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OPTIMISATION DES RADARS MULTISTATIQUES POUR DES APPLICATIONS
DE RESEAUX DE CAPTEURS RADAR

Moez BEN KILANI

RESUME

La conception de réseaux de capteurs radar a subi une croissance considérable durant les
derni¢res années. En effet, ce genre de systémes est caractérisé par un degré de flexibilité
¢élevé du point de vue de la conception. Ceci est grace a la multiplicité de nceuds radar ainsi
que les méthodes de fusion de données. Cette thése se concentre particuliérement sur le
développement et 1’analyse des architectures de réseaux de capteurs radar dans le but
d’optimiser la détection et le positionnement de la cible. Un intérét spécial est porté aux
systémes de réseaux de capteurs radar distribués, ou la diversité spatiale peut étre exploitée
afin d’améliorer les capacités du radar en termes de détection de cible.

Dans une premiere partie de cette theése, la diversité spatiale est utilisée en conjonction avec
des techniques cognitives de conception et de sélection de formes d’ondes afin de s’adapter
rapidement et en temps réel aux variations de I’environnement ou se situe la cible. Dans une
seconde partie, on étudie I’'impact de la géométrie de réseaux de capteurs radar, en
particulier, I’emplacement des récepteurs du radar multistatique sur la précision de
positionnement de la cible. On développe un systeme basé sur une sélection cognitive de
formes d’ondes radar ainsi qu’une stratégie adaptative de placement de récepteurs pour gérer
les caractéristiques de dispersion propre a la cible. Ces caractéristiques sont variables dans le
temps ainsi que les parametres de distribution d’objets radars non désirés dans la milieu radar
dynamique.

La troisieme partie de la thése est consacrée au theme de la coexistence entre les systemes
radar et de communication et leur opération conjointe a travers deux architectures possibles.
Dans la premicere architecture, plusieurs noceuds de communication opérent séparément en
fréquences. Chaque nceud tire profit de la diversité a plusieurs vues du systéme distribué afin
d’activer le traitement radar sur les multiples signaux radar bistatiques et monostatique regus
au niveau de chaque nceud. L’architecture est basée sur le fait que le signal de
communication, comme la forme d’onde Orthogonal Frequency Division Multiplexing
(OFDM), peut étre utilisé pour du traitement radar par I’intermédiaire d’un choix judicieux
de paramétres. Ceci permettra de réaliser simultanément des taches radar et de
communication de données. L’avantage d’utiliser la méme forme d’onde pour les deux
applications est d’assurer les fonctions en permanence des systemes radar et de
communication a la suite d’une meilleure utilisation du spectre utilis¢ et a 'intérieur de la
méme plateforme matérielle. La deuxiéme principale architecture est plus complexe et
permet de traiter le cas ou les entités radar et de communication sont séparés dans
I’environnement mais avec une contrainte de partage complet ou partiel du spectre de
fréquences. On étudie dans le cadre de cette thése 1’emplacement optimal des récepteurs
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radar dans le but d’améliorer la précision de positionnement de la cible d’intérét tout en
réduisant les erreurs de mesures radars. Ceci est réalis¢é en minimisant les interférences
causées par l’opération en simultanée du systtme de communication. Des meilleures
performances en termes de réduction d’interférence au niveau radar ont été obtenues en
appliquant la technique proposée d’emplacement des récepteurs, comparée a la technique
basée uniquement sur la minimisation du geometric dilution of precision (GDOP).

Mots-clés: réseaux de capteurs radar, détection et positionnement de la cible, opération
conjointe des systémes radar et de communication.



MULTISTATIC RADAR OPTIMIZATION FOR RADAR SENSOR NETWORK
APPLICATIONS

Moez BEN KILANI

ABSTRACT

The design of radar sensor networks (RSN) has undergone great advancements in recent
years. In fact, this kind of system is characterized by a high degree of design flexibility due
to the multiplicity of radar nodes and data fusion approaches. This thesis focuses on the
development and analysis of RSN architectures to optimize target detection and positioning
performances. A special focus is placed upon distributed (statistical) multiple-input multiple-
output (MIMO) RSN systems, where spatial diversity could be leveraged to enhance radar
target detection capabilities.

In the first part of this thesis, the spatial diversity is leveraged in conjunction with cognitive
waveform selection and design techniques to quickly adapt to target scene variations in real
time. In the second part, we investigate the impact of RSN geometry, particularly the
placement of multistatic radar receivers, on target positioning accuracy. We develop a
framework based on cognitive waveform selection in conjunction with adaptive receiver
placement strategy to cope with time-varying target scattering characteristics and clutter
distribution parameters in the dynamic radar scene. The proposed approach yields better
target detection performance and positioning accuracy as compared with conventional
methods based on static transmission or stationary multistatic radar topology.

The third part of this thesis examines joint radar and communication systems coexistence and
operation via two possible architectures. In the first one, several communication nodes in a
network operate separately in frequency. Each node leverages the multi-look diversity of the
distributed system by activating radar processing on multiple received bistatic streams at
each node level in addition to the pre-existing monostatic processing. This architecture is
based on the fact that the communication signal, such as the Orthogonal Frequency Division
Multiplexing (OFDM) waveform, could be well-suited for radar tasks if the proper waveform
parameters are chosen so as to simultaneously perform communication and radar tasks. The
advantage of using a joint waveform for both applications is a permanent availability of radar
and communication functions via a better use of the occupied spectrum inside the same joint
hardware platform. We then examine the second main architecture, which is more complex
and deals with separate radar and communication entities with a partial or total spectrum
sharing constraint. We investigate the optimum placement of radar receivers for better target
positioning accuracy while reducing the radar measurement errors by minimizing the
interference caused by simultaneous operation of the communication system. Better
performance in terms of communication interference handling and suppression at the radar
level, were obtained with the proposed placement approach of radar receivers compared to
the geometric dilution of precision (GDOP)-only minimization metric.

Keywords: RSN, target detection and positioning, joint radar and communication.
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INTRODUCTION

The word “radar” is an abbreviation of “radio detection and ranging”. In general, radar
systems use modulated waveforms and directive antennas to transmit and radiate
electromagnetic energy into a specific volume in space to search for targets (Mahafza &
Elsherbeni, 2005). Objects (targets) within the search volume will reflect portions of incident
energy (radar returns or echoes) in the direction of the radar. These echoes are then processed
to extract target information such as range, velocity, angular position and other target

identifying characteristics (Mahafza & Elsherbeni, 2005).

Radar systems were initially developed for military applications, and can be classified as
ground-based, airborne, spaceborne, or ship-based. Another type of radar systems
classification could be applied based on the frequency band, the antenna type and the
waveform. Today, radars are used to accomplish several missions ranging from weather,
acquisition and search, tracking, fire control, early warning, terrain following and collision

avoidance (Mahafza & Elsherbeni, 2005).

In recent years, the design and operation of radar systems have become increasingly
complex. New radar systems should be able to offer more accuracy in terms of target
detection in harsh indoor and outdoor environments, intelligently adjust their parameters to
cope with dynamic and time-varying radar scenes and cooperate with existent wireless
systems to ensure the operability of all systems at acceptable performance levels and under

spectrum-sharing constraints.

0.1 Background on radar sensor networks

A radar sensor network (RSN) belongs to the category of multisite radar systems (MSRSs),
named also: multi radar or netted radar systems. A RSN is defined as a radar system

including several spatially separated transmitting, receiving and/or transmitting-receiving
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facilities, where all the sensors’ information on each target is fused and jointly processed

(Chernyak, 1998).

From the above definition, any radar system that is principally composed of a multiplicity of
transmitter and receiver elements, and which applies a fusion or joint processing of received

target information, could be categorized as an RSN.

As shown in Figure 0.1, RSN are classified based on several metrics:

e Type of target of interest: an active RSN is composed of at least one transmitting station
that is, used to detect non-radiating targets, which are simply reflecting targets. By
contrast, passive RSNs are principally based on only receiving stations and are used to
detect radiating targets. A mixed passive-active RSN could also be used for both types of

target detection;

e Degree of spatial coherence: RSN’s spatial coherence is defined as its ability to maintain
strong dependence between signal RF phases in separated stations, and consequently to
make use of relevant information contained in those phase relations (Chernyak, 1998). It
represents the phase stability of RSN equipment. It should be distinguished from the
spatial coherence of signals at the inputs of the RSN receiving stations, which depends on
baselengths between stations, signal wavelength, target size and fluctuations of the

propagation medium characteristics (Chernyak, 1998).
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Figure 0.1 Classification of MSRS
Taken from Chernyak (1998)

Considering the spatial configuration of radar elements, four major classes of RSN could be
defined:

e Distributed RSN: this type of RSN is composed of several monostatic radar stations that
operate independently. Each radar station performs target radar processing individually
and sends its decision to a cluster head (i.e., fusion center), which receives detection
signals from different radar stations and make a final decision on target detection based

on specific combination algorithms (Liang & Liang, 2011).

e Collocated (coherent) MIMO RSN: inspired by the development of the MIMO concept in

communication system, the concept of MIMO radar has been initially introduced in
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(Fishler et al., 2004). A MIMO radar simultaneously transmits multiple orthogonal
waveforms by multiple antennas. A bank of matched filters is used at each receiver level
in order to match the received signal to different orthogonal transmitted waveforms. The
outputs of the matched filters are then processed for target detection. Collocated MIMO
RSN are a type of MIMO radar sensors, wherein transmit and receive antennas are
collocated. The signals received by different receivers are highly correlated due to
proximity between the receivers. Thus, coherent processing could be enabled on
collocated MIMO RSN, leading to maximization of the processing gain. It was shown
that collocated configuration can be used for beamforming application around targets of
interest by proper choice of transmit waveforms and processing (Stoica, Li & Xie, 2007);
(Li & Stoica, 1998). In addition, the collocated MIMO configuration offers accurate
parameters estimation (Xu, Li, Stoica &, 2008); (Li, Stoica & Xu, 2007), high resolution,
high degrees of freedom (Bliss & Forsythe, 2003), and better sensitivity (Forsythe, Bliss
& Fawcett, 2004) to ground-moving targets.

Distributed (also called statistical) MIMO RSN: unlike coherent MIMO RSN, which
counts on coherent processing gain due to correlated responses received at the closely-
spaced receivers, a statistical MIMO radar, initially introduced in (Fishler et al., 2006),
leverages the diversity of uncorrelated target scattering responses received at different
receivers. In real scenarios, a radar target is composed of several point scatterers. Small
fluctuations at the response of the point scatterers and their number result in variation of
the target Radar Cross Section (RCS). This variation can cause target fades, which is a
synonym of radar performance degradation (since closely-spaced antenna systems are
more sensitive to target fades). In the case of distributed (statistical) MIMO radar, spatial
separation between antenna elements at the transmitter and at the receiver ensure
independent target scattering responses at different receiver element. This improves the
radar performance in a different manner by leveraging the spatial diversity offered by the
system (since target angular spread is manifested).

