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Adaptive cancellation of self-generated sensory

signals in a whisking robot
S. R. Anderson, M. J. Pearson, A. G. Pipe, T. J. Prescott, P. Dean and J. Porrill

Abstract—Sensory signals are often caused by one’s own active
movements. This raises a problem of discriminating between self-
generated sensory signals and signals generated by the external
world. Such discrimination is of general importance for robotic
systems, where operational robustness is dependent on correct
interpretation of sensory signals. Here we investigate this problem
in the context of a whiskered robot. The whisker sensory signal
comprises two components: one due to contact with an object
(externally-generated) and another due to active movement of
the whisker (self-generated). We propose a solution to this
discrimination problem based on adaptive noise cancellation,
where the robot learns to predict the sensory consequences of its
own movements using an adaptive filter. The filter inputs (copy of
motor commands) are transformed by Laguerre functions instead
of the often-used tapped-delay line, which reduces model order
and therefore computational complexity. Results from a contact
detection task demonstrate that false positives are significantly
reduced using the proposed scheme.

Index Terms—Learning and Adaptive Systems, Neurorobotics,
Force and Tactile Sensing, Noise Cancellation, Laguerre Func-
tions

I. INTRODUCTION

A
CTIVE exploration of the environment is a necessary

behavioural feature of both animals and mobile robots,

for the purposes of navigation, object localization and object

recognition. However, active movements will often generate

sensations in their own right, leading to a discrimination prob-

lem: what sensory signals are caused by one’s own movements

and what sensory signals are caused by the external world? It

is essential that an autonomous agent, either animal or robot,

is able to make this distinction in order to interact with the

environment in a robust manner. Falsely interpreting sensations

could lead to catastrophic consequences for a robot, especially

when dealing with threats or opportunities.

Recently, we have encountered an instance of this very

problem in the operation of a whisking mobile robot, a

prototype of which is described in [1] and [2]. Robotic

whisking, a current area of active research [1], [3]–[7],

has potential advantages for exploration when other senses

such as vision are compromised, for instance underground,

underwater and in smoky environments [8]. When our

robot actively whisks against an object, a ‘contact’ signal
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is generated due to vibration of the whisker. The contact is

sensed by a biomimetic follicle, which records movements of

the whisker base. However, actively moving the whisker also

generates a sensory signal due to inertial movement of the

whisker base in the follicle. Here we regard this ‘whisking’

signal as self-generated noise because it interferes with the

contact signal, which is of primary interest. One simple task

that we require the robot to perform is object detection using

its whiskers, as a prelude to more complex tasks such as

object recognition and building a spatial map. Currently, the

sensitivity of object detection in the robot is poor because the

threshold level for detecting contacts must be raised relatively

high, to prevent activation by the self-generated whisking

signal.

Consideration of the problem of discriminating between

self- and externally-generated sensations is long established

in the biological and neurosciences literature (for a discussion

see [9]). As early as the 1950s von Holst coined the term

re-afference principle1 to describe self-generated sensations

[10]. To solve the re-afference problem, von Holst suggested

that a copy of the motor command could be retained in the

central nervous system, which would be used to cancel the re-

afferent signal [10]. This idea has been refined further over the

years, leading to the notion that the brain could learn internal

dynamical models that predict the sensory consequences of

motor actions, thus leading to an ability to discriminate

between self-generated and externally-generated signals [11]–

[15]. An associated interpretation of this principle was made

in the study of electric fish, where the notion of re-afference

was specifically connected to adaptive noise cancellation [16]–

[18], which is where an adaptive filter learns to cancel additive

noise from a signal of interest [19].

Although the uses of predictive models for robotic control

are well-known (e.g. Smith predictor, generalised predictive

control and self-tuning regulator), it is only more recently

that investigation into their related use in recognising and

suppressing self-generated signals has emerged in the field of

robotics [20]–[22]. This, we suggest, is likely to be a crucial

area of work for improving autonomous robotic behaviour.

Here, we propose a generic framework for cancelling self-

generated sensations in robotic systems, motivated from the

biological suggestions of utilising motor command to predict

the sensory consequences of movement. We show that for

1In the neurosciences, inputs and outputs to and from the central ner-
vous system are known as afference and efference respectively. Hence,
‘re-afference’ describes sensory signals produced by motor actions of the
individual. The term ‘ex-afference’, on the other hand, describes sensory
signals caused by the external environment.
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linear systems our proposed scheme corresponds to classic

adaptive noise cancellation [19], where the input from the

external environment is filtered by a combination of controller

and plant dynamics.

