34,841 research outputs found

    Veni Vidi Vici, A Three-Phase Scenario For Parameter Space Analysis in Image Analysis and Visualization

    Full text link
    Automatic analysis of the enormous sets of images is a critical task in life sciences. This faces many challenges such as: algorithms are highly parameterized, significant human input is intertwined, and lacking a standard meta-visualization approach. This paper proposes an alternative iterative approach for optimizing input parameters, saving time by minimizing the user involvement, and allowing for understanding the workflow of algorithms and discovering new ones. The main focus is on developing an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. This technique is implemented as a prototype called Veni Vidi Vici, or "I came, I saw, I conquered." This strategy is inspired by the mathematical formulas of numbering computable functions and is developed atop ImageJ, a scientific image processing program. A case study is presented to investigate the proposed framework. Finally, the paper explores some potential future issues in the application of the proposed approach in parameter space analysis in visualization

    Visual and computational analysis of structure-activity relationships in high-throughput screening data

    Get PDF
    Novel analytic methods are required to assimilate the large volumes of structural and bioassay data generated by combinatorial chemistry and high-throughput screening programmes in the pharmaceutical and agrochemical industries. This paper reviews recent work in visualisation and data mining that can be used to develop structure-activity relationships from such chemical/biological datasets

    Information visualization for DNA microarray data analysis: A critical review

    Get PDF
    Graphical representation may provide effective means of making sense of the complexity and sheer volume of data produced by DNA microarray experiments that monitor the expression patterns of thousands of genes simultaneously. The ability to use ldquoabstractrdquo graphical representation to draw attention to areas of interest, and more in-depth visualizations to answer focused questions, would enable biologists to move from a large amount of data to particular records they are interested in, and therefore, gain deeper insights in understanding the microarray experiment results. This paper starts by providing some background knowledge of microarray experiments, and then, explains how graphical representation can be applied in general to this problem domain, followed by exploring the role of visualization in gene expression data analysis. Having set the problem scene, the paper then examines various multivariate data visualization techniques that have been applied to microarray data analysis. These techniques are critically reviewed so that the strengths and weaknesses of each technique can be tabulated. Finally, several key problem areas as well as possible solutions to them are discussed as being a source for future work

    Visual parameter optimisation for biomedical image processing

    Get PDF
    Background: Biomedical image processing methods require users to optimise input parameters to ensure high quality output. This presents two challenges. First, it is difficult to optimise multiple input parameters for multiple input images. Second, it is difficult to achieve an understanding of underlying algorithms, in particular, relationships between input and output. Results: We present a visualisation method that transforms users’ ability to understand algorithm behaviour by integrating input and output, and by supporting exploration of their relationships. We discuss its application to a colour deconvolution technique for stained histology images and show how it enabled a domain expert to identify suitable parameter values for the deconvolution of two types of images, and metrics to quantify deconvolution performance. It also enabled a breakthrough in understanding by invalidating an underlying assumption about the algorithm. Conclusions: The visualisation method presented here provides analysis capability for multiple inputs and outputs in biomedical image processing that is not supported by previous analysis software. The analysis supported by our method is not feasible with conventional trial-and-error approaches

    Interactive data exploration with targeted projection pursuit

    Get PDF
    Data exploration is a vital, but little considered, part of the scientific process; but few visualisation tools can cope with truly complex data. Targeted Projection Pursuit (TPP) is an interactive data exploration technique that provides an intuitive and transparent interface for data exploration. A prototype has been evaluated quantitatively and found to outperform algorithmic techniques on standard visual analysis tasks

    Interactive visualisation and exploration of biological data

    Get PDF
    International audienceno abstrac

    SOM-based Data Analysis of Speculative Attacks' Real Effects

    Get PDF
    In some cases, currency crises are followed by strong recessions (e.g., recent Asian and Argentinean crises), but in other cases they are not. This paper uses Self-Organizing Maps (SOM) to search for meaningful associations between speculative attacks' real effects and 28 variables that characterize the economic, financial, legal, and socio-political structure of the country at the onset of the attack. SOM is a neural network-based generalization of Principal Component Analysis (PCA) that provides an efficient non-linear projection of the multidimensional data space on a curved surface. This paper finds a strong association of speculative attacks' real effects with fundamentals and the banking sector structureexploratory data analysis, self-organizing maps, neural networks, speculative attacks' real effects

    Visualizing dimensionality reduction of systems biology data

    Full text link
    One of the challenges in analyzing high-dimensional expression data is the detection of important biological signals. A common approach is to apply a dimension reduction method, such as principal component analysis. Typically, after application of such a method the data is projected and visualized in the new coordinate system, using scatter plots or profile plots. These methods provide good results if the data have certain properties which become visible in the new coordinate system and which were hard to detect in the original coordinate system. Often however, the application of only one method does not suffice to capture all important signals. Therefore several methods addressing different aspects of the data need to be applied. We have developed a framework for linear and non-linear dimension reduction methods within our visual analytics pipeline SpRay. This includes measures that assist the interpretation of the factorization result. Different visualizations of these measures can be combined with functional annotations that support the interpretation of the results. We show an application to high-resolution time series microarray data in the antibiotic-producing organism Streptomyces coelicolor as well as to microarray data measuring expression of cells with normal karyotype and cells with trisomies of human chromosomes 13 and 21
    corecore