On the feasibility of the communications in the TVWS spectrum analysis and coexistence issue

Abstract

In the last decade, the enormous growth in the wireless industry has come from using only a small part of the wireless spectrum, nominally less than 10% under 3 GHz. Nowadays, the vast majority of the available spectral resources have already been licensed. Measurements made by the Federal Communication Commission (FCC) have shown that a great part of the spectrum, although allocated, is virtually unused. For all this reasons, in the last years, several countries have already (USA) or are in the process (EU, China, Japan, South Korea) of switching off analog TV broadcasting in favor of Digital Terrestrial Television (DTT) broadcasting systems and digital switchover plans have driven a thorough review of TV spectrum exploitation. The resulting unused channels within this band are called “TV white spaces” (TVWS). Even after the redistribution of the digital TV channels, the problem of an efficient utilization of the allocated frequencies is still far from being solved. For example, there are still large territorial areas on which, although allocated, the TV channels result unused, due to coverage problems. New spectrum allocation approaches such as the dynamic spectrum access method have been studied. This new concept implies that the radio terminals have the capacity to monitor their own radio environment and consequently adapt to the transmission conditions on whatever frequency band are available (adaptive radio). If this concept is supplemented with the capacity of analyzing the surrounding radio environment in search of white spaces, the term adaptive radio is extended to Cognitive Radio (CR). The spectrum management rule of CR is that all new users for the spectrum are secondary (cognitive) users (SU) and requires that they must detect and avoid the primary (licensed) users (PU) in terms of used frequencies, transmission power and modulation scheme. In the TV bands specifically, the presence of PUs (e.g. TV broadcasters) can be revealed both performing a spectrum sensing operation and considering the information provided by the external databases called “geo-location databases” (GL-DB). The database provides, for a certain location, the list of the free TV channels and the allowable maximum effective isotropic radiated power (EIRP) for transmitting without harmful interference to incumbent users. Decision thresholds are still a critical parameter for protecting services in a scenario where cognitive devices would be operating. There are cases where the approach based on GL Spectrum Occupancy DB might not be available, either because the database does not exist for that area (for example in non densely populated areas) or in the case that access to the database is not possible (deep indoor operation, low populated areas etc.). Several studies have suggested that radio noise has increased significantly over the last decades and consequently the assumptions about decision thresholds and interference protection ratios might be outdated. The Hidden Node Margin (HNM) is a parameter that quantifies the difference between the potential interfered signal values at the location where it is measured or estimated by the cognitive device, and the actual value at the location where the receiving antenna for this signal is located. HNM is a key parameter to define the protection requirements that cognitive devices must comply in order not to create any harmful interference to broadcast receiving systems. In this context, this thesis goes in a precise direction, with four main topics related to the feasibility of communication cognitive systems operating in the TVWS, considering coexistence as the main operational issue. The first topic studies new spectrum sensing approaches in order to improve the more critical functionality of CRs. In the second topic an unlicensed indoor short-range distribution system for the wireless retransmission in the DTT band of High definition TV (HDTV) contents with immediate implementations as home entertainment systems has been carried out. The third topic of this thesis is about a particular database developed in order to provide information to easily calculate HNM values and associated statistics, TV Channel Occupancy and Man Made Noise Upper Limits. The empirical data for this work has been recorded in different locations of Spain and Italy during 2011 and 2012 thanks to the partnership between the Department of Electrical and Electronic Engineering (D.I.E.E.) of the University of Cagliari and the Department of Electronics and Telecommunications of the University of Bilbao (UPV/EHU). Finally in the last topic we focus on the IEEE 802.22 WRAN standard evaluating, thanks to extended measurements, the performance of an 802.22 system operating into the same coverage range of a DTT receiver

    Similar works