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Summary

Demand in agriculture production will increase more than 50% by 2050 ac-
cording to the Food and Agriculture Organization (FAO), which will create an
imbalance between food demand and supply. In this regard, an essential aspect
of FAO’s manifesto, defined by its strategic aims, is focused on contributing to-
wards more productive and sustainable agriculture. Precision agriculture has the
potential to deal with this demand, which includes a set of tools that incorporate
information acquisition, analysis, management, and deployment to help in making
site-specific decisions, with the objective of maximizing production while reduc-
ing environmental noise generated by overuse of fertilizers and chemicals. Recent
developments in Remote Sensing (RS) sensors and geospatial technologies are the
leading sources of agriculture-related information - in the form of vegetation in-
dexes. This goes on wards in maintaining the near real-time constraints whilst
supplementing cost-effective methods of monitoring agriculture resources. There
has been a rising demand for multi-temporal remotely sensed imagery to exploit
vegetation dynamics. Among crops, grape production has been considered one of
the most profitable asset in the agriculture sector and developing in many coun-
tries, as well organized competitive and high-value industry. Proper knowledge of
the spatial variability in vineyards is considered as a key factor for vine growers to
estimate the outcomes in terms of yield and quality. Monitoring vegetation status
during the crop phenological cycle through means of remotely sensed data is benefi-
cial for the winegrowers. This thesis aims at the multi-temporal analysis of remote
sensing data and introducing new methodologies to address critical applications in
the precision agriculture domain.
The first part is focused on the viticulture related application in which the three
main problems are discussed which are 1) Vigor variability assessment of vineyards
is performed by using Unmanned ground vehicle (UAV) and satellite-based multi-
spectral imagery with a comparison. Advanced vegetation indices are extracted
from UAV imagery to understand the influence of inter-row and vine canopies con-
tribution in the moderate resolution satellite imagery. 2) RGB imagery acquired
from UAV is used to generate a Path plan for the Unmanned Ground Vehicle (UGV)
to move autonomously in a vineyard. 3) Vegetation index derived from freely avail-
able moderate spatial resolution satellite imagery refined by using UAV imagery for
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the vineyard environment. Results of proposed advanced remote sensing methods
proved their potential in improving the agricultural practices and decision making
for site-specific vineyards, and these can be integrated with the existing practices
to improve the production and quality.
The second part of the dissertation is to exploit the use of freely available sentinel-2
satellite imagery to improve the previous remote sensing methods used to address
applications in precision agriculture. Two tasks are discussed in this part. 1) A
new Recurrent-Convolution Neural Network (R-CNN) based approach is presented
to classify different land covers and crop types by learning temporal features from
sentinel-2 time series data. The results show considerable improvement as com-
pared with the other mainstream methods. 2) A multi-temporal data analysis is
performed to find a relationship between several vegetation indices derived from
sentinel-2 image time series and biophysical parameters such as Above Ground
Biomass and height of Maize crop.
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Chapter 1

Introduction

The global human population is rapidly growing and expected to be 10 billion
by 2050, demanding a significant boost in agriculture sector to meet the food re-
quirements [54]. Meeting the increased demand is a big concern with the modest
economy growth. Another challenge for the agriculture sector is to meet the food
demand of growing population whilst finding more efficient ways of managing the
involved key resources such as soil fertility, efficient land use, and water in more
efficient way. Another crucial factor at play here is climate change. In this regard,
a key aspect of FAO’s manifesto, defined by its strategic aims, is to make a con-
tribution towards more productive and sustainable agriculture. In this challenging
context for agriculture, monitoring crop growth and status with multi temporal
approach in spatially diverse locations and different environmental conditions is
strongly needed. Monitoring is required in near real-time to deal with the extreme
change in climate conditions which can be helpful to minimize their impact on the
food production by optimizing agricultural practices in a sustainable way [232].
Yield prediction is one of the valuable factor that can anticipate food production
and ensures food security in case of food shortage. Precision agriculture (PA) is an
evolving farm management technique (Figure. 1.1), that has the potential to deal
with above requirements. This is discussed further in the following section.