For small mobile robotic applications, such as that con-

sidered here, it is important to minimise the computational

complexity of signal processing algorithms in order to reduce

power consumption and maximise energy efficiency. Hence, in

this investigation we use linear filter basis functions to imple-

ment the adaptive filter in the noise cancellation scheme. This

leads to reduced model order compared to the standard tapped-

delay line implementation, which is computationally advanta-

geous for embedded applications in autonomous robots. To

demonstrate the utility of the scheme we apply the noise

cancellation algorithm to the contact detection problem (de-

scribed above) in our whisking robot. The noise cancellation

algorithm is based on the standard approach described

in [19]. The tapped delay line is replaced by linear

filters in order to reduce computational complexity, an

approach advocated in the system identification literature

for reducing model order [23]. We use a bioinspired

approach of defining the reference noise as the copy

of whisking motor command. This scheme links to the

biological perspective on internal models: the robot learns

to represent its own movement dynamics. Previously we

have presented elements of this work in abstract form,

where the self-generated sensations of the robot rat were

cancelled using a tapped-delay line adaptive filter [24].

The paper is organised as follows. The adaptive noise

cancellation scheme, adaptive filter structure and algorithm are

derived in section II. The results from predicting sensory con-

sequences of movement during free-whisking and enhancing

contact detection are presented in section III. The results from

the noise cancellation scheme implementation and potential

directions of future work are discussed in section IV and the

investigation is summarised in section V.

II. METHODS

The problem of cancelling noise from a signal can be solved

optimally using the Wiener filter [25], the principles of which

lead to a fixed filter. However, the design of fixed filters relies

on a priori knowledge of signal statistics and also assumes

that the signal will be stationary. The ability to adapt based

on changes in task, environment and robot dynamics (e.g. a

broken whisker) is an essential feature of an autonomous robot.

Hence, the solution framework we develop here is based on

the adaptive filter approach. We first explain the adaptive noise

cancellation method and then relate it to self-generated noise

and specifically the whisker contact detection problem. We

then present a computationally efficient implementation of the

adaptive finite impulse response (FIR) filter, using Laguerre

functions.

A. Adaptive noise cancellation for self-generated sensory sig-

nals

Adaptive noise cancellation makes use of a reference noise

u to cancel additive noise v from a signal of interest s where

only the combined signal x = s+v is observed [19], see figure

1(a). The key point is that the reference noise is uncorrelated

with the signal but is correlated, via a ‘noise channel’, with the

additive signal noise. An adaptive filter learns the dynamics

of the noise channel and produces the output y, which is

the noise cancelling signal. So the noise cancellation scheme

output z at sample time t is

zt = xt − yt, (1)

zt = st + vt − yt. (2)

Assuming that all signals are zero-mean and the reference

noise ut is uncorrelated with st, but is correlated with vt, then

by squaring (2) and taking expectations, we obtain an expres-

sion for the covariance, or power, in the noise cancellation

scheme output,

E
[

y2
t

]

= E
[

s2t
]

+ E
[

(vt − yt)
2
]

(3)

Inspection of (3) shows that adjustments in the filter output

will not affect the signal power E
[

s2t
]

. Therefore the power

in E
[

(vt − yt)
2
]

is minimised when the cancellation scheme

output power is minimised,

minE
[

y2
t

]

= E
[

s2t
]

+ minE
[

(vt − yt)
2
]

(4)

Hence, minimising the total output power of the cancellation

scheme is equivalent to minimising the output noise power.

Therefore the output of the cancellation scheme may be used

as the error signal et to drive filter adaptation, i.e. et = zt,

which minimises the filter prediction error of the noise in a

least-squares sense.

In the context of cancelling self-generated noise, we can

write down a conceptual model of the self-generated noise

cancellation scheme, by analogy with figure 1(a), replacing the

reference noise with motor command, shown in figure 1(b).

To obtain the cancellation scheme for the specific case of the

whisking robot, it is necessary to consider the robot whisker

control scheme and relate that to the generic scheme in figure

1(b). The whisker plant is controlled by a PID controller and

motor in a negative feedback loop. We model the output of

this control loop (whisker angle) as the input to the follicle

sensor. We model the contact signal as an additive disturbance

to the whisker and is therefore within the feedback loop.

