As demonstrated, it is possible to
handle multiple objects by applying Equation (3.14) recursively (e.g., χ2(χ1(Ξp))).
However, when two objects are too close to each other, it is advisable to treat them
as one large obstacle, because the influence of one obstacle can overcompensate
the changes made by another obstacle.

As mentioned previously, the geometry of the obstacle is simplified by a sphere
around the object. However, for some objects, especially large flat objects, this
simplification is imprecise because a lot of space around the object is incorrectly
marked as an obstacle. An ellipsoid could be a good alternative, but for some ob-
jects this is also insufficient. Instead of defining a fixed R for an obstacle, however,
it is possible to dynamically change the radius of the sphere in such a way that it fits
the actual object better. To prevent local cavities in such a representation, a convex
hull that is defined in spherical coordinates by a dynamic radius R(θ ,ϕ) and a set
of angles would be a good choice.

The obstacle avoiding strategy described above allows a motion position at a
given time (a particle) to be updated if required, without the need to know the entire
motion trajectory/plan from the beginning. This property allows for the approach
to be applied in real time. Within the European AMARSi project this obstacle
avoidance strategy was evaluated in (Khansari-Zadeh et al., 2010) and shown to be
superior in all tasks.

One of our partners within the European AMARSi project has investigated the
same ideas and applied them on several robotic tasks (Khansari-Zadeh and Bil-
lard, 2012). Here, SEDS was used to learn the stable generation of demonstrated
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motions.

3.4 Conclusions

In this chapter I have presented the design of a motion pattern generator (MPG)
from a dynamical system point of view. Based on the underlying concepts of DMPs
as introduced by Schaal et al. (2000), I have investigated how the dynamics of an
ESN can be exploited for the generation of both periodical and discrete move-
ments. The attractor properties that make such generation possible have first been
introduced. After describing the necessary training procedure, the MPG was ap-
plied on a planar robotic manipulator. Next, I have demonstrated the MPG’s ability
to successfully shape its attractor landscape according to the writing motion of the
letters A, I, R, O, B, T, S and a periodic figure-8. Furthermore, the generalization
towards different starting positions was demonstrated, as well as the robustness of
the generated pattern in the face of perturbations. The MPG’s modulation possibil-
ities were also presented, and some results were shown.

As a consequence of applying the MPG to the manipulator in a closed loop,
the motion generation is interrupted when the manipulator joints are obstructed7.
The new position will thus depend on the feedback of the robot and as a result the
control gains will be much lower than when controlling the robot in open loop.
This property makes the use of a DS as a motion generator particularly attractive
for applications where human robot interaction is required.

Finally, an obstacle avoidance strategy was discussed, which shapes the dy-
namics of the MPG in such a way that introduced obstacles are avoided. One of
the main advantages of this obstacle avoidance strategy is that it reshapes the gen-
erated motion during the generation itself (i.e., real time), in a similar manner to air
flowing around an airplane. This makes it especially useful in robotic tasks, where
fast obstacle avoidance is desired.

Within the AMARSi consortium, the described obstacle avoidance approach
was used together with an early version of the presented MPG. Its performance was
evaluated on a set of benchmark tasks and compared to other approaches (Khansari-
Zadeh et al., 2010). The results showed, that simultaneously controlling the veloc-
ity and position is important to prevent undesired velocity bumps. Furthermore, it
was demonstrated that the described obstacle avoidance strategy was successful in
all tasks.

7Even when an obstacle avoiding algorithm is incorporated, for instance in the task space
motion, the joints can still be obstructed.
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Adaptive Control

Framework

The previous chapter described the design of a motion pattern generator (MPG) that
shapes the basin of attraction of a dynamical system (i.e., an echo state network)
in such a way that the recorded motions become a part of the attractor landscape.
This manifold shaping also affects regions around the examples which enables the
MPG to generalize beyond the recorded example trajectories. As demonstrated,
this generalization ability allows the MPG to control a robot in closed loop, where
the actual joint space positions (or task space position) measured by encoders can
be used to provide the MPG feedback on the robot’s state. Given this feedback the
motion generation is adjusted to prevent high control gains due to large position
errors. However, the control performance then depends heavily on the kinematic
and/or dynamic model of the robot. For most commercial robots that one can buy,
an accurate kinematic model is available. For compliant robots that are built with
elastic materials, however, such kinematic model becomes inaccurate or at least
difficult to acquire. More and more research is being devoted to dynamic control
because often used PID controllers, which convert a desired angular position to a
torque, yield high control gains and thus inherently dangerous behavior. Further-
more, if control gains can be kept low without having to trade in to control accu-
racy, the energy use of the robot will be much lower. Having an accurate dynamic
model is, however, much more difficult even for the most commonly used robots
that are commercially available. Especially for compliant robots, where the mass
distribution of elastic materials can change, the lack of a good model poses a real
problem. In this chapter an Inverse Modeling Adaptive (IMA) feedback controller
is proposed that learns to control a physical system, often referred to as plant, on-
line and without having a predefined model. In this case, the physical system can
be considered as being a black box with a few inputs and outputs. Here, the inputs
are the controlled parameters and the outputs the observable states of the system.
As we already know, most physical systems can be represented by a dynamical
system following a fixed evolution rule. The underlying idea of the IMA controller
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is that another dynamical system, such as an ESN, can be used to learn an inverse
model of the plant, mapping the observable state onto control commands. When
the adaptive controller succeeds in learning an inverse model, it can be used to pro-
duce the corresponding control parameters in order to reach the target state. In this
chapter, I will use an ESN as basic learning modules but the framework itself is
general. Any machine learning technique that is able to model temporal function-
als online could be used: tapped-delay line models with non-linear regression or
neural networks, regular RNNs, Long Short Term Memory RNNs (Hochreiter and
Schmidhuber, 1997), etc.

4.1 Design of the control framework

Every day we use machines that depend on control mechanisms in order to work
properly. Two of the most widely applied control schemes are feedback controllers
and feed-forward controllers. As illustrated in Figure 4.1(a), Feed-forward con-
trollers use a predictive model to anticipate for the effect of measured disturbances
and takes corrective actions in order to achieve the desired result. As shown in
Figure 4.1(b), feedback controllers, such as the one proposed in this chapter, use
measurements of the dynamical system (plant), compared with a desired value, to
control the plant-input. For instance, the cruise control of a car uses a feedback con-
troller to keep the velocity constant. When the car is driving downhill the car will
go faster because of gravitation. The controller observes this increase in velocity
and reduces the throttle to ultimately converge to the desired velocity.

Classical approaches of feedback controllers can be grouped by techniques that
do or do not use prior knowledge of the plant. The latter, such as PID controllers,
use no direct information of the plant dynamics. Other non-prior-knowledge-based
techniques use a model exploration strategy where the observation produced by a
random action is used by the controller to adjust its control. In the work by Jaeger
(2002), such a strategy is taken. Here a Reservoir Computing (RC) network is
used that is trained offline by using random values as training output and the plant
response to these values as training input. In this example, the feedback information
y(t) excites the RC-network in 2 versions: the current feedback y(t) and a delayed
version y(t−δ∆t). During training, the desired output (which is the random plant-
input values x(t)) are also delayed δ time steps before being used as training data
of the RC-network.

The main reason for this delayed network input is to learn the necessary actions
to bridge the gap between the present and future plant-output. After training the
output weights (dashed lines in Figure 4.2(a)), the desired plant-output yd(t +δ∆t)
is given to the input that was connected to y(t) during training. The actual plant-
output on the other hand, is given to the input of the network that was connected
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Figure 4.1: Illustration of (a) a feed-forward controller, (b) a
simple feedback controller and a dynamical system (DS) or
plant, accompanied by the used terminology. y(t) and yd(t)
represent the actual and desired plant output respectively.
The output of the controller is denoted by x(t).

with y(t − δ∆t) during training. As illustrated in Figure 4.2(b), the resulting net-
work output x(t) drives the plant.

The idea here is to model the progress in plant-input x(t−δ∆t) given the past
and current plant-output (y(t−δ∆t) and y(t)). This model is used to determine the
plant-input given the current and future plant-output (y(t) and yd(t + δ∆t)) where
the model is expected to generalize the trained behavior.

It should be noted that the choice of a good δ is essential to find such a model. δ
and therefore the sample rate, determines the amount of time that the network has to
reach the desired plant-output. However, in this work, it is assumed that the sample
rate is predetermined and equal to one sample per integration time step. Therefore,
the effect of δ depends on the dynamics of the plant. A smaller δ is used for a plant
with fast dynamics and a larger one for a plant with slower dynamics. Finding a δ
that corresponds to the plant dynamics, is essential in our control framework and is
its main difficulty.
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Figure 4.2: Illustration of a controller method described in
the work of Jaeger (2002). During training, random x(t) val-
ues are used to train the output weights of the network based
on the plant response y(t) on these values. Afterwards, dur-
ing testing, the trained network is used to control the plant
according to to the desired plant-output yd(t +δ∆t)
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Figure 4.3: Schematic representation of the IMA controller.
The dashed arrows represent the output weights w that are
trained. These are the same for both networks (weight shar-
ing). The optional limiter limits the values x(t) to a desired
range which, for example, represent imposed motor charac-
teristics. Afterwards, the limited values x̃(t) excite the plant.
The values x̃(t−δ∆t) are used as desired network A output
to train the weights w. The resulting weights are used for
network B as well.
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4.1.1 Inverse modeling adaptive (IMA) control
framework

In order to allow online control in which no prior knowledge (model) is necessary,
the control framework shown in Figure 4.3 is proposed. This controller is called
an Inverse Modeling Adaptive (IMA) controller, because of its adaptive nature and
the fact that it creates an inverse model while interacting with the plant. Under the
hood of this IMA controller, a similar network to the one described in Figure 4.2(a)
is used. This network, called network A, is trained online in a supervised manner
by using Recursive Least Squares (RLS). Next to network A, we have a dupli-
cate network, network B, with the same input-network-and output weights (weight-
sharing). This network is connected to the plant in a similar manner as the network
in Figure 4.2(b). The output of this network is not only connected to the plant but is
also used (delayed with δ time steps) as desired output yd(t +δ∆t) for the training
of the output weights. The network states are initially the same for both networks
and are randomly chosen according to a normal distribution (N (0,1)). This ran-
dom initialization is necessary to initiate the plant with random values. Without
these values the amount of information necessary to train the internal model will
be insufficient to generalize well. Because the inputs for both networks are not the
same, the corresponding states will evolve differently. However, as network A is
converging to a more accurate model, the inputs of both networks will converge to
each other, but with a delay δ . Because of the desired plant output and the cur-
rent plant feedback as input, network B starts generating values that drive the plant.
For some plants it might be necessary to limit these values to a certain range. For
instance, when controlling an actuator, the amount of torque that it can deliver is
bounded. In Figure 4.3 this bounding is represented by a limiter that converts x(t)
values to x̃(t). These values, delayed with δ time steps, are used as desired out-
put of network A. With each iteration, the updated output weights are shared with
network B.

By applying this topology, network A is learning a model solely on the ob-
served plant-input and output during actual control. Network B on the contrary,
uses the trained model to control the plant based on both the desired and actual
plant response.

In Krose et al. (1990) a vision based neural controller is presented for a robot
arm. Because of the fact that the desired and actual plant output are used as input,
it shows some similarities with the IMA-controller. In work by van der Smagt
(1995) this neural controller was extended to an online learning approach where
the feed forward network weights are shared between a network that learns and one
that controls. However, there the weight sharing was introduced as a necessity to
handle the computational complexity of the training. For my ESN approach the
used training algorithm is fast enough to update the weights online. In contrast, the
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weight sharing of the IMA controller is motivated by the dynamics of the network
state. When training an inverse model, it has an internal state that prevents it of
being directly used to control the plant. This is the reason for introducing two
parallel networks between which the trained output weights are shared.

As mentioned in Section 4.1.1, any dynamical system with a high dimensional
state representation can be used in our discussed IMA control framework. How-
ever, to validate this framework on several tasks, a Reservoir Computing network,
more specific an ESN (Chapter 2), will be used. Therefore, in the remainder of
this chapter, network A and B refer both to an ESN. In general, such a network
can at least be applied to all tasks that can be represented by a Volterra series if
the pool of network states is rich enough (Maass, 2010; Boyd and Chua, 1985)
(i.e. the network is large enough). In order to allow online learning of the output
weights, the Recursive Least Square (RLS) algorithm, which was presented in Sec-
tion 2.1.5.4, is used. As shown in Equation (2.16), RLS needs a target output otarget
to train the network. As such data is unavailable at first, one can resort to the same
“trick” described previously where random values for otarget and their correspond-
ing plant responses are used as training data. Each iteration the updated output
weights causes the model to improve resulting in a more accurate prediction of the
control output.

Before the IMA control framework is evaluated on several control tasks, each
with different properties, I will discuss the convergence and stability of the IMA
controller.

4.2 Convergence and stability analysis

Controllers are made to interact with real life systems, from very complex systems
such as robots to simple systems like the thermostat that regulates the room temper-
ature. Unstable behavior of such controllers can therefore have large consequences.
Whenever a new controller is proposed it is a generally accepted requirement to
discuss the convergence and stability properties of this new controller. I start this
section therefore by investigating the convergence of the RLS algorithm. Under the
assumption that we have a one-dimensional target signal, the convergence of the
error e(k) in Equation (2.17) can be analyzed by rewriting this Equation as:

ΦΦΦ(k)T Wo
r(k−1) = e(k)+otarget. (4.1)
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As in Sussillo and Abbott (2009), we substitute this into Equation (2.19) to achieve
a formulation of the error after the weight update:

Wo
r(k) = Wo

r(k−1)− e(k)P(k)ΦΦΦ(k) (4.2)

ΦΦΦ(k)T Wo
r(k) = e(k)+otarget− e(k)ΦΦΦ(k)T P(k)ΦΦΦ(k) (4.3)

ΦΦΦ(k)T Wo
r(k)−otarget = e(k)− e(k)ΦΦΦ(k)T P(k)ΦΦΦ(k) (4.4)

e+(k) = e(k)(1−ΦΦΦ(k)T P(k)ΦΦΦ(k)), (4.5)

where e+(k) represents the output error after the weight update. As mentioned
before in Section 2.1.5.4, P can be written as:

P =

�

∑
k

ΦΦΦ(k)ΦΦΦT (k)+αI

�−1

. (4.6)

Due to the used tanh-nonlinearity in Equation (2.3) and the initialization of ΦΦΦ(k)
we know that |ΦΦΦ(k)| ≤ 1. As a result, ΦΦΦT (k)P(k)ΦΦΦ(k) in Equation (4.5) will change
from a value close to 1 to a value that asymptotically converges to 0. Conse-
quently, e+(k) will become small and will eventually converge to e(k). At this
point Wo

r(k)−Wo
r(k−1) becomes 0.

An RNN is infamously difficult to analyze because of its complex dynamics.
Despite the efforts made in Tyukin et al. (2003) and Barabanov and Prokhorov
(2003), no further progress has been achieved in the quest for rigorous perfor-
mance and stability guarantees. In this work, however, the following observations
concerning stability can be made:

4.2.1 BIBO-stability
Bounded-input-bounded-output stability is guaranteed. The non-linearity in Equa-
tion (2.3) (e.g. tanh(·)) and the introduced limiter depicted in Figure 4.3 ensures
that the network output is bounded for all inputs.

4.2.2 Local stability
Under certain conditions, local stability at the origin can be guaranteed. The NLq-
framework presented in Suykens et al. (1997) is used to derive conditions for local
stability of the control system. Before we can apply this framework, we assume
that γ = 1 in Equation (2.3). It is also assumed that learning has converged because
a constant change in output weights would make it hard to analyze stability. Under
these assumptions we only need to take Network B into account. Furthermore, one
needs to ensure that the applied non-linearity y = f (x) fulfills the condition that for
each x there exists an h ∈ [0,1] such that f (x) = hx. The applied tanh(·) satisfies



4.2 Convergence and stability analysis 85

this condition.
In this chapter I use the NLq framework with q = 2 layers where the plant

is represented by a neural network interacting in a closed loop with the controller
(also a neural network). By preserving the notation used in Suykens et al. (1997)
the plant and control network are defined as M1 and C2, respectively. In order to
simplify the derivation, the use of output bias is omitted so that a(k) = ΦΦΦ(k) in
Equation (2.8). This simplification, however, does not affect the resulting conclu-
sions. According to a discrete version of the notation used in Figure 4.1(b) and
Figure 2.1 both networks, one for the plant and one for the controller, can be de-
scribed by their neural state space models:

M1 :

�
b(k +1) = tanh(Ŵr

rb(k)+Ŵr
i x(k)+Ŵr

b)
y(k) = Ŵo

rb(k)+Ŵo
b

C2 :

�
a(k +1) = tanh(Wr

ra(k)+Wr
i y(k)+Wr

i2yd(k)+Wr
b)

x[k] = tanh(Wo
ra(k)+Wo

b)

where the network weights and states of M1 are represented by Ŵ∆
∗ and b(k),

respectively. The output weights Ŵo
r are trained with RLS, the other weights are

randomly initialized. yd(k) denotes the desired plant output. Notice that for x(k) in
C2 the limiter in Figure 4.3 is represented by the tanh(·)-function. After augmenting
the states with ξ (k+1) = x(k+1) and substituting the output/input of M1 with the
input/output of C2, one can write the state space model of the entire control loop as:

pk+1 = Γ1(V1Γ2(V2 pk +B2wk)+B1wk), (4.7)

with pk+1 = [b(k + 1),a(k + 1),ξ (k + 1)]T , wk = [yd(k),0,1]T and both Γ1 and
Γ2 are matrix representations of the tanh(·)-functions. Here I applied the same
notations as in Suykens et al. (1997). The autonomous case is investigated where
no external input (wk = 0) to the control loop is considered. Due to the used state
space model representation, local stability at the origin is guaranteed if:

ρ(V1V2) < 1, (4.8)

with ρ(·) the spectral radius and V1V2 given by:

V1V2 =




Ŵr

r 0 Ŵr
i

Wr
i Ŵo

r Wr
r 0

Wo
rWr

i Ŵo
r Wo

rWr
r 0



 . (4.9)

For instance, numerical evaluation of Equation (4.8) on the pitch control task in
Section 4.3 gives ρ(V1V2) = 0.8925, which implies that local stability at the origin
of Equation (4.7) is guaranteed in this case. The size of the basin of attraction in
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which the controller is locally stable can be large. However as described in Suykens
et al. (2000), the basin size in which local stability is proven, is equal or smaller.
This basin size can be calculated by maximizing the volume of ellipsoids defined
by a quadratic Lyapunov function with respect to pk. The corresponding matrix
inequalities, which constrains this sequential quadratic programming problem, can
be found in Suykens et al. (2000). Due to the plant dependence, the attraction
basin in which local asymptotic stability is proven, needs to be calculated for each
control task at hand, which is beyond the scope of this chapter. I refer to Suykens
et al. (2000), for a more extensive description on how this can be calculated.

4.3 Computer simulations and experi-
mental results

To validate the designed controller a number of tasks will be addressed, each with
different properties. Applying a model based controller to all these tasks is there-
fore impossible. In the following experiments it is demonstrated that our IMA
control strategy can control different plants with different dynamics even without a
predefined internal model. In all tasks where a simulation model is used to evaluate
the IMA controller, the control signal is kept constant during the integration time
∆t of the simulation model. However, when controlling a real-life physical plant,
real-time constraints need to be met. In that case, the IMA controller’s calculation
time, needed to produce a control command, becomes important.

4.3.1 Inverse kinematics of iCub arm

I mentioned before that, when a robotic arm needs to manipulate objects in its task
space, the task performance heavily depends on the used kinematic or dynamic
model of the manipulator. Therefore, as first control task, the learning of an inverse
kinematic model of the iCub robot arm, shown in Figure 4.5, is considered. The
iCub is a humanoid robot developed at the Italian Institute of Technology as part of
the EU project RobotCup. It has in total 53 motors for the whole body actuation.
In this task, however, the number of degrees of freedom is limited to 7 or one entire
arm, without the actuation in the hand. Encoders in each joint measure the angular
positions. When a joint position is given to the robot, an internal PID controller will
generate the torque necessary to move the joint to the desired position. Therefore,
due to the dynamics of the robot, a delay between the commanded and recorded
position is observed.
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Table 4.1: Joint limits of the iCub robot arm

θ1 θ2 θ3 θ4 θ5 θ6 θ7

Min (degree) −95 0 −37 5.5 −90 −90 −20
Max (degree) 10 160 80 106 90 0 40

4.3.1.1 Model

A Webots simulation model of the iCub robot is used to do the experiments. Webots
uses the Open Dynamics Engine for simulating rigid body dynamics. Instead of
using a known forward kinematic model of the manipulator to determine the current
end-effector position, an external supervisor is used that can accurately measure the
absolute coordinates of the end-effector according to the robot’s frame of reference.
The actuation of each joint is limited to a specific range, shown in Table 4.1. Within
this range it is, however, still possible to have collisions between the robot arm and
other parts of the robot. The default Webots integration time step ∆t = 32 ms is
used for the task.

4.3.1.2 Controller

To learn the inverse kinematics of the iCub’s 7 DOF robot arm a Reservoir Comput-
ing network is used as basic module in the IMA control framework. The introduced
limiter bounds the generated joint angles x(t) = [θ1(t),θ2(t), ...,θ7(t)]T to the joint
limits introduced in the previous section. These bounded values are used to train
the output of network A which is driven by the corresponding end-effector position
measured by the supervisor (y(t) = [X(t),Y (t),Z(t)]T ). All these values are first
normalized in such a way that the standard deviation of both the network inputs
and outputs are equal to 1, as discussed in Chapter 2. The network parameters,
shown in Table 4.2 are sensible defaults but not optimized. It is however possi-
ble to find a better set of parameters by performing for instance a grid search on a
validation set. Parameters which are not mentioned such as f r

o are set to 0.
The used RLS-parameter α , defined in Section 2.1.5.4, is set to 1. The initial

output weights Wo
r (k) are normalized random values (N (0,1)).

4.3.1.3 Results

The desired spiral trajectory in task space that the controller should learn to follow
is similar to the one described in Reinhart and Steil (2009). By connecting the
IMA controller to the iCub simulation model, the controller will initially drive the
robot arm randomly. Thanks to the RLS learning rule, fast adaptation of the output
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Figure 4.4: (a) This plot illustrates a generated trajec-
tory after training (gray) together with the desired trajectory
(black). The dots on the generated trajectory are the sample
points. (b, top) Demonstrates the velocity modulation on
target point reaching (100 time steps per target point) . (b,
bottom) Generalization (dark gray) to different target points
(black dots). The circular dashed line represents the projec-
tion of the spiral on the plain of the target points.
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Table 4.2: Network parameters of the inverse kinematics
learning task

Parameter Value Parameter Value
N 400 neurons f r

i 1.5
ρ 1 f r

b 0.5
δ 1 γ 1
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weights is achieved. After only 1000 time steps (time step = 270 ms) the robot
starts following the spiral trajectory. Most feedback controllers use an error defined
in the task space to achieve the desired behavior. Although the IMA controller is
not designed to directly minimize this error in task space, it converges to the desired
trajectory because the trained model corresponds to that of the iCub’s arm. When
such a model is achieved one could choose to continue the training online, learning
the inverse kinematics in newly visited task space regions. However, to evaluate the
trained model at a certain point in time, the training is stopped by setting ∆Wo

r = 0
in (2.19) and evaluate how well it can follow a desired trajectory without learning.
In Figure 4.4(a), such generated trajectory of the iCub’s arm (gray) is shown, which
needs to follow a novel spiral trajectory. As demonstrated, the learned inverse
kinematic model corresponds well with the iCub’s arm for the desired end effector
positions. However, because of the physical limitations of the robot, some desired
trajectory points, especially the ones closer to the robot (Z <−0.2), are unreachable
by the robot.