Netted radar sensor systems (Baker & Hume, 2003); (Hume & Baker, 2001): these are a

general form of RSN, wherein each node can operate monostatically and bistatically with
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other nodes of the network. It can be seen from the definition of “netted radar” concept
that these systems are somewhat like combination of the distributed RSN and the MIMO
RSN types.

Regarding the fusion approach used in radar sensor networks, the detection could either be
centralized or distributed. In centralized detection, the signals received at different stations
are directly fed to the fusion center for joint processing (although a few basic operations
could be carried out at each station level, such as linear filtering). In distributed detection, the
radar processing, including thresholding and parameter estimation, is carried out at each
station level. Then only useful information such as the presence or absence of target, is fed to
the fusion center, where a final decision is made as a result of combining the preliminary

decisions sent by different stations.

RSN presents a variety to advantages compared to monostatic radar or a collection of non-
integrated radars, due to its information fusion and spatial diversity capabilities. The main
advantages of RSN are improved capabilities of target detection and parameters estimation,
classification and location capabilities, and extended coverage and availability of spatial
diversity for distributed systems. It can offer a counter to stealth technology and can improve
the system countermeasure and jamming resistance capabilities. In addition, RSN systems
may offer power gain benefits, especially in the case of cooperative signal reception and

fusion.

Despite the great number of advantages that RSN systems offer, many shortcomings are also
present due to the nature of these systems. One of the main drawbacks is the increased cost
and complexity compared to single monostatic or bistatic radars, and the increased demand
on data processors and computer systems. In addition, a high level of synchronization is
required for basic RSN operation, because there is a minimum requirement of frequency and
time synchronization for non-coherent networks in addition to the phase synchronization

required in the case of coherent networks.
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RSN systems are mainly used in military applications (Chernyak, 1998), although there have
been increasingly important civil applications, chiefly for marine, air navigation and remote
sensing purposes (Chernyak, 1998). Depending on the type of application, ground-based, air,

space, or shipborne RSNs could be used with or without stations mobility.

0.2 Recent advances and research scope

The purpose of this section is to highlight recent advances in the design of radar sensor
networks and to describe the research scope of this thesis. In particular, this thesis focuses on

three main domains:

e Radar waveform selection and design approaches for target detection in RSN;

e Receiver placement optimization strategies for target positioning in RSN;

e Joint radar and communication system design.

0.2.1 Radar waveform selection and design approaches for target detection in RSNs

Adaptive waveform selection and design in radar has always been a major part of cognitive
radar (CR) (Haykin, 2006), which aims to optimize traditional radar performances within a
dynamic environment. The concept is essentially based on continuous learning through radar
interactions with its surrounding world, and also from iterative feedback from the receiver to
the transmitter, which facilitates the adaptation of radar transmission parameters in real time.
The transmitter’s reaction agility to the updated information coming from the feedback loop

has a crucial impact on the ability of the CR to intelligently adapt to the environment.

Figure 0.2 shows the block diagram of CR architecture (Haykin, 2006). The transmitter
begins by illuminating the environment using an initial waveform. The radar returns

generated by the environment are fed into two functional blocks: the radar-scene analyzer
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and a Bayesian target-tracker. The tracker makes decisions on the possible presence of
targets on a continuous time basis (detection through tracking), considering information
provided by the radar-scene analyzer. The transmitter, in turn, illuminates the environment
considering the decisions made on possible targets, which are fed back to it by the receiver.

The entire cycle is then repeated iteratively.

It should be noted that the continuous learning about the environment and the feedback loop
between radar receiver and transmitter units allow the transmitter to intelligently adjust its
illumination parameters to cope with dynamic changes in the environment. Such intelligent
illumination is what distinguishes a cognitive radar from a simple adaptive radar (Haykin,
2006); in the latter, intelligence is limited to reception strategies without being integrated into

the transmitter side.

Figure 0.2 Block Diagram of CR Architecture
Taken from Haykin (2006)

The topic of radar waveform optimization has been treated following several optimization
criteria. In (Pillai et al., 2000), a joint design of the transmit radar pulse and the receiver
impulse response was proposed with the goal of maximizing the signal to interference plus
noise (SINR) in presence of clutter and noise. A similar joint design was investigated in

(Garren et al., 2001) to maximize either the probability of target detection or the probability
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of correct identification between two target classes. The optimal waveform design based on
maximization of SINR has also been applied in the context of sensing through the wall

application (Estephan et al., 2010).

An information-theoretic approach was initially proposed in (Bell., 1993). The idea is to
maximize the mutual information between the extended target impulse response and the
received radar returns. Waveform design approaches based on either information theory or
SINR maximization have been integrated with a sequential testing framework that controls
when hard decisions on target classes may be made with adequate confidence and sufficient
understanding of propagation channel (Goodman et al.,, 2007). An extension of the
information theoretic approach presented in (Goodman et al., 2007) to the signal-dependent

clutter problem was investigated in (Romero et al., 2007).

The topic of waveform design in a RSN context has recently drawn greater attention from
radar researchers. In (Kay et al., 2009), the optimal Neyman-Pearson (NP) detector was
derived in the context of multistatic radar. Based on this work, a divergence criterion was
then proposed as a metric to find the optimal waveform for extended target detection in the
presence of extended clutter, interference, and noise. In (Zhang et al., 2010), the author
proposes an algorithm for adaptively designing orthogonal frequency hopping waveforms
based on range and velocity ambiguity function in the context of separated transmit/receive
ULA MIMO radar. Several MIMO radar transmit beampattern design problems such as
beampattern matching design and minimum side lobe beampattern design, have been
considered in (Stoica et al., 2007). The idea is to design the covariance matrix of the probing
signal vector to achieve specific goals, especially to minimize the cross-correlation of the
signals reflected back to the radar by the targets of interest, or, in addition, to maximize the
power around the locations of targets of interest. Other papers (Yang et al., 2006);
(Jajamovich et al., 2010); (Yang et al., 2009); (Song et al., 2010) extended the approach
presented in (Bell., 1993) by using the mutual information between the random target
response and the reflected signal as a waveform optimization criterion in MIMO radar. An

MlI-based chaotic UWB-MIMO waveform selection mechanism for multitarget detection and
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classification purposes was proposed in (Nijsure et al., 2015) in the context of distributed
MIMO radar. The optimal waveform was selected within a set of chaos-based UWB
waveforms with the objective of maximizing the statistical similarity between successive
target echoes for better target signature estimation. A similar idea was proposed in (Chen et
al., 2013), wherein a two-stage information-theoretic design was investigated with emphasis

on phase-coded UWB Gaussian pulses as applied radar waveform.

Research Scope

In a multistatic radar scenario composed of a distributed transmitter and several receivers,
the spatial diversity offered by the radar architecture should be leveraged for better extended
target detection, especially in the presence of signal-dependent interference (clutter) and
noise. If this multisatic radar scenario is empowered with a cognitive capability, it could
enhance radar detection performance in a constantly changing environment. The cognitive
approach is applied by enabling permanent interactions of the radar with its surrounding
world, as well as iterative feedback from the receivers to the transmitter. The feedback
contains updated information regarding the target impulse response, clutter and the noise

covariance matrix.

Data acquired by the transmitter could be leveraged for better waveform design to fit the
real-time radar scene. In this thesis, chapter 2 extends the relevant works on cognitive
waveform design in a multistatic radar context. The aim is a better detection of an extended
target in the context of a highly dynamic harsh environment. In this chapter, the
maximization objective of the mutistatic probability of detection is used to design and select
the radar waveform for better extended target detection. The maximization algorithm takes
into consideration the constantly changing environment parameters for adaptive choice of

radar waveform.



30

0.2.2 Receiver placement optimization strategies for target positioning in RSN

The topic of receiver placement optimization in the context of passive RSNs has recently
been treated with special attention in the literature. The pioneering works in (Kaplan, 2006);
(Kaplan, 2006) have proposed global and local node selection mechanisms for localization in
the general case of distributed sensor networks. In (Anastasio et al., 2010), the CRLB for
target positioning estimation was derived and then used to select the broadcast transmitters
and receiver locations that offer the best accuracy in a multistatic passive radar context. The
derived CRLB expression includes the effect of a sensor probability of detection that is lower
than unity. A similar scenario of passive multistatic radar-based two transmitters of
opportunity and one receiver was treated in (Gumiero et al., 2011) in a real air traffic context.
The selection of radar node locations is controlled by a maximization of the 2D target
positioning accuracy. In (Nguyen et al., 2014), a joint adaptive selection of transmitted
waveform and receiver placement in a multistatic radar with moving receiver’s context was
proposed. The joint approach aims at minimizing the trace of the target tracking error
covariance matrix. The proposed approach does not account for extended target
considerations. In addition, the environment is assumed to be clutter-free. An interesting
approach was recently presented in (Nguyen et al., 2016), where the optimum multistatic
radar geometry of one transmitter and several receivers was analyzed from a 2D TOA target
localization perspective. The proposed search algorithm for better radar geometry is based on
minimization of the area of the estimation confidence region equivalent to maximization of
the determinant of a Fisher information matrix. The output of the proposed algorithm is the
optimal angular separation between sensors instead of their absolute positions. A UAV case
study was used to validate the proposed algorithm, where each UAV was deployed as a
moving receiver platform. A similar work was presented in (Nguyen et al., 2015), which
considers the Doppler shift information in the objective function optimization instead of

TOA information.

Recent work in (Yang et al., 2015) in particular focuses upon the choice of multistatic radar

antenna placement that optimizes both detection capability and localization accuracy. The



31

aforementioned optimization goal is achieved by maximizing a radar coverage ratio and an
average GDOP of the surveillance region. A multi-objective particle swarm optimization
algorithm was devised in order to resolve the high dimensionality constraint of the original
multi-objectives problem. A global optimization based on genetic algorithms was used to
search for the best multistatic radar sensor placement that minimizes the error on target range
and velocity estimation (Lei et al., 2012). The multistatic CRLBs for range and velocity

estimation were derived for this problem.

