1,949 research outputs found

    Visual complexity, player experience, performance and physical exertion in motion-based games for older adults

    Get PDF
    Motion-based video games can have a variety of benefits for the players and are increasingly applied in physical therapy, rehabilitation and prevention for older adults. However, little is known about how this audience experiences playing such games, how the player experience affects the way older adults interact with motion-based games, and how this can relate to therapy goals. In our work, we decompose the player experience of older adults engaging with motion-based games, focusing on the effects of manipulations of the game representation through the visual channel (visual complexity), since it is the primary interaction modality of most games and since vision impairments are common amongst older adults. We examine the effects of different levels of visual complexity on player experience, performance, and exertion in a study with fifteen participants. Our results show that visual complexity affects the way games are perceived in two ways: First, while older adults do have preferences in terms of visual complexity of video games, notable effects were only measurable following drastic variations. Second, perceived exertion shifts depending on the degree of visual complexity. These findings can help inform the design of motion-based games for therapy and rehabilitation for older adults

    Full-body motion-based game interaction for older adults

    Get PDF
    Older adults in nursing homes often lead sedentary lifestyles, which reduces their life expectancy. Full-body motion-control games provide an opportunity for these adults to remain active and engaged; these games are not designed with age-related impairments in mind, which prevents the games from being leveraged to increase the activity levels of older adults. In this paper, we present two studies aimed at developing game design guidelines for full-body motion controls for older adults experiencing age-related changes and impairments. Our studies also demonstrate how full-body motion-control games can accommodate a variety of user abilities, have a positive effect on mood and, by extension, the emotional well-being of older adults. Based on our studies, we present seven guidelines for the design of full-body interaction in games. The guidelines are designed to foster safe physical activity among older adults, thereby increasing their quality of life. Copyright 2012 ACM

    Motion-Based Video Games for Older Adults in Long-Term Care

    Get PDF
    Older adults in residential care often lead sedentary lifestyles despite physical and cognitive activities being crucial for their well-being. Care facilities face the challenge of encouraging their residents to participate in leisure activities, but as the impact of age-related changes grows, few activities remain accessible. Video games in general – and motion-based games in particular – hold the promise of providing mental, physical and social stimulation for older adults. However, the accessibility of commercially available games for older adults is not considered during the development process. Therefore, many older adults are unable to obtain any of the benefits. In my dissertation, this issue is addressed through the development of motion-based game controls that specifically address the needs of older adults. The first part of this thesis lays the foundation by providing an overview of motion-based game interaction for older adults. The second part demonstrates the general feasibility of motion-based game controls for older adults, develops full-body motion-based and wheelchair-based game controls, and provides guidelines for accessible motion-based game interaction for institutionalized older adults. The third part of this thesis builds on these results and presents two case studies. Motion-based controls are applied and further evaluated in game design projects addressing the special needs of older adults in long-term care, with the first case study focusing on long-term player engagement and the role of volunteers in care homes, and the second case study focusing on connecting older adults and caregivers through play. The results of this dissertation show that motion-based game controls can be designed to be accessible to institutionalized older adults. My work also shows that older adults enjoy engaging with motion-based games, and that such games have the potential of positively influencing them by providing a physically and mentally stimulating leisure activity. Furthermore, results from the case studies reveal the benefits and limitations of computer games in long-term care. Fostering inclusive efforts in game design and ensuring that motion-based video games are accessible to broad audiences is an important step toward allowing all players to obtain the full benefits of games, thereby contributing to the quality of life of diverse audiences

    The effects of graphical fidelity on player experience

    Get PDF
    Graphical assets in video games have become increasingly complex over the years, but little is known about their effect on player experience (PX). In this paper, we present results of a controlled study with 48 participants comparing how abstract and stylized graphics influence player experience in casual games. Our results show that high-fidelity graphics result in a more positive impression of the game. However, we also show that many effects are only present in the game with a more challenging mechanic. This shows that casual games can be compelling and enjoyable to play despite simplistic graphics, suggesting that small game developers and researchers need not focus on elaborate visuals to engage players. Copyright © 2013 ACM

    DESIGNING BETTER EXERGAMES: APPLICATION OF FLOW CONCEPTS AND THE FITT PRINCIPLE TO FULL BODY EXERTION VIDEO GAMES AND FLEXIBLE CHALLENGE SYSTEMS