Next, the transient and generalization behavior of the learned kinematic model
is investigated. Instead of following a spiral trajectory, a number of target corner
points that form a specific shape (e.g.: a square or a star) are defined. These points
are all located on a plane perpendicular to the axial direction of the spiral. Each
target point excites the network for 100 time steps. Afterwards, the next target point
is used as desired position. In other words, it is not necessary to follow a square or
star trajectory, but the task is to reach the target corner points of each shape. The
target points forming a square are located on the projection of the learned spiral data
(dashed lines). As shown in Figure 4.4(b) (bottom, left) the desired target points are
reached. However, the generated movement between two different target points is
demonstrating transient behavior, that is, it does not follow a straight line (shortest
path between target points) but rather according to an arc (dark gray). The acquired
kinematic model was learned by following sampled points of a spiral trajectory,
never reaching other regions of the task space, which explains the transient arc
behavior of the generated motion. The target points forming a star shape are, except
for two, not located on the projection of the spiral trajectory. Although the learned
kinematic model is based on the data seen while following the spiral trajectory, the
model is generalizing quite well to the other target points. Figure 4.4(b) (bottom,
right) shows small deviations in the reached target points (black dots).

The velocity at which each trajectory point is reached can be modulated after
or during training. This is achieved by changing the leak rate γ of the reservoir
states (2.3). As described before, changing γ ∈ [0,1] effectively changes the time
scale of the system. Figure 4.4(b) (top) demonstrates the effect of such modulation
for multiple γ’s after learning (∆Wo

r (k) = 0) and for different target points (e.g.:
the target points forming the star shape). By decreasing γ , the distance between
each sample point will decrease as well. As shown in the top plot of Figure 4.4(b),
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the robot is unable to reach the target positions within 100 time steps when using
γ = 0.02.

4.3.2 Heating tank temperature control
The second control task is a process with a variable dead-time and slow nonlinear
dynamics. These control problems appear in industrial processes where measure-
ment sensors that are used for feedback, are not integrated in the process itself
(e.g. solar collector field (Torrico et al., 2010)). In this experiment, as shown in
Figure 4.6, the system consists of a filled and constantly heated water tank with
attached pipe of length L. If the output temperature of the pipe is controlled by the
throughput of water that feeds the tank, this temperature depends not only on the
pipe length (L) but also on the throughput itself, which is a control parameter. The
fact that this parameter constantly changes (leading to a variable dead time) has a
significant impact on the performance of the control loop. Controlling such a pro-
cess is a challenging task, especially without an instantaneous measurement of the
process variables or with control by a delayed pump (controlling the throughput)
(Richard, 2003), where the response on the feedback is delayed.

4.3.2.1 Model

The dynamics of the plant model illustrated in Figure 4.6 are described by the
following nonlinear differential equation:

ρcpVtank
dTtank(t)

dt
= Q+ρcpq(t)(Tin−Ttank(t)), (4.10)

where cp denotes the specific heating capacity of water, Vtank the volume of the
tank, Ttank(t) the water temperature in the tank, Tin the temperature of the added
water, Q the added heat, ρ the density of water and q(t) the throughput of the
added water. The dynamics of the outlet pipe with length L and area S are modeled
by the following low-pass filter:

Ttube(s)
Ttank(s)

=
Ktube

Ttubes+1
, (4.11)

where Ktube is the fraction of temperature change from tank to tube and Ttube an
unmeasurable temperature with temperature Tout that follows the equation:

Tout(t) = Ttube(t−d(t)). (4.12)

In the previous equation d(t) describes the variable dead-time which equals:

d(t) = TsNd =
LS

q(t)
, (4.13)
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Figure 4.6: Illustration of the heating tank process. A tank
filled with water is constantly heated with heat flow Q. Wa-
ter with temperature Tin is pumped in and exits the tank with
a throughput q(t). The water that is leaking from the tank
has a certain amount of time to cool down in a pipe with
length L before measurement of temperature Tout . To insure
homogeneous heating, the water in the tank is stirred. The
control task: How to change the throughput q(t) to get a
desired temperature Tout?

where Ts represents the sampling period. Nd describes the unknown dead-time. It
is clear that by knowing L, S and q(t) the variable dead-time can be calculated.
During simulation the parameters given in Table 4.3 were used. For simulation,
the Dormand-Prince method (Dormand and Prince, 1980), also known as Runga-
Kutta (4,5), with an integration time step ∆t of 4 s was employed.

4.3.2.2 Controller

To control this plant I use a ESN in the IMA control framework described in Sec-
tion 4.1.1. The limiter bounds the throughput x(t) = [q(t)] to the allowed values
for q(t) shown in Table 4.3. Next, the output connections of network A are trained

Table 4.3: Simulation parameters for the heating tank model

Parameter Value Parameter Value
cp 4186 J/kgK Ktube 0.99

Vtank = LS 1.13 l Ts 4 s
Q 1100 J q(0) 0.0167 l/s
ρ 1 kg/l q(t) ∈ [0.005,0.03] l/s
Tin 15 ◦C
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Table 4.4: Network parameters of heating tank task

Parameter Value Parameter Value
N 500 neurons f r

i 0.1
ρ 1 f r

b 0.5
δ 30 γ 0.5

with the values x̃(t−δ∆t). The feedback values y(t) = [Tout(t)] from the plant are
given to the networks in a normalized form (subtracted with the mean an divided
by its standard deviation). The parameters of both networks, shown in Table 4.4,
were optimized by performing grid search on a validation set (target temperatures
forming a staircase signal).

The introduced RLS-parameters defined in Section 2.1.5.4 are set to λ = 1−
10−6 and α = 10. The initial output weights w(0) are normalized random values
(N (0,1)).

4.3.2.3 Results

The controller is applied to the described simulation model for 12000 time steps or
13.33 hours real time. The desired response of the plant consists of different phases
where, in the first phase, the framework tries to control the plant to have a y(t) that
changes relatively quickly. In this phase, red noise is used by feeding white noise
through a low-pass filter. Afterwards, this noise is scaled to represent realistic tem-
perature values. The second phase consists of a staircase signal. Both phases are
randomly generated for each experiment. The first 6000 time steps of the exper-
iment are shown in Figure 4.7. One can see, by looking at the average quadratic
change in output weights, that the IMA controller is learning to control the plant
within the first 2000 time steps. In Figure 4.8 the transition to a staircase signal is
shown. Here the controller is able to adapt by changing its output weights accord-
ing to the desired plant output. As shown at the bottom of both Figure 4.7 and 4.8,
the generated throughput during this staircase signal, is close to an optimal control
signal. Indeed, a temperature decrease is generated by setting the throughput very
high in the beginning and lowering it afterwards.

I compared the IMA controller with a model based controller, called the Non-
linear Predictive Control Strategy (NEPSAC), that out-preforms more classical ap-
proaches (such as PID) on this task (Gálvez-Carrillo et al., 2009; De Keyser, 2003).
For comparison, a staircase signal is used as desired plant output which, after 2000
time steps of initialization, is shown in Figure 4.11.

We notice that both implementations of the NEPSAC and the IMA controller
have some trouble in the beginning due to the transition between the faster variation
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Figure 4.7: Overview of the first 6000 time steps of the sim-
ulation. Here, the desired output is an always changing tem-
perature. Above, the actual plant-output (shifted over δ time
steps) together with the desired one are shown. In the mid-
dle, the average quadratic weight adaptation is illustrated.
At the bottom, the actual plant-input, which is generated by
the controller, is shown.
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Figure 4.8: Overview of the last 6000 simulation time steps.
Here, the desired output is a constantly variating tempera-
ture, that eventually shifts to a desired temperature profile
according to a staircase. The middle plot illustrates the aver-
age quadratic weight adaptation of the output weights. The
bottom plot shows the generated control signal.
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Figure 4.9: This plot shows the Pareto front for both the
IMA and the NEPSAC controller. When the overshoot is al-
lowed to be equal or larger than 0.016◦C, the proposed IMA
controller is preferred. For a smaller overshoot but a larger
convergence time NEPSAC is better in the comparison.

in output temperature and the staircase signal. Afterwards, both are able to follow
the desired temperature. Taking a closer look at the staircase in Figure 4.12 be-
tween time steps 5000 and 5800 reveals that, after a temperature change, the IMA
controller is able to reach the desired temperature faster than NEPSAC. The time
to reach the desired output temperature is called converging time.

The convergence time is evaluated as the time needed to approach the set point
after which it stays within a predefined margin around this set point. In the follow-
ing experiments for this control task I have set this margin to 0.01◦C. The overshoot
is measured as being the largest difference between the desired set point and the
produced plant output after the set point has changed.

For NEPSAC the balance between overshoot and convergence time is regu-
lated by its prediction horizon ∈ [5, . . . ,50] which is illustrated by its Pareto front
(Horn et al., 1994) in Figure 4.9. The larger its prediction horizon the smaller the
overshoot but with the disadvantage that the convergence time increases.

As stated in Section 4.1.1, δ defines a time window with which the dynam-
ics of the plant are observed. If δ is small, the learned model is more sensi-
tive to fast dynamical changes, and vice versa. The used leak rate on the other
hand, basically implements a low-pass filter on the state changes. As a results, the
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Figure 4.10: Illustration of the effect of the delay δ∆t on the
optimal and average overshoot of the IMA controller. The
average overshoot is calculated over all experiments with the
same delay δ∆t but with different leak rates and input scal-
ing. Increasing δ will improve the convergence time until
the delay becomes larger than the memory capacity of the
ESN. The memory capacity of an ESN with 500 neurons
starts to decrease around 30 time steps after which it will
decrease dramatically.
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overshoot/convergence-time balance for the IMA controller is depending on both
the value of the delay δ and the leak rate γ . In Figure 4.9 the Pareto front for the op-
timal δ = 29 and averaged over 5 reservoirs is given. This means that the defined
balance is controlled by its leak rate and input scaling. For a defined input scal-
ing, increasing the leak rate will lower the overshoot and increases the convergence
time. However, experiments show that the choice of the delay δ∆t influences the
resulting Pareto front as well. Not only is δ depending on the rate at which relevant
samples are presented to the network but also on the memory capacity of the net-
work itself. This is shown in Figure 4.10. For different delays the optimal/lowest
and average1 overshoot is shown. One can notice the improvement in overshoot by
increasing the delay δ until the delay becomes larger than the memory capacity2 of
the network (around 30 time steps for a reservoir with 500 neurons). Increasing the
delay δ further will lead to a larger overshoot.

Now, if we compare both Pareto fronts one can conclude that the IMA con-
troller is more suitable for tasks where fast convergence is needed and the over-
shoot is allowed to be larger than 0.016◦C. For slower control where the desired
overshoot is lower and a convergence time of 0.15 hours or larger is allowed, NEP-
SAC is the optimal choice.

4.3.3 Aircraft pitch control
The third task that is considered is taken from a set of control examples (Messner
and Tilbury, 1996). The purpose of this task is to control the pitch of a simplified
aircraft model by changing the elevator deflection angle. However, changing this
deflection angle causes the pitch angle to move slowly. The time needed to reach
the desired angle depends on the distance between the previous and current pitch
angle which makes this task nontrivial.

4.3.3.1 Model

The pitch control problem is simplified by assuming a steady cruise of the aircraft
at constant velocity V and altitude. Under these conditions the control problem can
be formulated as:

dα
dt

=−0.313α +56.7q+0.232η

dq
dt

=−0.0139α−0.426q+0.0203η

1Average over all experiments with the same δ but with different leak rates and input
scaling.

2The number of time steps, traces of past inputs are reflected in the current states (length
of short-term memory).
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Figure 4.11: The actual plant output is shown for the
IMA controller (shifted over δ∆t) and for the NEPSAC-
controller. This gives, together with the desired plant output,
a good representation of the control performance.
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Figure 4.12: This plots shows a more detailed view of the
overshoot and convergence time of both controllers.



η

θ
α

V

Figure 4.13: The representation of the aircraft which is used
in simulation. V represents the velocity vector and X denotes
the center axis of the plain. Θ, α and η on the other hand
represent the pitch, attack and elevator deflection angle, re-
spectively. The control task: How to control η to achieve a
desired pitch angle Θ?
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Table 4.5: Network parameters of pitch control task

Parameter Value Parameter Value
N 500 neurons f r

i 0.2
ρ 0.7 f r

b 1
δ 10 γ 1

dΘ
dt

= 56.7q.

As shown in Figure 4.13, α is describing the angle of attack, q the pitch rate, η
the elevator deflection angle and Θ the pitch angle. For simulation I again use the
Runga-Kutta (4,5) method with an integration time step of 50 ms.

4.3.3.2 Controller

The dynamics of the simplified control task are linear. However, they present some
interesting challenges for the proposed learning algorithm. Changing the elevator
angle η causes the angle of attack α to change slowly until it settles. When η is
changed again before α has settled, the current angle of attack is partially depend-
ing on its previous angle. The pitch of the aircraft is controlled by changing the
elevator deflection angle. Therefore, the IMA controller, shown in Figure 4.3, has
an input and output which is defined as y = Θ and x = η , respectively. In Table 4.5
the network parameters for both network A and B are shown. All these parameters
were determined by performing a grid search on a validation set.

4.3.3.3 Results

For the evaluation of the controller some experiments are conducted where a de-
sired pitch angle is set. After keeping the target pitch angle constant for 300 time
steps, the target pitch angle is changed to another value. These values are randomly
chosen according to a standard normal distribution: yd(t) ∈ N (0,0.35) rad. Each
experiment takes 10000 time steps. To evaluate the control performance it is com-
pared with a method called Linear Quadratic Regulator (LQR) (Kwakernaak and
Sivan, 1972; Sontag, 1998) which tries to minimize the following cost function:

J =
K

∑
k=0

�
χ(k)T Qχ(k)+η(k)T Rη(k)

�
, (4.14)
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Q =




0 0 0
0 0 0
0 0 p



 (4.15)

R = 1 (4.16)

This method allows us to find (tuning a weighting factor p) an optimal control
matrix K that results in an appropriate linear state-feedback controller η = −Kχ
(χ represents the controller state [α,q,Θ]T ). In Messner and Tilbury (1996) and
Hafner and Riedmiller (2011) an LQR controller design is presented which is used
here as well and which results in a gain vector K = [−0.6435,169.6950,7.0711]
with a weighting factor p = 50 that weights the importance of the error compared
to the importance of the control effort. The calculation of K uses a Ricatti equation,
similar to RLS and the Kalman filter. In fact there exists a duality between the LQR
(controllability) and the Kalman filter (observability). The Q matrix and R used
correspond to respectively the variance of the process noise and the variance of
the measurement noise. In optimal control the Linear Quadratic Gaussian (LQG)
controller is one of the most fundamental controllers. It combines the strength of
both the Kalman filter for observability and the LQR for controllability.

As shown in Figure 4.14, the IMA controller’s performance improves as the
experiment progresses. The learned controller is changing the deflector angle x = η
fast after a set point adjustment. Afterwards, as the pitch angle y = Θ converges, the
generated output converges to 0 rad. In Figure 4.15 a more detailed section of such
an experiment is shown (δ = 3 and γ = 0.95). Here, the difference between both
controllers and the desired plant output is clearly visible. The learned controller
causes the pitch angle to change rather fast before approaching the desired set point.
After producing a very small overshoot, the resulting pitch angle converges. This
small overshoot is clearly less than the overshoot of the LQR approach. However,
as in most control tasks, a trade-off between overshoot and convergence time has
to be made. To ensure a good comparison of both metrics the design requirements
used to design the LQR-controller should be the same as the ones used for the IMA
controller. However, by creating a Pareto front of both approaches one can evaluate
and compare the control performance more thoroughly.

As in the previous task the overshoot is calculated but use a margin of 0.0005
rad to determine the convergence time.

The overshoot and convergence time of the IMA controller was calculated for
different parameters values of γ ∈ [0.6, . . . ,1] and δ ∈ [2, . . . ,12]. A large γ results
in a smaller overshoot than a smaller γ . Consequently, the convergence time will
be larger with a large γ than with a small γ . Similarly as for the IMA controller, the
overshoot and convergence time of the LQR approach were calculated for multiple
weighting factors p ∈ [3, . . . ,150]. These experiments result in the Pareto front
shown in Figure 4.16.



4.3 Computer simulations and experimental results 103

The Pareto front illustrates that the IMA controller is performing worse than
LQR when a small convergence time is needed (< 6.5 s). However, when a larger
convergence time is allowed the resulting overshoot of our controller is much smaller
(Figure 4.15). Therefore, under these conditions, the presented controller is more
appropriate than the LQR approach.

The Pareto front of the LQR approach is determined by performing a parameter
sweep of the weighting factor p. As the LQR approach is fully deterministic, the
results are all located on the Pareto front.

With LQR a small overshoot and a lower convergence time is possible for
smaller weighting factors (p < 100). The Pareto front of the proposed IMA con-
troller is calculated by averaging results over 6 RC-networks.

4.3.4 Balancing double inverted pendulum
The balancing task of a double inverted pendulum is a well known task in control
theory and presents some interesting control challenges. Here, 2 rods connected
with a joint need to be balanced in a upright position by only controlling the angle
of one of the rods. In a small region around this desired position the dynamics are
approximately linear. However, outside this region the dynamics of the pendulum
are strongly nonlinear. In this task only the pendulum stabilization is considered
and not the swing-up.

4.3.4.1 Model

The double inverted pendulum is modeled as illustrated in Figure 4.17. In this
model the weight distribution of the rods is neglected and each end of the rod is
modeled as a point mass. The Cartesian coordinates of these point masses are
given by (x1,y1) for m1 and (x2,y2) for m2, with:

x1 = l1 sin(θ1)

y1 =−l1 cos(θ1)

x2 = l1 sin(θ1)+ l2 sin(θ2)

y2 =−l1 cos(θ1)− l2 cos(θ2).

(4.17)

Using these equations the potential energy V and kinetic energy T can be derived:

V = m1gy1 +m2gy2

T =
1
2

m1v2
1 +

1
2

m2v2
2,

(4.18)

where vi = dxi
dt + dyi

dt . To validate the model one can compute the total energy E =
V +T , which should be a constant over time when the applied torque is zero.
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Figure 4.14: The top plot shows a part of a pitch control
experiment where the desired pitch angle is compared with
the ones acquired by using the proposed IMA controller and
the Linear Quadratic Regulator approach. It demonstrates
an improvement in the convergence of the IMA controller
as the experiments progresses. The bottom plot shows the
corresponding plant input (elevator angle η) produced by
the IMA controller.
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Figure 4.15: This plot gives a detailed view of the proposed
IMA controller’s performance at the end of an experiment.
Furthermore, the plant-output under influence of the LQR
approach is shown, which illustrates the difference in con-
vergence time and overshoot between both approaches.
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Figure 4.16: This plot shows the Pareto front of both the
IMA controller and the LQR-approach, given the predefined
margin conditions (error < 0.0005 rad). It illustrates that
the LQR-controller performs better as long as a convergence
time of less than 6.5 s is required. As soon as a the pitch
angle is allowed to converge slower, the proposed IMA con-
troller is recommendable. Furthermore, most of the results
of the LQR approach converge fast. Only when the weight-
ing factor p becomes large, the convergence time increases
drastically.
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Figure 4.17: This is an illustration of the double pendulum
that is used as simulation model. The control task: How
to drive the torque of the motor to achieve balancing of the
double inverted pendulum?

Next, I use the Lagrangian transformation with L = T −V and define the ap-
plied torque τ by using the Euler-Lagrange differential equation:

∂L
∂θi

− d
dt

(
∂L
∂ θ̇i

) = τi, (4.19)

with τ = τ1 and τ2 = 0 because only torque is applied on the first rod. By writing
this equation in function of θi and dθi

dt for i = 1,2 one can solve this system with
respect to dθi

dt , which leads to the equations of motion for the double pendulum
(Figure 4.17). Similar as in the previous tasks the Runga-Kutta (4,5) method is
used with an integration time step ∆t op 50 ms.

Table 4.6: Simulation parameters for the double pendulum

Parameter Value Parameter Value
m1 1 kg θ1 ∈ [π

2 , 3π
2 ]

m2 1 kg θ2 ∈ [π
2 , 3π

2 ]
l1 1 m τmax 50 Nm
l2 1 m ∆t 50 ms
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Table 4.7: Network parameters of double inverted pendu-
lum task

Parameter Value Parameter Value
N 300 neurons f r

i 1
ρ 1 f r

b 0.5
δ 1 γ 1

4.3.4.2 Controller

This control task is different from the other tasks in the sense that the IMA con-
troller in this task is limited in the number of examples and the amount of time
given to learn. In most cases an initial control effort does not succeed in balancing,
which causes the rods to fall down. The amount of information that can be used for
learning is therefore limited. As a result, balancing the pendulum means that the
range of a possible solution is restricted for θ1 and θ2 (shown in Table 4.6). This
region consists of both a linear and nonlinear dynamic region of the pendulum. It is
assumed that the controller is unable to control the pendulum when the pendulum
exceeds the restricted range and, when this happens the simulation is reset. Each
balancing trial until a simulation reset, is called an episode. A simulation reset im-
plies randomly initializing both rod positions within [π − 0.15,π + 0.15], holding
this initial position for δ time steps and reinitializing the network states to their
original values.

For this task the proposed IMA controller, shown in Figure 4.3, has an input
and output, which are defined as y(t) = [θ1,θ2] and x(t) = [τ], respectively. The
angle θ2 of the second rod is scaled up with an experimentally determined value of
10 by applying grid search. As a results, a small change of θ2 will have a larger
influence on the network than a small change of θ1. Consequently, the network will
first prioritize the stabilization of θ2 before stabilizing θ1 to the desired angle. The
output of network B is limited by a limiter to x̃(t) by insuring |x(t)| < τmax. The
network parameters used for both networks are shown in Table 4.7. All parameters
were optimized by applying a grid search. The introduced RLS-parameters are set
to λ = 1−10−6 and α = 1. The initial output weights w(0) are normalized random
values (N (0,1)).

4.3.4.3 Results

Each conducted experiment takes 50000 time steps or 41.7 minutes. For each
episode, both rods are randomly initialized to a value in [π−0.15,π +0.15].

The top two plots of Figure 4.18, show such an experiment where balancing to
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the desired upright position was achieved after 8 episodes. The end of an episode is
indicated by a vertical dotted line. We notice an increase in episode duration due to
the learning progress of the IMA controller. In the 9th and final episode balancing is
achieved. However, this does not imply that the acquired controller will be able to
balance the pendulum given any initial position of the rods. In order to evaluate this,
the pendulum is again randomly initialized in the range [π − 0.15,π + 0.15], after
successful balancing was achieved. The bottom rows of Figure 4.18, demonstrate
the results for two different initializations. For both these experiments, the initial
balancing efforts are shown for the first 50 time steps together with an overview
of the entire experiment. These experiments clearly demonstrate that the IMA
controller is indeed learning a balancing controller that is able to generalize for
different initializations.

