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RÉSUMÉ 

Dans cette recherche, les informations sur l'état du canal (CSI) sont utilisées pour localiser les 

stations mobiles dans un environnement intérieur. À cette fin, deux ordinateurs portables équipés 

de la carte Intel Wireless Wi-Fi Wireless Link 5300 disponible dans le commerce sont utilisés. Les 

informations CSI sont collectées en établissant une connexion sans fil entre deux machines de plus 

de 200, 70 et 52 points de référence (RP) aux sixième, cinquième et troisième étages 

respectivement, dans l’immeuble Lassonde de Polytechnique Montréal servant de banc d’essai 

expérimental. 

Différentes approches de localisation sont étudiées et comparées les unes aux autres en termes de 

précision de localisation. Dans la première approche, les CSI collectés alimentent directement le 

réseau de neurones artificiels (RNA) en tant que caractéristiques d’entrée et le RNA appris est 

utilisé en tant qu’algorithme de correspondance du modèle afin de prédire la position de 

l’utilisateur. La deuxième approche consiste à appliquer à l’entrée de RNA les paramètres 

pertinents du canal extrait représentant le nombre réduit d’entités à l’entrée de RNA. Enfin, une 

exploration est effectuée pour trouver la meilleure configuration de couches cachées et de facteurs 

d'étalement pour les réseaux Perceptron multicouche (MLP) et Réseaux de neurones à régression 

générale (GRNN), respectivement. 
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ABSTRACT 

In this research, the Channel State Information (CSI) is leveraged to locate mobile stations in an 

indoor environment. For this purpose, two laptops equipped with the off-the-shelf Intel Wi-Fi 

Wireless Link 5300 (NIC card) are used. CSI information is collected by establishing a wireless 

connection between two machines over 200, 70 and 52 reference points (RP) on sixth, fifth, and 

third floors respectively, in Lassonde building of Polytechnique Montreal as the experimental 

testbed.   

Different geolocation approaches are investigated and compared with each other in terms of 

location accuracy and precision. In the first approach, the collected CSIs are directly fed to the 

artificial neural network (ANN) as input features and the learned ANN is used as the pattern-

matching algorithm in order to predict the user’s location. The second approach consists in 

applying at the input of the ANN the extracted channel relevant parameters representing the 

reduced number of features at the input of ANN. Finally, exploration is performed to find the best 

configuration of hidden layers and spread factors for Multilayer Perceptron (MLPs) and General 

Regression Neural Networks (GRNNs), respectively. 
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CHAPTER 1          INTRODUCTION 

In this chapter, localization-based services (LBS) systems together with frequently used 

technologies, and techniques of indoor positioning are addressed, followed by the outline of this 

research. 

1.1. Localization based services 

Localization-based services (LBS) systems play an increasingly significant role in our 

everyday life. Both outdoor and indoor LBS systems are getting ever-progressing attention for 

their contribution to a wide range of services that they can provide related to locating objects or 

people relative to a reference point. Some well-known examples of outdoor services are Google 

Maps, Waze, Uber, etc. As for indoor services, one may consider some LBSs such as indoor 

navigation in airports, touristic sites, tracking customer movement patterns in big shopping malls 

to improve advertisement, security, disaster management, etc. Indoor LBS particularly needs more 

technological innovations and advancement since the traditional Global Positioning System (GPS) 

fails to function accurately inside buildings for two reasons namely multipath and non-line of sight 

(NLOS) paths. 

1.2. Problem Definition and Purpose 

The complex structure of indoor environments results in multiple copies of reflected signals 

known as multipath on one hand, and on the other hand, obstacles such as furniture and walls 

eliminate the line of sight (LOS) path, which consequently leads to the fading phenomenon. 

Therefore, as previously mentioned, new alternative approaches are needed to improve the 

functionality of indoor positioning systems (IPS).  

Various methods mostly relying on WiFi, have been adopted in an attempt to constantly 

ameliorate the indoor localization performance, which falls in two major categories, namely signal 

geometric-based and fingerprinting-based approaches. The former deal with physical metrics of a 

signal, such as the angle of arrival (AoA), time of arrival (ToA), received signal strength (RSS), 

channel state information (CSI) and determine the position of the target using geometric 

calculations. The latter processes the same physical metrics to extract the best representative 

features of a location to create a database containing the related features of all locations. Most of 

the previous researches have been done using RSS, a measure from the Medium Access Control 
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(MAC) layer, which is low-resolution information due to having only one measurement per 

transmission. Moreover, RSS may be affected by people in an indoor environment and by reflected 

copies of itself to undergo fading which results in a lower degree of reliability.  

Unlike RSS, which is coarse-grained information, a new measure with a very rich package 

of information has been introduced recently, known as CSI. 

CSI is a feature of the physical layer (PHY), in fact the sampled version of channel frequency 

response (CFR), which contains complex values representing the amplitudes and phases response 

of communication links between transmitter antennas (Tx) and receiver antennas (Rx) over 30 

orthogonal frequency division multiplexing  (OFDM) subcarriers.  

This fine-grained information makes it possible to analyze the WiFi channel in terms of its 

frequency selective characteristics together with having valuable information for each subcarrier 

and consequently a more reliable performance in localization. Both RSS and CSI have been used 

in signal spatial feature-based and fingerprinting-based approaches. The CSI metric has attracted 

increasing attention in recent years though, due to its richness, its availability in on off-the-shelf 

Network Interface Card (NIC) and its robustness as it is almost time-independent and shows an 

acceptably steady behavior. 

Leveraging CSI method was developed by Halperin et al. [1] to predict whether 

communication link will have a successful performance in packet delivery,  by introducing the use 

of channel measurements reported by commodity 802.11n NIC to support beamforming in 

multiple inputs multiple outputs (MIMO) streams.  

1.3. Technologies 

Frequently used technologies, including non-Radio Frequency-based and Radio Frequency-

based (RF-based) in localization, are addressed in this section.  

1.3.1.    Non-RF Technologies 

Among non-RF technologies, the following can be mentioned: Sound, Infrared Radiation 

(IR), Inertial Sensors, Geomagnetic, Ultrasound, and Visible light.  

Sound-based localization methods can be broadly categorized into two groups, namely Time 

Difference of Arrival (TDOA) and Angle of Arrival (AoA). In TDOA the recorded sound arrived 



3 

 

 

from multiple transmitters, is sent to a data fusion center where positioning is done using a 

triangulation algorithm considering the signal time differences at the target's location. In AoA 

approaches, the angle of arrival at each receiver node is calculated for all locations to make a 

fingerprint of the testbed. Some examples of sound-based approaches are presented in references 

[1, 2, 3]. 

In IR-based localization, an IR tag is attached to the target, and this tag emits a signal to the 

network of receivers, which are in charge of determining the location of the target. One of the 

earliest researches using IR technology has been carried out in [4] to locate the staff in an 

organization by making them wear a badge, which sends IR beacon at an interval of 15 seconds. 

Due to its need for a line of sight and a large number of receivers resulted from the short-range of 

IR signals, this technology is gradually losing its popularity despite its accuracy; although it is still 

used in some researches [5, 6]. Since the emphasis in this research is on the RF-based approach, 

we do not go farther and refer the reader to the aforementioned references. 

Inertial Sensors-based approaches take advantage of Inertial Measurement Unit (IMU) 

sensors, usually available on smartphones. An IMU is a sensor with 2 to 6 Degrees of Freedom 

(DOF) which detects the direction of the movement, the distance and the steps taken to track the 

target and calculate its position, here the phone holder. The references [7, 8, 9, and 10] employed 

this approach. 

Another technology, which is used in positioning, is the geomagnetic field signal. Two 

examples of this approach are implemented in reference [11] and [12]. In the former, the system 

collects the intensity of the magnetic field of every location to make a fingerprinting database of 

the testbed. Then to locate a user it is enough to take some steps carrying a smartphone and the 

system locates the target by integrating the fingerprint map with pedestrian dead reckoning (PDR), 

received from the smartphone by Kalman filter. The latter uses the distortion of the magnetic field 

and with the help of the extended Kalman filter, it locates a robot, which is equipped with a 

geomagnetic sensor.  

Ultrasound-based technology localizes the target by means of ultrasonic transmitter and 

receiver nodes and Dead Reckoning as in [13] and unsynchronized ultrasound senders on the 

ceiling with a target equipped with ultrasound receiver in [14]. Another research is presented in 



4 

 

 

reference [15] in which, the smartphone as the receiver listens and records constantly and through 

3 steps of filtering, pilot detection, and fine decoding, identifies in which room it is. 

As a Visible light-based approach, reference [16] benefits from Light-emitting diodes 

(LEDs) to transform the encoded IDs (by LED controller) received from the server to optical 

signals. On the other side, the optical receivers transform the optical signal to an electrical signal, 

which will be received through the MIC jack of a smartphone to be decoded. Finally, the location 

is obtained from the server by implementing the proximity technique. 

1.3.2.    RF Technologies 

RF technologies utilized in indoor localization are as follows. Bluetooth, Radio-Frequency 

Identification (RFID), Ultra-Wide Band (UWB) and Wi-Fi.  

Reference [17] employs a crowdsourcing method, which is based on the Support Vector 

Machine (SVM) classification algorithm, by using smartphone sensors, to generate Bluetooth Low 

Energy (BLE) landmarks in the training phase. Moreover, to achieve higher performance in the 

localization phase it implements a particle filter to fusion PDR and the results of landmark 

detection to reduce the cumulative error of PDR. Another research [18] takes advantage of RSSI 

to perform indoor localization. It also adds two self-adaptive filters, namely smoothing and wavelet 

filters, to overcome the inherent instability of the BLE signal as well as de-noising it. Finally, the 

position of the target is identified by using the equation of path loss model-based RSSI. 

RFID-based indoor localization has been studied and carried out in reference [19] using an 

active RFID tag and an RFID reader. The localization is done by employing the log-distance path 

loss model. Reference [20] presents an RFID-based technique combined with Pedestrian Dead 

Reckoning (PDR) and Magnetic Matching (MM) technologies, in which, the fingerprint of the 

testbed is constructed using the dual-frequency RFID. The target person who carries a tag 

including a gyroscope, acceleration sensor, and magnetic sensor walks in the testbed and 

simultaneously these data are received by RFID readers. To reach an accurate estimation of a 

person’s step size the author suggests fusing the RSS to the floor map. Finally, a particle filter 

merges the three aforementioned technologies to localize the target. 

Ultra-Wide Band (UWB) is another RF-based technology used in several types of research 

such as reference [21] where a target node (TN) is tracked while moving in a corridor by means of 
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four uniformly positioned fixed anchor nodes (ANs) and an analytical approach to minimize the 

estimation error of localization. Since the ANs and TN are not synchronized, the time difference 

of arrival (TDOA) is considered as localization technique. TN can localize itself upon receiving 

signals from four ANs, either onboard or on a server that receives the TN data. Reference [22] 

presents a localization algorithm, based on two ways time of flight to estimate the distance between 

the transmitter and the receiver. The system works as follows, a signal at a specific time Ta1 is 

sent from device A to devise B where the signal is received at Ta2. The received signal will be 

sent back to devise A after a specific time. This way by calculating the whole ToF, the distance 

between the two transceivers will be determined. 