A similar approach based on genetic algorithm but minimizing the target localization error
instead of radar parameters (range, velocity) estimation was proposed in (Lackpour et al.,
2016). In (Bradaric et al., 2006); (Bradaric et al., 2009), the multistatic radar ambiguity
function was defined and used to relate the radar performance measures to systems
parameters such as radar geometry and waveforms. More general expressions of the
multistatic ambiguity functions were derived in (Derham et al., 2010) to account for spatial
coherence of target fluctuations observed at each receiver of the multistatic radar. Similarly,
these expressions were used to link the ambiguity in target position and velocity to the choice
of transmitted waveform and employed multistatic radar topology. In fact, the derived
expression of the multistatic ambiguity function in (Derham et al., 2010) depends on the
optimal multistatic detector expressions, which in turn depend on spatial coherence of the

multistatic radar geometry.

Two deployment strategies: hexagonal deployment strategy (HDS) and diamond deployment
strategy (DDS) were investigated in order to deploy a distributed radar sensor network for
multi-target detection (Yang et al., 2014). A fusion center was used to make a final detection
decision after receiving local decisions from different radar nodes. It has been shown that
compared with random deployment strategy (RDS), the proposed HDS and DDS strategies
can improve the detection probability while being energy efficient (Yang et al., 2014). The
concept of operating RSN in subsets or clustering was introduced in (Godrich et al., 2012).
The goal was to identify the optimal sets of nodes that deliver the required localization

estimation performance while minimizing the number of required radar nodes, which results
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in better radar resources management in terms of central processing loads and

communication link needs (Godrich et al., 2012).

In (Tharmarasa, 2007), an iterative local search was applied to minimize the PCRB and find
the subset of antennas to be employed for tracking multiple targets in the presence of clutter.
In (He et al., 2010), a search for the best antenna placement in a distributed MIMO radar
context was analyzed in order to minimize the CRB of the velocity estimation error. The
work in (Godrich et al., 2010) focuses on the analysis of relations between sensor locations,
target location and localization accuracy by deriving the CRLB for target localization
accuracy for both coherent and noncoherent processing in a widely distributed MIMO radar

context.

A notion of random sensor network was proposed in (Daher & Adve, 2007). The proposed
system is a trade-off between two types of detection: distributed detection using several
distributed monostatic radar sensors and centralized detection using collocated antennas,
specifically where each radar sensor is equipped with an array of collocated antennas. A
geometry design trade-off between spatial diversity and interference cancellation has also

been analyzed (Daher & Adve, 2007).

Research Scope

In addition to the transmitted waveform, the geometry of RSN and mutistatic radars has a
direct impact on radar detection performance and target accuracy. The degree of spatial
coherence of target returns observed at different radar receivers has a major effect on the
choice of the signal processing to be used for target parameters estimation, and therefore on

the overall system performance.

Geometric dilution of precision (GDOP) is a metric initially used in satellite navigation to
characterize the impact of system geometry on positioning accuracy (Yarlagadda et al.,

2000). Recently, the GDOP metric has been applied in the general context of indoor and
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outdoor wireless sensor networks (Sharp et al., 2009); (Torrieri, 1984); (Sharp et al., 2012).
In chapter 2, we extend the multistatic radar receiver optimization placement literature to
derive the expression of a GDOP metric based on the multiplicity of bistatic range and
Doppler expressions in the multistatic radar context in addition to the current target position
estimate generated by a LS geolocation process. The derived expression is then used to
search for the suitable radar receivers’ placement that minimizes the target positioning
estimation error. The target positioning error could be high if the multistatic radar receivers
are placed randomly. Our proposed approach in chapter 2 attempts to find the best multistatic

radar geometry in order to enhance target positioning accuracy.

Chapter 4 deals with the case of coexistence between radar and communication systems with
a challenge of spectrum sharing. It presents and analyzes a new adaptive radar receivers
placement mechanism that jointly maximizes the signal to clutter plus noise ratio (SCNR) of
each communication transmitter-radar receiver channel, while minimizing the GDOP. The
goal of our proposed approach is to minimize the impact of communication interference on
the performance of the radar system resulting in less radar measurement errors, while

enhancing the target positioning accuracy.

0.2.3 Joint radar and communication system design

In the past, radar and communication systems were treated as two separate fields. The goal of
a communication system in general is to achieve the best data transfer in a noisy channel with
power and bandwidth constraints. From a radar system of view, the main goal is the detection
of targets of interest and estimation of their parameters with minimum errors in the presence
of clutter and noise. Recently, the joint operation of radar and communication has started to
become a real requirement due to a variety of constraints, especially: the increasing demand
on spectrum resources from both sides in addition to the increasing similarities in carrier

frequencies, hardware and software architectures and resources.
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In the research literature, the topic of radar and communication coexistence has been treated
in different ways depending on the deployment scenario and application. We can highlight
three main categories of joint radar and communication operation. The first one is related to
the presence of wireless nodes, where both communication and radar functionalities are
enabled at each node level (Sturm & Wiesbeck, 2010); (Garmatyuk et al., 2007); (Garmatyuk
et al., 2011); (Nijsure et al., 2012). The proof of concept of OFDM capabilities for use as
radar waveform has enabled simultaneous use of the same OFDM communication waveform
for monostatic radar detection in several areas: an intelligent transportation context (Sturm &
Wiesbeck, 2010), SAR imaging applications (Garmatyuk et al., 2007); (Garmatyuk et al.,
2011) and cognitive radar radio networks for the purpose of safety (Nijsure et al., 2012).

The second category of joint radar and communication operation focuses on the
incorporation of communication as secondary to the primary radar function as reported in
several papers (Surrender & Narayanan, 2011); (Euziere et al., 2014); (Hassanien et al.,
2015); (Blunt & Yantham, 2007). An OFDM communication signal is inserted within a
notched band-limited radar noise signal in (Surrender & Narayanan, 2011) for a secure
communication network between multi-site radars. Side lobe control is used to enable a
communication link without interference with the radar function in the main lobe (Euziere et
al., 2014). The side lobe control technique in tandem with waveform diversity was proposed

in (Hassanien et al., 2015).

The third main category of joint radar and communication operation consists of separate
communication and radar systems operation, wherein each system has its own nodes and
architecture but coexistence is mandatory because both systems are deployed in the same
environment with a partial or total spectrum sharing constraint (Jacyna et al., 2016);
(Turlapaty & Jin, 2014). From this perspective, works like (Jacyna et al., 2016); (Richmond
et al., 2016); (Bliss, 2014) focused on investigating the joint radar and communications
performance bounds for spectrum sharing while ensuring each system achieves its mission
objectives. These theoretical bounds studies resulted in several waveform design approaches

that mitigate interference between systems while keeping the performance of each one at
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acceptable level (Chiriyath et al., 2015); (Paul et al., 2016); (Guerci et al., 2015). Another
interesting approach to the spectral design of separate radar and communication waveforms
was investigated in (Turlapaty & Jin, 2014) and is based on maximization of the mutual

information of the joint system.

Research Scope

There are many challenges involved in the design of joint communication and radar systems.
The traditional approach has been to separate both systems operation in time, space or
frequency band. However, the increasing demand on spectrum resources and simultaneous
operation demands cooperation between the two systems for the purpose of better resource
sharing and utilization. In the case of full control over both systems’ architecture, a joint
operation can be enabled at each node scale, where the same transmitted waveform could be
used for communication with other nodes and simultaneously leveraged for monostatic radar
operation. Such an approach requires the waveform to be suitable for both radar and
communication operation as mentioned above in the description of the first category of joint
radar and communication operation. Additionally, simultaneous transmission by multiple
nodes should be handled via standard collision avoidance techniques in communication

networks, in order to avoid any interference between them.

The third category, in which separate and uncontrolled radar and communication
architectures are deployed in the environment, is even more challenging. In this case,
cooperative spectrum sharing between both systems is required to ensure proper operation of

each system with acceptable performance in the presence of each other.

Chapter 3 of this thesis investigates the first category of joint radar and communication
operation, where several communication nodes in a network operate separately in frequency
and are able to simultaneously perform radar tasks. A novel architecture at node scale has

been proposed to leverage the multi-look diversity of the distributed system in order to
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activate radar processing on multiple received bistatic streams at each node level in addition

to the pre-existing monostatic processing.

Chapter 4 focuses on the third category of joint radar and communication operation, where
separate point-to-point communication and multistatic radar systems are present with a
partial or total spectrum sharing constraint. This chapter investigates the optimum placement
of radar receivers in order to optimize target positioning accuracy while minimizing the

interference caused by the simultaneous operation of the communication system.

0.3 Motivation for RSN operation

The performance of radar systems is dictated by target scintillation characteristics (Fishler et
al., 2006). Targets are complex bodies composed of many scatterers. The target’s distance to
the radar and its orientation determines the amount of energy reflected by the scatterers
composing the target. Any movement of the target causes changes in range and orientation,
which result in variation of the energy reflected by the target and captured by the radar
receiver platform. The scintillations are responsible for signal fading, which can cause a large

degradation in radar detection capabilities (Skolnik, 2001); (Trees, 1968).

The only way to mitigate the effect of target fading is to maximize the energy received from
the target. One well-known approach is to maximize the system coherent processing gain by
deploying an array of radar antenna elements for both radar transmission and reception
functionalities. The array is composed of closely-spaced antenna elements in order to
guarantee spatial coherence between signals received at radar receiver inputs, which enables
adaptive array and beamforming techniques. This type of system is called collocated

(coherent) MIMO RSN and has been described in section 0.1 of this chapter.

Another way to mitigate the target fading caused by target RCS scintillations is to deploy
widely separated transmitter and receiver elements. This allow the transceiver units to view
the target from distinct aspect angles and thus exploit the spatial diversity of the RSN

channels. Orthogonal waveforms are to be used in the case of multiple transmitter elements.
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As the transmitting and receiving transmitting antenna elements are far from each other
relative to target distance, the target RCSs are independent random variables for different
transmit-receive paths. This spatial diversity, in addition to waveform diversity, can be
leveraged for better detection performance (Fishler et al., 2006). This type of RSN is known
as distributed (also called statistical) MIMO RSN, as details in section 1.1. The main
advantage of this system is that the average received energy is approximately constant across
all the independent radar transmit-received paths, i.e., it does not fade as in conventional
systems (Fishler et al., 2006). It has been shown that the spatial diversity gain outweighs the
coherent processing gain in several scenarios (Fishler et al., 2006) where target fading can

significantly degrade the coherent processing-based systems.

0.4 Major contributions and thesis outline

In this thesis, we develop and analyze RSN architectures to optimize target detection and
parameters estimation in the context of dynamic radar scene with mobile extended target and
non-target scatterers. The aim of this work is to leverage the advantages offered by RSN
architectures to improve target detection and positioning. There is a special focus on
distributed (statistical) MIMO RSN systems, wherein spatial diversity could be utilized in
conjunction with cognitive waveform selection and design techniques for optimization of

target detection.