Although no convergence is achieved is some episodes, they can take a long
time because of the good balancing efforts of the controller. As a result, some ex-
periments finish before actual convergence to the upright position emerged. In this
evaluation of the controller convergence is assumed when the errors on both an-
gles clearly become smaller in the last episode. The number of episodes needed to
achieve balancing averaged over 40 experiments is 13.75 episodes. The minimum

Furthermore, one can notice, due to the chosen input scaling, that the pendulum
is indeed balanced by first prioritizing the convergence of θ2 and afterwards θ1.

4.3.5 Cart pole balancing
Another well known task that is often used as benchmark is the cart pole balancing
problem. Here a single pendulum is mounted on a cart using an unactuated joint
and the cart, which glides on a rail, is driven by an external force. This task poses
similar control challenges as the previous task. However, an extra difficulty is added
by the size of the rail, which limits the range in which the cart can move. As in the
previous task only the balancing problem is considered and not the swing-up. The
reason for this is that the IMA feedback controller will only try to directly move the
pendulum in the desired direction. However, because it is an underactuated system
the swing-up can only be achieved by performing actions that cause the pendulum
to also move away from the desired direction. Only when enough momentum is
achieved by these back and forth movements a swing-up can be accomplished.

4.3.5.1 Model

Instead of using a simulation model as in the previous tasks, the controller is applied
on a real life cart pole setup (shown in Figure 4.19(b)) that I have build. The angle
of the unactuated joint is measured by a wireless encoder of which the development
was initiated during a student project (under the supervision of former lab member
Michiel D’Haene and myself) and later extended by me in order to allow multiple



Figure 4.18: Both top plots illustrate the learning progress
of the controller in the double inverted pendulum task. The
top plot shows the first efforts of trying to balance the pen-
dulum. Each vertical dotted line marks the beginning of a
new episode at which the pendulum states are reset. In this
experiment 8 episodes are necessary to successfully balance
the pendulum in the 9th episode. The continuation of this
last episode is shown in the second plot. The two bottom
plots each illustrate the effect of initializing the pendulum in
a random position after successful balancing the pendulum.
For each experiment, both the initial course and an overview
of the entire experiment are shown.
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Figure 4.19: (a) An illustration of the real cart pole setup.
The red dot indicates the location of the wireless encoder
that measures the pendulum’s angle. (b) Shows the actual
cart pole setup on which the presented experiments were
performed. The control task: How to drive the torque of the
motor (force on cart) to achieve balancing of the inverted
pendulum?

encoders to be used at the same time. The use of this setup implies that no accurate
model is available.

4.3.5.2 Controller

Similar to the controller in the previous task, the training needs to happen during
consecutive episodes. This means that the data, that is observed by the IMA con-
troller, is limited to the controllers own balancing efforts. Initial control efforts will
not succeed in balancing, which causes the pendulum to move downwards easily.
Therefore, the experiment is reset each time the cart reaches its limits or when the
pendulum angle θ exceeds the predefined range |θ | < 60◦. Resetting the experi-
ment on a real setup means that the pendulum is again held in an upright position

Table 4.8: Cart pole setup

Parameter Value Parameter Value
m1 0.5 kg θ ∈ [π

2 , 3π
2 ]

m2 0.11 kg Fmax 15 N
l 0.64 m ∆t 20 ms
L 1 m
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Table 4.9: Network parameters of cart pole balancing task

Parameter Value Parameter Value
N 400 neurons f r

i 1
ρ 1 f r

b 0
δ 1 γ 1

and that the cart is re-centered on the rail. To automate this procedure a simple en-
ergy based swing-up algorithm (Yoshida, 1999) is used to put the pendulum in the
upright position after which the control is given back to the proposed IMA control
algorithm allowing for the learning to continue.

For this task the input and output of the IMA controller (Figure 4.3) are defined
as y(t) = [X ,θ , θ̇ ] and x(t) = F , respectively. The force F that can be applied
onto the cart is limited to a maximum force by ensuring |x(t)|< Fmax = 15 N. The
network parameters for this controller are shown in Table 4.9. The introduced RLS-
parameters are set to λ = 1−10−6 and α = 1. The initial output weights w(0) are
normalized random values (N (0,1)).

4.3.5.3 Results

The presented adaptive controller learns to balance the inverted pendulum within 10
minutes with an interaction time step of ∆t = 20 ms. After 23 trials the pendulum
is balanced within a range of |θmax| < 12.03◦. To evaluate its performance this
controller is compared to a classical model based balancing approach that uses
Ackermann’s formula to achieve the desired pole placement (Ackermann et al.,
1993). Furthermore, the Neural Fitted Q-iteration (NFQ) algorithm (Riedmiller,
2005) was implemented so that also a non-model based algorithm is used in the
comparison. The experiments for which the results are shown in Table 4.10 were
conducted by Matthias Dossche during his last Master’s year. Therefore, I would
like to refer to Dossche (2012) for a detailed description of all the used control
approaches and experiments in this comparison.

As shown in Table 4.10, the adaptive controller learns the balancing task af-
ter 10 minutes of interacting with the experimental setup. This interaction time
includes the necessary time to do calculations. Compared to NFQ the interaction
time is the same. However, the needed calculation time is about 4 hours. Given a
faster computer and better implementation the resulting calculation time could be
reduced. The standard deviation of the required force during balancing is around 12
N for the classical approach while it is 15 N for both non-model based approaches.
The maximum angular deviation |θmax| during balancing is similar for the NFQ and
classical approach. The angular range in which the adaptive controller succeeds in
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Table 4.10: Comparison of cart pole balancing task

Pole placement NFQ IMA controller
Model information yes no no

Learning rule - RPROP RLS
Learning mode - offline online

Interaction time - 10 min 10 min
Calculation time - 4 h -

σF 12 N 15 N 15 N
|θmax| 10.3◦ 10.3◦ 12.03◦

balancing is a little larger.

4.4 Conclusions

In this chapter I presented an novel feedback control framework, called Inverse
Modeling Adaptive (IMA) control framework. The core of this framework is a
dynamical system, referred to as network A or B, with a state representation is
sufficiently rich (e.g. recurrent neural network) to hold an inverse model of the
plant (system under control). The excitation of network B is used to generate a
plant-input and eventually a plant-response. Afterwards, this pair is used to train
the output weights of a network A. These weights in turn are used as the output
weights of network B (weight sharing). Each iteration, network A improves its in-
verse model of the plant. As both networks are identical (except for their input), the
controlling performance of network B, which has the desired plant-output as net-
work input, will improve. By applying this framework, accurate control on a wide
variety of plants is achieved. Learning is fast and online without the need for a pre-
acquired plant model. Furthermore, the convergence of the training algorithm and
a method that allows the stability analysis under which local asymptotic stability is
guaranteed, were presented.

The IMA control framework was validated on several challenging control tasks
with different dynamics by using Echo State Networks (ESN) as learning mod-
ules: inverse kinematics of iCub robot arm (nonlinear kinematics), the heating tank
(slow nonlinear dynamics), flight pitch control (slow linear dynamics), the dou-
ble inverted pendulum (fast linear and nonlinear dynamics) and the real life cart
pole balancing task (fast linear and nonlinear dynamics). In most conducted ex-
periments, the proposed IMA controller was compared to other standard control
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techniques.
I have demonstrated that the adaptive controller succeeds in learning the inverse

kinematics of the 7 DOF iCub arm and can generalize quite well in unseen regions
of the task space.

The results of the heating tank experiments show that the IMA controller is
able to react relatively quickly to changes in the desired plant-output. The track-
ing of different kinds of output signals (red noise signal and staircase signal) was
demonstrated. Although such a varying desired output improves plant exploration,
a constant desired plant output can be handled as well. The performance was com-
pared with an existing state-of-the-art model-based control method, NEPSAC. In
this comparison I have shown that the proposed IMA controller converges faster,
when a moderate overshoot is allowed. The disadvantage of using NEPSAC is its
slower control and, as a results, its longer convergence time. The introduced delay
δ∆t depends on the rate at which relevant samples are presented to the network.
Slow dynamics need a larger δ , fast dynamics need a smaller delay. Furthermore,
I have found that in this task the improvement in overshoot by increasing δ is also
limited by the memory capacity of the used network. This observation can be ar-
gued by the fact that the modeling power of the relation between (y(t− δ∆t),y(t)
and x̃(t − δ∆t)) is lost when the RC-network is unable to “remember” it δ time
steps later.

During the flight pitch control experiments the controller needs to switch be-
tween different desired pitch angles by controlling the elevator deflection. Due to
the online learning nature of the controller, the acquired model representation of
the plant improves as more samples are presented. As a result, the controller’s
performance increases as the experiment progresses. Furthermore, the controller’s
performance was compared with a classical LQR-controller. As for the previous
task, the IMA controller is the most accurate if moderate convergence times are
allowed.

The double inverted pendulum and cart pole balancing tasks are different from
the other tasks, because with the IMA controller, which is a tracking controller,
both setups can become uncontrollable outside a certain range. Due to the online
learning nature of the IMA controller, this needs to be appropriately managed. By
reinitializing the network states and the experimental setup, the resulting control
for both task was shown to be successful. The IMA controller demonstrated that
it learns the balancing of the double inverted pendulum and the cart pole within
a few minutes. Furthermore, I demonstrated that, when balancing is achieved, the
IMA controller is capable of balancing the pendulum, starting from a random initial
position within the predefined range.

Given the presented experiments, one can conclude that the proposed IMA
controller is indeed capable of learning a wide variety of control tasks. Achieving
the same results with classical model-based controllers is impossible, because of
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the diversity in dynamical properties. As with any model-free controller, the IMA
controller’s independence on prior model information, allows it to control systems
for which no model is available.





5
Control Hierarchies

In previous Chapters I introduced a motion pattern generator and an adaptive con-
trol framework that together allow us to learn motion skills by demonstration, with-
out having a model of the robot at hand. Given a set of recorded motion examples,
it becomes possible to generalize to similar motions in a changing and uncertain en-
vironment. In order to explore new strategies from which robot control can benefit,
researchers again turn to biological research investigating the underlying mecha-
nisms that make humans and animals exhibit advanced yet graceful motor control.

For instance, research performed on frogs (Bizzi et al., 1991) showed that elec-
trical microstimulation of different areas of the lumbar cord generated distinct types
of force fields in the frog’s isometric leg movement. Similar research on frogs
(Mussa-Ivaldi et al., 1994; Kargo and Giszter, 2000) and rats (Tresch and Bizzi,
1999) has shown that simultaneous stimulation of such areas result in a superposi-
tion of the separate recorded force fields, suggesting a hierarchical/modular control
system. In Mussa-Ivaldi and Bizzi (2000), this work has been extended to the plan-
ning of limb movements and how to transform this planning into a sufficient set of
motor commands.

Other biological research suggests that specialized neural circuits, so called
Central Pattern Generators (CPGs), located in the spinal cord are responsible for
generating rhythmic activations needed for body function including the contrac-
tions of a heart or lungs and control of muscles for walking (Stein et al., 1999).
Suggesting that some aspects of brain functions are offloaded to regions outside
of the brain. These findings are based on the study of the locomotion of a lam-
prey, which is a primitive fish (in Ijspeert (2008) an extensive review is presented).
For instance, researchers discovered (Cohen and Wallen, 1980) after extracting and
isolating the spinal cord from the body, that the spinal cord, when excited with
electrical stimulations, will produce fictive locomotion. This indicates that sensory
information is not needed to generate such rhythmic patterns. However, it plays
a crucial role in shaping the generated pattern to keep the coordination between
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the CPGs and the body. Rossignol (2000) demonstrated that a mechanically driven
treadmill can induce a normal looking walking gait in a decerebrated cat.

Instead of using invasive techniques to investigate the existence of a modular
control system, researchers (d’Avella et al., 2003) also developed methods to find
out whether a large set of natural movements is the result of a combination of a
limited set of motor primitives, solely based on muscle activity observations. By
measuring such activations with Electromyography (EMG) and applying a decom-
position technique over multiple EMG recordings, they found primitive representa-
tions, called synergies. These experiments were first conducted on frogs and later
on humans (Hart and Giszter, 2004; d’Avella and Bizzi, 2005; Cheung et al., 2005).

Also on the behavioral level it has been demonstrated that humans try to follow
mental templates of motion when executing a task (Bernstein, 1967). The presence
of these mental templates or movement primitives can also be detected as velocity
bumps (Doeringer and Hogan, 1998) during online movement corrections. A more
detailed overview of primitives at the neural, dynamic and kinematic level can be
found in Flash and Hochner (2005).

Not only does such biological research help us roboticists in finding new ways
to control our robots, the validation of such hierarchies on robots also allows the
biologist to investigate certain hypotheses. For instance, in Schaal et al. (2003)
the idea of a modular control system using primitive representations for robots was
investigated. In Muelling et al. (2010) they demonstrate a robot that learned to play
table tennis based on a set of primitives learned by imitating human table tennis
movements. In Schaal et al. (2005), a flexible and reactive framework for motor
control was presented that uses dynamic movement primitives (DMPs) (Schaal,
2006). This framework has demonstrated to be useful in the generation of walking
motion of a biped based on oscillating DMPs or the generation of the swimming
and walking motions of a salamander robot (Ijspeert et al., 2007) when DMPs are
used as central pattern generator.

In this Chapter two different control hierarchies are presented that apply the
techniques described in previous Chapters. The first Section investigates a simple
hierarchy in which different levels operate on other aspects of the control system,
each at different time scales. Here the MPG proposed in Chapter 3 is used in the
context of a CPG generating basic motions for a robot leg. During control this
CPG is modulated by a higher level controller (Chapter 4) that tries to control more
slowly changing motion properties.

The second hierarchy represents a modular architecture with control primitives
(MACOP) that uses a set of controllers (Chapter 4), where each controller becomes
specialized in a part of the robot’s state space. By enforcing a set of desired proper-
ties on the mixing mechanism, a mixture of control signals emerges unsupervised
that successfully solves the control task. Here, each controller’s control signal is
called a control primitive.
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5.1 A hierarchy of time scales for motor
control

When researchers began physiological investigations of the nervous system they
started with easily accessible regions such as sensory and motor elements and their
combination in elementary reflexes. Based on these initial finding theories were
built where reflexes were taking a central role, defining animals as reactive and
reflex-driven machines. Consequently in biology motor patterns were explained as
a chain of reflexes where one reflex creates an appropriate sensory stimulus that
triggers another reflex. However, reflex or response chain theories were proved not
to be consistent with subtle behavioral differences measured under the same condi-
tions.



τ1

τ2

τ3

Figure 5.1: Illustration
of an example hierarchi-
cal temporal structure,
mapped onto a body.

Furthermore, response chains based on reflex loops
cannot explain rapid movement sequences when the
interval of a movement segment is smaller to the
minimum latency of a response. As a result, a
new theory was needed that incorporates general-
ized representations of behaviors that can be mod-
ulated by external and internal influences.

According to Kiebel et al. (2008), many as-
pects of brain functions can be explained by a hi-
erarchy of temporal scales at which representations
of the environment evolve. The higher level en-
codes slower contextual changes in the environment
or body while at the lower level faster variations due
to sensory processing are encoded.

As physiological approaches for investigating
the central nervous system (CNS) advanced, intrin-
sic motor patterns were found. These motor pat-
terns in the CNS are produced by neural circuits
even in the absence of patterned sensory inputs. Co-
hen and Wallen (1980), after extracting and isolat-
ing the spinal cord from a fish body, discovered that
the spinal cord, when excited with electrical stimu-

lations, will produce fictive locomotion. This indicates that sensory information is
not needed to generate such periodic patterns. However, it plays a crucial role in
shaping the generated pattern to keep the coordination between the CPGs and the
body.

In all vertebrates, neural circuits located in the spinal cord can be found that
are responsible for generating periodic or discrete activations used for locomotion
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that are called Central Pattern Generators (CPGs). These CPGs (often periodic
in nature) can be considered to be a specific type of motor primitive that drives a
particular function of the body (e.g., breathing) (Stein et al., 1999).

Given these findings many researchers propose a both spatial and temporal hi-
erarchal structuring of the motor control problem where a planning and command-
ing system is coordinating one or a set of primitives that in turn produce motor
commands (Arbib, 2003). The corresponding changes in the body and the envi-
ronment are registered by proprioceptive and exteroceptive sensors. Consequently,
these sensor values affect every layer of the controlling hierarchy. It is interesting
to investigate the spatial properties of the hierarchy where a combination of a set
of primitives produces a desired motor signal. However, in this chapter, I limit the
investigation to the feasibility of a single pattern generator that is being directed
by a higher level system that tries to make changes at a much slower time scale
based on slower sensory information than what the pattern generator is receiving.
Furthermore, the morphology of the body introduces an additional lower layer that
is able to react to very fast changes, much faster than all the other layers can per-
ceive. Consider for example a human that is walking on a vibrating treadmill such
as shown in Figure 5.1. The vibrations have a very small amplitude but a frequency
that is too fast for the brain or CPG to handle. However, thanks to the morphologi-
cal structure these small but fast (time scale τ1) vibrations are compensated by the
muscles which act as springs. As a result the CPG does not perceive these vibra-
tions at time scale τ2 and keeps generating the walking movement without the brain
having to consciously think about it. Whenever the muscles/springs are unable to
handle larger variations in the environment (e.g., sudden obstacle on the treadmill),
the CPG will react by a reflex movement. As soon as the properties of the treadmill
change more dramatically such as the speed or position the brain becomes con-
scious (time scale τ3) about this and modulates the CPG appropriately. The brain
can also become conscious about a reflex movement induced by the CPG itself, but
at a slower time scale.

The proposed hierarchy, illustrated in Figure 5.2(a), consists of two building
blocks: a pattern generator and a controller. On the lowest level, a pattern gen-
erator operates at a fast time scale and embeds a learned periodic pattern that is
given to the motors of the robot. The rotary encoders of the motor system provide
the pattern generator with direct feedback. Only environmental changes that are
unhandleable by the passive compliance of the leg, will be visible for this encoder.
On the highest level, and thus slower time scale, the controller tunes the param-
eters of the pattern generator online in such a way that it keeps track of the slow
varying parameters of the resulting motor. To achieve this, the sensor information
presented to the controller is preprocessed by calculating for example amplitude
and offset. As a result, the proposed hierarchy operates at multiple time scales that
allows the use of a more advanced controller (which often acts slower) while the
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Figure 5.2: (a) An overview of the control hierarchy is pre-
sented. Our approach uses two building modules working
on different time scales. The first module, the pattern gener-
ator, operates at a fast time scale and gets feedback from fast
varying sensors. The parameters of the pattern generator are
adapted by a controller, operating at a slower time scale, that
gets feedback about slowly variating motion properties. The
environment is included to illustrate that very fast perturba-
tions caused by interacting with the environment are handled
by the passive compliance of the leg. (b) Shows the actual
leg of the Oncilla robot build in the AMARSi consortium on
which the experiments were performed.

pattern generator can be kept relatively simple and can immediately act on for in-
stance perturbations. In other words, the motor commands generated by the pattern
generator are separated from the functional control, which is done on a higher level.

5.1.1 Modulatable Motion pattern generator
As discussed previously, the robot is controlled directly by a pattern generator that
is able to embed and generalize beyond demonstrated periodic and/or discrete mo-
tions. In Chapter 3 such a Motion Pattern Generator (MPG) was proposed. As
shown in Figure 5.2(a) and similar to a previous experiment where the motion of
a planar manipulator was generated by an MPG, the robot is also included in the
feedback loop. In order to enable the controller to modulate the generated pattern a
modulation approach (Section 3.3.6) needs to be chosen. For this control hierarchy,
however, only the technique that changes the bias weights will be considered.
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In Li and Jaeger (2011), controlling the bias weights was achieved by param-
eterizing Wr

b with a single variable for each motion property one wants to control.
In this section, the control is limited to two slowly variating characteristics, namely
amplitude and offset. This parametrization allows us to modify Equation (2.3) as
follows:

a(k +1) = (1− γ)a(k)+ γ tanh
�
Wr

ra(k)+Wr
oo(k)+W̃r

b
�
, (5.1)

After training the MPG with Wr
b one can determine for each neuron how an additive

bias affects the desired properties. In the case at hand W̃r
b can be written as a linear

combination of control vectors that represent the corresponding neurons sensitivity
to a property. More formally this can be written as follows:

W̃r
b = Caεa +Coεo +Wr

b, (5.2)

were the amplitude and offset are represented by their corresponding parameters εa

and εo, respectively. In order to prevent cross interference between desired prop-
erties the basis control vectors Ci are modified in such a way that all elements of
Co are zero where Ca has non zero elements, and vice versa. In other words the
control vectors Ci, are orthogonal, which means that all possible inner products are
0. For the amplitude and offset this can be written more formally as:

�Ca,Co�= 0. (5.3)

Their exist several methods to find the control vectors Ci. In Li and Jaeger (2011)
and Jaeger (2010) two different approaches were presented, one based on corre-
lations and one on perturbations. More recently a simpler and more intuitive ap-
proach was proposed by my colleague Francis wyffels in wyffels (2013). Without
going into much detail, it relies on determining the difference between the cur-
rent neuron states and a moving average of these neuron states, while the system
is driven by a signal that changes monotonically in a certain property (e.g., am-
plitude or offset). For instance, if the trained MPG is driven (via its feedback) by
an example motion that increases in amplitude one can see which neurons’ state
changes quickly compared to the other and previous neuron states. These neurons
are therefore more sensitive to amplitude changes and in turn affect the amplitude
more than others. Changing εa and εo will therefore modulate the amplitude and
offset, respectively.

When controlling a real robot the timing at which new positions are fed to
the robot is important, especially when smooth and reactive motion behavior is
required. One of the benefits of using the proposed MPG is that it is computation-
ally fast to produce a new position. Therefore, the rate at which the robot can be
controlled is not limited by the MPG but rather by the hardware itself.
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5.1.2 Controller
In order to learn how the parameters εa and εo should change in Equation 5.2 to al-
low for the desired motion properties to be achieved, the IMA controller proposed
in Chapter 4 is used. The plant in this control task is the above described MPG
attached to the robot, which means that the controller is driving the MPG and ob-
serves the properties of the resulting leg motion. If the measured amplitude and
offset are denoted by ξa(t) and ξo(t), respectively, the controller input is defined as
y(t) = [ξa(t),ξo(t)]T . In contrast, the controlled parameter are x(t) = [εa,εo]T . The
target values for both the amplitude and offset are given as desired plant-output.

The IMA controller uses an ESN to create an inverse model of the task. De-
pending on this ESN’s network size, it is possible that the calculation time for a
new control command is slower than the hardware limitations to the control rate.
The computational burden of this learning algorithm and thus the control rate of the
controller depends on the size of the network used. For a simple task (e.g., linear
low dimensional task) a controller with a smaller network might be sufficient while
having the advantage of being fast. A larger network however might be slower but
can model much more complex tasks.

An advantage of the controller used is that it learns to control the task at hand
while interacting with it given all the task depending restrictions, including the
given control rate. However, this does not mean that the controller will succeed
when for instance trying to balance a pendulum by sending new commands every
10 seconds.

