382 research outputs found

    Adaptive cancelation of self-generated sensory signals in a whisking robot

    Get PDF
    Sensory signals are often caused by one's own active movements. This raises a problem of discriminating between self-generated sensory signals and signals generated by the external world. Such discrimination is of general importance for robotic systems, where operational robustness is dependent on the correct interpretation of sensory signals. Here, we investigate this problem in the context of a whiskered robot. The whisker sensory signal comprises two components: one due to contact with an object (externally generated) and another due to active movement of the whisker (self-generated). We propose a solution to this discrimination problem based on adaptive noise cancelation, where the robot learns to predict the sensory consequences of its own movements using an adaptive filter. The filter inputs (copy of motor commands) are transformed by Laguerre functions instead of the often-used tapped-delay line, which reduces model order and, therefore, computational complexity. Results from a contact-detection task demonstrate that false positives are significantly reduced using the proposed scheme

    Building Blocks for Spikes Signals Processing

    Get PDF
    Neuromorphic engineers study models and implementations of systems that mimic neurons behavior in the brain. Neuro-inspired systems commonly use spikes to represent information. This representation has several advantages: its robustness to noise thanks to repetition, its continuous and analog information representation using digital pulses, its capacity of pre-processing during transmission time, ... , Furthermore, spikes is an efficient way, found by nature, to codify, transmit and process information. In this paper we propose, design, and analyze neuro-inspired building blocks that can perform spike-based analog filters used in signal processing. We present a VHDL implementation for FPGA. Presented building blocks take advantages of the spike rate coded representation to perform a massively parallel processing without complex hardware units, like floating point arithmetic units, or a large memory. Those low requirements of hardware allow the integration of a high number of blocks inside a FPGA, allowing to process fully in parallel several spikes coded signals.Junta de Andalucía P06-TIC-O1417Ministerio de Ciencia e Innovación TEC2009-10639-C04-02Ministerio de Ciencia e Innovación TEC2006-11730-C03-0

    A Discrete-Time Algorithm for Stiffness Extraction from sEMG and Its Application in Antidisturbance Teleoperation

    Get PDF
    © 2016 Peidong Liang et al. We have developed a new discrete-time algorithm of stiffness extraction from muscle surface electromyography (sEMG) collected from human operator's arms and have applied it for antidisturbance control in robot teleoperation. The variation of arm stiffness is estimated from sEMG signals and transferred to a telerobot under variable impedance control to imitate human motor control behaviours, particularly for disturbance attenuation. In comparison to the estimation of stiffness from sEMG, the proposed algorithm is able to reduce the nonlinear residual error effect and to enhance robustness and to simplify stiffness calibration. In order to extract a smoothing stiffness enveloping from sEMG signals, two enveloping methods are employed in this paper, namely, fast linear enveloping based on low pass filtering and moving average and amplitude monocomponent and frequency modulating (AM-FM) method. Both methods have been incorporated into the proposed stiffness variance estimation algorithm and are extensively tested. The test results show that stiffness variation extraction based on the two methods is sensitive and robust to attenuation disturbance. It could potentially be applied for teleoperation in the presence of hazardous surroundings or human robot physical cooperation scenarios

    Towards an interactive framework for robot dancing applications

    Get PDF
    Estágio realizado no INESC-Porto e orientado pelo Prof. Doutor Fabien GouyonTese de mestrado integrado. Engenharia Electrotécnica e de Computadores - Major Telecomunicações. Faculdade de Engenharia. Universidade do Porto. 200

    Sharpening haptic inputs for teaching a manipulation skill to a robot

    Get PDF
    8 páginas.-- Comunicación presentada al 1st International Conference on Applied Bionics and Biomechanics celebrado en Venecia (Italia) en Octubre de 2010.Gaussian mixtures-based learning algorithms are suitable strategies for trajectory learning and skill acquisition, in the context of programming by demonstration (PbD). Input streams other than visual information, as used in most applications up to date, reveal themselves as quite useful in trajectory learning experiments where visual sources are not available. In this work we have used force/torque feedback through a haptic device for teaching a teleoperated robot to empty a rigid container. Structure vibrations and container inertia appeared to considerably disrupt the sensing process, so a filtering algorithm had to be devised. Moreover, some input variables seemed much more relevant to the particular task to be learned than others, which lead us to analyze the training data in order to select those relevant features through principal component analysis and a mutual information criterion. Then, a batch version of GMM/GMR [1], [2] was implemented using different training datasets (original, pre-processed data through PCA and MI). Tests where the teacher was instructed to follow a strategy compared to others where he was not lead to useful conclusions that permit devising the new research stages.This work has been partially supported by the European projects PACO-PLUS (IST-4-27657) and GARNICS (FP7-247947), the Spanish project Multimodal Interaction in Pattern Recognition and Computer Vision (MIPRCV) (Consolider Ingenio 2010 project CSD2007-00018) and the Robotics group of the Generalitat de Catalunya. L. Rozo was supported by the CSIC under a JAE-PREDOC scholarship.Peer reviewe

    Signal and Information Processing Methods for Embedded Robotic Tactile Sensing Systems