1.1 Precision Agriculture and Remote Sensing
time series data

Precision agriculture (PA) is a farming management technique which includes a
set of tools that incorporate information acquisition,analysis, management and de-
ployment to help in making site-specific decisions, with the objective of maximizing
production while reducing environmental noise generated by overuse of fertilizers
and chemicals. Information acquisition is the essential step in PA. Remote sensing
is well established and widely used tool in PA that provides solutions to address
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Introduction

the above mentioned requirements since it provides recurrent information with out
physical interaction from the small to large scale agricultural areas in a concise way.
Use of remote sensing time series data in PA has been investigated many times in
numerous studies, specifically in crops growth assessment, yield estimation, irriga-
tion management, and weed detection using one of the remote sensing platforms
such as Satellites, Airborne, Unmanned Aerial Vehicles (UAVs), Unmanned Ground
Vehicles (UGVs) and Ground based sensors mounted on the agricultural machines.
Multi spectral time series data acquired from MODIS and LANDSAT have been
widely used in many agricultural applications such as crop yield prediction [95],
landcover and crop classification (LC&CC) [192], leaf area index estimation [92],
plant height estimation [121], vegetation variability assessment [191] and many
more. Two different data sources can also be used together to extract more fea-
tures that lead to improve results . For example, Landsat-8 and Sentinel-1 used
together for LC&CC [112]. The increasing trend of the remote sensing applications
in the agriculture sector is evident from significant progress in technological aspects
of remote sensing platform that include availability of data from numerous sensors
with the unprecedented spatial, spectral and temporal resolution. The emergence
of platforms such as nano satellites or UAVs offer more flexibility in terms of data
acquisition planning.

Figure 1.1: Illustration of Evolving Precision Agriculture [1]
.

Over the years, statistical analysis of data derived from remote sensing mea-
surements has been in practice to measure changes in nature and manage land
cover such as water bodies, crops and forests. Special attention has been paid to
remote sensing data analysis in order to use in production of environmental and
agricultural statistics. Statistical machine learning methods in remote sensing data
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analysis can be defined as tool in such scenarios where a statistical relationship be-
tween spectral information coming from remote sensing platforms and ground/field
measurements is established. Depending on the cases, derived relationship can be
parametric, semi parametric or non-parametric. For example, Logistic regression
[14], Support vector machines [213], Decision tree [155], K nearest neighbor [140],
Random Forest [217], have been used in the analysis of agriculture remote sensing
applications.
Image classification of remote sensing images plays an essential role in a broad
range of applications and therefore receiving remarkable attention. Through the
last decades, considerable efforts have been made to develop various methods for
the task of scene classification using satellite or aerial images. As scene classifica-
tion is usually carried out in feature space, effective feature description plays a vital
role in creating high-performance scene classification methods. We can generally
divide existing scene classification methods into three main categories according to
the features they used: handcrafted feature-based methods [29, 28], unsupervised
feature learning-based methods [30, 254], and deep learning based methods [259,
257].
Most of the current state-of-the-art approaches generally rely on supervised learn-
ing to obtain good feature representations. Especially in 2006, a breakthrough in
deep feature learning was made by Hinton and Salakhutdinov [83]. Since then,
researchers have aimed to replace hand-engineered features with trainable multi-
layer networks, and several deep learning models have shown impressive feature
representation capability for a wide range of applications including remote sens-
ing image scene classification [30, 254, 132, 137]. Traditional supervised methods
are based on handcrafted features that require a considerable amount of engineer-
ing skill and domain expertise; however, deep learning features are automatically
learned from data using a general-purpose learning procedure via deep-architecture
neural networks. On the other hand, compared with aforementioned unsupervised
feature learning methods that are generally shallow-structured models (e.g., sparse
coding), deep learning models that are composed of multiple processing layers can
learn more powerful feature representations of data with multiple levels of abstrac-
tion [116]. In addition, deep feature learning methods have also turned out to be
very good at discovering intricate structures and discriminative information hidden
in high-dimensional data, and the features from top layers of the deep neural net-
work show semantic abstracting properties. All of these make deep features more
applicable for semantic-level scene classification.
In this dissertation, learning based methods have been employed for classification
problem and refinement of satellite imagery. A detailed discussion about the learn-
ing based methods is provided in state of the art methods for remote sensing Chap-
ter. 3. The main goal of this thesis is to analyze and use multi-temporal remote
sensing data from multiple sources for several agricultural applications to further
improve the efficacy of practices used in Precision Agriculture. In first part of work,
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high resolution UAV and moderate resolution satellite imagery is processed and an-
alyzed to address three research problems related to viticulture which are further
highlighted in the following section. The second part presents (i) methodology and
results for the landccover and crop classification, (ii) the performed analysis on as-
sessment of relationsship between remotely sensed spectral vegetation indices and
crops biophysical parameters.