5.1.3 Experiments
In this section the discussed control hierarchy is applied on a prototype robot leg
of the Oncilla robot platform, which is developed in the AMARSi consortium and
shown in Figure 5.2(b). This robot leg is controlled by a motor control board that
is driven by a small computer. However, because of the computational limitations
of this onboard computer and to ensure the desired communication timings, all
calculations are offloaded to a much more suited computational unit.

The purpose of these experiments is to evaluate the described control hierarchy
concept on a simple task. The number of experiments is quite limited and should
be considered to be a proof of concept.

Although the control of multiple servos is possible, the experiments are simpli-
fied so that only one servo is used. This servo is controlled by a simple P-controller,
which converts the positions, generated by the MPG, to a torque signal. However,
to allow for changes in the robot dynamics to be visible in its motion, the used
P-parameter is smaller than optimal and the amount of torque is limited.

Table 5.1 gives an overview of the MPG and IMA controller parameters used
during the experiments. Additionally, the different timings are shown at which
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Figure 5.3: (a) Shows two different recorded motions to-
gether with the actual reproduction by the robot leg. (b) De-
picts the actual motion during offset control (top) together
with the desired and actual offset (bottom).

each system is interacting with another layer of the hierarchy. As mentioned in the
previous section, the IMA controller is interacting at a much slower rate compared
to the MPG’s control rate.

Table 5.1: Summary of all our setup parameters used in the
experiments.

Parameter Pattern generator Controller
N 500 500
ρ 1.4 1.

γ 0.14 1.

α 0.1 0.01
f r
i 1.0 0.1

f r
b 0.5 0.5

∆t 20ms 100ms

5.1.3.1 Learning by imitation

By limiting the servo’s torque the robot leg can be back-driven, allowing the demon-
stration of a desired motion. In this experiment a periodic motion is imposed which
afterwards is used to train the MPG-network. When training is completed, the
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Figure 5.4: (a) Depicts the actual motion during amplitude
control (top) together with the desired and actual amplitude
(bottom). (b) This plot illustrates how the proposed hierar-
chy reacts to changes in the dynamics of the robot leg during
amplitude control.

necessary gradient vectors Ci to the MPG-neurons that affect the amplitude and
offset, are computed. In Figure 5.3(a) the actual trained leg motion is shown for
two different imposed patterns that are shown as well. The first pattern is a peri-
odic pattern similar as in a swing/stance phase gait while the second motion is a
sinusoidal pattern. Both resulting motions show a phase shift caused by integrating
the robot leg into the feedback loop of the MPG. A change in the generated pattern
has to propagate through the dynamics of the robot leg, before the correct leg angle
is visible for the leg encoder. Because of the feedback loop, this variable delay
affects the generated pattern. This illustrates that a higher level control is necessary
to modulate the pattern generator in such a way that these dynamics are taken into
account.

5.1.3.2 Motion modulation by controlling the MPG

After learning the recorded motion, the feedback controller is applied to modulate
the amplitude and offset of the motion, which are only observable on a slower time
scale. As mentioned before in Section 5.1.1, this can be achieved by controlling εa

and εo in Equation 5.2. Figure 5.3(b) shows the desired and actual offset, which
are controlled by the feedback controller. To control the offset, the highest level
of the proposed hierarchy was interacting with the MPG every 100 ms (5 times
slower than the interaction rate of the MPG). Figure 5.4(a) demonstrates a similar
experiment but for amplitude control. Additionally, the actual resulting positions
are depicted at the bottom of both Figure 5.3(b) and 5.4(a). When observing both
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the results for the offset control and the amplitude control, one can notice that
controlling the offset affects the amplitude and vice versa. In order to prevent this
undesired behavior, the degrees-of-freedom of the control task need to be restricted.
As one can imagine, their might exist more than one solution to control a single
motion property. Therefore, controlling both the amplitude and offset is necessary
to get the desired motion response.

5.1.3.3 Adapting to changes in robot dynamics

In the previous experiment it was shown that the generated motion can be modu-
lated. However, one needs to investigate the capability of the proposed hierarchy
to adapt to changes in the dynamics of the robot or in its environment. Although
the purpose of this single prototype leg is not to interact with an environment yet,
it is possible to impose a change in dynamics by increasing the mass of the robot
leg. In order to achieve such change an extra weight is added to the tip of the leg.
As a result, the amplitude of the motion will be reduced and the offset will move
closer to the lowest point of the leg. However, this switch in dynamics will cause
the inverse model of the feedback controller to adapt to these changes as well. As
a result, during amplitude control the amplitude should eventually converge again
to its desired value. In Fig 5.4(b) after 1500 time steps a mass of 100 g is added
to the leg. After adjusting its internal model, the controller starts compensating for
the extra weight at time step 3000 by controlling the bias of the MPG. In retro-
spect, the target signal of the amplitude was changing too fast to clearly observe
final convergence. One can clearly observe, during the first 1000 time steps, that
the actual produced amplitude is still converging to the desired amplitude when the
target is changed to 0.5. After adding the extra weight, the target should be kept
constant for a longer period of time, in order to demonstrate the model adaptation
more clearly.

5.1.4 Conclusions
In this section, I described a multi-timescale control hierarchy, inspired by physio-
logical research, that uses random dynamical systems for each layer. On the lowest
level, a motion pattern generator (MPG) is able to embed any periodic signal. This
pattern generator interacts directly with the motor of the leg on a fast timescale. On
a higher level, and thus slower time scale, an IMA controller tunes the parameters
of the pattern generator online in order to keep track of the slowly varying param-
eters of the resulting motion. To achieve this, the sensor information presented to
the controller is preprocessed by calculating for example the amplitude and offset.
Since the controller acts on a slower timescale, this controller can be very advanced
and might consist of a very large random dynamical system. On the other hand, the
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pattern generator is fast enough to react immediately on small perturbations that
cannot be compensated by the morphology of the robot (passive compliance).

By means of three simple experiments on the AMARSi Oncilla leg, the pro-
posed control hierarchy is validated. In a first experiment I showed that the hierar-
chy is able to capture a (by hand) shown periodic motion pattern that is embedded
by the pattern generator. In the second experiment I demonstrated the ability of
the higher level controller to track slow varying properties such as amplitude and
offset, by only controlling the bias of the pattern generator. Finally, in the third
experiment, it is investigated that the control hierarchy is able to deal with new sit-
uations such as changes of the leg weight. In retrospect, the target signal changed
too fast to convincingly demonstrate the adaptability of the IMA controller. How-
ever, in Section 5.2.7.1 the IMA controller’s ability to adapt to new situations will
be demonstrated more clearly, in such a way that any possible doubt is eliminated.

Instead of having a single pattern generator it should be possible to define a set
of pattern generators, each generating a unique pattern, that can be combined by
the controller to generate a more skillful robot movement (Appendix A.2). When
this is possible, the multi-timescale hierarchy, addresses the investigation of a robot
movement generation in a bottom-up manner, from a predefined set of motion prim-
itives to the final robot movement. Another approach would be to take a top-down
approach where the motion primitives emerge unsupervised based on a high-level
description of how primitives should generally behave. In the following section,
such an approach is investigated and evaluated on a robotic tasks.

5.2 MACOP: Modular Architecture with
Control Primitives

In Chapter 4 the IMA control framework was introduced and evaluated on several
control tasks. One of the tasks used for this evaluation was to learn the inverse
kinematics of the iCub robot arm. The attained results demonstrate that the IMA
controller is able to fulfill the following:

• Learning an implicit mapping from actions to the resulting trajectory without
prior knowledge.

• Because of a fixed control rate, the dynamic behavior of the robot is anticipated.

• Handling redundancies because controlling multiple joints results in a mapping
which is not single-valued.

The range in which the iCub’s arm can move is, however, quite limited compared
to some industrial robots like the Programmable Universal Machine for Assembly
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Figure 5.5: Panel A illustrates the averaging effect of a 2D
robot arm when two different training solutions (gray) are
used to train an ESN. The black arm represents the resulting
pose when the joint angles are averaged out. As a result,
the desired end-effector position (red cross) is not reached.
Panel B demonstrates a situation where the mean of the joint
angles results in an arm position that still reaches the desired
end-effector position.

(PUMA) arm. The actual redundancies1 present in the inverse kinematics (IK)
learning task are therefore limited as well. After trying to extend the IK learning
application to the PUMA robot, where each joint can move in a larger range, I
found out that the dramatic increase in possible poses for the same end-effector
position was causing the control framework to fail in learning the IK. As discussed
in Chapter 4, the initial noisy control commands are used as exploration, which can
lead to redundant training data. Training for instance an ESN with such training
data causes the approach to average out between these redundant solutions, yielding
an inaccurate control (shown in Figure 5.5). However, for some rotational joint
configurations such averaging behavior does not affect the accuracy.

In order to solve this redundancy problem one could use a learning approach
that can generate multiple solutions to the same problem. However, the architecture
proposed in this Chapter uses a different approach. Instead of having a single con-
troller with multiple solutions as output, the architecture uses multiple controllers
over which redundant solutions can be distributed. Although the proposed archi-
tecture, called MACOP, is applicable on a wide variety of tasks, I will explain the
design of MACOP by means of an inverse kinematic learning task.

1When the number of degrees of freedom is large enough, there will exist multiple solu-
tions for the same task. One of these solution can be kept while the others are redundant and
removable without affecting the task.
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Figure 5.6: Illustration of MACOP, which consists of an
ensemble of IMA controllers depicted in Figure 4.3. The
desired (objective) and the current end-effector position are
used as external inputs to each controller. The controller
outputs are weighted by a scaling factor ζi and superimposed
with each other in such a way that the resulting joint angles
control the robot. The used ζi represents the responsibility of
a controller and is determined by the measured joint angles
and end-effector position.

5.2.1 PUMA Robot Arm Platform
In this work all the experiments are performed on a dynamic Webots simulation
model of the PUMA 500 robot arm that has 6 DOF (degrees of freedom). This
numerical model allows the architecture to apply joint angles and measure its ac-
tual values in the dynamical environment of the robot. Every ∆t = 32 ms (default
Webots configuration) the architecture interacts with the simulation model, which
means that between every sample taken, 32 ms passed in the simulation environ-
ment. The controlled joint angles of the robot arm are converted to joint torques
by PID controllers. Each joint is equipped with an encoder to measure the actual
joint angles. Additionally, the simulation environment provides the Euclidean end-
effector position of the robot arm.

5.2.2 Design of MACOP
As mentioned above, controlling a system such as a robot arm with an inverse
modeling approach, like the one described in Chapter 4, poses some difficulties
when multiple solutions are possible. However, often the modeling complexity of
a control problem can be reduced by decomposing the problem into less complex
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parts. For instance, if we consider a cup lifting scenario for which we want to learn
a model. This model will approximate the underlying dynamics of the particular
task. If we extend this problem to lifting other objects, the resulting model needs
to be able to approximate a single function that includes both tasks with differ-
ent dynamics. Solving such problem requires very complex and hard to achieve
models.

One of the approaches that can solve such problems is called MOSAIC (Mod-
ular Selection and Identification for Control) (Wolpert and Kawato, 1998; Haruno
et al., 2001), which suggest a feasible strategy on how a human motor control sys-
tem learns and adapts to new dynamic characteristics of the environment. MOSAIC
learns a different controller for each task, and uses a ‘responsibility’-function to
decide which controller will be used, while still allowing for smooth switching be-
tween the controllers individual actions. When introducing a new task, MOSAIC
will generalize, by combining the actions of each controller. To determine each
controller’s ‘responsibility’, every controller contains a forward model that predicts
the next state of the object based on the previous control actions. If a controller’s
forward model is more accurate compared to the others, that controller’s inverse
model is trained further with the new observations and used to control the robot
arm.

One potential weakness of this approach is that the performance of a forward
model is not necessarily a good indicator of the modeling performance of the in-
verse model. To confirm this, I have tried an approach directly based on MOSAIC.
For each IMA controller, an ESN (see Chapter 2) was trained to serve as both an
inverse and forward model at the same time. Together with my colleague Michiel
Hermans, we found that all forward models had initially roughly the same predic-
tion error, leading to an equal responsibility factor for each controller as a result.
During the training phase, however, small variations in performance error influ-
enced both the training of the forward and the inverse models. Eventually this
always causes one controller to be fully responsible at all times, making the other
controllers redundant. These findings confirm the observations made by Haruno
et al. (2001) even though in the original MOSAIC setup, the inverse and forward
models are completely separate from each other, meaning that there is no relation
at all between the modeling performance of the inverse and forward model. Based
on these experiments one can argue that the responsibility of a controller is fully
determined by noise on the forward modeling performance of a controller. Any
other controller selection mechanism might thus be as useful as the one used by
MOSAIC.

Therefore the Modular Architecture for Control with Primitives (MACOP) is
proposed, which is inspired on MOSAIC, and depicted in Figure 5.6. Instead of
using both an inverse and forward model, only an inverse model is used to produce
actions for the robot arm. Determining when an IMA controller should contribute
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to the task is learned unsupervised given the robot’s state and some desired mixing
properties. This can be related to a Kohonen map (Kohonen, 1998).

5.2.3 Controller Selection
As depicted in Figure 5.6, the actual control signal is a weighted sum of the outputs
of a limited number of controller outputs. The weight factors, which are the equiv-
alent of MOSAIC’s ‘responsibility’, depend on observable properties of the robot.
Each controller learns to control the robot arm by creating an inverse robot model.
Simultaneously, the mixing mechanism is trained online. In order for a controller
to distinguish itself from others, the rate at which each controller is trained will be
modulated according to its corresponding responsibility. This will be explained in
more detail when I describe the operation of a single controller.

Suppose we have Nc controllers. The output of the i-th controller is denoted as
xi(t). The controlled joint angles x(t) are then given by:

x(t) =
Nc

∑
i=1

ζi(t)xi(t), (5.4)

where ζi(t) is the scaling factor, or ‘responsibility’ of a controller, that determines
how much each controller is expressed in the final control signal. Ideally, one would
like to let ζi(t) express the momentary accuracy of each controller. For example,
if each controller is randomly initialized before training, certain controllers may be
better than others when the arm is near a certain pose, and one would like to use the
ζi to scale up the control signal of these controllers, and suppress that of the others.
In reality, however, the accuracy of each individual controller cannot be directly
measured because the robot is driven with the weighted sum of the control signals,
and not the individual controllers.

Therefore, a different strategy will be applied. I will introduce a way in which
the scaling factors will automatically start to represent local parts of the operating
regime of the robot, and next the associated controllers will specialize to be more
accurate within this local area.

We wish ζi(t) to only depend on the current end-effector position y(t) and the
measured joint angles �x(t), both of which are observable properties of the robot
arm. As each controller will attempt to learn an inverse model, the combined con-
trol signal will need to be of the same magnitude as the individual control signals.
Therefore, we will make sure that the scaling factors are always positive, and al-
ways sum to one:

Nc

∑
i=1

ζi(t) = 1 and 0≤ ζi(t)≤ 1. (5.5)

Both these qualities can be ensured if ζi is calculated by a softmax function. First
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a linear projection from the joint angles and end effector position to a vector r is
used:

r(t) =





r1(t)
r2(t)

...
rNc(t)




= V(t)

�
y(t)
�x(t)

�
. (5.6)

Next, the softmax function is computed.

ζi(t) =
exp(ri(t))

∑Nc
j=1 exp(r j(t))

. (5.7)

The projection matrix V(t) is a matrix of size Nc by Ny +N�x, where Ny and N�x are
the dimensions of y(t) and �x(t), respectively. Dependence on time comes from the
fact that, like all parameters, V is trained online.

V(t) is randomly initialised, with elements drawn from a normal distribution
N (0,0.1). It will determine how the responsibilities are distributed. V(t) needs to
be trained in such a way that MACOP learns to generate the target trajectories by
mixing all contributions as desired. In this work I wish to obtain the following two
qualitative properties:

• Each controller should contribute in a unique way to the movement generation
of the robot. In order for a controller to distinguish itself from the others, its cor-
responding ζi(t) should peak over the others. It is desired that there is sufficient
variation, so that at each moment in time some controllers are significantly more
responsible than others.

• On the other hand, it should be prevented that there are no responsibilities that
are close to zero at all times, such that all controllers are put to good use, and
the potential power of the ensemble is fully exploited. We wish to avoid the
observed situation when implementing the MOSAIC-based controller ensemble,
where eventually only one controller contributed to the task.

Based on these two desired properties, a learning algorithm is constructed for train-
ing V(t). The first property of our mixing mechanism can be achieved by gradually
increasing the magnitude of V. This results in a more strongly peaked distribution
for the scaling factors. This can be understood by looking at the limit situations. If
all elements of V(t) are zero, all scaling factors are equal. If the magnitude goes
to infinity, the softmax function will be equal to one for the highest element, and
zero for all others. Controlling the magnitude of V(t) allows us to make a smooth
transition between these extremes. It was chosen to increase the magnitude of V(t)
linearly each time step by adding a small increment, equal to V(t) normalized with
its Frobenius norm. As a result, the small increment is independent of the actual
magnitude of V(t).
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The second mixing property requires that all controllers contribute significantly
to the robot motion. The manner in which I chose to do this was to suppress the
scaling of the momentary maximal scaling factor. This ensures that no single scal-
ing factor can remain dominant for a long time. Suppressing one scaling factor
automatically scales up the others, allowing that in the end none of the scaling fac-
tors remains very small at all times. In order to train V(t) to get this effect, target
values for the ζi(t) need to be set at each time step. The target value of the highest
ζi(t) is set equal to N−1

c (which would be the long-term time average of all scaling
factors if they all contribute equally). At the same time we have to make sure that
the sum of the target values is equal to one (i.e., a target that can be reached by
a softmax function). To obtain this, the target values of the other ζi(t) are equal
to themselves, scaled up to ensure that the sum of the targets equals one. If target
value for ζi(t) is denoted as θi(t), one can write

θi(t) =





h(t)ζi(t), if i �= argmax(ζi(t))
1

Nc
if i = argmax(ζi(t))

, (5.8)

with

h(t) =
1−N−1

c
1−max(ζi(t))

. (5.9)

To train V according to these target values, the gradient of the cross-entropy2

H(θi,ζi) is calculated with respect to V. For both desired properties an update
rule is defined and each time step both contributions are added, resulting in the
following update rule:

V(t +∆t) = V(t)+ηg
V(t)

||V(t)||F
+ηs[yT(t),�xT(t)](ζζζ (t)−θθθ(t)), (5.10)

where ζζζ (t) and θθθ(t) are column vectors with the responsibility factors and their
targets, respectively, and ηg and ηs are two learning rates. In order to prevent one
mixing property to dominate the other, these learning rates are set such that both
properties are present.

In order to visualize the segmentation by the projection matrix V, I have ap-
plied it on a simple rotational actuator. In this experiment I used 4 controllers.
The actuator can be controlled by applying a desired angular velocity x = [θ̇ ]. The
actual angular position y = [θ ] and velocity �x are measured and used to calculate
Equation 5.6. In Figure 5.7, the results are shown for 3 different tasks in which

2Here the scaling factors and their target values are treated as if they were probabilities,
which stems from the common use of a softmax function: to model a multinomial distribu-
tion function (Bishop et al., 2006) is calculated. One could as well use mean-square error
to train V(t) on the target values, but the resulting update equations would be more compli-
cated, whereas cross-entropy leads to a simple formula.
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the actuator is controlled to move periodically between ±π , ±π
2 or ±π

4 , respec-
tively. The actuator and the corresponding range for each task are illustrated at the
bottom of Figure 5.7. The second row visualizes the state space of the actuator,
where the state trajectory of the periodic motion is depicted by a black circle. For
every possible state space position the dominant controller is determined, which
allows us to color the entire state space accordingly. Based on this coloring one can
clearly notice the wedge shape segmentation of the two dimensional state space.
All the controllers and the initialization of the projection matrix V, are the same
for all three experiments. Therefore, the difference in segmentation for every task,
is purely caused by the task it self. These changes to V, can be better visualized
by showing how much every controller is contributing, instead of only coloring ac-
cording to the dominant controller. Now consider that every plot in the middle row
is described by a polar reference frame. Because of the wedge shaped segmenta-
tion, the coloring only changes for certain angles, but not for any radius. So, given
a certain angle, the dimension of the radius can be used to show how much all con-
trollers are contributing. Now, consider a segmented line of which each of the 4
segments has a different color and the length of each segment corresponds to the
value of ζi. By using the dimension of the radius to show this segmented line, for
a given angle, we get the disks at the top of Figure 5.7 if we do this for all possible
angles. Depending on the desired range of the periodic signal, the color pattern
clearly changes in size and rotation. Later in this Chapter, it will become clear that
the controller’s performance depends on the used segmentation. However, this little
experiment also illustrates that the segmentation is affected by the control. There
exists thus a bidirectional dependency between the segmentation and the control.

When the learning rates are fixed, Equation (5.10) never converges. What will
happen is that the magnitude of V slowly keeps on increasing, and in the long run,
the scaling factor distribution will become highly peaked3. Therefore, during all
our experiments, unless mentioned differently, the root mean-square-error (RMSE)
between the desired and the measured end-effector position4 is calculated over a
moving time-window of 1000 samples. When this RMSE becomes smaller than 1
mm, both ηg and ηs are linearly decreased over the course of 5000 samples until
they reach 0. After this point the elements of V no longer change.

5.2.4 Single Controller

Because only inverse models are used for controlling the multi-jointed robot arm
the IMA controllers described in Chapter 4 will be used.

3At each moment, one will be close to one, the others close to zero
4This is the average distance, so that one can express RMSE in millimeter or centimeter.
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Figure 5.7: Illustration of how the projection matrix V is
segmenting the state space. The bottom row depicts the three
different tasks where an actuator is moving over three differ-
ent ranges. The middle row depicts the resulting state space
with the corresponding state space trajectory of the motion.
The coloring is done according to the dominance scaling fac-
tor. The top row, however, depicts all scaling fractions on a
disk.
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5.2.4.1 General setup

For the inverse kinematic learning task of MACOP the end-effector position (out-
come) is denoted by y(t), and the joint angles (the actions) by x(t). It is assumed
that a model (model A in Figure 4.3) can be trained to approximate the past joint
angles x(t−δ∆t), δ∆t being a fixed delay period, given that it receives the current
and the delayed end-effector position y(t) and y(t−δ∆t), respectively.

In general, the optimal delay δ depends on the rate at which the dynamics are
observed ∆t (sample rate) and the kind of dynamics that are inherent to the control
task. Plants with fast dynamics usually require a smaller δ than slower dynamical
systems when using the same sample rate. For this task δ = 1, because one time
step delay is sufficient to capture the dynamics of the task at hand. More details
concerning this parameter can be found in Chapter 4.

In order to improve exploration and to speed up training in the initial training
phase, a small amount of noise is added (initially drawn from N (0,7) in mm)
to the desired end-effector position yd , of which the standard deviation linearly
diminishes to 0 over the course of 50,000 samples of training.

In principle, there is no need to ever stop training the inverse model in the
IMA controller. Indeed, if the experimenter knows that the conditions of the setup
may change over time, it could be desirable to keep the online learning mecha-
nism active at all times in order to let it keep track of changes in the system. In
the performed experiments, however, I chose to gradually slow down the learning
algorithm and at some point in time let it stop, in order that all parameters in the
controller architecture remain fixed during testing. More details are provided in
Section 5.2.4.4.