We also analyze the impact of a distributed MIMO RSN geometry, specifically a multistatic
radar with multiple receiver stations on target positioning accuracy. We develop a cognitive
framework based on cognitive waveform selection in conjunction with adaptive receiver
placement strategy, in order to cope with time-varying target scattering characteristics and
clutter distribution parameters in the dynamic radar scene and optimize the extended target
detection and positioning. Finally, we investigate the RSN systems with extended

functionality by developing joint communication and radar systems.
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The Chapters of this thesis are organized as follows:

Chapter 1 presents a detailed literature survey covering the research ideas discussed in
section 0.2. Special attention is paid to recent advances in radar sensor networks, joint

radar and communication systems and target geolocation and tracking.

Chapter 2 develops and analyzes a cognitive waveform and receiver selection
mechanism for multistatic radar. In this work, a cognitive selection mechanism of the
radar waveform is enabled based on real-time target and clutter scene parameters
estimation. In conjunction, an adaptive receiver allocation / selection is proposed that
aims to enhance target positioning accuracy. Simulation results demonstrate the ability of
the proposed approach to optimize target detection performance and positioning accuracy
as compared to conventional methods that are based on static transmission or the

topology of stationary multistatic receivers.

Chapter 3 investigates the first category of joint radar and communication operation,
wherein several communication nodes in a network operate separately in frequency. A
novel architecture at each node level is proposed to leverage the multi-look diversity of
the distributed system by activating radar processing on multiple received bistatic streams
at each node level, in addition to the pre-existing monostatic processing. The
demonstration of the OFDM ability to be used as a radar waveform has allowed each
network node to simultaneously employ the same OFDM communication waveform for

monostatic and bistatic radar functionalities.

Chapter 4 focuses on the third type of joint radar and communication operation, wherein
separate communication and multistatic radar systems are present with a partial or total
spectrum sharing constraint. This chapter investigates the optimum placement of radar
receivers in order to optimize target positioning accuracy while minimizing interference

caused by simultaneously operating the communication system.
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e Finally, we conclude the thesis and we discuss potential future works based on this

research.
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CHAPTER 1

LITERATURE SURVEY

1.1 Introduction

In the general introduction, we introduced the main objective of this thesis, which is to
propose novel approaches in the design of Radar Sensor Networks. In section 0.2, the link
between the existing research ideas and the contribution of this thesis was presented. We
provide in this chapter a detailed survey of the literature on these research ideas. Specifically,
we discuss recent advances in radar sensor networks, target geolocation and joint radar and
communication systems. This will help underline the main contributions of this thesis, which
are as follows: an approach to the cognitive waveform design and selection in the particular
context of multistatic radar, a radar receiver placement optimization strategy for target
positioning and a proposed method of joint radar and communication operation in the context

of variable degrees of both systems architecture control and spectrum sharing resources.

Section 1.3 of this chapter shares the same review of literature as a publication by the same
author. Some passages are taken directly from (Ben-Kilani et al., 2014), with the addition of

other information that applies to this thesis.

1.2 Radar sensor networks

Radar sensor networks are the general framework of a radar composed of several
transmitting and receiving stations, where information of each target from all sensors is fused
and jointly processed (Chernyak, 1998). From this general definition, RSN could have
several variants such as the system geometry and the target data fusion approach. These
variants justify the importance of RSN for modern radar applications, since the system

flexibility could be leveraged to fit any radar application requirements. Indeed, the geometry
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of a RSN, the number of radar stations, the transmission parameters and the fusion of radar
data can be adapted to suit any specific application and radar scene. It has been shown in
subsection 1.1 that four main categories of RSN may be identified based on the radar
network geometry, data fusion technique, and degree of cooperation between different radar
stations. In this subsection, we describe recent advances in different RSN categories

presented in the literature.

A conventional distributed RSN is composed of several monostatic radar stations that operate
independently. Each monostatic station considers the other stations to be sources of
interference, and a cluster head is used to combine different decisions/detected signals sent
by the stations in order to make a final decision on target detection (Liang & Liang, 2011).
The challenge is to come up with a waveform design in distributed RSNs that will reduce
inter-stations interference. Orthogonal LFM waveforms could be used for this purpose
(Liang, 2006) in conjunction with a RAKE structure for waveform diversity combining in the
context of automatic target recognition (ATR). A similar structure, except with constant
frequency (CF) pulse waveform design instead of LFM waveforms, has been proposed in
(Liang, 2006). Information theory is used to design the transmitted waveform for extended
detection in RSNs (Xu & Liang, 2010). An algorithm for radar-to-radar interference
cancellation in distributed RSNs was investigated in (Wang & Shao, 2014). Spatial-temporal
frequency diversity techniques were also investigated for better target detection and clutter

suppression in a RSN context (Ly & Liang, 2009).

An optimal fusion scheme in distributed RSNs as well as a power control scheme in MIMO-
RSNs, were analyzed in flat fading channels and compared in terms of target detection
performance (Liu & Liang, 2014). In (Liang & Liang, 2011), orthogonal waveforms and
spatial diversity were studied under the condition of the Doppler shift in both coherent and
non-coherent distributed RSNs. It has been shown that coherent RSNs provide better
performance than non-coherent RSNs in the case of the same SNR and the same Doppler
shift. A selection combiner was used, which chooses the radar branch with the maximum

SNR. The work in (Daher & Adve, 2010) analyzes the trade-off between distributed
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detection using several distributed monostatic radar sensors and centralized detection using
collocated antennas, where each radar sensor is equipped with an array of collocated
antennas. A notion of diversity order in a general distributed RSN context was defined in
contrast with the asymptotically high signal-to-noise ratio (SNR) definition in wireless
communications, as the slope of probability of detection (Pp) versus the SNR curve at P, =
0.5. Test statistics were characterized for the distributed system and the diversity order was
determined for various fusion rules (Daher & Adve, 2010). In (Shu & Liang, 2007) different
fusion techniques used in a distributed RSN were analyzed in the presence of fluctuating

multi-targets.

The sensing capability of a distributed MIMO RSN for target detection and localization has
been analyzed in terms of detection probability (Sun et al., 2012). Detection performance of
the radar network was analyzed under both centralized and decentralized detection strategies.

Target localization error performance was analyzed in terms of CRLB.

The concept of MIMO was first discovered in the field of communication. Then it has been
recently explored in the field of sensor and radar systems (Fishler et al., 2004). Unlike the
standard phased array radar that transmits a single waveform at a time, MIMO radar
transmits multiple orthogonal waveforms via multiple antennas simultaneously. These
waveforms are extracted by a bank of matched filters at the receiver, and then all the matched
filter outputs are combined to obtain the information of interest (Fishler et al., 2004); (Stoica
et al., 2007). As detailed in the general introduction, two main categories of MIMO radars
are distinguished in the literature, distributed (statistical) MIMO RSNs and collocated
(coherent) MIMO RSNS.

In collocated MIMO RSN, the distances between transmitting antennas (and likewise
between receiving antennas) are small enough relative to the distance between the target and
the radar stations such that the target RCS is identical for all transmitting paths. Thus, the
signals received by different receivers are highly correlated due to proximity and coherent

processing could be enabled so as to maximize the processing gain. It has been shown that
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collocated configuration can be used for beamforming application around targets of interest
by proper choice of transmit waveforms and processing (Stoica et al., 2007); (Li & Stoica,
2007); (Robey et al., 2004); (Xu et al, 2007). In addition, the collocated MIMO
configuration offers accurate parameters estimation (Xu et al., 2008), (Li et al., 2007), high
resolution (Li et al., 2008), high degrees of freedom (Bliss & Forsythe, 2003) and better
sensitivity (Forsythe et al., 2004) to ground-moving targets. Recent advances in collocated
MIMO radars focus on the waveform design and optimization techniques for better
waveform orthogonality (Fuhrmann & Antonio, 2008); (Ahmed & Alouini, 2014), target
detection optimization (Maio et al., 2008); (Wang et al., 2011); (Wang et al., 2013), the
specific case of constant-modulus waveforms (Maio et al., 2008) and a frequency-hopping
scheme (Chen & Vaidyanathan, 2008). One approach to waveform design in the presence of
clutter is presented in (Liu et al., 2016) and using prior information of the extended target and
clutter is investigated in (Chen & Vaidyanathan, 2009). An imperfect clutter knowledge
condition has been considered in waveform design in the context of MIMO-STAP (Wang et
al., 2014). The design of a MIMO transmitter with a frequency diverse array for improved

target and angle estimation was investigated in (Gao et al., 2016).

Distributed (statistical) MIMO RSN systems have been widely investigated in the literature.
The key point in this radar network architecture is that sensors at both the transmitter and the
receiver of the radar are separated such that they experience a target angular spread, which is
defined as the target RCS variability as a function of the aspect ratio (Fishler et al., 2006).
Consequently, the spatial diversity offered by independent target scattering responses at
different receiver elements can be leveraged to combat target fades caused by variation in
target range and orientation and therefore to improve radar detection capabilities. The
pioneering work in (Fishler et al., 2006) investigated the detection performance of statistical
MIMO RSNs through the analysis of optimal detector statistics. The performances of both
statistical MIMO RSNs and conventional phased-array radars were compared. It has been
demonstrated that statistical MIMO RSNs outperform the conventional phased-array radars
whenever the probability of detection is at a reasonable level above 80% (Fishler et al.,

2006). The superiority of MIMO radars over the conventional phased-array radars in terms of
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other aspects such as lower range, location and angle of arrival as well as lower Doppler
estimation errors has been demonstrated in related works (Fishler et al., 2006);

(Scharrenbroich & Zatman, 2014).

The particular case of SIMO radar also called multistatic radar has been investigated in (Kay
et al., 2009). The optimal Neyman-Pearson (NP) detector was derived for a general case of
multiple distance separated radar receivers. Based on that, a divergence criterion was then
proposed as a metric for finding the optimal waveform for extended target detection in the
presence of extended clutter, interference and noise. A generalized canonical correlation
detector for multistatic passive detection was proposed in (Liu & Himed, 2014). It has been
shown that the proposed detector performs better than the generalized likelihood ratio test
(GLRT) detector only in the case of known noise statistics (Liu & Himed, 2014). In (Bruyere
& Goodman, 2008), the likelihood ratio test (LRT) for multistatic detection is derived for the
case where each sensor platform is a coherent space-time radar. It has been shown that when
clutter is considered, the diversity benefit of a MIMO radar is strongly dependent on system
geometry. The relationship between geometry and diversity gain for multistatic airborne
space-time radar was analyzed in the context of centralized and decentralized detection

(Bruyere & Goodman, 2008).

