1,136 research outputs found

    Sketching-out virtual humans: From 2d storyboarding to immediate 3d character animation

    Get PDF
    Virtual beings are playing a remarkable role in today’s public entertainment, while ordinary users are still treated as audiences due to the lack of appropriate expertise, equipment, and computer skills. In this paper, we present a fast and intuitive storyboarding interface, which enables users to sketch-out 3D virtual humans, 2D/3D animations, and character intercommunication. We devised an intuitive “stick figurefleshing-outskin mapping” graphical animation pipeline, which realises the whole process of key framing, 3D pose reconstruction, virtual human modelling, motion path/timing control, and the final animation synthesis by almost pure 2D sketching. A “creative model-based method” is developed, which emulates a human perception process, to generate the 3D human bodies of variational sizes, shapes, and fat distributions. Meanwhile, our current system also supports the sketch-based crowd animation and the storyboarding of the 3D multiple character intercommunication. This system has been formally tested by various users on Tablet PC. After minimal training, even a beginner can create vivid virtual humans and animate them within minutes

    Comparing and Evaluating Real Time Character Engines for Virtual Environments

    Get PDF
    As animated characters increasingly become vital parts of virtual environments, then the engines that drive these characters increasingly become vital parts of virtual environment software. This paper gives an overview of the state of the art in character engines, and proposes a taxonomy of the features that are commonly found in them. This taxonomy can be used as a tool for comparison and evaluation of different engines. In order to demonstrate this we use it to compare three engines. The first is Cal3D, the most commonly used open source engine. We also introduce two engines created by the authors, Piavca and HALCA. The paper ends with a brief discussion of some other popular engines

    Real Time Animation of Virtual Humans: A Trade-off Between Naturalness and Control

    Get PDF
    Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious) games. The motion of such virtual humans should look realistic (or ‘natural’) and allow interaction with the surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between motion naturalness and the control that can be exerted over the motion. We show mechanisms to parametrize, combine (on different body parts) and concatenate motions generated by different animation techniques. We discuss several aspects of motion naturalness and show how it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to enhance both naturalness and control

    A Motion Control Scheme for Animating Expressive Arm Movements

    Get PDF
    Current methods for figure animation involve a tradeoff between the level of realism captured in the movements and the ease of generating the animations. We introduce a motion control paradigm that circumvents this tradeoff-it provides the ability to generate a wide range of natural-looking movements with minimal user labor. Effort, which is one part of Rudolf Laban\u27s system for observing and analyzing movement, describes the qualitative aspects of movement. Our motion control paradigm simplifies the generation of expressive movements by proceduralizing these qualitative aspects to hide the non-intuitive, quantitative aspects of movement. We build a model of Effort using a set of kinematic movement parameters that defines how a figure moves between goal keypoints. Our motion control scheme provides control through Effort\u27s four dimensional system of textual descriptors, providing a level of control thus far missing from behavioral animation systems and offering novel specification and editing capabilities on top of traditional keyframing and inverse kinematics methods. Since our Effort model is inexpensive computationally, Effort-based motion control systems can work in real-time. We demonstrate our motion control scheme by implementing EMOTE (Expressive MOTion Engine), a character animation module for expressive arm movements. EMOTE works with inverse kinematics to control the qualitative aspects of end-effector specified movements. The user specifies general movements by entering a sequence of goal positions for each hand. The user then expresses the essence of the movement by adjusting sliders for the Effort motion factors: Space, Weight, Time, and Flow. EMOTE produces a wide range of expressive movements, provides an easy-to-use interface (that is more intuitive than joint angle interpolation curves or physical parameters), features interactive editing, and real-time motion generation

    Motion enriching using humanoide captured motions

    Get PDF
    Animated humanoid characters are a delight to watch. Nowadays they are extensively used in simulators. In military applications animated characters are used for training soldiers, in medical they are used for studying to detect the problems in the joints of a patient, moreover they can be used for instructing people for an event(such as weather forecasts or giving a lecture in virtual environment). In addition to these environments computer games and 3D animation movies are taking the benefit of animated characters to be more realistic. For all of these mediums motion capture data has a great impact because of its speed and robustness and the ability to capture various motions. Motion capture method can be reused to blend various motion styles. Furthermore we can generate more motions from a single motion data by processing each joint data individually if a motion is cyclic. If the motion is cyclic it is highly probable that each joint is defined by combinations of different signals. On the other hand, irrespective of method selected, creating animation by hand is a time consuming and costly process for people who are working in the art side. For these reasons we can use the databases which are open to everyone such as Computer Graphics Laboratory of Carnegie Mellon University.Creating a new motion from scratch by hand by using some spatial tools (such as 3DS Max, Maya, Natural Motion Endorphin or Blender) or by reusing motion captured data has some difficulties. Irrespective of the motion type selected to be animated (cartoonish, caricaturist or very realistic) human beings are natural experts on any kind of motion. Since we are experienced with other peoples’ motions, and comparing each motion to the others, we can easily judge one individual’s mood from his/her body language. As being a natural master of human motions it is very difficult to convince people by a humanoid character’s animation since the recreated motions can include some unnatural artifacts (such as foot-skating, flickering of a joint)