5.2.4.2 Echo State Networks

The IMA controller in Chapter 4 can use any dynamical system with a high di-
mensional state representation to create an inverse model. However, ESNs will be
used for all our experiments unless mentioned differently. Furthermore, during our
experiments the input and training signal to the ESN is scaled ensuring that their
values are between -1 and 1. Consequently, this scaling needs to be undone be-
fore the generated network output represents actual joint angles that can control the
robot. The ESN parameters that are common for all our experiments are shown in
Table 5.2.

5.2.4.3 Linear Controllers

In order to check how much the operation of MACOP depends on the type of con-
troller, I also conducted an experiment in which linear controllers are used. Here,
the output of the inverse model is a direct linear combination of its input, so no
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Table 5.2: Network parameters for the inverse kinematics
learning task

Parameter Value Parameter Value
ρ 1 f r

b 0.1
δ 1 γ 1
f r
i 0.1

ESN and thus no non-linearity or memory is present in these controllers. As a re-
sult, learning the non-linear part of the full inverse kinematics will largely need to
be accounted for by training the responsibility factors. Here too, the system will be
trained online, according to the algorithm described in section 5.2.4.4.

5.2.4.4 Training

In order to train the IMA controllers online, the Recursive Least Squares algorithm
described in Section 2.1.5.4 is used. With each iteration the output weights Wo

r(t)
are adjusted in order that the network converges to the desired output. However,
the rate at which these weights are changed is controlled by the corresponding
responsibility factor ζi. Within the proposed MACOP architecture, such adaptive
learning rate allows each IMA controller’s inverse model to distinguish itself from
the other controllers. Additionally, in order to allow the weights to converge to
fixed values, the training speed is modulated with a factor l(t). Therefore, the only
equation from the RLS algorithm that needs to be adjusted is Equation (2.19). This
weight update equation can thus be adjusted as follows5:

Wo
r(t) = Wo

r(t−∆t)− l(t)ζ (t)e(t)(P(t)a(t))T. (5.11)

The error e(t) is the difference between the actual and the desired joint angles.
To allow Wo

r(t) to converge together with the projection matrix V from Equation
(5.10), l(t) is decreased linearly from 1 to 0 in the same fashion as the learning
rates ηg and ηs in Equation (5.10), i.e., as long as the average error over the last
1000 time steps is larger than 1 mm, it is equal to one, and as soon as it is smaller,
it linearly decreases to zero over the course of 5000 time steps.

5Note that I use k in Equation (2.19) to indicate the time step. Here, however t indicates
the actual time: t = k∆t.
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5.2.5 Analyzing MACOP

Each IMA controller learns to produce a set of control commands, which in this
task, contributes to solving the IK problem. These control commands produced by
a controller are called a control primitive. To analyze MACOP’s behavior and each
controller’s contribution, several approaches are useful:

• Tracking a trajectory: As described above, MACOP is designed in such a way
that the scaling of a controller depends on the location of the actual tracked state
(e.g., end-effector position) and the actual actuator state (e.g., robot’s pose when
commanding joint angles). A control primitive that has the largest ‘responsi-
bility’ (biggest ζi(t)), is called the dominant primitive and is generated by the
dominant controller. Given a desired trajectory it is interesting to compare the
time course of the scaling factors, and how they relate to the actual tracked state
of the robot. The trajectory of the tracked state is colored according to which
IMA controller is the dominant one at that state, this in order to show which
controllers specialize in which regions of task space.

• Selecting a single controller: Even when the scaling factors strongly fluctuate
in time, this does not necessarily mean that the controllers are sending different
control signals. Indeed, even though the learning speed is modulated according
to the scaling factors, all of them still are trained to perform the same task. In or-
der to verify if specialization indeed occurs, experiments are conducted in which
after the training phase, only one IMA controller is used (i.e., its scaling factor is
set to 1 and all others to 0). Given the resulting trajectories the individual model
performance can be compared to its true scaling factor.

• One versus multiple controllers: One of the main research questions of this
section is of course how much can one profit from using MACOP versus a single
controller. In order to answer this, the performance of the setup is measured as
a function of the number of controllers. To allow a fair comparison, the number
of trainable parameters (the total number of output weights of the ESN) remains
constant for each setup.

5.2.6 Results

All training parameters for the experiment are provided in Table 5.3. The RLS pa-
rameters λ and α are chosen based on previous experience. The learning rates ηg

and ηs are found by trial and error, but it was experimentally verified that perfor-
mance does not change much in a broad region around the provided values.
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Table 5.3: Simulation parameters

Parameter Value Parameter Value
λ 1−10−4 ηg 0.00008
α 0.01 ηs 0.0002

5.2.6.1 Tracking a trajectory

To investigate the overall behavior of MACOP, I applied several desired robot end-
effector trajectories. Both Figure 5.8 and 5.9 show the resulting trajectories (after
convergence) of following a rectangular and circular-shaped target trajectory. In
both experiments an RMSE of 10 cm was achieved within 10,000 samples and a
RMSE of 1 mm (point of convergence) within 100,000 samples, demonstrating
that the system is able to follow a desired trajectory closely.

In the first experiment, MACOP is trained to generate a rectangular trajectory
that spirals back and forth into the X-direction over several passes. For this task
5 IMA controllers are used, each with 50 neurons. The top panel of Figure 5.8
shows the trajectory generated by the robot after convergence (all learning rates are
0 and RMSE = 1 mm). Each part of the trajectory is colored according to which
controller is dominant at that time. The responsibilities ζi(t) themselves are shown
in the bottom panel of Figure 5.8. It appears that the 4 controllers have formed a
specialization for certain regions of task space, their responsibilities ζi peaking at
the corresponding parts of the trajectory.

Notice that the depth of the trajectory in the X-direction is rather small (20
cm), and yet the scaling factors strongly vary as a function of it. This is especially
apparent in the green and blue parts of the trajectory. This strong change in scaling
factor is caused mostly by the pose of the robot, and not so much the end-effector
position, as I have verified by experimentally testing the sensitivity of the scaling
factors as a function of the joint angles and position. This suggest that the control
architecture effectively uses information of the robot pose to solve the task.

A second experiment (Nc = 4, 50 neurons each) extends the difficulty of the
previous trajectory to demonstrate responsibility/task space correlations over a larger
time period of the desired movement. The trajectory describes four passes of a
circle in a single direction during 8 seconds, after which the trajectory smoothly
switches to describing a shifted circle in the opposite direction of the previous cir-
cle.

The results after convergence are shown in Figure 5.9. The rotation direction
of the trajectory is indicated by the arrows. In the left part of the circular trajectory
the blue controller is significantly contributing to the control of the robot. This
contribution is reduced when the robot is performing the right circular movement.
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Figure 5.8: Top panel: the resulting end-effector trajectory
generated by the robot arm for the rectangular target trajec-
tory after convergence (RMSE < 1 mm for the full trajec-
tory). The corresponding color of the dominant controller is
shown. Bottom panel: the responsibility factors ζi(t) as a
function of time.
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Figure 5.9: Top panel: the resulting end-effector trajectory
generated by the robot arm for the circular target trajectory
after convergence. The corresponding color of the dominant
controller is shown. The arrows indicate the direction of the
trajectory. Bottom panel: the responsibility factors ζi(t) as a
function of time.
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In this part of the trajectory, the red controller is contributing more.
In order to verify MACOPs robustness, the double circle trajectory after train-

ing is considered, of which a part of the trajectory is eliminated so that there exists
a discontinuous jump in the target end-effector position. The result is shown in
Figure 5.10. It appears that after a large initial overshoot, the robot recovers and
is eventually capable of tracking the desired trajectory again. The overshoot can
be largely explained by the fact that the controller never saw a discontinuous jump
during training. Consequently, it has seen no examples of what happens when large
torques are applied on the joints. Furthermore, the sudden jump forces the robot
arm into a region of task space where it never resided during training, causing un-
predictable behavior. In robotic applications, such behavior is undesirable. In order
to prevent this, one can use an additional velocity or torque control mechanism, or
allow for the controllers to adapt to such changes.

After training MACOP (same configuration as before) with the double circle
trajectory a test grid is defined on the plane of the training trajectory with a reso-
lution of 1 cm. The test target points of this trajectory are visited by sweeping the
grid in both directions of the Z-axis. The result of such an experiment is shown
in the last two rows of Figure 5.10. Each pixel represents the RMSE (in meters)
of a specific grid point. Averaged over 10 experiments (different initialization and
training) a mean RMSE = 4.4 mm with a standard deviation of 3.1 mm is achieved.
Note that the RMSE in the grid corners are bigger because they are harder to reach.
When moving from right to left, the arm configuration from one point to another
can be different for the opposite direction. Hence, the difference in both plots.

In the final experiment of this section, a set of linear controllers are used to
see if MACOP is able to still control the robot arm to generate a trajectory with
very low-complexity controllers. I found that at least 9 controllers are needed to
approximate the target trajectory with a final RMSE = 1.5 cm. Using MACOP with
fewer controllers does not work. Figure 5.11 shows the resulting trajectory and the
scaling factors of the individual controllers. The fact that MACOP is capable of
solving the tracking task with such basic controllers is a strong indicator that the
presented training algorithm for the scaling factors is quite successful in distributing
the complexity of the full task. It also demonstrates that MACOP can be easily
extended to include any kind of inverse model.

5.2.6.2 One versus multiple controllers

One of the main assumptions underlying MACOP is that it is beneficial to distribute
the full control task over multiple controllers. I first investigated if the mixing is
in fact responsible for the increase in performance, and not just having several
distinct controllers in the first place. This was examined by keeping the responsi-
bility factor ζi(t) constant and equal to N−1

c for each model, and this in the case
of 5 IMA controllers. It turns out that this situation leads to the same performance



Figure 5.10: Top panel: a part of the generated trajectory
before the switch and after a jump, where the dominant con-
trollers are represented by a corresponding color. The di-
rection in which the trajectory is tracked is indicated by the
arrows. Two bottom rows: visualization of the generaliza-
tion performance of the learned IK (circular training trajec-
tory: dashed line) on a test grid. The bottom plot represents
the results when sweeping from left to right, while the plot
above is visualizing the sweep from right to left. Color scale
is the RMSE in m.
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Figure 5.11: Illustration of the tracking performance of
MACOP with 9 linear controllers after convergence. Top
panel: the resulting trajectory, colored according to the dom-
inant controller. The dashed line is the target. Bottom panel:
the corresponding responsibilities as a function of time.



5.2 MACOP: Modular Architecture with Control Primitives 145

that is attained by using a single, large reservoir (which performs worse, as I will
show next), showing that the variable responsibility factors directly increases per-
formance.

To investigate how much the tracking performance depends on the number
of controllers an experiment was conducted in which the mean error between the
produced and target trajectory was measured for different number of controllers.
The distance is measured from the end-effector to the target averaged over 5000
samples after training. All learning rates are linearly reduced to 0 after 100,000
samples of training (because some experiments will never reach the requirement
of an RMSE less than 1 mm). For an increasing number of controllers MACOP
is applied on trajectories which are based on all 26 letters in the English alphabet,
which I have drawn by hand. As the trajectory is repeated periodically, I also made
sure that the end and starting point are the same in each trajectory (to avoid sudden
jumps). After recording the trajectories they are scaled and placed in the YZ-plane.

In each experiment a randomly initialized controller ensemble is trained to pro-
duce a single letter of which the RMSE is measured after convergence. For each
number of controllers, the average RMSE over 50 instantiations of each letter is de-
termined, so that the measured result for each Nc is averaged over 50×26 = 1300
experiments. In order to keep the comparison fair, the number of trainable pa-
rameters (the total number of output weights of all the ESNs) remain constant. In
practice this means that I used 250 neurons for a single controller, 125 for 2 con-
trollers, etc. In Figure 5.12 the results are presented. A single controller performs
rather poorly. The optimal number of controllers for the entire English alphabet is
around 6 controllers. When the number of controllers increases further, the num-
ber of neurons, and hence the modeling power, of each controller becomes smaller.
Similar to the experiment with the linear controller, this experiment shows that a
great deal of the modeling complexity is covered by the mixing mechanism.

It should be noted that in some cases, due to the random initialization, the robot
can get stuck in a certain pose (as some joint angles are limited between certain val-
ues), and never reaches the desired trajectory. This is the reason why the maximum
values in Figure 5.12 are much bigger than the mean over all experiments. If these
cases are disregarded, a RMSE of 1 mm is measured within 100,000 training sam-
ples.

5.2.6.3 Control Primitives

A single controller’s contribution is called a control primitive and differs from the
regular notion of primitives. In this section the properties of such control primitives
are investigated in order to evaluate this definition of a control primitive. Due to the
MACOP setup it is not straightforward to get a good understanding of the role of a
single controller. At all points in time, all controllers influence the robot, and due
to the feedback, each controller influences all other controllers. One can think of
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Figure 5.12: Effect of the number of controllers on the
tracking performance of MACOP on the English alpha-
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two ways in which to study the individual controller contributions. Either we use
a single controller in the ensemble (with scaling set to one) for steering the robot,
which then ignores potential feedback by the influence of the other controllers,
and as such emergent synergies are not expressed. Alternatively, we could record
the control signals of the individual controllers during normal operation, and use
these recordings to steer the robot afterwards. Even though this approach will take
into account potential synergies between the controllers, during testing it has no
feedback at all, allowing for the trajectory to start drifting from the objective. In
this setup, however, it seems that such an effect does not occur. Therefore, this
approach is used. I have tried the other approach as well, and the results were
qualitatively similar.

To get a qualitative idea of how the individual contributions look, I revisit the
task inspired by the English alphabet, and train a controller ensemble to draw the
letters of the word ‘amarsi’6 one after another. After training, the recorded contri-
butions of a single unscaled controller is used to steer the Webots simulation, and
the robot’s response is recorded.

The result is shown in Figure 5.13(a). The five rows starting from the top show
what trajectory each individual control primitive produces if it alone is present in
the control architecture (in a corresponding colour), plotted over the target value
(grey). The bottom row shows the trajectory of the full ensemble, colored accord-
ing to the most dominant controller. It is interesting to note that, even though all
individual controllers produce a trajectory that resembles the target, all of them
strongly deviate from the true target, and each of them produces a distinctly dif-
ferent response. The scaled combination of them, however, tracks the objective
far more closely, which again indicates that the mixing mechanism works well to
combine contributions of several controllers.

A second experiment that is performed is to see whether true specialization
occurs. After all, even though one controller is dominant, the other controllers will
also contribute to the total motion. In order to check this, I have conducted a similar
experiment to the double-circle objective, depicted in Figure 5.9. Here, four IMA
controllers are used, and the individual recordings are used to drive the robot. Next,
the distance error of the end effector as a function of time is recorded which is then
compared with the corresponding scaling factor of the controller. If specialization
occurs, we would expect to see some negative correlation between the error on the
trajectory and the corresponding scaling of the controller. If the scaling factor of a
certain controller is high, this would indicate that it specializes in the current region
of task space, and the resulting error should be low. Vice versa, if the scaling is low
the controller should perform worse, as it is not its region of specialization.

The result for each controller is shown in Figure 5.13(b). For some controllers
there seems to be a strong relation between the error and the scaling of the corre-

6AMARSi is an EU project concerning adaptive motor skills for robots.
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sponding model. Especially in the case of the red and blue controller. The relation
is weaker, however, for the other two. Indeed, the scaling factors for these two con-
trollers fluctuate less, in order that they are able to train their corresponding inverse
models throughout the full trajectory, leading to better overall generalization. From
this it can be concluded that MACOP uses both specialization and signal mixing to
obtain good control over the robot arm.

Motor and motion primitives generally refer to different building blocks at dif-
ferent levels of the motor hierarchy. They can be kinematic (e.g., strokes, sub
movements), dynamic (e.g., joint torque synergies, control policies) or both. Ac-
cording to Flash and Hochner (2005) their crucial feature is that a wide variety of
movements can be derived from a limited number of stored primitives by apply-
ing appropriate transformations. Within this definition a controller’s contribution
to the joint angles can be called a primitive. Their organization is stored within the
mixing transformation so that after convergence a consistent controller selection is
achieved. What is different from the common interpretation of primitives is that in
our case, the control primitives are mixed and rescaled constantly, instead of truly
being selected and weighted statically.

MACOP learns to spread a set of controllers in the vicinity of the target tra-
jectory in such a way that primitives produced by controllers can help in tracking
this trajectory. Even when the complexity of these controller is reduced (using lin-
ear controllers), the task is still solvable. Unlike in Nori and Frezza (2004), the
MACOP control primitives and their mixing values both depend on the state of
the robot, and because they are adapted online they become dependent on the task.
After convergence, however, this task dependency is removed.

5.2.6.4 Coping with dynamic effects

An inverse kinematic mapping maps a desired task space position to the corre-
sponding joint angles. In most evaluations of learning inverse kinematics, a new
command is only sent when the previous desired joint angles are reached. For this,
a direct inverse mapping without memory suffices. However, in all conducted ex-
periments MACOP does not wait for the robot to reach the target joint angles and
send new target joint angles at a constant rate (every 32 ms). As shown in Fig-
ure 5.14, a PID-controller, which applies the necessary torque to reach a desired
joint angle, has a dynamic transition before reaching a new target angle. These dy-
namic transitions need to be compensated by the IMA controllers as well, in order
to reach the desired outcome in time7. Such transitions require memory instead of
a direct mapping. MACOP’s ability to cope with these dynamic effects is evaluated
by changing the P-parameter of each joint’s PID-controller (which determines how

7This means that the control signal the robot receives can no longer be simply interpreted
as joint angles, but more as a type of motor commands.
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fast the robot can react to changes in the desired joint angles) in order to increase
the importance of such dynamic effects. To demonstrate this ability, MACOP is
applied to the robot with the square objective that was used in Figure 5.8, but re-
duce the velocity of each joint. The P-parameter in the PID-controllers is reduced
from 10 to 2, of which the effect is shown in Figure 5.14. Furthermore, in order
to assess the effect of a sudden jump, the square is periodically shifted by half a
meter, which introduces discontinuities in the objective.

Figure 5.15 shows the Z-coordinate as a function of time for the desired trajec-
tory and resulting trajectories for the different P-parameters. The top panel depicts
the results during the beginning of the experiment (30.4 s to 38.4 s), while the
bottom panel depicts the results after convergence. The robot with the standard
velocity (blue line) is able to follow the objective more closely during the begin-
ning of the experiment but exhibits some fluctuations. The Z-position trajectory of
the reduced velocity configuration is unable to reach the objective closely during
the first part an clearly needs more time to learn the inverse model, indicating that
the control problem is harder when the robot reacts more slowly. If we look at the
result after convergence, we notice that the small fluctuations in the blue trajectory
are reduced, and that MACOP has learned to follow the objective closely. Interest-
ingly, due to a larger maximum velocity, the blue trajectory has a large overshoot
when the applied objective exhibits a sudden jump. The red trajectory exhibits al-
most no overshoot in the beginning of the experiment but after convergence, the red
curve also exhibits some overshoot. In the beginning of the experiment it is clear
that the limited velocity of the joints causes the robot’s end-effector to not reach its
target in time, as opposed to the version with fast control. This indicates that the
desired trajectory is more difficult to obtain if the robot has slow dynamics. Indeed,
the sudden changes in direction can be made far more easily if the robot has a fast
control response.

Reducing the velocity of each robot joint has its advantages in terms of power
consumption and safety. However, a trade-off must be made between faster conver-
gence, as in closely following the objective, and the amount of overshoot allowed.
In some tasks it might be possible that the objective changes very fast, and in such
cases, reducing the reaction speed will restrict the robot in reaching its targets.

5.2.7 Other applications

5.2.7.1 Whole Arm Manipulator

Above I described the design of MACOP by means of an inverse kinematic learning
example on a simulation model of the PUMA robot. Although simulations are
useful for the development of control algorithms, the performance and applicability
of such algorithms should be evaluated on real robots under realistic conditions.
Therefore, I visited the Learning Algorithms and Systems Laboratory (LASA) at
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Table 5.4: Network parameters for WAM application

Parameter Value Parameter Value
N 100 f r

i 0.3
ρ 1 f r

b 0.1
δ 8 γ 1

EPFL in Switzerland led by Aude Billard to apply MACOP on the 7DOF Whole
Arm Manipulator (WAM) from Barrett Technology. Before going into more detail
about the actual control of the robot and the corresponding experiments, I would
like to discuss some practical aspects of this problem.

When using MACOP on a real robot, it is no longer possible for the robot to
freeze all dynamics while MACOP is processing the robot’s state and calculating
new joint angles. Although the MACOP algorithm is generally fast because most
calculations are simple matrix multiplications, the online learning rule (RLS) slows
down the algorithm dramatically. The larger the networks the slower it becomes.
However, when trying to model the WAM’s inverse kinematics the networks should
not become too small. The internal controllers of the WAM require a fixed control
rate of 200 Hz, which means that a new command should be sent every 5 ms.
Given the MACOP and network parameters, shown in Table 5.4, a fixed control
rate of 25 Hz could be achieved. During the time that MACOP is busy and the
WAM controller is requesting a new command, the previous MACOP commands
are used.

Another difference with the PUMA robots is that the WAM is controlled by
torques instead of joint angles. Often, the necessary torques to reach a desired po-
sition are determined by PID controllers. The control gain of such PID controller
can become really large when the robots motion is perturbed. As a result, the cor-
responding torque can become dangerous. Fortunately, the WAM is equipped with
a safety system in which all control signals are ignored. Generally the equations

Table 5.5: Network parameters for WAM application

θ1 θ2 θ3 θ4 θ5 θ6 θ7

Normal KP 900 2500 600 500 50 50 8
KD 10 20 5 2 0.5 0.5 0.05

Adjusted KP 600 1666 400 333 33 33 5
KD 10 20 5 2 0.5 0.5 0.05
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of motion of a robot mechanism can be described by the joint space formulation of
the canonical form:

H(θ)θ̈ +C(θ , θ̇)θ̇ + τg(θ) = τ, (5.12)

where H(θ)θ̈ and C(θ , θ̇)θ̇ represent the joint space inertia matrix and the Cori-
olis/centrifugal force related matrix, respectively. The joint angles of the robot are
represented by θ . The gravity related torques are denoted by τg(θ), while the actual
control torque is denoted by τ . τg(θ) only depends on the pose of the robot, not
its velocity. During all experiments only this gravity compensating term was cal-
culated based on a rigid body model of the WAM. The other terms were accounted
for by a PD controller, which yields the following control torque:

τ = τg(θ)+KP(θd−θ)−KDθ̇ . (5.13)

Here, KP and KD denote the PD control parameters which are shown together with
adjusted control parameters (related to the last experiment in this section) in Ta-
ble 5.5. The desired joint position provided by MACOP is denoted by θd. Given
the MACOP configuration illustrated in Figure 5.6, y(t) represents the end-effector
position and x = θd the joint angles.

