338 research outputs found

    Affective Medicine: a review of Affective Computing efforts in Medical Informatics

    Get PDF
    Background: Affective computing (AC) is concerned with emotional interactions performed with and through computers. It is defined as “computing that relates to, arises from, or deliberately influences emotions”. AC enables investigation and understanding of the relation between human emotions and health as well as application of assistive and useful technologies in the medical domain. Objectives: 1) To review the general state of the art in AC and its applications in medicine, and 2) to establish synergies between the research communities of AC and medical informatics. Methods: Aspects related to the human affective state as a determinant of the human health are discussed, coupled with an illustration of significant AC research and related literature output. Moreover, affective communication channels are described and their range of application fields is explored through illustrative examples. Results: The presented conferences, European research projects and research publications illustrate the recent increase of interest in the AC area by the medical community. Tele-home healthcare, AmI, ubiquitous monitoring, e-learning and virtual communities with emotionally expressive characters for elderly or impaired people are few areas where the potential of AC has been realized and applications have emerged. Conclusions: A number of gaps can potentially be overcome through the synergy of AC and medical informatics. The application of AC technologies parallels the advancement of the existing state of the art and the introduction of new methods. The amount of work and projects reviewed in this paper witness an ambitious and optimistic synergetic future of the affective medicine field

    Towards Evidence Based M-Health Application Design in Cancer Patient Healthy Lifestyle Interventions

    Get PDF
    Cancer is one of the most prevalent diseases in Europe and the world. Significant correlations between dietary habits and cancer incidence and mortality have been confirmed by the literature. Physical activity habits are also directly implicated in the incidence of cancer. Lifestyle behaviour change may be benefited by using mobile technology to deliver health behaviour interventions. M-Health offers a promising cost-efficient approach to deliver en-masse interventions. Smartphone apps with constructs such as gamification and personalized have shown potential for helping individuals lose weight and maintain healthy lifestyle habits. However, evidence-based content and theory-based strategies have not been incorporated by those apps systematically yet. The aim of the current work is to put the foundations for a methodologically rigorous exploration of wellness/health intervention literature/app landscape towards detailed design specifications for connected health m-apps. In this context, both the overall work plan is described as well as the details for the significant steps of application space and literature space review. Both strategies for research and initial outcomes of it are presented. The expected evidence based design process for patient centered health and wellness interventions is going to be the primary input in the implementation process of upcoming patient centered health/wellness m-health interventions.ENJECT COST-STSM-ECOST-STSM-TD1405-220216-07045

    A proposed framework of an interactive semi-virtual environment for enhanced education of children with autism spectrum disorders

    Get PDF
    Education of people with special needs has recently been considered as a key element in the field of medical education. Recent development in the area of information and communication technologies may enable development of collaborative interactive environments which facilitate early stage education and provide specialists with robust tools indicating the person's autism spectrum disorder level. Towards the goal of establishing an enhanced learning environment for children with autism this paper attempts to provide a framework of a semi-controlled real-world environment used for the daily education of an autistic person according to the scenarios selected by the specialists. The proposed framework employs both real-world objects and virtual environments equipped with humanoids able to provide emotional feedback and to demonstrate empathy. Potential examples and usage scenarios for such environments are also described

    A review on brain computer interfaces: contemporary achievements and future goals towards movement restoration

    Get PDF
    Restoration of motor functions of patients with loss of mobility constitutes a yet unsolved medical problem, but also one of the most prominent research areas of neurosciences. Among suggested solutions, Brain Computer Interfaces have received much attention. BCI systems use electric, magnetic or metabolic brain signals to allow for control of external devices, such as wheelchairs, computers or neuroprosthetics, by disabled patients. Clinical applications includespinal cord injury, cerebrovascular accident rehabilitation, Amyotrophic Lateral Sclerosis patients. Various BCI systems are under re­search, facilitated by numerous measurement techniques including EEG, fMRI, MEG, nIRS and ECoG, each with its own advantages and disadvantages.Current research effort focuses on brain signal identification and extraction. Virtual Reality environments are also deployed for patient training. Wheelchair or robotic arm control has showed up as the first step towards actual mobility restoration. The next era of BCI research is envisaged to lie along the transmission of brain signals to systems that will control and restore movement of disabled patients via mechanical appendixes or directly to the muscle system by neurosurgical means

    Using affective avatars and rich multimedia content for education of children with autism

    Get PDF
    Autism is a communication disorder that mandates early and continuous educational interventions on various levels like the everyday social, communication and reasoning skills. Computer-aided education has recently been considered as a likely intervention method for such cases, and therefore different systems have been proposed and developed worldwide. In more recent years, affective computing applications for the aforementioned interventions have also been proposed to shed light on this problem. In this paper, we examine the technological and educational needs of affective interventions for autistic persons. Enabling affective technologies are visited and a number of possible exploitation scenarios are illustrated. Emphasis is placed in covering the continuous and long term needs of autistic persons by unobtrusive and ubiquitous technologies with the engagement of an affective speaking avatar. A personalised prototype system facilitating these scenarios is described. In addition the feedback from educators for autistic persons is provided for the system in terms of its usefulness, efficiency and the envisaged reaction of the autistic persons, collected by means of an anonymous questionnaire. Results illustrate the clear potential of this effort in facilitating a very promising autism intervention