1.2 Precison Viticulture
Precision Viticulture (PV) is an emerging practicing technique in vineyards

based on the same principal as precision agriculture. Precision farming is required
to maximize vineyard efficiency, which guarantees to achieve optimal grape yield
and quality while mitigating environmental impacts and risks. Grape growers are
actively searching the ways to increase their profits by maximizing yield while opti-
mizing fertilization and reducing environmental impact [8, 199]. Precision viticul-
ture relies on rapidly evolving technologies for evaluating vineyard variability such
as global positioning systems (GPS), meteorological, satellite and airborne remote
sensing, and geographical information systems (GIS). A proper knowledge of the
spatial variability between and within crop parcels is considered as a key factor
for vine growers to estimate the outcomes in terms of yield and quality [20, 205,
169]. In this context, remote sensing (RS) has already proved its potential and
effectiveness in spatio-temporal vegetation monitoring [74, 114, 72, 168], describ-
ing several crop biophysical characteristics such as biomass and height of the crop
[94, 136]. There are types of crops which are grown in a row formation in particu-
lar, vineyards. Agronomists adopt the traditional practices such as keeping certain
inter row spacing between the vinerows to achieve optimal yield. However in PV
related past works, contribution of inter-row soil in remotely sensed data has not
been properly addressed , particularly when the moderate resolution satellite based
sensors are used. Very few studies compared the satellite and UAV based data for
variability assessment in vineyard environments with the consideration of inter-row
soil contribution, a detail discussion can be found in section 4.1. Therefore, it is
indeed a research problem which has to be addressed in the context of viticulture.
In this dissertation, a detailed analysis and comparison of vineyards multi spec-
tral imagery, provided by a decametric resolution satellite and low altitude UAV
platforms, is presented in section 4.1.

Moreover, increase in the use of automated machines in agricultural environment
to minimize human work-load to perform related tasks, has garnered significant
attention from farmers and industries alike. Automated vehicles need to have an
automatic navigation system and they have to be able to autonomously follow
the path according to the specific area and obstacles. Several advancements in
path planning methods for agricultural productions using different optimization
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techniques for single or multiple coordinated vehicles which span the entire field,
are discussed in [57]. However, the path planning for autonomous vehicle for a hilly
vineyard environment is challenging. Section 4.2 of this thesis is dedicated to the
path planning research problem in which UAV imagery over a vineyard is used to
generate a geo-coordinated path plan for automated UGV.

Satellite based imagery with moderate spatial resolution may not be used di-
rectly to reliably describe the vegetation variability in case of crops where inter-row
surface involves considerable portion of cropland. Few studies have used centimet-
ric imagery acquired from UAVs to improve satellite imagery based on remotely
sensed spectral indices. In [91], estimates of canopy structure and biochemical pa-
rameters derived from moderate spatial resolution satellite imagery were improved
using high resolution UAV multispectral imagery. T.W. Cui et al [44] described
how high resolution airborne SAR imagery can be used to refine satellite imagery
driven estimates of macroalgal coverage in the yellow sea. It is worth taking into
account that frequent availability of free satellite imagery can be very useful if
vegetation indices derived from it, could be refined. Therefore, section 4.3 of this
thesis is dedicated to satellite imagery refinement part in which UAV imagery with
centimetric spatial resolution is used to refine the vegetation index derived from
decametric sentinel-2 imagery.