The IMA controllers from Chapter 4 initially uses random control signals (mo-
tor babbling) in order to approximate an inverse model of the robot. Applying such
control signals on a real robot is possible if the motor babbling is restricted to safe
robot configurations where the movements have low velocities. Another approach
that was used with the WAM, is to do an initial exploration on a simulation model
of the robot. This model should not necessarily be accurate because the online
learning allows the algorithm to adjust itself on the real robot after pre-training it
on an inaccurate model. Researchers from LASA created, however, a quit accurate
simulator that I used during the initial exploration phase. When a successful trajec-
tory tracking was achieved on the simulator, MACOP’s state was saved and applied
to the real robot. Because of the inaccuracies of the simulation model, compared
to the real robot, MACOP needs to adapt its IMA controllers so that a better track-
ing performance is achieved. After conducting some initial tests with the WAM,
I noticed that the WAM is sensitive to small fluctuations in the control signals.
Therefore, MACOP’s control signals are first given to a critical damped filter be-
fore they drive the robot. As a result the tracking velocity of the trajectory is much
more smooth which also yields a δ (the number of time steps the observations are
shifted in MACOP) that is much larger than with the PUMA experiments.

Unlike the experiments conducted on the PUMA robot, all learning rates were
kept constant during the entire duration of each experiment. Consequently, this
means that no convergence of the learning was enforced. The reason for this is that
the experiments on the WAM were conducted with a previous version of MACOP
where no convergence was considered. Next, I will describe some basic experi-
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ments I have conducted during my visit at LASA.

TRACKING A TRAJECTORY As a first evaluation of MACOP on the WAM I
used some examples recorded on the actual robot. Together with Mohammad
Khansari-Zadeh (post-doc at LASA) I used a Vicon motion capture system to track
a marker placed on my fist (shown in Figure 5.16(a)). The position of this marker
was recorded as desired trajectory that needs be tracked with MACOP. Addition-
ally, the position of my fist was applied on the actual WAM during the recording
itself because the trajectory should be recorded in a frame of reference close to the
robot, instead of close to the person who is demonstrating the movement. I started
with the recording of a simple trajectory that contains 3 consecutive passes of a
circular movement. Afterwards, this recording was extended to a longer trajectory
by concatenating the recording with itself. With this target trajectory MACOP is
applied on the WAM after pre-training it on a simulation model. During this ex-
periment 4 controllers were used each having 100 neurons (all parameters shown
in Table 5.4). As shown in the top panel of Figure 5.16(b), the initial end-effector
trajectory of the WAM largely differs from the target trajectory which is a single
pass of the demonstrated example. However, as time progresses, demonstrated at
different time instances, the tracking becomes more and more accurate. The cor-
responding responsibilities are shown in the bottom panel of Figure 5.16(b). The
scaling factors change during the entire experiment because no convergence was
enforced. After 5 trials8 the average tracking distance of such trial is 1 cm.

In order to evaluate MACOP on a more complex trajectory I recorded, the
writing of the word “amarsi”, similar to the PUMA experiment that was discussed
previously. Because of the added complexity, 5 IMA controllers were used for this
task. After recording a single pass of the word “amarsi”, where each letter is drawn
over the other, the dataset was also extended by concatenating it multiple times
with itself. The results shown in Figure 5.17(a), represents 3 trials on the WAM
after pre-training MACOP on the simulator. The transition between each letter is
not shown. As time progresses, shown from left to right and top to bottom, the
tracking performance of MACOP clearly improves. If we look at the first letter
written with the WAM, one can notice that that other controllers are dominant than
during the remainder of the experiment. Furthermore, if we compare the blue and
red part of the letter R with that of the letter S, we notice a different coloring for
the same regions because each letter is drawn in the same region of the task space9.
This clearly indicates that the controller selection not only depends on the task
space location but also the pose of the WAM (joint space).

8One trial corresponds to the tracking of the entire recorded demonstration, without con-
catenation.

9Instead of writing the word amarsi in one fluent motion each letter next to the other, I
returned to the same region as the previous letter before writing a new one.
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COPING WITH DYNAMIC EFFECTS The last set of experiments I conducted on
the WAM demonstrate the ability of MACOP to cope with dynamic effects, similar
to the corresponding PUMA experiments. As shown in Equation (5.13), the applied
torque τ consists of a PD controller and a term that accounts for the gravitational
forces of a static rigid-body model of the robot. By adding or removing weight
to the robot, that is not compensated by τg(θ) it becomes interesting to see how
MACOP copes with such changes. However, the used PD controller is able to
compensate for such changes as well, without the need of MACOP to adapt its
control. Therefore, I reduced the PD controller’s KP parameter for each joint as
shown in Table 5.5. The only way now to compensate for the change in the WAM’s
weight is to generate different joint angles by adjusting its inverse kinematic model
that result in the tracking of a target trajectory. During these experiments I used the
circular recorded motion from previous experiments as target and applied MACOP
with 4 controllers.

To change the weight of the robot I used different end-effector mounts and
earmuffs that could be added to the robot’s end-effector during an experiment. As
shown in Figure 5.16(a), each mount has a different weight. The first mount is the
one I used in all previous experiments. The second mount includes a force sensor
and haptic ball, which adds around 300 g to the end-effector. Furthermore, the dif-
ferent geometry affects the center of gravity of the entire robot. Finally, the used
earmuffs weigh around 300 g which enables us to add a maximum additional weight
of around 600 g to the robots weight. In order to evaluate the tracking performance
for different configurations the average tracking error during a trial is measured,
and this for several trials. As shown in Figure 5.17(b) the trajectory tracking under
the standard configuration (no added weight) achieves a average tracking error of
1 cm after 5 passes/trials of the recorded trajectory. This experiment was stopped
after 5 trials although more trials would have resulted in an even smaller track-
ing error. For the second configuration the standard mount was replaced by the
haptic ball and the tracking performance was measured during 14 trials. The re-
sults, shown in Figure 5.17(b), demonstrate that after the first trial the error reduces
drastically after which it slowly decreases during the subsequent trials. I repeated
this experiment but added the earmuffs during the second trial. The corresponding
curve clearly indicates the effect of the introduced weight change. However, after
14 trials MACOP has almost compensated for the added weight. The sudden error
bump during the third trial is caused by the global (all joints angles) changes MA-
COP is using, to compensate for the added weight. Please note that the variance in
initial error measured during the first trial is caused by the initial learning phase of
MACOP where the large weight changes of each controller’s output weights differs
from one experiment to another.
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5.2.8 Conclusions
In this section I described a modular architecture with control primitives (MACOP),
which learns to control a robot arm based on a pre-set number of controllers. The
inspiration for this architecture stems from MOSAIC (Haruno et al., 2001), which
is a control framework, inspired by a plausible model on how human motor control
learns and adapts to novel environments. MOSAIC uses a strategy in which an
ensemble of inverse-model controllers is trained, one for each environment with
different properties. On top of this, a selection mechanism selects which controller
needs to be active at which moment in time. Each controller is associated with a
forward model of the system that needs to be controlled, and controller selection
happens by choosing the forward model that is the most accurate.

Together with my colleague Michiel Hermans we (and others (Haruno et al.,
2001)) made the observations that such a strategy may not be optimal. There is
no reason why the accuracy of a forward model should be correlated to that of
the inverse model. Another selection mechanism of the controllers might thus be
possible. In this section, I wanted to build upon the idea of a fixed number of
control primitives that are continuously combined to produce a desired motion.
Each Inverse Modeling Adaptive (IMA) controller used in MACOP consists of
an inverse model, which is trained online and consists of an Echo State Network.
Given some high-level control requirements, an unsupervised division of the task
and joint space is achieved, which can be related to a Kohonen map (Kohonen,
1998). By means of an inverse kinematic learning task, I show that the mixing
mechanism learns a subdivision of the entire task and joint space and produces one
scaling factor for each controller that are associated with the current end-effector
and joint angle position of the robot. The training error of each controller is scaled
with the same factor in order that training data within a controller’s associated part
of the subdivision becomes more important than other data. As a result of this
data selection mechanism, every controller can specialize its function within its
appointed part of the joint and task space. The used mixing requirements prescribe
that all controllers should contribute significantly to the task, while still allowing
for a controller to specialize itself for a certain subregion.

I validated MACOP on an inverse kinematic learning task where I controlled
both a simulation model (PUMA, 6DOF) and a real robot (WAM, 7DOF) by pro-
ducing joint angles, which are sent at a fixed control rate. This is in contrast with
other approaches such as Oyama et al. (2001) where a static mapping from task
space position to joint space is learned and where a separate feedback control loop
to approach the target joint angles is needed. Such a separate feedback control
system results in high control gains when there is an external perturbation of the
robot’s movement. Achieving a compliant kinematic control thus argues for a dy-
namic learning approach that learns the control at a fixed control rate. MACOP
therefore relies on the approach proposed in Chapter 4 for such a dynamic con-
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trol method. As a result MACOP is well suited to cope with the dynamical effects
introduced by the non-instantaneous control of the robot: even when the robot re-
sponds slowly to the control signal, the MACOP architecture is able to compensate
for it and produce the target trajectory. Furthermore, it was demonstrated on the
WAM that adding weight to the robot, which is not compensated by the gravity
compensating control torque, can be counteracted by MACOP. By adjusting its in-
ternal model, a different set of joint angles, corresponding to a certain end-effector
position, is generated that neutralizes the additional weight.

Each controller was also replaced with a simple linear controller to validate
MACOP’s independence of the chosen IMA controller. Such a linear controller is
constructed by learning a linear combination of the architecture’s input. When the
number of linear controllers within MACOP is large enough, the end-effector will
start to track the target. However, the tracking performance of MACOP with the
IMA controllers is better due to its non-linear nature.

The control signals produced by a single controller within MACOP are called a
control primitive. Generally, however, motor and motion primitives refer to build-
ing blocks used at multiple levels of the motor hierarchy and can be dynamic and/or
kinematic in nature. According to Flash and Hochner (2005), a primitive is a build-
ing block that is combined, by an appropriate transformation, with a limited number
of other primitives to generate a wide variety of movements. Given this definition
a controller’s contribution can indeed be called a primitive. After convergence
of all learning rates within MACOP, the controllers organization is stored within
the mixing transformation, achieving a consistent controller selection. The control
primitives are mixed and rescaled constantly, which is different from the common
interpretation of primitives where they are truly being selected and weighted stati-
cally.
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Figure 5.13: (a) Overview of the resulting trajectory with
the “amarsi” target by using a single controller contribution.
Each row shows the resulting end-effector trajectory of the
robot arm. From left to right a part of the continuous writing
is shown ensuring that every letter of the word “amarsi” is
presented. The coloring of the trajectory illustrates which
controllers contribution is used (one for each row). The bot-
tom row show the target trajectory, together with the actual
generated trajectory. (b) The error of a single controller con-
tribution (the black curves), plotted with their corresponding
scaling factors (colored) as a function of time. The vertical
scale of the error is provided on the left vertical axis, and
that of the scaling on the right.
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Figure 5.14: Illustration of a sudden change in desired
joint angle of the bottom joint (black dashed line) of the
PUMA 500. The robot response is shown for this particu-
lar joint with different P-parameters, to illustrate the effect
of a changed P value. By decreasing the P-parameter the
dynamic transition time from one position to the other in-
creases.
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Figure 5.15: Comparison of the Z-coordinate of the gen-
erated trajectories for the shifted-squares objective. Shown
are the desired Z-coordinate (black), and those generated by
robots with P = 10 (blue), and P = 2 (red). The top panel is
during the early parts of the training, and the bottom one af-
ter convergence. The abrupt change in the desired trajectory
corresponds to the shift of the squares.
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Figure 5.16: (a) This image illustrates the motion capture
based setup used to record target trajectories. Furthermore,
an image of the different end-effector mounts together with
the earmuffs and all there corresponding weights are de-
picted. (b) The top row illustrates the results during the
tracking of a circular target trajectory (black) for different
time instances (each time step 40 ms). The coloring of the
trajectory generated by the WAM indicates which controller
is dominant during the tracking of a particular part of the
target. The bottom panel shows the corresponding responsi-
bilities. The coloring here corresponds to a particular con-
troller.
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Figure 5.17: (a) This plot gives an overview of how the
tracking performance improves over time, where each row
represents a trial and each letter is written from left to right.
Please note that the writing of the word “amarsi” is recorded
one letter after the other but in the same region of the task
space instead of one letter next to the other. The correspond-
ing transition between two letters is not shown. (b) This
graph, illustrates the difference in tracking distance between
multiple weight configurations for several consecutive trials.
The tracking distance shown, is the average distance during
the tracking of the entire recorded trajectory. A new trial be-
gins when the desired trajectory is repeated. When using no
added weight (No haptic bal), the experiment measurements
were performed for 5 trials, while for the other configura-
tions measurements were taken during 14 trials.
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Motion Planning and

Control

In Section 5.2 a modular architecture was proposed, that uses multiple adaptive
feedback controllers, presented in Chapter 4, to simplify the control task. How-
ever, these feedback controllers depend on a given desired trajectory, which needs
to be tracked. In many robot applications, only a start position/velocity/accelera-
tion and a goal position/velocity/acceleration are known, but not the path between
both. Therefore, a planning strategy needs to be incorporated, which takes into
account the restrictions imposed by the robot and its environment. In this chapter
only, the application in underactuated control is considered, although it is possible
to apply the combination of a planned trajectory and a feedback controller on a
wide variety of tasks. In the first section, I will discuss the definition of an under-
actuated system and give an example that is used throughout this chapter. Next, the
basic concepts behind trajectory planning are presented together with a planning
algorithm. In Section 6.3, it is demonstrated how a planned trajectory is stabilized
by introducing feedback with MACOP. Afterwards, I briefly describe the concept
of a simulation-based control framework that combines the learning of the system
dynamics, trajectory planning and trajectory stabilization. Finally, the similarities
between this control framework and Reinforcement Learning are highlighted.

6.1 Underactuated control

An underactuated system is a system that has a lower number of actuators than de-
grees of freedom (DOF), of which the inverted pendulum is a classic example. This
system has two DOF (cart position and pendulum angle) while only the position of
the cart is actuated. In Chapter 4, I introduced such non-holonomic and underactu-
ated control tasks (e.g., cart pole, double inverted pendulum) but considered only
the balancing of the pendulum because the IMA controller is only able to track a
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target. If the cart pole would be initialized in its stable downwards position, this
controller will try to approach the upwards position by moving the cart as fast as
possible in a single direction in order to reduce the distance to the target position.
Due to the limited length of the rail and force that can be applied on the cart, it
is impossible to reach this target. To approach the upward position, however, the
pendulum needs to build up sufficient energy by swinging its pendulum back and
forth, which means that the distance to the target sometimes increases, instead of
only decreasing. A tracking controller, such as the one presented in Chapter 4,
only tries to reduce the distance without taking into account the possible benefits
of increasing the distance now and then.

Therefore, the main idea presented in this chapter is to use a planning algorithm
to generate a trajectory in state space that can be tracked by a feedback control
architecture such as MACOP. Such trajectory can guide the feedback controller
towards the goal position. In robotics, such motion planning within dynamical
constraints, where velocity, acceleration and force/torque bounds must be satisfied
together with kinematic constraints, is called kinodynamic planning.

In the following section, I will briefly discuss the basic concepts behind trajec-
tory planning and describe the planning algorithm that I have used.

6.2 Trajectory planning

When humans try to develop algorithms for controlling robots, there exists a rudi-
mentary problem to translate a high-level specification of a task into a low-level
description of how to move. As stated in LaValle (2006), the terms trajectory plan-
ning and motion planning are often used for such kinds of problems. Consider, for
instance, the following classic scenario where one needs to move a couch through
a house from the garage to the living room without colliding with walls or objects.
The only high-level specification here is that the couch should be moved from the
garage to the living room. The actual trajectory of the couch describing the six
DOF (position and rotation) in a three-dimensional space, however, is not defined
and should be found to solve the moving task. Planning algorithms are widely
used in robotic applications. For instance, the autonomous cars competing in the
DARPA Grand Challenge use planning algorithms to safely guide the car, driving
at high speeds, over a rough terrain. Also, for industrial robotic purposes, such as
the automated positioning of a dashboard into a car, similar planning algorithms
are applied. In this section, the introduction about planning is limited to the basics
needed to understand the algorithms used. For a more in-depth overview of plan-
ning algorithms, I would like to refer to the book Planning Algorithms by LaValle
(2006).

In Chapter 4, a desired trajectory was defined by a sequence of desired plan-
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t/system/robot states. However, more generally, a trajectory generated by a plan-
ning algorithm can be defined as a sequence of action-state pairs:

(y(k +1),x(k +1)) = f (y(k),x(k)) , with k = 1, . . . ,T (6.1)

where y and x represent the state and actions, respectively, which conforms to the
notation used in Chapter 4. The resulting action trajectory x(k) guides the plant
from its initial state y(0) towards its goal state y(T ), in which the completion time
T (number of samples) to reach this goal state is not necessarily defined. The
completion time can be a specification that limits the sets of possible solutions, but
more often it is defined by the given solution itself.

In some cases, the state space in which a trajectory is planned is not static. For
instance, when a robot needs to move through a dynamic environment where ob-
stacles are moving, it becomes necessary to plan a new trajectory given the current
state of the robot and its environment.

6.2.1 Configuration space

The configuration space, referred to as C-space, is a manifold in state space that
contains all possible transformations (configuration) that could be applied to the
robot in its environment. If we consider, for instance, a quad-copter robot that flies
around in a three-dimensional environment the quad-copter’s configuration is fully
defined by a 3D position (X ,Y,Z) and a 3D rotation (pitch, roll, yaw). A single point
in C-space thus defines the 6D configuration of the robot. The use of a C-space pro-
vides a powerful abstraction level that transforms complicated transformations and
robot models into a general problem of finding a path of a point on a manifold. As
a result, most planning algorithms developed for such C-space can be applied on a
wide variety of robotic applications. In order to allow such a planning algorithm to
take into account restrictions in the robots movement, these restrictions need to be
transformed to the configuration space as well. The subset of the C-space in which
a configuration can move freely is called the free space. If we again consider the
quad-copter example where obstacles are present, the free space of the robot does
not contain configurations of the quad-copter in which a collision is possible. This
C-space with obstacle representations can be visualized, in the actual environment,
by growing the actual obstacle on each side with the maximum geometric size the
quad-copter takes under any configuration. For a robotic manipulator with multiple
degrees of freedom, however, this free space becomes much more complicated to
visualize.
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6.2.2 Planning algorithms
Over the years, many planning algorithms have been developed. Initially, simple
algorithms were sufficient for the robots and tasks at that time. However, as the
complexity of the robots and their tasks increased, new algorithms, that can handle
many degrees of freedom, while still being computationally inexpensive, had to be
developed. In this section, a brief overview is given of the most widely used types
of planning algorithms.

• Grid-based search: Here a grid is placed over the C-space where each
configuration is identified with a grid point. The robot can move from one
grid point to one of its neighbors if the line between these points is fully
included within the free space. Because of this discretization of the configu-
ration space, the robot’s actions are also discretized. Within such a context,
a search algorithm (e.g., A-star) can be used to find an appropriate path from
start to goal. The resolution of this grid is, of course, crucial in finding a fea-
sible path. One of the main disadvantages of this grid-based approach is that
the number of grid points in C-space increase exponentially with the num-
ber of C-space dimensions. So for high-dimensional planning problems, this
approach is not appropriate.

• Interval-based search: Instead of placing a grid, the interval-based search
generates a box paving covering the entire C-space. Each subpaving is rep-
resented by a node in a graph, and a path from start to goal can be found
by a search algorithm. Another difference with the grid-based search is that
the robot is allowed to move freely within a subpaving (no discrete actions).
Similar to the grid-search, the number of boxes grows exponentially with
the number of C-space dimensions.

• Potential fields: In this approach, values are placed over the configuration
space in which the goal is appointed to a low value (attracting), and obstacles
to an extremely high value (repelling). Finding a trajectory to the goal then
becomes a gradient descent problem.

• Sampling-based algorithms: The basic idea of sampling-based algorithms
is to draw a fixed number of samples from a uniform distribution over the C-
space in which sample points that are not in free space are rejected. Two
samples are connected with each other if their connection is completely
within free space. Next, a shortest path search algorithm is applied to find
a path from start to goal. These algorithms can be applied to tasks with a
high-dimensional C-space because their running time does not depend ex-
ponentially on the dimension of the C-space. Furthermore, sampling-based
methods are probabilistically complete because the probability of producing
a solution approaches 1 as more time is spent during the trajectory search.
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Due to the applicability of sampling-based algorithms to problems with hun-
dreds of dimensions, these algorithms are currently considered as being state-of-
the-art. Therefore, in the remainder of this chapter, a sampling-based algorithm, in
particular the Rapidly-exploring Random Tree algorithm, will be used.

6.2.3 Rapidly-exploring Random Tree
Rapidly-exploring Random Tree (RRT), developed by LaValle and Kuffner Jr (2000),
is an incremental sampling-based approach that quickly finds a feasible path be-
tween an initial state and goal state. Each node of the tree corresponds to a feasible
robot configuration, and the edges between such nodes represent the necessary ac-
tions to go from one state to another. In practice, RRTs yield good task performance
without any parameter tuning, which is the main reason for its wide use in robotic
applications. Each iteration of the RRT algorithm has the following steps:

Step 1: The RRT is initialized with the start state y0 as first node of the tree.

Step 2: A random sample yrand is drawn from a uniform distribution in C-space.
If this sample does not belong to the free space, it is rejected and a new
sample is drawn. To bias the search in the direction of the goal state yK , the
goal state is chosen with a certain probability instead of a random sample.

Step 3: Given yrand the nearest node in the tree ynear is searched. A Euclidean
distance metric is used, although more appropriate metrics are possible as
well. This is shown in panel A of Figure 6.1.

Step 4: The tree is extended from ynear towards yrand by applying a certain con-
trol command x for a single time step ∆t. This control command can be
calculated by using model information of the robot or by selecting sev-
eral random actions and selecting the one that approaches yrand as close as
possible. However, choosing a random action might not be optimal. There-
fore, often an action is chosen from a fixed set of policies (i.e., a fixed set
of commands) (Frazzoli et al., 2002). As a result of the chosen action x, a
certain state ynew is reached which is an approximation of yrand. Panel B
of Figure 6.1 illustrates these steps.

Step 5: Add sample ynew together with the corresponding action x to the tree.

Step 6: Go back to Step 2 (shown in panel C of Figure 6.1) until ynew is close
enough to the goal state yK .

When the RRT reaches the goal state yK within a predefined distance, the short-
est path of actions within this tree can be used to approach this goal state from the
start state y0.
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Figure 6.1: Illustration of how the nearest node ynear, to a
uniformly drawn sample yrand, is extended towards a new
node ynew by applying an action x in a Rapidly-exploring
Random Tree. y0 is the start state or root of the RRT.

Figure 6.2: Illustration of a RRT with the associated
Voronoi diagram. The search for new sample points is bi-
ased towards larger regions, that makes the RRT algorithm
efficient in covering the C-space.

6.2.3.1 Voronoi bias

A Voronoi diagram in mathematics is an approach to divide a space (in this chapter,
the C-space) into a number of regions, where the regions are chosen based on the
distance to an RRT node. All samples chosen within a region belong to a single
nearest RRT node. The probability that a tree node is selected to be extended
depends, therefore, on the volume of its Voronoi region. As a result, the search
for new samples is biased, hence the name Voronoi bias, towards larger Voronoi
regions, that allows the RRT to cover the C-space efficiently (LaValle, 2006).

