221 research outputs found

    A Study of Environment Noise in Ultra-Wideband Indoor Position Tracking

    Get PDF
    This work is motivated by the problem of improving the accuracy of indoor ultra-wideband (UWB) position tracking through the study of the environment noise that affects such a system. Current systems can provide accuracy in the range of 30-100 cm in a small building, suitable for applications that require rough room-level precision such as asset tracking and surveillance. Our long-term goal is to improve the accuracy to 1 cm or better, expanding potential applications to telepresence, augmented reality, training and entertainment. This work investigates the possibility of systematically observing the measurement noise of an UWB position tracking system and building a map of it throughout a facility. In order to understand the effect of environment noise on UWB indoor positioning and in turn filter out the effects of this noise, it is important to have an idea of what this measurement noise looks like in a real world scenario. In this work, an understanding of the measurement noise is gained by taking many measurements using a commercially-available UWB positioning system installed in a real world scenario and analyzing these measurements in various ways. To the author\u27s knowledge, no one has used such an exhaustive approach to analyze measurement noise in UWB indoor positioning. The results of this work show that the measurement noise that affects a UWB indoor position tracking system can be effectively modeled using a weighted sum of Gaussians, is stable over time and is locally similar. Furthermore, a particle filter augmented with a measurement noise map is proposed to improve position tracking accuracy. Finally, a metric is proposed that can be used to quantify expected system performance based on sensor location, sensor orientation and facility floorplan. Using this metric, a procedure is developed to determine the parameters, i.e. sensor position, sensor orientation and potentially others, of the physical installation of the UWB tracking system that will produce minimum measurement error based on sensor geometry and physical facility constraints

    Indoor Localization Using Channel State Information with Regression Artificial Neural Network

    Get PDF
    RÉSUMÉ Dans cette recherche, les informations sur l'état du canal (CSI) sont utilisées pour localiser les stations mobiles dans un environnement intérieur. À cette fin, deux ordinateurs portables équipés de la carte Intel Wireless Wi-Fi Wireless Link 5300 disponible dans le commerce sont utilisés. Les informations CSI sont collectées en établissant une connexion sans fil entre deux machines de plus de 200, 70 et 52 points de référence (RP) aux sixième, cinquième et troisième étages respectivement, dans l’immeuble Lassonde de Polytechnique Montréal servant de banc d’essai expérimental. Différentes approches de localisation sont étudiées et comparées les unes aux autres en termes de précision de localisation. Dans la première approche, les CSI collectés alimentent directement le réseau de neurones artificiels (RNA) en tant que caractéristiques d’entrée et le RNA appris est utilisé en tant qu’algorithme de correspondance du modèle afin de prédire la position de l’utilisateur. La deuxième approche consiste à appliquer à l’entrée de RNA les paramètres pertinents du canal extrait représentant le nombre réduit d’entités à l’entrée de RNA. Enfin, une exploration est effectuée pour trouver la meilleure configuration de couches cachées et de facteurs d'étalement pour les réseaux Perceptron multicouche (MLP) et Réseaux de neurones à régression générale (GRNN), respectivement.----------ABSTRACT In this research, the Channel State Information (CSI) is leveraged to locate mobile stations in an indoor environment. For this purpose, two laptops equipped with the off-the-shelf Intel Wi-Fi Wireless Link 5300 (NIC card) are used. CSI information is collected by establishing a wireless connection between two machines over 200, 70 and 52 reference points (RP) on sixth, fifth, and third floors respectively, in Lassonde building of Polytechnique Montreal as the experimental testbed. Different geolocation approaches are investigated and compared with each other in terms of location accuracy and precision. In the first approach, the collected CSIs are directly fed to the artificial neural network (ANN) as input features and the learned ANN is used as the patternmatching algorithm in order to predict the user’s location. The second approach consists in applying at the input of the ANN the extracted channel relevant parameters representing the reduced number of features at the input of ANN. Finally, exploration is performed to find the best configuration of hidden layers and spread factors for Multilayer Perceptron (MLPs) and General Regression Neural Networks (GRNNs), respectively