Hence, assuming that each component of the system can be

represented by a linear filter, the observed whisker sensory

signal can be described as the sum of the two input signals,

filtered by follicle, whisker plant and controller dynamics,

xt = G(q)ut +H(q)dt (5)

where q is the shift operator (qut = ut+1), dt is the object

contact input signal,

G(q) =
F (q)C(q)P (q)

1 + C(q)P (q)
, (6)

H(q) =
F (q)P (q)

1 + C(q)P (q)
, (7)

and F (q), C(q) and P (q) are linear discrete-time filters repre-

senting the follicle, controller and plant dynamics respectively.
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Fig. 1. The link between adaptive noise cancellation, the generic cancellation of self-generated sensory signals (using copy of the motor command) and the
specific cancellation of the whisking component from combined whisker/contact sensory signals. (a) Classic adaptive noise cancellation. The reference noise
signal is assumed to be known and correlated with the noise but uncorrelated with the signal. (b) A conceptual mapping of the adaptive noise cancellation
scheme into the framework of cancelling self-generated sensory signals. This scheme uses motor command in analogy to the reference noise. (c) The robot
whisker control and sensory scheme with noise cancelling adaptive filter. The controller, plant and follicle sensor are represented by linear transfer functions
C, P and F respectively. (d) The robot whisking scheme reinterpreted in the architecture of classic adaptive noise cancellation.

This scheme is shown in figure 1(d), which is clearly related to

the original noise cancellation scheme in 1(a). In the context of

the noise cancellation scheme, the contact signal corresponds

to st = H(q)dt and the whisking signal corresponds to

vt = G(q)ut, which leads to an analogous expression of (2),

for the whisker signal cancellation scheme,

zt = H(q)dt +G(q)ut − yt. (8)

The adaptive filter must therefore learn the dynamics of

the closed loop expression G(q) using the whisking motor

command input ut, which we assume is uncorrelated with the

contact signals H(q)dt.

B. Adaptive FIR filter with LMS learning rule

Typically, an adaptive FIR filter is used to learn the noise

channel dynamics of the reference noise to signal noise

transformation, where the filter is described as

yt =

n
∑

k=1

w
(k)
t ut−k+1 (9)

where yt is the filter output at sample time t (prediction of

self-generated noise), ut is the filter input (copy of motor

command), the notation ut−k indicates tap delays of the input

signal, w
(k)
t is the kth time-varying filter weight and n is

the filter order. The filter can be written compactly in vector

notation as

yt = utwt (10)

where ut = [ut, . . . , ut−n+1] and wt = [w1, . . . , wn]
T

.

The parameters of the adaptive FIR filter are adapted here

by the least-mean-square (LMS) rule of Widrow and Hoff [26],

[27],

wt+1 = wt + µutet (11)

where µ is a learning rate parameter, et is the filter prediction

error and the product term utet is a sample estimate of the

squared filter prediction error gradient vector. The learning

rate term µ can be a constant but here we use normalised

LMS (NLMS), where µ = β/||ut||2, where β is a constant.

The NLMS rule typically increases the rate of convergence

[27]. Regarding convergence, subject to the stability of the

implementation, the NLMS rule converges to the Wiener filter

solution [28].

C. Reducing model order of the FIR filter using Laguerre

functions

The FIR filter implemented with a tapped-delay line nor-

mally requires a large number of parameters, which is unde-

sirable due to excessive computational complexity. The reason

for this is that the true system impulse response often decays

slowly with respect to the sample rate, requiring many tapped-

delays and associated parameters. One method for reducing the

order of the FIR filter is to decompose the description of the

impulse response into a weighted sum of linear basis functions

[23],

yt =

p
∑

k=1

w
(k)
t Lk(q,γ)ut (12)
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Fig. 2. Various possible structures of the adaptive FIR filter. (a) The standard tapped-delay line implementation of the adaptive FIR filter. (b) The Laguerre
function implementation of the adaptive FIR filter. (c) The cascaded Laguerre function implementation of the adaptive FIR filter.

where the number of filter weights is p, Lk(q,γ) is a basis

function that is a linear discrete-time filter and γ is the

vector of filter parameters. The adaptive filter output can be

compactly expressed as

yt = ψtwt, (13)

ψt = [L1(q,γ)ut, . . . , Lp(q,γ)ut] . (14)

The basis functions replace the tapped-delay line and, impor-

tantly, can greatly reduce the number of model parameters,

therefore typically p << n. The basis functions that we

use here have been extensively investigated in the system

identification and signal processing literature, namely Laguerre

functions (LFs) [29]–[32]. The LFs are attractive for dynamic

system descriptions because they form an orthonormal basis

for white noise inputs (as do tapped-delay-lines), yet they are

insensitive to the choice of sample rate (unlike tapped-delay-

lines). The sequence of LFs is defined as

Lk(q,γ) =

√

(1 − a2)

1 − aq−1

(

q−1 − a

1 − aq−1

)k−1

for k = 1, . . . , p,

(15)

where q−1 is the backward shift operator and the filter param-

eter vector γ is composed of only a single element γ = a.