Wi-Fi is the most popular RF technology, used in localization, due to its availability on 

electronic devices such as laptops and smartphones and the possibility of employing access points 

(APs) as the anchors. In reference [23] a received signal strength (RSS)-based fingerprinting 

technique is adopted. In the offline phase, by choosing specific locations known as reference 

points, raw RSS is collected on a known time interval, from the APs to the mobile device, located 

in different directions. Then the fingerprinting map is constructed using the average of received 

RSS time samples. In the online phase, the RSS is compared to the fingerprinting map using the 

nearest neighbor method to find the location of the target. 

Reference [24] presents an RSSI-based fingerprinting approach in which they collected RSSI 

over 45 points, from six APs at the offline stage, using an application on a smartphone. Then, the 

collected data is processed by the Principal Component Analysis (PCA) for dimension reduction 

and feature extraction. Finally, a classification is used choosing one of the four classifiers namely, 

K-Nearest Neighbors (KNN), Decision Tree, Random Forest, and SVM to build the radio map. At 

the test phase, two experiments have been conducted. In the first one, a static point is located and 

in the other test, a dynamic positioning for a trajectory is performed. 

1.3.3.    Techniques of indoor localization 

Two distinct techniques have been widely used in indoor positioning literature, namely 

geometric and mapping. In the former signal features such as received signal strength indicator 

(RSSI), parameters related to time including ToA and TDoA, signal angle features like angle of 

arrival (AoA) and angle of departure (AoD), or channel state information (CSI), are employed to 

localize the target using trilateration and triangulation methods. The latter techniques are also 
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known as fingerprinting, use the signal features at the offline phase to construct a radio map 

consisting of processed signal features together with the coordinates of each point of measurement. 

1.3.4. Techniques based on RSSI 

In RSSI-based techniques, the target is localized using the RSSI, which is received at several 

receivers, typically the access points (APs), and triangulation/trilateration methods. Depending on 

the received RSSI, the radius in which the target is located can be determined by adding two more 

reference points and by finding the intersection of three circles, the system is able to pinpoint the 

target. Some examples of RSSI-based localization are given in [25] and [26]. In practice, the RSSI 

is not stable over time and it is dependent on the environmental structure and consequently the 

multipath phenomenon. 

1.3.5. Techniques based on time 

In these approaches, the process of localization is based on the duration of time. The distance 

is calculated with regard to the signal return time of flight (RToF), from multiple APs to the target 

and its return time, time of flight/arrival (ToF/ToA) which is the time that it takes for the signal 

from the target, to reach the receiver. Alternatively, the time difference of arrival (TDoA) in which 

the time difference of signal reception at two precisely time-synchronized receivers is considered 

to localize the target. Obviously, the time synchronization is essential for these systems, to have 

an accurate target positioning. References [27, 28] presents researches using the time-based 

localization. 

1.3.6. Techniques based on angle 

The angle of arrival (AoA) is the angle at which the RF wave reaches the antenna of a 

receiver. By taking advantage of multiple antennas with known distance from each other on an 

antenna array, it is possible to calculate the AoA by means of TDoA on each antenna. This 

technique can be implemented jointly with other metrics such as ToF and RSSI. These systems 

need multiple antennas, which means that more hardware is needed. Moreover, in the case of 

multipath, the calculation of AoA becomes complicated. References [29, 30] present some 

localization systems, which use AoA-based technology. 
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1.3.7. Techniques based on CSI 

Channel State Information (CSI) can be described as a package, which contains information 

related to the communication channel between transmitter (Tx) and receiver (Rx). This information 

presents the state of the channel in the frequency domain as a complex value, over 30 sub-carriers 

for each Tx-Rx link. Depending on the setting of communication parameters, it is possible to 

choose the number of Tx and RX antenna. References [31, 32] employ the CSI technique for indoor 

localization. 

1.3.8. Techniques based on mapping 

Mapping or fingerprinting techniques employs unique physical features such as RSSI, AoA, 

CSI, related to each point of measurement at the training phase, and after some data processing, 

constructs a database. This database is used at the test phase to estimate the location, related to a 

new measurement from the testbed. Some mapping/fingerprinting-based researches are as follows, 

references [33, 34]. The process of surveying the testbed to collect data for the training phase is 

laborious and due to changes in the structure and arrangement of the interior design of indoor 

environments, the database should be updated after any change. 

There are some methods, which are used in the mapping stage, such as probabilistic, neural 

network, SVM, KNN, etc. 

1.4. Objectives 

This research is mostly inspired by the approach of exploiting the channel impulse response, 

introduced in [35] where a frequency channel sounder is used to get the transfer function of a 

complex channel in an underground gold mine. Then, by applying the Inverse Fourier Transform 

(IFT), the Channel Impulse Response (CIR) is obtained for 490 measurement points. From the 

obtained 490 CIRs, seven wireless channel relevant parameters are extracted and used as 

fingerprints for the input of MLP and GRNN neural networks with the aim to locate miners in case 

of accidents. In this experiment, the objective is to reach the sub-meter localization accuracy using 

CSI as the fingerprinting information and the artificial neural network as the mapping algorithm.  

The novelty of our technique is using multiple packets of CSI for each location without 

feature extraction to provide a reach fingerprint. Two different mapping algorithms are 

investigated and compared with each other in terms of location accuracy and precision. In the first 
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approach, the collected CSIs are fed to the multilayer perceptron (MLP) as input features and the 

learned artificial neural network (ANN) is used as the pattern-matching algorithm in order to 

predict the user’s location. The second approach uses General Regression Neural Networks 

(GRNN). Finally, exploration is performed to find the best-hidden layer configuration and spread 

factors for Multilayer Perceptrons (MLPs) and General Regression Neural Networks (GRNNs), 

respectively. 

1.5. Research Outline 

The outline of this research is as follows, chapter two gives a review of the state of the art, and 

then in chapter three the methodology and the detailed approach are introduced. Finally, in chapter 

four, we examine the experimental results followed by the evaluation of the approach. 
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CHAPTER 2          LITERATURE REVIEW 

In this chapter, some background for indoor localization and review of the state-of-the-art 

methods, specifically based on CSI, are presented which can be broadly categorized into groups 

of geometric-based and fingerprinting-based approaches. 

The technique to collect CSI was introduced for the first time in 2011 in reference [36] by 

Daniel Halperin et al. The motivation for their technique was to find a way to obtain detailed 

information including the behavior of the communication channel between each pair of transmitter 

and receiver over a specific number of subcarriers. This detailed information, which is extracted 

from the physical layer, compared to RSSI with only the received signal power, contains more 

information about the variations of the channel and is used to improve the performance of the 

wireless network. In their work, they used the commodity WiFi Link 5300 wireless NIC and a 

modified firmware to get access to the CSI report, which is included in a packet preamble, based 

on the IEEE 802.11n standard. This information is originally considered to remove the variations 

caused by the channel to ameliorate the functionality of its communication. 

The first research about localization using CSI is done in reference [37], which is a 

geometrical-based method.  FILA uses effective CSI data and trilateration to perform localization. 

First, to decrease the effect of multipath, it takes CSI data and applies IFFT on it to convert it and 

obtain the channel response in the time domain. Bandwidth limitation makes it difficult to identify 

every signal paths, instead only clusters of paths are distinguishable. The first cluster is assumed 

to contain either the LOS or the NLOS for the shortest path. To keep the first cluster and remove 

the others, a truncation window with a threshold at 50% is used to filter out other clusters and 

counteract the error caused by reflection. Then by applying FFT, CSI is converted back into the 

frequency domain. Moreover, to compensate for the effect of selective fading caused because the 

coherence bandwidth of the channel is smaller than the bandwidth of the signal, the weighted 

average of 30 groups of CSIs is used to improve the system accuracy. Consequently, to relate the 

distance and the effective CSI, a modified indoor propagation model is developed. In addition, to 

simplify the calculation, FILA assumes that an equal path loss exponent is affecting the signal 

traveling between three APs and the target and considers a specific environment factor. Following 

the developing of the model, supervised learning is done by collection CSIs at two APs and training 

the system to retrieve the path loss exponent and the environment factor, and then a third AP comes 
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in the picture to perform the test. The process continues until real parameters and estimated ones 

converge. Finally, at the localization phase, the distance between the target and the APS is 

calculated using the CSI received at APs and the parameters obtained resulted from the training 

phase, at a specified receiver. All APs send their coordinates together with the received effective 

CSIs to a specified receiver, where the receiver aggregates the effective CSIs and performs the 

trilateration method using the calculated distances to locate the target. The median accuracy of 

FILA is 0.45m and 1.2m in an anechoic chamber and a laboratory, respectively. 

In reference [38], which is a fingerprinting-based method, CSI information is used to make 

the radio map and with the help of a probability algorithm, the location of the target is determined. 

The functionality of the proposed method, Fine-grained Indoor Fingerprinting System (FIFS) is 

composed of two main phases, calibration, and positioning. In the calibration phase, it takes raw 

CSIs, which are collected by an HP laptop from three APs for each location, and generates the 

fingerprint. For this reason, they averaged CSIs over all the antennas and considering the 

coherence bandwidth of the subcarriers, they defined four sub-bands. Each of these sub-bands 

contains a group of subcarriers with maximum similarity. If the frequency distance between two 

sub-carrier is lower than the coherence bandwidth, they belong to the same sub-band. The idea of 

defining sub-bands indicates the aspect of fading. In other words, fading happens independently 

among subcarriers from different sub-bands so the frequency diversity can be taken into account. 

In the positioning phase, a probabilistic approach is adopted as the mapping algorithm due to its 

higher accuracy. FIFS shows an acceptable performance with a 1m mean error. Considering the 

results, FIFS achieves a successful localization with the mean error slightly under one meter. 

In CUPID [39], CSI data is combined with displacement of the target to identify the direct 

path and localize the target by calculating the distance between the AP and the target in two 

different locations and the AoA related to each location. Two concepts are addressed, namely the 

energy of the direct path (EDP) and the angle of the direct path (ANDP). CUPID applies IFFT on 

the received CSIs to convert them from frequency to time domain and find the power delay profile 

(PDP). It assumes that due to the resolution of PDP, which is equal to 50ns for 20MHz 802.11n, 

the first component of PDP can be considered as the container of the EDP and the other 

components have traveled a longer distance of +15m regarding the 50ns resolution of PDP. At the 

same time, another parameter called LoSfactor, which is the proportion of EDP to RSSI, is 

computed at the AP. Having the EDP and the LoSfactor, the correct path loss exponent is selected 
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to be used in the calculation of the distance.   The AP tracks the target that moves from location A 

to B and determines the variation of ANDP by taking advantage of the accelerometer and the 

gyroscope of the mobile client, as well as the AoA, measured at two locations to build up the 

pseudo spectrum. In the pseudo spectrum, the AoA, which remains unchanged, is considered as 

the direct path. Finally, the estimated location of the target is equal to the coordinates of the AP 

plus the distance in y and x directions by applying the ANDP. CUPID shows a median localization 

error of 2.7m. 