    Multistatic radar optimization for radar sensor network applications

    Get PDF
    The design of radar sensor networks (RSN) has undergone great advancements in recent years. In fact, this kind of system is characterized by a high degree of design flexibility due to the multiplicity of radar nodes and data fusion approaches. This thesis focuses on the development and analysis of RSN architectures to optimize target detection and positioning performances. A special focus is placed upon distributed (statistical) multiple-input multipleoutput (MIMO) RSN systems, where spatial diversity could be leveraged to enhance radar target detection capabilities. In the first part of this thesis, the spatial diversity is leveraged in conjunction with cognitive waveform selection and design techniques to quickly adapt to target scene variations in real time. In the second part, we investigate the impact of RSN geometry, particularly the placement of multistatic radar receivers, on target positioning accuracy. We develop a framework based on cognitive waveform selection in conjunction with adaptive receiver placement strategy to cope with time-varying target scattering characteristics and clutter distribution parameters in the dynamic radar scene. The proposed approach yields better target detection performance and positioning accuracy as compared with conventional methods based on static transmission or stationary multistatic radar topology. The third part of this thesis examines joint radar and communication systems coexistence and operation via two possible architectures. In the first one, several communication nodes in a network operate separately in frequency. Each node leverages the multi-look diversity of the distributed system by activating radar processing on multiple received bistatic streams at each node level in addition to the pre-existing monostatic processing. This architecture is based on the fact that the communication signal, such as the Orthogonal Frequency Division Multiplexing (OFDM) waveform, could be well-suited for radar tasks if the proper waveform parameters are chosen so as to simultaneously perform communication and radar tasks. The advantage of using a joint waveform for both applications is a permanent availability of radar and communication functions via a better use of the occupied spectrum inside the same joint hardware platform. We then examine the second main architecture, which is more complex and deals with separate radar and communication entities with a partial or total spectrum sharing constraint. We investigate the optimum placement of radar receivers for better target positioning accuracy while reducing the radar measurement errors by minimizing the interference caused by simultaneous operation of the communication system. Better performance in terms of communication interference handling and suppression at the radar level, were obtained with the proposed placement approach of radar receivers compared to the geometric dilution of precision (GDOP)-only minimization metric

    Étude d'un réseau de capteur UWB pour la localisation et la communication dans un environnement minier

    Get PDF
    Le jour n'est peut-être pas très loin où une mine pourra compter sur un système de communication sans fil pour échanger des données, transmettre des informations ou localiser des travailleurs dans le cas d'une activité normale ou en cas d'urgence. Au point de vue de la sécurité, un système de communications sans fil aurait l'avantage de localiser en temps réel un travailleur ou un engin. Les travailleurs se déplacent sans cesse dans une mine. Avec une technologie sans fil permanente, on pourrait localiser les personnes de manière relativement précise. Même en cas d'éboulement, avec une technologie adaptée, il serait possible de savoir où se trouve la personne en détresse. Notre travail de recherche s'inscrit dans la perspective du développement d'un réseau de capteurs ultra large bande (UWB) pour deux applications : l'aide à la radiolocalisation et l'extension du réseau de capteurs sans fil dans la mine. Cette étude est focalisée sur trois aspects. La première partie de notre étude consiste à étudier tous les problèmes reliés à la radiolocalisation dans la mine. Vue l'importance de cette application, nous avons mis en oeuvre un réseau de capteurs en tenant compte d'un futur déploiement dans la mine. La technologie utilisée repose sur la technologie ultra large bande. Comme il n'existe pas de travaux qui traitent ce genre de problèmes, nous avons commencé notre étude par une caractérisation du canal UWB dans les mines souterraines. Pour atteindre ces objectifs, plusieurs campagnes de mesure sur site (mine expérimentale) ont été menées. Nous sommes parvenus à une modélisation du canal de propagation et à avancer des recommandations pour aider au dimensionnement d'un réseau de capteurs dans ce type d'environnement. Dans la première partie, le but est d'étudier le problème de radiolocalisation avec les réseaux de capteurs. Notre scénario proposé serait de placer des capteurs sur chaque agent (mineur, engin). On suppose que chaque noeud (agent) qui circule à travers un réseau d'ancre maillé (déjà déployé), va extraire des informations de distance (en utilisant le critère de temps d'arrivée), ensuite il va utiliser un algorithme de positionnement distribué afin de déterminer sa propre position. Lors de cette partie nous avons aussi étudié quelques estimateurs cohérents et non-cohérents du temps d'arrivée. La caractérisation de l'erreur de mesure utilisant le temps d'arrivée dans un environnement minier a été aussi évaluée. Enfin, dans la dernière partie, nous avons analysé par simulations un déploiement d'un réseau de capteurs UWB ad hoc dans la mine. Nous avons choisi d'adopter une approche théorique afin d'évaluer les performances de cette configuration. Une conception intercouche pour un routage optimal a été étudiée. Nous avons utilisé la couche physique/réseau afin de minimiser l'énergie consommée lors de l'acheminement du données