In principle other basis functions may be used to describe

the FIR filter, such as Kautz functions [30] and generalised

bases [33]. However, as will be seen in the results section,

LFs describe the data accurately and have the advantage of a

simple parameterisation (requiring the selection of only one

unknown filter parameter a).

The LF parameter a was selected here by use of a separable

least-squares algorithm [34]. Separable least-squares is com-

monly applied to optimisation problems where the variables

naturally separate into linear and nonlinear sets, improving

convergence rate and numerical conditioning [35]. In the case

of LFs, the adaptive filter weights w comprise the linear set

of parameters and the filter parameter a is defined as the

(only) nonlinear parameter. The optimal filter weights can be

estimated (in a batch mode offline, from N samples) by least-

squares for any given value of a,

wLS = Ψ(a)†x (16)

where Ψ(a) =
[

ψ1(a)
T , . . . ,ψN (a)T

]T
, x = [x1, . . . , xN ]

T

and † indicates the pseudo-inverse. In outline, the weights

wLS were estimated by least-squares within each iteration of a

nonlinear optimisation of the parameter a, thus avoiding their

explicit inclusion in the nonlinear search. The cost function

used to optimise the parameter a was the root-mean-squared

(RMS) filter prediction error. The Nelder-Mead simplex al-

gorithm was applied to solving the nonlinear optimisation

problem (using the Matlab function fminsearch).

Regarding the on-line implementation of the LFs in a

robotic system, the LFs can be implemented as a cascade of

first order filters. In fact the LFs in (15) are naturally defined

as the product of first order filters, hence a cascade is simple

to implement directly from inspection of (15) in terms of a

single parameter a, where the first LF is

Λ1(q,γ) =

√
1 − a2

1 − aq−1
, (17)

and the subsequent filters are each defined as

Λ2(q,γ) =
q−1 − a

1 − aq−1
. (18)

A cascade of first order filters has two distinct advantages in

comparison to separately implementing each LF (the direct-

form). Firstly, the number of multiplications is reduced from

2p(p + 1)/2 in the case of separate LFs, to just 2p for

the cascade-form. Secondly, the cascade-form of an infinite-

impulse response filter (such as an LF) typically has improved

numerical robustness compared to the direct-form for finite-

word-length implementations [36]. Different possible struc-

tures of the adaptive filter are compared in figures 2(a)-(c).

D. Adaptive noise cancellation algorithm

The adaptive noise cancellation algorithm, incorporating the

cascade of first order LF filters and parameter adaptation by

NLMS, is described in Algorithm 1. The algorithm requires the

specification of three parameters before implementation on-

line, which are (i) the LF filter parameter a, (ii) the number

of LFs p and (iii) the learning rate parameter β. Selection

of these parameters is task specific and is discussed for the

whisking robot application in the Results section.

The computational complexity of Algorithm 1 is O(p),
where p is the number of LF weights, which is typical of
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Algorithm 1 Adaptive Self-Generated Noise Cancellation

1: ψ
(1)
t = Λ1(q,γ)ut {filter input through first LF}

2: for j = 2 to p do

3: ψ
(j)
t = Λ2(q,γ)ψ

(j−1)
t {cascade of LFs}

4: end for

5: yt = ψtwt {adaptive filter output}
6: zt = xt − yt {noise cancellation scheme output}
7: µt = β

ψ
t
ψT

t

{learning rate}
8: wt+1 = wt + µtψtzt {parameter adaptation}

Tapped-Delay- Cascade of
Line Laguerre Functions

Input Filtering 0 3p
Adaptive Filter Output n p

Learning Rate n+1 p+1
Parameter Adaptation n p

Total 3n+1 6p+1

TABLE I
COMPUTATIONAL COMPLEXITY (NUMBER OF MULTIPLICATIONS AND

DIVISIONS PER ITERATION) FOR ADAPTIVE FILTERING VIA A

TAPPED-DELAY-LINE IMPLEMENTATION COMPARED TO A CASCADE OF

LAGUERRE FUNCTIONS (ALGORITHM 1).

LMS algorithm implementations [27]. This linearity in compu-

tational complexity is an attractive feature of LMS adaptation

and is particularly suited to applications in robotics systems

where it is important to minimise computational requirements.

