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Abstract

The human skin has several sensors with different properties and responses that are able

to detect stimuli resulting from mechanical stimulations. Pressure sensors are the most

important type of receptors for the exploration and manipulation of objects. In the last

decades, smart tactile sensing based on different sensing techniques have been developed

as their application in robotics and prosthetics is considered of huge interest, mainly driven

by the prospect of autonomous and intelligent robots that can interact with the environ-

ment. However, regarding object properties estimation on robots, hardness detection is

still a major limitation due to the lack of techniques to estimate it. Furthermore, finding

processing methods that can interpret the measured information from multiple sensors

and extract relevant information is a Challenging task. Moreover, embedding processing

methods and machine learning algorithms in robotic applications to extract meaningful

information such as object properties from tactile data in is an ongoing challenge, which

controlled by the device constraints (power constraint, memory constraints, etc.), the com-

putational complexity of the processing and machine learning algorithms, the application

requirements (real-time operations, high prediction performance). In this dissertation we

focus on the design and implementation of pre-processing methods and machine learning

algorithms to handle the aforementioned challenges for a tactile sensing system in robotic

application. First we propose a tactile sensing system for robotic application. Then we

present efficient preprocessing and feature extraction methods for our tactile sensors. Then

we propose a learning strategy to reduce the computational cost of our processing unit in

object classification using sensorized Baxter robot. Finally, we present a real-time robotic

tactile sensing system for hardness classification on resource constrained device.
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The first study represents a further assessment of the sensing system that is based

on the PVDF sensors and the interface electronics developed in our lab. In particular,

first, it presents the development of a skin patch (multilayer structure) that allows us to

use the sensors in several applications such as robotic hand/grippers. Second, it shows

the characterization of the developed skin patch. Third, it validates the sensing system.

Moreover, we designed a filter to remove noise and detect touch. The experimental

assessment demonstrated that the developed skin patch and the interface electronics

indeed can detect different touch patterns and stimulus waveforms. Moreover, the results

of the experiments defined the frequency range of interest and the response of the system

to realistic interactions with the sensing system to grasp and release events.

In the next study we presented an easy integration of our tactile sensing system into

Baxter gripper. Computationally efficient pre-processing techniques were designed to

filter the signal and extract relevant information from multiple sensor signals, in addition

to feature extraction methods. These processing methods aims in turn to reduce also the

computational complexity of machine learning algorithms utilized for object classification.

The proposed system and processing strategy were evaluated on object classification

application by integrating our system into the gripper and we collected data by grasping

multiple objects. We further proposed a learning strategy to accomplish a trade-off

between the generalization accuracy and the computational cost of the whole processing

unit. The proposed pre-processing and feature extraction techniques together along with

the learning strategy have led to models with extremely low complexity and very high

generalization accuracy. Moreover, support vector machine achieved the best trade-off

between accuracy and computational cost on tactile data from our sensors.

Finally, we presented the development and implementation on the edge of a real–time

tactile sensing system for hardness classification on Baxter robot based on machine and

deep learning algorithms. We developed and implemented in plain C a set of functions that

provide the fundamental layer functionalities of the Machine learning and Deep Learning

models (ML and DL), along with the pre–processing methods to extract the features and

normalize the data. The models can be deployed to any device that supports C code
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since it does not rely on any of the existing libraries. Shallow ML/DL algorithms for

the deployment on resource–constrained devices are designed. To evaluate our work, we

collected data by grasping objects of different hardness and shape. Two classification

problems were addressed: 5 levels of hardness classified on the same objects’ shape, and

5 levels of hardness classified on two different objects’ shape. Furthermore, optimization

techniques were employed. The models and pre–processing were implemented on a

resource constrained device, where we assessed the performance of the system in terms of

accuracy, memory footprint, time latency, and energy consumption. We achieved for both

classification problems a real-time inference (< 0.08 ms), low power consumption (i.e.,

3.35 µJ), extremely small models (i.e., 1576 Byte), and high accuracy (above 98%).

Keywords: E-Skin, Tactile sensing system, Robots, Robot sensing systems, Tac-

tile data processing, Machine learning, Deep Learning, Hardness classification, Object

recognition, Tactile Data classification, Embedded ML implementation, Energy-efficient

algorithms, Edge computing, Artificial intelligence.
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Chapter 1

Introduction

The sense of touch is an irreplaceable source of information in humans for exploring the

environment in their immediate surroundings. It is mediated by mechanosensory neurons

embedded in the skin that transmit sensory information such as pressure, pain, temperature,

and vibration from the periphery nervous system to the central nervous system, helping

humans to perceive their surroundings and avoid possible injuries [2]. Research has shown

that the properties of objects are detected much better by the sense of touch than by the

senses of hearing and sight [3]. The sense of touch involves physical interaction with

the environment (e.g., objects) and plays a fundamental role in estimating properties

such as shape, texture, hardness, material type, and more. It also provides action-related

information, e.g., slippage. All of this underscores the importance of the sense of touch

and suggests the need for equipping robots with tactile sensors. It is desirable to equip

the entire body of a robot with tactile sensors. However, the robot hands, especially the

fingertips, are given higher priority because they are involved in the majority of daily tasks

(such as exploration, manipulation, and interaction) [4].

Given the importance of the sense of touch, researchers have sought to understand

this sense and develop intelligent tactile sensing systems. Such systems consist of three

main blocks: distributed tactile sensor, readout electronics, and tactile data decoding. The

distributed tactile sensors are responsible for converting the mechanical stimuli applied
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to their surface into electrical signals. In the last two decades, a variety of tactile sensors

capable of sensing different contact parameters have been reported in the literature, and

a variety of transduction modes have been investigated [5–15]. Tactile sensors are made

of different sensing techniques such as capacitive, piezoelectric, and piezoresistive. The

readout electronics is used to acquire and digitize the electrical signals from the sensors,

which are then processed by the digital tactile data processing unit during the decoding

phase [16]. Tactile data decoding ranges from simple processing tasks where the force

and location of touch are detected, to complex processing tasks where machine learning

(ML) algorithms are used to extract meaningful information about object properties such

as hardness, texture, deformability, and shape, from tactile data [17, 18].

Among the object properties, hardness is considered one of the most important at-

tributes. It represents the resistant force of solid materials subject to a localized pressure

force. It is also described as the ratio between the applied force and the displacement

created by indentation [19]. For humans, moderate and low hardness levels are perceived

based on the vibration resulted from tapping on the surface of an object [20, 21]. On

the other hand, hardness-measuring machines generally apply indentation tests onto the

surface of the tested material, under controlled load [22]. In contrast, hardness detection in

robots is still a major limitation due to the lack of techniques that can be used to estimate

it. As the majority of tactile sensors measure force, a typical trial for a robot to measure

hardness is by measuring the force changes when contacting a sample with controlled

grasp [19].

Furthermore, the usage of tactile sensor in practical robotic applications is still limited

[23]. One of the main reasons stems from the difficulties with the processing of acquired

data from tactile sensors [23]. Compared to other senses, such as visual and hearing, the

properties of tactile sensor data are much more variable [24]. The signals from tactile

sensors can be noisy, high-dimensional, complex and contain irrelevant information as

well as essential one.

Moreover, a tactile sensing system demands some constraints including tight latency

requirements (< 50 ms) [25]. Edge computing enables intelligence with low latency,
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low memory, and low power without the need for cloud computing. These are the key

requirements of an efficient tactile sensing systems. For instance, embedding intelligence

near the sensor location may enable tactile sensing systems to be incorporated in many

application domains such as prosthetics, robotics, and the Internet of Things (IoT). How-

ever, the embedded unit of such systems is required to perform multiple tasks such as

signal processing, feature extraction, classification (i.e., machine learning/deep learning),

etc. However, the execution of all these techniques can be computationally expensive

hindering their deployment on such constrained units.

Therefore, this dissertation proposes a novel tactile sensing system for robotic applica-

tions, namely for object recognition and object hardness classification on Baxter robot

[26]. The system consists of an electronic skin and a processing unit for signal condition-

ing, data acquisition, and tactile data processing. The development, characterization and

evaluation of a new skin patch (multilayer structure for the electronic skin) is presented.

A robotic real-time tactile sensing system for object hardness classification based on edge

implementation was accomplished by developing computationally efficient strategies to

pre-process the sensor signals and extract features from the tactile data which in turn aims

to reduce the computational complexity of the ML algorithms used for classification. Also,

a learning strategy is proposed to find the best configuration between the proposed signal

processing and feature extraction techniques on one hand and the ML algorithms on the

other hand, which should provide a trade-off between the generalization performance and

the computational cost for the whole processing unit.

1.1 Objectives and Contributions

The main objective of this dissertation is to develop a robotic tactile sensing system for

object hardness classification based on edge implementation. The system should offer

real-time processing and inferencing on resource-constrained edge devices(i.e., interface

electronics), considering challenges such as preserving accuracy, memory requirements,

computational complexity, low latency, and power consumption. Towards achieving the
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objective of this dissertation, we contributed to the research community with several ideas

that can be summarized as:

• In the follow-up procedure of realizing a distributed tactile sensing system, the first

study presents the development, characterization and evaluation of a new skin patch

and the experimental testing of the tactile sensing system, i.e., embedded electronics

and skin patch (Chapter 3).

• A novel tactile sensing system, which consists of a tactile sensing patch and interface

electronics, for Baxter robot is proposed. The tactile sensing system was mounted

to the gripper of Baxter robot and validated for object classification. The system

achieved high classification accuracy (Chapter 4).

• Computationally efficient and low latency pre–processing techniques to extract

features from tactile signals and normalize data from large number of sensors are

designed; which in turn aims to reduce to computational complexity of designed

ML algorithms for classification (Chapter 4).

• A learning strategy based on a loss function is proposed to find the best configuration

between the proposed signal processing and feature extraction techniques on one

hand and the ML algorithms on the other hand. A parameter in the loss function

is tuned to weight the importance of the computational cost in order to provide a

trade-off between the generalization performance and the computational cost for

the whole processing unit (Chapter 4).

• The tactile sensing system on Baxter robot is extended to address hardness classifi-

cation. Shallow machine learning algorithms are designed for the deployment on

resource– constrained devices. In addition, the deployment of pre–processing tech-

niques and ML models, written in C language, on an edge device namely STM32

Nucleo 745ZI–Q board, is presented (Chapter 5).

• The robotic tactile sensing system is validated on two hardness classification prob-

lems, achieving high accuracy, real-time inference latency, low memory footprint,
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and low energy consumption. The two hardness classification problems corresponds

to hardness classification of objects of same shape, and hardness classification of

objects having a different shape (Chapter 5).

1.2 Dissertation Outline

1.2.1 Chapter 2

This chapter provides a concise overview of tactile sensing methods (i.e., piezoelectric,

piezoresistive, capacitive, and optical) and tactile data processing in robots. Also, it

provides an overview of the pre-processing methods and machine learning algorithms

used in the literature for processing tactile data in robotic applications, such as surface

texture classification, hardness classification, slip detection, object recognition, and touch

modality classification. In addition to the embedded implementation of machine learning

algorithms for tactile data processing.

1.2.2 Chapter 3

Chapter 3 presents the first study conducted on the tactile sensing part. It presents

the validation of a fully screen-printed tactile sensing arrays based on P(VDF-TrFE)

piezoelectric polymers. This chapter describes the experimental setup and procedures

used for the characterization of sensors behavior while being covered by the protective

layer. Several coupling scenarios were developed which led to a new methodology of

testing e-skin patches (i.e., validation protocol for e-skin).

1.2.3 Chapter 4

This chapter is divided into three case studies:



6 Introduction

1.2.3.1 Object Detection -– Binary Classification

In the first section of this chapter, we propose a novel robotic tactile object classification

system composed of flexible and highly sensitive polyvinylidene fluoride-trifluoroethylene

P(VDF–TrFE) piezoelectric sensors along with a low power and low cost interface elec-

tronics (IE) that can acquire data from 32 channels simultaneously at a sampling frequency

of 2 kHz. The system was mounted on the gripper of the Baxter robot to acquire tactile

data while grasping three objects one by one. We validated our system on a binary object

classification problem using an artificial neural network (ANN) with a hidden layer. As a

result, we achieved a classification accuracy of 89%.

1.2.3.2 Computationally Efficient Processing Algorithms for Tactile Sensing Signals

Elaboration and Classification – Multi-class Classification

The second section in this chapter proposes computationally light strategies to pre-process

the sensor signals and extract features, feeding single layer feed-forward neural networks

(SLFNNs) that proved good generalization performance keeping low the computational

cost. We validate the proposed strategies by integrating a tactile sensing system on a Baxter

robot to collect and classify data from three objects of different stiffness. We compare

different features extraction techniques and five SLFNNs to show the trade-off between

generalization accuracy and computational cost of the whole processing unit. The results

show that the processing unit that extracts the mean and standard deviation features from

signals and adopts a fully connected neural network (FCNN) with 50 neurons and ReLu

activation function achieves a high accuracy (94.4%) in the 3-class classification problem

with a low computational cost, leading to the deployment on a resource-constrained device.

1.2.3.3 Towards a Trade-off Between Accuracy and Computational Cost for Em-

bedded Systems – Loss function

In this section, we propose using a learning strategy based on a loss function that leads

to finding the best configuration of the prediction model balancing the generalization
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performance and the computational cost of the whole elaboration system, considering

the deployment of the tactile processing and inference algorithms in resource constrained

edge devices. We validate our proposal by integrating a tactile sensing system on a Baxter

robot to collect and classify data from five daily–life objects using four different machine

learning algorithms. Results show that the best performance, when the computational cost

is not relevant, is achieved by the fully–connected neural network using 16 features, while,

when the computational cost matters, the loss function showed that the kernel SVM with

4 features has the best performance.

1.2.4 Chapter 5

In this Chapter we presented the development and implementation on the edge of a

real–time tactile sensing system for hardness classification on Baxter robot based on

machine and deep learning algorithms. We developed and implemented in plain C a set

of functions that provide the fundamental layer functionalities of the ML/DL models,

along with the pre–processing methods to extract the features and normalize the data. The

implementation can be deployed to any device that supports C code as it does not rely on

any of the existing libraries. Shallow ML/DL algorithms ((i.e., made of one hidden layer)

for the deployment on resource–constrained devices are designed. To evaluate our work,

we collected data by grasping objects of different hardness and shape. Two classification

problems were addressed: 5 levels of hardness classified on the same objects’ shape, and

5 levels of hardness classified on two different objects’ shape. Furthermore, optimization

techniques were employed. The models and pre–processing were implemented on a

resource constrained device, where we assessed the performance of the system in terms of

accuracy, memory footprint, time latency, and energy consumption. We achieved for both

classification problems a real-time inference (< 0.08 ms),low power consumption (i.e.,

3.35 µJ), extremely small models (i.e., 1576 KByte), and high accuracy (above 98%).
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Chapter 2

Tactile Sensing in Robotics

2.1 Introduction

Tactile sensing in robotics has been for decades an under–researched area, yet has great

potential to improve object perception, grasping and manipulation. While applications of

other sensing modalities (e.g. vision) have been widely explored, the application of tactile

sensing for many fundamental problems in robotics has received much less attention. Just

as humans use the sense of touch to perceive their surrounding objects, robotic perception

can be enhanced by tactile information. Although human tactile perception is inherently

continuous (i.e sequentially unfolds over time), existing works on tactile perception treat it

as an episodic event. This work aims at exploring the continuous nature of tactile sensing

and its application to material identification, grasping and object handover.

The chapter is organized as follows. Section 2.2 provides an overview of the tactile

sensing techniques. Section 2.3 presents tactile data preprocessing and classification

methods. Section 2.4 provides an overview of robotic tactile sensing and classification

applications from the literature. Section 2.5 presents an examples of embedded machine

learning implementation on different hardware platforms. Finally, Section 2.6 is the

conclusion
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2.2 Tactile sensing techniques

Robotic tactile sensing is a relatively old area of research; different sensors have been

explored during the last decades based on different transduction methods. Given that

grasping is one of the major functions of hands, most studies of tactile sensing focus on

grasp force or pressure to recognize object properties, prevent slip, and achieve a stable

grasp. The measured characteristics of touch are not only force and pressure, but also

stiffness, hardness, texture, or shape. Thus, different sensing techniques are desired to be

synthesized to realize a human-like tactile sensing system in robots [27]. The following is

a review of the available tactile sensing techniques which have the potential to be applied

for robotic tactile sensing applications, namely, resistive sensors (such as strain gauges

and piezoresistive), piezoelectric sensors, capacitive sensors, and optical sensors.

2.2.1 Piezoresistive sensors

Resistive sensors measure internal changes in resistance when mechanical strain (i.e.

deformation) is applied [28]. Therefore, variations in the forces applied to the material

map into electrical resistance, which can be measured as a change in a resultant current

or voltage. Certainly, sensors that are more useful for robotic hands are those which are

more sensitive to a range of low-impact forces that would typically be experienced at

the fingertips. The authors in [29] presented the static and dynamic characterization of

piezoresistive sensors used for detecting the positions of prosthetic finger joints. The work

in [30] proposed a piezoresistive stress sensor array with high spatial resolution comparable

to the human dermis. It exhibited a high potential for dexterous manipulation applications.

Various applications with piezoresistive tactile sensors can also be found in stress and force

measurement [30], stiffness of soft tissues detection [31], and for fingertip sensing [32].

However, piezoresistive sensors present a number of drawbacks. The materials used in this

type of sensors may change their properties according to the temperature and moistness

[33], they are fragile to shear forces and their response is non-linear. Additionally, the

repeatability is highly limited as piezoresistors may never recover their initial form after
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deformation, a phenomena known as hysteresis [34]. Nevertheless, piezoresistive sensors

are used in robotics as they are easy to manufacture, and piezoresistors are commercially

available while providing a flexible solution.

2.2.2 Piezoelectric sensors

Piezoelectric materials transfer mechanical stress into an electrical potential. Piezoelectric

sensing is one of the few sensing techniques that do not require a power supply, which is

considered an outstanding advantage. Besides, it also exhibits high sensitivity, reliability,

and fast dynamic response. Its wide response range of 0 to 1 kHz makes it a good choice for

vibrations measurement [35]. Various piezoelectric materials can be used for constructing

piezoelectric tactile sensors. Piezoelectric tactile sensors frequently use polyvinylidene

fluoride (PVDF) layers embedded into a rubber cover as they provide chemical stability

[36], mechanical flexibility, high piezoelectric coefficients, formability into very thin

sheets (5 µm), and relatively low price. Moreover, they have a fast and accurate response

to high-frequency vibrations. Polymers such as PDMS (Polydimethylsiloxane) have been

used in mesa micro-structures to achieve flexible and sensitive sensors [37]. Another

promising piezoelectric material is zinc oxide (ZnO) nano-transducer because of its high

flexibility and biocompatibility [38, 39]. ZnO is proposed to be a good candidate material

for pressure and temperature sensor to be applied to prosthetic limbs. Despite providing

faster dynamic response than capacitive sensors, they are only suitable for dynamic

measurements, sensitive to temperature [40], and their electrical junctions are fragile.

2.2.3 Capacitive Sensors

Capacitance is the ability of a body to store an electrical charge. Generally, a capacitive

sensor consists of a dielectric material sandwiched between two parallel conductive layers.

The capacitance between the two layers varies with the deformation of the dielectric

material as a result of the force applied to the sensor [41, 42]. The main advantage of

capacitive sensors is the higher frequency response in comparison with piezoresistive
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sensors [36]. The capacitive sensor is considered the most sensitive sensor for detecting

small force changes. Moreover, it exhibits high sensitivity, robust performance, a large

dynamic range, temperature sensitivity, and low power consumption [43]. It can be used

for both dynamic and static force measurement. Additionally, their sensitivity to noise

leads to relatively complex electronics for noise filtration. Many designs for pressure

detection, shear force sensing, and texture recognition were proposed in the literature

[5]. Capacitive sensors have been also deployed for multi-axis force measurement for

gripping and object manipulation, texture recognition [43], shear sensing [6], and touch

screen application [44], etc. Another capacitive tactile sensor was presented for gripping

force measurement with a sensor range of 0-3000 mN [45]. However, capacitive sensors

are sensitive to electromagnetic noise and changes of temperature, and their response is

non-linear.

2.2.4 Optical Sensors

Optical sensors have been used for tactile signal transduction, measuring optical variations

across semitransparent media due to physical deformation upon contact and pressure

[9]. Typically, photo detectors measure the light intensity generated by an array of light

transmitters, for example LEDs, which is proportional to the magnitude of the pressure

applied [46]. Moreover, some optical sensor designs are sensitive to shear forces [47]

and multi-degree-of-freedom forces [48]. Optical sensors maintain high sensitivity, high

repeatability and are immune to electromagnetic noise [6]. These sensors have less

hysteresis and time response than other types of devices due to the immediate response of

light intensity to strain in the device. Recently, a prosthetic finger was developed using a

sensor with a looped optical waveguide [49]. Although optical sensors suffer from high

energy consumption and computational cost [50], they provide good sensitivity. However,

optical sensors are fragile, rigid, and bulky.
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2.3 Tactile Signal Pre-processing and Classification

Tactile information is used in many applications such as slip detection, measurement of

contact parameters, object recognition, object properties classification [36, 51–53]. Tactile

sensor signals require pre-processing and classification/regression algorithms in order to

properly decode and translate measured tactile data to more meaningful information. The

pre-processing involves filtering, dimensionality reduction and feature extraction. On the

other hand, classification and regression are applied using machine learning algorithms.

2.3.1 Signal Pre-Processing

The quality of the data that is used to feed the machine learning algorithms is crucial.

