717 research outputs found

    Detection and segmentation of vine canopy in ultra-high spatial resolution RGB imagery obtained from unmanned aerial vehicle (UAV): a case study in a commercial vineyard

    Get PDF
    The use of Unmanned Aerial Vehicles (UAVs) in viticulture permits the capture of aerial Red-Green-Blue (RGB) images with an ultra-high spatial resolution. Recent studies have demonstrated that RGB images can be used to monitor spatial variability of vine biophysical parameters. However, for estimating these parameters, accurate and automated segmentation methods are required to extract relevant information from RGB images. Manual segmentation of aerial images is a laborious and time-consuming process. Traditional classification methods have shown satisfactory results in the segmentation of RGB images for diverse applications and surfaces, however, in the case of commercial vineyards, it is necessary to consider some particularities inherent to canopy size in the vertical trellis systems (VSP) such as shadow effect and different soil conditions in inter-rows (mixed information of soil and weeds). Therefore, the objective of this study was to compare the performance of four classification methods (K-means, Artificial Neural Networks (ANN), Random Forest (RForest) and Spectral Indices (SI)) to detect canopy in a vineyard trained on VSP. Six flights were carried out from post-flowering to harvest in a commercial vineyard cv. Carménère using a low-cost UAV equipped with a conventional RGB camera. The results show that the ANN and the simple SI method complemented with the Otsu method for thresholding presented the best performance for the detection of the vine canopy with high overall accuracy values for all study days. Spectral indices presented the best performance in the detection of Plant class (Vine canopy) with an overall accuracy of around 0.99. However, considering the performance pixel by pixel, the Spectral indices are not able to discriminate between Soil and Shadow class. The best performance in the classification of three classes (Plant, Soil, and Shadow) of vineyard RGB images, was obtained when the SI values were used as input data in trained methods (ANN and RForest), reaching overall accuracy values around 0.98 with high sensitivity values for the three classes

    Advancements in Multi-temporal Remote Sensing Data Analysis Techniques for Precision Agriculture

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Object-Based Image Classification of Summer Crop with Machine Learning Methods

    Get PDF
    The strategic management of agricultural lands involves crop field monitoring each year. Crop discrimination via remote sensing is a complex task, especially if different crops have a similar spectral response and cropping pattern. In such cases, crop identification could be improved by combining object-based image analysis and advanced machine learning methods. In this investigation, we evaluated the C4.5 decision tree, logistic regression (LR), support vector machine (SVM) and multilayer perceptron (MLP) neural network methods, both as single classifiers and combined in a hierarchical classification, for the mapping of nine major summer crops (both woody and herbaceous) from ASTER satellite images captured in two different dates. Each method was built with different combinations of spectral and textural features obtained after the segmentation of the remote images in an object-based framework. As single classifiers, MLP and SVM obtained maximum overall accuracy of 88%, slightly higher than LR (86%) and notably higher than C4.5 (79%). The SVM+SVM classifier (best method) improved these results to 89%. In most cases, the hierarchical classifiers considerably increased the accuracy of the most poorly classified class (minimum sensitivity). The SVM+SVM method offered a significant improvement in classification accuracy for all of the studied crops compared to the conventional decision tree classifier, ranging between 4% for safflower and 29% for corn, which suggests the application of object-based image analysis and advanced machine learning methods in complex crop classification tasks.This research was partly financed by the TIN2011-22794 project of the Spanish Ministerial Commission of Science and Technology (MICYT), FEDER funds, the P2011-TIC-7508 project of the “Junta de Andalucía” (Spain) and the Kearney Foundation of Soil Science (USA). The research of Peña was co-financed by the Fulbright-MEC postdoctoral program, financed by the Spanish Ministry for Science and Innovation, and by the JAEDoc Program, supported by CSIC and FEDER funds. ASTER data were available to us through a NASA EOS scientific investigator affiliation.We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI).Peer Reviewe

    Local Motion Planner for Autonomous Navigation in Vineyards with a RGB-D Camera-Based Algorithm and Deep Learning Synergy

    Get PDF
    With the advent of agriculture 3.0 and 4.0, researchers are increasingly focusing on the development of innovative smart farming and precision agriculture technologies by introducing automation and robotics into the agricultural processes. Autonomous agricultural field machines have been gaining significant attention from farmers and industries to reduce costs, human workload, and required resources. Nevertheless, achieving sufficient autonomous navigation capabilities requires the simultaneous cooperation of different processes; localization, mapping, and path planning are just some of the steps that aim at providing to the machine the right set of skills to operate in semi-structured and unstructured environments. In this context, this study presents a low-cost local motion planner for autonomous navigation in vineyards based only on an RGB-D camera, low range hardware, and a dual layer control algorithm. The first algorithm exploits the disparity map and its depth representation to generate a proportional control for the robotic platform. Concurrently, a second back-up algorithm, based on representations learning and resilient to illumination variations, can take control of the machine in case of a momentaneous failure of the first block. Moreover, due to the double nature of the system, after initial training of the deep learning model with an initial dataset, the strict synergy between the two algorithms opens the possibility of exploiting new automatically labeled data, coming from the field, to extend the existing model knowledge. The machine learning algorithm has been trained and tested, using transfer learning, with acquired images during different field surveys in the North region of Italy and then optimized for on-device inference with model pruning and quantization. Finally, the overall system has been validated with a customized robot platform in the relevant environment

