9,244 research outputs found

    Modelling mitral valvular dynamics–current trend and future directions

    Get PDF
    Dysfunction of mitral valve causes morbidity and premature mortality and remains a leading medical problem worldwide. Computational modelling aims to understand the biomechanics of human mitral valve and could lead to the development of new treatment, prevention and diagnosis of mitral valve diseases. Compared with the aortic valve, the mitral valve has been much less studied owing to its highly complex structure and strong interaction with the blood flow and the ventricles. However, the interest in mitral valve modelling is growing, and the sophistication level is increasing with the advanced development of computational technology and imaging tools. This review summarises the state-of-the-art modelling of the mitral valve, including static and dynamics models, models with fluid-structure interaction, and models with the left ventricle interaction. Challenges and future directions are also discussed

    Use of 3D rotational angiography to perform computational fluid dynamics and virtual interventions in aortic coarctation

    Full text link
    Computational fluid dynamics (CFD) can be used to analyze blood flow and to predict hemodynamic outcomes after interventions for coarctation of the aorta and other cardiovascular diseases. We report the first use of cardiac 3‐dimensional rotational angiography for CFD and show not only feasibility but also validation of its hemodynamic computations with catheter‐based measurements in three patients.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154333/1/ccd28507.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154333/2/ccd28507_am.pd

    Crepuscular Rays for Tumor Accessibility Planning

    Get PDF

    Graphics processing unit accelerating compressed sensing photoacoustic computed tomography with total variation

    Get PDF
    Photoacoustic computed tomography with compressed sensing (CS-PACT) is a commonly used imaging strategy for sparse-sampling PACT. However, it is very time-consuming because of the iterative process involved in the image reconstruction. In this paper, we present a graphics processing unit (GPU)-based parallel computation framework for total-variation-based CS-PACT and adapted into a custom-made PACT system. Specifically, five compute-intensive operators are extracted from the iteration algorithm and are redesigned for parallel performance on a GPU. We achieved an image reconstruction speed 24–31 times faster than the CPU performance. We performed in vivo experiments on human hands to verify the feasibility of our developed method

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Computing Fractional Flow Reserve From Invasive Coronary Angiography Getting Closer

    Get PDF

    Liver Segmentation and its Application to Hepatic Interventions

    Get PDF
    The thesis addresses the development of an intuitive and accurate liver segmentation approach, its integration into software prototypes for the planning of liver interventions, and research on liver regeneration. The developed liver segmentation approach is based on a combination of the live wire paradigm and shape-based interpolation. Extended with two correction modes and integrated into a user-friendly workflow, the method has been applied to more than 5000 data sets. The combination of the liver segmentation with image analysis of hepatic vessels and tumors allows for the computation of anatomical and functional remnant liver volumes. In several projects with clinical partners world-wide, the benefit of the computer-assisted planning was shown. New insights about the postoperative liver function and regeneration could be gained, and most recent investigations into the analysis of MRI data provide the option to further improve hepatic intervention planning
    • 

    corecore