Another research using CSI in localization is presented in reference [40].  Unlike 

conventional indoor localization systems, Pilot does not track the target rather it determines the 

potential presence of entities in an environment of interest. Its functionality is based on the 

detection of any perturbation caused to the CSI fingerprint of an area by the presence of an entity, 

thus passive localization. The pilot is composed of three parts, APs, detecting points (DPs), and 

the server. The APs constantly broadcast to DPs, where the transmitted messages are stored and 

transferred to the server. At the server, the received messages are processed and if no anomaly 

detected, they will be used to construct the passive radio map, otherwise, if any shift in the pattern 

of the CSI features exists, the server stores them in an abnormal database. The block that detects 

the anomaly, constantly calculates the variance of newly received CSIs with regard to previous 

CSIs to realize if any change happened. If it notices abnormal CSI features, the positioning block 

appears to map the new CSI with coordinates stored in the database of abnormal CSI to locate the 

entity. To detect the abnormality, the kernel density estimation (KDE) approach is adopted to 

examine the cumulative distribution function (CDF) of the CSI correlation. It detects the 

abnormality when the sample correlation is less than a predefined lower bound. As for the 

mapping, Pilot uses a probabilistic algorithm known as maximum a priori probability (MAP) 

algorithm to estimate the entity location. Pilot proves to outperform RASID (the RSS based 

system) by around 10%. 

Reference [41] introduces a fingerprinting-based method, called CSI-MIMO, which 

leverages MIMO information together with the amplitude and the phase of CSI data. The 

aggregation of CSI data from multiple antennas and subcarriers is used to build up the radio map 

for multiple APs, and with K-nearest neighbor (KNN), the functionality of it is confirmed. At the 

training phase, CSIs packets sent by an AP are collected at 19 reference points for 24 hours. Then 

the amplitude and the phase of each subcarrier are subtracted from those of the next subcarrier to 
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make the CSI-MIMO fingerprint for each location, and the whole locations' fingerprint is stored 

in the database. Then, at the positioning phase at an unknown location, CSI is collected and the 

same process as in the training phase is done to get its fingerprint. CSI-MIMO compares the new 

fingerprint with the database by means of deterministic and probabilistic approaches, KNN and 

maximum likelihood estimation, respectively. CSI-MIMO achieves the mean distance error of 

0.95 m. 

Reference [30] presents the SpotFi system, which takes advantage of super-resolution 

algorithm to calculate jointly the AoA and the time of flight (ToF) of multipath components of 

collected CSI and RSSI at each AP. It also determines the AoA of the direct path by presenting a 

new filtering and estimation technique. Spotfi overcomes the limited number of antennas by 

creating a virtual sensor array with a higher number of elements compared to multipath 

components. As the presence of multipath makes difficult the determination of the L paths’ AoA 

while the number of antennas is three, Spotfi implements super-resolution, a method, based on 

MUSIC algorithm. MUSIC algorithm, defines the received signal X on each sensor (here antenna), 

as the multiplication of the matrix A of steering vectors, which are the phase shifts on the array of 

antennas, due to the distance between them, and the matrix F of complex attenuation vectors. Based 

on MUSIC, if we find the eigenvectors of XXH, which correspond to the eigenvalue of zero or in 

other words orthogonal to steering matrix A, we can compute A and consequently, AoA can be 

found. However this algorithm needs a condition to be satisfied, matrix A has to be skinny (more 

rows than columns) and matrix F should be fat (more column than rows) to work correctly. More 

rows than columns can be translated to more sensors than propagation paths, however, with only 

three antennas on Intel 5300, this algorithm fails to work. This is where Spotfi solves the problem 

by the super-resolution estimation. The main idea of Spotfi is that the limitation of antennas can 

be overcome by considering the subcarriers' number time the number of antennas, which gives 30 

x 3 =90 sensors. Since the phase shift, among subcarriers, arriving at a specific antenna is 

negligible, calculation of the ToF is also considered. ToF is used to calculate the complex 

exponential of the phase shift, which appears as a coefficient for each subcarrier in the new steering 

vector of M antennas making a new steering matrix with one row and L column (L: number of 

paths). To complete the modifications on the steering matrix and make ready for the application 

of the MUSIC algorithm, Spotfi implements another technique called CSI smoothing to get 

independent measurements. For this purpose, they first introduce the concepts of subarrays as a 
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portion of steering vector (considering the phase shift between antennas and the complex 

exponential phase shifts across subcarriers) and suggest a new structure made by multiplying and 

shifting the elements of the first subarray. They conclude that with the mentioned structure, 

MUSIC is applicable and consequently arrange the collected CSI with respect to the optimized 

structure to get the smoothed CSI.  To detect the direct path, spotfi assumes the smallest ToF as 

its criteria and by assigning a likelihood function; it finds the path, which shows minimum 

variations between received packets. At the localization phase, Spotfi shows a median error of 0.4 

m. 

In reference [42] a fingerprinting-based method is proposed. The approach of PhaseFi is 

straightforward with minimum calculation complexity. It takes the raw CSI data received by three 

antennas over 30 frequency for 38 training points in the living room and 50 training points in the 

laboratory, applies a linear transform on the phase information, then feeds the processed phase 

data into a deep three hidden-layered neural network. Where a greedy algorithm is in charge of 

layer-by-layer training. This kind of training is adopted at the restricted Boltzmann machine 

(RBM) to tackle the phenomenon of vanishing gradient, a common problem in deep networks. 

When the weights and biases are tuned and the deep network is able to extract the important 

features of its input to reconstruct them at the output, the fingerprint database is ready and the 

system can perform the localization. One important point of PhaseFi is the application of the 

aforementioned linear transform on the raw phases of CSI data, otherwise referred to as phase 

sanitization. For this purpose, it defines the parameters that influence the phase such as 

measurement noise, time lag, unknown phase shift, and FFT size. The sanitized phase is obtained 

through a linear equation containing these parameters and the raw CSI phases. After sanitization, 

phases become concentrated into a small sector whereas raw phases are scattered and it is 

impossible to assign an angle to them. The localization phase takes advantage of a probabilistic 

approach based on Bayes law. Having the prior probability of a location in the fingerprint database, 

posterior probability finds the similarity between the inputs and the reconstructed outputs. The 

position of the target is calculated as the weighted average of all posterior probabilities. The mean 

error of PhaseFi is 1.08m in the living room and 2.01 in the laboratory. 

Reference [43] suggests another fingerprinting-based method similar to PhaseFi, called 

DeepFi, which takes advantage of deep learning joint with a greedy algorithm at the training phase, 

and a probabilistic method at the localization phase. In DeepFi, CSI data, sent by an access point, 
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is collected from three antennas of a Dell laptop, in two different environments, the living room, 

and the laboratory, and 90 extracted amplitudes per location from all subcarriers, are fed into a 

deep neural network. The deep network comprises stacks of RBMs, where the greedy algorithm is 

in charge of layer-by-layer training to get optimal weights and biases to reconstruct the input data. 

Updating the weights at each iteration is done using contrastive divergence to reduce the time 

complexity. It also adopted a technique to tackle the complexity of computation and the need for 

less time of processing, in which the whole packets of CSI are divided into sub-groups of CSI 

packets called batches to be processed in parallel. The process of training comprises three steps, 

pre-training followed by unrolling and finally fine-tuning. In the stage of pre-training, four layers 

with decreasing order of neurons, reduce the dimension of the inputs. Weights and biases of each 

layer are separately calculated using the greedy algorithm and at the end of pre-training where the 

weights and biases are obtained, the downsized input at the output of the fourth layer goes under 

unrolling process to reconstruct the initial inputs by training layer five to eight with a probabilistic 

unsupervised approach. Finally, the reconstructed inputs are compared with the actual inputs to 

reduce the error of weights and biases at the fine-tuning phase. Then the weights and biases are 

stored in the fingerprint database. At the localization phase, the target sends a ping to the access 

points to request for CSI packets. The system applies the same process on the received CSI to 

reduce its dimension followed by reconstruction and fine-tuning. Finally, the system matches the 

weights and biases with the closest features in the fingerprint database to locate the target. DeepFi 

achieves approximately 0.95 m error for the living room and 1.8 m for the laboratory. 

In reference [44] a device-free method called LiFS based on the model of power fading is 

presented by Wang et al. LinFS function relies on the fact that, in a multipath environment, fading 

phenomenon does not affect all subcarriers equally. Considering propagation, diffraction, and 

target absorption fading it defines a theoretical model of power fading and compares the actual 

signal power with the calculated value to decide which subcarriers behaviour comply with the 

model and calls them “clean sub-carriers”.   In their model, they took free space propagation loss, 

the attenuation due to First Fresnel Zone (FFZ), and the measurement noise into account to “filter 

out dirty carriers” based on their actual CSI amplitude and the theoretical expected values, during 

the pre-processing phase. The whole experiment is conducted in a section of a library to benefit 

from its structure to have LoS and NLoS signal reception. In the positioning phase, the localization 

is done based on the relation between the pre-processed CSI and the locations of the target. Based 
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on the results presented in their work, LiFS localization error is under about 1.5m for 80% and 1m 

for 50% of estimations. 

Reference [45] focuses on the direction of arrival (DoA) considering the azimuth and the 

elevation of the incident, as the important feature of the received signal to build up the fingerprint 

database. In their method, two phase-shifts are addressed the first one is produced by the structure 

of receiving antennas which are a uniform circular array (UCA) of omnidirectional antennas. The 

second phase shift is caused by the different time of flight (ToF) of CSI signal for 30 sub-carriers. 

Then it argues that the phase-shifts introduced in the CSI matrix report, otherwise called a steering 

matrix, can be considered in two directions: row-wise and column-wise phase-shifts.   DoA causes 

phase shifts among rows and ToF results in phase shifts among columns. The steering matrix or 

manifold is composed of steering vectors related to each of the l signal paths. Every steering vector 

contains the phase shifts at the lth path resulted from different AoA and ToF of each incident of 

the kth subcarrier received at mth antenna. Next, it transforms the manifold from element space to 

beam space by multiplying it by the beamformer in order to get a virtual manifold with 

Vandermonde characteristics to make it ready for applying the SpotFi method. From this point on, 

their method is similar to SpotFi [30], in that, the rows of CSI matrix, which correspond to the 

number of antennas, are stacked in a column to form the steering vector as a single observation. 

Then, CSI smoothing is applied to extend the number of observations to make it ready for the 

MUSIC algorithm. Finally, the authors argue that smoothing decreases the Root Mean Square 

Error (RMSE) to less than one degree for DoA estimation. 

Reference [46] addresses two disadvantages of previous researches. First, ignoring the CSI 

phase information because of the random phase shift disturbance. Second, the common metric of 

Euclidean distance otherwise known as log-likelihood, which should be minimized to map the test 

point with the point in the database. However, as the author says, considering this metric is correct 

only for small areas. It defines an effective coverage range (ECR), around 2cm when using the 

frequency equal to 2.4GHz. To tackle these two challenges it suggests considering the phase 

information after applying a novel phase sanitization method on it to reduce its random variations 

for the first issue, and as a solution for the second problem, it proposes a novel distance metric 

based on the AoA and two distinct measurements while moving toward the target. Experimental 

results of this work, show that their proposed phase sanitization method is more efficient in 

removing phase randomness resulted from other methods.  
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In reference [47], Wang et al, propose a fingerprinting-based method called CiFi.  The main 

idea of CiFi is to collect 960 packets of CSIs per location, from three antennas, find the phase 

difference between antennas 1 and 2 as well as antennas 2 and 3 which makes 60 measures for 

each received packets of CSI. The reason why CiFi exploits the phase differences instead of the 

phases is the unstable nature of phases while the phase difference shows fewer variations. In the 

next step, CiFi calculates the AoA for each group of 60 phase differences and since there are 960 

received packets, it divides them into 16 groups of 60 packets and calls them images. As a result, 

it constructs 16 images of 60 x 60 elements, where the number of rows or elements on the columns 

indicates 60 phase differences and the number of columns refers to 60 packets. Then these images 

are fed into a deep convolutional neural network (DCNN) at the training phase to train the weights. 