The work in (Bruyere & Goodman, 2008) was extended to include a comparative study
between the adaptive matched filter (AMF) detector and the GLRT detector in (Goodman &
Bruyere, 2007) for multistatic space-time radar, where each sensor platform has a coherent
multi-channel array. It is shown that the GLRT outperforms AMF in the case of unknown
noise and target scattering statistics. Both detectors exhibit better performances with an

increasing number of receiver platforms (Goodman & Bruyere, 2007).

In (Nelms & Collins, 2011), a multistatic UWB random noise radar network architecture was
investigated. The system was based on four monostatic noise radar stations, where bistatic
processing was also enabled between stations. The sixteen available signal channels were

processed in a fusion center to extract highly resolved imagery of the target scene (Nelms &
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Collins, 2011). As detailed in the general introduction, this type of RSN where each node can
operate monostatically and/or bistatically with other nodes of the network is also known as
netted radar system (Baker & Hume, 2003), (Hume & Baker, 2001). If orthogonal
waveforms are used at different transmitters and coherent sensing is enabled in the network
(i.e., the radar sensors comprising the network have a common and highly precise shared
knowledge of time and space), each node of the netted radar system will be able to
simultaneously operate in both monostatic and multistatic modes (Deng, 2004); (Deng,
2012). In the case of a non-coherent network, each radar node will operate only in monostatic
mode without taking into consideration the bistatic data coming from the other remote nodes,

which corresponds to a distributed RSN case.

In chapter 2, we investigate a cognitive waveform and receiver selection mechanism in the
context of multistatic radar. We show how the spatial diversity offered by the RSN could be
leveraged for improvement of target detection and positioning accuracy via proper cognitive
waveform design and receiver placement that enable quick adaptation to the dynamically

changing environment.

1.3 Target geolocation

1.3.1 Overview on target geolocation and tracking in RSN

Wireless positioning systems have received a great deal of attention in recent years. Various
types of wireless sensor networks have been investigated for different types of sensors
(radio-frequency, infrared, optical, inertial, etc.) and estimation algorithms (Fink & Beikirch,
2011). For radio-frequency-based systems, several signal metrics, such as time of flight
measurements (TOA, TDOA) and direction of arrival measurements (AoA), were detailed in
(Fink & Pahlavan, 2004); (Liu et al., 2007). Systems based on received signal strength
indicators (RSSI) have also been studied extensively, as they have a comparatively low cost
and can leverage pre-existing infrastructure, such as Wi-Fi and Bluetooth networks (Laitinen

et al., 2007).
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Wireless positioning systems based on radar technology have recently attracted more and
more attention of radar researchers. Target localization based on both coherent and non-
coherent (widely separated antennas) MIMO radar was investigated in (Kohler et al., 2009).
It was shown that both cases benefit from a MIMO gain that is directly proportional to the

product of the number of transmitting and receiving radars (Kohler et al., 2009).

Distributed MIMO radars can directly or indirectly estimate the target location and velocity
(Du & Wei, 2014); (Liang et al., 2016). The direct method is achieved by collecting all the
observations of receivers and searching in the possible grid (Du & Wei, 2014); (Liang et al.,
2016). Although direct methods, such as maximum likelihood estimator (MLE) (Godrich et
al., 2010); (Niu et al., 2012); (He et al., 2010) and sparse recovery (Gogineni & Nehorai,
2011), provide asymptotically optimal solutions, their computational complexity is
impractically high due to high dimensional search and the large number of grid points. On
the other hand, the localization can be performed indirectly, where the system can estimate
the radar time delays and Doppler shifts, which are then used to compute the target position
and velocity (Du & Wei, 2014). Several approaches, such as the best linear unbiased
estimator (BLUE) method (Kohler et al., 2009); (Godrich et al., 2010) and the Least Squares
(LS) method (Dianat et al., 2013) could be used for target indirect localization.

Many recent studies like (Liang et al., 2016); (Yan & Chun, 2016); (Wanchun et al., 2017);
and (Noroozi & Sebt, 2016) focus on the improving target localization accuracy in
distributed coherent and non-coherent MIMO RSN scenarios. The goal is to leverage the
diversity information for better target localization accuracy by taking into consideration time
synchronization errors and antenna position uncertainties (Liang et al., 2016), a variety of
measurement sets such as squared range-sum measurements (Zou et al., 2016) and the range
and range rate (Zou & Want, 2016) and algorithmic improvement techniques (Yi et al.,
2016); (Gogineni & Nehorai, 2011). An approach for multi-target classification in multistatic
radar systems has been analyzed in (Stinco et al., 2014), where information on target class is
provided by the sensors of the system and the final classification decision is made using a

fusion rule that combines the decisions coming from each channel of the radar network
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(Stinco et al., 2014). Unlike the classical fusion rule based on the energy path loss, the
proposed approach (Stinco et al., 2014) is made to favour the channels that are more suited to
recognize the targets, considering both SNR and geometry. Thus, the spatial diversity of the
multistatic radar system has been leveraged for higher probability of targets recognition
(Stinco et al., 2014). A new UWB collaborative mobile target imaging algorithm for target
classification purpose in RSNs has been presented in (Arik & Akan, 2010).

One research group has completed a detailed treatement of multiple target tracking in UWB

radar sensor networks using particle filter (Sobhani et al., 2014); (Sobhani et al., 2016).

Another group has recently studied the impact of UWB RSN topology, waveform processing
methods and tracking algorithm parameters on target localization performance (Bartoletti et
al., 2015); (Bartoletti et al., 2013); (Bartoletti et al., 2014). It was demonstrated that a proper
selection of representative observations (Bartoletti et al., 2015) and the use of subset
diversity radars (Bartoletti et al., 2013) could help mitigate the ranging errors caused by

harsh environmental conditions such as multipath, clutter and non-line-of-sight.

1.3.2 RSSI-based indoor tracking using the Extended Kalman Filter and circularly
polarized antennas

In (Ben-Kilani et al., 2014), we investigate an RSSI-based indoor tracking scenario based on
extended Kalman Filter and circularly-polarized antennas. The target of interest was a

radiating source (an emitter) present in an environment composed of multiple RF receivers.

The RSSI-based indoor positioning technique is highly dependent on the propagation
environment, which can lead to significant localization errors. For instance, permanent
changes in the physical environment can yield inaccuracies with respect to the propagation
model. Those permanent changes can be caused by multipath fading due to signal reflections,

which is problematic in RSSI-based localization systems.
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In order to mitigate those issues, many improvements have been proposed (Fink & Beikirch,
2011). The first type of improvement is mainly algorithmic. Different estimators have been

investigated for enhancing the positioning accuracy.

In (Laitinen et al., 2007); (Li, 2006) a least square (LS) estimator was proposed for RSSI-
based location estimation. This linear estimator attempts to minimize the error term between
measurements and a propagation model. An adaptive approach was proposed in (Li, 2006),
which takes into account the dynamic changes in the propagation environment. Specifically,
a joint estimation technique of unknown location coordinates and path-loss exponent was
investigated. We note that applying the non-linear LS algorithm requires a linearization step
based on the first-order Taylor series expansion and the Levenberg-Marquardt method, which

entails additional complexity.

A maximum likelihood (ML) based estimator was detailed in (Mazuelas et al., 2009). The
proposed approach also dynamically estimates the propagation parameters, based on real-
time RSSI measurements. The main drawback of such an approach is again the amount of

calculations needed to perform the algorithm.

A second type of location estimation improvement was investigated in (Fink et al., 2010);
(Kao & Lin, 2010); (Schmid et al., 2011). This type involves the fusion of RSSI
measurements with data from other types of sensors (inertial, laser, etc.). This approach was

shown to clearly increase the accuracy of the proposed localization techniques.

The Kalman filter (KF) is one of the best-known prediction-correction algorithms. It can
easily be adapted to tracking scenarios (Kalman, 1960); (Welch & Bishop, 1995). However,
since RSSI measurements relate to physical coordinates in a non-linear fashion, the extended
Kalman filter (EKF) is more suitable, because it applies some linearization and
approximation around the current estimate using the partial derivatives of the process and

measurement functions (Welch & Bishop, 1995); (Yim et al., 2008). In (Caceres et al., 2009),
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adaptive approaches using the EKF with direct RSSI measurements were proposed, and

better results were obtained compared to more traditional LS estimators.

Recently, circularly polarized (CP) antennas have shown much promise in mitigating the
effects of multipath fading in indoor environments (Nepa et al., 2010); (Szumny et al., 2007).
Such antennas also allow for more flexible reciprocal orientation of the transmitter and the
receiver. As such, they are becoming widely used in several wireless applications, such as the
global positioning system (GPS) and synthetic aperture radar (SAR), as well as radio-
frequency identification systems (RFID) (Nepa et al., 2010).

Circular polarization was also shown to reduce the root-mean-square delay spread by about
one-half compared to linear polarization (LP), and the bit error rate (BER) due to multipath
propagation in high-speed transmission channels (Rappaport & Hawbaker, 1992); (Manabe
et al., 1995). In (Nepa et al., 2010), circular polarization was applied to an RSSI-based
localization system. A direct comparison between measured and estimated position based on
a standard Hata-like model was proposed for both LP and CP antennas. It was clearly shown
that lower localization errors were obtained using CP antennas. In our proposed work (Ben-
Kilani et al., 2014), we extend the study investigated in (Nepa et al., 2010) by offering a

method of reducing the estimation errors in tracking scenarios.

In (Ben-Kilani et al., 2014) we aimed to design and evaluate the accuracy of a simple and
robust algorithm, which is based on the EKF estimator and suitable for indoor tracking of
mobile nodes. The proposed algorithm directly processes raw RSSI measurements, which are
taken from wireless receivers equipped with CP antennas. The combination of the CP
antennas — which yield more stable RSSI values — and the EKF, which offer excellent

tracking performance, is evaluated in a real deployment scenario.
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o Extended Kalman Filter

The tracking approach in (Ben-Kilani et al., 2014) is based on an extended Kalman filter,
operating in the discrete time domain. This filter recursively estimates the state of a dynamic

system modeled by the following state equation:

Xi = f(Xp-1) + Wy (1.1)
Taken from Caceres et al. (2009)

Where X, is the state vector at time k, f(.) is the state transition function which projects a
state vector X _, forward in time, and wy~ N (0, Q) is a random vector modeling random

process noise, normally distributed with zero mean and covariance matrix Q.
We use the position-velocity model to characterize the state vector X which is defined as:

X=[xyvv]" (1.2)
Taken from Caceres et al. (2009)

Where x and y are the coordinates of the node on a two-dimensional plane, and v, and v,, are

the corresponding velocities along those axes, respectively. The node's height is assumed

constant in this model.
We also assume that the mobile node moves with a constant velocity between adjacent time
intervals. Any change in target velocity is modeled as acceleration noise included in wy; it

also models non-linearities and system perturbations.