6.2.3.2 Task space control

The IMA controller introduced in Chapter 4 requires a desired trajectory that needs
to be tracked. As I have mentioned at the beginning of this chapter, such a trajectory
is not always known. For instance, a mobile robot with differential wheels needs
to find a path from one office to another without colliding with walls or doors. For
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such a basic robot (low-dimensional), it is possible to map the C-space back onto
the task space uniquely by increasing the size of each obstacle with the maximum
distance any robot configuration can have. As a result, in such a constrained task
space, a trajectory can be planned and applied onto the robot by an inverse dynam-
ic/kinematic controller without the need of having to check the configuration of the
robot.

For high-dimensional robots with many DOF, such an approach becomes in-
feasible because for any position in task space there exist an infinite number of
possible configurations. Mapping the C-space back onto the task space to plan a
trajectory in task space is therefore not useful. Consider, for instance, the inverse
kinematic learning task in Sections 4.3.1 and 5.2. Here, a desired trajectory was
defined that the controller should learn to track, neglecting any constraints on the
actual pose of the robot during its motion. Such a task becomes much harder to
solve if a task is considered where the robot manipulator should reach for an ob-
ject that is located on the other side of a wall that separates the robot from the
target object. Only by reaching through a small hole in the wall will the robot be
able to approach the target. In order to solve this problem, a trajectory should be
planned that guides the end-effector towards the target and avoid any robot config-
uration that leads to collisions between the manipulator and the wall. Shkolnik and
Tedrake (2009) solved this problem by creating an RRT in task space (TS-RRT)
where samples are drawn in task space instead of C-space. After drawing a sam-
ple, the nearest neighbor in task space is searched for, from which the tree can be
extended by applying corresponding joint angles that approximate the task space
sample by means of an inverse kinematic model. This inverse kinematic model
uses the joint configuration of the nearest tree node to calculate the closest con-
figuration. If the corresponding joint configuration is collision free, the new node,
together with the corresponding configuration (and torque if joints are torque con-
trolled), is added to the tree. This method proved to be very efficient and therefore
scalable to a large number of dimensions.

6.2.4 Reachability Guided RRT
Although it is possible to use the RRT planning algorithm to plan a trajectory in
task space, the main goal of this chapter is to achieve underactuated control. My
experience with RRT algorithms showed, however, that the number of iterations
needed by a naive RRT implementation is extremely high, especially when trying
to find a path for a cart pole system with a limited rail length which is naturally
extremely unstable. When using inappropriate distance metrics (e.g. Euclidean
distance), new samples tend to be chosen more at the boundaries defined by the
dynamical constraints of the system instead of achieving any progress in expanding
the tree towards unvisited regions of the state space. Therefore, I implemented
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a more sophisticated strategy that heuristically changes the Voronoi bias to more
feasible sampling points.

In Shkolnik et al. (2009) an extension, called Reachability Guided - RRT (RG-
RRT), of the naive RRT algorithm was proposed. This extension is based on the
observation that a Euclidean distance metric is inappropriate for problems with kin-
odynamic constraints. For instance, when the amount of force that can be applied
onto the pendulum cart is limited, some points in state space might be very hard to
reach, although they lie very close to each other in state space. Therefore, many
researches have searched for other distance metrics that are more suitable for tasks
with kinodynamic constraints yielding several flavors of RRT-based planning algo-
rithms, each with their advantages and disadvantages. For instance, in Glassman
and Tedrake (2010), an affine LQR is placed around each sample point and the
cost-to-go is used as distance metric. Another modification of the RRT algorithm
reduces the size of the Voronoi regions in the neighborhood of obstacles so that the
Voronoi bias is shifted towards samples with no neighboring obstacles (Yershova
and LaValle, 2007).

For most control tasks, the actions applied on a dynamical system are limited
to a predefined range. If, again, the inverted pendulum task is considered, the force
that can be applied on the cart is limited to the range [−Fmax,Fmax]. When drawing
a new state space sample it is, for instance, not useful to choose a nearest node from
which it is impossible to reach the nearest node, given the minimum and maximum
force that can be applied on the cart. Given this insight, the naive RRT algorithm
described in Section 6.2.3 is modified as follows:

Step 1: The first node of the tree contains the start state y0 together with the states
that can be reached by applying ±Fmax. In order to calculate these states,
the initial state is applied to a forward model for each force limit, yielding
a set of states, called the reachable set. Each node thus contains a parent
state and a reachable set R of states.

Step 2: A random sample yrand is drawn from a uniform distribution in state space.
If this sample does not belong to the free space, it is rejected and a new
sample is drawn. To bias the search in the direction of the goal state yK , the
goal state is chosen with a certain probability instead of a random sample.

Step 3: Next, the Euclidean distance is calculated between yrand and every parent
state and reachable state within every node. The distance to the closest
parent state ynear is compared to the distance to the closest reachable state
Rnear. If the distance to ynear is smaller than the distance to Rnear, the
sample is rejected and a new sample is drawn (Step 2). This rejection is
shown in Panel A of Figure 6.3. Otherwise, the parent state of the node
corresponding to Rnear is called ynear (Panel B of Figure 6.3).

Step 4: As illustrated in Panel C of Figure 6.3, the tree is extended from ynear
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Figure 6.3: Illustration of how an RG-RRT is extended to-
wards a uniformly drawn sample yrand (gray big circle) in
state space. A parent state is indicated by a big black circle,
while the states in the reachability set are indicated by small
blue points. The action that yields such reachable states be-
longs to the force limits ±Fmax. The nearest state to yrand is
indicated by a red color.

towards yrand by applying a certain control command x for a single time
step ∆t. A control command is chosen from a set of predefined control
commands (within force range), instead of calculating the necessary force
with an inverse model or choosing a random action. As a result of the
chosen action x, a certain state ynew is reached that is an approximation
of yrand. Furthermore, the reachable set R is calculated for this new state
ynew.

Step 5: Add sample ynew together with the corresponding action x and R as a node
to the tree. Demonstrated in Panel D of Figure 6.3.

Step 6: Go back to Step 2 until ynew is close enough to the goal state yK .

As demonstrated by Shkolnik et al. (2009), there is a clear performance in-
crease when using an RG-RRT compared to a naive RRT implementation, because
the sample rejection process causes the tree to grow in the direction of reachable
and unexplored regions. The Voronoi bias is thus adjusted in order that nodes that
are better suited to explore the state space are chosen more often to extend the tree
from.

6.2.4.1 Bi-directional extension

When the RG-RRT algorithm is applied on a forward model of the cart pole task, an
action trajectory will be found that achieves a swing-up of the pendulum. However,
because of the strong constraints on the task (limited rail length, limited force) it
still takes a while to achieve a trajectory that approaches the target1. In order to
accelerate the search, the RG-RRT implementation is extended to a bi-directional

1The target here is the upwards pendulum position and cart centered on the rail
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version, where an additional tree is grown from the goal state towards the start state.
For this extension, I used the following procedure based on Kuffner Jr and LaValle
(2000):

Step 1: Initialize the two trees, TA and TB with the start and goal state, respectively.

Step 2: Expand one tree until it has 2 more nodes than the other, after which the
other tree is expanded. As a result, TA and TB are grown in turn. The sam-
ples of TA are biased (with a certain probability the target state is sampled
instead of a random sample) towards the goal state and those of TB in the
direction of the start state.

Step 3: Both trees will grow towards each other until one tree reaches its target
state or the other tree within a predefined distance. If TA reaches the goal
state, the corresponding nodes describe a path of states and forces. If TB
reaches the start state, the resulting trajectory needs to be reversed before
it can be applied on the cart pole setup. However, when both trees reach
each other, the corresponding trajectories need to be connected with each
other (after reversing the path of TB)

Before applying this algorithm onto the cart pole swing-up task, the following
Euclidean distance metric is defined:

D = �wy(yK −y)�, (6.2)

with wy a weight vector defining the importance in the distance measurement. For
the cart pole task I used the following weights: [wθ ,wθ̇ ,wx,wẋ] = [0.6,0.025,0.35,0.025].
The target state yK depends on the nature of the tree (forward or backward).

Please note that for now the actual differential equation is used as a forward
model. However, in Section 6.4 more details are given about how such a forward
model can be learned. Moreover, I will discuss how a forward model can be used
to approximate the backward dynamics needed to grow the backward tree.

In Figure 6.4, a bi-directional RG-RRT (bi-RG-RRT) planner is applied on the
cart pole task where a forward and backward tree are connected with each other,
resulting in a trajectory that describes the swing-up motion of the pendulum. Based
on the shown state space samples drawn (gray dots), one can observe the chosen
limits. For instance, the limits of the cart position correspond to the length of the
rail.

Both trees together contain 816 nodes of which 95 describe the resulting tra-
jectory. These numbers of course depend on the complexity of the task and the
defined limits in which samples should be drawn. Furthermore, the sample rate
defines the time between 2 nodes. Therefore, a slower sample rate could yield less
nodes than are necessary to reach the upwards position. In this case, however, the
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Figure 6.5: Both left plots show the resulting trajectory
where the color indicates the contribution of a particular
tree (red: backward tree, blue: forward tree). The solid and
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plot visualizes the resulting state trajectory allowing for the
motion of the pendulum to be better interpreted. The en-
tire motion, from the initial downwards position to the up-
wards position, is indicated by a gray to black coloring of
the pendulum. The point at which the trees are connected is
indicated by a red colored pendulum.

resulting trajectory will be less smooth and therefore not necessarily applicable on
a real experimental setup.

6.3 Trajectory stabilization

Applying an RRT generated trajectory onto the used forward model of the pendu-
lum will cause its states to evolve towards the target state. Despite that, when a
bi-directional RRT is used, there exists a sudden, often small, jump in the state and
force of trajectory where the two trees connect with each other. Such a gap will
cause the swing-up of the pendulum to fail, even on an ideal pendulum where no
friction exists. For instance, in Figure 6.5, the resulting state trajectory correspond-
ing to Figure 6.4 is shown. The moment at which the trajectory jumps from the for-
ward to the backward tree is indicated by the color of the trajectory. When drawing
the corresponding pendulum motion (right plot of Figure 6.5) this gap is visible af-
ter the red pendulum, where there exists a sudden jump in the smooth trajectory of
the tip of the pendulum. Depending on the distance of this gap, the associated force
trajectory will cause the pendulum not to reach the upwards position. When apply-
ing a trajectory generated by an RRT, be it bi-directional or not, on a real pendulum
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setup, the pendulum will also not reach the desired target. Every trajectory gener-
ated by an RRT is an open loop trajectory, which means that the control is unable to
compensate for small modeling inaccuracies or control noise. In order to solve this
problem, the trajectory needs to be stabilized allowing that feedback information
can be taken into account. There are several approaches to solve this stabilization.
For instance, in Tedrake (2009), a sampling-based approach, called LQR-Tree al-
gorithm, is proposed, that stabilizes the trajectory with local LQR feedback. Each
LQR grabs initial conditions within its neighborhood and pulls them towards the
local target from which another LQR begins pulling. Furthermore, the size of the
basin of attraction of every added LQR is calculated so that new samples can be
chosen outside this attractor region yielding a sparse tree of local controllers. A
similar approach (Maeda et al., 2010) schedules LQR controllers incrementally in
an attempt to connect the states generated by a bi-directional RRT, and it is veri-
fied that every connected state is within a controllable region of an LQR controller.
Although these techniques have demonstrated that they perform really well, they
depend on model information (i.e., mass, friction and length of pendulum and cart)
for their LQR design.

6.3.0.2 Introducing feedback with MACOP

In order to stabilize the trajectory without model information, a different feedback
control approach is needed. Interestingly, the idea of using a set of LQR controllers
to linearly approximate the feedback control of the non-linear control task is similar
to the underlying concept of MACOP. However, as demonstrated in Section 5.2,
MACOP can rely on a set of non-linear controllers, which allow a lower number of
controllers to perform as well as a larger number of linear controllers.

As shown in Figure 6.6, MACOP can be applied by learning the necessary
stabilization corrections on the force trajectory F(t) generated by the bi-RG-RRT
(panel A). The complexity of the needed models is quite low because Tedrake
(2009) and Maeda et al. (2010) have shown, among others, that a set of linear
controllers is sufficient to stabilize the trajectory given F(t). For an online learning
approach, such as MACOP, the used force limiter, that bounds the resulting force to
Fmax, introduces a difficulty in learning the trajectory stabilization. MACOP uses
correlations between its own introduced force values and the corresponding re-
sponses in state space. Unfortunately, the generated force values are added to F(t)
and then limited, which removes correlations when F(t) reaches its limits. One
approach to solve this is to give MACOP information on its actual contribution to
the final force value F∗ after the limiter. For example, if F(t) = Fmax MACOP’s
contribution after the limiter should be 0 N. Another approach, that will be used in
the remainder of this chapter, is shown in panel B of Figure 6.6. Instead of learning
the necessary contributions to the planned force trajectory F(t), MACOP is used to
learn the entire control signal based on the generated state space trajectory. Because
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Figure 6.6: Panel A depicts a control strategy where MA-
COP learns the necessary contributions x to the control force
F∗ in order to stabilize the state space trajectory. This trajec-
tory is generated by the bi-RG-RRT algorithm based on an
initial state y0 and target state yK . Panel B represents a con-
trol strategy where MACOP learns the control signals only
based on the generated state space trajectory. Instead of us-
ing a forward model it is also possible to use the actual cart
pole setup. The red color specifies that a system is adapted
during the process.
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Table 6.1: Network parameters for the cart pole task

Parameter Value Parameter Value
N 200 α 0.01
ρ 1 f r

i 0.7
δ 1 f r

b 0.2
λ 1−10−6 γ 1

each controller within MACOP contains an output limiter, the output of MACOP x
is already bounded to the imposed force limits.

In the following experiments, I used a MACOP configuration that contains 6
IMA controllers. The same network parameters, shown in Table 6.1, were used
for every IMA controller. For this task, I also wanted to visualize the controllers
responsibility, similar to the actuator example in Figure 5.7. Therefore, MACOP
is configured in such a way that the tiling occurs in the space span by sin(θ) and
cos(θ). So in Equation (5.6), y(t) = [sin(θ),cos(θ)] and �x(t) is ignored, allowing
for this two dimensional space to be tiled in wedge shaped parts. As a result, the
use of a particular controller only depends on the current angle of the inverted
pendulum.

In Figure 6.7, the resulting effect of trajectory stabilization is demonstrated and
compared with the pendulum’s response to the open loop force trajectory obtained
during planning with bi-RG-RRT. The red colored pendulum, which is controlled
by the open loop force trajectory, follows its own state space until it reaches the gap
that was caused by connecting the forward and backward tree. After this point, the
actual pendulum trajectory starts to diverge from the planned trajectory. However,
by learning the closed loop force control only based on the state space trajectory,
for example with MACOP, it becomes possible to stabilize trajectory in such a way
that the goal position is reached. The blue pendulum in Figure 6.7 demonstrates
the resulting motion when such closed loop control is delivered by MACOP in ac-
cordance to panel B of Figure 6.6. The corresponding state space trajectory shows
small differences with the desired one (provided by planner). However, this desired
state space trajectory is not a realistic trajectory because of the sudden jump caused
by connecting both trees. As I have mentioned in Chapter 4, the tracking of the
desired trajectory is the result of an accurate inverse model, because the training
error is taken at the output, and not the input, of each controller. So, each controller
within MACOP learns a local inverse model of the cart pole dynamics, that tries
to track the desired trajectory as good as possible with a resulting physically valid
trajectory. The bottom graph of Figure 6.7, demonstrates the difference between
the planned force trajectory (blue) and the one learned by MACOP (red). Clearly,
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ence in control signals.
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Figure 6.8: This plot illustrates how the responsibilities ζi
are distributed for a given angle of the pendulum. The mid-
dle plot shows the angle θ during the swing-up phase while
the bottom plot shows the corresponding scaling factors.

MACOP generates a more continuous set of control signals, although most of it
resembles a bang-bang control behavior.

In Figure 6.8 the fractions of all scaling factors are shown for all possible pen-
dulum angles. This gives an indication of the responsibility of a particular con-
troller for a particular angle. The two bottom plots, illustrate these scaling factors
during the course of the swing-up trajectory. MACOP is following the planned state
space trajectory, but the trajectory is not visiting all angles equally. Some angles
are never reached, others are visited multiple times and some are visited slower
than others. Due to MACOP’s mixing heuristic, the responsibilities will be shorter
in time for the more frequently visited angles, compared to the others. This is the
reason why the distribution of the scaling factors, show in top plot of Figure 6.8, is
shifted to the right.
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Figure 6.9: Illustration of how a forward and inverse model
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needs to be tracked. Ideally, this trajectory explores the full
range in which the robot can move. The red color specifies
that a system is adapted during the process.

6.4 Forward model learning

When using any planner algorithm, each addition to the path should be evaluated
on a model of the robot. Until now, in our cart pole example application, the actual
differential equation was used as a forward model. The main assumption in this
dissertation is, however, that no prior model knowledge is available. Therefore, a
model needs to be learned based on data recorded by interacting with the robot.

As shown in Figure 6.9, the input of the model is the previous state space
position together with the applied action. The output, on the other hand, is the
change in state value. By using, for instance, motor babbling (i.e., random action)
on the cart pole setup, the necessary training data is generated to learn a model.
Also, MACOP can be applied with an arbitrary target trajectory to generate enough
training data to learn a forward model.

The accuracy of the model depends on how the training data is distributed over
the state space. If the entire state space is reachable by applying motor babbling,
the model will perform well in all regions of this state space. However, if the
magnitude of the random actions is only sufficient to reach a part of the state space,
the model will be inaccurate in the other regions.

The model accuracy also depends on the amount of training data available.
Some modeling approaches, such as Gaussian Process Regression, are able to cre-
ate a model with a very limited amount of training data. Other approaches, such as
Locally Weighted Regression, Locally Weighted Projection Regression and ESNs,
need much more data to get a useful model. In Ilin et al. (2004) a non-linear dy-
namical factor analysis (NDFA) algorithm is proposed that can create a very good
non-linear dynamical state space model of the system with enough statistics of the
system dynamics. As an example of learning a forward model, I will discuss an
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Figure 6.10: The left and right plot illustrate a phase plot
of the pendulum dynamics. The left plot represents the ref-
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ESN-based approach that uses the RLS algorithm presented in Section 2.1.5.4.

When training an ESN with the network parameters shown in Table 6.2, it
becomes possible to learn an ESN model based on observations made on the real
plant or reference model. Due to the ESN recurrent connections there exists a
transient behavior when the model input is switched. When learning a dynamic
mapping, such transient behavior is not desired. Therefore, the network is trained
in such a way that this transient behavior is reduced. All recorded input-output
examples are randomly shuffled, forcing the ESN to handle abrupt changes in its
input. Furthermore, before a new training example is provided to the ESN, the
network states are reset to their initial value. After training the ESN, the network
can be excited with any initial state and force, within a meaningful range. As
illustrated in Figure 6.10, the ESN indeed has learned to produce a similar dynamic
relationship between its input and output, when compared to the reference model.
As shown in Figure 6.11, the states evolve initially the same as the reference model.
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Table 6.2: Network parameters of the forward modeling
task

Parameter Value Parameter Value
N 400 neurons f r

i 0.9
ρ 1 f r

b 0.1
γ 1

However, the newly calculated states are fed-back to the input of the model. So,
after a while, small errors will have their effect on the future evolution of the states.
I experienced that modeling the state transitions of the cart position and velocity is
rather difficult with an ESN. Arguably, the non smooth nature of the corresponding
manifold is hard to be modeled with an ESN. Therefore, it is advisable to use a
modeling approach that learns to fit a manifold that is not intrinsically smooth.

When a bi-directional RRT is used, a backward tree is grown starting from
the target state. Growing such a tree backwards requires the forward model to be
reversible. Furthermore, as mentioned before in this section, the model should also
be trained on states in the neighborhood of the target. Otherwise, the backward tree
will not contribute much to the planning.

6.4.1 Reversible forward model

When using a bi-directional RRT, the system dynamics need to be simulated in
reverse, in order for the tree that starts from the goal state to be able to determine
a new state ynew based on an action x. Given a deterministic differential equation
describing the dynamical system, it is possible to invert time if there exists a one-to-
one mapping between the forward and reversed time dynamics (Lamb and Roberts,
1998). The forward dynamics can be written as follows:

y(t +∆t) = y(t)+
dy(t)

dt
∆t (6.3)

Given the fact that the used integration time step ∆t is chosen as relatively small,
we can approximate (no energy loss) the dynamics backwards in time as follows:

y(t) = y(t +∆t)+
dy(t +∆t)

dt
∆t (6.4)

≈ y(t +∆t)+
�
−dy(t)

dt
∆t

�
. (6.5)
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This means that the trained forward model from Section 6.4 can be used for the
backwards RRT, TB, to approximate a new state given a certain control action.

6.5 Simulation-based control framework

As I have discussed in Section 6.4, when learning a forward model, it is possible
that the motor babbling will never cause the pendulum to reach the upper regions
of its task space, which means that the forward model will never be accurate in
such unexplored regions. However, planning and stabilizing a trajectory based on
an inaccurate forward model will yield an inaccurate controller that tries to move
towards such regions. These control efforts yield new data that can be used to
improve the accuracy of the forward model. By iteratively updating the forward
model, on which the planner can generate a trajectory that the controller can learn
to follow, the controller will eventually be able to solve the task. This strategy is
not new and has been validated by other approaches before (Deisenroth and Ras-
mussen, 2011). Based on this concept, a control framework is proposed in Fig-
ure 6.12 that uses an RRT as planner and MACOP as controller. The previous
sections within this chapter demonstrated how each part within the shown frame-
work works separately. Unfortunately, the validation and evaluation of the fully
interconnected framework remains to be done and will be a focus in future work.

6.6 Link with Reinforcement Learning

Most algorithms within this dissertation are supervised learning algorithms and
need training examples that consists of example input-output pairs in order to learn
the underlying relationship between the input and output, or vice versa. For in-
stance, in the above used cart pole task, the input denotes the state space observa-
tions, while the output is represented by the actions/forces applied onto the cart.
For most robotic tasks, it is rather difficult to obtain such example data, especially
the corresponding output to a certain input. As shown in Chapter 4, one can in-
teract with the cart pole system to collect the necessary data in such a way that an
incremental supervised learning algorithm becomes applicable. However, inspired
by behavioral psychology, another approach, called Reinforcement Learning, was
developed that does not need training examples of the corresponding actions. In-
stead, this unsupervised learning strategy uses a different kind of feedback signal
that encodes how well the applied actions are contributing to the desired objective.
As shown in Figure 6.13, the RL algorithm learns the appropriate actions based
on a reward signal, given the current state of the pendulum, so that the cumulative
reward is maximized. Maximizing a reward function at a future moment in time
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Figure 6.12: Illustration of the proposed simulation-based
control framework that learns a control policy iteratively,
without any prior model information. As shown, the frame-
work only needs the initial state y0, the goal state yK , an ap-
propriate distance metric (e.g., weighted Euclidean distance)
and an initial exploration policy (e.g., noise). The interac-
tion phase consists of applying the policy on the real system
and updating a forward model. During the simulation phase,
the policy is optimized based on this forward model.
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sometimes requires sub-optimal actions to be performed in the present. This also
accounts for the underactuated cart pole problem where a swing-up phase is nec-
essary before being able to reach the upwards position. RL algorithms have shown
(Sutton and Barto, 1998) to be well suited for such problems where a trade-off has
to be made between short-term and long-term reward. Thus, there also exists a
planning problem in which a plan needs to be determined that optimizes the re-
wards. As mentioned in LaValle (2006), the term reinforcement planning may thus
be as appropriate as reinforcement learning. The general framework of reinforce-
ment learning is based on concepts of dynamic programming and is therefore often
referred to as neuro-dynamic programming2 (Bertsekas and Tsitsiklis, 1995). The
term dynamic programming was invented by Bellman (1952) and relates to the sim-
plification of a decision by breaking it up into a plan or sequence of sub-decisions
over time. For each time instance, i a value function Vi, is calculated depending on
the state, y, at that time. Given the following recursive Bellman equation it becomes
possible to calculate the optimal Vi− j, with j > 0 backwards from the present Vk by
maximizing the value gain recursively from i−1 to i with i = k, ...,1, if a decision
is made:

V (yi−1) = max
xi−1

{R(yi−1,xi−1)+βV (yi)} , (6.6)

where R(yi−1,xi−1) denotes the reward/payoff of taking action xi−1 in state yi−1).
A discount factor that determines the influence of the corresponding decision at
time i is indicated by β ∈ ]0,1[. Furthermore, this equation is only valid under the
constraints that action xi belongs to a set of possible actions that depend on the
corresponding state yi, and the state yi itself depends on the previous state yi−1 and
action xi−1. When the Bellman equation is applied, and V1 has been reached, the
optimal sequence of decisions can be retrieved from the value maximization.