At the training phase, the feature map is extracted from the images by the convolutional layer 

followed by the subsampling layer, otherwise known as the pooling layer, which is in charge of 

resolution reduction of the feature map. Finally, a simple neural network works as the fully 

connected layer to perform the training. CiFi localizes its target using a probabilistic method. With 

the new collected CSI from an unknown location and the trained DCNN, the matrix of estimation 

is obtained. Then by applying a greedy method, the largest outputs are selected followed by a 

calculation of the weighted average of the selected outputs to localize the target. CiFi localization 

error is under 1 m for 40% of test locations. 

Reference[48] presents another fingerprinting-based method similar to CiFi but it takes 

advantage of a convolutional neural network (CNN) and instead of phase differences it takes CSI 

amplitudes and constructs its CSI feature image. ConFi takes the amplitude of CSI data on each of 

the three antennas and maps the collected CSIs of each antenna to RGB channels of an image. As 

discussed in their research the resulted image for each point of reference is unique. It also argues 

that for CNN to avoid overfitting, the training data must be augmented. For this purpose, several 

techniques such as mirror, sliding window and choosing CSI samples in a random manner,  have 

been used. It also gives a comparison between different sizes and the number of convolutional 

kernels in terms of accuracy. ConFi best result shows 1,36 m mean error of localization.  

In reference [49], the adopted approach is based on the attenuation model to calculate the 

distance of the target from the AP. The authors opted for CSI instead of RSSI due to potential 

temporal instability of RSSI, which could lead to localization error. Moreover, since RSSI is a 

coarse-grained metric (i.e. only one measurement per communication) it cannot benefit from 
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advantages of CSI as a fine-grained metric (i.e. a package of information including communication 

links and multiple subcarriers) to address multipath related problems. Another advantage of CSI 

mentioned by the author is that CSI is from baseband, which exempts the system from further 

processing while for RSSI a down-conversion to the baseband is needed. In their experiment, the 

transmitters are three APs and the mobile laptop collects the CSI data at multiple RPs. Then a 

weighted averaging is applied on the 30 subcarriers to get the effective CSI. By doing so, the small 

scale fading effects are removed and the channel gain is considered from one single central 

subcarrier instead of 30 subcarriers. The next step is to find an appropriate indoor propagation 

model to express the relation between effective CSI and distance. For this purpose, a supervised 

algorithm takes the effective CSIs from two access points together with their known distances and 

trains itself to find the environment factor σ and the path loss exponent n. Then, using the obtained 

parameters and the effective CSI from the third AP, it evaluates itself on finding the distance of 

the third AP. Finally having the optimal parameters, the position of the mobile laptop is identified 

by using the triangulation method. It is argued that the proposed method shows temporal stability 

and its localization performance achieves an accuracy of 1.24 m error with a 0.57 m standard 

deviation.  

 

Reference [50] suggests an improvement technique for DeepFi, termed as DNNFi, to reduce 

its computational complexity. In DeepFi there are N autoencoders for N reference points (RP) to 

be trained while the proposed method comprises a single supervised deep neural network (DNN) 

with four hidden layers and yet it achieves the same accuracy. As it is explained in DeepFi paper, 

each autoencoder is in charge of encoding and reconstructing the CSI features of a single RP 

without considering its coordinates and during this process, optimal weights and biases are 

obtained. However, in DNNFi coordinates are used as input labels hence the method is supervised. 

Similar to other fingerprinting (FP) methods, DNNFi includes two phases: offline and online. In 

the offline phase, two laptops are used as the AP and the receiver. The AP is at a fixed location 

while the receiver is placed on 31 RPs to collect the CSI data related to them, to normalize between 

0 to 1, and to use them for training the system, and consequently obtain the optimal weights and 

biases. In the online phase, new CSI measurements from 9 unknown positions are fed to the trained 

system to find the probability of new CSI being related to RP in the fingerprinting database. 

DNNFi achieves faster computation with the same accuracy of DeepFi. 
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In reference [51] authors, propose a method, called MaLDIP with a quite similar main idea 

presented in LiFS, which removes the multipath affected subcarriers. MaLDIP is a device-free 

system, which detects the location of its target by finding the changes in received signal features 

due to the presence of the target in 15 uniform cells. The signal features at each location follow a 

temporal model but at the same time, due to the frequency-selective nature of the channel, they 

may be affected by multipath, which leads to different signal strength. Therefore, to assure a higher 

accuracy, it removes the subcarriers, which do not comply with the diffraction theory by adopting 

a threshold to choose optimal subcarriers. The whole experiment has two phases: offline and 

online. In the offline phase, CSI data is collected without the presence of the target person. Then 

CSI is gathered again with the human in every 15 cells. The fingerprinting database is build up by 

subtracting the two sets of collected CSI. As argued in their work, for best subcarriers one should 

expect a decrease in the amplitude of CSIs larger than the threshold, hence these subcarriers may 

be considered as conforming to the diffraction theory. After removing the undesired subcarriers, 

the matrix of the location's most important features is generated using PCA. At the localization 

phase, the collected CSI is preprocessed and normalized and the SVM is used to estimate the 

location of the target. MaLDIP achieves 93.6% accuracy in detecting the correct cell. 

Reference [52] presents a method called modified matrix pencil (MMP) which improves the 

existing 2D-MUSIC presented in SpotFi, in terms of reducing its computational time. As we know 

from SpotFi paper, the 2D-MUSIC algorithm is based on finding a jointly estimated AoA and ToF 

related to peak values of MUSIC spectrum by taking advantage of super-resolution algorithm. The 

authors of MMP claime that their method reduces the computational costs of SpotFi to around 200 

times faster, while achieving the same accuracy. MMP method is based on replacing 2D-MUSIC 

with 2D matrix pencil algorithm where instead of 2D estimation, AoA ans Tof are estimated 

separately. The CSI is collected on three receiving antennas then the enhanced CSI matrix is 

constructed next by applying some mathematical modifications such as singular value 

decomposition, Eigen decomposition and permutation of AoA and ToF are calculated. MMP 

proves to be 203 times faster than 2D-MUSIC with signal to noise ratio (SNR) of 35 dB and 196 

times faster when there is no noise. 

Reference [53] introduces another device-free otherwise called a passive method, which uses 

the amplitudes of CSI information without any previous feature extraction to construct the related 

image labeled by the coordinates of each location using a six-layer CNN-based deep learning 
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scheme for image recognition with a classification approach. The data collection process is done 

using two laptops placed at fixed locations with the device-free target at 22 different points in the 

office and 25 points in the corridor, and hundred measurements per location under 5.32GHz band. 

The presence of target at each location has its unique effect on the characteristics of the received 

CSI data and collected information is arranged to three matrices of 30x30 size representing the 

channels of RGB image for each location. At the training phase, the constructed images (65 for 

the office and 40 for the corridor) are fed into CNN where four layers are in charge of feature 

extraction and two fully connected layers perform the classification. At the test phase, 10 images 

for the corridor and 15 images for the office are used and the reported average localization error 

for PILC is 1.843 m. 

One important issue in localization is the computational burden and complexity. In reference 

[54], a “model-free” approach is presented by implementing a technique based on continuous 

logistic regression and relying on a deep learning system to score an accuracy of 97.2 cm. The idea 

behind this method, as suggested by the authors, is to replace the traditional method of training 

and localizing in two phases with a system capable of modeling the signal features with regard to 

the location. The other aspect of their work is the “unified optimization framework” in which the 

relation between collected CSIs and the correspondent locations is formed to present a system of 

optimization for localization systems by minimizing the mean distance error between the predicted 

and true locations. The proposed method also benefits from a technique to assure less randomness 

during the training processing since small perturbations are introduced during the training phase. 

In the data collection, phase CSI data is collected in two different environments: laboratory and 

corridor. In total, 60000 packets are collected and after phase extraction, calibration, and data 

augmentation by perturbation distance, the resulted processed data is fed into MLP and CNN.  

Reference [55] addresses the insufficient number of access points in some locations and in 

order to solve the problem, it suggests a new method of fingerprinting with only one AP. As the 

raw phase is not an appropriate metric for fingerprinting, authors introduce a method comprising 

outlier removal, phase sanitation (reducing the effects of carrier frequency offset CFO due to 

unsynchronized Tx and Rx, and sampling frequency offset SFO due to unsynchronized clocks of 

ADC), and phase decomposition to get the phase information of multipath followed by 

dimensionality reduction using PCA and feature extraction to build up the fingerprinting database. 

The experiment is done in three different places, laboratory, meeting room, and corridor, 
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considering two experimental scenarios related to the mobility (number of people): static and 

dynamic. Moreover, experimental environments are divided into cells with an identifying number 

where 1000 packets at the training phase and 200 packets at the estimation phase are collected. 

The efficiency of the proposed system is evaluated by KNN and SVM as deterministic, and Bayes 

as probabilistic algorithms. Finally, a comparison by RSSI-based and CSI-based systems is given. 

According to their results, SVM proves to be more efficient among three matching algorithms by 

the accuracy of 0.6 m and 0.45 m in the laboratory and the meeting room, respectively.  Also, 

having multiple decomposition paths does not lead to higher accuracy while 2-3 and 4-5 of them 

are the optimal number depending on the environments. 

One of the most recent researches on localization using CSI is presented in reference [56]. 

The authors introduced a device-free method using the amplitudes of CSI and RSS to localize a 

person using a router with two antennas as the transmitter and a personal PC equipped with Intel 

5300 network interface card with three antennas as the receiver, both at fixed places. During the 

training phase, a person stands in 16 locations and the transmitter starts the communication with 

the receiver. These 16 points form 16 different classes so the localization is addressed as a 

classification problem. The receiver collects 15 packets of CSI and the RSS values are available 

on three receiving antennas for each location. Fifteen packets are concatenated to consider 

environmental changes. Moreover, three persons with different body types have participated in the 

experiment to assure the robustness of the system. The collected CSI and RSS data are processed 

using specific data fed into two different neural networks, MLP and 1-D CNN. Authors argue that 

choosing 1-D CNN reduces the network complexity and the overhead of conversion caused by 2-

D CNN, which leads to a less computational burden. As the research, results show 1-D CNN 

outperforms the MLP network by maximum localization error of 0.92m with the probability of 

99.97% compared to 0.92m of localization error with 81.07%. 

  



21 

 

 

CHAPTER 3          ARTIFICIAL NEURAL NETWORK 

3.1. Introduction 

In this chapter, we will explore the general concept of artificial neural network (ANN), two 

ANN structures which are used in this experiment, and the applications of in regression and 

classification.  