The total computational complexity of Algorithm 1 (using a

cascade of LFs) is compared to a tapped-delay-line equivalent

in table I. We note that although the complexity would be

higher for LFs if p = n in fact for a tapped-delay-line and LF

filter implementation of similar accuracy typically p << n
[30]. Hence, we suggest that use of LFs will often be an

attractive option with regard to reducing computational com-

plexity. This point is specifically addressed for the whisking

robot application in the Results section.

E. Whisking Robot

The whisking robot utilised in this study is a development

of the prototype described in [1] and [2], see figure 3. The new

whisking robot, SCRATCHbot [7], has 18 whiskers arranged

in 3 columns of 3 whiskers per column on each side of

the robot head (i.e. 9 on each side). Each of the columns

are independently actuated using DC motors, providing 120

degrees of rotation (figure 4).

The reference trajectory of each column is currently spec-

ified by the operator and controlled using a proportional-

integral-derivative (PID) position control algorithm imple-

mented in a local micro-controller (with a sample rate of

200 Hz). Each of the plastic whiskers (made from acrylonitrile

butadiene styrene - ABS) has a small magnet bonded to the

base which, in turn, is mounted into a flexible polymer follicle.

Any movement of the magnet is monitored in 2-dimensions

using a Hall effect sensor located inside the follicle. There-

fore, any deflections of the whisker shaft are represented as

displacement vectors at the base.

Taking inspiration from mammalian vibrissal fields, the

lengths and thicknesses of the whiskers vary across the array,

Fig. 3. The whisking robot: SCRATCHbot.

Fig. 4. Diagram of SCRATCHbot head. (a) Front view. The front two
columns of whiskers are illustrated. The three rows of whiskers on each side of
the head are spread by 30 degrees. The movement of each whisker activates a
Hall effect sensor that gives a measure of whisker displacement. (b) Top-down
view. All six columns of whiskers are illustrated. Each column of whiskers is
independently actuated by a DC motor, under PID control. Each column can
move through 120 degrees of rotation. The lengths of the whiskers decrease
from front to back of the head (100-200 mm).

with the longer thicker whiskers located toward the rear. The

results of this study were taken from a 200mm long whisker

shaft with a circular cross-section of 2mm diameter at the base,

tapering linearly to 0.6mm diameter at the tip.

F. Experiment Design

A single whisker on the robot (rear column, middle row

of the 3 × 3 array) was driven in two separate experiments,

without contacts (free-whisking) and with contacts, where each

run was of two minutes in duration. Each data set was collected

under head fixed conditions. The free-whisking data was used
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Fig. 5. Robotic whisker input-output signals (desired whisker angle and follicle sensor output respectively). (a) Desired whisker angle signal, zoomed on
the time-axis to a typical 10 second segment. The desired whisker angle signal was obtained from real rat whisking recorded by Towal and Hartmann [37].
(b) Follicle sensor output signal, zoomed on the time-axis to a typical 10 second segment. (c) Desired whisker angle amplitude spectrum. (d) Follicle sensor
output amplitude spectrum. (e) Robotic whisker transfer function amplitude spectrum, obtained from the empirical transfer function estimate (ETFE).

to design the LFs prior to the contact detection task. In the

contact detection experiment, the contact object (a flexible

plastic rod, 80mm long, 1.5mm in diameter) was held in

the path of the whisker at random times and removed after

contact. Contact times of the whisker were obtained with

coarse accuracy (to the nearest second) by use of a video

recording of the experiment. Precise contact times of the

whisker were obtained from applying the noise cancellation

algorithm to the data and visually inspecting the resulting

‘clean’ signal, with reference to the contact times obtained

from the video recording. Each input-output data set was

processed and analysed offline using Matlab.

We drove the whiskers of the robot with an input signal (de-

sired whisker angle) obtained from real rat whisking recorded

by Towal and Hartmann [37]. Two typical free-whisking trials

of ∼1.5 seconds in duration were concatenated together to

form an input signal of ∼3 seconds. The original signals had

a strong periodic component in the whisking at ∼8 Hz. We

scaled the whisking signal to reflect the larger size of the

robot rat (compared to an actual rat). Therefore we lowered the

whisking rate by redefining the sample rate from 250 Hz to 100

Hz, thereby shifting the whisking rate down by a factor of 2.5,

so that the strong periodic component of whisking occurred

at ∼3 Hz. The resulting signal, of duration ∼7.5 seconds was

looped for 2 minutes to form the input signal used in the free-

whisking and contact experiments.