    Get PDF
    Exercise video games have a recognized potential for widespread use as tools for effective exercise. Current exergames do not consistently strike a successful balance between the “fun gameplay” and “effective exercise” aspects of the ideal exergame. Our research into the design of better exergames applies existing gameflow research and established exercise guidelines, such as those published by the American College of Sports Medicine, to a collection of four custom exergames: Astrojumper, Washboard, Sweet Harvest and Legerdemain implement full-body motion mechanics that support different types of exercise, and vary in intended duration of play, game complexity, and level of physical challenge. Each game also implements a difficulty adjustment system that detects player performance from in-game data and dynamically adjusts game difficulty, in order to balance between a player’s fitness level and the physical challenge presented by the game. We have evaluated the games produced by our design approach through a series of user studies on players’ physiological and psychological responses to gameplay, finding that balance between challenge types (cognitive or physical) is an important consideration along with challenge-skill balance, and further, that game mechanics able to support creativity of movement are an effective means of bridging between gameplay and exercise in order to improve the player experience

    System development guidelines from a review of motion-based technology for people with MCI or dementia

    Get PDF
    As the population ages and the number of people living with dementia or mild cognitive impairment (MCI) continues to increase, it is critical to identify creative and innovative ways to support and improve their quality of life. Motion-based technology has shown significant potential for people living with dementia or MCI by providing opportunities for cognitive stimulation, physical activity and participation in meaningful leisure activities, while simultaneously functioning as a useful tool for research and development of interventions. However, many of the current systems created using motion-based technology have not been designed specifically for people with dementia or MCI. Additionally, the usability and accessibility of these systems for these populations has not been thoroughly considered. This paper presents a set of system development guidelines derived from a review of the state of the art of motion-based technologies for people with dementia or MCI. These guidelines highlight three overarching domains of consideration for systems targeting people with dementia or MCI: (i) cognitive, (ii) physical, and (iii) social. We present the guidelines in terms of relevant design and use considerations within these domains and the emergent design themes within each domain. Our hope is that these guidelines will aid in designing motion-based software to meet the needs of people with dementia or MCI such that the potential of these technologies can be realized

    Towards Balancing Fun and Exertion in Exergames: Exploring the Impact of Movement-Based Controller Devices, Exercise Concepts, Game Adaptivity and Player Modes on Player Experience and Training Intensity in Different Exergame Settings