3.2.  The definition of an Artificial Neural Network 

An ANN; invented by Robert Hecht-Nielson; can be simply defined as a processing system 

composed of a number of interconnected units, known as neurons, arranged in multiple layers 

containing activation function to imitate the functionality of a human brain in order to process the 

information and learn to model the behaviour of an unknown system. 

3.3. Applications of ANN 

ANN is generally capable of two main tasks namely modeling a linear or non-linear relation 

between input and output data of a complex system, and classification of input data without having 

any target data. The first one falls into the supervised learning method category and the latter is an 

unsupervised learning algorithm. The goal of using ANN for modeling a system is to be able to 

estimate the output of the system for unknown inputs as long as the training data is rich enough to 

provide a decent knowledge of the unknown system. On the other hand, using an ANN as a 

classifier is interested when we want to find out to which category our input data belong. 

3.4.  The general structure of an ANN 

A basic mathematical representation of a single artificial neuron can be seen in [fig.3.1] and 

[Eq.3.1]. As it can be seen, all inputs are multiplied by the appropriate weight and the sum of all 

weighted inputs with bias goes through the activation function to generate the output y, which 

could be an estimation of a desired target or a value representing a class of inputs. In practice, 

multiple neurons are needed and depending on the necessary depth of the network, hidden layers 

are added.  
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Figure 3. 1    Mathematical representation of an artificial neuron 

 

                                           y= ɸ( ∑ (xi . ωi)+b)n
i =1                                           (3.1) 

 

In [fig3.2] a simple ANN with two hidden layers and two outputs is presented. Each green 

circle is in fact the combination of weight, bias, and the activation function. 

 

 

Figure 3. 2    A simple multilayer ANN 
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3.5. Activation functions 

As mentioned, a neuron needs an activation function to generate its output. There mainly 

two groups of activation functions namely traditional and modern functions. Each function has its 

specific properties and its appropriate for a specific application. An overview of two groups of 

activation functions is presented in [fig.3.3]. Among the presented functions, Sigmoid, Hyperbolic 

tangent, and Relu are the most popular functions [61].  

 

 

Figure 3. 3    Different types of activation functions 

The activation functions are used to consider the non-linear nature of data in real life data. The 

input of activation function is the weighted sum of previous layer’s output plus bias on which a 

mathematical operation is performed. The role of bias is to shift the shift the activation function to 

a desired direction for the model to fit best for our set of data. 
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3.6. Different types of ANN  

ANNs are generally categorized in three groups of feed forward, feedback otherwise known 

as recurrent, and convolutional neural networks.  

3.6.1. Feedforward ANN  

Figure 3.2 shows a feedforward ANN (FFN) in which, the flow of data is uniquely from 

input toward output to associate inputs wit outputs, and there is no feedback loop. Then at the 

output layer, the estimated target is calculated and considering the chosen loss function, usually 

Mean Squared Error (MSE) [Eq.3.2], the error between actual and estimated values is estimated 

and its gradient is back propagated to the network to update weights and biases for the next 

iteration. 

                                                            MSE=
1

n
∑ (Yk- Ŷk )

2
n

k=0

                                                (3.2) 

Feedforward ANN can be sub-categorized in one-layer, shallow, and deep (3 or more layers) 

network. Choosing the appropriate ANN depends on the complexity of the relation between input 

and target data. As a common application of FFN, object recognition can be mentioned. The main 

application of FF networks is mapping, in other words, to model the relation between inputs and 

targets. 

3.6.2. Recurrent ANN  

Despite the one-way flow of data in feedforward ANN, in a recurrent ANN there are 

feedback connections from a layer to the previous layer or from a neuron to itself [fig.3.4], which 

give RNN a sort of memory and a dynamic behaviour and enable it to solve problems that are more 

complicated. RNN constantly changes its state to be trained and when it is fully trained on a given 

data, it reaches its equilibrium point. RNNs are mostly used for sequential tasks such as time series 

problems. 
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Figure 3. 4    Recurrent Neural Network 

Natural language processing is a well-known application of RNN. The limitation of RNN is 

its short-term memory, so Long Short-term Memory networks (LSTM) are proposed to solve the 

problem. 

3.6.3. Convolutional ANN  

This type of ANN is popular; due to its three-dimensional architecture; for applications in 

computer vision such as self-driving cars. As it can be seen in fig.3.5, the first layer is 

convolutional layer followed by pooling layer and so on.  

 

Figure 3. 5    Convolutional Neural Network 
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The task of convolutional layer is to detect pattern such as edges, corners, circles, shapes, 

and texture. For this purpose this layer slides a filter, technically a matrix of m*n for which the 

values are initialized with random numbers, across all sets of input data of m*n size and to calculate 

the sum of element wise product of the filter and the set of pixel matrices [fig.3.5]. The challenge 

is the size of the filter and the effect it has on the output size comparing the initial size of input 

data. If a filter of f*f size slides over an image of n*n size to perform convolution, the output size 

will be (n-f+1) * (n-f+1). Which means the input shrinks, to overcome the problem zero padding 

is used which in fact is a border of zeros around the input. 

 

Figure 3. 6    An illustration of convolution operation 

   In the next layer, max pooling is done by applying an n*n filter to reduce the 

dimensionality by reducing the number of pixels in the output of previous convolutional layer. 

This filter finds the maximum value among all values that are scanned at each max operation and 

subsamples the data. Another parameter is the stride, which defines the number of pixels the filter 

move as it slides across the input data. To get an insight into the functionality of max pooling let 

us consider n=two and the stride =two. At each max operation, the filter finds the maximum of 4 

values in the input data, then it moves two pixel to the right and performs the same operation. 

When all input data are processed, the size of resulted matrix is half the size of original matrix. 
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Figure 3. 7    Max pooling 

3.7. Different methods of learning  

There are three learning methods for training an ANN namely supervised, unsupervised, and 

reinforcement learning.  

In supervised learning, we have a set of data containing inputs and outputs. The ANN begins 

with random values and estimates the target. The estimated value is compared with the actual target 

and the error is sent back to correct the weights and biases hence the name supervised. 

Despite supervised learning, unsupervised learning has no actual target so the network finds 

the similarities among the input data and categorizes them into classes. In fact this kind of network 

works on its own and does not need a supervision, hence the name unsupervised. 

Third group of learning is working somehow in between two previous groups. In RNN, we 

have a policy network [fig.3.8], which is in charge of collecting experiences by transforming inputs 

to output actions, using policy gradient. 

 

Figure 3. 8    Policy Network 
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To get an insight into the functionality of RNN, let us explain with an example. Assuming 

our net network is about to learn the pong [fig.3.9] playing with a professional pong player. The 

agent starts with a random state and waits for the scoreboard results. If it scores a goal, it will 

receive a reward of +1 and in case the professional player scores a goal a reward of +1 will be 

assigned to the agent. Each reward of +1 leads to increasing the probability of that action in the 

future. The ultimate goal for the agent is to try multiple actions with different directions 

considering the previous ones and the related rewards to optimize the policy to receive as much of  

 

 

Figure 3. 9    The pong game 

rewards as possible. On the other hand, -1 leads to filtering out the bad actions and they will be 

less likely to happen in the future. 

3.8. Overfitting and under fitting 

Overfitting takes place when the ANN is trained to learn all the details of a given input data 

including the environment noise and the temporary changes in the behaviour of the unknown 

system. Obviously, this ANN will perform perfectly using the data on which it is trained however, 

since noises and changes in input data are not constant, the performance of ANN will significantly 

drop with a new set of data. On the other hand, when the ANN ignores many details about the 

input data, it will not be capable of knowing the nature of the unknown system. An under fitted 

ANN cannot find the patterns in the input data and will show a poor performance. Figure 3.10 

illustrates an over fitted, under fitted and a fitted ANN. 
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Figure 3. 10    An illustration of an over fitted, under fitted and a fitted ANN 

To overcome the overfitting there are techniques such as increasing the number of  finding 

the optimized number of layers and the neurons in each layer, input data, using validation set, 

decreasing the number of iterations, and cross validation. To solve the problem of under fitting 

logically system needs more time by increasing the number of iteration and reliable data for 

training. In addition, changing the number of layers and neurons and activation functions may 

solve the problem. 

3.9. MLP and GRNN 

In our experiment, we use MLP and GRNN to perform the regression.  [Fig.3.11, 3.12] depict the 

abstract structure of an MLP and a GRNN network. We use Multilayer Perceptron (MLP) with 

one and two layers, and General Regression Neural Network (GRNN) with two different spread 

factor to get the minimum localization error. 

 

Figure 3. 11    The general structure of an MLP network with two hidden layers 

The decision about the number of layers and the spread factor is based on trial and error. We 

realized that the performance of an ANN with more than 2 layer drops compared to ANN with two 

layers.  
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Figure 3. 12    The general structure of a GRNN network 

 

MLP is a feedforward ANN with at least three layers namely input, hidden layer/s and output. 

Each node in each layer is connected to all neurons of previous and next layers hence MLP is a 

fully connected ANN. The process of learning begins with assigning random values to weights 

and biases. Then the network takes the inputs, multiplies them to the initial weights, adds biases, 

calculates the sum and passes it through the activation function to obtain the estimated output to 

compares it to the actual value for error calculation. The calculated error is back propagated to the 

network using gradient descent to minimize the estimation error by updating the weights and biases 

at each iteration. 

MLP is good at distinguishing non-linearly separable data; hence, it can be used for nonlinear 

regression by mapping the known measures to their relevant coordinates. In our experiment, we 

tried various configuration with regard to the number of hidden layers, the number of neurons in 

each layer, and the activation function of each layer. More hidden layers do not lead to better 

accuracy but the performance of a complicated network is poor with regard to the localization 

error. 

On the other hand, generalized regression neural network (GRNN) which is a variation of 

radial basis neural networks, uses a one-pass procedure with no back propagation as its training 

algorithm and no training parameters as in MLP. GRNN as a supervised network performs function 

approximation between given input and output data, directly and quickly using the training data. 

GRNN as an associative memory memorizes every specific pattern when the one-pass training is 

done. Consequently, the memorized patterns are generalized to new set of data to generate the 

https://en.wikipedia.org/wiki/Radial_basis_function_network
https://en.wikipedia.org/wiki/Neural_network


31 

 

 

output. The function of GRNN is based on estimation of most probable output value for a given 

input by computing the joint probability density function of inputs and outputs. 

 

Similar to MLP, GRNN can be employed for regression and classification. The structure of 

GRNN consists of input, pattern also known as hidden (with Gaussian activation function), 

summation, and output (division) layers. The input layer takes the training set and feeds it to the 

pattern layer, where the Euclidean distance is calculated. For each pattern in the training set there 

is a neuron in the pattern layer although too many pattern in the training set could lead to poor 

functionality of GRNN. The summation layer consists of two types of neurons namely the 

Numerator or summation neurons (equal to the number of outputs) and Denominator or a single 

division neuron. The training set is multiplied by the activation function and summation presented 

at the Numerator neurons. The division or the Denominator neuron is in charge of summing the 

activations function. The output layer divides the received signal from summation (Numerator) 

neuron by the signal from the division neuron (Denominator).  Eq.3.3 shows the predicted value 

using Parzen's non-parametric estimator at the output layer of GRNN. 