Thus, the extraction and cleaning of data are an important part of model development, as

the quality of the data is critical to the performance of the algorithm. Tactile data may be

pre-processed to reduce noise and extract meaningful features. Signal pre-processing and

feature extraction methods help in reducing the number of resources required to interpret

an input signal. The Fourier transform (FT) is one of the most commonly used methods

to transform a signal from time domain to a frequency domain representation. The fast

Fourier transform (FFT) represents an efficient algorithm for calculating the discrete

Fourier transform which is applied to temporal signals from sensors. As an example, it can

be used to characterize the surface features by correlating the frequency changes across

tactile sensor signals [54, 55]. These frequency changes can be used directly as a subset

of features for machine learning algorithms [56, 57]. The authors in [58] applied FFT for

feature extraction on a window length of 256 samples and tested how discriminable the

classes are using different ML algorithms. However, due to its computational complexity

and memory requirements, its implementation for real-time processing on embedded

systems failed due to code and memory limitations [58]. Comparable levels of signal

classification accuracy is achievable using features extracted in the time domain as in the

frequency domain [59–61]. Furthermore, when FFT findings are insufficient to create

adequate characteristics of the touched object, Discrete Wavelet Transform (DWT) is often
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utilized [62]. DWT is often used to obtain feature vectors in surface roughness studies. It

is calculated by passing the input signal through low-pass and high-pass filters [63]. The

authors in [57] applied a DWT to the piezoelectric PVDF sensor signals to decompose

the data into different frequency components and then select the most discriminative

features to distinguish surface roughness. In [64], a piezoelectric sensor was mounted

to an artificial finger to collect tactile data while performing exploratory movement on

objects of different texture. Tactile signals were converted to the frequency domain via

FFT in order to generate tactile features. However, the main limitation of this method is

the need for sliding time and velocity to be constant and known to classify the texture of

the materials. On the other hand, statistical moments of the raw tactile signals are also

calculated as features for machine learning algorithms. The classical statistical features

include mean, standard deviation, variance, skewness, kurtosis, maximum, minimum,

power, etc. [10, 65, 66]. The extraction of classical statistical features takes less time

compared to other feature extraction methods. Moreover, the preprocessing may include

the removal of noisy/noiseless samples from the original tactile signals by applying

the sub-sampling method [67]. In addition, many feature extraction and dimensionality

reduction algorithms based on machine learning algorithms have been presented in the

literature. Such algorithms include principal component analysis (PCA), independent

component analysis (ICA), and linear discriminant analysis (LDA).

PCA is the basis for multivariate data analysis (i.e., examining the effects of multiple

variables on the output state) [68]. It is used to reduce the dimensionality of data, e.g.,

to represent data from space Xn in space Xn-k, where n and k are two positive integers.

For example, if we have data with n features, then PCA helps to represent this data with

n-k features with the least possible losses. Figure 2.1 shows how PCA can be applied to

reduce the dimensionality from three dimensions (3D) to 2D (the figure was created using

the data and code in [69]). In [70], a BioTAC fingertip touch sensor was attached to a

motorized robotic arm to collect tactile data from the sensor while performing pressing

and sliding actions on 14 different materials. Following data acquisition, PCA with Eigen-

decomposition based approach was applied, individually on each sensing modality within
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Fig. 2.1 PCA Example: 3D to 2D.

the sensor, to reduce dimensionality and improve the properties of the tactile data, which

was used to train an artificial neural network. Whereas in [71], PCA was applied to identify

relevant features from a combined set of static temperature and thermal conductivity data

containing 1600 values collected from test materials using the Syntouch BioTAC sensor

[72]. In [65], two WTS0406-38 tactile sensor arrays of 4 × 6 tactile elements each, were

selected to build the tactile information collection system of the manipulator. To reduce the

array dimension, they extracted the mean and standard deviation of the relative pressure

values obtained on each tactile image that corresponds to one-frame array. Then they

applied PCA to reduce the dimension of the high-dimensional tactile data as much as

possible to select the sample feature set and ensure that most of the information is retained.

In [73], a PVDF finger-shaped tactile sensor was used to collect data and classify five

different fabric surfaces. First, the attribute tactile data was transformed to the frequency

domain by means of FFT, then PCA was applied to compress the attribute data and extract

feature information.

Furthermore, a kernel PCA is a method that allows computing higher order statistics

between random variables while reducing the dimensionality of the data [74]. It corre-

sponds to a nonlinear form of PCA that enable both feature extraction and dimensionality

reduction. The authors in [75] used a kernel PCA for recognition of low-resolution tactile

images for automated assembly by robots. Similar to kernel PCA, local PCA is a nonlinear

extension of PCA, but is used to obtain less complex feature vectors from the original data
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Fig. 2.2 Procedure of tactile data separation using ICA.

[76]. In this context, in [77], the authors applied local PCA in combination with a neural

network to extract feature vectors and classify 16 objects using tactile data obtained with

tactile sensors attached to the robot arm PUMA 200 while probing objects.

The Independent Component Analysis ICA [78] can be seen as an extension of the

PCA. It is a linear dimensionality reduction technique, which searches for the linear

representation that minimizes the statistical dependence between its components and

captures the essential structure of the data. It is used in many applications for feature

extraction and signal separation. ICA can be understood in terms of the classic ‘cocktail

party’ problem where many people are talking at the same time. In this case, ICA is capable

of identifying those individual signal components of the mixture that are unrelated [79].

Spatial ICA has been adopted as a separation method that allows a robot to understand

and interact with tactile information from multiple sources [80]. Figure 2.2 shows the

procedure of tactile data separation for two objects using ICA along with time series

clustering.

Linear Discriminant Analysis (LDA) shown in Figure 2.3 is yet another method for

feature extraction and dimensionality reduction. It finds the linear combination of features

that separates two or more classes and maximizes the distance within the projected means

of the classes [81]. The typical implementation of the LDA technique requires that all
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Fig. 2.3 Linear Discriminant Analysis: (1) Bad projection and (2) Good Projection

samples are available in advance. Tactile images of deformable and non-deformable

surfaces have been used for a classification problem in [82]. LDA has been used as

a separation algorithm between six different surfaces with an accuracy rate of up to

95.5%. In [83], the authors have demonstrated the feasibility of using LDA for surface

texture discrimination. Moreover, the authors in [84] collected data by making static and

lateral contact on a range of 49 objects with the BioTAC sensor mounted to PA10 robot to

develop a system for object recognition. The authors then compared seven different feature

extraction methods for their tactile signals, including PCA of raw data, temporal data,

mean features, electrode features, pressure features, temperature features, and physically

motivated features [84]. It was demonstrated that the robot could reliably classify 49

objects based on mean features from five robot motions [84].

2.3.2 Machine Learning

Machine learning is a field of research concerned with understanding and developing

methods that "learn," i.e. methods that use data to improve performance on a range of

tasks. It is considered part of artificial intelligence. In Machine Learning, models are

built based on sample data, referred to as training data, to make predictions or decisions

without explicit programming [60]. In order to create a ML model, we must select from

a set of algorithms. Apart from the numerous projects and domains in which they have

already been applied, we also cannot make any assumptions about how the ML algorithm
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will perform. The well-known no-free-lunch theorem [85] states that: Even if we know

that a particular algorithm has performed well in a particular domain, we cannot say that it

will also perform well on our problem until we build and test a model. Of all algorithms,

the most commonly used/known are (i) shallow and deep neural networks, including but

not limited to artificial neural networks (ANN), convolutional neural networks (CNN),

recurrent neural networks (RNN), transformers, and (ii) machine learning algorithms

such as support vector machines (SVM), k-nearest neighbors (KNN), extreme learning

machines (ELM), Naive Bayes, and decision trees (DT), are used to categorize and

identify many properties of the touched object [86]. Finally, Supervised machine learning

algorithms with labeled training data have dominated the literature [53].

2.4 An Overview of Robotic Tactile Sensing and Classifi-

cation Applications

Machine learning algorithms are designed to emulate human intelligence by learning

from the surrounding environment [87]. ML algorithms can extract complex, nonlinear

input-output relationships. They are trained using a set of examples, where each example

is described by a group of informative features. ML algorithms can support intelligent and

predictive systems that can make accurate decisions on unseen data. In this perspective,

several works in the literature witness the adoption of machine learning algorithms for

classification/regression problems in robotic tactile sensing systems, including: object

recognition, object properties classification (e.g., Hardness, shape, and texture, etc.),

contact properties control (e.g. stability control, grasp control, and manipulation), and

contact events detection (e.g. detection of slippage), using normal and shear force sensing,

in addition to vibration detection. Moreover, for tactile information retrieval there is a

need for physical contact to be made with the object, material or human. Tactile sensors

supply various attributes about objects they contact that vision sensors simply cannot, such
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as hardness, texture, weight, etc. Table 2.1 reports the commonly used ML algorithms

with respect to the type of extracted tactile data.

2.4.1 Classification based on Hardness

A common characteristic of an object that can be represented by tactile images is hardness.

The work in [88] described the hardness of the object as the ratio between the force applied

to an object and the resulting displacement of the object. The authors in [65] integrated

a tactile sensing system into a two–finger robotic gripper for the hardness classification

of fruits and vegetables. The compression test technique was adopted to measure and

label the hardness of the objects. Tactile sensors were mounted on both clamps of the

gripper, and data was collected by grasping each object multiple times. Two models, i.e.

support vector machine (SVM) and k–nearest neighbor (KNN), were trained to solve

a four–class hardness classification problem. As a result, the models achieved a high

classification accuracy (94.37%). In [10], piezoresistive tactile sensors were integrated

into a robotic gripper to explore the hardness of seven different types of fruit by squeezing

them. The tactile information was presented via a temporal sequence of images that

encode the pressure applied to the taxels. Each tactile image is an array of 64 values (8 x

8). The mean and standard deviation were extracted as features for each tactile image (one

frame) and then used to train a kNN classifier to classify the fruits. Using k=1, the model

achieved a classification accuracy of 92.86% [10]. For vegetable sorting, a two-finger

robotic gripper was equipped with a tactile sensing system to discriminate between green,

moderate, and ripe tomatoes using decision tree (DT) and Naive Bayes (NB) algorithms

[89]. Tactile data was collected while grasping objects. The ML models were deployed

into a PIC32 microcontroller to achieve real-time softness classification. An accuracy of

90% and 85% was achieved using DT and NB, respectively. In [19], the authors proposed

a CNN and a recurrent neural network (RNN) to estimate the hardness of objects with

different shapes using a GelSight tactile sensor [90]. The sensor was integrated into the

fingertip of a robot and data was recorded as the object was grasped. The network was
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Table 2.1 Learning Algorithms for Tactile Data Processing Applications

Application Learning Algorithm Examples

Hardness/softness
detection

Support vector machine, K-nearest neighbors,
Decision Tree, Naive Bayes,

Convolutional neural network,
recurrent neural networks, K-medoids

[65], [10],
[10], [89],
[19], [91],

[92]

texture/roughness
detection

Artificial neural network,
Support vector machine,

Naive Bayes, K-nearest neighbors

[93], [94],
[95], [96],
[97], [98],

[99]

Slip and Grasp
Detection

Neural networks, Support vector machines,
K-nearest neighbors, logical regression,

Convolutional neural network, K-Means,

[100], [101],
[102], [103],
[104], [105]

able to predict well the hardness of silicone samples with similar shapes in the data set,

regardless of the loading conditions; however, for objects with rigid surfaces, the model

was not able to estimate their hardness well

In [91], a skin sensor covering the forearm of a humanoid robot ’Cody’ was used for a

classification problem that involves classifying 18 objects based on hardness (soft or rigid)

and state (fixed or movable) using a KNN classifier. For k=2, a classification accuracy

of 80% was achieved. An FPGA-based tactile system was mounted on a Cartesian robot

where tactile data was collected as objects were squeezed [92]. Two algorithms were

considered for the hardness classification of nine objects: K-medoids and KNN. Each

of the two algorithms achieved a classification accuracy of up to 86.7%. For object

classification based on shape, the authors in [106] integrated a piezoresistive Tekscan

tactile sensing system into a robotic finger. Pressure map images were collected upon

grasping four objects of different shapes. The authors developed a novel algorithm to

extract features from the pressure maps, which were used to train an artificial neural

network (ANN) to classify the shape of objects. As a result, the model achieved a 90%

success rate.
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2.4.2 Classification based on Surface Texture

According to [88], roughness is the most studied material property in the context of

tactual perception. Authors in [93] investigate the ability of a biomimetic fingertip to

classify between different fabrics based on the texture of their surface alone using ANNs.

The fingertip contains five accelerometers and eight single point force sensors. For data

collection, the fingertip was moved in an exploratory motion to collect data from eight

force sensors and five accelerometers. The experiment was carried out on seven types of

materials made of fabrics. Using ANN, the model achieved 85% classification accuracy

based on texture. However, some textures were frequently misclassified such as polyester

and acrylic. In [94], authors proposed a tactile sensing system based on four piezoelectric

sensors to detect the surface roughness of fruits and vegetables using a support vector

machine (SVM) algorithm with a radial basis function kernel. In addition, CNNs were

employed for feature extraction from spatially distributed tactile sensors. The model

achieved a 91% success rate solving 4-class classification problem. In [95] multiple ML

algorithms were implemented to classify three different materials (denim, a photo and

tape) using texture related tactile information from their developed sensors. Two ML

algorithms, a multi-layer ANN and NB, were fed with data input extracted using discrete

wavelet transform. It was found that the ANN performed the best by achieving 91%

classification accuracy between objects of different materials, while the NB achieved 67%

accuracy. However, neither ML methods was able to distinguish accurately between the

two similar materials (i.e., photo and tape). Using SVM, an autonomous humanoid robot

equipped with artificial skin on both arms obtained a recognition rate up to 100% based

on texture, with 70% objects categorization ability in a setup that involved ten different

objects [96]. In [97], a the PVDF piezoelectric sensor was integrated to a robotic fingertip

for object textures recognition. Tactile data generated from the sensor were used to feed

different ML algorithms including SVM, KNN, and artificial neural network (ANN). The

SVM and KNN models performed equally well giving classification rates higher than 90%,

unlike the performance of ANN which was lower. In [98] a naive Bayes classifier was
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used to distinguish textures sensed by sliding a sensorized robotic finger along materials

and collecting vibration data. Different textures induce different intensity of vibrations in

the sensor. Textures can be distinguished by the presence of different frequencies in the

signal. A total of seven materials were tested including sponge, carpet, wood, two tiles

of different roughness and two pieces of vinyl of different roughness. The data from the

finger was pre-processed and the Fourier coefficients of the sensor outputs were used to

learn a classifier for different textures. The NB classifier was capable of predicting textures

between dissimilar surface textures with an accuracy of 78%; however, the classifier was

unable to distinguish between two types of tiles, as the texture of the surfaces were similar.

In [99], Least Square SVM was adopted to discriminate 20 daily used objects based

on their texture. A classification accuracy between 70% and 100% has been recorded

when using 10 training samples. Bayesian Exploration and Reinforcement Learning have

been used to train and validate a discrimination system in [107]. The system was able to

differentiate between 10 objects (brick, copper, wood, etc.) with a 90% success rate.

2.4.3 ML for Slippage Detection and Grasp Control

Slip and grasp detection is an another task that can be supported by tactile data using

learning algorithms. In [100], a Phantom Omni arm [108] has been equipped with a tactile

sensory array of 84 sensor cells to study the translational and rotational movement of an

object. The arm was able to hold and recognize a ball with an accuracy of 91.2% using

K-Means clustering algorithm. When measurements of vibrations are used to prevent a

slippage, then the response time of a sensor becomes crucial. In [101], a robotic system

consisting of Barrett arm was equipped with three BioTac sensors to estimate force,

and detect and classify slip events for grasped objects. Different ML algorithms were

tested including a single-hidden-layer neural network (NN) and 3-layer NN. The best

performance was achieved by detecting and classifying a slip with over 80% success rate

and within 30 ms. The humanoid robot ARMAR-IIIB [109] was learned to grasp objects

using SVM [102]. The grasp was recorded as successful or not by the ability to lift up
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the object. 77% of the grasps were considered as stable compared to 23% unstable tries.

The authors in [103] proposed an intelligent robot grasping system that can grasp objects

stably using tactile data from a flexible piezoresistive tactile sensor array. A data collection

system was assembled on the robot end-effector. The grasping contact force was collected

while grasping several objects and the stability state of each grasping operation was

recorded. Three different prediction models, namely support vector classification (SVC),

logical regression algorithm (LR), and KNN, were trained to judge the grasping state. It

was found that the SVC algorithm-based prediction model yield the best performance by

achieving over 98% judgment accuracy for the overall objects, with limited training data.

A CNN-based model was trained in [104] to process the tactile information in order to

enable successful in–grasp manipulation with untrained daily objects. As a result, CNN

effectively handled the tactile information from uSkin sensors. Furthermore, tactile data

from 241 distributed tactile skin sensors were used to train feed–forward and deep neural

networks to generate a controlled in–hand manipulation of objects of different sizes and

shapes [105].

2.5 Embedded Implementation of Machine learning

Embedding machine learning in resource-limited and battery-powered applications for

tactile data processing must obey a set of requirements including: small hardware area,

low time latency, and low energy consumption. The main two factors that affect such

requirements are the computational complexity of these algorithms and the hardware

device/platform. The authors in [110] presented an implementation of a smart tactile

sensing system based on an embedded convolutional neural network (CNN) approach

addressing a 22–class object recognition on a robot. Input data size was reduced as a way

to optimize the proposed model, using three different input sizes. However, hardware

implementation was carried on several powerful edge platforms which contain GPUs

and/or powerful CPUs, where they compared the performance, time inference, and power

consumption for each model on each hardware platform. In [111], a tiny CNN architecture
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was implemented on a Cortex–M micro–controller to classify touch modalities applied on

an E–skin. The CNN model was optimized through layer fusion and buffer reuse strategies

to speed up the inference on the edge devices. As a result, the CNN model achieved a

real–time classification with low energy consumption and higher classification accuracy

compared to other ML algorithms that were employed to classify the same dataset. In

[58], the authors proposed a low–cost Arduino–based implementation for a real–time and

highly accurate tactile texture classification of data from multiple tactile sensors using

a random forest classifier. Twelve texture classes were used for the data collection and

classification. A memory–efficient feature extraction method was proposed in order to

achieve real–time processing of data compared to other time consuming feature extraction

methods such as the Fourier transform.

For the touch modality classification task presented in [87], different types of models

have been employed, such as SVM based on tensorial kernel [87], k-NN [112], and a

deep CNN [113, 110]. Authors in [114] have proposed an SVM accelerator on Virtex-7

Field Programmable Gate Array (FPGA) that can classify an input touch modality of

size 4×4×20 within 250 ms while consuming 285 mJ. A k-NN accelerator implemented

on Zynqberry platform capable of classifying a touch input of size 4×4 within 26 µs,

recording a power consumption of 236 mW has been presented in [115]. For an input

touch modality of size 4×4×100, a 1D-CNN deployed on Arduino Nano BLE 33 managed

to offer real-time classification in 26 ms and 128 ms for float and int8 implementations

respectively [116]

2.6 Conclusion

This chapter provides an overview of tactile sensing methods (i.e., piezoelectric, piezore-

sistive, capacitive, and optical) and tactile data processing in robots. Tactile signals and

information require preprocessing and ML algorithms to properly decode and translate

measured tactile data into more meaningful information. In this context, we have also pro-

vided a concise overview of the preprocessing methods and machine learning algorithms
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used in the literature for processing tactile data in robotic applications, such as surface

texture classification, hardness classification, slip detection, object recognition, and touch

modality classification. However, few studies in the literature have focused on hardness

classification for robotic applications without considering the problem of computational

cost, although such processing algorithms can be computationally expensive. Moreover,

none of these studies target the embedded implementation of signal processing and clas-

sification models on a stand-alone tactile sensing systems, such systems usually consist

of resource-constrained units. This is challenging because the processing models should

have low memory footprint, low latency, and low energy consumption to be deployed on a

constrained edge devices.





Chapter 3

Development of a Skin Patch and

Assessment of The Tactile Sensing

System

3.1 Introduction

For various application fields, including robotics, teleoperations, prosthetics, and Internet

of Things (IoT), intelligent sensors are becoming more and more crucial. Electronic

systems that employ perceptual functions, such as vision and touch, require sensors with

certain characteristics in order to fulfill the system requirements. In this context, electronic

skin (e-skin) has been developed, a touch-sensitive electronic system which consists

of tactile sensor arrays connected to a convenient electronic interface that measures

the physical interaction of sensors with the environment. The front end electronics are

responsible for signal conditioning and data acquisition, while embedded electronics

are in charge of processing and structuring the data to extract high-level information.

Many tactile sensing systems were developed in order to acquire information about object

properties (e.g. hardness, shape, and texture), contact properties (such as contact position

and force), or contact events (e.g. detection of slippage, differentiation between touches).
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Choosing the type of sensor for a tactile sensing system is a crucial task, which is

mainly related to the application. To date, numerous number of tactile sensors have

been developed for robotic and prosthetic applications [117]. Robotic tactile sensors

are designed based on: 1) the task assigned for the sensor, which can be divided into i)

action for perception (e.g. object recognition [118], exploration [119]); ii) perception

for action (e.g. grasp control [120]). 2) The location where the sensor is going to

be placed, and 3) the transduction method such as piezoresistive [28], capacitive[121],

piezoelectric [122], and optical [49], etc. Furthermore, several research studies have

been carried out on sensors made of piezoelectric materials (e.g., zirconate titanate (PZT)

[123], polyvinylidene fluoride (PVDF)), which have proven beneficial for tactile sensing.

Tactile sensors based on piezoelectric polymers are widely used because of their flexibility,

high sensitivity, fast electromechanical response, and ability to detect events over a wide

frequency range (from below 1 Hz to above 1 MHz [122]). They also require relatively

low power, and are suitable for dynamic tactile sensing. However, a major problem with

piezoelectric materials is their temperature sensitivity and ineffectiveness in measuring

static forces [124].