    Functional disorganization of small-world brain networks in mild Alzheimer's disease and amnestic Mild cognitive impairment:An EEG study using Relative Wavelet Entropy (RWE)

    Get PDF
    Previous neuroscientific findings have linked Alzheimer's disease (AD) with less efficient information processing and brain network disorganization. However, pathological alterations of the brain networks during the preclinical phase of amnestic Mild Cognitive Impairment (aMCI) remain largely unknown. The present study aimed at comparing patterns of the detection of functional disorganization in MCI relative to Mild Dementia (MD). Participants consisted of 23 cognitively healthy adults, 17 aMCI and 24 mild AD patients who underwent electroencephalographic (EEG) data acquisition during a resting-state condition. Synchronization analysis through the Orthogonal Discrete Wavelet Transform (ODWT), and directional brain network analysis were applied on the EEG data. This computational model was performed for networks that have the same number of edges (N=500, 600, 700, 800 edges) across all participants and groups (fixed density values). All groups exhibited a small-world (SW) brain architecture. However, we found a significant reduction in the SW brain architecture in both aMCI and MD patients relative to the group of Healthy controls. This functional disorganization was also correlated with the participant's generic cognitive status. The deterioration of the network's organization was caused mainly by deficient local information processing as quantified by the mean cluster coefficient value. Functional hubs were identified through the normalized betweenness centrality metric. Analysis of the local characteristics showed relative hub preservation even with statistically significant reduced strength. Compensatory phenomena were also evident through the formation of additional hubs on left frontal and parietal regions. Our results indicate a declined functional network organization even during the prodromal phase. Degeneration is evident even in the preclinical phase and coexists with transient network reorganization due to compensation

    Resting-state abnormalities in heroin-dependent individuals

    Get PDF
    Drug addiction is a major health problem worldwide. Recent neuroimaging studies have shed light into the underlying mechanisms of drug addiction as well as its consequences to the human brain. The most vulnerable, to heroin addiction, brain regions have been reported to be specific prefrontal, parietal, occipital, and temporal regions, as well as, some subcortical regions. The brain regions involved are usually linked with reward, motivation/drive, memory/learning, inhibition as well as emotional control and seem to form circuits that interact with each other. So, along with neuroimaging studies, recent advances in resting-state dynamics might allow further assessments upon the multilayer complexity of addiction. In the current manuscript, we comprehensively review and discuss existing resting-state neuroimaging findings classified into three overlapping and interconnected groups: functional connectivity alterations, structural deficits and abnormal topological properties. Moreover, behavioral traits of heroin-addicted individuals as well as the limitations of the currently available studies are also reviewed. Finally, in need of a contemporary therapy a multimodal therapeutic approach is suggested using classical treatment practices along with current neurotechonologies, such as neurofeedback and goal-oriented video-games

    Semantic web, reusable learning objects, personal learning networks in health: key pieces for digital health literacy

    Get PDF
    The knowledge existing in the World Wide Web is exponentially expanding, while continuous advancements in health sciences contribute to the creation of new knowledge. There are a lot of efforts trying to identify how the social connectivity can endorse patients' empowerment, while other studies look at the identification and the quality of online materials. However, emphasis has not been put on the big picture of connecting the existing resources with the patients “new habits” of learning through their own Personal Learning Networks. In this paper we propose a framework for empowering patients' digital health literacy adjusted to patients' currents needs by utilizing the contemporary way of learning through Personal Learning Networks, existing high quality learning resources and semantics technologies for interconnecting knowledge pieces. The framework based on the concept of knowledge maps for health as defined in this paper. Health Digital Literacy needs definitely further enhancement and the use of the proposed concept might lead to useful tools which enable use of understandable health trusted resources tailored to each person need

    Actions to empower digital competences in healthcare workforce: a qualitative approach

    Get PDF
    While healthcare systems are taking advantage of the ICT to improve healthcare services, healthcare workforce needs additional competencies in order to continue the provision of the best achievable care. In this paper emphasis is given to an active research effort taken during the MEI2015 Conference. Based on hands-on group-work, participants identified the actions needed to boost the acquisition of IT competences by healthcare workforce and collaboratively indicated the most important actions. The leading priority actions were integration of IT into Curriculum, continuous IT/eHealth training at the work place, raising awareness of IT competences, participatory decisions for actions, match healthcare applications to users’ own context, inclusion of professionals in the development of eHealth projects. Interestingly, the proposed actions coupling the outcomes of another study following a different methodology, but also support the cooperation opportunities on IT skills for healthcare workforce. The latter formed a set of recommendations which were proposed within the CAMEI coordination and support action of EC-FP7
    corecore