                                          𝑌(𝑥) =  
∑ 𝑦𝑘𝐾(𝑥,𝑥𝑘)𝑁

𝑘=1

∑ 𝐾(𝑥,𝑥𝑘)𝑁
𝑘=1

                                                           (3.3) 

                                          𝐾(𝑥, 𝑥𝑘) = 𝑒
𝐷𝑘

2

2𝜎2                                                                    (3.4) 

                                          𝐷𝑘
2 =  −(𝑥 − 𝑥𝑘)𝑇(𝑥 − 𝑥𝑘)                                                  (3.5) 

Where N is the number of observations. σ the spread/smoothing factor is the width of sample 

probability or the size of the neuron's region. 𝑌(𝑥) represents the prediction value of input, 𝑦𝑘 the 

activation weight for the pattern layer neuron at k, and 𝐾(𝑥, 𝑥𝑘) is the Radial basis function kernel 

(Gaussian kernel Eq.3.4) and 𝐷𝑘
2 shows the squared distance between the input vector x and the 

training vector xk. Small value of σ leads to non-Gaussian shapes, while larger value of σ smooths 

the estimated density, and finally forces it to become a multivariate Gaussian with covariance of 

unity. To find the optimum spread factor, a range of values must be tried empirically. In our 

experiment, the optimal values of spread factor for each of two scenario are determined by multiple 

observations and comparison between results. Although having only one parameter to set may 

seem an advantage for GRNN, in practice, the results from GRNN are not as good as that of MLP 

although, GRNN function is better at learning phase.   

https://en.wikipedia.org/wiki/Radial_basis_function_kernel
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CHAPTER 4          CSI GEOLOCATION 

4.1. Introduction 

In this chapter, the background knowledge about CSI is presented, and then the geolocation 

method that is used in this research is explained in detail including the hardware setup, site 

surveying, training of the system, and the test phase [fig.4.1]. Experimental results are presented 

to approve the functionality of our approach. 

 

 

Figure 4. 1    The Flowchart of the experiment 
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4.2. Channel State Information (CSI) 

The received signal maybe affected by its own multiple replicas at the receiver, which may 

constructively/deconstructively affect it. Moreover, fading and path-loss also, could affect the CSI 

packet. All these can be represented in CSI, which is an important information from the physical 

layer. Since we are using three transmitter and three receiver antennas, the communication is 

MIMO-OFDM, and considering 30 subcarriers the CSI report is a three dimensional matrix. Each 

CSI is a complex value referring to amplitude attenuation and phase shift of the received signal. It 

is essentially the channel frequency response (CFR), sampled at known frequencies. Therefore, to 

have a better understanding of CSI, one needs to have a clear idea about CFR. CFR is in fact, the 

channel impulse response (CIR), but in the frequency domain. The impulse response function of 

the communication channel demonstrates how the channel affects each different path in terms of 

its amplitude, phase, and delay due to fading, scattering, and power loss. To obtain CFR, a fast 

Fourier transform (FFT) should be applied to CIR. Equations (4.1) and (4.2) represent the CIR and 

CFR respectively [57, 58]. 

                              𝐶𝐼𝑅 = ℎ(𝜏) = ∑ αi 𝑒
−𝑗𝜃𝑖δ(τ − τi)

𝑁

𝑖=1
                                              (4.1) 

                  𝐶𝐹𝑅 = 𝐻(𝜔) = 𝐹𝐹𝑇[ℎ(𝜏)] = ∑ αi 𝑒
−𝑗(𝜔τi+𝜃𝑖)𝑁

𝑖=1
                                      (4.2) 

Where αi, θi, 𝜏i, and N represent amplitude, phase, delay for each signal on ith path, and 

number of total paths respectively. 

As mentioned above, CSI is a series of H (𝜔) at k specific frequency and it can be 

demonstrated as a complex number as in equation (4.3): 

                                            CSI= H (fk) = |H (fk)|𝑒𝑗∠H (𝑓𝑘)                                                                  (4.3) 

CSI is included as a packet of complex values in the feedback, from the receiver to the transmitter 

to adjust the transmission parameters of beamforming in order to improve the functionality of the 

communication channel. According to table 7-25f in IEEE Standard reference [5], the size of the 

CSI report depends on the bandwidth and the number of carrier grouping as shown in [Table 4.1]. 

Ng refers to the number of adjacent subcarriers represented by a single subcarrier.  

The provided CSI report by IWL5300 is in a specific format where 30 subcarrier groups are 

reported as the channel matrices. Now, if the bandwidth 20 MHz is selected, each of these 30 
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subcarriers represents two consecutive subcarrier of OFDM hence Ng is 2. Ng = 2 means every two 

adjacent subcarriers are represented by one, so we see that subcarrier indices begin from -28 which 

means two subcarriers -28 and -27 are represented by a single subcarrier -28 or -26 is the 

representative subcarrier for -26 and -25, and so on. Hence, if we choose Ng = 2, the total number 

of subcarriers for which the matrix of CSI is sent, becomes 30. 

Table 4. 1. Number of matrices and carriers grouping [5] 

BW Grouping  

Ng 

Ns Carriers for which matrices are sent 

 

20 MHz 

1 56 All data and pilot carriers: -28, -27,…-2, -1, 1, 2, …27, 28 

2 30 -28, -26, -24, -22, -20, -18, -16, -14, -12, -10, -8, -6, -4, -2, -1, 1, 3, 5, 7, 9, 11, 

13, 15, 17, 19, 21, 23, 25, 27, 28 

4 16 -28, -24, -20, -16, -12, -8, -4, -1, 1, 5, 9, 13, 17, 21, 25, 28 

 

 

40 MHz 

1 114 All data and pilot carriers: -58, -57, …, -3, -2, 2, 3, …,57 ,58 

2 58 -58, -56, 54, -52, -50, -48, -46, -44, -42, -40, -38, -36, -34, -32, -30, -28, -26, -

24, -22, -20, -18, -16, -14, -12, -10, -8, -6, -4, -2, 2, 4, 6, 8, 10, 12, 14, 16, 18, 

20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58 

4 30 -58, -54, -50, -46, -42, -38, -34, -30, -26, -22, -18, -14, -10, -6, -2, 2, 6, 10, 14, 

18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58 

 

The modulation and coding scheme (MCS) used for sending Frames of CSI is MCS 19, 

which means 16 QAM with coding rate of ½ for three streams sent from three antennas. In this 

experiment, we use 20 MHz bandwidth and 64-point FFT sampling with the number of carrier 

grouping of two. Therefore, we have 52 data, 4 pilot, and 8 null OFDM subcarriers with 312.5 

KHz of subcarrier frequency spacing. 

 Moreover, all three antennas of transmitter and receiver are involved and for each 

measurement, 20 packets are sent. Therefore, the CSI report contains 20 structure of 3x3x30 signed 

8-bit resolution complex values. Compared to RSSI as single value information, also known as 

coarse-grained, it is obvious that CSI contains detailed information, hence known as fine-grained. 

In other words, for each measurement, CSI gives comprehensive information related to how the 

communication channel affects each subcarrier in terms of phase-shift and amplitude attenuation. 
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Moreover, by using three antennas at both the communication channel ends, we can benefit from 

spatial diversity.  

Thanks to this richness, CSI is not only less affected by temporal instability, but also, shows 

uniqueness for each measuring point.  Fig 4.2 shows the uniqueness of CSI data for each location. 

Each color refers to variations of CSI amplitude over 30 subcarriers for a location at which, 20 

packets of CSI are received. As can be seen, all received packets at a specific location show similar 

behavior and obviously different from that of other locations. 

 

Figure 4. 2    CSI Amplitude of communication link 1(Tx1-Rx1) 

For 20 packets and the average of them, at four measurement points 

 

4.3.  Hardware Installation and Setup 

For our experiment, we use two Lenovo laptops equipped with Intel Wi-Fi Link (IWL) 5300 

NIC network adaptor with three antennas [fig 4.2]. These three antennas give rise to nine wireless 

links between the AP and the MS.  In addition, to get a coverage with longer range, we choose the 

operation band of 2.4 GHz so that the signal wavelength is around 12.5 centimeters. Moreover, 

the operating mode for this connection is set to “Monitor mode” in which the packets are sent and 

received at a fixed hardcoded address 00:16:ea:12:34:56. 
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In this research, all nine links between Tx1-3 and Rx1-3 are considered to exploit the spatial 

diversity. The reason for using this specific network adaptor is to have access to CSI data by 

installing a modified driver created by Daniel Halperin [1]. This modified firmware changes the 

previous Kernel on Linux Ubuntu operating system to a customized version. This customized 

kernel enables the debug mode of the network adaptor, and consequently at each communication 

session between two machines, a CSI report containing adjustable number of packets for 30 

subcarrier groups (one group for every 2 subcarriers at 20 MHz) is received at the receiver machine 

upon the request sent by the receiver. The ensemble of obtained CSIs represent the unique and 

time-independent behaviour for each location. This data constitutes the appropriate signature for 

the fingerprinting technique.  

To prepare our laptops, first Ubuntu 14.04.5 LTS 32-bit, with kernel 3.13.0-17 is installed 

on both machines. Then by running the installation instructions, presented at reference [60], in 

Ubuntu terminal, the modified kernel is downloaded and installed. The complete set of commands 

are given in Appendix A. 

 

Figure 4. 3    Intel Wi-Fi Link 5300 

The first laptop, which is considered as the transmitter (Tx), set in “injection mode”, is 

located at a fixed location on the sixth floor of the Lassonde building of Polytechnique Montreal. 

The second laptop considered as the receiver (Rx), set in “monitor mode”, is moved all over 200 

distinct points of measurement. The distances between measurement points is set to 55cm 

resolution along the Y-axis and 110 cm along the X-axis. For each location, Rx sends a request to 

Tx, and in response, Tx sends back 20 WiFi packets of information across 30 subcarriers. [Fig.4.4, 

4.5] shows the packet send and receive process between Tx and Rx. The receiver collects CSI data 

for data frames, which are identified by the same MAC address in the header for the source and 
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the destination as 00:16:ea:12:34:56 and the length of payload.  Table.1 shows the set of 

subcarriers specified by IEEE 802.11n-2009 standard. Intel NIC 5300 supports measuring 30 

OFDM subcarriers corresponding to Ng = two for 20 MHz. These subcarrier indices are used to 

determine frequency sampling in order to extract the relevant parameters from the received CSI. 

This operation bandwidth results in 50 ns of time resolution, which in turn is equal to having all 

the paths, which are shorter than 15 m in the same time bin.  

 

 

Figure 4. 4    Sending 50 packets from Tx 

 

Figure 4. 5    Receiving packets on Rx 

 

Once the CSIs are collected and processed for all locations, we use them with their associated 

locations to create the database at the training phase. Then, at the localization phase, the specific 
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measured signature is used as the input of the ANN, acting as the pattern matching algorithm, to 

locate the user’s location. 

4.4.  Practical implementation  

The ultimate goal of this experiment is to localize people in a building. Although we perform 

all steps of our measurement and localization on two Lenovo laptops, it is obvious that carrying a 

laptop, due to the size and weight, is not feasible. Therefore, the alternative solution for a real life 

scenario is to use an Intel NUC mini PC [fig.4.5] as it is used in Spotfi [30],  

 

Figure 4. 6    Intel NUC mini PC, equipped with NIC 5300, presented in [30]. 