The transition function models a constant-speed, linear motion:

1 0 At O
0 1

f(Xe-1) = FiXe1 =[5 01 Aot X1 (1.3)
0 0 0 1
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Where At is the short time interval during which the mobile node velocity is assumed

constant. The value of At is chosen to be 0.1 s due to hardware limitations.

Q is computed under the assumption that the acceleration is a white noise random vector.
This assumption takes into consideration different forces that could temporally cause changes

in target directions as described in (Kohler, 1997). @, is calculated as follows:

[At3 At?
P 0 -
3 2 0
At? At?
Qk = g2 0 T 0 T (14)
2 0
— 0 At
L (O 2 J

Taken from Kohler (1997)

Where a is the maximum amplitude of the noise process. The measurements are considered

during the update phase. They are incorporated into the filter using:

Where v~ N(0, Ry), Z,, is the measurement vector at instant k, and h(.) is the observation
function that estimates the expected measurements at the true state X;,. vy is the
measurement noise vector, modeled as a normally distributed random variable with zero
mean and covariance matrix R, which we set to a diagonal matrix because we assume that

the measurements errors are independent.

In order to take advantage of the non-linear capabilities of the EKF, the system makes direct

use of the RSSI measurements P..r produced by L separate receivers (RSSI values at

different receivers) in the observation vector Z, in addition to the measured velocities:
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Z = [Ux vy PT€f1 . 'PT'efL]T (16)

The measurements v, and v, contained in the measurement vector gives additional
information regarding the node's state, which the algorithm uses to improve tracking
accuracy. Inaccuracies related to the measured velocities are also taken into account through

the measurement noise covariance matrix:

— i 2 ;2 52 2
R, = diag(ay, 0%y OdBmyer, , adereka) (1.7)

The matrix Rj characterizes the errors between measured and propagation-model-based
RSSI values. More stable RSSI measurements allow us to have smaller error variances. Good
tracking performance can therefore be achieved provided that the RSSI measurements are

accurate.

The observation function is derived from the log-normal propagation model applied to each

receiver:

Ux

Vy

h(X,) =|Po, — 10“110910(0%i5t(xk'Xrefl)/do) 8
Py, —10alog,o(dist(Xy, Xrer,)/do)

Where q; is the path loss exponent related to receiver i, L is the number of receivers, Py, is
the mean power received at a distance d, (typically 1 m) from the receiver X,r, is the

position of the receiver i and dist(.) is the Euclidean distance function.
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¢ CP Antennas

Compared to LP antennas, CP antennas offer better performance by reducing multipath
effects, which yields more stable RSSI measurements. These characteristics reduce
estimation errors, especially those due to first-order signal reflections. Indeed, when a
circularly polarized wave is reflected, its handedness is reversed. Thus, if the transmitting
and receiving antennas are circularly polarized with the same handedness (both right-handed
or left-handed CP), multipath-delayed waves caused by single reflections will be effectively
rejected by the receiving antennas. This characteristic is of great interest because channel
fading is generally caused by first-order reflections, and because the field amplitude of such
reflections is much higher than those of higher-order reflections (Nepa et al., 2010); (Szumny
et al., 2007).

In order to characterize the advantages of using CP antennas compared to LP antennas, we
carried out RSSI measurements using both types. The results are presented in Figure 1.1.
High RSSI fluctuations are obtained for the LP case, due to the superposition of incident and
reflected waves, resulting in constructive and destructive interference. Conversely, reduced
oscillations can be observed when CP antennas are used, as expected, due to the reduced

amplitude of the first-order reflections. The RSSI error-term variance o2 was found
dBMye fLp

to be 19.87 dBm? for the LP antenna, compared to 7.73 dBm? for CP one. In both cases,
propagation parameters were determined ensuring minimum error term variances between
the measurements and the propagation model. The same transmitted power was used for both
experiments. Note that the fact that higher values of RSSI were obtained with the CP antenna

is related to its higher gain compared to the LP one.
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Figure 1.1 Experimental and modeled propagation characteristics of CP and LP antennas

In order to test the performance of the proposed system, a localization experiment was

devised.

e Experimental Setup

Our experimental setup consists of four sensor nodes, or anchor nodes, positioned inside a
capture area of 4 m X 4 m, as illustrated in Figure 1.2 (a). Both the transmitter and the
receivers are equipped with circularly polarized, omnidirectional antennas operating at 2.4

GHz.

Experiments were carried out using custom-built receivers based on Texas Instruments
CC2510 2.4 GHz radio transceivers, and equipped with the four-leaf receiver antennas shown
in Figure 1.3 (a). Those receivers are connected, via Ethernet links, to a central processing

server where data is saved for offline processing.
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The emitter also consists of a CC2510 module, programmed to permanently transmit a
sinusoidal signal on an unused channel of the 2.4 GHz ISM band. The mobile node makes
use of a three-leaf transmitter antenna, as presented in Figure 1.3 (b). We installed the emitter
on top of an iRobot Roomba robot, depicted in Figure 1.2 (b), programmed to follow a
piecewise-linear trajectory at a constant speed of 0.2 m/s This trajectory is illustrated in

Figure 1.2 (a).

(a) Anchor Positions (b) Robot and Emitter

Figure 1.2 Experimental Configuration

Due to the presence of Wi-Fi signals in the same frequency band, we were careful to choose

an unused channel to limit the amount of interference.

Figure 1.4 describes the acquisition system from a high-level point of view. As pictured, the
four receivers are connected to a computer server via an ethernet link. To reduce the number
of wires required, the receivers are powered using a power-over-ethernet-compatible ethernet

switch. The computer server gathers RSSI measurements from each receiver at 100 ms
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intervals. Those measurements are stored in a plain-text file for offline processing using

MATLAB.

(a) Receiver (Anchor node) (b) Emitter

Figure 1.3 Custom-built receivers and emitter, equipped with circularly
polarized 2.4 GHz antennas

Figure 1.4 High level description of the acquisition system
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e (Calibration phase

In order to model the propagation characteristics of the receiver antennas, an offline
calibration phase was first carried out. 100 RSSI measurements were recorded after placing

the emitter at various distances from each receiver, in 20 cm increments.

The received values were then imported into MATLAB for analysis, and the parameters of

each antenna were computed by minimizing the error term variance aijTe £ assuming a
l

log-normal propagation model. The resulting model parameters are illustrated in Figure 1.5.
Table 1.1 summarizes the mean received power at distance d, = 1 m, path-loss exponent «;

of the adjusted model, and the error-term variances.

Table 1.1 Propagation parameters

Antennai | Py, (dBm) a; o 3erefi

1 -31.79 1.4 7.32
2 -30.84 3.1 7.73
3 -34.55 1.5 4.79
4 -30.035 1.2 3.06
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(a) Receiver 1 (b) Receiver 2

(c) Receiver 3 (d) Receiver 4

Figure 1.5 Log-normal channel model of different receivers

e Localization Accuracy

After this initial calibration step, which characterized the antennas as well as the propagation
environment, we carried out a tracking scenario to quantitatively evaluate the precision of the

proposed system.

The mobile node was moved along the trajectory presented in Figure 1.2(a). RSSI
measurements were gathered from all four receivers and sent to the computer server. A total
of 471 measurements were gathered from each receiver. These measurements were then

processed using the EKF implemented in MATLAB code.




60

After processing, the target's estimated trajectory was computed and compared to a known
ground truth. Comparative results are shown in Figure 1.6. The maximum location estimation
error (LEE) is found to be 0.52 m. The location error is high compared to the environment
dimensions since the RSSI-based indoor positioning technique is highly dependent on the
propagation environment. We can see from the estimation curve that changes in direction are

also well-predicted by the EKF.

The tracking precision is essentially dependent on the stability of measurements obtained
from CP antennas, as detailed in previous sections, as well as the additional noisy velocity
measurements supplied to the algorithm. This latter point is corroborated by Figure 1.7,
which demonstrates, as an example, the effectiveness of the proposed EKF model in
estimating the y-axis velocity during the tracking scenario. It also illustrates the fluctuations
of v, caused by changes in target direction along its path. The additional information
regarding measured velocities allow us to increase the tracking ability of the proposed
system, and to avoid the imprecisions introduced by the simplistic PV model. the x-axis

velocity is also effectively estimated during the tracking scenario.



Figure 1.6 Position tracking performance

Figure 1.7 Velocity tracking performance in the y direction

61
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1.4 Joint radar and communication systems

RF front-end architectures for both radar and communication are becoming increasingly
similar. In particular, most functionalities are now carried out via digital signal processing
rather than by hardware components. At the same time, similarities in carrier frequencies
between radar and communication systems are also becoming more prominent. The overall
similarities between both systems dictate a joint operation between them with a minimum of
mutual interference. As detailed in section 0.2.3, the joint radar and communication systems
investigated in the literature can be separated into three main categories. The first category is
related to the presence of wireless nodes, where both communication and radar
functionalities are enabled at each node level (Sturm & Wiesbeck, 2010); (Garmatyuk et al.,
2007); (Garmatyuk et al., 2011); (Nijsure et al., 2012). The same communication waveform
is used for monostatic radar detection in an intelligent transportation context (Sturm &
Wiesbeck, 2010), in SAR imaging applications (Garmatyuk et al., 2007); (Garmatyuk et al.,
2011), and in the context of cognitive radar radio networks for safety purposes (Nijsure et al.,

2012).

A second category of joint radar and communication operation focuses on incorporation of
communication as secondary to the primary radar function, as reported in several papers
(Surrender & Narayanan, 2011); (Euziere et al., 2014); (Hassanien et al., 2015); (Blunt &
Yantham, 2007).

The third main category of joint radar and communication operation consists of separate
communication and radar systems operation, wherein each system has its own nodes and
architecture, but coexistence is mandatory because both systems are deployed in the same
environment with a partial or total spectrum sharing constraint (Jacyna et al., 2016);

(Turlapaty & Jin, 2014).

Chapter 3 investigates the first category of joint radar and communication operation, where

several communication nodes in a network operate separately in frequency. A novel
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architecture at each node level is proposed in order to leverage the multi-look diversity of the
distributed system. This is done by activating radar processing on multiple received bistatic
streams at each node level in addition to the pre-existing monostatic processing. The proof of
concept of OFDM capabilities for use as a radar waveform has enabled the same OFDM
communication waveform to be used for simultaneous monostatic and bistatic radar

functionalities.