The Bellman Equation (6.6) defines a family of value-function-based approaches
for which there exist many reinforcement learning algorithms. A sub-set of these
value-based approaches are called simulation-based approaches. Often, the transi-
tion from one state to the next, given an action, is modeled by retrieving statistics
from the actual plant (by interacting with it). Given these statistics, a distribution

2The term neuro points to a class of function approximators that can be used to represent
plans or value functions among others.
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can be calculated from which samples can be drawn. The term simulation-based
thus comes from the fact that, for instance, a Monte Carlo simulator is used to draw
the necessary state transitions during planning. According to LaValle (2006), there
exists, in general, three phases:

• Learning phase: By interacting with the plant, a forward model is created that
models the state transition given the current state and a new action.

• Planning phase: A value iteration approach is applied on the learned model
(i.e., simulated) to compute a feedback plan that approaches the optimal reward.
For episodic problems, a policy iteration approach is often used where a policy
is evaluated after an episode and updated according to the newly determined sum
of rewards collected during an episode.

• Execution phase: The computed feedback plan, called policy, is applied on the
real plant.

Given the simulation-based control framework proposed in Section 6.5, and
shown in Figure 6.12, one can identify the same phases. In the learning phase a
forward model is learned. However, instead of retrieving statistics and calculating
the corresponding distribution from which samples can be drawn, the mapping of
a new state, given the previous state and action, is learned directly. Such a model
can be learned online during interaction with the real plant. During the planning
phase the bi-RG-RRT algorithm is used to find a state space trajectory that mini-
mizes the distance to a desired target state. The distance to the goal can be related
to a cost-function that is minimized. As a result, it is also possible to define a
reward function in this planning algorithm. Next, MACOP is employed to learn
the corresponding actions iteratively and only based on the planned state space tra-
jectory on the manifold of the learned simulation model of the plant. As a result,
a policy is defined that can be applied on the real plant in the execution phase.
This allows the forward model to collect new data, and the policy to adapt itself on
the real plant to compensate for modeling inaccuracies. Given these similarities,
the proposed control framework is closely related to simulation-based reinforce-
ment learning approaches. For instance, the PILCO approach, which stands for
"A Model-Based and Data-Efficient Approach to Policy Search”, by Deisenroth
and Rasmussen (2011), is in fact a simulation-based approach where Gaussian Pro-
cesses (GPs) are used for their modeling capacity. Even when the number of data
points is limited, they perform well. However, instead of sampling the state space,
the gradient of the reward is calculated through a GP model of the plant’s state tran-
sitions and the policy, which is also a GP. As a result, the policy is adjusted based
on a simulation model of the plant, limiting the interaction time needed with the
real plant. Thanks to the great modeling capability of a GP, PILCO performs really
well.
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6.7 Conclusions

In this chapter, the use of the IMA tracking controller is extended with a plan-
ning algorithm in order to make full control of an underactuated system possible.
I used the cart pole experimental setup as an example for an underactuated sys-
tem. The Rapidly-exploring Random Tree planning (RRT) algorithm, which is a
sampling-based approach, was discussed. The Euclidean distance metric used in
an RRT planner is, however, not suited for planning tasks under both kinematic and
dynamic constraints. Therefore, I applied the Reachability Guided RRT algorithm
that heuristically changes the Voronoi bias to more feasible sampling points. Af-
ter a trajectory is planned in state space, MACOP is applied to convert this state
space trajectory into the corresponding actions. MACOP distributes a set of IMA
controllers according to the angular position of the pendulum. This allows each
IMA controller to specialize its control in a sub-region of the state space. Addition-
ally, the use of MACOP introduces feedback to the planned state space trajectory.
As a result, the trajectory is stabilized and the target is reached even though there
exist inaccuracies in the planned trajectory. These experiments were performed
and demonstrated on an analytical model of the cart pole setup. However, the as-
sumption made in this dissertation is that no prior model knowledge is available.
Therefore, I demonstrated how this analytical model can be replaced by a learned
forward model on which an RG-RRT planner can be applied. Instead of learn-
ing an accurate forward model prior to finding a trajectory that solves the task, I
presented the concept of a simulation-based control framework that learns and ex-
plores the system dynamics simultaneously. However, the validation and evaluation
of this concept remains to be done. Finally, I discuss the similarities between this
simulation-based control framework and reinforcement learning.



7
Conclusions and Future

Perspectives

In this final chapter, I give a brief summary of the work presented in this dissertation
while highlighting my main contributions. Afterwards, a list of future research
directions is provided which build upon the work described in this PhD thesis.

7.1 Summary and main achievements

During the last century, robots have been used increasingly to perform repetitive
tasks more accurately and quickly than humans can. Their contribution in improv-
ing the efficiency of industrial processes, such as car manufacturing, have been
proven to be beneficial. In an industrial setting these robots are surrounded by
fences that prevent humans from entering the vicinity of the robot. Such robots can
only operate in a deterministic environment where the unpredictable behavior of
humans would result in dangerous situations where collisions are possible. In the
last few decades, however, interest has emerged regarding the integration of robots
in our daily lives. When integrating robots in a human friendly environment, more
advanced motor/motion skills are needed. One approach to creating more advanced
motion skills is that of imitation learning. Here, certain motions are demonstrated
to the robot. The robot learns these motions in such a way that it can reproduce
them. Furthermore, the robot should be able to generalize the motion to different
situations of which no examples were shown.

In this work I have built a Motion Pattern Generator (MPG) using a Reser-
voir Computing approach called Echo State Networks (ESNs). This particular ESN
is a dynamical system that can embed both periodic and discrete motion examples.
By modifying/training this dynamical system appropriately the attractor landscape
is shaped according to the motion examples. The shaping of this attractor landscape
(i.e., manifold) also affects the regions around the demonstrations, yielding similar
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motions for a different context than that of the examples. This generalization al-
lows the motion generation to be more robust against perturbations; for instance, I
have shown that when a robot manipulator is incorporated within the control loop it
becomes possible to hold this manipulator, which pauses the motion generation as
well. As soon as the manipulator is released the motion generation continues from
where it was before the manipulator was perturbed. Although this allows a robot to
handle perturbations, any delay in the control loop can cause high contact forces,
yielding dangerous behavior. Consequently, engineers started to include force sen-
sors in their robot designs. However, often the control loop that uses these sensors
is too slow. Engineers and researchers have therefore advocated the use of soft ma-
terials and springs in their designs to construct so called compliant robots. As these
materials react instantaneously to external forces, the initial contact can be com-
pensated for by the structure of the robot while the remainder is compensated for
by the slower control loop. However, these materials have the disadvantage that the
corresponding robot becomes harder to control. Industrial manufacturing robots
can rely on their sturdy structure to move according to an internal representation
of the robot, also called a robot model. A robot with passive elements (e.g., soft
materials, springs), on the other hand, is much harder and sometimes impossible
to model. Therefore, the performance of the corresponding robot control will be
insufficient.

To solve these problems, an adaptive control framework called Inverse Model-
ing Adaptive (IMA) control framework is proposed, that learns an inverse robot
model by interacting with the robot. As the model becomes increasingly accurate
the control performance improves as well. To create such models I also used ESNs;
however, other modeling approaches are applicable as well. I have applied an ESN-
based IMA controller to several control tasks, each with different dynamical behav-
iors, and demonstrated its widespread applicability. Furthermore, I have compared
its performance to classical control approaches, which revealed its weaknesses and
strengths. The IMA control framework is able to quickly learn the control within
the regions of the desired target. Although it can generalize quite well to unseen
regions, its performance is much better when the IMA controller has previously
observed the data. I have argued that the IMA controller is a tracking controller
that tries to move to the target directly. The IMA controller is not suitable for tasks
where suboptimal movements are required before being able to reach a desired
target. This is the case for underactuated systems such as the inverted pendulum.

Together with the developed Motion Pattern Generator, the IMA controller al-
lows a compliant robot to be controlled in a manner that is familiar to humans.
However, when the number of motions that are demonstrated increases it becomes
hard to represent all of them in a single dynamical system. Therefore, it is prefer-
able to spread the learning complexity over multiple MPGs. Such spreading of the
complexity is something that can be observed in real biological systems; for in-
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stance, experiments on frogs have shown that separate parts located in the lumbar
cord are responsible for generating distinct force fields in the frog’s motion genera-
tion. Simultaneous stimulation of these lumbar cord parts results in a superposition
of the separate recorded force fields. This suggests that a mixing mechanism exists
which allows a large collection of motions to be represented by a limited set of mo-
tions, called motion primitives. Furthermore, to increase the diversity, each motion
primitive can be modulated slightly.

Inspired by this concept, I have investigated two control hierarchy types. The
first control hierarchy assumes an MPG that is trained to generate a periodic motion.
This MPG is used to directly control a quadruped robot leg. The actual motion is
observed by an encoder, which allows for calculation of the current amplitude and
the offset of the periodic motion. At a higher level the IMA controller attempts to
learn the tracking of a desired amplitude or offset by modifying the MPG itself. In
order to adjust the MPG, each neuron’s bias was changed appropriately. Instead of
adjusting the bias also other modulation approaches, such as adding an input, are
applicable. Some perturbations of the robot leg cannot be compensated for by the
passive elements of the leg. Such perturbations are the responsibility of the MPG,
which is in direct control of the robot leg. However, slowly changing motion prop-
erties that are not compensated for by the MPG are modified by the IMA controller
which is interacting at slower time scale. This difference in time scales among the
different levels of the hierarchy is also biological plausible. Many aspects of the
brain can be explained by a hierarchy operating at different time scales. Here,
the higher level encodes slower contextual changes in the environment or body
while at the lower level faster variations due to sensory processing are encoded.
Some basic experiments have shown that the IMA controller can learn to control
motion properties, such as amplitude and offset, indirectly. In these experiments
I did not control both the amplitude and offset at the same time, which allowed
the IMA controller to affect one property while controlling the other. This can be
avoided by controlling both properties simultaneously.

The second control hierarchy, called Modular Architecture with Control
Primitives (MACOP), assumes that the primitives themselves are undefined. A
single control primitive is represented by an untrained IMA controller. Before the
control is initiated, only a high level description is given, stating that on average
each primitive should contribute equally to the motion generation, while still allow-
ing for each control primitive to be specialized in a part of the motion generation.
As a result of this heuristic definition, the space in which the task is performed is
tiled into subregions where a single primitive is more active than the others. I have
applied MACOP on an inverse kinematic learning task where I have demonstrated
that every control primitive is learning an inverse kinematic model. However, de-
pending on a controller’s contribution to a certain subregion, its accuracy will be
better than other primitives. Furthermore, this spreading of the control task’s com-
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plexity over multiple controllers has shown to resolve redundancy problems. One
can argue that by carefully choosing the space in which the tiling should take place,
a single controller observes data that is in a way filtered to that particular region.
This means that redundant solutions are represented by other controllers for a dif-
ferent region of the tiled space.

During my research, I have successfully applied MACOP to both a simulation
model and a real implementation of a robot arm. Additionally, I have extended
its use to underactuated systems by incorporating a planning algorithm. A
planning algorithm defines a feasible path that needs to be followed to reach a cer-
tain target given an initial position. As mentioned before, an underactuated system
such as an inverted pendulum cannot be controlled by an IMA controller when
the swing-up is needed as well. However, by planning a trajectory that the IMA
controller can follow the swing-up task should be solvable. The dynamics of an
inverted pendulum are different depending on the position of the pendulum. There-
fore, I have used MACOP to learn a set of controllers distributed over different pos-
sible ranges of pendulum positions. I have demonstrated that the task can indeed
be solved when a planning algorithm is used in combination with MACOP. Fur-
thermore, thanks to the feedback control of MACOP, inaccuracies in the planned
trajectory are not critical for reaching the upward position. Although these experi-
ments use an existing prior model of the pendulum, I have proposed a simulation-
based control framework in which both the learning of a system model and the
final control is learned at the same time. This simulation-based control framework
allows underactuated systems to be controlled without any prior model knowledge.
Finally, I have described the similarities of this simulation-based control framework
with reinforcement learning.

Throughout this dissertation I have used ESNs as a default learning approach.
Training all weights in a RNN will definitely yield a better model but requires much
more time. In my work and in that of other researchers, ESNs have been shown to
be well suited for control tasks where fast computations are needed, especially
when using them in an online learning context. They have a number of parameters
which need to tuned. In my experience, however, the most important parameters
are the spectral radius, input-scaling, leak rate and network size. For the other
parameters I often used default values. The main disadvantage of using ESNs is
the large amount of data needed to learn a good model, especially when compared
to non-linear regression approaches such a Gaussian Processes (GPs). Gaussian
Processes, however, have the disadvantage that they become much slower when a
large amount of data is available and they are notoriously slow to train. This is also
the case for kernel-based approaches such as Support Vector Regression. In my
opinion, choosing the best suited approach for the task at hand is very important
because there is no single approach that does not have any disadvantages.
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7.2 Future perspectives

During my four years of research into the field of robot control with Reservoir
Computing, many new questions emerged when trying to solve a particular prob-
lem. As with any research many of these questions remain. In this last section I will
give an overview of some of these questions, organized according to the structure
of this dissertation.

Reservoir Computing
Throughout my work I have used Reservoir Computing to approximate the dynam-
ics of a dynamical system. When using them in control applications it is necessary
to provide rigorous proofs of their performance and stability, as well as the con-
straints under which asymptotic stability is guaranteed. It is clear that a possibly
unstable controller cannot be used as an automatic pilot in an airplane. However,
as I have mentioned in Section 4.2, Recurrent Neural Networks (RNNs) are no-
toriously difficult to analyze, especially in the non-autonomous case. Although
proofs based on linearized network dynamics exist, there is still a need for global
asymptotic stability proofs for the full non-linear dynamics.

Another interesting research direction is that of Morphological Computing.
This research field investigates how the dynamics of the body can be exploited
to perform computations. For instance, within a control application it should be
possible to move a part from the control complexity to the body of the robot, sim-
plifying the actual control. When the structure of the robot has dynamic properties
it behaves as a dynamical system, similar to RNN behavior. As a result, a map-
ping between the robot’s structure and a corresponding RNN that was trained to
behave as controller might exist. This mapping could allow the robot’s body to
take over a part of the computations needed to actually control itself and to adapt
to a changing environment. Such morphological computing is a very interesting
research direction and poses many unsolved questions.

Motion pattern generator
In Chapter 3 the design of a Motion Pattern Generator (MPG) was discussed. This
MPG allows the embedding of both periodic and discrete motions into a single gen-
erator. During the switching from one motion to the other, a transient behavior is
observed. An interesting research direction is to investigate how these transient be-
haviors can be adjusted. It is possible to show demonstrations of a desired transient
motion during the training phase. However, when only demonstrations of each sep-
arate motion are shown and not the transient motion between them, these transients
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might not be desired. It might be possible to modulate an MPG’s dynamics after
training in order that a preferred transient behavior is achieved. If this is possi-
ble, any undesired behavior can be modulated allowing that only stable and desired
motions trajectories are generated.

Adaptive control framework
The IMA controller, proposed in Chapter 4, has been applied on a wide variety
of tasks. Under the hood it uses a high dimensional feature representation, from
which an inverse model is build during the interaction with the plant/robot that
needs to be controlled. Many learning approaches are based on such high dimen-
sional representation and can therefore be used. However, in this work I only used
ESNs for the implementation of an IMA controller. ESNs are in general easy to
use, fast to train and execute. Furthermore, ESNs can benefit from parallelization
mechanisms. Their main disadvantage is the amount of data needed to achieve a
good model. Investigating multiple learning approaches and comparing their per-
formance is something which remains to be done.

In Chapter 4, I mentioned that it is important to tweak the δ parameter in order
for the plant dynamics to be modeled. At the moment this parameter needs to be
optimized by hand or by applying a grid search; however, it should be possible
to calculate this δ based on observation of the plant/robot dynamics. One could
for instance apply a step function as an input, observe the plant/robot response to
such impulses and derive the most appropriate parameter from this. In most cases
this parameter will correspond to the delay in the response of the plant to a sudden
change in input. Furthermore, it might be possible to change this dynamically so
that this parameter can be adjusted according to the changes in dynamic behavior
of the plant/robot. This will allow an IMA controller to learn the control of even
more complex systems.

Control hierarchies
In Section 5.1, I presented a neural hierarchy of time scales and demonstrated its
plausibility using a very simple experiment. During my four years of research I
also investigated how multiple primitives, each generated by a single MPG, can be
combined to achieve more advanced motion control. As illustrated in panel A of
Figure 7.1, I have tried to use an IMA controller in such a way that it learns to
modulate a set of very basic motor primitives (up, down, left, right). Results of
these experiments can be found in the Appendix A.2. Although I was successful in
controlling a very basic omni-wheeled mobile robot in such a way that it followed
a desired trajectory, I was unsuccessful in achieving the same results in a more
advanced setup. For example, I tried to control the joint angles of a robot arm
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Figure 7.1: Left configuration illustrates an experiment
where simple motion primitives are combined so that an
omni-directional robot follows a target trajectory. Right con-
figuration is a more advanced experiment where the joint po-
sitions of a planar robot are controlled by the mixing of a set
of Gaussian shaped primitives.

with a set of Gaussian shaped primitives, for which the IMA controller learns the
gating between them (panel B of Figure 7.1). Unfortunately, these experiments
were unsuccessful and will require a more thorough investigation.

Section 5.2 describes a modular architecture with control primitives (MACOP)
that defines a heuristic under which motion control primitives are learned without
supervision. Although this heuristic rule allows the task to be solved successfully,
there may be alternatives which have other advantages. Furthermore, it would be
interesting to investigate the biological plausibility of this unsupervised emergence
of control primitives.

I have applied MACOP on two different robots and in both cases the inverse
kinematics were learned. However, it remains to be seen how other tasks with other
robots can benefit from using MACOP.

Motion planning and control

Chapter 6 describes the extension of the IMA controller with a RRT planning algo-
rithm allowing that underactuated systems can be controlled. I showed how MA-
COP can be applied to learn the necessary torques in order to follow the planned
trajectory and how this trajectory is stabilized. I demonstrated that every part of
the presented simulation-based control framework works. However, a more thor-
ough investigation and evaluation of this framework is required. Furthermore, it
would be interesting to compare the performance of this framework to that of sim-
ilar simulation-based techniques.



194 7 Conclusions and Future Perspectives

7.3 Epilogue

In this dissertation a set of Reservoir Computing based approaches were presented
that can be used in the context of adaptive control. Not only have I demonstrated
that they are applicable on a large number of simulation tasks, each with their own
interesting properties, but also on some real compliant robot tasks. The presented
control approach can be applied on tasks for which it is hard to model certain physi-
cal properties, e.g., compliant robots with elastic materials. This does not mean that
model-based controllers are rendered useless. On the contrary, model information
should be used when it is available. Furthermore, they can be used complemen-
tary where the model inaccuracies of a model-based controller are compensated by
the presented control approach. Although compliance was introduced to improve
the human-robot interaction, safety was not the motivation of this thesis. Whether
the presented approaches actually improve the interaction safety, still needs to be
investigated.
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Appendix

A.1 Kinematic model 3R manipulator

For a three degree of freedom (DOF) planar redundant manipulator, the forward
kinematic equations are formulated as follows:

�
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φ = θ1 +θ2 +θ3, (A.1)

where the location in a 2D Cartesian plane is defined by x and y. φ indicates the
angle of the end-effector with respect to the robot’s base. As shown in Figure 3.2,
l1, l2 and l3 define the first, second and third link length respectively while α1,
α2 and α3 denote their associated angles. The robotic manipulator used has the
following dimensions: l1 = l2 = 9.15 cm and l3 = 3.5 cm.

The inverse kinematics necessary for actual manipulator control are calculated
as follows:
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(A.3)

θ3 = φ − (θ1 +θ2), (A.4)

with x0 = x− l3 cos(φ) and y0 = y− l3 sin(φ).
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Table A.1: Network parameters of the sequencing task

Parameter Value Parameter Value
N 400 neurons f r

i 0.1
ρ 1 f r

b 0.1
δ 2 γ 1

A.2 Sequencing of motion primitives

In this little experiment an automated manner of finding a correct sequence of mo-
tion primitives is investigated. An omni-directional robot is directly driven by a
combination of 4 possible motion primitives: drive 1 cm forward, drive 1 cm back-
ward, drive 1 cm to the left or drive 1 cm to the right. In order to learn the correct
sequence of motion primitives, to follow a desired trajectory, I used an IMA con-
troller. As shown in panel A of Figure 7.1, this IMA controller has 4 outputs, one
for each primitive. If a single output obtains a value above 0, the corresponding
primitive will be activated. The IMA controller receives the actual two dimen-
sional trajectory of the robot’s position as feedback. The network parameters of the
ESN-based IMA controller are shown in Table A.1.

As shown in Figure A.1, the robot starts at position (0,0) and needs to follow
a circular trajectory. After an initial exploration, the robot starts to track the target
trajectory by combining primitive motions. The top plot illustrates this initial ex-
ploration from blue to green. The bottom plot illustrates the on and off switching
of the primitives. One can notice that the IMA controller has learned to combine
for example, ‘up’ and ‘down’ to stay at the same y position. Another (redundant)
solution to keep the y position fixed would be to disable both the ‘up’ and ‘down’
primitive. The same can be said about the other two primitives.

Figure A.2 demonstrates the results after 3000 time steps. It is clear that the
IMA controller has learned to track the desired trajectory even better. Each primi-
tive can take the robot 1 cm further from its current position. Such steps are some-
times to fast, compared to the target position. Consequently, in the top left part
of the circle the robot moves forward an backward, in order to keep track of the
desired trajectory.

I have tried to extend this simple experiment to a more complicated setup (e.g.,
panel B of Figure 7.1). However, I was unable to get good results. In order to
achieve good and robust results, a more extensive investigation and evaluation is
needed.
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Figure A.1: The top plot shows the robot’s movement com-
pared to its target trajectory. The color of the trajectory gives
an indication of how the trajectory progresses, from blue to
green. The bottom plot illustrates when a particular primi-
tive is activated.
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