Hoda et al. developed flexible sensor arrays based on polyvinylidene fluoridetrifluo-

roethylene P(VDF-TrFE) piezoelectric polymer [125], and proposed a validation method

for the fabrication technology [126]. Multiple sensing arrays with different geometries

were fabricated by JOANNEUM RESEARCH [127] using the screen-printing technology

on a flexible and transparent, and very thin (175 µ m) A4 plastic foil [128] (shown in

Figure 3.1). These sensors generate electric charges when subjected to a mechanical stim-

ulus. The validation methodology was carried on the PVDF sensing arrays while having a

PCB Sensor Signal Conditioner (482C54) [126]. Tests were applied on sensors using a

controlled setting with predetermined stimulus conditions (force, waveform, contact area

etc.). However, the response of sensors was assessed within a limited range of frequencies

(from 50 Hz to 250 Hz). The authors in [125] studied the piezoelectric coefficient of the

PVDF piezoelectric polymer sensors of our screen-printed sensing arrays (shown in 3.1),

and demonstrated the relation between the piezoelectric coefficient and the preload. As
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Fig. 3.1 Design of different sensing patches.

a result, they found that sensors that belong to the sensing arrays situated in the white

area of the heat map (shown in Figure 3.2) exhibit a piezoelectric behavior that is quite

compatible with the current state of the art [129].

Moreover, an interface electronics was proposed as a part of a wearable tactile sensing

system along with the PVDF piezoelectric sensors [16]. A low power interface electronic

(IE) was designed to acquire and digitize tactile signals from the sensing array [130]. This

IE is composed of a low-power ARM-Cortex M0 microcontroller and a DDC232 analog-

to-digital converter [131] to interface 32-input tactile sensors. Hence, a tactile sensing

system was developed, which comprises the PVDF sensing arrays and IE. The system

has been experimentally evaluated by electrical and electromechanical tests to assess and

characterize the behavior of the interface electronic with the PVDF-based piezoelectric

sensors, where they validated the correct functionality of the IE [16]. As a result, this

study showed that the interface electronics is capable of measuring and detecting dynamic
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Fig. 3.2 The heat map of the fabrication substrate (DIN A3) prone to shrinkage.

range of charges produced over different levels of force ranging between 0.01N and 1.2N,

where they tested it within a frequency range of 20 – 400Hz (frequency of indentation).

Moreover, they found a linear relation between the input force and the output charge.

However, both studies (i.e. [126] and [16]) carried out in a controlled environment where

contact parameters are adjusted and controlled. Also, the response of the tactile sensing

system has not been tested on low frequency stimulus (less than 30 Hz), although contact

events such as slippage have frequency content below 30 Hz [132]. It is highly desired

for robotic and prosthetic applications to have tactile sensing systems that are capable of

detecting low frequency vibrations.

Furthermore, all the validation and assignment tests that have been done on this tactile

sensing system involved adding a thick PDMS layer as a protective layer for the sensors.

Besides, no shielding was applied in order to remove noises (i.e. external charges) from

the PVDF sensing arrays, neither there was a good protective layer that can replace the

thick PDMS layer. Hence, it was not yet suitable for real application yet. In order to be

able to use these sensing patches in various applications, a shielding and a thin protective

layers should be added and tested, thus creating a skin patch.
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In the follow-up procedure of realizing a distributed tactile sensing system, this chapter

will focus on the development and integration of a new skin structure into the previously

described sensing arrays, and hence the development of a new skin patch. Also, it

presents two experiments carried out for the assessment of the novel skin patch using

the PCB piezoelectric conditioner and then the interface electronics, in controlled and

non-controlled environments. Moreover, we evaluated the ability of the skin patch to

detect different touch patterns. For this study, we decided to develop a skin patch using

the Michelangelo Palm patch that is situated on the brighter spot (see 3.2).

The chapter is organized as follows: Section 3.2 describes the developed skin patch.

Section 3.3 presents the validation of the skin patch in a controlled environment whereas

Section 3.4 describes the ability of the sensing system to detect touch patterns applied

in a non-controlled environment. Section 3.5 presented the implementation of signal

processing methods in the interface electronics. Finally, we conclude in Section 3.6.

3.2 Tactile Sensing System

3.2.1 Screen-printed Sensing Patches Based on Piezoelectric Poly-

mers

We have designed fully-screen printed flexible sensor arrays based on P(VDF-TrFE)

poly(vinylidene fluoride trifluoroethylene) piezoelectric polymer sensors, which were

fabricated by JOANNEUM RESEARCH [133]. The manufacturing process uses screen

printing of ferroelectric sensor arrays based on P(VDF-TrFE) repeated units. Figure

3.3 shows the structure of a single sensor. The bottom electrode is screen-printed on a

transparent and flexible (175 µm thick) DIN A4 plastic foil (Melinex ST 725) substrate.

A ferroelectric polymer P(VDF-TrFE) layer (5.1 µm thick) is then screen-printed onto

the bottom electrodes, followed by screen printing of the top electrodes (Either PEDOT:

PSS or carbon have been used for top electrodes). A UV-curable lacquer layer is added

for sensor protection. Finally, The poling procedure aligns in the thickness direction
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Fig. 3.3 Sketch for the structure of the sensor.

randomly oriented dipoles contained in P(VDF-TrFE) crystallites. The intrinsic flexibility

of sensing arrays together with its wide frequency bandwidth (1 Hz-1 kHz) make it a

good candidate as a functional constituent of a flexible electronic skin measuring dynamic

contacts. Sensing arrays with multiple number of sensors (up to 16 sensors), different

geometries, and sensor distribution on the patch, were fabricated using the same fabrication

process (shown in Figure 3.1).

3.2.2 Interface Electronics

Figure 3.4 shows the structure of the printed circuit board (PCB) corresponding to the

interface electronics of the tactile sensing system. The IE is used for signal conditioning

and data acquisition. It consists of a BL600 module (Laird Connectivity, US) with a

low-power ARM -cortex M0-based microcontroller. It manages the charge output of

32 sensors using a 32-channel analogue-to-digital converter (DDC232) with a current

offset circuit. The PCB also includes (on the bottom) digital integrated circuits for power

management (i.e. voltage regulator) and a USB data transfer interface (i.e. FTDI232

[134]). The design can handle up to 32 sensors via two sockets with 16 input channels

each. Both sockets are connected to an offset circuit (bottom side) to adjust the baseline

of the bipolar signals generated by the sensors, allowing the DDC232 to receive both
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Fig. 3.4 The Interface electronics and its block diagram.

the positive and negative polarities of the sensor signals. The DDC232 chip includes

multiple current-to-voltage integrators and delta-sigma analogue-to-digital converters.

The DDC232 is configured to use 16-bit resolution and cover the maximum input charge

response. The interface electronics is powered via a USB connection. In this study, the

interface electronics is configured to acquire and transmit tactile data from a single sensor

at 2 KSmples/sec to cover the full bandwidth of the sensors.

3.3 Skin Patch

The embedded sensing system has a number of challenges: it must be durable, flexible,

and compatible with the e-skin structure, which means it must be resistant to mechanical

damage and electrical noise such as external charges [135]. However, such demanding

requirements are difficult to meet especially when they are established for robotic appli-

cations. For incorporating the sensing arrays into a robotic gripper/hand which involves

continuous interaction of sensors with objects, it is crucial to include a layer of protection

that can ensure the safety of sensors from damage. The sensing system may also be subject

to external noises which affects the response of sensors, which is expected especially

the system design includes a piezoelectric sensor along with charge amplifiers. In this
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case, one solution is to integrate a shielding layer over the sensing arrays in order to carry

external noises to the ground, and thus ensure low susceptibility to noise which helps to

overcome the problem. In addition, the lifespan of the integrated sensing array might be

extended by adding a thin protective layer above the sensing area of the sensing patch to

protect it from any damage. This section describes the fabrication of the skin patch that

fulfills the aforementioned requirements of the sensing system.

A novel multilayer skin patch is developed in order to build a skin patch that can be

used in real robotic applications. This is done by providing a new structure to protect the

e-skin electrically and mechanically. Figure 3.5 shows the steps for integrating the new

skin structure on the sensing array. The sensing array consist of a sensing area and a tracks

area (on the top left), where each sensor has its own track. The integration process is done

in three main steps. As mentioned earlier, given the nature of this system which includes

piezoelectric sensors and charge amplifier, it may be exposed to external charges, so to

solve this problem we used conductive tapes as a shielding layer to get rid of external noise.

In the first step, the sensing area is sandwiched between two double-sided electrically

conductive tapes (Model tesa 602662, tesa [136]). The end part of the tracks, where

we connect it to the interface electronics, is not covered with UV-curable lacquer layer

during the fabrication of the sensing arrays (see appendix or section 3.2.1). Therefore, an

insulating coating (Model PLASTIK 70, KONTAKT CHEMIE [137]) is applied to the

uncovered part of the tracks area to protect and insulate it. Then, a single-side conductive

tape (Model tesa 60234, tesa) is used to shield the tracks area from both sides (Figure 3.5,

step 2). Both, single-side and double sided conductive tapes are conductive from both

sides. Thus, they become electrically connected to each other after they are installed and

one of them overlaps the other. Next, the shielding layers are connected to the ground of

the interface electronics using a self-adhesive copper foil tape and a wire. Eventually, a

thick protective layer (Art. 5500 Dream, Framisitalia [138]) is added to the top side of the

sensing area, in order to protect the sensors and increase their lifespan, forming what is

called the skin patch (Figure 3.5, step 3). Moreover, before mounting the skin patch to a

surface, a flexible substrate layer (PVC of 0.25 mm thickness) is added to the bottom side
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Fig. 3.5 Skin patch development process. The sensing array is shielded using conductive
tapes and a thin protective layer is used to protect the sensing areas.

of the sensing area, using a double-sided adhesive tape (Model 3M 9485, 3M [139]), to

protect the sensors from the bottom side and prevent them from bending.

3.4 Systematic skin patch validation

Earlier studies on the tactile sensing system have proved that these sensors exhibit a

linear response to the applied force stimulus [126, 16]. However, such results were

obtained while having the sensing array coupled to a thick protective PDMS layer, which

represent the old structure that is not suitable for real applications because of its rigidity

and thickness. Therefore, the response of sensors within the new multi-layer structure (i.e.,

skin patch) has to be tested. Such tests are carried out on the tactile sensing system and

compared with the response of commercial sensors and readout circuit. In this context,

the response of the skin patch is tested with respect to different stimulus waveforms, using

an electromechanical setup.
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3.4.1 Experimental setup

Shown in Figure 3.6 are pictures of the experimental setup along with a block diagram for

the experiment. The skin patch is coupled to a rigid plate after adding a substrate layer

between them, and fixed on the surface of an electromechanical shaker (Bruel and Kjaer,

Minishaker Type 4810 from HBK company, Germany [140]). On the side facing the sensor,

a soft spherical indenter (r = 2 mm) and a piezoelectric force transducer (Model 208C01,

PCB Piezotronics, MTS system [141]) are mounted on the lower head of the moving

support (see Figure 3.6). On the other hand, a NI LabVIEW graphical user interface (GUI)

is developed on a host PC to feed the electromechanical shaker with different signals (sine,

triangular, or rectangular) through a National Instrument DAQ data acquisition board. A

Power Amplifier (Type 2706 [142]) is used to amplify the signal before passing it to the

electromechanical shaker. Moreover, signals from the force transducer are conditioned

by a PCB sensor signal conditioner (482C54) [143], while generated charges from the

piezoelectric sensor are conditioned either by the conditioner or the interface electronics,

as illustrated in Figure 3.6. Furthermore, in order to ensure indenter-patch contact during

the experiments a preload is applied. The value of the applied preload is controlled by

a laser (Waycon LAS TM10 [144]), allowing to fix the displacement of the rigid plate

at a certain value for a certain preload, through displacement–force calibration curves.

Experiments are carried out on the sensor using a specific waveform (sine, rectangular, or

triangular) and force amplitude (amplitude of the signal) for the electromechanical shaker.

3.4.2 Response to different stimulus waveforms

The response of the sensors was never examined before neither on triangular or rectangular

waveform signals nor on forces of a frequency range below 30 Hz. However, in this study

we examined the response of the developed skin patch to forces of different waveform

signals in the following frequency range between 0.2 - 30 Hz.

The swept-sine signal is widely used for characterizing a frequency response of a

linear system under test. During the experiment, the amplitude of the swept-sine signal is
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Fig. 3.6 Experimental setup. Top: Pictures of the setup, Bottom: Block Diagram.
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adjusted automatically by the LabVIEW on the host PC. This is done in order to guarantee

that the sensors respond to all force stimulus within the tested frequency range regardless

to the amplitude. Therefore, it is important to note that the amplitude of the applied force

depends on two things, the amplitude of the signal used for the electromechanical shaker

Fig. 3.7 Response of a single sensor to swept sine stimulus with the PCB conditioner. The
amplitude of the signal was adjusted automatically by the PC.



3.4 Systematic skin patch validation 39

and the behavior of the electromechanical shaker to frequency changes in the signal, where

increase in the frequency leads to increase in the applied force.

At first, the PCB conditioner was used to measure the response of the sensor. Figure

3.7 shows the response of the skin patch to a sweep-sine signal of frequency range 0.2

– 30 Hz (a step frequency of 1.5 Hz) on different preloads. As seen in the figure, the

sensor responds to the press and release of the soft indenter, which refers to instance of

Fig. 3.8 The Fast Fourier Transform of the swept sine stimulus (force signal) and the
charge signal (in the case of using the PCB conditioner).
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applying and releasing the preload, respectively. In addition, the response of the sensor is

aligned with the force stimulus. In other words, the sensor responded to the changes in the

amplitude and frequency of the force stimulus in the same way. Hence, we applied the Fast

Fourier Transform (FFT) to the force signal (stimulus measured by the force transducer)

and the charge signal (response of the sensor) to provide the frequency information of

both signals (shown in Figure 3.8). This figure shows that the sensor responds to all the

force stimuli within the applied frequency range (i.e., 0.2 – 30 Hz).

The same experiments were repeated, however this time we used the interface elec-

tronics to condition the charge signal from the sensor instead of the PCB conditioner.

Figure 3.9 shows the response of the tactile sensing system (i.e., skin patch and interface

electronics) and force transducer to a swept sine stimulus. The sensing system was able to

sense the changes in the frequency and amplitude of the applied force. Nevertheless, the

system encountered a high noise level that could affect detecting very low frequencies.

This problem will be further investigated and solved in Section 3.6.

Fig. 3.9 Response of a single sensor to swept sine stimulus using the interface electronics.
The amplitude of the signal was adjusted automatically by the host PC.
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Furthermore, the response of the skin patch was examined on triangular and rectangular

waveform stimuli, using the PCB conditioner. In both tests, a series of random forces were

applied. Figure 3.10 (Top) shows the response of the sensor and the force transducer to the

applied triangular waveform stimulus. While, Figure 3.10 (bottom) shows the response

Fig. 3.10 Response of a single sensor using the conditioner to triangular (Top) and
rectangular (bottom) stimuli.
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of the sensor and the force transducer to the applied rectangular waveform stimulus.

Considering the response of the force transducer as the reference signal, the results show

that the sensors respond perfectly to different waveform stimuli and changes in the force

level.

3.5 Touch pattern detection

The experiments that were shown in this chapter so far were carried out using a controlled

experimental setup with predefined parameters (such as the amplitude and frequency of

applied force). Although we evaluated and verified the response of the tactile sensing

system, especially the new skin patch, however, the response of the sensors should be

further tested in more realistic scenarios. Thus, we decided to study the response of

the sensing system to different touch patterns that the sensor might experience in real

applications with objects. In addition, we also want to study the correlation between the

stimulus applied on the surface of the skin patch and the charge response of the sensor.

For this purpose, we built a new experimental setup (shown in Figure 3.11). The skin

patch was placed on the top of a strain gauge load cell (Tedea Huntleigh, Model 1042

[145]) and faced upside, in order to measure the force applied on surface of the skin patch.

A data acquisition and signal conditioning board called PXIe-4330 (NI, US) [? ] was used

to condition the signal from the load cell (applied force), while the signal from the sensor

within the skin patch (charge response) was conditioned by either the PCB Sensor Signal

Conditioner (482C54) then connected to PXIe-4330 board, or by the interface electronics

(as illustrated in Figure 3.11 bottom). Moreover, a LabVIEW software developed on

a National Instruments PXI system was used to collect, visualize, and save the force

stimulus and the charge response.

Three touch patterns were selected for our experiment: tapping, Press-Hold-Release,

and continuous touch, where tapping is the action of making a press that is directly

followed by a release. We believe that these touch patterns are the most commonly applied

patterns in different applications such as the robotic and prosthetic hands, where they can
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Fig. 3.11 Experimental setup. Top: Pictures of the setup, Bottom: Block Diagram.

be used to detect object properties. During the experiment, each of the aforementioned

touch pattern was applied multiple times by the experimenter using his finger on a single

sensor. Representative results from the sensing system validation experiments are shown

in Figure 3.12 and Figure 3.13. Figure 3.12 shows the force stimulus measured by the load
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and the corresponding charge response from a single sensor to tapping (on the left) and

Press-Hold-Release (on the right). Similarly, Figure 3.13 shows the results with respect to

continuous touch pattern.

Fig. 3.12 Response of the single sensor to tapping (left) and press-hold-release (right)
touch patterns, along with the force applied

The results show that the sensor captures the dynamic features of the mechanical

event by generating two phasic bursts. The contact onset is associated with a charge

decrease, whereas contact release leads to a charge increase, where both responses are

aligned with the results obtained in the previous section. The signal peaks are arranged

in a sequence reflecting the fact that the touches were applied to the sensors sequentially.

The Press-Hold-Release pattern was presented by the sensor by two bursts corresponding

to the press and release events, while in-between the bursts there was some wiggling.

However, due to the fact that the Press-Hold-Release was applied using a finger, this

makes it difficult to maintain the applied force level, and that is why this event was not

stable. On the other hand, Figure 3.13a indicates that the charge response follows the



3.5 Touch pattern detection 45

force stimulus, meaning that the changes in the applied force are met with changes in the

generated charge. However, in this case (continuous touch pattern), the press and release

peaks are still visible but not clear as they were in the other two patterns. Thus, to compare

the two signals and see how much well they match up, we computed the cross-correlation

Fig. 3.13 a) Response to continuous touch pattern. b) The correlation between the applied
stimulus and the sensor response. c) continuous wavelet transform (CWT) of the applied
stimulus and the sensor response.
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between the force and the charge signals resulted from the continuous touch pattern. The

result was presented in Figure 3.13b, as we achieved a high correlation between the force

stimulus and the sensor repose with a small-time lag.

So far, we noticed a high noise level in all the results that corresponds to the response

of the sensors within the tactile sensing system (i.e., skin patch and interface electronics),

especially in the realistic scenarios (touch patterns). This was observed in Figure 3.13c

that shows the Time-Frequency analysis plot for the continuous touch pattern and the

corresponding charge response, by applying the Continuous Wavelet Transform [146].

Accordingly, the charge signal contains a high power frequency at 50 Hz, which is common

mains interference frequency noise. In addition, this plot indicates that the sensor detects

low frequencies (0.5 Hz), which also means that the frequency range of the sensor response

is below 30 Hz.

In order to investigate the frequency content in the sensor output, we implemented the

inverse continuous 1-D wavelet transform function using the Matlab software (MathWorks,

US) to invert the continuous wavelet transform over three different frequency ranges (<

50, < 30, and <10 Hz). The results are shown in Figure 3.14 (Top). Based on the plots,

frequencies < 30 Hz contains the most power of the signal. Such frequency range can be

extracted by applying a low-pass digital filter. Accordingly, Figure 3.14 (Bottom) shows

the output signal after applying a low pass IIR fitter with the stopband frequency of 32

Hz. The outcome of this test is of great importance as it represents a solution to reduce

the noise in the sensing system by implementing a digital filter in the electronic firmware,

which will be discussed in the next section.

3.6 Implementation of tactile signal processing

As indicated in the previous section, a signal processing strategy is required to improve the

response of the sensors and interface electronics in capturing signals with low frequency

content and reduce the effect of noise. Therefore, we developed and implemented in

the interface electronics two filtering methods: finite impulse response filter (FIR) and
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Fig. 3.14 The Output of inverting the continuous wavelet transform over three frequency
ranges ( < 50 Hz, < 30 Hz, and < 10 Hz) Bottom: Specification of a low-pass IIR filter
that could be used to reduce the noise level and the output signal.

moving average filter (MAF). In this section, we present and discuss the results regarding

the implementation of these two signal processing methods.

3.6.1 Filtering using Finite Impulse Response method

The design of the FIR filter is composed of two main parameters: cutoff frequency and

filter order. Based on the findings of our previous experiments, especially the one shown
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in Figure 3.14, the cutoff frequency should be < 50 Hz. On the other hand, filter order is

recommended to be high to make sure the response of the filter is as flat as possible in the

passband region, so that the useful components in the signal are not distorted. However,

high filteto make sure the response of the filter is as flat as possible in the passband region,

so that the useful components in the signal are not distorted. r order means higher number

of multiply-accumulate (MAC) operations that are required to filter out only one sensor

signal. Therefore, implementing a high-order filters to smoothen signals from multiple

number of sensors (32 is the maximum number of channels in the IE) will induce a big

delay in the extraction of tactile information. For this reason, a trade-off between the filter

performance and time required for filtering should be considered when designing the filter

based on the filter order.

After performing many tests to find the filter parameters, we choose to implemented in

the firmware of the IE an FIR filter of order 58 and cutoff frequency of 30 Hz. Applying

an FIR filter to all the channels of the interface electronics is challenging because of

limitations in the controller memory, which can only allow 10 filters to run for 10 channels.

To assess the behavior of the IE with the FIR implemented in its firmware, we used the

setup shown in Figure 3.11 to apply Press-Hold-Release touch pattern on a single sensor.