Chapter 4 focuses on the third category of joint radar and communication operation, where
separate communication and multistatic radar systems are present with a partial or total
spectrum sharing constraint. This chapter investigates the optimum placement of radar
receivers in order to optimize target positioning accuracy while minimizing the interference

caused by the simultaneous operation of the communication system.






CHAPTER 2

COGNITIVE WAVEFORM AND RECEIVER SELECTION MECHANISM FOR
MULTISTATIC RADAR

In this chapter, a novel Cognitive Radar (CR) approach to improve the extended targets
detection and resolution is developed in a multistatic radar context. A cognitive waveform
selection mechanism based on target probability of detection maximization in conjunction
with adaptive receiver allocation/selection is proposed. Apart from the cognitive waveform
selection objective, this process aims at evaluating the optimal positions for the radar
receivers in an attempt to iteratively minimize the Geometric Dilution of Precision (GDOP),
subsequently resulting in a high precision target geolocation estimate. The cognitive
waveform selection mechanism is based on target dynamics involving time varying target
scattering characteristics and clutter distribution parameters. Thus, with the proposed dual
objective approach, the concept of cognition can be extended to both the radar transmitter
and receiver sites. Numerical results demonstrate better target detection performance and
positioning accuracy using the proposed approach as compared with conventional methods

based on static transmission or stationary multistatic receivers topology.

This chapter shares the same review of literature as a publication by the same author. Some
passages are taken directly from (Ben-Kilani et al., 2016), with additional information which

applies to this thesis.

2.1 Introduction

Cognitive Radar (CR) is an innovative paradigm for optimizing traditional radar
performances within dynamic environments (Haykin, 2006). The concept is essentially based

on a continuous learning through radar interactions with its surrounding world, and an
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iterative feedback from the receiver to the transmitter facilitates the adaptation of radar
transmission parameters in real time (Haykin, 2006). The continuous target tracking is

ensured by preservation of the information content of the radar returns (Haykin, 2006).

The reaction of the transmitter to the updated information coming from the feedback loop has
a crucial impact on the ability of the CR to intelligently adapt to the environment. As a result,
a lot of the research efforts have been focused on the waveform design and optimization.

Waveform optimization was emphasized by the need to properly detect extended targets. In
contrast to point targets, which have a flat response across the operating frequency band of
the radar, extended targets exhibit random scattering characteristics due to their range extent.
Thus, optimal waveform could be designed in order to maximize the energy reflected from

the target.

The topic of CR waveform optimization has been treated following several optimization
criteria. A principal waveform design approach is to directly optimize the receiver detection
statistics of extended targets in the presence of clutter and additive noise. In (Pillai et al.,
2000); (Garren, 2001); (Estephan, 2010), the dynamic choice of both the waveform and the
receiver impulse response is dictated by a maximization process of the output Signal-to-
Clutter plus Noise Ratio (SCNR). in (Kay et al., 2009), the Neyman-Pearson (NP) detector is
derived in case of extended target and clutter. The detailed waveform design process is based
on a maximization process of the symmetrized Kullback-Liebler measure directly linked to
the target detection performance. A Generalized Canonical Correlation (GCC) detector for
multistatic passive detection is proposed in (Liu & Himed, 2014). It is shown that the
proposed detector performs better than the Generalized Likelihood Ratio Test (GLRT)
detector only in case of known noise statistics (Liu & Himed, 2014). A comparative study
between the Adaptive Matched Filter (AMF) detector and the GLRT detector is carried out in
(Bruyere & Goodman, 2008), It is shown that the GLRT outperforms AMF in case of
unknown noise and target scattering statistics. Both detectors exhibit better performances

with an increasing number of receiver platforms (Bruyere & Goodman, 2008).
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Multistatic radars offer many advantages compared to monostatic radars especially increased
coverage and improved target resolution and classification (Stinco et al., 2014), in addition to
higher tolerance to sources of interference due to their spatial diversity and the potential for
improved physical survivability owing to the multiplicity of stations (Derham et al., 2010).
However, a minimum level of synchronization between different units is required to achieve

multistatic signal processing (Derham et al., 2010).

Geometric Dilution of Precision (GDOP) is a metric initially used in satellite navigation to
characterize the impact of system geometry on the positioning accuracy (Yarlagadda et al.,
2000). Recently applied to general sensor network systems design (Sharp et al., 2009);
(Torrieri, 1984); (Sharp et al., 2012), GDOP is defined as the ratio of the root-mean-square
position error to the root-mean-square ranging error (Torrieri, 1984). Consequently, higher
GDOP value for a particular topological distribution of the sensor networks represents poor
positioning performance. From the above GDOP definition, a good positioning accuracy

could be achieved with an optimal choice of the sensor network geometry.

Following from the above discussions, it is interesting to study the performances of cognitive
multistatic radar where the selection of the transmitted waveform and the placement of the
receivers are dynamically changed to adapt to the time-varying environment. Some works
(Anastasio et al., 2010); (Gumiero et al., 2011); (Nguyen et al., 2014) relate to the
optimization of the multistatic radar geometry for enhanced target positioning accuracy. In
(Anastasio et al., 2010), the selection of two transmitters of opportunity and a single receiver
location in a passive multistatic radar is performed using a Cramer-Rao Lower Bound
(CRLB) based algorithm, which considers a set of constraints for the relative positions of the
transmitter and receiver units. The proposed solution is considered accurate but
computationally expensive (Anastasio et al., 2010). A joint approach based on transmitter
waveform and receiver path optimization for target tracking by multistatic radar is proposed
in (Nguyen et al., 2014). The developed algorithm minimizes the tracking mean square error,
however it doesn't account for extended target processing. In addition, the environment is

assumed to be clutter free. In our work context, we propose a joint approach to optimize both
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detection and positioning accuracy of extended targets in clutter plus noise corrupted

environment.

The contributions of the current work can be summarized as:

1) Design of a cognitive waveform selection mechanism, based on the principle of

maximization of target detection probability;

2) Development of a receiver positioning strategy, with an objective of GDOP
minimization, which supplements the previous contribution concerning cognitive

waveform selection;

3) Fusion of both parts to form a hybrid system that shows better detection performances in

comparison with only the cognitive waveform selection mechanism.

2.2 System architecture

Figure 2.1 shows the general architecture of the proposed CR system. The cognitive loop

could be summarized in the following steps:

Step 1: The backscattered signals gathered from different receivers are matched filtered in
the multistatic radar returns processing block where the received signals are correlated with
the transmitted waveform. Consequently, the outputs of the matched filtering process are
used to estimate the target impulse responses in addition to the clutter and noise covariance
matrices through successive measurements. Then, the central processor uses the estimated
dynamic radar scene information to select the waveform that maximizes the probability of
target detection. The waveform selector block in the central processor chooses the waveform
to transmit within an ensemble of Hadamard phase coded waveforms according to the

detection maximization criterion.
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Step 2: The range-Doppler responses relative to different bistatic transmitter-receiver pairs
are computed after matched filtering. Subsequently, multiple information relative to bistatic
target ranges and bistatic Doppler shifts are extracted from different range-Doppler responses
and injected into a LS geolocation process in order to compute the absolute position and
velocity estimates of the target. The target position estimate is then used to compute the
GDOP of the target positioning algorithm. Finally, a GDOP-based minimization approach is
carried out in order to obtain the optimal positions of the receivers according to the actual

target position estimate.

Step 3: The central processor sends a waveform selection command to the transmitter in
order to transmit the waveform chosen according to Step 1. Meanwhile, the central processor
will evaluate the optimal positions obtained from Step 2 and will instruct the receivers to

update their locations accordingly in real-time as shown in Figure 2.1.

Different steps are then repeated iteratively allowing the cognitive system to continuously

adapt its operational mode to the dynamic scene.
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Figure 2.1 Proposed CR architecture

23 Signal model

2.3.1 Phase-coded waveforms

In this work, we use phase-coded waveforms as they can fully exploit the transmit power
with sufficient variability unlike traditional Linear Frequency Modulated (LFM) waveforms
(Skolnik, 2001). Each phase-coded waveform comprises a train of phase-coded Gaussian
pulses. Each pulse is divided into N = 512 subpulses each of duration § = 6.6 ns. A
unimodular Hadamard code is used to modulate the phases of the subpulses, which

corresponds to a specific row of the N X N Walsh-Hadamard matrix. Hadamard sequences,
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with sufficient length, are chosen in order to improve the Doppler resolution of the radar
system. Each normalized Gaussian pulse takes the following form:

1 —t?
V2nrT e (z) (2.1)

f@) =

Where T is the pulse width.
We denote by f,(t) the n™ subpulse of the pulse f(t). The complex envelope of one

transmitted phase-coded pulse is expressed as:

N

I(t) = Z enfu() 2.2)

n=1

Where ¢, is the Hadamard sequence code of the subpulse f;,(t). The transmitted burst is a

train of U phase-coded pulses (i.e., delayed versions of I(t)) given by:

U
st) = Z I(t — uTpR) (2.3)

Where s(t) is the complex envelope of the narrowband transmitted signal and Tpp is the

pulse repetition time.

2.3.2 Target RCS model

RCS is a measure of target size and ability to reflect radar energy. The RCS unit is m?,
which corresponds to an area. Effectively, if all the incident radar energy on the target were
reflected equally in all directions, then the radar cross section would be equal to the target’s
cross-sectional area as seen by the transmitter. In practice, some energy is absorbed and the
reflected energy is not distributed equally in all directions. Therefore, the RCS
characterization task is not straightforward and is normally determined by measurement. The

target RCS depends on several factors:
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e Material of which target is made;

e Absolute size of the target;

e Relative size of the target (relative to radar transmitted signal wavelength);

e The incident and reflected angles;

e The polarization of transmitted and received radiation in respect to the orientation of the

target.

Swerling target models are special cases of the Chi-Squared target models with specific
degrees of freedom. There are five different Swerling models, numbered I through V

(Skolnik, 2001); (Rihaczek, 1996):

Swerling I

A model where the RCS varies according to a Chi-squared probability density function with
two degrees of freedom. This applies to a target that is made up of many independent
scatterers of roughly equal areas. As little as half a dozen scattering surfaces can produce this
distribution. Swerling I model describes a target whose radar cross-section is constant
throughout a single scan, but varies independently from scan to scan. This case is known as

slow fluctuation. In this case, the pdf reduces to:

p(§) = iexr) {—i}

av Eav (2.4)
Where & > 0 represents the variance of RCS fluctuations and &, is the average RCS.
Swerling I model has been shown to be a good approximation when determining the RCS of

objects in aviation.