The characteristics of the input-output data from the robot

whisker plant (desired whisker angle and follicle sensor out-

put respectively) are shown in figures 5(a)-(d), from free-

whisking. The dynamic characteristics of the robot whisker

plant, equivalent to the transfer function G(q) defined in (6),

are described in figure 5(e) by the empirical transfer function

estimate (ETFE) [23]. The ETFE is the ratio between the

Fourier transforms of the output and input and was obtained in

this case by the Matlab function tfestimate, which uses Welch’s

method to obtain the estimate [23]. The input-output signals

were sampled from the robot at 200 Hz and low-pass filtered

at 5 Hz to attenuate nonlinear harmonics in the output signal.

Although in principle it would be possible to describe these

nonlinearities with a nonlinear FIR filter, that was outside the

scope of this investigation and did not affect the main result

of enhancing contact detection.

III. RESULTS

This section presents results for the adaptive filter design

and application to the task of enhancing whisker contacts in the

presence of self-generated noise. The task was to dynamically

model the whisker plant (desired whisker angle-to-follicle

sensor output transformation) and use this model to cancel

the self-generated sensory signal using an adaptive FIR filter

(Algorithm 1). The results are divided into three sections: LF

selection, prediction of sensory consequences of movement

and contact detection.
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Fig. 6. Structure detection for the Laguerre functions. (a) Comparison of FIR filters composed of 2 to 6 Laguerre functions (LFs) in terms of root-mean-square
(RMS) fit error along with the fit error of a tapped-delay line (TDL) FIR filter (40 taps), where the Laguerre function parameter a was varied systematically
between 0.5 and 0.96. (b) Comparison of Laguerre function FIR filters in terms of minimum RMS fit error. (c) Impulse responses of the Laguerre basis
functions 1 to 5, which are weighted and summed to form the whisker plant impulse response (where a = 0.75). (d) Whisker plant impulse response described
by the Laguerre function filter (5 LFs), obtained from the separable least-squares fit to the free-whisking data (where a = 0.75).

A. Laguerre function structure detection

The LF structure detection task was composed of selecting

two parameters: the filter parameter a and the number of LFs

p. The number of LFs p was selected first by comparing the

FIR filter prediction of the follicle sensor output signal for

different numbers of LFs. The optimal fit of each LF filter was

obtained in a batch mode using least-squares. We fitted 1 to 6

LFs (using the free-whisking data), with the filter parameter a
systematically varied from 0.5 to 0.96. The root-mean-square

(RMS) fit error was compared across the different numbers

of basis functions and selected results are shown in figure

6(a). We found that at least 4 LFs were required to model

the dynamics of the whisker plant, based on inspection of the

knee-point in figure 6(b). Although the accuracy of 4 LFs was

similar to 5 LFs we found that the fit error was more sensitive

to the choice of a when using 4 LFs. Hence, we selected

p = 5.

After selecting the number of LFs the parameter a was es-

timated using a separable least-squares algorithm as described

in the Methods (where the choice of the single parameter

a defined the dynamics of all LFs). The optimal parameter

estimate was a = 0.75. The impulse responses of the 5

selected LFs with optimal parameter estimate a = 0.75 are

shown in figure 6(c). The impulse response of the whisker

plant (identified by the separable least-squares algorithm) is

plotted in figure 6(d), which shows that the response is mildly

oscillatory and decays after 200 ms.

Only 5 LFs were required here to model the whisker

plant dynamics. A comparable filter length implemented by

a tapped-delay line would require 40 taps. Hence, the LF

implementation resulted in a significant reduction in model

order, with a corresponding reduction in computational com-

plexity. For this case, the computational complexity of the

LF implementation was just 31 multiplications and divisions

compared to 121 for the tapped-delay-line (calculated from the

totals in Table I). This reduction in number of operations of

74% scales with the number of whiskers (due to the fact that

each whisker requires a separate instance of the cancellation

algorithm). To illustrate the benefit of using the LFs, recalling

that SCRATCHbot has 18 whiskers in total, in the time it

would take to process just 4 whiskers using a tapped-delay-

line it would be possible to process all 18 whiskers using the

LF implementation of Algorithm 1.