Figure 3.15 shows the response of the tactile sensing system (Skin patch and IE) to the

Press-Hold-Release touch stimulus along with the force signal that was measured by the

load cell. According to the figure, the noise frequencies were removed and the filtered

signal is smooth. The time-frequency plot on the right of Figure 3.15 confirms that the

implemented filter removed the noise frequencies. On the other hand, although the FIR

have helped to reduce noise frequencies from the sensor signal, however, it is not possible

to employ this method to filter signals from all channels of the interface electronics, due to

memory limitations. Also, the FIR filter presents a low filtering accuracy (with low filter

order), making it difficult to read light touches. Hence, we present in the next section a

new filtering method to solve our problem.
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Fig. 3.15 The output of the FIR filter implemented in the firmware of the interface
electronics. Left: the response of the sensor to Press-Hold-Release touch pattern. Right:
the continuous wavelet transform (CWT) of the sensor response.

3.6.2 Filtering by Moving Average Filter

The Moving average (MA) filter is one of the popular digital filtering techniques that

could be used to smoothen different data signals and reduce random noise. Exponential

moving average filter (EMA) is a type of MA filter that operates with a low computational

burden and can be implemented easily and efficiently. EMA filter computes a weighted

average of the time-ordered sequence by applying to the weights of the previous input that

decrease exponentially [147].

The exponential moving average filter is represented in the following equation:

y[n] = αx[n]+ (1−α)y[n−1] (3.1)

Where x[n] and y[n] are the current input and output, respectively; While, y [n−1] is

the previous output; α is a factor used to set the cut-off frequency. The EMA behaves

as a low pass filter where low frequencies have a near-unit gain, and high frequencies

are attenuated. The filter has been implemented on the interface electronics, performing
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filtering at around 30 Hz cut-off frequency. The filter α value has been computed and set

to 0.09, which corresponds to the cut-off of 30 Hz. This allows the interface electronics to

perform filtering with minimum delay and at a high sampling rate without losing samples

during the run-time.

Figure 3.16 (Top) shows the response of the tactile sensing system to the three touch

patterns after implementing the EMA filter in the firmware of the interface electronics.

This time the EMA filter resulted in smother signal with lower noise level compared to

Fig. 3.16 The output of the implemented moving average filter in the firmware of the IE.
Top: the response of the sensor to different touch patterns. Bottom: continuous wavelet
transform (CWT) of the force stimulus and the sensor response.
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the output signal of the FIR filter in Figure 3.15. To confirm that, we plotted the time-

frequency analysis using CWT for both, the force signal and the filtered sensor signal, as

shown in Figure 3.16 [Bottom]). As a result, the implementation of the EMA filter on the

interface electronics led to a significant improvement in the performance of the interface

electronics in terms of noise cancellation and detection of touch events. In addition, it is

applicable for the 32 channels of the interface electronics.

3.7 Conclusion

In this chapter, the development of a novel skin patch based on piezoelectric PVDF sensors

was presented. The skin patch consists of the sensor arrays, shielding layer, and protective

layers. It was designed to be applied to different types of surfaces. In this chapter, two

experimental setups were developed to test the developed skin patch and evaluate the

response of the sensor system, i.e., the skin patch and the interface electronics. The system

was first tested in a controlled environment where we verified the linear relationship

between the sensor response and the applied stimulus. We also tested the response of the

sensors to different stimulus waveforms. Second, the system was tested in a more realistic

scenario where we tested the sensor’s ability to detect three touch patterns. Based on the

results of the latter experiment, we developed signal processing methods to reduce noise

and improve touch detection. The study described in this chapter represents the first step

toward integrating the sensor system into various applications (e.g., sensorized robotic

gripper). In addition, the results have shown that the sensor system can detect different

types of touch patterns. Therefore, the tactile sensor system could be proposed for robotic

applications, especially for robotic grippers, where it can be easily integrated to extract

tactile information from objects during a press-hold-release event.





Chapter 4

Signal processing strategies for robotic

tactile sensing systems

4.1 Introduction

Touch sensing plays an important role in exploring the objects and differentiating them

from one another. In robotics, this is done by touching the objects, grasping or manipulat-

ing them in different ways. For instance, by moving the finger over surface of an object,

the robot can extract data/features from several points to obtain the tactile image, which

can be used to create or enhance a model using learning techniques.Contact information

can be used to derive information about the inherent properties of the object. For both

humans and robots, tactile perception is the main approach for exploring and manipulating

objects. Unlike visual sensors, tactile sensors are able to perceive physical properties

(e.g., softness/hardness, texture, temperature) of objects. Integrating tactile perception

into robots can not only simulate human perception and cognitive mechanisms, but also

enable robots to perform more satisfactorily in practical applications.

In the last two decades, a variety of tactile sensors capable of sensing different contact

parameters have been reported in the literature, and a variety of possible transduction

modes have been investigated [5–8, 148]. However, some of these tactile sensing systems
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are expensive and task-specific [149], and others could not be used for some applications

in robots due to design constraints. Such limitations include the size, robustness, frequency

response, specific resolution, and flexibility of the tactile sensors. For example, when

measurements of sensors are used to prevent slipping [150], to detect the contact of a

grasped object with the environment [151], or to detect the texture of an object [152], the

sensitivity and frequency response of a sensor become critical.

Furthermore, processing acquired tactile data is considered as one of the main diffi-

culties [23]. Compared to other senses, such as vision and hearing, the characteristics of

data from tactile sensors are much more variable [24]. The signals from tactile sensors

can be noisy, high- dimensional, complex, and contain both irrelevant and important

information. Moreover, sophisticated algorithms should be used when complex/intelligent

processing tasks such as hardness, texture, and object classification are involved. To this

end, the intelligent embedded data processing unit implements ML algorithms to enable

the above intelligent tasks. However, implementing ML algorithms on hardware platforms

is challenging due to the high complexity of such algorithms, which affects the complexity

of embedded electronic systems in terms of latency and power consumption [153].

In this chapter, we propose a novel tactile sensing system for robots. This system

consists of a flexible tactile sensing patch and interface electronics (IE) that overcome

many of the above problems and can be easily integrated into a Baxter robotic gripper.

We collected data from three different objects to evaluate our proposed tactile sensors for

object classification using machine learning.

In the second part of this chapter, we propose a computationally efficient preprocessing

technique for the sensor signals and feature extraction methods that feeds single-layer

feedforward neural networks (SLFNNs), which in turn aims to reduce the computational

complexity of the ML algorithms. We validate our proposal by integrating a tactile sensor

system into a Baxter robot to collect and classify data from three objects of different

stiffness targeting multi class object classification problem. We compare different feature

extraction techniques and five SLFNNs to show the trade-off between generalization

accuracy and computational cost of the whole processing unit.
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In the third part of this chapter, we present the implementation of a learning strategy

based on the evaluation of a loss function, in order to find the best configurations of the

elaboration unit stages, addressing the classification of 5 objects based on tactile data.

The aim of the learning strategy provides a balance between the computational cost of

the whole elaboration unit (i.e. in terms of FLOPs) and the generalization performance

of the predictors. In this context, we apply an automated technique to remove unneeded

information from a single unplanned grasp action and extract features to reduce the

computational cost of the elaboration unit. Moreover, for prediction, we implement ML

algorithms that have been shown to be suitable for resource-constrained devices [154].

4.2 Related works

In the last years, many tactile sensing systems for object recognition have been presented.

These systems include a sensing array followed by an elaboration unit. However, most

systems are developed without a dedicated processing and acquisition unit. Indeed, some

works adopted ML algorithms with a very high computational load, without keeping

count of a possible embedded application. Usually machine learning or deep learning

algorithms are employed for object recognition in robotic application by extracting high–

level information from tactile data. The authors in [155] utilized a four–fingered hand

namely TWENDY–ONE robot hand equipped with 241 tactile skin sensors. The data

was collected by grasping 20 different daily–life objects, of different shapes and hardness.

For object recognition, a deep learning neural network approach was employed along

with a denoising auto–encoder (DAE) and a dropout. In addition, two feature learning

techniques, such as the self–organizing maps and the principal component analysis were

applied. For the comparison, a single layer neural network was implemented. It was

found that using PCA did not increase the recognition rate, while more hidden layers only

slightly improved the results where they achieved a recognition rate of about 88%. In

[156], the authors evaluated the performance of different neural network–based models,

namely Convolutional Neural Networks (CNN) and Long–Short Term Memory (LSTM),
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on an object recognition task for 9—classes having two tactile sensor technologies. Tactile

data was collected by grasping each object multiple times. Experimental results showed

that the LSTM–based model slightly outperforms the CNN models. Moreover, a method

to extend the amount of usable data for training was also presented, leading to performance

improvement from 82.4% (using BioTac sensor) and 90.7% (using WTS-FT sensor) with

full-time series data to about 94% for both sensor types. Authors in [157] proposed a

hybrid methodology for performing tactile classification and feature extraction, having

a row of TakkTile tactile pressure sensors, integrated into an under–actuated robotic

hand. The setup was used to collect data while performing a single unplanned grasp.

Features were extracted from the sensors readings, at three instances of the grasping

process, and employed for object classification using the random forest learning method.

This approach achieved high classification accuracy on several object features (object

dimension, stiffness and pose). In these presented studies, the authors did not evaluate the

computational cost of their models nether their elaboration unit. However, it is crucial to

keep track of the computational cost along with the generalization accuracy knowing that

high model accuracy can be obtained at the expense of higher computations

4.3 Materials and Methods

We propose a tactile sensing system made of sensor patches and a processing unit. The

sensor patches capture the touch signals. The processing unit elaborates the sensed signals

in two main stages: the first stage is responsible for data acquisition, signals conditioning,

and features extraction; the second stage makes predictions based on the extracted features.

Figure 4.1 shows the block diagram of the system.

4.3.1 Tactile sensing system

We proposed our novel tactile sensing system for this study, which is made up of a tactile

sensing array and interface electronics (the system was described in Chapter 3). For the
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Fig. 4.1 Tactile sensing system block diagram.

tactile sensing, we chose the Palm2 sensing array (shown in Figure 4.2 [left]). This sensing

array consist of 8 P(VDF–TrFE) piezoelectric sensors, each 1mm in diameter, distributed

in the form of a 4×2 matrix within an area of 2.1×1.1cm2. We implemented the same

skin patch structure developed in Chapter 3 section 3.3, by adding a shielding layer - using

a special conductive tape - to carry noises (e.g., external charges) to the ground, in addition

to a thin protective layer to protect the sensor from damage. On the other hand, Figure 4.2

[right] shows the readout circuit (i.e., interface electronics) used for signal conditioning

and data acquisition. The IE contains an ARM-cortex M0 microcontroller and a DDC232

analog-to-digital converter with a sampling frequency of 2 KSamples/sec.

4.3.2 Baxter Robot

The Baxter Robot was invented by a robotics company called Rethink Robotics [158]. It

is a is a two-armed industrial collaborative robot with 14 degrees of freedom (7 DOF/arm)

and elastic actuators with torque sensors that carry out the motion. Each arm contains an

electric parallel gripper end effector that provides one degree of freedom and multiple

grasp widths. The position of the clamps can be adjusted which offers different grasp

openings (maximum 150 mm). Moreover, the size and shape of clamps can be user-

designed. However, one of the drawbacks in this robot is the mechanical noise (i.e.
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Fig. 4.2 The Palm sensing array [left], and the interface electronics [right].

vibration) caused by the back-lash in gears, that may cause motion loss and vibrations

[26].

4.3.3 Experimental setup

The primary task is to integrate the tactile sensors into the gripper of Baxter robot and

collect tactile information from the objects’ grasp. Therefore, we designed a 3D printed

gripper fingers that can fit our skin patch. The flexible substrate layer (PVC of 0.25

mm thickness) is added at the bottom side of the of the skin patch, using a double-

sided adhesive tape (Model 3M 9485, 3M [139]), to protect the sensors from the bottom

side. System components and integration procedure, are presented in Figure 4.3. The

resulted skin patch structure is attached to one of Baxter’s fingers. Whereas, the Interface

electronics is placed in a small box and fastened on Baxter’s arm near the skin patch

location using an elastic fabric strap.

Moreover, we implemented in the framework of the interface electronics the Exponen-

tial Moving Average (EMA) filter (presented in Chapter 3). The interface electronics was

configured to continuously sample at 2kHz and filter tactile data from eight sensors before

transmitting them to the PC through a USB connection. The 2 kHz sampling rate was
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Fig. 4.3 Integration of the tactile sensing system on the gripper of Baxter robot.

used to capture the full bandwidth of the sensors. The data collection process is controlled

using a developed LabVIEW GUI that allows us to read, visualize, and save the tactile data

from eight sensors. We also developed on the PC an automatic data processing techniques

that involves detection of grasp peak (discussed in section 4.3.6), feature extraction, and

inference. Figure 4.4 illustrates the system workflow starting from the collection of data

using the tactile sensing system (sensors and IE), the PC is used to acquire tactile signals

and to control a robotic gripper online. then, feature extraction and inference are applied

offline also on the PC.

Fig. 4.4 System Workflow.
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4.3.4 Grasping test

The Robotic Operating System (ROS) [? ] was used to control Baxter robot during the

experiment. The gripper velocity was fixed at v = 5 cm/s and the applied force at F

= 0.03 ∗Fmax (Fmax = 35 N), in order to reduce uncertainties and avoid any damage

for the sensors. During the test, we performed a Grasp-Hold-Release contact pattern

by grasping a random object for 1 second then releasing it, using the sensorized Baxter

gripper. Our test did not involve any post–grasp manipulation, hence, the arm position was

fixed to the same position. The IE acquired tactile data from all sensors simultaneously

and transmitted them to the PC.

4.3.5 Sensor response

As mentioned earlier, our tactile sensing system comprises a sensing patch based on

poly(vinylidene fluoride trifluoroethylene) piezoelectric polymer sensors. This type of

sensors generates charges when subjected to external stimuli. Figure 4.5 reports the

response of a single sensor to the applied grasping test, showing a typical sensed signal.

When contact occurs, the voltage across the sensor decreases forming a trough in the

signal (Grasp in the figure), then directly returns to its initial state as the gripper maintain

the grasp. However, when the object is released, the voltage increases directly then returns

back to its normal state creating a peak in the signal (Release in the figure). This signal

was filtered using the EMA filter.

4.3.6 Signal pre-processing

Processing all the tactile data from the sensors is a time and energy consuming method.

However, from the sensor response shown in Figure 4.5, we found that the most important

tactile information is found at the moment of grasp and release. To ensure this, we applied

the continuous wavelet transform to represent the time-frequency analysis for the sensor

signal (result shown in Figure 4.6). This figure shows that most of the frequency content
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Fig. 4.5 Example of sensed signal by a P(VDF-TrFE) sensor.

of the signal is located during grasp and release, which means that we might be able

to extract information about object properties from tactile data that is only present at

the beginning of a grasping process.Therefore, we proposed a pre-processing method

(see Figure 4.7) that is used to extract the tactile data generated at the beginning of the

grasp (i.e., the signal trough) from all sensors simultaneously. We developed a Matlab

function to automatically extract grasp troughs (samples between the red dashed lines)

by extracting 150 samples from each sensor simultaneously, which corresponds to the

number of samples within the interval of the sensor response. The reduction process is

triggered by crossing a threshold on at least one channel. Consequently, sample extraction

is applied to all channels, but for simplicity we have only shown four channels in the

Figure 4.7.

4.3.7 Normalization Methods

Data normalization is a pre-processing method used to convert the data in a way so that

they become either dimensionless and/or have similar distributions. It has a huge impact

on the performance of machine learning models [159]. Therefore, for this study we

implemented three normalization techniques in order to normalize the data features.
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Fig. 4.6 The continuous wavelet transform (CWT) of the sensed response.

4.3.7.1 MinMax normalization

In the MinMax scaler, the data is scaled to to fixed range between 0 and 1, using the

following equation:

x′ =
x− xmin

xmax − xmin
(4.1)

4.3.7.2 Modified MinMax normalization

In this case we modified the MinMax equation so that the data this time are scaled between

-1 and 1, solving Eq.4.2

x′′ = 2 · x− xmin

xmax − xmin
−1 (4.2)

4.3.7.3 Z-score normalization

The z-score is widely used in ML [159]. Simply it is the measure of how a data point is

far from the mean, solving the following equation:

z =
x−µ

σ
(4.3)
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Fig. 4.7 Data pre-processing method.

where, µ is the population mean and σ is the population standard deviation.

4.3.8 Classifiers

For this study, we proposed three machine learning algorithms to solve object classification

problems. Two of the proposed algorithms are single–layer feed–forward neural netowrks

(SLFNNs) namely the Fully Connected Neural Network (FCNN) and Extreme Learning

Machine (ELM). The other ML algorithm is the Support Vector Machine (SVM). The

SLFNN and SVM will be used to train the models on different datasets using hand-crafted

features (e.g., mean, standard deviation,etc.) extracted from tactile data.

4.3.8.1 Fully Connected Neural Network

Fully connected neural networks are a type of artificial neural network trained through the

back-propagation technique. It is a model that mimics the structure of our brain’s neural

network [160]. It consists of a number of computing neurons connected to each other in a

three layer system; one input layer, several hidden layers, and one output layer (shown
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in Figure 4.8). It can model complex and non-linear or hidden relationships between

inputs and outputs [60]. Moreover, the FCNN is one of the most powerful and well-known

ML algorithms. It has proven to be efficient in terms of computational efficiency and

modeling multi–class classification problems [161, 162]. The general prediction function

of a SLFNN is [163]:

f (x) =
Neu

∑
i=1

βiφ(x ·wi +bi)+Bi (4.4)

where x the tested datum, Neu is the number of hidden neurons, βi and Bi are the weights

and biases between the hidden and output layers, respectively, and φ is the ReLU activation

function [164]. w and bi are the weights and biases between the input and hidden layers,

and so f tmax is the Softmax function to predict the label [165].

Fig. 4.8 Example of a fully connected neural network.
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4.3.8.2 Extreme learning machine

Extreme learning machine (ELM) is a training algorithm for SLFNN. It is widely applied

in a variety of learning problems, such as classification, regression, clustering, and feature

mapping [166]. The essence of ELM is that the hidden layer of SLFNNs does not

need to be tuned [167]. Compared with those traditional feedforward network learning

algorithms like FCNNs that use back-propagation (BP) techniques, ELM provides better

generalization performance at a much faster learning speed. ELM is based on to the

random extraction of the {ω,b} parameters, learning the β connections by solving a

Regularized Least Square (RLS) problem [168].

4.3.8.3 Support Vector Machine

The Support Vector Machine (SVM) classifier is a supervised ML algorithm that aims to

classify different classes by computing the hyperplanes that maximizes the margin to the

nearest samples of the two classes. SVM is capable of capturing complex relationships

between data points. This algorithms is known for its efficiency in terms of memory and

computation. The hyper–planes of the SVM classifier are represented by the following

function for a two–class problem:

f (z) =
nSV

∑
i=1

αiyiK(xi,z)+b (4.5)

where z, nSV , αi, yi, xi, K, and b denote the tested datum, the number of support

vectors, the coefficient of the support vector, the corresponding label, the training datum

that lies on the support vector, the kernel, and the bias, respectively. More Information

about SVM are in [169].
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4.4 Case Studies

4.4.1 Object Detection – Binary Classification

In this study, we will assess the proposed tactile sensing system for the Baxter robot, as

well as the pre-processing method used for binary classification of objects. The evaluation

will involve collecting tactile data while grasping three different objects (applying the

Grasp-Hold-Release contact event) then using this data to train an artificial neural network

to solve the three-binary classification problems.

4.4.1.1 Data collection

We implemented the same experimental setup presented in section 4.3.3 and shown in

Figure 4.3. However, for this study we used only four sensors (as shown in Figure 4.9 (a))

due to the fact that the selected objects have small height, which means that when grasping

them only the lowest four sensors in the patch will be in direct contact with the object.

Figure 4.9 (a) also shows the three objects employed during the experimental session.

The objects have a cylindrical shape and are made of different materials that characterize

their hardness: 1) a soft deformable rubber-like object (SR), 2) a harder rubber-like object

(HR), and 3) a rigid object made of wood (RW). The Baxter gripper was set to close –at a

constant velocity and force– to a predefined position based on the object. Moreover, we

developed a LabVIEW GUI to acquire, visualize, and save tactile data from four channels

(i.e., four sensors) as shown in Figure 4.9 (b).

During the experiment, the gripper performed 240 Grasp-Hold-Release on each object.

Each Grasp-Hold-Release took 3 seconds: 1 second of grasping and 2 seconds of release.

For each Grasp trial, we modified the object position with respect to the gripper while

paying that at least one sensor out is in contact with the object. Eventually, we obtained a

total of 720 grasping operation on all objects.

After the experiment, we applied the pre-processing method described in section 4.3.6

to detect grasp and extract the required tactile data from each Grasp-Hold-Release trial.
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Fig. 4.9 a) The Skin patch and objects used in the experiment. b) LabVIEW GUI showing
tactile data from four channels.

As a result, we obtained the following matrix size for each data input (4 x 150) that

corresponds to one grasp trial, where 4 is the number of channels and 150 is the number

of samples extracted form each channel when at least one or more sensor are in contact

with the object. In order to find a good representation of data, we extracted as features the

average value over the 150 samples of each channel. Table 4.1 presents the three datasets

that we built based on different combinations between classes (i.e., objects): 1) RW-HR,

2) RW-SR, 3) HR-SR. Each dataset consist of 480 samples (240 for each class) where

each sample is made up of 4 features (the average value of each sensor).

Table 4.1 Description of the 3 datasets.