    On the feasibility of the communications in the TVWS spectrum analysis and coexistence issue

    Get PDF
    In the last decade, the enormous growth in the wireless industry has come from using only a small part of the wireless spectrum, nominally less than 10% under 3 GHz. Nowadays, the vast majority of the available spectral resources have already been licensed. Measurements made by the Federal Communication Commission (FCC) have shown that a great part of the spectrum, although allocated, is virtually unused. For all this reasons, in the last years, several countries have already (USA) or are in the process (EU, China, Japan, South Korea) of switching off analog TV broadcasting in favor of Digital Terrestrial Television (DTT) broadcasting systems and digital switchover plans have driven a thorough review of TV spectrum exploitation. The resulting unused channels within this band are called “TV white spaces” (TVWS). Even after the redistribution of the digital TV channels, the problem of an efficient utilization of the allocated frequencies is still far from being solved. For example, there are still large territorial areas on which, although allocated, the TV channels result unused, due to coverage problems. New spectrum allocation approaches such as the dynamic spectrum access method have been studied. This new concept implies that the radio terminals have the capacity to monitor their own radio environment and consequently adapt to the transmission conditions on whatever frequency band are available (adaptive radio). If this concept is supplemented with the capacity of analyzing the surrounding radio environment in search of white spaces, the term adaptive radio is extended to Cognitive Radio (CR). The spectrum management rule of CR is that all new users for the spectrum are secondary (cognitive) users (SU) and requires that they must detect and avoid the primary (licensed) users (PU) in terms of used frequencies, transmission power and modulation scheme. In the TV bands specifically, the presence of PUs (e.g. TV broadcasters) can be revealed both performing a spectrum sensing operation and considering the information provided by the external databases called “geo-location databases” (GL-DB). The database provides, for a certain location, the list of the free TV channels and the allowable maximum effective isotropic radiated power (EIRP) for transmitting without harmful interference to incumbent users. Decision thresholds are still a critical parameter for protecting services in a scenario where cognitive devices would be operating. There are cases where the approach based on GL Spectrum Occupancy DB might not be available, either because the database does not exist for that area (for example in non densely populated areas) or in the case that access to the database is not possible (deep indoor operation, low populated areas etc.). Several studies have suggested that radio noise has increased significantly over the last decades and consequently the assumptions about decision thresholds and interference protection ratios might be outdated. The Hidden Node Margin (HNM) is a parameter that quantifies the difference between the potential interfered signal values at the location where it is measured or estimated by the cognitive device, and the actual value at the location where the receiving antenna for this signal is located. HNM is a key parameter to define the protection requirements that cognitive devices must comply in order not to create any harmful interference to broadcast receiving systems. In this context, this thesis goes in a precise direction, with four main topics related to the feasibility of communication cognitive systems operating in the TVWS, considering coexistence as the main operational issue. The first topic studies new spectrum sensing approaches in order to improve the more critical functionality of CRs. In the second topic an unlicensed indoor short-range distribution system for the wireless retransmission in the DTT band of High definition TV (HDTV) contents with immediate implementations as home entertainment systems has been carried out. The third topic of this thesis is about a particular database developed in order to provide information to easily calculate HNM values and associated statistics, TV Channel Occupancy and Man Made Noise Upper Limits. The empirical data for this work has been recorded in different locations of Spain and Italy during 2011 and 2012 thanks to the partnership between the Department of Electrical and Electronic Engineering (D.I.E.E.) of the University of Cagliari and the Department of Electronics and Telecommunications of the University of Bilbao (UPV/EHU). Finally in the last topic we focus on the IEEE 802.22 WRAN standard evaluating, thanks to extended measurements, the performance of an 802.22 system operating into the same coverage range of a DTT receiver

    Building Information Modelling : Indoor Localization

    Get PDF
    This thesis presents an integrated system where BIM software is used together with IoT devices to visualize data generated in real-time. Two different IoT devices are modelled as case study that collect environmental and localization data. These devices were installed inside a Test room of an area approx. 22 m2 in UiT Narvik premises . The collected data were, filtered & transferred to database server which were then retrieved and visualized by BIM software in real time. The report presents tools and technologies that are implemented to develop such system and provides details on basic blocks required for such integrations. The combined platform visualize information about the things as it happens in real-time. This makes such systems capable for digitalization of physical process and have various application domains. In the report it is applied as monitoring platform for temperature and illumination data and can be used for facility management applications. Similarly, indoor localization is monitored making it applicable for localization and safety management purpose. The performance of the system is also discussed based on test, observations, and calculation
    • …
    corecore