    Object-Based Image Classification of Summer Crops with Machine Learning Methods

    Get PDF
    The strategic management of agricultural lands involves crop field monitoring each year. Crop discrimination via remote sensing is a complex task, especially if different crops have a similar spectral response and cropping pattern. In such cases, crop identification could be improved by combining object-based image analysis and advanced machine learning methods. In this investigation, we evaluated the C4.5 decision tree, logistic regression (LR), support vector machine (SVM) and multilayer perceptron (MLP) neural network methods, both as single classifiers and combined in a hierarchical classification, for the mapping of nine major summer crops (both woody and herbaceous) from ASTER satellite images captured in two different dates. Each method was built with different combinations of spectral and textural features obtained after the segmentation of the remote images in an object-based framework. As single classifiers, MLP and SVM obtained maximum overall accuracy of 88%, slightly higher than LR (86%) and notably higher than C4.5 (79%). The SVM+SVM classifier (best method) improved these results to 89%. In most cases, the hierarchical classifiers considerably increased the accuracy of the most poorly classified class (minimum sensitivity). The SVM+SVM method offered a significant improvement in classification accuracy for all of the studied crops compared to the conventional decision tree classifier, ranging between 4% for safflower and 29% for corn, which suggests the application of object-based image analysis and advanced machine learning methods in complex crop classification task

    Prediction of Soil Moisture Content Based On Satellite Data and Sequence-to-Sequence Networks

    Full text link
    The main objective of this study is to combine remote sensing and machine learning to detect soil moisture content. Growing population and food consumption has led to the need to improve agricultural yield and to reduce wastage of natural resources. In this paper, we propose a neural network architecture, based on recent work by the research community, that can make a strong social impact and aid United Nations Sustainable Development Goal of Zero Hunger. The main aims here are to: improve efficiency of water usage; reduce dependence on irrigation; increase overall crop yield; minimise risk of crop loss due to drought and extreme weather conditions. We achieve this by applying satellite imagery, crop segmentation, soil classification and NDVI and soil moisture prediction on satellite data, ground truth and climate data records. By applying machine learning to sensor data and ground data, farm management systems can evolve into a real time AI enabled platform that can provide actionable recommendations and decision support tools to the farmers.Comment: Presented on NeurIPS 2018 WiML worksho

    End-to-end deep learning for directly estimating grape yield from ground-based imagery

    Full text link
    Yield estimation is a powerful tool in vineyard management, as it allows growers to fine-tune practices to optimize yield and quality. However, yield estimation is currently performed using manual sampling, which is time-consuming and imprecise. This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards. Continuous data collection using a vehicle-mounted sensing kit combined with collection of ground truth yield data at harvest using a commercial yield monitor allowed for the generation of a large dataset of 23,581 yield points and 107,933 images. Moreover, this study was conducted in a mechanically managed commercial vineyard, representing a challenging environment for image analysis but a common set of conditions in the California Central Valley. Three model architectures were tested: object detection, CNN regression, and transformer models. The object detection model was trained on hand-labeled images to localize grape bunches, and either bunch count or pixel area was summed to correlate with grape yield. Conversely, regression models were trained end-to-end to predict grape yield from image data without the need for hand labeling. Results demonstrated that both a transformer as well as the object detection model with pixel area processing performed comparably, with a mean absolute percent error of 18% and 18.5%, respectively on a representative holdout dataset. Saliency mapping was used to demonstrate the attention of the CNN model was localized near the predicted location of grape bunches, as well as on the top of the grapevine canopy. Overall, the study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale. Additionally, the end-to-end modeling approach was able to perform comparably to the object detection approach while eliminating the need for hand-labeling

    Comparison of Supervised Image Classification Algorithms: Classifying Diverse Land Cover in California

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business AnalyticsThe research field of machine learning and supervised image classification is quickly developing. There are many studies regarding the different use cases of image classification. However, a comprehensive study on the primary algorithms in ArcGIS Pro has not been assessed for numerous classes. This study attempts to bridge that gap by evaluating the effectiveness of the three primary classification algorithms available in ArcGIS Pro, and to determine an optimal algorithm for the given study area. This scope covers 12 classes of land cover in San Joaquin County, California. Maximum Likelihood, Random Forest, and Support Vector Machine were tested based on their general usability in image classification as well as their proven characteristics through research. The training and ground truth validation data were provided by USGS, in the form of a Landsat 8 image, and crop planning map. The accuracy assessment was performed with a stratified random sampling strategy. Based on the Kappa statistic, this study determines Random Forest (Kappa = 0.68, Accuracy = 0.76) to be the most suitable algorithm for detecting a series of crop types, bodies of water, and urban spaces apart from the rest of the land cover in San Joaquin County, California, USA. In addition to determining a preferred algorithm, it is also apparent that certain parameters when tweaked, produce the optimal classifier for this dataset. In this case, this means most parameters set to default, with an increased spectral detail and a decreased spatial detail. What this indicates for crop planning is that the current algorithms used in California are already quite effective at accurately identifying unique types of land cover. This builds confidence in the field, however parameters could be similarly tweaked to produce an even better classification. This study can be useful for improving crop and water planning
    • …
    corecore