Dataset name
Nb. of
classes

Nb. of input
features Type of features

Nb. of input
samples

RW-HR
2 4 Mean

480
(Balanced)

RW-SR
HR-SR



68 Signal processing strategies for robotic tactile sensing systems

4.4.1.2 Predictors

We implemented three ML algorithms made of SLFNNs to solve three 2–class classifica-

tion problems. Two of the SLFNNs are based on the Extreme Learning Machine (ELM)

paradigm that is base on to the random extraction of the ω,b parameters, learning the

connections by solving a Regularized Least Square (RLS) problem as described in section

4.3.8.2. The first ELM network adopts the sigmoid activation function [170](we will refer

to it as S-ELM); the second is the hard-limit activation function (H-ELM) [171] having the

ω weights represented as a power of two (this simplification proved to be very effective

for the deployment on low-cost and low-power devices [172], [173]). The last SLFNNs

is made of a fully connected neural network with sigmoid activation function (S-FC),

and is trained through the back-propagation technique. The networks based on the ELM

paradigm require a training time much faster than FCNNs trained by the back-propagation,

because they exploit the randomness to set the hidden parameters, learning only the last

layer connections.

4.4.1.3 Training strategy

Before training, each of the three datasets (i.e., RW-HR , RW-SR, and HR-SR) was

normalized using the methods presented in section 4.3.7). The main goal was to find

the best normalization method that provides the highest classification accuracy. The

three normalization methods are: MinMax (M) between [0, 1], modified MinMax (MM)

between [−1, 1], and z-score (ZS, average = 0 and standard deviation std = 1).

For training, a grid search was employed in the model selection phase to fix the

algorithms architectures. The pool of parameters candidates was:

• N = {25,50,100,200,300} number of hidden neurons;

• Nmax = {50,100,200,300} maximum number of hidden neurons;

• λ = {10i, i =−4,−3, ...,4} L2 regularizer.
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The regularization term L2 was used to avoid overfitting. Moreover, the hidden parameters

{ω,b} for ELM networks were extracted between [−1, +1], and the weights for FCNN

were initialized in the same interval. To define the hyper-parameters and estimate the

generalization performances, the data was split into training, validation, and test sets. Each

experiment involved 10 extractions of training/validation/test sets, in which 70% of data

were used as training and the remaining 30% equally split in validation (to choose the best

models) and test (to estimate the generalization performance). Only in the ELM networks,

we also extracted the random parameters 10 times for each training/validation/test trial.

We designed all the models in python, using the Keras library for the FCNNs [174]. In the

latter case, we set the number of epochs to 200, the patience argument of the early stopping

criterion [175] on the validation accuracy to 20, the batch size to 64, and the learning rate

to 0.01. During the learning phase, we constrained the models to be trained between the

minimum number of neurons (i.e. N = 25) and the current maximum, set by Nmax. For

example, when Nmax = 100 we trained each classifier with N = 25,50,100, looking for

the architecture that achieves the best generalization performance on the validation set.

4.4.1.4 Experimental Results

As a result, we computed the classification performance on the test set by averaging the

results of the 10 splits in training/validation/test sets. Instead, for the ELM-based networks,

we averaged the results of 100 trials, i.e. the 10 splits and 10 random extractions of the

hidden parameters ω,b for each split.

Table 4.2 reports the the average generalization performance for solving three 2–class

object classification problems using three SLFNN algorithms with different number of

neurons and normalization methods. Within each algorithm, we achieved the highest

classification accuracy on each of the three datasets when using the ZS normalization

method, especially with a small number of neurons (50), where in some cases we achieved

10% higher generalization accuracy than when using the MinMax scaler. On the other

hand, the S-ELM outperformed the FCNN in terms of accuracy, even with when the
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Table 4.2 Binary classification accuracy using different algorithms, normalization methods,
and datasets. The green and the red coloured values corresponds to the best and worse
success rates, respectively.

Datasets
RW-SR RW-HR HR-SR

Algorithms
Nb. of
Neurons M MM ZS M MM ZS M MM ZS

50 .857 .864 .893 .899 .908 .924 .728 .840 .860
100 .859 .870 .907 .903 .914 .931 .750 .848 .866
200 .861 .872 .914 .901 .917 .933 .770 .852 .875

S-ELM

300 .860 .878 .917 .900 .919 .936 .786 .855 .880
50 .771 .811 .816 .796 .818 .831 .686 .733 .732
100 .823 .854 .863 .843 .862 .879 .742 .776 .783
200 .868 .888 .893 .883 .905 .910 .798 .828 .829

H-ELM

300 .883 .898 .904 .905 .923 .924 0.825 .844 .853
50 .706 .732 .795 .775 .823 .860 .610 .676 .692
100 .706 .770 .830 .780 .854 .876 .626 .686 .709
200 .710 .827 .851 .802 .869 .883 .652 .709 .746

FCNN

300 .711 .836 .860 .814 .881 .889 .668 .728 .772

number of neurons for the S-ELM was 50, compared to the FCNN with 300 neurons.

In addition, the highest generalization accuracy obtained among the three algorithms

was 93.6% utilizing the S-ELM on the RW-HR dataset. In contrary, lowest results were

achieved on the HR-SR dataset for all algorithms compared to the other datasets, which

is expected since it corresponds to a more complex classification problem having both

objects are made of rubber.

4.4.2 Computationally Efficient Processing Algorithms for Tactile

Sensing Signals Elaboration and Classification

This section presents a study about the trade-off between generalization performance and

the computational cost (in terms of floating-point operations) of ML techniques based

on single feed-forward neural networks (SLFNNs) to solve multi–class classification

problems. These networks are capable of providing a good balance between classification

accuracy and computational cost [176, 177]. Moreover, in our previous case study (section
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4.4.1) we achieved quite good results for object classification of tactile data collected

by our sensing system on Baxter robot, by solving binary classification problems using

SLFNNs [178].

Therefore, we propose computationally low cost processing techniques in terms of

FLOPs in all the stages of the processing unit to elaborate tactile data and extract high-level

information with high accuracy. In this way, the processing unit can be deployed on a

resource-constrained device to be employed in variety of real applications in the future.

To show the capability of our proposed processing unit in balancing the trade-off

between generalization performance and computational cost, we utilized the tactile data

that was collected during the grasping experiments (see section 4.4.1.1). This tactile

data was used to evaluate the proposed pre-processing and ML algorithms for binary

classification and the results were promising. However in this study, we compare different

features extraction techniques and five SLFNNs solving a multi–class classification prob-

lem, showing the trade-off between the generalization accuracy and the computational

cost of the whole processing unit.

4.4.2.1 Floating-point Operations

One way to present the computational cost of a model is to measure the number of floating-

point operations (FLOPs). A FLOP is any assignment or mathematical operation (such

as addition, subtraction, multiplication, division) that involves floating-point numbers.

Most embedded applications eschew the widespread use of floating-point math in favor

of faster, smaller integer operations [179]. Moreover, implementing a detailed analysis

of the required number of floating-point operations is an unavoidable task for the design

of an efficient and low-complexity processing algorithms for resource constrained de-

vices [180].Therefore, in this section we present the FLOP count for all the processing

algorithms including tactile data filtering, feature extraction, and inference, in order to

represent the computational cost of our models. Table 4.3 presents the rules for counting

the FLOPs for the most frequently used operations [181].
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Table 4.3 Rules for Counting Floating-Point Operations.

Operations FLOP count
*Add, subtract, or multiply, (note: the Index arithmetic
is not counted, and assignment not separately counted) 1

*An isolated assignment is counted ( e.g., x = y) 1
*A comparison (e.g., if (x<y)) 1
*A division or square root 4
*A sine, exponential, etc. 8

4.4.2.2 Signal conditioning

In the IE, an Analog-to-Digital converter samples the sensed signals. To reduce the

number of processed samples, we propose an automatic method based on a thresholding

mechanism to extract a number of samples within the signal. The length n of the generated

signal is defined by the designer and depends on the sampling frequency of the AD

converter. Let call x̃ the generated signal having n samples. To filter out noise from x̃ we

apply an EMA filter: y[i] = α x̃[i]+ (1−α)y[i−1], where α is a user-defined parameter

(described in section 3.6.2. According to Table 4.3, the EMA filtering requires 3n+ 5

FLOPs.

4.4.2.3 Features Extraction

To find a good representation of the data, we extract as features the statistical moments

(i.e. the mean, standard deviation STD, skewness Sk, and kurtosis Ku) from the filtered

signal y as they have a low impact on the computational load. Table 4.4 reports the FLOPs

cost required by the features extraction. We considered that is possible to employ partial

results of a feature to compute the others, saving FLOPs. As an example, the mean of a

signal can be used to compute also the other statistical moments.

4.4.2.4 Inference Stage

We present five SLFNNs, that showed good compromise between generalization perfor-

mance and computational cost, to output high-level information from tactile data. In
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Table 4.4 Extracted Features and FLOPs Count.

Extracted Features FLOPs Count
Mean n+1
STD 3n+5
Skewness 2n+7
Kurtosis 2n+5

general, the prediction function of a SLFNN is:

f (x) =
N

∑
n=1

βnφ(x ·ωn +bn) (4.6)

where x is the tested input, N the number of neurons, β the weights between the hidden

and output layers, φ an activation function, ω the weights between the input and hidden

layers, and b the biases. Three of the SLFNNs are based on the Extreme Learning Machine

(ELM) paradigm [167] that bases on to the random extraction of the {ω,b} parameters,

learning the β connections by solving a Regularized Least Square (RLS) problem. The first

ELM network adopts the sigmoid activation function (we will refer to it as S-ELM); the

second the ReLu activation function (R-ELM); the third the hard-limit activation function

(H-ELM) and the ω weights represented as a power of two (this simplification proved

to be very effective for the deployment on low-cost and low-power devices [172, 173]).

The other two SLFNNs are fully connected neural networks (FCNNs) trained through the

back-propagation technique. The first employs the sigmoid activation function (S-FC),

while the second the ReLu function (R-FC). In general, the networks based on the ELM

paradigm require a training time shorter than FCNNs trained by the back-propagation,

because they exploit the randomness to set the hidden parameters, learning only the last

layer connections. Table 4.5 shows the FLOPs of the five SLFNNs with respect to the

number of classes nc (i.e. the possible target labels in a classification problem, nc = 1 in

case of regression), the number of neurons N, and the number of features n f of the input

data.
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Table 4.5 SLFNNs and FLOPs Count.

SLFNNs FLOPs Count
S-ELM N(2n f +14)+2nc∗N
H-ELM N(2n f +1)+nc∗N
R-ELM N(2n f +2)+2nc∗N
S-FC N(2n f +14)+2nc∗N
R-FC N(2n f +2)+2nc∗N

4.4.2.5 Datasets

As we mentioned earlier, we employed for our study the tactile data collected in the

previous experiment while applying the Grasp-Hold-Release contact event for three

objects (described in section 4.4.1.1) to build a multi–class dataset. We applied the pre-

processing method described in section 4.3.6 that detects the grasp event in the tactile

signal and extract 150 samples from each channel simultaneously. This is applied for

every Grasp-Hold-Release trial. As a result, we obtained the following matrix size for

each data input (4 x 150) that corresponds to one grasp event, where 4 corresponds

to the number of channels (i.e., sensors) and 150 is the number of samples extracted

from each channel when at least one or more sensors are in contact with the object (the

pre-processing technique was shown in Figure 4.7). Next, we computed the statistical

moments, mentioned in section 4.4.2.3, from the reduced signals (i.e., 4 features from

each channel). Therefore, we obtained 720 data samples (240 for each object) represented

by 16 features. For the sake of comparison, we built three 3-class datasets: the first one

(4_Features) contains the 720 data each is made up of 4 features (i.e. the average from

each channel), the second (8_Features) includes 720 data with 8 features (i.e. average and

standard deviation), the third (16_Features) consists of 720 data with all the 16 features.

Table 4.6 summarizes the characteristics of the three 3-class datasets. We normalized

each feature of all the datasets having zero mean and standard deviation equals 1. This

normalization method was chosen based on results of the previous study, in Table 4.2.
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Table 4.6 The generated 3-class datasets.

Datasets
Characteristics 4_Features 8_Features 16_Features

*Type of extracted features Mean
Mean,
STD

Mean, STD
Skew, Kur

*Nb. of features ext. from each sensor (1) (2) (4)

4.4.2.6 Training Strategy

All the five classifiers presented in Section 4.4.2.4 were designed to deal with a 3-class

classification problem, thus the output layers present 3 neurons, one for each class. The

Softmax function assigns the label (i.e. SR, HR, and RW) to the neuron with the highest

probability. We employed a grid search in the model selection phase to fix the algorithm

architectures. The pool of parameter candidates was:

• N = {25,50,100,200,300} number of hidden neurons;

• Nmax = {50,100,200,300} maximum number of hidden neurons;

• λ = {10i, i =−8,−3, ...,8} L2 regularizer.

Moreover, the rest of information regarding the training strategy are similar to the ones

provided in section 4.4.1.3

4.4.2.7 Results

In this section, we evaluate our proposed processing unit in balancing the trade-off

between classification performance and computational cost. We tested the five SLFNNs

with the three 3-class datasets described in Section 4.4.2.5, showing the FLOPs required

to elaborate the data.

Concerning the FC networks, we computed the generalization performance on the test

set by averaging the results of the 10 splits in training/validation/test sets. Instead, for

the ELM networks, we averaged the results of 100 trials, i.e. the 10 splits and 10 random

extractions of the hidden parameters {ω,b} for each split.
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Fig. 4.10 Generalization Performance vs Computational Load with Nmax = 100. 4F, 8F,
and 16F corresponds to 4_Features, 8_Features, and 16_Features datasets, respectively

Regarding the computational load, we calculated the FLOPs of the whole processing

unit, as detailed in Section 4.4.2.1. During the signal conditioning, we considered the

cost of the moving average only applied at the extracted grasp samples from the signal

with n = 150 samples. We adopted this simplification because in the real application the

IE will wait for a trigger (by setting a threshold) before filtering and storing each grasp

peak. Similarly to the generalization performance, we averaged the number of neurons to

estimate the classifiers FLOPs according to Table 4.5.

Figure 4.10 shows the averaged generalization performance on the test set of each

inference model, with Nmax = 100, in the function of the computational load of the

whole processing unit represented as the number of FLOPs, for all the three datasets

(i.e., 4_Features, 8_Features, and 16_Features). The processing units that present the

lowest computational load are based on the 4_Features dataset. The R-ELM achieves

the best generalization performance (i.e. 87.2%) classifying this dataset. Increasing the

number of extracted features, the FC outperforms the ELM networks requiring also a lower

number of FLOPs. The best accuracies, 94.7% and 95.4% respectively, are obtained by
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Table 4.7 SLFNNs generalization performance for 3-class classification.

Algorithms
Nb. of
Neurons

Av. Accuracy
4_Features 8_Features 16_Features

R-FC

50 79.8 94.4 95.5
100 80.2 94.7 95.4
200 81.4 94.8 95.4
300 81.7 94.7 95.5

S-FC

50 83.2 94.0 95.3
100 83.1 94.0 95.3
200 82.9 94.0 95.5
300 83.1 94.1 95.4

R-ELM

50 83.7 88.9 87.8
100 87.2 93.8 92.5
200 89.6 95.3 94.1
300 90.6 95.7 94.6

S-ELM

50 79.4 90.2 87.5
100 82.8 94.1 91.7
200 84.4 95.9 93.8
300 84.7 96.3 94.5

H-ELM

50 63.8 79.8 84.1
100 72.8 86.5 89.7
200 79.8 89.8 92.8
300 82.7 91.1 93.5

R-FC with both the 8_Features and 16_Features datasets. In general, the accuracy-FLOPs

trends show that by employing the 8_Features dataset we obtained a big improvement

in the generalization performance (up to 15%) despite a higher computational cost with

respect to the 4_Features dataset; on the other hand, adopting the 16_Features dataset, the

accuracies are almost the same or even worse in case of S-ELM and R-ELM with respect

to the 8_Features dataset.

Tables 4.7 and 4.8 report the average generalization performance and FLOPs of the

whole processing for all the configurations of Nmax of the five SLFNNs, respectively.

The first column represents the five classifiers, the second column the configurations of

Nmax, the columns from the third to the fifth the generalization performance obtained

classifying the 3 datasets, while in Table 4.8 the columns from the third to the fifth reports

the FLOPs required by the processing units for elaborating and classifying the 3 datasets
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(i.e., filtering, features extraction, and inference). The results show that the FC networks

generalization performance for each dataset does not or slightly changes by modifying the

number of neurons. For Nmax = 50, the FC classifiers present better accuracy and lower

computational cost compared to ELM classifiers. Conversely, we achieved the highest

classification accuracy with an ELM networks for Nmax = 300 (96.3% using S-ELM with

8_Features), but also higher computational costs (with Nmax = 300 the cost almost doubles

that obtained with Nmax = 100 configuration).

In summary, the results showed that the processing unit based on the fully connected

network with Nmax = 50 and ReLu activation function achieved the best computational

cost considering all the three datasets (4_Features, 8_Features, and 16_Features), and

a high generalization performance (79.8%, 94.4%, and 95.5%, respectively). However,

the extreme learning machine network with sigmoid activation function presented the

Table 4.8 The total number of FLOPs for the processing unit.

Algorithms
Nb. of
Neurons

Total nb. of FLOPs
4_Features 8_Features 16_Features

R-FC

50 3,124 5,040 8,032
100 3,444 5,448 8,592
200 4,020 6,288 8,992
300 5,060 6,624 9,672

S-FC

50 3,440 5,592 8,440
100 3,972 6,024 9,116
200 4,504 6,672 10,000
300 5,232 7,248 11,612

R-ELM

50 3,204 5,424 8,672
100 3,924 6,504 10,472
200 5,348 8,496 13,832
300 6,260 9,528 15,992

S-ELM

50 3,776 6,024 9,220
100 5,064 7,752 11,456
200 7,108 10,776 15,564
300 8,452 12,900 18,320

H-ELM

50 2,968 5,204 8,436
100 3,556 6,164 10,128
200 2,768 8,024 13,512
300 5,752 9,504 16,284
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highest classification accuracy (96.3%) with the 8_Features dataset but with a higher

computational cost (12,900 FLOPs) compared to other algorithms.

In general, our processing unit showed a good trade-off between classification accuracy

and computational cost, leading also to a possible deployment on resource-constrained

devices. The designer, during the deployment of the processing unit on a resources-

constrained device, has to keep count of the trade-off between generalization performance

and computational cost. Nevertheless, the number of FLOPs is low in general for all the

processing units, which allows to implement of the best solution in terms of generalization

performance in an embedded device.

4.4.3 Towards a Trade-off Between Accuracy and Computational

Cost for Embedded Systems – Loss Function

Applying machine learning in order to extract high level of information from an array

of tactile sensors within a tactile sensing system is carried out through several stages

such as signal pre-processing, feature extraction, and inference. However, these stages

require a certain amount of power consumption which may form a problem in resource–

constrained devices. Moreover, ML models with high performance are achieved on the

bases computational cost. Therefore, finding a ways to achieve a the trade–off between

generalization performance and computational cost is crucial. Therefore, we propose using

a learning strategy based on a loss function that leads to finding the best configuration of

the prediction model balancing the generalization performance and the computational cost

of the whole elaboration system. We validate our proposal by integrating a tactile sensing

system on a Baxter robot to collect and classify data from five daily–life objects using

four different algorithms.

In this section we present the implementation of a learning strategy based on the

evaluation of a loss function in order to find the best configurations of the elaboration unit

stages, addressing the classification of five daily–life objects based on tactile data from

different number of sensors (i.e., 4 or 8). The learning strategy provides a solutions to
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achieve a trade–off between the computational cost of the whole elaboration unit (i.e. in

terms of FLOPs) and the generalization performance of the predictors. In this regard, we

apply an automated technique to remove unneeded information from a single unplanned

grasping action (inspired by the concept of haptic glance found in humans [182]) and

extract features, to reduce the computational cost of the elaboration unit. Moreover, for

prediction, we implement ML algorithms that have proven to be suitable for multi–class

classification using our tactile sensors (previous use cases, section 4.4.1 [178], and section

4.4.2 [161]), and suitable for resources–constrained devices [173, 154].

4.4.3.1 Loss Function

In [183], the authors proposed a loss function that during the training phase is capable of

selecting the best model in terms of the trade–off between the predictor accuracy and its

computational cost. Procedure 1 in [183] depicts the learning strategy that we adopt in this

paper as well. It consists of a data–driven approach based on the out–of–sample technique

[184] where the original dataset is split into training and validation sets. The training set

is used to train the models on all the possible configurations of the hyper–parameters,

solving (4.8). The validation set is then employed to find the best model minimizing the

loss function, solving (4.7). The loss function consists of two terms:

i∗ = argmin
i

L̂m( f ∗n,i)+θRH( f ∗n,i) (4.7)

where

f ∗n,i = argmin
f∈Fi

L̂n( f )+λR( f ). (4.8)

In (4.8), Fi represents one of the models indexed by the hyper–parameters, L̂n( f ) is the

empirical risk on the training set, and λR( f ) describes the regularizer with its weight. In

(4.7), L̂m denotes the empirical risk on the validation set, while the second term θRH is the

hardware constraint weighted by a parameter that balances the trade–off between accuracy

and computational. Adopting a value of θ = 1 means giving the same importance to the
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hardware constraint and the accuracy, while with a value greater than 1 the loss function

promotes lighter model (e.g. model with lower size, lower number of parameters, lower

FLOPs, etc.) with respect of achieving the best accuracy. Therefore, Procedure 1 is

employed taking into account different combinations of the elaboration unit stages. In the

following, we describe in detail the stages of the elaboration unit and their computational

cost in terms of FLOPs.

4.4.3.2 Experimental setup

To evaluate the performance of different model architectures to classify grasped objects

–by evaluating the loss function (4.7)– we integrated our tactile sensing system on the

gripper of Baxter arm (as shown in Figure 4.11). The system comprises a P(VDF–TrFE)

piezoelectric sensing patch and IE (presented in section 4.3.1), which we installed on

one side of the gripper, to acquire tactile data while running grasping experiments on five

daily–life objects.