This mini PC together with the NIC 5300 can be attached to a person’s belt so the height 

from the ground would be around 0.9 meter. Considering this fact, we place our target laptop on a 

flat shelf cart with the height of 0.9 meter to simulate the approximate real life scenario and for 

the ease of replacement as well. 

4.5. Testbed design 

For our testbed, we consider the sixth floor of Lassond building at the cafeteria. 280 points 

of measurement with 55 centimeter in y direction and 110 centimeter in x direction and all at the 

same height of 90 centimeter are chosen. The reason for the spacing between measurement points 

is the structure of cafeteria and the positions of the tables. The measurement campaign is done in 
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different days of the week at various times to find out if time may affect the CSI behaviour, and 

since CSI is less time variant than RSSI, no considerable change is seen.  

During the measurement, the transmitter is at a fixed location and the receiver goes over 280 

locations to record the CSI data. Measurement locations are chosen in a way to satisfy both line of 

sight (LoS) and non-line of sight (NLoS) communication between Tx and Rx [fig.4.6]. There is 

no direct path between the Tx and the measurement points located in the corridor and all that these 

points receive from Tx, is the reflection of the original signal and all points in the corridor are 

located in NLoS. 

 

Figure 4. 7    Part of 6th floor including the cafeteria and the corridor 

 

4.6. Offline Phase 

The offline phase comprises three steps, namely collecting the fingerprint data, processing 

the collected data, and training neural network with the processed data. During the offline phase, 

ANN learns the relation of between CSI data and its corresponding coordinates for 80% of 

collected data. At the test phase, it estimates the coordinates of 20% of locations, which are 

unknown to it. 
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4.6.1. CSI Collection  

In order to collect CSI data, the receiver is placed in monitor mode by running the appropriate 

code for receiver in terminal, and it waits until the transmitter starts sending the report. To set the 

number of packets, the delay between packets and the size of packets for each communication, the 

desired setting is applied by running the appropriate code for the transmitter in the Ubuntu 

terminal. The aforementioned codes are provided in Appendix A. During the measurement 

campaign, the mobile laptop’s lid is always at vertical position. 

4.6.2. Challenges for CSI preparation 

Once the CSI report is received by the receiver, it is stored in a binary format. Considering 

a reference point as the origin with the coordinates (0, 0), a location number is given to each 

measurement point with its distance from the origin. The CSI report for each location is read using 

MATLAB and at this stage, it needs to be appropriately processed for our ANN.  

First, we considered to perform averaging, signal denoising, outlier and redundant removal 

by applying various technics such as discrete wavelet transform (DWT), Hampel filter, 

Butterworth filter, principal component analysis (PCA), and extracting seven parameters of the 

communication link. More specifically we tried 1-D wavelet using Matlab toolbox with 

Daubechies (db), Symmetric (sym), Coiflets (coif) and Biorthogonal (bior) wavelets for denoising 

in order to reduce the complexity of our training set patterns and avoid overfitting.  

However, during the tests with the processed CSI values, we realized any processing could 

reduce the richness of our data. So finally, the best idea to organize our data is data expanding 

instead of removing process. For this purpose, we use all 20 received packets for each location to 

let our ANN have more training data. As it is previously discussed and shown in fig.4.2, the 

behaviour of received packets at a specific location is unique and time independent. However, it 

does not mean all packets are exactly following the same pattern this is why considering 20 packets 

does not add redundancy.  As each packet for a given location is slightly different from the previous 

and next received packet, we can leverage it to enrich our training set. Finally, to give a comparison 

between processed and non-processed data we keep the latter technic, i.e. extracting seven 

parameters as the second scenario. 
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The CSI values are saved as the matrix of inputs with the number of location multiplied by 

20 transmitted packets giving a matrix of 5600 rows and 270 columns for each measurement point. 

The number 270 represents the nine communication links between pairs of transmitter and receiver 

antennas multiplied by 30 sub-carriers for each link. We choose two different scenario to train the 

neural network. In the first approach, all CSI data is used as it is without any further modification 

as the input for the neural network. In the second approach, seven parameters related to the 

communication channel are extracted from the CSI data and used as neural network input.   

4.6.3. Training the Neural Network 

As previously mentioned, we take two approaches in terms of training of our neural network. 

The use of the CSI data without feature extraction as input in the first one, and as the second 

approach, inspired by [35], we extract seven parameters related to the communication channel and 

use them as the inputs of the neural network. The extracted wireless channel parameters are the 

delay RMS (τrms), the average delay considering the delay of the first peak as the reference (τm), 

the maximum delay (τmax), the relative total power (P), the number of differentiable multipath 

corresponding to the detected maximum peaks of the CIR (N), the first element in vector of power 

amplitudes related to maximum peak (P1) and the first element in vector of delays related to 

maximum peaks (τ1). To use the collected CSIs for ANN training, data processing and 

normalization is needed. As mentioned before, we consider nine communication links (i.e. the 

channels between all Tx and Rx antennas) which makes a total of nine, times thirty subcarriers 

equal to 270 rows. As for each of 280 location, we collect 20 packets our CSI matrix has 5600 

columns from which 80% (5600 * 80% = 4480) serve as training data and 20% are used at testing 

phase. This makes it clear that our approach is regression-based rather than a classification-based 

approach. Fig. 4.b illustrates the configuration of our system to create the database at the learning 

phase for two different scenarios of all CSIs and seven extracted parameters. 
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Figure 4. 8    The configuration of our system to create the database at the learning phase 

 

As for ANN, our first network is a feed forward MLP and the second one is a GRNN to 

perform the regression. For this experiment, we use Multilayer Perceptron (MLP) with one and 

two layers, and General Regression Neural Network (GRNN) with two different spread factor to 

get the minimum localization error.  

All ANNs are trained with 80% of the database as training data. For the first case, we 

consider two MLP networks. One with 1 layer and 50 neurons and the other with 2 layers and 50 

neurons at the first layer and 24 at the second layer, which prove to be the optimized values for 

network performance. We set the performance goal at 10-4, the activation function for all layers as 

tangent sigmoid, mean squared error (MSE) as the loss function, 200 iterations and the Levenberg–

Marquardt as the optimization function for nonlinear curve-fitting problems to update weights and 

biases. 

For the second case, GRNN is considered with two different spread factors 1.4 and 1.2. The 

values for spread factor are selected with trial and error and these two in our experiment show 

better results in terms of the minimum localization error. Then at the testing phase, ANN preforms 

the location estimation with 20% of the database as testing data. The cumulative density function 

of localization error, which is the difference between the actual and the estimated location, together 

with the performance report is presented in the section 4.6.1. 
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4.7. Online Phase 

In the online phase, the localization is done for 20% of measurements, which are unknown 

to ANNs. Similar to training phase and considering two previously explained scenario, 20 packets 

of CSI measures per location or the extracted parameters of 56 (20%*280) test points, depending 

on the scenario, are fed into two different configuration of ANN: MLP and GRNN.  

The trained ANN with the optimized weights and biases estimates the corresponding location 

to each measurement. Fig. 4.9 illustrates the configuration of our system at the test phase for two 

different scenarios of all CSIs and seven extracted parameters. Since we have 20 packets of CSI 

for 56 test points, the total number of inputs and output is 1120. 

 
Figure 4. 9    The configuration of our system to create the database at the test phase 

 

 

4.7.1.    Experimental Results 

In this section, we present the results for two scenarios and two ANN configurations, as 

cumulative distribution function (CDF) of localization error with the related analysis of accuracy 

to give an insight into the system performance.  
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The results of all the considered cases are given in fig. 4.10 to fig. 4.13. In each figure the 

error of localization at training and test phase is presented in direction x, y, and the Euclidian 

distance d. This latter, is the performance index of our system, based on which, we decide the 

accuracy of each configuration. 

 

Figure 4. 10    CDF of error for GRNN with spread factor: 1.2, 1.4 and 7extracted parameters. 

a: CDF of Error on x, b: CDF of Error on y, c: CDF of Error on d at training phase. 

e: CDF of Error on x, f: CDF of Error on y, g: CDF of Error on d (Euclidian distance) at 

testing phase. 

 

As it can be seen from [fig.4.10] (a, b, and c), GRNN network shows a better performance 

at learning. [Fig 4.10 c] illustrates that around 70% and 90% of locations are learned with less than 

a meter localization error for spread factor 1.4, and 1.2 respectively. While at the test phase, we 

observe a dramatic performance drop of around 50% for both spread factors shown in [fig.4.10 g]. 

Technically, GRNN fails to perform an acceptable estimation with seven extracted parameters as 

its input. The reason for this lies potentially in the fact that CSI data is already a sampled version 
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of CFR and by feature extraction; we are actually losing valuable data to the point that even with 

data augmentation our ANN lacks enough input data to properly train itself. 

 

Figure 4. 11    CDF of error for MLP with one hidden layer vs MLP with two hidden layers and 

7extracted parameters. 

a: CDF of Error on x, b: CDF of Error on y, c: CDF of Error on d at training phase. 

e: CDF of Error on x, f: CDF of Error on y, g: CDF of Error on d (Euclidian distance) at 

testing phase. 

 

According to [fig.4.11 c] both one-layered and two-layered MLP compared to GRNN, 

demonstrate a weaker performance at training phase by around 30% of learned locations with a 

sub meter error. The results at the test phase, as logically expected are worse with 12% and 16% 

of learned locations with less than a meter error for one-layered and two-layered MLP, 

respectively. Quite similar to GRRN, MLP shows a poor performance with seven extracted 

parameters as its inputs. Therefore, an alternative type of ANN is not a solution to this problem 

but a richer input data set as it is presented in coming pages boosts the performance of our system. 
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Figure 4. 12    CDF of error for MLP with one hidden layer vs MLP with two hidden layers and 

all CSIs. 

a: CDF of Error on x, b: CDF of Error on y, c: CDF of Error on d at training phase. 

e: CDF of Error on x, f: CDF of Error on y, g: CDF of Error on d (Euclidian distance) at 

testing phase. 

 

As discussed previously, we take the normalized CSI data for 20 packets per location and 

pass it into our ANN without any feature extraction. The CDF of localization error in [fig. 4.12 c] 

shows a higher location learning accuracy for MLP with two hidden layers. We observe almost 

100% of learned locations with less than 0.5 meter error for two-layered MLP while for one-

layered MLP the error is around 0.7 meter for 100% of learned locations. Although, the accuracy 

at test phase is lower [fig.4.12 g], we see that our system achieves a sub meter error for more than 

90% and almost 100% of its estimations using one-layered and two-layered MLP, respectively. 

With closer look at the red curve in [fig. 4.12 g], we see more than 97.7% of the location 

estimations have been done with less than a meter of localization error, which reveals that MLP 

with two hidden layers has 2.7% better performance than that of MLP with one hidden layer by 



47 

 

 

95% successful estimations. The gap between 1-layerd and 2-layered MLP is clearly observable if 

we consider the number of successful estimations with less than 0.5-meter localization error. For 

1-layered MLP 74% and for 2-layered MLP 86% of estimations with less than 0.5-meter shows 

12% higher accuracy of 2-layered MLP. It can also be seen that error in X direction is more than 

error in Y direction, which is reasonable because of 110 cm distance between measurement points 

on X-axis and 55 cm on Y-axis. As can be seen in  Fig.4.12 e and f, both one and two layered 

configurations reach 100% percent accuracy with less than 0.5 meter localization error in y 

direction while, for x direction this is not the case having nearly 100% of successful estimation 

with less than 1-meter error. 