B. Prediction of sensory consequences of movement

The adaptive filter was required to learn the whisker plant

dynamics on-line (as opposed to the off-line identification used

to select the LFs, discussed above). For the case of free-

whisking (i.e. no contacts) the adaptive filter output yt should

closely match the output of the follicle sensor xt. Therefore

after defining the LFs we ran the adaptive noise cancellation

algorithm (Algorithm 1) on the free-whisking data to confirm

that the adaptive filter could accurately learn the whisker plant

dynamics. The user-defined parameters in Algorithm 1 were

set to a = 0.75, p = 5 and β = 0.01. The adaptive filter

weights were initialised to zero.
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We found that after filter convergence on the free-whisking

data the prediction accuracy of the self-generated noise was

high. Figure 7(a) and (b) compares the filter output yt with

the follicle output xt, at the beginning and end of learning

respectively. The variance accounted for2 (VAF) obtained from

the final 20 seconds of free-whisking data was VAF=0.94.

C. Contact detection

Apart from the choice of LF function parameter a and the

number of LFs p, the only other user-defined parameter neces-

sary to implement Algorithm 1 was the learning rate constant

β. We investigated choice of learning rate parameter with

respect to performance in the contact detection task. The

metric used to measure performance was signal-to-noise

ratio (SNR). The signal power in the SNR measure Ps was

defined as the variance of the signal segment 200 ms before

and after a contact. The noise power in the SNR measure

Pn was defined as the variance of the remainder of the

signal after removing the contact segments. Hence, SNR

was defined as SNR = 10 log10(Ps/Pn). The SNR measure

was obtained after applying Algorithm 1 to the contact

data, varying the learning rate between 10−4 and 10−1.

The optimal learning rate parameter, that maximised SNR,

was found to be β ≈ 0.004 (figure 8). The limiting factor

on faster learning (i.e. for β > 0.004) appeared to be due

to contacts disrupting adaptation. However, stability was

guaranteed even in the presence of these contacts because

the filter input was stationary and uncorrelated with object

contacts [27].

After selecting the learning parameter β, we ran Algorithm

1 on the contact data (described in section II-F) to assess the

utility of the noise cancellation scheme. The contact detection

experiment was of duration 2 minutes, corresponding to

N = 24, 000 samples at the sample rate of 200 Hz.

Parameter adaptation took place at each sample time.

Separate analysis on contact-free data showed that at this

learning rate prediction accuracy was over 90% within 2

seconds of adaptation. Contacts in the whisking signal were

well amplified (compared to the raw sensory signal) as errors

in prediction, shown in figures 9(a) and (b). It is apparent

from a visual inspection of figure 9(a) that many of the

contacts are effectively hidden within the self-generated noise.

By comparison, a visual inspection of figure 9(b) emphasises

the utility of the noise cancellation scheme by revealing the

location of contacts in the adaptive noise canceller output.

The purpose of the noise cancellation scheme was to

enhance contact detection in comparison to using the raw

follicle output signal. The method we used for detecting

contacts was to apply a threshold to both the follicle output

and noise cancellation scheme output. Signal values that

exceeded the threshold were classified as contacts. In order

to assess the improvement in detecting contacts by the noise

cancellation scheme, we used a measure known as the receiver

2The variance accounted for metric (VAF) is a measure of model fit quality,
where VAF=1-var(e)/var(y), where e is the fit error and y is the target data.
Hence, a VAF≈1 implies that the model fit is good because the normalised
error variance is close to zero. The VAF is also known as the coefficient of
determination or r-squared value.
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the adaptive noise cancellation (ANC) scheme, with baseline comparison to
the signal-to-noise ratio obtained from the follicle sensor output. Results were
obtained from one presentation of the contact data to the noise cancellation
algorithm.

operating characteristic (ROC) curve, which is widely used in

classification problems [38]. The ROC curve plots the false

positive rate against the true positive rate (where the false

and true positive rates are the normalised number of true

positives and false positives respectively). We defined the

maximum possible number of false positives as the number

of forward whisks (due to the fact that each whisk could have

potentially signalled a contact). We obtained the ROC curve

by systematically varying the contact detection threshold from

0 to 1.1, applying each threshold to the absolute values of the

normalised follicle output and cancellation scheme output (i.e.

the signals shown in figure 9), and counting the number of

resulting true and false positives corresponding to each signal.

The ROC curve showed that for the raw signal (follicle sensor

output) a true positive rate of 0.95 could only be obtained

at the expense of a false positive rate of ∼0.53 (figure 10),

which is poor performance. By contrast the clean signal (noise

cancellation scheme output) gave a true positive rate of 0.95

for a false positive rate of only ∼0.04 (figure 10). Hence,

the use of the cancellation scheme greatly enhanced contact

detection for this data set.