4.4.3.3 System Setup and Integration

Similar to our previous work in section 4.4.2 [185], we employed our tactile sensing

system and Baxter gripper to perform out experiments. As a reminder, the Palm sensing

array contains a matrix of eight piezoelectric sensors (4 x 2 = 8 sensors) uniformly

distributed. To prepare the skin patch for the experiment, the new structure layers are

added the sensing array. In addition, a substrate and a thin protective layer is added to

the bottom and top side of the sensing patch, respectively (described more in Chapter

3 section 3.3). On the other hand, the IE is used to acquire tactile data from sensors at

a sampling rate of 2 KSample/sec. Within the IE, We employ a method to reduce the

number of samples acquired from each channel, by introducing a threshold that triggers

a real–time extraction of n number samples during a grasp from each sensor. For this

experiment n is set equal to 150, which represents the length of the extracted tactile signal

from each sensor. Similarly to the previous experiment, we implemented EMA filter in the
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Fig. 4.11 Set of objects used for the experiment.

IE to filter the generated signals using Eq.3.1. Moreover, Figure 4.11 shows the integration

process of the tactile sensing system to Baxter robot. The Skin patch is coupled to one of

Baxter’s gripper fingers, while the IE is fasten to the end of Baxter’s arm using an elastic

fabric strap.
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4.4.3.4 Objects

For the experiments, we select a set of five different ‘daily life’ objects shown in Figure

4.12b. These objects have three types of surfaces: flat (e.g. one side of the Case and the

Cube), circular (e.g. the Can and the Tennis Ball), and curved (e.g. the Bottle and the

other side of the Case) surfaces. The objects are different in shape, materials, and size.

But, they all have a good impact resistance 1 and are big enough to be in contact with

many sensors when grasped.

Fig. 4.12 Set of objects used for the experiment.

4.4.3.5 Data collection

Data was collected by grasping each of the five objects 400 times, at different object

positions, using the Baxter gripper as shown in Figure 4.11. Our experiments do not

involve any post–grasp manipulation; therefore, the arm position is fixed. Before the

experiments, we determine the closure position of the gripper for each object, which

corresponds to the gripper position when the touch occurs. We set the gripper velocity

and force to v = 5cm/s and F = 0.03∗Fmax (Fmax = 35N). The chosen objects are hard

enough to avoid any deformation when grasped. During each trial, the gripper closes –at a

1impact resistance is the ability of a material to resist both fracture and deformation when temporary
force is applied
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constant velocity and force– to the predefined position, and remains closed for 1 seconds;

then, it opens for two seconds. The trials are repeated with no sensors and/or gripper

feedback (open–loop control). Grasping control is done by the robotic operating system

(ROS). Unlike the previous studies, the IE continuously was set to acquire the data from

all the sensors (i.e., eight sensors) simultaneously at a sampling frequency of 2KHz and

transmits them to the PC. In addition, the signals are pre–processed before extracting the

features. We automatically extracted 150 samples after detecting grasp. This process is

done for all the channels simultaneously, and for all the grasp trials.

Similarly to the second case in section 4.4.2 [185], we extracted as features the statis-

tical moments from the tactile data. They proved to be efficient from the computational

cost side and led to a high accuracy during the prediction stage. The FLOPs count for

each feature was reported earlier in Table 4.4. We considered that it is possible to employ

partial results of a feature to compute the others. As an example, the mean and standard

deviation of a signal can be used in the computation of the skewness, thus we save FLOPs.

Eventually, we built six datasets based on different combinations of number of sensors

(i.e., 4 or 8 sensors), number of features, and types of features extracted. Each dataset

contains 2,000 grasp data, i.e. 400 samples for each class. Table 4.9 reports the developed

datasets.In this table, Each column corresponds to a dataset, the first row reports the name

of the datasets, while the second, third, fourth, and the fifth rows report the number of

sensors used to build the datasets, the number of features extracted from each sensor, the

type of feature (i.e. Mean, standard deviation=STD, kurtosis=Kur, and skewness=Skew),

and the total number of features for each input data, respectively. The six datasets

correspond to six different feature extraction stages. The loss function will be evaluated to

find the best combination of the features extraction stage and predictor.

4.4.3.6 Predictors

We present four different ML algorithms to classify the five daily objects. One of the

algorithms is based on the support vector machine (SVM), which aims to classify different
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Table 4.9 Generated Datasets

Dataset name 4S1F 4S2F 4S4F 8S1F 8S2F 8S4F
Number of sensors 4 4 4 8 8 8
Number of extracted

1 2 4 1 2 4
features per sensor
Type of extracted
features

Mean
Mean Mean,STD

Mean
Mean Mean,STD

STD Skew, Kur STD Skew, Kur
Total nb. of features 4 8 16 8 16 32

classes by finding the hyper–planes that maximize the margin between two classes. In

this work, a Gaussian kernel (i.e., the radial basis function RBF) is used with the SVM

(K–SVM). The RBF kernel function for two points x and x′ computes the similarity or

how close they are to each other. This kernel is given by:

K(x,x′) = exp(−∥x− x′∥2

2σ2 ) (4.9)

where x and x′ are two feature vectors, and σ is related to the fitting degree of SVM model.

This equation is used to find the hyper–planes of the SVM classifier solving Eq.4.5 (more

details were mentioned in section 4.3.8.3).

The other three algorithms are neural networks made of one hidden layer, thus recog-

nized as single–layer feed–forward neural networks (SLFNNs). The SLFNNs are known

to be able to provide high generalization performance in classification while maintaining

the computational cost low. The general prediction function of a SLFNN is reported in

section 4.4.2.4 Eq.4.6. The first SLFNN is the fully–connected neural network that em-

ploys ReLU activation functions (R–FC), and is trained by the backpropagation technique.

In contrast, the second and third SLFNNs are based on the Extreme Learning Machine

(ELM) paradigm [167]. In ELM, parameters w,b are set randomly, and training demands

solving a Regularized Least Square (RLS) problem to learn the beta connections. For

the first ELM network, we assigned a ReLU activation function (R–ELM). While for

the second network, we adopted a hard limit activation function (H–ELM) and set the



86 Signal processing strategies for robotic tactile sensing systems

Table 4.10 FLOPs Count of the ML algorithms.

SLFNNs FLOPs Count
H–ELM N(2n f +1)+nc∗N
R–ELM N(2n f +2)+2nc∗N
R–FC N(2n f +2)+2nc∗N

K–SVM ∑
nc
i=1 nSVi ∗ (3n f +10)+1

w weights as a power of two due to its effectiveness on low power and low cost devices

[172], [173].

Table 4.10 shows the FLOPs count of each of the four algorithms, where n f , nc, N,

and nSV correspond to the number of features, number of classes, number of neurons, and

number of support vectors. In case of a two–class classification problem nc = 1.

4.4.3.7 Results

Through the evaluation of the loss function, it is possible for each algorithm to find the best

set of hyper–parameters and the best features set that leads to the best compromise between

generalization accuracy and computational cost measured as the number of FLOPs, for all

the values of the θ parameter. The FLOPs are considered along all the elaboration stages

and normalized between 0 and 1. The number of FLOPs and generalization accuracies are

averaged along the 10 folds, for each pair features set–algorithms and for each value of θ .

Procedure 1 in [183] is evaluated on each algorithm to find the best combination of

features set and predictor hyper–parameters, for all the values of θ . Then, we compute

the loss function (4.7) for each θ on the test data. Results are reported in Figure 4.13.In

the figure, the loss values are multiplied by 100 for a better description. For each theta,

there are four colored bars that correspond to the following algorithms: K–SVM, R–FC,

R–ELM, and H–ELM. For θ = 0 (meaning that the computational cost is not relevant), the

best loss function value is obtained by R–FC (99.6), followed by R–ELM (98.0), K–SVM

(97.6), and finally H–ELM (97.2). In this case, the score corresponds to the test accuracy.

However, for θ > 0, the loss function decreases, and different results are achieved as the

K–SVM outperforms the others. Between θ = 0.5 and θ = 10 the loss function decreases
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slightly in K–SVM (≈5%), and significantly in R–FC (≈20.3%), R–ELM (≈20.5%), and

H–ELM (≈24%). As a result, the best loss function is always achieved by the K–SVM.

For all θ > 0, the H–ELM has the lowest values; which is normal because it requires

much more neurons than R–ELM and R–FC to attain similar generalization performances

in terms of accuracies [185].

Fig. 4.13 The Loss function of the four algorithms, at different θ weights.

Table 4.11 presents the best configurations chosen by the evaluation of the loss

function, showing the number of sensors and extracted features, based on each algorithm

and θ value. In the table, the columns from the left to the right reports, respectively, the

following: algorithms, θ , number of sensors, extracted features, average FLOPs, and the

average accuracy on the test set. For θ > 0, we obtained the same dataset (i.e. 4S1F) for

all algorithms; this dataset utilizes the minimal number of sensors (i.e. 4) and type of

features (i.e. the mean M). Whereas, for θ = 0, the best configuration for R–ELM (i.e.

8 sensors, one type of features) is different from the other algorithms (having 4 sensors

and 2 types of features: M and STD). Moreover, for all algorithms, we observe that: the

bigger the θ lower the averaged computational cost and accuracy, except in the case of

K–SVM; nevertheless, it gives the highest accuracies with the lowest computational costs

for θ > 0. And, the R–FC attains the best accuracy for θ = 0. Therefore, by employing

the loss function in the learning strategy for each algorithm, not only did we find the

configurations which provide the best trade–off between the generalization accuracy and

number of FLOPs, but also the best predictor (K–SVM) for object classification when the

computational cost is relevant.
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Table 4.11 Best Configurations showing the number of sensors (NS), extracted features,
average FLOPs, and average generalization accuracy.

Algorithms θ Nb. S. Features Av. FLOPs Av. Accuracy STD
0 8 M&STD 9855 97.60 ±3.38
1 4 M 2818 99.21 ±1.69K–SVM
5 4 M 2818 99.21 ±1.69
0 8 M&STD 9300 99.60 ±1.27
1 4 M 3296 95.20 ±3.16R–FC
5 4 M 3156 95.20 ±3.16
0 8 M 5770 98.01 ±2.83
1 4 M 3156 95.60 ±3.51R–ELM
5 4 M 3156 95.60 ±3.51
0 8 M&STD 9620 97.20 ±2.70
1 4 M 3506 94.00 ±5.42H–ELM
5 4 M 3156 91.21 ±7.01

4.5 Conclusion

In this chapter, we presented the integration of a new tactile sensing system into the

Baxter robot. This tactile sensing system consists of fully screen-printed flexible sensor

array based on piezoelectric P(VDF-TrFE) polymer sensors along with an interface

electronics. The system was first validated on binary object classification problems, where

we achieved an accuracy of 93.6% with models based on extreme learning machine. In

addition, we proposed a two-stage processing unit for processing and classifying tactile

signals, balancing generalization performance and computational cost in terms of FLOPs.

We collected data by integrating a tactile sensing system into a Baxter robot to address

a 3- class object classification problem. We used a moving average, and an automated

processing techniques was implemented to extract grasp information from the tactile

signals. We extracted four features from each channel based on the statistical moments.

The features fed 5 single-layer feed-forward neural networks to classify objects. As a result,

the fully connected based models with Nmax = 50 and a ReLu activation function achieved

the lowest computational cost with all datasets (4_Features, 8_Features, and 16_Features)

and high generalization performance (79.8%, 94.4%, and 95.5%, respectively). However,

the extreme learning machine network with sigmoid activation function showed the
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highest classification accuracy (96.3%) for the 8F dataset, but with a higher computational

cost. Overall, our proposed pre-processing and feature extraction methods for the tactile

data showed a good trade-off between classification accuracy and computational cost.

Moreover, we enabled more sensors in the tactile field and implemented the proposed

learning strategy based on a loss function to find the best configurations between the

number of sensors, features, and algorithm, balancing the prediction accuracy and the

computational cost of the whole processing unit (i.e., signal processing, feature extraction,

and prediction). A parameter in the loss function was adjusted to weight the importance of

computational cost. The loss function was used to classify five differently shaped everyday

objects. The results showed that when the computational cost was not relevant, the best

performance was obtained by the fully connected neural network with the ReLu activation

function using 16 features, while when the computational cost mattered, the loss function

selected the SVM kernel with 4 features as the best configuration

Overall, we validated the proposed tactile sensing system in the robot application,

mainly sensing the Baxter robot for object classification. Moreover, the proposed pre-

processing and feature extraction techniques together with the learning strategy have

resulted in models with extremely low complexity and very high generalization accu-

racy. And the support vector machine achieved the best trade-off between accuracy and

computational cost using tactile data from our sensors.





Chapter 5

Hardness Classification in an Embedded

Tactile Sensing System

5.1 Introduction

For both humans and robots, tactile sensing is essential for interaction with the environ-

ment. Tactile information conveys to the physical properties of objects, such as hardness,

texture, weight, etc., allowing us identify them even in the dark [186]. Among them,

hardness is considered one of the most important attributes of objects. It represents the

resistant force of solid materials subject to a localized compressive force. It is also de-

scribed as the ratio between the applied force and the displacement created by indentation.

For humans, one of the common ways to estimate hardness is by tapping the surface of

an object with a fingertip [187]. In contrast, hardness detection in robots is still a major

limitation due to the lack of techniques to estimate it. Nevertheless, applying intelligence

to tactile sensing systems may help to overcome this problem.

Embedding intelligence near the sensor location has become increasingly important

as it enables tactile sensing systems to be involved in a variety of applications such

as prosthetics [188–190], sensorized gloves [191, 192], and robotics [193–195, 155].

Basically, tactile sensing systems consist of an array of distributed sensors to measure the
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applied mechanical stimuli, a readout circuit for signal conditioning and data acquisition,

and embedded electronics for elaborating tactile information. The elaboration procedure

could be either simple or complex depending on the task. As an example, location

and force estimation require simple processing algorithms, however, extracting high–

level information regarding object properties demands more sophisticated processing

methodologies. The literature presents some works dealing with high–level information

extracted from tactile data in robotics such as [196, 65, 178, 161, 197, 19] for hardness

classification, [198, 58, 97] for texture recognition, and [190, 101] for slippage detection.

In general, the more detailed the information to be retrieved, more complex techniques

have to be adopted such as ML algorithms [61, 60].

ML has gained popularity as an effective technique in various fields. Several re-

searchers have focused on developing smart tactile sensing systems based on ML algo-

rithms [58, 61, 5, 17]. In this context, ML algorithms such as Support Vector Machine

(SVM) and Artificial Neural Networks (ANN) have proven to be effective for object

recognition on tactile data collected from piezoelectric sensors [161, 162].

Moreover, nowadays many companies provide on-demand network access to a shared

pool of configurable computing resources with ML services on the cloud (such as google

cloud [199]), allowing to run machine learning workloads on their GPUs and TPU

hardware accelerators using specific ML and AI software libraries (e.g., TensorFlow).

However, cloud computing is often not the best solution for processing raw streaming data

due to data loss, privacy, network downtime, energy consumption, and cost. Moreover,

it is not feasible for tactile sensing applications due to time requirements (< 50 ms)

[25]. Therefore, the general trend now focuses on embedding intelligence near the

sensors by providing edge computing capabilities on the system’s dedicated interface

electronics. Moreover, due to the recent advancement in chip software and hardware

designs, and VLSI integrated circuit technology used in micro–controllers manufacturing,

embedded systems are now capable of supporting the more advanced machine and deep

learning services [200, 201]. Nevertheless, implementing complex algorithms that allow

the processing of input signals from multiple sensors on resource–constrained devices,
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along with extremely tight latency requirements and low energy consumption, is a major

challenge [202, 203, 110, 204]. One of the solutions is TinyML [205], which enables

intelligence with low memory, low power, and low latency, without the need for cloud

support. These are the main requirements for a tactile sensing system that can be used in

many wearables, prosthetics, and robotics applications.

This chapter presents the implementation on the edge of algorithms for the process-

ing of information extracted from tactile sensing arrays mounted on a Baxter robot. In

particular, we addressed two hardness classification problems: (1) 5-class hardness classi-

fication of objects having the same shape, and (2) 5-class hardness classification of objects

having a different shape. We designed pre-processing and ML algorithms that cope with

the deployment on a resource–constrained device. We deployed the algorithms on the

edge electronics by achieving real-time performance, low energy consumption, and high

classification accuracy in both problems. The main contributions of this chapter may be

summarized as follows:

• we proposed a tactile sensing system for hardness classification on Baxter robot;

• we designed shallow ML algorithms for the deployment on resource–constrained

devices;

• we designed energy efficient and low time latency pre–processing techniques to

extract features from tactile signals and normalize data;

• we deployed pre–processing techniques and ML models, written in C language, on

an edge device, namely STM32 Nucleo 745ZI–Q board;

• we proposed the tactile sensing system for two hardness classification problems,

achieving high accuracy, real-time inference, low memory footprint, and low energy

consumption.

The remainder of this chapter is organized as follows: Section 5.2 the materials and

methods, Section 5.3 the experimental setup, Section 5.4 the results and discussion, and

Section 5.5 concludes the paper.
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5.2 Materials and Methods

The aim of this chapter is to build a real–time robotic tactile sensing system for hardness

classification based on embedded ML implementation. Figure 5.1 reports the block

diagram of the system workflow. The tactile sensing system is made of sensor arrays,

mounted on the clamps of the Baxter robot, and interface electronics (IE) to collect and

filter the sampled signals. A host PC controls the robot to perform the grasp through the

robotic operating system and, by a LabVIEW GUI, retrieves and saves the data from the

IE. Therefore, data are preprocessed, the features are extracted, and ML algorithms are

trained offline. The trained models are then deployed on an edge device to provide online

inference. Besides the models, the edge device hosts the data processing and features

extraction. During the online inference, the host PC is no longer employed, except for

the Baxter robot programming to perform the grasp actions. The system was tested on a

use case addressing two classification problems: (i) 5-class hardness classification of 3D

printed objects having the same shape, (ii) 5-class hardness classification of 3D printed

objects having a different shape.

5.2.1 Materials

5.2.1.1 Objects selection and hardness level determination

Ten objects were designed and 3D printed (shown in Fig. 5.2a). Objects were made of

two shapes: cubic and cylindrical (five objects for each shape). The size of the cubes is

7 x 7 x 4 cm. For the cylinders, the diameter and height are 4cm and 7cm, respectively.

The objects were printed using different filling percentages, i.e. 3% – 5% – 7% – 10% –

12% for each shape, in order to obtain different hardness [92, 206]. Filaflex material, i.e.

Thermoplastic Polyurethane (TPU) that presents a large elasticity, was used to print the

objects.

The literature presents different techniques to measure the hardness of an object. One

of them is called the indentation technique [207], but it suffers from damage on the object’s
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Fig. 5.1 Schematic diagram of the system workflow.

surface because it is subjected to a very large load. Another way to express the hardness

value of an object is by measuring the maximum force obtained when compressing an

object to a pre–defined displacement [65, 208]. The compression technique was adopted

in our experiments by using the Zwick/Roell machine model Z0.5 (shown in Fig. 5.2b) to
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(a) 3D Printed Objects (b) Zwick/Roell model Z0.5

Fig. 5.2 a) 3D printed object samples in cubic and cylindrical shapes; b) Materials testing
machine used to apply compression tests to determine the hardness level of objects.

measure the hardness value of the printed objects and provide effective labeling for their

classification. For the experiments, the maximum displacement and velocity are set to 2

mm and 25 mm/sec, respectively, and pressure is applied at the center of the objects. For

each object, 170 trials were performed.

The loading force–displacement curves corresponding to the compression tests are

shown in Figure 5.3. Figures 5.3a and 5.3b present the hardness values of the cube and

cylindrical objects, respectively, where each color represents an object of a certain filling

percentage. The figures display two trials for each object. For objects of the same shape,

differences in hardness values are noticed. In addition, some similarities in hardness are

observed in Fig. 5.3c between objects of different shapes. The hardness values of the

cubic objects with the following filling percentages: 3%, 5%, and 7%, are similar to the

filling percentages 3%, 7%, and 10% of the cylindrical objects, respectively. Therefore,

we selected all the cubic objects for the study and the three cylindrical objects that match

the cubes’ hardness.

The average hardness value of each object is computed over multiple compression

trials. Finally, five categorical hardness levels were extracted: 0, 1, 2, 3, and 4. Table 5.1

reports the hardness measurements for the eight objects and the associated label.
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(a) Cubes Compression Curves (b) Cylinders Compression Curves

(c) Cubes and Cylinders Compression Curves

Fig. 5.3 Loading force–displacement compression curves of cubes and cylinders.

5.2.1.2 Tactile Sensing Arrays and Acquisition System

The primary task was to integrate the tactile sensors into the gripper of a Baxter robot

and collect tactile information from the objects’ grasp. Two sensor arrays were employed,

consisting of P(VDF—-TrFE) piezoelectric sensing patches. This technology has already

been exploited in previous works that dealt with robotic applications [161, 178, 162].

Different from the literature, the sensing patches in this work are smaller and have a higher

spatial resolution: each patch consists of 8 sensors of 1mm diameter each and 0.6cm

center–to–center pitch. Figure 5.4 shows the structure of a sensing patch. In addition,

these sensors have high–frequency bandwidth that ranges from 0.5Hz to 1kHz. For the
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Table 5.1 Labels of printed objects based on the hardness value.

Samples Hardness Hardness
Value Level

Cube 3% 4.13 0
Cylinder 3% 4.62 0
Cube 5% 8.52 1
Cylinder 7% 8.22 1
Cube 7% 12.21 2
Cylinder 10% 12.07 2
Cube 10% 27.19 3
Cube 12% 33.18 4

Fig. 5.4 Sensing patch structure.

experiments, the two sensing patches are shielded using a special conductive tape (Model

tesa 60262, tesa) in order to remove external changes by carrying them to the ground.