Swerling 11
Similar to Swerling I, except the RCS values returned are independent from pulse to pulse,

instead of scan to scan. This case is known as fast fluctuation.
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Swerling 111

A model where the RCS varies according to a Chi-squared probability density function with
four degrees of freedom. This pdf approximates an object with one large scattering surface
with several other small scattering surfaces. The RCS is constant through a single scan just as

in Swerling 1. This is again a case of slow fluctuation. The pdf becomes:

p(§) = 4—fexp {—5}

av Eav (2, 5)
Swerling IV
Similar to Swerling III, but the RCS varies from pulse to pulse rather than from scan to scan.

This is a case of fast fluctuation.

Swerling V (Also known as Swerling 0)

Constant RCS as degrees of freedom approaches infinity.

In contrast to point targets, which have a flat response across the operating frequency band of
the radar, extended targets exhibit random scattering characteristics due to their physical
extent (which is comparable to the radar range resolution). In fact, the received radar signal
from extended target is the sum of multiple delayed versions of transmitted waveform (Bell.,

1993).

2.3.3 NP detection in multistatic radar context

We consider M physically separated receive sensors so that all the received clutter and noises

are statistically independent from one sensor to sensor.

We denote by x;(t) the complex input of the it? receiver, ¢;(t) denotes clutter and n;(t) the
sum of ambient noise and interference, i.e., jamming. n;(t) and c;(t) are modeled as zero

mean complex wide sense stationary (WSS) Gaussian random processes.
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The detection problem of an extended target in the presence of clutter and noise can be

summarized as:

Hy: x;(t) = ¢;(t) + n;(t)
Hy: x;(t) = [hi(t) *s(O)] + ¢;(t) +n;(¢) (2.6)

where Hy, is the hypothesis of target absence (i.e., only clutter and noise are present), Hy is
the hypothesis of target presence in addition to clutter and noise, h;(t) is the extended target
impulse response relative to the i receiver and * denotes convolution. For ease of

illustration, we suppose that the clutter is stationary.

We consider the Swerling I target model, which implies that the target is made up of many
independent scatterers of roughly equal areas. Under such assumption, the backscattered

signal coming from the target can be expressed as:

hy () * s(t) = Ay[gi(t) * s(1)]

Ny
= A; Z bis(t — ti) exp(2mj fixt) 2.7)
k=1

Where A; is a complex reflection factor proportional to the extended target Radar Cross
Section (RCS) with the Probability Density Function (PDF) A; ~ CN(O, O'ii). gi(t) is the
deterministic part of the extended target impulse response, Ng represents the number of
scatterers composing the target, by, is a deterministic coefficient relative to the k™ scatterer
and the i path, 1 is the total delay experienced by the transmitted signal from the
transmitter to the i receiver and after reflection by the k™ scatterer in between and fi)
represents the bistatic Doppler shift experienced by the transmitted signal along the i*" path

and caused by the movement of the k™ scatterer.
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Consequently, the expression of the received signal at the i receiver under Hypothesis H,

1s now derived as:

Ny

x; () = A Z bies(t — Ti) exp(2rjfuct) + ¢ () + 1 (6) (2.8)
k=1

We take Q samples of each received signal x;(t) and we define the vector X;,i = 1,...,M of
dimension 1 X Q, which is composed of the received samples.
Also, we define the column vector of all sensor outputs X = [Xy,...,Xy]7. Hence the

detection problem of (2.6) can be represented as (Kay et al., 2009):

HO: Xi = Ci +Nl
H1! Xi =Tl+Cl+Nl

Where c;(t) and n;(t) are replaced by their corresponding column vectors of samples C; and
N;, T; denotes the vector of backscattered signal samples coming from the target and G; is
the vector of samples related to the deterministic part of the target response g;(t) * s(t). It
follows that T; , C; and N; are all complex multivariate Gaussian random vectors with a zero-

mean vector. The PDF of the received vector X; under H, is given by (Kay et al., 2009):

Hyr—1
—— exp[-X;"K;1X,
T[Qdet(Kl) [ L l l] (210)

p(Xi; Hp) =

where K; is the covariance matrix of C; + N;.

Since A; ,C; and N; are assumed independent of each other, the PDF under H; can be

represented as (Kay et al., 2009):
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= 1 exp[-X;"(6%.6,G" + K)~X;]
l i L L L L
n?det(a} GiG;" + K;) (2.11)

p(Xi; Hy)
Furthermore, all sensor outputs X; are considered independent. Thus,
M
Pt = | [pat),  w=o01 212
i=1

After deriving the distribution of the NP detection statistic, the probability of false alarm Pgp

and detection Pp expressions can be obtained following the derivations in (Kay et al., 2009):

M
p,, = Z P, exp[—y/(2a™)] (2.13)
i=1
M
p = expl—v/(2a®
A Qi exp[—y/(2a; )] (2.14)
i=1
Where
M
= [ o
| = T, © 2.15
i=1 axi L~ 0 /9 219
M
o= [] ==
P = PR 2.16
i=1nxi 1~ % /9 210

NOM 0iG"K; G,

' 14026"K7G; (2.17)
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«® = 026K, 716,
(2.18)

(0)

y is the detection threshold. The weighting term «; -~ characterizes the contribution of the it

receiver in the detection process. If a small target return is measured at the i*" receiver (i.e.,
ajiGl-H K;71G; « 1), then its contribution will not be included in the detection decision. As

a result, the proposed approach allows to efficiently leverage the signal diversity offered by

the multistatic topology in order to optimize the target detection capabilities.

24 Cognitive waveform selection mechanism

Following from the above discussions, a multistatic cognitive waveform selection process
could be devised in order to maximize the probability of detection expressed in (2.14) for a
given probability of false alarm. Indeed, the threshold value y could be dynamically derived
by solving (2.13) for a fixed value of the probability of false alarm and the real-time scene
parameters (i.e., the extended target impulse responses in addition to clutter plus noise
covariance estimates). The resulting threshold y is then used to compute the probability of
detection.

The waveform selection process could be formulated as:

Sopt = MaXg, s Pp (2.19)

where s, is the selected waveform that maximizes Pp, S is the ensemble of Hadamard

phase-coded sequences and s, is a particular probing waveform from S.

The probability of target detection is maximized at each iteration. Subsequently, new
waveform is selected for transmission. Each waveform is composed of a train of Hadamard

phase-coded pulses where the subpulses coding sequence corresponds to a specific
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Hadamard sequence as described in section III. The procedure of cognitive waveform

selection could be summarized as follows:
1) Select a waveform from the ensemble S for transmission.

2) The received signals are used to estimate the real-time covariance matrices of clutter and
noise K; in addition to the extended target impulse responses and scattering coefficient

variances aji corresponding to the it" receiver.

3) For each waveform s, in the ensemble S, use the information regarding actual Doppler
shifts and total delays contained in the estimated target impulse responses to compute the

deterministic vectors G; relative to sp as detailed in (2.8) and (2.9). Then compute the
actual values of ai(o) and ai(l) in (2.17) and (2.18) based on the current estimates of G;,
K; and oﬁi and update the threshold y by solving (2.13) for the fixed value of probability
of false alarm Pg,. Finally calculate the value of Pj, which corresponds to the waveform

sy based on actual values of ai(o), ai(l) and y as described in (2.14).
4) Choose the waveform s, corresponding to the maximum Pp,.
5) Transmit s,,;, collect the return signals and process it in each receiver. Repeat steps 2-5.

2.5 Multistatic GDOP-based receiver locations update strategy
2.5.1 LS geolocation process

The backscatter signals coming from the target are matched filtered at each receiver and the
bistatic range-Doppler responses relative to different receivers are processed. Consequently,
bistatic ranges and Doppler shifts relative to different transmitter-receiver pairs could be
easily extracted from the range-Doppler responses. Theoretical expressions of bistatic range

and bistatic Doppler shift are given by (Skolnik, 2001):
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1 = Ry X Ryg (2.20)

fi= Z%COS ¢; cos(Bi/2)

RT - Ll SlIl HT

|4 1
= 2— cos ¢; §+

1 2.21)

ZJR% + 12 — 2R;L;sin Oy

Where 7; is the bistatic range relative to the transmitter and the it® receiver, Ry is the
transmitter to target range, R,; is the it" receiver to target range. f; is the bistatic Doppler
shift, L; is the baseline separating the transmitter from the i™" receiver, V = \/vZ + Vi + vf
is the target velocity, i is the carrier wavelength, B; is the the bistatic angle, ¢; is the angle
between the target velocity vector and the bistatic bisector and 8 is the angle between the

transmitter and the target.

The aim of the geolocation step is to estimate the absolute target position and velocity from
the measured bistatic ranges and Doppler shifts relative to different receivers. The LS

geolocation system can be modeled as:

Z=v%(p)+n (2.22)

where Z = [rq, ..., Ty, f1, -, fy]7is the measurement vector, p = [x,V,z, Uy, Uy, v,]" is the
vector of unknown target parameters (i.e., target position and velocity vectors) and n is the

measurement noise vector.
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From (2.20), (2.21) and (2.22), we can represent the hybrid system as,

JRr X R,y
JRr XR,,

JRr X Rong
Vi + Vi + v P \/1 Ry — Ly sinf;
~——— — cos¢,

N

~+
A 2 2JR2+ L? —2R;L sin 6y

V2 4 vE 4 v 1 Ry — L, sin@
Z—ycos¢2\/§+ ! 2 !

A 2y/R% + L% — 2R;L, sin 0y

Y(p) =

VR + V2 + v 1 Ry — Ly sinf
2 X 2 - cosqu\/ + U !

A 2 2\JR%+ I3 — 2RyLy sin Oy
(2.23)
The range-velocity estimation problem can be expressed as,
p = min,||IZ — p(p)I (2.24)

We solve the optimization problem of (2.24) by using the Trust-Region-Reflective algorithm
(Sorensen, 1982). The real-time estimate of target position is forwarded to the GDOP based
multilateration process in order to optimize the receiver locations for better target positioning

accuracy.

2.5.2 GDOP-based receivers placement strategy

GDOP is a vital metric, which indicates the efficacy of the sensor network topological
distribution in aiding the geolocation process as detailed in works like (Sharp et al., 2009);
(Chen et al., 2009). Large GDOP values correspond to a poor geometry topology, which will
result in poor geolocation performance. Hence, an optimization algorithm is necessary to

determine the best set of the sensor locations to be utilized in order to aid the target
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geolocation process. This optimization would be dynamic and dependent on the current
target estimate generat