    Get PDF
    The human skin has several sensors with different properties and responses that are able to detect stimuli resulting from mechanical stimulations. Pressure sensors are the most important type of receptors for the exploration and manipulation of objects. In the last decades, smart tactile sensing based on different sensing techniques have been developed as their application in robotics and prosthetics is considered of huge interest, mainly driven by the prospect of autonomous and intelligent robots that can interact with the environment. However, regarding object properties estimation on robots, hardness detection is still a major limitation due to the lack of techniques to estimate it. Furthermore, finding processing methods that can interpret the measured information from multiple sensors and extract relevant information is a Challenging task. Moreover, embedding processing methods and machine learning algorithms in robotic applications to extract meaningful information such as object properties from tactile data is an ongoing challenge, which is controlled by the device constraints (power constraint, memory constraints, etc.), the computational complexity of the processing and machine learning algorithms, the application requirements (real-time operations, high prediction performance). In this dissertation, we focus on the design and implementation of pre-processing methods and machine learning algorithms to handle the aforementioned challenges for a tactile sensing system in robotic application. First, we propose a tactile sensing system for robotic application. Then we present efficient preprocessing and feature extraction methods for our tactile sensors. Then we propose a learning strategy to reduce the computational cost of our processing unit in object classification using sensorized Baxter robot. Finally, we present a real-time robotic tactile sensing system for hardness classification on a resource-constrained devices. The first study represents a further assessment of the sensing system that is based on the PVDF sensors and the interface electronics developed in our lab. In particular, first, it presents the development of a skin patch (multilayer structure) that allows us to use the sensors in several applications such as robotic hand/grippers. Second, it shows the characterization of the developed skin patch. Third, it validates the sensing system. Moreover, we designed a filter to remove noise and detect touch. The experimental assessment demonstrated that the developed skin patch and the interface electronics indeed can detect different touch patterns and stimulus waveforms. Moreover, the results of the experiments defined the frequency range of interest and the response of the system to realistic interactions with the sensing system to grasp and release events. In the next study, we presented an easy integration of our tactile sensing system into Baxter gripper. Computationally efficient pre-processing techniques were designed to filter the signal and extract relevant information from multiple sensor signals, in addition to feature extraction methods. These processing methods aim in turn to reduce also the computational complexity of machine learning algorithms utilized for object classification. The proposed system and processing strategy were evaluated on object classification application by integrating our system into the gripper and we collected data by grasping multiple objects. We further proposed a learning strategy to accomplish a trade-off between the generalization accuracy and the computational cost of the whole processing unit. The proposed pre-processing and feature extraction techniques together with the learning strategy have led to models with extremely low complexity and very high generalization accuracy. Moreover, the support vector machine achieved the best trade-off between accuracy and computational cost on tactile data from our sensors. Finally, we presented the development and implementation on the edge of a real–time tactile sensing system for hardness classification on Baxter robot based on machine and deep learning algorithms. We developed and implemented in plain C a set of functions that provide the fundamental layer functionalities of the Machine learning and Deep Learning models (ML and DL), along with the pre–processing methods to extract the features and normalize the data. The models can be deployed to any device that supports C code since it does not rely on any of the existing libraries. Shallow ML/DL algorithms for the deployment on resource–constrained devices are designed. To evaluate our work, we collected data by grasping objects of different hardness and shape. Two classification problems were addressed: 5 levels of hardness classified on the same objects’ shape, and 5 levels of hardness classified on two different objects’ shape. Furthermore, optimization techniques were employed. The models and pre–processing were implemented on a resource constrained device, where we assessed the performance of the system in terms of accuracy, memory footprint, time latency, and energy consumption. We achieved for both classification problems a real-time inference (< 0.08 ms), low power consumption (i.e., 3.35 μJ), extremely small models (i.e., 1576 Byte), and high accuracy (above 98%)

    Automated Motion Synthesis for Virtual Choreography

    Get PDF
    In this paper, we present a technique to automati-cally synthesize dancing moves for arbitrary songs. Our current implementation is for virtual characters, but it is easy to use the same algorithms for entertainer robots, such as robotic dancers, which fits very well to this year’s conference theme. Our technique is based on analyzing a musical tune (can be a song or melody) and synthesizing a motion for the virtual character where the character’s movement synchronizes to the musical beats. In order to analyze beats of the tune, we developed a fast and novel algorithm. Our motion synthesis algorithm analyze library of stock motions and generates new sequences of movements that were not described in the library. We present two algorithms to synchronize dance moves and musical beats: a fast greedy algorithm, and a genetic algorithm. Our experimental results show that we can generate new sequences of dance figures in which the dancer reacts to music and dances in synchronization with the music

    Assessing the feasibility of online SSVEP decoding in human walking using a consumer EEG headset.

    Get PDF
    BackgroundBridging the gap between laboratory brain-computer interface (BCI) demonstrations and real-life applications has gained increasing attention nowadays in translational neuroscience. An urgent need is to explore the feasibility of using a low-cost, ease-of-use electroencephalogram (EEG) headset for monitoring individuals' EEG signals in their natural head/body positions and movements. This study aimed to assess the feasibility of using a consumer-level EEG headset to realize an online steady-state visual-evoked potential (SSVEP)-based BCI during human walking.MethodsThis study adopted a 14-channel Emotiv EEG headset to implement a four-target online SSVEP decoding system, and included treadmill walking at the speeds of 0.45, 0.89, and 1.34 meters per second (m/s) to initiate the walking locomotion. Seventeen participants were instructed to perform the online BCI tasks while standing or walking on the treadmill. To maintain a constant viewing distance to the visual targets, participants held the hand-grip of the treadmill during the experiment. Along with online BCI performance, the concurrent SSVEP signals were recorded for offline assessment.ResultsDespite walking-related attenuation of SSVEPs, the online BCI obtained an information transfer rate (ITR) over 12 bits/min during slow walking (below 0.89 m/s).ConclusionsSSVEP-based BCI systems are deployable to users in treadmill walking that mimics natural walking rather than in highly-controlled laboratory settings. This study considerably promotes the use of a consumer-level EEG headset towards the real-life BCI applications
    corecore