Also, protective and substrate layers are added to the top and bottom sides of each patch,

respectively. The readout circuit, tactile signal conditioning, and data acquisition are

done by a low–power interface electronics (IE) equipped with ARM–Cortex M0 micro–

controller and a DDC232 analog–to–digital converter with a sampling frequency of 2

KSamples/sec. The system, made of tactile patches and IE, is integrated into a Baxter

robot (Figure 5.5). The gripper’s clamps were customized to fit the patches’ size, while

the IE was placed on the robotic arm near the sensors and fastened with an elastic fabric

strap. Eventually, a host PC was used to control the displacement and grasping time of the

gripper using the robotic operating system (ROS), while a LabVIEW GUI was designed

for collecting, visualizing, and saving tactile data received from the IE in real time.
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Fig. 5.5 Integration of the sensing patches and IE on the Baxter robot.

5.2.2 Methods

5.2.2.1 Data Collection and Pre–processing of Tactile Information

We programmed the IE to acquire tactile data from 16 channels simultaneously and filter

the data from each channel using the Exponential Moving Average filter (EMA): y[i] =

α x̃[i]+ (1−−α)y[i−−1]; where α is a user–defined parameter and x̃ is the tactile signal

(descibed more in Chapter 3 section 3.6.2). The Baxter robot was programmed to perform

grasp–release actions on the objects by setting the gripper velocity and displacement

of the manipulator to 5 mm/s and 2 mm, respectively. Tactile data were collected from

the 16 channels while applying 170 grasp–release actions on each object. During each

grasp–release action, the gripper closed the clamps for 1.2 seconds, then opened them for

2 seconds.

The piezoelectric PVDF sensors produce charges when subjected to mechanical

stimulation. Therefore, as a response to grasping, the charge across a sensor decreases

forming a negative peak, then the sensor’s response return to its initial state as the gripper

holds the object. When an object is released, the charge increases creating a positive peak.

An example of sensors’ response to a grasp–release action is shown in Figure 5.6. In this

figure, we present the response of 8 sensors, within one sensing patch, to the grasp–release
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Fig. 5.6 Example of the response of sensors to grasp and release actions.

event. All sensors in contact with an object exhibit the same behavior but with different

amplitudes.

However, out of the signals we extracted only the grasp peaks to reduce the number of

samples on which to compute the features for the next training procedure. Using Matlab,

we implemented an automated pre–processing technique to extract N consecutive samples

simultaneously from each of the 16 channels at the instance of grasp. The technique is

based on a threshold allowing an easy implementation on the IE. In this way, the threshold

acts as a trigger for the grasp signals, avoiding continuously analyzing the whole raw data

even though a grasp action did not happen. Since each sensor can present a different offset

due to fabrication, a threshold must be set for each one of them. As a result, the acquired

data for each grasp action is a 2D tensor and can be formulated as X ∈ R16×N , where 16

is the number of sensors and N is the number of samples.

In particular, two values for N, i.e. N = 40 and N = 80, were chosen to investigate

the effect of having a different number of samples on the classification accuracy and
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Fig. 5.7 Tactile signal pre–processing.

Table 5.2 Datasets.

Dataset Name Nb. of Nb. of Samples Total Nb.
Classes for each Class of Samples

Cube_80 5 170 850
Cylinder_80 3 170 510
Cube_40 5 170 850
Cylinder_40 3 170 510
Merged_40 5 170 1360
Merged_80 5 170 1360

computational efficiency. Figure 5.7 illustrates the pre–processing technique on one tactile

signal from one channel.

5.2.2.2 Datasets

After the preprocessing of tactile information for all grasps performed on the eight objects,

we obtained the datasets presented in Table 5.2. Cube_80 and Cylinder_80 correspond to

the grasp peaks with N = 80 samples gathered from the cubes and cylinders, respectively.

Similarly, Cube_40 and Cylinder_40 are obtained by the grasp peaks with N = 40 samples.

Moreover, we built two datasets, namely Merged_80 and Merged_40, that were obtained

by merging Cube_80 with Cylinder_80 and Cube_40 with Cylinder_40, respectively.
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Fig. 5.8 Feature Extraction.

5.2.2.3 Feature Extraction

To find a good representation of the tactile data and reduce its dimension, we extracted the

mean (µ) and standard deviation (σ ) from each grasp peak and use them as features. As a

result, each grasp action X was transformed into a one–dimensional array x ∈ R32×1 as

sketched in Figure 5.8. This array represents one sample of the datasets that will be used to

train hardness classification models. In the following, the datasets presented in Table 5.2

from which the features were extracted will be named Cube_80_feat, Cylinder_80_feat,

Cube_40_feat, Cylinder_40_feat, Merged_40_feat, Merged_80_feat, respectively.

5.2.2.4 Classifiers

For classifying the hardness level, we proposed three machine learning algorithms namely

a Single–layer Feed–Forward Neural Network (SLFNN), a Support Vector Machine

(SVM), and a shallow Convolution Neural Network (CNN). The SLFNN and SVM were

trained using the datasets after the feature extraction. On the other hand, the CNN was

trained directly on the tactile data obtained after the preprocessing phase. These algorithms

were trained to solve two classification problems: (i) hardness level on objects with the

same shape, and (ii) hardness level on objects with a different shape. For case (i), the

cube datasets were employed, i.e. Cube_40 and Cube_80 for the CNN, Cube_40_feat

and Cube_80_feat for SLFNN and SVM. While for case (ii) the merged datasets were
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adopted, i.e. Merged_40 and Merged_80 for CNN, Merged_40_feat and Merged_80_feat

for SLFNN and SVM. In the following, the algorithms are briefly described.

5.2.2.5 Support Vector Machine

SVM is capable of capturing complex relationships between data points. Therefore,

we implemented only the linear kernel due to its efficiency in terms of memory and

computation [209]. The inference of one input datum z follows the One–vs–One (OvO)

strategy that splits the multi–class classification into one binary classification problem per

each pair of hardness levels, solving (5.1):

y = sign(w · z+b) (5.1)

where w and b are the support vector and bias, respectively. The eventual label of z is

assigned according to the majority of votes among the predicted classes.

Sign(y) =

+1, if x > 0

0, otherwise
(5.2)

5.2.2.6 Single–layer Feed–Forward Neural Network

Single–layer Feed–Forward Neural Networks (SLFNNs) are fully connected networks

that are trained through the backpropagation technique. These models mimic the structure

of the human brain’s neural network such that all neurons in one layer are connected to the

neurons in the next layer. It has proven to be efficient in terms of computational efficiency

and modeling multi–class hardness classification problems [161, 162]. The prediction

function of an SLFNN is:

f (z) = so f tmax

(
Neu

∑
i=1

βi, jφ(z ·wi +bi)+Bi, j with j = 1, ...,5

)
(5.3)
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where z the tested datum, Neu is the number of hidden neurons, βi, j and Bi, j are the

weights and biases between the hidden and output layer, respectively, and φ is the ReLU

activation function. w and bi are the weights and biases between the input and hidden

layers, and so f tmax is the Softmax function to predict the label. The output layer contains

5 neurons, as the number of hardness classes, indexed by j in the equation.

5.2.2.7 Convolutional Neural Network

A Convolutional Neural Network (CNN) is one of the most popular deep neural networks

used in a multitude of applications. CNN is composed of different building blocks such as

convolutional, pooling, and fully connected layers. Unlike the SLFNN and SVM which

use hand–crafted features, CNNs are able to combine feature extraction and classification

into a single learning body. Moreover, CNNs have proven their effectiveness when applied

to tactile data decoding [210]. In this work, the tactile signals are used to train a 1–D CNN.

The inputs of this network are the grasp peaks collected in the datasets presented in Table

5.2. The CNN consists of several functional blocks composed of one 1–D convolutional

with ReLU activation, a dropout, and an average pooling layer. The blocks are stacked

sequentially based on the number of convolutions chosen by the designer. In this work,

the number of blocks was set through the f ilter parameter listed below. Stacked at the

bottom of the functional blocks, one 10 neurons dense layer with the ReLU activation

and a dense layer with the softmax activation function provide the classification. The 10

neurons dense layer receives the features extracted by the functional block and flattened

by means of a Flatten layer. Other deep learning models are much less efficient for

resource–constrained implementation, requiring a much higher number of computations

due to their complexity as recently demonstrated in [116, 211, 111].
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5.3 Experimental Setups

5.3.1 Algorithms Hyper-parameters

The training procedure involved model selection, i.e. the tuning of the classifier architec-

ture hyper-parameters. That procedure explored a grid of candidates for each one of the

algorithms. The best candidates were selected by evaluating the accuracy of the validation

set during the training phase.

The hyper–parameter for the SVM was the regularizer λ that has been chosen as the norm

L2 in the range λ = [10i,with i =−4,−3, ...,4] during the training procedure.

The hyper–parameters for the SLFNN were:

• hidden neurons Neu = [10∗ i,with i = 1,2, ...,10];

• L2 regularizer λ = [10i,with i =−4,−3, ...,4].

The structural elements of the CNN were:

• number of convolutional layers from 2 to 4 (the filter candidates were: (8,8),

(16,16), (16,32), (4,8,16), (8,8,8), (8,16,32), (4,8,16,32));

• kernel size Ks = {8,12,16};

• dropout percentage 20%.

The filters represented the number of kernels applied to the input features in each functional

block. For example, setting f = (4,8,16) implied the use of three functional blocks, the

application of 4 kernels to the input tensor, the dropout, the average pooling, and the

doubling in the number of kernels at each next functional block.

5.3.2 Training strategy

To compare the performance of the algorithms on the two hardness classification problems

described in Section 5.2.2.4, all the models were trained on 4 datasets: Cube_40_feat,
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Table 5.3 Training and test splits for the two classification problems.

Classif. Class Train Samples Test Samples
Problems Cubes Cylin Cubes Cylin

Cubes

1 120 - 50 -
2 120 - 50 -
3 120 - 50 -
4 120 - 50 -
5 120 - 50 -

Merged

1 80 40 90 130
2 80 40 90 130
3 80 40 90 130
4 120 - 50 -
5 120 - 50 -

Cube_80_feat, Merged_40_feat, Merged_80_feat for SLFNN and SVM, while Cube_40,

Cube_80, Merged_40, Merged_80 for CNN. The datasets were randomly split into training,

validation, and testing sets. More precisely, in the classification problem of the cubic

objects, the datasets contain 850 data that were split as follows: 70% of data for training

(i.e., 120 data per class), and 30% for testing (i.e., 50 data per class). Whereas, in the case

of the merged datasets, which contain a total of 1360 samples, the data splitting was done

as follows: we randomly extracted 40 samples from each of the three-cylinder classes

that match the cube ones (Section 5.2.1.1), and added them to the cube training set. As a

consequence, we removed 40 random cubes from the training set and considered them in

the test set. The remaining 130 cylinder samples per class were added to the cube test set.

As a result, the merged training set consists of 120 cylinders (40 per class) and 480 cubes

(80 for the three matching hardness levels and 120 for the other two), while the merged

test set consists of 390 cylinders (130 per class) and 370 cubes (90 for the three matching

hardness levels and 50 for the other two). Table 5.3 summarizes the training and test splits

for both classification problems with respect to each hardness class. Before the training of

SLFNN and SVM, the features of the datasets were normalized in the range [0,1] using

the MinMax Scaler. In the case of CNN, the data were normalized along the channels

in the range [0,1]. A grid search technique was employed to find the best configuration
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of hyper–parameters for all the models. The best model was chosen by evaluating the

accuracy of the validation split randomly extracted from the training set (20% of data

were used for validation). For the SLFNN and CNN other parameters were set as follows:

Adam optimizer with a learning rate lr = 10−3, batch size bs = 64, and number of epochs

ep = 100. Moreover, a patience p = 8 was set to implement an early stop criterion on the

validation accuracy. The three algorithms are built using Python with the Keras library. At

the end of the training, the best model for each algorithm was deployed on the STM32

microcontroller for the evaluation of the performance on the edge.

5.3.3 Embedded Implementation

In order to test our models on an embedded device, we implemented using C language

on an STM32 microcontroller [212] a set of functions that provide the fundamental layer

functionalities of the algorithms. The implementation relies on the C standard libraries

and is portable to any device that supports C code. The existing deployment tool, i.e.

X–Cube–AI, is not used due to incompatibility with other edge devices that can be adopted

in the future. Besides the classifiers, the feature extraction and normalization stages were

implemented on the edge as well. In the following, the parameters of feature extraction,

normalization, and algorithms that were saved on the STM32 microcontroller are listed.

To evaluate the performance of the deployed models, we computed the accuracy on the

test sets, the inference time, and the energy consumption.

5.3.3.1 Feature Extraction and Normalization Memory Footprint

Before the online inference, we performed the same feature extraction and normalization

steps on the input data as for the offline training phase (see Section 5.2.2.3). The features

are computed online when SLFNN and SVM classifiers are employed, thus they do not

require any storage of parameters. Afterward, the normalization is computing on the

features and on the channels in the case of CNN. As previously mentioned, the MinMax

scaler was adopted to normalize data in the range [0,1] according to equation 4.1, where
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xmax and xmin are the maximum and minimum values of features or channels, respectively.

Thus, xmin and xmax computed on the training data for each feature and channel were

stored on the device for the online normalization of data. As a result, 32 xmin and xmax

values were saved for SLFNN and SVM, while 16 values were for CNN.

5.3.3.2 SVM Device Memory Footprint

The w and b parameters of each trained SVM binary (4.5) classifier were stored in a Pickle

file in the device. Then, a Python script was written to extract the model parameters for

the inference phase and save them into header and source files. Since the OvO training

strategy was exploited and the number of hardness classes is 5, the number of binary

classifiers is 10 resulting in 10 biases b saved in the memory of the STM32. Moreover,

since an input datum is represented by 32 features, 320 values for w parameters were

deployed on the device. In the case of linear SVM, the number of parameters (and bytes)

is equal for each hardness classification problem addressed in this study.

5.3.3.3 SLFNN Device Memory Footprint and implementation

According to (5.3), Neu β weights and B biases for each class, along with the 32∗Neu

w weights and Neu b biases were stored in .h5 format on the device. Another Python

script is used to extract the network parameters and convert them to a suitable format

for the inference phase, generating headers and source files. The amount of parameters

depends on the best configuration of neurons Neu found during the training procedure.

Formalizing, the number of parameters for SLFNN can be computed as Nparams = Neu∗

(n f eat + 1+ nclasses)+ nclasses, where n f eat is the number of features and nclasses

the number of classes.

Regarding the implementation, the inference algorithms of SLFNN models consists of

two fully connected layers. The first layer supports layer fusion for the ReLU activation

function. This is done to eliminate the extra reads and writes that would occur if we treated

this layer as a separate one. While the second layer only implements the vector-matrix
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multiplication and is followed by the efficient argmax function for classification replacing

the much more expensive Softmax function. The argmax function returns zero for every

output value except for the maximum where it returns one.

5.3.3.4 CNN Device Memory Footprint and implementation

The number of parameters stored in the device for the CNN depends on the number of

functional blocks, the number of filters in each block, and the kernel size. These hyper-

parameters were chosen during the training procedure. The number of parameters for each

functional block can be computed as nchannels∗ ker_size∗ f ilt + f ilt, where nchannels

represents the number of output filters of the previous block (in the case of the first block

nchannels corresponds to the channels of the input, i.e. 16), ker_size the kernel size, and

f ilt the number of output filters. Additionally, Neu∗ (n f eat +1+nclasses)+nclasses

parameters for the fully connected layer stacked to the functional blocks were saved on

the device as well, where n f eat represents the number of features extracted by the last

functional block.

For the implementation, the best models are saved in .h5 format, then a Python script

is used to extract the CNN parameters and generate the header and source files used for

model deployment. The implementation features the main building blocks of CNN which

consist of 1-D convolution layer/s, average pooling/s, and fully connected layers. Similar

to SLFNNs, the CNN implementation supports layer fusion for the activation function

and the Softmax classification layer is replaced by the simple argmax function.

5.3.4 Inference Time

The inference time is defined as the time interval that the edge device requires to output a

classification result after it receives an input datum. The STM32 hardware abstraction layer

(HAL) provides a HAL_GetTick() function that measures the elapsed time in milliseconds

[111]. Thus, it can be used to compute the inference time on the microcontroller by

calculating the difference between a new input datum read and the previous one.
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5.3.5 Energy Consumption

The energy consumption was computed based on the following equation:

E = P · t (5.4)

P =V · I (5.5)

where P is the power consumption retrieved by solving Eq.5.5, and t is the inference

time, while, I is the average current and V is voltage. Both values are provided by the

STM32CubeIDE [213].

5.3.6 Optimization using Memory Caching

Memory Caching optimization technique was adopted to decrease the inference time. It

is based on cache memory which is a small and fast temporary storage area close to the

CPU that can be found in computers/microcontrollers. It allows the processor to retrieve

data faster than accessing the DRAM memory, thus providing a more efficient, easy,

and near–instant data retrieval solution. In general, there are three cache levels (i.e., L1,

L2, and L3) that identify increasing storage capacity and distance from the CPU. The

STM32H7 series devices contain only an L1–cache which is small but extremely fast.

It provides an optional L1–cache for the data (D–cache) and the instructions (I–cache),

with up to 16 Kbytes per type [214].Figure 5.9 illustrates the system architecture of the

STM32H7 series. L1–cache stores a set of instructions and data near the CPU to prevent

frequently used instruction/data from being fetched multiple times from the DRAM by the

CPU. Moreover, the bus accesses to the subsystem memory, which takes more than one

CPU cycle to execute, are different from the CPU pipeline instruction stream execution

[215]. Therefore, cache memory is meant to speed up the read/write operations by having

the data locally available so that it can be accessed in only one clock cycle, thus providing

a huge raise in performance especially if the model that is small enough to fit entirely in
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Fig. 5.9 STM32H7 series system architecture [1]

the L1 cache. Therefore, the CPU I-cache and D-cache were enabled for a performance

improvement in terms of latency [216].

5.4 Results and Discussion

We assessed the performance of the proposed hardness classification tactile sensing system

on the commercial Microcontroller Unit (MCU) STM32 NUCLEO H745ZI–Q board in

terms of accuracy, memory, latency, and energy. This board hosts an ARM Cortex–M7

core running at 480 MHz, with 2 MB flash memory and 1 MB SRAM.

5.4.1 Accuracy

As described in Section 5.2.2.4, the linear SVM, SLFNN, and the 1D–CNN algorithms

were trained on four different datasets, obtaining four models for each algorithm.

Table 5.4 shows the classification accuracy of the SVM models on the test sets. The

first column reports the datasets, the second the accuracy on the cubes object, the third the

accuracy on the cylinders, and the last the overall accuracy. The accuracy of the cylinders

and the overall one were computed only in the case of the merged datasets since they
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contain both objects. As a result of reducing the number of samples used to represent a

grasp signal from N = 80 to N = 40, the classification accuracy slightly decreases in both

problems. Moreover, for the merged datasets the accuracy on the cubes is higher than on

the cylinders, probably because only a small subset of cylinders was employed to train the

models.

Table 5.4 SVM Accuracy.

Datasets Cubes Cylinders Overall
Cube_80_feat 100 – –
Cube_40_feat 99.6 – –
Merged_80_feat 99.2 98.21 98.59
Merged_40_feat 98.4 94.87 96.26

Table 5.5 presents the classification accuracy of the SLFNN models. The models

achieve a 100% accuracy on the cubes except for Cube_40_feat (99.6%). Concerning the

merged datasets, the SLFNN presents a similar trend to the SVM: the accuracy for cubes

is higher than the accuracy for cylinders. Moreover, by reducing the number of samples to

represent a grasp signal, the drop in accuracy is small. In general, the SLFNN outperforms

the SVM when the merged datasets were employed, meaning that it is more suitable to

classify the hardness levels when objects of different shapes are grasped. The best SLFNN

models are shown in Figure 5.10. The models trained with the datasets containing only

the cubes reach out for a simpler solution, i.e. with a low number of neurons in the hidden

layer. On the opposite, the models trained with the merged datasets required a greater

number of neurons, thus increasing the inference time, the memory footprint, and the

energy consumption.

Table 5.5 SLFNN Accuracy.

Datasets Cubes Cylinders Overall
Cube_80_feat 100 – –
Cube_40_feat 99.6 – –
Merged_80_feat 100 98.71 99.38
Merged_40_feat 100 95.90 97.50
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(a)
Cube_80_feat

(b)
Cube_40_feat

(c)
Merged_80_feat

(d)
Merged_40_feat

Fig. 5.10 Best SLFNN models: a) Cube_80_feat, b) Cube_40_feat, c) Merged_80_feat,
and d) Merged_40_feat.

The classification accuracy of CNN models is reported in Table 5.6. The accuracy on

only cube samples (i.e., 100% and 99.6%) is the same of SVM and SLFNN architectures.

On the other hand, CNN achieves the best overall accuracies on the merged datasets,

presenting the highest performance in the classification of the cylindrical objects. As for

the other classifiers, the classification accuracy of Cube_40 and Merged_40 is lower than

Cube_80 and Merged_80, respectively. However, the drop in accuracy for the merged

dataset is lower with respect to the other two classifiers.

The best CNN models are presented in Figure 5.11. All the CNN best models consist

of two functional blocks (a 1-D convolutional with ReLU activation, a dropout, and

an average pooling layer) and two fully connected layers, where the first one has the

ReLU activation function and the second the Softmax activation function providing the

classification. The models for the cubes classification present 8 filters in both convolutional

layers, while the models that classify both shapes have 16 filters in both layers, thus

presenting a higher number of parameters, that in turn leads to a higher inference time,

memory occupation, and a energy consumption.
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(a)
Cube_80_feat

(b)
Cube_40_feat

(c)
Merged_80_feat

(d)
Merged_40_feat

Fig. 5.11 Best CNN models: a) Cube_80_feat, b) Cube_40_feat, c) Merged_80_feat, and
d) Merged_40_feat.