    Data-driven techniques for animating virtual characters

    Get PDF
    One of the key goals of current research in data-driven computer animation is the synthesis of new motion sequences from existing motion data. This thesis presents three novel techniques for synthesising the motion of a virtual character from existing motion data and develops a framework of solutions to key character animation problems. The first motion synthesis technique presented is based on the character’s locomotion composition process. This technique examines the ability of synthesising a variety of character’s locomotion behaviours while easily specified constraints (footprints) are placed in the three-dimensional space. This is achieved by analysing existing motion data, and by assigning the locomotion behaviour transition process to transition graphs that are responsible for providing information about this process. However, virtual characters should also be able to animate according to different style variations. Therefore, a second technique to synthesise real-time style variations of character’s motion. A novel technique is developed that uses correlation between two different motion styles, and by assigning the motion synthesis process to a parameterised maximum a posteriori (MAP) framework retrieves the desire style content of the input motion in real-time, enhancing the realism of the new synthesised motion sequence. The third technique presents the ability to synthesise the motion of the character’s fingers either o↵-line or in real-time during the performance capture process. The advantage of both techniques is their ability to assign the motion searching process to motion features. The presented technique is able to estimate and synthesise a valid motion of the character’s fingers, enhancing the realism of the input motion. To conclude, this thesis demonstrates that these three novel techniques combine in to a framework that enables the realistic synthesis of virtual character movements, eliminating the post processing, as well as enabling fast synthesis of the required motion

    Example Based Caricature Synthesis

    Get PDF
    The likeness of a caricature to the original face image is an essential and often overlooked part of caricature production. In this paper we present an example based caricature synthesis technique, consisting of shape exaggeration, relationship exaggeration, and optimization for likeness. Rather than relying on a large training set of caricature face pairs, our shape exaggeration step is based on only one or a small number of examples of facial features. The relationship exaggeration step introduces two definitions which facilitate global facial feature synthesis. The first is the T-Shape rule, which describes the relative relationship between the facial elements in an intuitive manner. The second is the so called proportions, which characterizes the facial features in a proportion form. Finally we introduce a similarity metric as the likeness metric based on the Modified Hausdorff Distance (MHD) which allows us to optimize the configuration of facial elements, maximizing likeness while satisfying a number of constraints. The effectiveness of our algorithm is demonstrated with experimental results

    Interfaces for human-centered production and use of computer graphics assets

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Semantics for virtual humans

    Get PDF
    Population of Virtual Worlds with Virtual Humans is increasing rapidly by people who want to create a virtual life parallel to the real one (i.e. Second Life). The evolution of technology is smoothly providing the necessary elements to increase realism within these virtual worlds by creating believable Virtual Humans. However, creating the amount of resources needed to succeed this believability is a difficult task, mainly because of the complexity of the creation process of Virtual Humans. Even though there are many existing available resources, their reusability is difficult because there is not enough information provided to evaluate if a model contains the desired characteristics to be reused. Additionally, the knowledge involved in the creation of Virtual Humans is not well known, nor well disseminated. There are several different creation techniques, different software components, and several processes to carry out before having a Virtual Human capable of populating a virtual environment. The creation of Virtual Humans involves: a geometrical representation with an internal control structure, the motion synthesis with different animation techniques, higher level controllers and descriptors to simulate human-like behavior such individuality, cognition, interaction capabilities, etc. All these processes require the expertise from different fields of knowledge such as mathematics, artificial intelligence, computer graphics, design, etc. Furthermore, there is neither common framework nor common understanding of how elements involved in the creation, development, and interaction of Virtual Humans features are done. Therefore, there is a need for describing (1) existing resources, (2) Virtual Human's composition and features, (3) a creation pipeline and (4) the different levels/fields of knowledge comprehended. This thesis presents an explicit representation of the Virtual Humans and their features to provide a conceptual framework that will interest to all people involved in the creation and development of these characters. This dissertation focuses in a semantic description of Virtual Humans. The creation of a semantic description involves gathering related knowledge, agreement among experts in the definition of concepts, validation of the ontology design, etc. In this dissertation all these procedures are presented, and an Ontology for Virtual Humans is described in detail together with the validations that conducted to the resulted ontology. The goal of creating such ontology is to promote reusability of existing resources; to create a shared knowledge of the creation and composition of Virtual Humans; and to support new research of the fields involved in the development of believable Virtual Humans and virtual environments. Finally, this thesis presents several developments that aim to demonstrate the ontology usability and reusability. These developments serve particularly to support the research on specialized knowledge of Virtual Humans, the population of virtual environments, and improve the believability of these characters
    corecore