 

Figure 4. 13    CDF of error for GRNN and all CSIs 

a: CDF of Error on x, b: CDF of Error on y, c: CDF of Error on d at training phase. 

e: CDF of Error on x, f: CDF of Error on y, g: CDF of Error on d (Euclidian distance) at testing phase. 

Fig. 4.13 c clearly illustrates the good learning capability of GRNN at training phase with 

less than a meter error for 80% and 100% of estimations for spread factor 1.5 and 0.9 respectively. 
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However, its performance at the test phase [fig. 4.13 d, e and f] is not excellent. The system is 

trained and tested with 2 different spread factors and the spread factor 0.9, proves to be the 

optimized setting for GRNN at training phase. The results related to GRNN with the spread factor 

of 1.5, shows 50% of learned points with less than 0.57 meter and 84% of trained points with less 

than a meter error. On the other hand, GRNN with spread factor 0.9, at training phase reaches a 

localization error of 0.10 m for more than 90% of estimations.  The spread factor 0.9 clearly 

improves the GRNN in the learning phase however, as it can be clearly seen the two spread factors 

show an identical effect on the test phase and no significant difference is observed. 

4.7.2.    The Effect of ANN Tuning Parameters 

We tried various values for the number of layers, neurons, and spread factor. The 

configuration of a one-layered MLP with 50 neurons and a two-layered MLP with 50 neurons at 

the first hidden layer and 24 at the second hidden layer give the best results for MLP using both 

feature-extracted and non feature-extracted scenario. On the other hand, for GRNN, we 

experienced different pairs of values for two aforementioned scenarios. Table 4.2 and 4.3 

summarize the results. 

Table 4. 2    Successful estimations with less than 1 m in direction x, y and d, at training phase 

Successful estimations with less than 1 m 

error in: 

x y d 

7 extracted 

parameters 

MLP-1L 16% 19% 11% 

MLP-2L 18% 23% 17% 

GRNN-1.2 75% 90% 68% 

GRNN-1.4 90% 92% 89% 

All CSIs MLP-1L 100% 100% 100% 

MLP-2L 100% 100% 100% 

GRNN-1.5 100% 100% 100% 

GRNN-0.9 92% 90% 81% 
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  Table 4. 3    Successful estimations with less than 1 m in direction x, y and d, at test phase 

Under 1-meter successful estimations in: x y d 

7 extracted 

parameters 

MLP-1L 24% 25% 17% 

MLP-2L 25% 26% 23% 

GRNN-1.2 35% 34% 21% 

GRNN-1.4 48% 48% 41% 

All CSIs MLP-1L 93% 100% 90% 

MLP-2L 97% 100% 96% 

GRNN-1.5 90% 86% 75% 

GRNN-0.9 88% 90% 75% 
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CHAPTER 5          CONCLUSION 

In this research, we have investigated and compared the efficiency of two different 

configuration of ANN to localize a mobile user with the fingerprinting technique using CSI data 

collected over nine communication links. We adopted, MLP and GRNN as our ANN 

configurations and two scenarios: with and without feature extraction. For the first scenario, seven 

parameters related to the communication channel are extracted from 20 normalized CSI packets 

per location and for the second one CSI 20 packets are fed into our ANN without further 

processing. 

For MLP configuration, we compared the effect of one and two hidden layers with 50 and 

50-24 neurons respectively, on the functionality of our localization system. Based on our results, 

a 2-layered MLP with all CSI data as its input shows a better performance of up to 10% over one-

layered MLP. The similar results for the case of feature extracted CSI is true, however, since the 

overall accuracy is considerably degraded after feature extraction, changing the number of layers 

and neurons does not improve its performance considerably. 

As for GRNN, two different spread factors are tried. According to our results, spread factor 

of 1.4 and 0.9, for feature-extracted and non feature-extracted respectively, improves the accuracy 

of our system at the training phase while, at the test phase no considerable difference can be seen.  

The results show that MLP performs with a considerably higher accuracy of around 24% 

comparing to GRNN using all CSI information. As it is mentioned, the size of steps between 

reference points also has an obvious effect on the accuracy of the system, as the error of 

localization in the y direction is lower than that of the x direction. 

 

Future Work 

As an improvement in the future, work, 3-D localization is considered. For this purpose, some 

modifications are needed such as using external antennas to make sure manies talk to each other 

on different floors. In addition, our database needs a z-column in coordinate data, which will not 

be continuous but specific ranges of height will be represented by the floor height. Furthermore, 

since carrying, an extra device is troublesome in a workplace such as a building; a device-free 

approach combined with our idea of augmented inputs is suggested for the future work. Moreover, 
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instead of regression, we may divide the whole area into 1x1 squares and define each of them as a 

class. The fingerprinting database can be build up using the difference between presence and 

absence of a human in an area and its effect on CSI amplitude. Another point in to consider in the 

future work, is implementing multiple transmitter to cover a wider area.  

The idea of localization using CSI data can also be used in online tracking of the target. For 

this purpose, the target should constantly send messages for the server to perform online 

localization and a user graphic interface could show the movement of the target. The challenge for 

this idea is higher power consumption, which can be addressed by using more power station supply 

the device. 
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APPENDIX A

After installing the Intel WiFi Link 5300 NIC and first Ubuntu 14.04.5 LTS 32-bit on both laptops, 

kernel-packagefollowing codes in the Ubuntu terminal: 

1. First step (Essentials )

These lines of code install the build tools, the Linux development headers, and the Git client. Also, 

based on the installation instructions it is advised to disable Network Manager, so that it will not 

control the wireless card while we run the experiment: 

sudo apt-get install gcc make linux-headers-$(uname -r) git-core 

sudo apt-get install iw 

echo iface wlan0 inet manual | sudo tee -a /etc/network/interfaces 

sudo restart network-manager 

To make sure the driver will not automatically load during boot run the following lines: 

echo blacklist iwldvm | sudo tee -a /etc/modprobe.d/csitool.conf 

echo blacklist iwlwifi | sudo tee -a /etc/modprobe.d/csitool.conf 

2. Second step (Modifying the Wireless adaptor Driver)

Next, we need to apply modification to the driver and the correct tag for upstream kernel should 

be checked by getting the complete information of CSI Tool Linux (Linux source tree): 

CSITOOL_KERNEL_TAG=csitool-$(uname -r | cut -d . -f 1-2) 

git clone https://github.com/dhalperi/linux-80211n-csitool.git 

cd linux-80211n-csitool 

git checkout ${CSITOOL_KERNEL_TAG} 

More over the compatibility can be improved by merging the applied modification into the Linux 

source tree: 

. /etc/lsb-release 

git remote add ubuntu git://kernel.ubuntu.com/ubuntu/ubuntu-${DISTRIB_CODENAME}.git 

git pull --no-edit ubuntu ${UBUNTU_KERNEL_TAG} 

The modified driver can be built for the current kernel: 

make -C /lib/modules/$(uname -r)/build M=$(pwd)/drivers/net/wireless/iwlwifi modules 

Consequently, the built driver is installed into the module updates directory: 

https://www.thesaurus.com/browse/essential
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sudo make -C /lib/modules/$(uname -r)/build M=$(pwd)/drivers/net/wireless/iwlwifi 

INSTALL_MOD_DIR=updates \   modules_install 

sudo depmod 

cd .. 

3. Third step, Installing the Modified Firmware

In this step we need to get the CSI Tool supplementary material by running the following lines: 

git clone https://github.com/dhalperi/linux-80211n-csitool-supplementary.git 

Removing the current firmware for Intel Wi-Fi Link 5000 Series adapters: 

for file in /lib/firmware/iwlwifi-5000-*.ucode; do sudo mv $file $file.orig; done 

Installing the new firmware (modified): 

sudo cp linux-80211n-csitool-supplementary/firmware/iwlwifi-5000-2.ucode.sigcomm2010 

/lib/firmware/ 

sudo ln -s iwlwifi-5000-2.ucode.sigcomm2010 /lib/firmware/iwlwifi-5000-2.ucode 

4. Fourth step, Building the Logging Tool

This command makes it possible to write the obtained CSI to a file: 

make -C linux-80211n-csitool-supplementary/netlink 

5. Fifth step, Enabling the Logging and Test

Before loading the driver to log, the current driver must be unloaded: 

sudo modprobe -r iwlwifi mac80211 

In case the error message (FATAL: Module iwlwifi is in use) appears." It implies that we must 

firstly unloade iwldvm module by running the following line: 

sudo modprobe -r iwldvm iwlwifi mac80211 

Now the new driver with the ability to log is reloaded: 

sudo modprobe iwlwifi connector_log=0x1 

Finally to log  CSI to a file: 

sudo linux-80211n-csitool-supplementary/netlink/log_to_file csi.dat 
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This page contains the codes that are at transmitter and receiver sides to enable injection and 

monitoring. Running some lines may lead to error messages but they should be ignored. 

Transmitter side: 

cd linux-80211n-csitool-supplementary/injection 

sudo modprobe -r iwldvm 

sudo modprobe -r iwlwifi mac80211 cfg80211 

sudo modprobe iwlwifi 

sudo ifup wlan0 

sudo modprobe -r iwlwifi mac80211 cfg80211 

sudo modprobe iwlwifi debug=0x40000 connector_log=0x1 

sudo iwconfig wlan0 mode monitor 

sudo iw dev wlan0 interface add mon0 type monitor 

sudo iw dev mon0 set channel 64 HT20 

sudo ip link set wlan0 down 2>/dev/null 1>/dev/null 

sudo iw dev wlan0 set type monitor 2>/dev/null 1>/dev/null 

sudo ip link set wlan0 up 

sudo iw dev mon0 set channel 64 HT20 

sudo find /sys -name monitor_tx_rate 

/sys/kernel/debug/iwlwifi/0000:03:00.0/iwldvm/debug/monitor_tx_rate 

For one transmitter antenna: 

echo 0x4101 | sudo tee /sys/kernel/debug/iwlwifi/0000:03:00.0/iwldvm/debug/monitor_tx_rate 

0x4101 

For three transmitter antennas: 



62 

echo 0x1c113 | sudo tee /sys/kernel/debug/iwlwifi/0000:03:00.0/iwldvm/debug/monitor_tx_rate 

0x1c113 

mohsen@mohsen-ThinkPad-T61:~/linux-80211n-csitool-supplementary/injection$ sudo 

./random_packets 100000 100 1

Receiver Side: 

Terminal one: 

sudo modprobe -r iwldvm iwlwifi mac80211 

sudo modprobe iwlwifi connector_log=0x1 

sudo iwconfig wlan0 mode monitor 

sudo iw wlan0 set channel 64 HT20 

command failed: Device or resource busy (-16) 

sudo modprobe iwlwifi 

sudo ifup wlan0 

sudo iw wlan0 set channel 64 HT20 

sudo ifconfig wlan0 up 

Terminal 2: 

sudo linux-80211n-csitool-supplementary/netlink/log_to_file Desktop/csi.dat 