To summarize, for models trained with only the cubes, all algorithms achieved the

same classification accuracy, i.e. 100% for Cube_80(_feat) and 99.2% for Cube_40(_feat).

Whereas, for the models trained with both objects, CNNs outperform SLFNN and SVM

by achieving higher classification accuracy on cylinders. Moreover, in all cases, it is

observed that the accuracy decreases when the number of samples for the grasp signals

halves from N = 80 to N = 40.

5.4.2 Memory Footprint

As described in Section 5.3.3, to normalize the input samples during the online pre–

processing stage, xmin and xmax parameters in (??) must be deployed on the edge device

for each feature in case of SVM and SLFNN, or for each CNN input channel. As

mentioned, the linear SVM classifier trained with the OvO strategy and with 5 classes
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Table 5.6 CNN Accuracy.

Datasets Cubes Cylinders Overall
Cube_80 100 – –
Cube_40 99.6 – –
Merged_80 100 99.23 99.53
Merged_40 99.2 97.17 98.13

requires 320 w and 10 biases to be stored in the device. Table 5.7 reports the memory

footprint of the SVM classifiers. The first column shows the training datasets, and the

second, third, and last columns report the number of parameters stored in the memory of

the edge device and the number of bytes between the brackets for the pre–processing, the

classifier, and the total amount, respectively, for each one of the training datasets. The

parameters were represented as 32-bit floating point numbers.

Table 5.7 SVM memory footprint on the edge device, between parentheses in terms of
bytes.

Datasets Pre–proc Classifiers Total
(bytes) (bytes) (bytes)

Cube_80_feat
Cube_40_feat 64 330 394
Merged_80_feat (256) (1320) (1576)
Merged_40_feat

Table 5.8 shows the memory footprint of the SLFNNs, maintaining the same format

of Table 5.7. The pre–processing phase for SLFNN models is the same one used for SVM

models, thus requiring the same memory size; On the other hand, the number of parameters

in the classifiers depends on the number of hidden neurons as described in Section 5.3.3.

According to the table, the size of the model trained with Cube_40_feat is approximately

half of the one trained with Cube_80. In contrast, the size of the model trained with

Merged_40_feat is only 12% smaller compared to the one trained with Merged_80_feat.

It is straightforward that the size of cubes-based models is significantly lower than the

size of the merged-based models since the lasts require more hidden neurons to solve a

more complex problem.
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Table 5.8 SLFNN memory footprint on the edge device, between parentheses in terms of
bytes

Datasets Pre–proc Classifiers Total
(bytes) (bytes) (bytes)

Cube_80_feat 64 (256) 1525 (6100) 1599 (6396)
Cube_40_feat 64 (256) 765 (3060) 829 (3316)
Merged_80_feat 64 (256) 3045 (12180) 3109 (12436)
Merged_40_feat 64 (256) 2665 (10660) 2729 (10916)

Similar to the SLFNN, Table 5.9 reports the memory footprint for the 1–D CNN

models. The MinMax normalization was performed on the tactile data across the 16

channels, hence the total number of xmin and xmax values is 32. Decreasing the input size

resulted in an increase in the size of the model trained with cubes of about 22%. This is

possibly due to the higher number of filters needed to extract more features from a smaller

input. On the opposite, the number of parameters in the model trained with Merged_40

decreased by about 22%.

Table 5.9 CNN memory footprint on the edge device, between parentheses in terms of
bytes

Datasets Pre–proc Classifiers Total
(bytes) (bytes) (bytes)

Cube_80 32 (128) 3217 (12868) 3249 (12996)
Cube_40 32 (128) 3953 (15812) 3985 (15940)
Merged_80 32 (128) 7393 (29572) 7425 (29700)
Merged_40 32 (128) 5793 (23172) 5825 (23300)

In summary, the linear SVM models outperform the SLFNN and 1D–CNN models in

terms of memory requirements for both classification problems. The CNN, which achieved

the best performance in classifying the hardness of objects with different shapes, presents

the worst solution in terms of memory occupation for all four datasets. Straightforwardly,

the SLFNN could represent an alternative choice since it attained a higher accuracy than

the SVM, with a lower memory allocation than the CNN.

For the SVM algorithm, Table 5.10 reports the inference time including the pre–

processing. The pre–processing corresponds to the time measured for feature extraction
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and data normalization. The classification time for all SVM models is equal and requires

only 0.03 ms, while the pre-processing affects most of the inference time and depends on

the input size. In fact, when the size of the input data is reduced by half, the pre–processing

time decreases from 0.138 ms to 0.074 ms. In general, the inference time is lower than

1ms, accomplishing real-time performance.

Table 5.10 SVM inference time including pre–processing.

Datasets Pre–proc Classifiers Total
(ms) (ms) (ms)

Cube_80_feat 0.138 0.03 0.168
Cube_40_feat 0.074 0.03 0.104
Merged_80_feat 0.138 0.03 0.168
Merged_40_feat 0.074 0.03 0.104

In the case of SLFNN, the pre–processing time is the same as the SVM. Unlike the

SVM, the classification time is not negligible and it differs from one model to another due

to the different number of neurons. The inference time in cubes and merged classification

problems decreased by approximately 48% and 33%, respectively, when reducing the

input size from N = 80 to N = 40. In the case of merged datasets, the inference time is

lower than 1ms as SVM, thus SLFNN represents a valuable classifier outperforming the

SVM in terms of accuracy.

Table 5.11 SLFNN inference time including pre–processing.

Datasets Pre–proc Classifiers Total
(ms) (ms) (ms)

Cube_80_feat 0.138 0.126 0.264
Cube_40_feat 0.074 0.063 0.137
Merged_80_feat 0.138 0.226 0.364
Merged_40_feat 0.074 0.171 0.245

Finally, the inference time of CNN models is shown in Table 5.12. Unlike SVM

and SLFNN, the pre–processing time for CNN input samples corresponds only to the

MinMax normalization. However, pre–processing time for both input sizes is negligible

with respect to the whole inference. Nevertheless, reducing the input size played an
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important role in decreasing the inference time by about 50% both for cubes and merged

classification problems. In general, the inference time of the CNN models is above 4ms

and 7ms in the case of cubes and merged datasets, respectively. Even if these times cope

with a real-time application on the STM32 Nucleo, it is worth noting that deploying the

CNN in a more resource-constrained device with a less-performing CPU, the real-time

inference could be not guaranteed.

Table 5.12 CNN inference time including pre–processing.

Datasets Pre–proc Classifiers Total
(ms) (ms) (ms)

Cube_80_feat 0.318 8.513 8.831
Cube_40_feat 0.019 4.429 4.448
Merged_80_feat 0.318 14.723 15.041
Merged_40_feat 0.019 7.279 7.298

To summarize, the SVM models achieved the lowest inference time for both hardness

classification problems. Moreover, by reducing the data size to N = 40, the inference time

decreased by 38% in SVM, 48% (cubes datasets) and 33% (merged datasets) in SLFNN,

about 50% for both datasets in CNN. For the hardness classification problem of objects

with different shapes, the SVM models are more than 2x faster than the SLFNN models,

and up to 70x faster than CNN models. Nevertheless, the total time latency of the SVM

and SLFNN models is substantially low (< 1ms) compared to the CNN models (up to

15ms). Nonetheless, all algorithms met real–time requirements on the STM32 Nucleo.

5.4.3 Energy consumption

Table 5.13 shows the energy consumption of the three models with respect to the datasets.

As expected the energy consumption (5.4) for the SVM models is the lowest due to the

fast inference time. SLFNN shows a slight increase in energy consumption compared

to the SVM due to higher latency. While the CNN models require at least an order of

magnitude higher energy consumption with respect to the other models. Again, this result

is expected because of the higher inference time of CNN models compared to the others
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(Table 5.12). Nevertheless, reducing the input size from N = 80 to N = 40 has also led to

a reduction in energy consumption for all models.

Table 5.13 Energy consumption per inference.

Datasets SVM SLFNN CNN
(µJ) (µJ) (µJ)

Cube_80(_feat) 12.51 19.65 657.82
Cube_40(_feat) 7.74 10.21 331.33
Merged_80(_feat) 12.51 27.04 1120.40
Merged_40(_feat) 7.74 18.25 543.63

5.4.4 Optimization

Table 5.14 shows the improvements in time latency performance reached by means of the

optimization technique discussed in section 5.3.6 by means of the cache memory. The

table shows for each algorithm the inference time and the difference with the inference

without the optimization expressed in ms and as a percentage. For the cube classification

problem, SLFNN presents a similar inference time to the SVM, while for the merged

datasets it has a gap of about 0.03ms. It is worth noting that the inference time for both

classifiers is always below 0.1 ms except for SLFNN classifying the Merged_80_feat

dataset. Even CNN presents a remarkable improvement in the inference time while using

the cache memory: for the classification of the cubes, CNN presents an improvement of

more than 70% with an inference time lower than 2ms, while for the merged datasets

the inference time is reduced by more than 65% achieving about 4ms inference in case

of Merged_80 and 2ms with Merged_40. In general, the memory caching technique

avoids the CPU to accesses many times to the DRAM, thus saving many clock cycles

during the inference of a tactile datum. Since time and energy are directly proportional

(5.4), the improvement in latency performance results in a significant reduction in energy

consumption as can be seen in Table 5.15. The percentages of energy consumption

reduction are similar to the inference time ones.
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Table 5.14 SVM, SLFNN, and CNN inference time with memory caching optimization.

SVM

Datasets
Inference Difference

(ms) (ms)
Cube_80(_feat) 0.077 -0.091 (-54%)
Cube_40(_feat) 0.045 -0.059 (-57%)
Merged_80(_feat) 0.077 -0.091 (-54%)
Merged_40(_feat) 0.045 -0.059 (-57%)

SLFNN

Datasets
Inference Difference

(ms) (ms)
Cube_80(_feat) 0.089 -0.175 (-67%)
Cube_40(_feat) 0.047 -0.090 (-66%)
Merged_80(_feat) 0.111 -0.253 (-70%)
Merged_40(_feat) 0.073 -0.172 (-70%)

CNN

Datasets
Inference Difference

(ms) (ms)
Cube_80(_feat) 1.772 -7.059 (-80%)
Cube_40(_feat) 1.227 -3.221 (-72%)
Merged_80(_feat) 4.105 -10.936 (-73%)
Merged_40(_feat) 1.996 -5.302 (-73%)

For the sake of comparison, the models were optimized and deployed by means of

the X-Cube-AI tool provided by STM [217]. The deployment of the SVM models is not

supported by the tool, thus only the results concerning the SLFNN and CNN are presented.

Tables 5.16 shows the inference time results and has the same structure as Table 5.14.

The tables presents not only the difference in the inference time with the non-optimized

models but also with the optimized ones by adopting the memory caching technique.

Concerning the SLFNN models, models supported by X-Cube-AI are up to faster than the

non-optimized C written models, providing up to 70% inference time reduction. However,

compared to optimized models written in C language, X-Cube-AI models achieved slightly

higher inference time. whereas in the case of CNN, the inference time of CNN models

deployed with X-Cube-AI is significantly lower than the non-optimized C written models

for both classification problems (in between 73% and 82% inference time reduction). and
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Table 5.15 Energy consumption of the models with memory caching optimization.

SVM

Datasets
Energy Difference
(µJ) (µJ)

Cube_80_feat 5.74 -6.77 (-54%)
Cube_40_feat 3.35 -4.39 (-57%)
Merged_80_feat 5.74 -6.77 (-54%)
Merged_40_feat 3.35 -4.39 (-57%)

SLFNN

Datasets
Energy Difference
(µJ) (µJ)

Cube_80_feat 6.63 -13.02 (-67%)
Cube_40_feat 3.50 -6.71 (-66%)
Merged_80_feat 8.27 -18.77 (-70%)
Merged_40_feat 5.74 -12.51 (-70%)

CNN

Datasets
Energy Difference
(µJ) (µJ)

Cube_80 132.00 -525.82 (-80%)
Cube_40 91.40 -239.93 (-72%)
Merged_80 305.78 -814.62 (-73%)
Merged_40 148.68 -394.95 (-73%)

slightly lower than CNN models optimized with memory caching in the case of merged

datasets especially Cube_40 (only 2% inference time reduction). On the other hand, the

X-Cube-AI library is only supported by STM devices, thus not providing a fair comparison

in case of deployment on other edge devices.

5.4.5 Conclusive Remarks

The experiments revealed that we are able to achieve high classification accuracy for both

hardness classification problems using any of the proposed algorithms. However, CNN

models achieved the best accuracy for hardness classification on the merged datasets.

Whereas, in terms of memory, latency, and energy consumption, SVM models outper-

formed significantly CNN models, and slightly SLFNN models. Furthermore, reducing

the size of the input data has resulted in remarkable improvements in the efficiency of



122 Hardness Classification in an Embedded Tactile Sensing System

Table 5.16 SLFNN and CNN inference time after the deployment with X-Cube-AI tool.

SLFNN

Datasets
Inference Diff Not Optim Diff Mem Optim

(ms) (ms) (ms)
Cube_80(_feat) 0.09 - 0.174(-65%) +0.001 (+1%)
Cube_40(_feat) 0.051 - 0.086(-62%) +0. 004(+9%)
Merged_80(_feat) 0.109 -0.255 (-70%) -0.002 (-2%)
Merged_40(_feat) 0.072 -0.173 (-71%) -0.001 (-1%)

CNN

Datasets
Inference Diff Not Optim Diff Mem Optim

(ms) (ms) (ms)
Cube_80(_feat) 1.568 -7.263(-82%) -0. 204(-11%)
Cube_40(_feat) 1.205 -3.243(-73%) -0. 022(-2%)
Merged_80(_feat) 3.083 -11.958(-80%) -1.022(-25%)
Merged_40(_feat) 1.453 -5.845(-80%) -0.543(-27%)

models in terms of memory requirements (up to 46.7% reduction), latency (up to 50%),

and energy (up to 50%), with only slight reduction in accuracy (0.4% on the cubes and a

maximum of 2.3% in Merged models). In order to further improve the implementation

of the models, we adopted the memory caching technique. As a result, we achieved an

additional reduction in latency and energy consumption. It is important to note that the

achieved results enable the use of these models on extremely resource–constrained devices

such as the Cortex–M0 family [218].

5.5 Conclusion

In this work, we presented the implementation on the edge a real–time tactile sensing

system for hardness classification based on machine and deep learning algorithms. We

developed and implemented in plain C a set of functions that provide the fundamental

layer functionalities of the linear SVM, SLFNN, and 1–D CNN models, along with the pre–

processing to extract the features and normalize the data. Furthermore, the implementation

does not rely on any of the existing libraries and therefore it is deployable to any device

that supports C code.
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To evaluate our work we mounted the tactile sensing system onto a Baxter robot and

collected data using 16 sensors by grasping objects of different hardness and shape. Two

classification problems were addressed: 5 levels of hardness classified on the same objects’

shape, and 5 levels of hardness classified on two different objects’ shape. Pre–processing

techniques were employed for extracting the features and normalizing the data. The

models and pre–processing were implemented on STM32 NUCLEO H745ZI–Q board

which hosts an ARM Cortex–M7, where we assessed the performance of the system in

terms of accuracy, memory footprint, time latency, and energy consumption. All the

models presented a high classification accuracy of close to 100% in the first problem

and above 96% in the second problem. Reducing the input size has led to a drastic drop

in inference time and energy consumption with a slight deterioration of the accuracy

in all the models. We also showed that inference time and energy consumption can

be further improved using a memory caching optimization strategy with a reduction of

the two quantities of up to 80% for the CNN. Moreover, we achieved faster inference

using SLFNN C-implementation compared to the STM32 X-Cube-AI libraries, and

slightly slower inference using 1-D CNN compared to the STM32 X-Cube-AI. Eventually,

SVM models have proved to be the best models in terms of memory requirements, time

latency, and energy consumption, whereas in terms of accuracy the CNN achieved the

highest values. On the other hand, SLFNN provided a trade–off between accuracy on

one side and latency time, energy consumption, and memory requirements on another,

by achieving slightly lower accuracy than CNN models and slightly higher latency time,

energy consumption, and memory requirements than SVM models. Eventually, this

work demonstrated the feasibility of integrating fast, small, accurate, and energy-efficient

machine learning models on a resource-constrained device, in order to provide a real–time

robotic tactile sensing system for object hardness classification. This also paves the way

for developing embedded tactile sensing systems for a variety of robotic and prosthetic

applications.





Chapter 6

Conclusion

Intelligent tactile sensing technologies for robots and systems are still in their infancy,

as many technological and systems issues remain unresolved and require strong interdis-

ciplinary efforts to resolve. Object hardness detection is one of the major limitations in

robots. On the other hand, developing efficient signal processing methods to pre-process,

filter, and extract features from an array of tactile sensors on a robot, together with devel-

oping machine learning algorithms to extract high-level information from tactile data, is

one of the main difficulties in developing intelligent tactile sensing systems. Moreover,

embedding these methods and algorithms into robotic applications to extract meaningful

information such as object properties from tactile data is an active challenge. A challenge

driven by device limitations (power constraints, memory limitations, etc.), computational

complexity of processing and machine learning algorithms, and application requirements

(real-time operation, high predictive performance)

In this dissertation, we proposed and integrated a novel tactile sensing system for

the Baxter robot. The system meets the main design criteria for tactile sensors in robots:

fast response, high sensitivity, wide frequency range, flexible sensors, robust, small, and

screen-printed tracks. In addition, the sensor array has its own processing unit (i.e., in-

terface electronics). As a result of our initial work in this dissertation, we developed a

new skin patch to protect our fully screen-printed sensing arrays from electrical noises
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and increase the lifetime of sensors, then we assessed the function of the whole system.

Furthermore, we succeeded in removing electrical and mechanical noise from tactile sig-

nals by implementing an EMA filter on the interface electronics. Experimental evaluation

showed that the developed skin patch and interface electronics can detect different touch

patterns and stimulus of different amplitude and waveforms. Furthermore, the results of

the experiments defined the frequency range of interest and the response of the system to

realistic interactions with the sensors.

Furthermore, computationally efficient pre-processing techniques were designed to

extract and filter data of interest from multiple sensor signals, extract features, and

normalize tactile data, which in turn aimed to reduce the computational complexity of the

developed ML algorithms for object classification. We validated our proposed processing

strategy using single-layer feed-forward neural networks for 3-class object classification

problem. When testing a trained fully connected neural network, with 50 hidden neurons,

on a simple feature (i.e., mean value per channel) to classify objects, we achieved a

94.4% classification accuracy. Moreover, a loss function-based learning strategy, which

weight the importance of the computational cost during the training phase, was proposed.

This strategy was evaluated on 5-class object classification problem using our tactile

sensing system equipped on Baxter gripper, which have resulted in a trade–off between

the accuracy of the model and the computational of the whole processing unit using

different machine learning algorithms. This strategy provided the best configuration

of the system required for object classification in terms of number of sensor, feature

extraction techniques and prediction algorithms. Implementing this strategy, we found

that training SVM models using four sensors (i.e., one feature per sensor signal) provided

a 99.21% classification accuracy that was slightly lower than the best accuracy achieved

by the fully connected models (i.e., 0.4% difference); however, it managed to decrease

the computational cost of the whole processing unit to 2818 FLOPs compared to 9300

FLOPS in the R-FC models, as R-FC requires more neurons and features to achieve the

same classification accuracy of the SVM model.
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These studies have paved the way toward developing and implementing on the edge a

real-time robotic tactile sensing system for object hardness classification. We implemented

the proposed memory-less signal processing and feature extraction methods in order to

achieve real-time processing. We developed and implemented in plain C a set of functions

that provide the fundamental layer functionalities of the SLFNN, linear SVM, and 1–D

CNN models, along with the pre–processing methods to extract the features and normalize

the data. The implementation was deployed on a resource constrained device (i.e., STM32

Nucleo board). The models were designed on C without using any libraries to make them

deployable to any device that supports C code. Shallow ML algorithms for the deployment

on resource–constrained devices were designed. To evaluate our work, we collected

data by grasping objects made of the same materials but of different hardness and shape.

Two classification problems were addressed: (i) 5 levels of hardness classified having

similar shape (i.e., Cube or cylindrical), and (ii) 5 levels of hardness classified having two

different objects’ shape. However, in the second case, models were trained on tactile data

that corresponds to cubic objects of different hardness, then tested on cylindrical objects.

We achieved quite similar classification accuracy using each of the three implemented

algorithms, however, CNN models achieved higher classification accuracy compared to

other algorithms in the second classification problem. On the other hand, the SVM models

outperformed significantly CNN models, and slightly the SLFNN models in terms of

memory, latency, and energy consumption. Furthermore, reducing the matrix size of the

input data from (16 x 80) to (16 x 40) has resulted in remarkable improvements in the

efficiency of models in terms of memory requirements (up to 46.7% reduction), latency

(up to 50%), and energy (up to 50%), with only slight reduction in accuracy (0.4% on the

Cube dataset, and up to 2.3% on the Merged dataset). Moreover, to increase inference

speed and improve the operator’s performance memory caching was enabled. Overall, we

achieved for both classification problems a real-time inference (< 0.08 ms), low power

consumption (i.e., 3.35 µJ), extremely small models (i.e., 1576 Byte), and very high object

hardness classification accuracy (above 98%).



128 Conclusion

Eventually we have provided a low-cost, highly accurate, and real-time robotic tactile

sensing system for object hardness classification that was achieved using the proposed

system and processing approach. One of the drawback of these system is related to the

tactile sensor response. In the future integration of the tactile sensing system can be

extended to robotic/prosthetic hands, to cover all fingers. Moreover, different processing

methods can be explored and investigated to extract more meaningful information regard-

ing object properties such as texture, or contact events such as slippage, and employee

such information for grasp, stability, and manipulation control in robotic hands. We

believe that such processing and ML algorithms can be useful in the cases that involve

tactile feedback (e.g., feedback to humans in prosthetics, or feedback to robots) as they

provide real-time inference.
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