    Get PDF
    Physical inactivity remains one of the biggest societal challenges of the 21st century. The gaming industry and the fitness sector have responded to this alarming fact by introducing game-based or gamified training scenarios and thus established the promising trend of exergaming. Exergames – games controlled by active (whole) body movements – have been extolled as potential attractive and effective training tools. However, the majority of the exergames do not meet the required intensity or effectiveness, nor do they induce the intended training adherence or long-term motivation. One reason for this is that the evaluated exergames were often not co-designed with the user group to meet their specific needs and preferences, nor were they co-designed with an interdisciplinary expert team of game designers (to ensure a good gaming experience) and sports scientists (for a great training experience). Accordingly, the research results from studies with these exergames are rather limited. To fully exploit the potential of these innovative movement tools and to establish them as attractive and effective training approach, it is necessary to understand and explore both the underlying interdisciplinary theories and concepts as well as possible design approaches and their impact on the game and training experience. This dissertation aims to contribute to a better understanding of well-balanced exergame design. It explores and evaluates how different movement-based control devices, exercise concepts, game adaptations, and player modes influence the attractiveness and effectiveness of exergames. The work provides theoretical and practical contributions to the problem area of effective and attractive exergames. For this purpose, a research and development (R&D) approach with iterative phases was followed. As preliminary work for the contributions of this dissertation, exergames were approached from a theoretical perspective. Underlying multidisciplinary theories and concepts of exergames from relevant fields were analyzed and a generic framework was built, which structured the findings based on three interdependent dimensions: the player, the game controller, and the virtual game scenario. Some commercially available exergames were explored to verify the theory-based assumption that the interposition of technology brings specific transformations in the coupling of perception and action that do not occur in real sports situations. Among other things, the comparative pilot study showed that two different controllers (one gesture-based and one haptic device), which allowed for different physical input, were likely to induce diverse gameplay experiences (e.g., higher feeling of flow and self-location when playing with the haptic device) with differently skilled players. However, certain design-specific differences in the two exergame conditions meant that these results could only be interpreted as a first trend. To overcome the limitations of this preliminary study approach (e.g., unequal game design of the commercial exergames and very sports-specific movement concept), Plunder Planet, an adaptive exergame environment, was iteratively designed with and for children and allowed for a single- and cooperative multiplayer experience with two different controller devices. The user-centered design was further informed by insights from the growing body of related R&D work in the field of exergames. The first study presented in this dissertation compared the subjectively experienced attractiveness and effectiveness of Plunder Planet when played with different motion-based controllers. Besides a generally great acceptance of the exergame, it was found that the haptic full-body motion controller provided physical guidance and a more cognitively and coordinatively challenging workout, which was more highly rated by experienced gamers with fewer athletic skills. The gesture-based Kinect sensor felt more natural, allowed more freedom of movement, and provided a rather physically intense but cognitively less challenging workout, which was more highly rated by athletic players with less gameplay experience. Furthermore, experiments were made with an exploratory adaptive algorithm that enabled the cognitive and the physical challenge of the exergame to be manually adapted in real-time based on the player’s fitness and gaming skills. The first and the second study also compared an adaptive with a non-adaptive single player version of Plunder Planet. It could be shown that the (well-balanced) adaptive version of the exergame was better valued than the non-adaptive version with regard to the experienced and measured attractiveness (motivation, game flow, spatial presence experience, balance of cognitive and physical challenge) and effectiveness (heart rate, physical exertion, balance of cognitive and physical challenge) by differently skilled players. Finally, and contrary to the findings from related work, the results of the third study proved that the specifically designed controller technology could be used as an “enabler”, “supporter” and “shaper” of bodily interplay in social exergaming. Based on these promising findings, the goal became to further explore the effectiveness of exergames, refine the adaptive game difficulty algorithm, and explore further attractiveness- and motivation-boosting design approaches. Therefore, the ExerCube, a physically immersive and adaptive fitness game setting, was developed. It was iteratively designed with and for adults and allowed for cooperatively and competitive exergame experiences. With its physically immersive game setup, the ExerCube combines a mixed version of the advantages of both previously tested controllers. A coordinatively and cognitively challenging functional workout protocol with scalable intensity (moderate to high) was developed and the subjective experience of the ExerCube training was compared with a conventional functional training with a personal trainer. The fourth study showed that the game-based training gave signs of reaching a similar intensity to the personal training, but was more highly rated for flow, motivation, and enjoyment. Based on this exploratory comparison of the ExerCube with a personal trainer session, valuable avenues for further design could be identified. Among other things, it could be proved that the player’s focus during the ExerCube session was more on the game than on the own body. Players experienced stronger physical exertion and social pressure with the personal trainer and a stronger cognitive exertion and involvement with the ExerCube. Furthermore, a refined version of the previously tested adaptive game difficulty algorithm was implemented and automated for the first time for purpose of this study. Again it was shown that the adaptive version had benefits with regard to subjectively experienced attractiveness (motivation, game flow, balance of cognitive and physical challenge) and effectiveness (physical exertion, balance of cognitive and physical challenge) compared to the non-adaptive version. In order to further enhance the gaming experience, experiments were also conducted with sound designs and an adaptive audio design with adaptive background music and sound feedback was implemented. It was found to be a promising and beneficial add-on for a user-centered attractive exergame design. To inform the design of a multiplayer version of the ExerCube, different social play mechanics were explored in the fifth study. This resulted in differently balanced experiences of fun, and in physical as well as cognitive exertion. As the preliminary comparative evaluation of the subjectively experienced effectiveness and attractiveness of an ExerCube session and a personal trainer session could prove the general feasibility of the concept and revealed the first indications of the intensity of the ExerCube’s training concept, the objectively measured effectiveness of a single ExerCube session with a functional high-intensity interval training (fHIIT) with a personal trainer was compared in a final sixth study, and after another design iteration. Again, the subjectively experienced attractiveness of both conditions was assessed. It could be shown that the ExerCube is a feasible training device for training at fHIIT-level. While physical exertion was slightly lower than in the conventional fHIIT condition, the ExerCube condition’s average heart rate values reached the fHIIT threshold and also yielded significantly better results for flow, enjoyment, and motivation. The ExerCube training also resulted in a subjectively experienced higher cognitive load (dual-domain training). To sum up, it can be stated that this dissertation provides valuable and fundamental research contributions to the promising field of exergames as attractive and effective training tools. Furthermore, important contributions to design questions in this field could be developed. Since this field is still relatively unexplored, the work presented creates a sound basis for future R&D work in this area

    A Systematic Review of Usability and Accessibility in Tele-Rehabilitation Systems

    Get PDF
    The appropriate development of tele-rehabilitation platforms requires the involvement and iterative assessments of potential users and experts in usability. Usability consists of measuring the degree to which an interactive system can be used by specified final users to achieve quantified objectives with effectiveness, efficiency, and satisfaction in a quantified context of use. Usability studies need to be complemented by an accessibility assessment. Accessibility indicates how easy it is for a person to access any content, regardless of their physical, educational, social, psychological, or cultural conditions. This chapter intends to conduct a systematic review of the literature on usability and accessibility in tele-rehabilitation platforms carried out through the PRISMA method. To do so, we searched in ACM, IEEE Xplore, Google Scholar, and Scopus databases for the most relevant papers of the last decade. The main result of the usability shows that the user experience predominates over the heuristic studies, and the usability questionnaire most used in user experience is the SUS. The main result of the accessibility reveals that the topic is only marginally studied. In addition, it is observed that Web applications do not apply the physical and cognitive accessibility standards defined by the WCAG 2.1
    corecore