IV. DISCUSSION

A. Improved contact detection by adaptive noise cancellation

We found that the noise cancellation scheme based on the

biological principle of using copy of the motor command

worked as expected from the theory. The adaptive filter

successfully learnt a model of the robot whisker controller-

plant dynamics (demonstrated by the adaptive filter learning

to predict the sensory consequences of movement during

free-whisking). We showed that the particular adaptive FIR

filter implementation we chose (cascaded LFs) reduced com-

putational complexity in comparison to a tapped-delay line.
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We tested the algorithm on contact detection during active

robot whisking, where we showed that the use of the noise

cancellation scheme led to a much improved ratio of true

positives to false positives in comparison to using the raw

sensory signal.

Hence, the algorithm (Algorithm 1) that we have developed

here is well suited to applications in autonomous robotics

because (i) it should lead to improved discrimination between

self-generated and externally-generated signals in general

robotic tasks (i.e. not limited to whisking), (ii) the imple-

mentation is adaptive, hence suitable for on-line learning and

(iii) the algorithm is relatively computationally inexpensive

(linear in the model order, where order will typically be small

due to the use of LFs). As in the case of generic LMS

adaptation schemes, the instance of the noise cancellation

algorithm presented here is stable and convergent provided

the learning rate is within acceptable bounds, and in

addition is also able to track slowly time-varying systems

[28].

B. Computationally efficient algorithm for mobile robotic plat-

forms

The SCRATCHbot platform, like all autonomous mobile

robotic platforms, has a limited onboard power supply. A

considerable amount of this power is required by the actuators

and processors distributed across the platform to control each

degree of freedom as well as the Single Board Computer

(SBC) and FPGAs used for signal processing, higher level

planning and control. Consequently, the chosen SBC repre-

sents a compromise between power consumption and computa-

tional performance. To overcome the computational constraints

of the platform, external processors could be employed and

integrated using wireless communication. However, the data
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bandwidths and latencies of conventional wireless protocols

do not currently satisfy the requirement for the proposed noise

cancellation scheme. Computational efficiency of onboard

signal processing algorithms is therefore of utmost importance.

Here we have developed a noise cancellation algorithm that

focused on reduction of computational complexity by the use

of LFs, rather than the commonly used tapped-delay line. The

number of computations in this case was reduced by 74%

(from 121 to 31 for one whisker output), a highly beneficial

improvement for onboard processing.

C. Possible neural substrates of a contact detection scheme

in the rat

Given the success of the cancellation scheme considered

here, based on adaptive filtering, it is natural to ask whether

there exists a comparable functional system in whisking

animals such as the rat. It has been reported that rat free-

whisking (i.e. with no contacts) generates a sensory signal

[39], [40]. This signal is analogous to the self-generated

signal observed in our whisking robot. Therefore it is possible

that a similar problem of discrimination between self- and

externally-generated signals exists in the rat.

In a parallel theme of work we are currently investigating

the possibility that the cerebellum is involved in a biological

cancellation scheme, where the cerebellum is the structure

that performs the role of the adaptive filter [24], [41]. The

cerebellum is a natural candidate for this role because of

the resemblance of the cerebellar microcircuit to the adaptive

filter [42], [43]. The cerebellum has also been particularly

associated with the concept of learning internal dynamical

models [11], [12], [44].

The adaptive filter is a widely used model of cerebellar

processing and the nature of the basis functions used in

biological systems is an area of active research. Marr and

Albus originally proposed that the granule cell layer imple-

mented a basis that performed a massive expansion recoding

of cerebellar (mossy fibre) inputs [45], [46]. An important

question is whether the Marr-Albus hypothesis of granule cell

layer function is consistent with recent electrophysiological

evidence thought to suggest a modest role for granular layer

transformation (references in [47]). If this proves to be the case

then bases such as the LFs used here, which are much more

efficient (and also more biologically plausible) than tapped

delay lines, may have applications to biological systems.

V. SUMMARY

This investigation has addressed the problem of cancelling

self-generated robotic sensory signals in a generic framework.

The choice of reference noise as input to the adaptive filter

in the cancellation scheme was motivated by the biological

observation that one may use copy of motor commands to

predict sensory consequences of movement. The algorithm

was based on adaptive FIR filtering, where the filter input was

first transformed by LFs (rather than tapped-delay lines) to re-

duce the filter order and in turn the computational complexity.

The cancellation scheme was applied to self-generated sensory

signals in a whisking robot. We showed that the cancellation

scheme greatly enhanced contact detection on signals recorded

from robot whisker contacts, dramatically reducing the false

positive rate.
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