Second part of this work is based on sentinel-2 image time series data and its
application to support the main objective which is to improve performance of agri-
cultural practices. Many active satellites missions, equipped with the optical sensors
such as multi spectral and hyper spectral sensors are providing data with unprece-
dented temporal and spectral resolutions. However freely available satellite data
sources do not offer high spatial resolution data product, for example, MODIS can
provide from 250m to 1000m per pixel Ground Sampling Distance (GSD), whereas
LANDSAT-8 optical land imager (OLI) offers 15m to 30m GSD. Recently launched
sentinel-2 satellite, equipped with optical multi spectral imager that can provide up
to 10m per pixel spatial resolution with the revisit time of 5 days and with almost
the same spectral resolution as provided by LANDSAT-8 OLI, which offers great
opportunity to be exploited in remote sensing domain. Taking advantage of these
features, dense time series of sentinel-2 can be very useful in near-real time crop
growth monitoring, yield prediction, land cover and crop classification, biophysical
parameters estimation and other agricultural applications to achieve the goal of
sustainable agriculture.

1.3 Problem Statement
Time series remote sensing data is one of the most valuable resource to address

the wide range of agricultural applications to achieve the goal of sustainable agricul-
ture set by the FOA and UN. Moreover, there is a rapid increase in the volume and
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availability of multi temporal images. This is due to the growing number of space
missions, the improvement in temporal resolution and the free data access policy
introduced for satellite missions such as Sentinel and Landsat. In this context,
there is room for the development of both novel methodologies and applications for
image time series employment.

This thesis aims at introducing and implementing new methodologies to ad-
dress key applications related to precision agriculture by performing multi temporal
analysis of remote sensing data. Precision farming is essential to maximize vine-
yard efficiency, which guarantees to achieve optimal grape yield and quality while
mitigating environmental impacts and risks. A proper knowledge of the spatial
variability between and within crop parcels is considered as a key factor for vine
growers to estimate the outcomes in terms of yield and quality. Any contribution
in this field of study will have valuable impact on the sustainable agriculture goal
as well as in economic returns. Therefore, a detailed analysis is needed to compare
variability assessment of vineyards using time series of Satellite and UAV-Based
imagery. Indeed, many research works have been carried out in the past related
to growth monitoring, yield prediction, biophysical parameters estimation of var-
ious crops like Maize, Soya, Wheat using freely available multitemporal satellite
imagery. However, the same imagery is effected by the inter row surfaces in case of
vineyards. Therefore, refinement is needed to use freely available satellite imagery.
Another research problem related to viticulture, discussed in this thesis, is the path
planning of unmanned ground vehicles in the challenging vineyard environment.

Second part of the thesis work is only associated with the Sentinel-2 multi tem-
poral analysis and its applications in precision agriculture. Understanding the use of
current land cover, along with monitoring change over time, is vital for agronomists
and agricultural agencies responsible for land management. Land cover and crop
classification is widely addressed topic in field of agricultural remote sensing. How-
ever there is still room to address this problem for the large scale classification.
Moreover, advancements in machine learning techniques has shown great poten-
tial to deal with the huge data volume, for example multi temporal satellite data
for large scale area. Therefore, machine learning techniques can be employed to
improve the performance for large scale land cover and crop classification. Further-
more, with the availability of reasonably wide spectral range of on-board sensor of
sentinel-2, many spectral vegetation indices can be derived and then used in various
agricultural applications discussed in section 1.1. Various spectral indices derived
from sentinel-2 will be exploited in this thesis to assess the relationship with the
crop’s biophysical features such as Above Ground Biomass (AGB) and the Leaf
Area Index (LAI).
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1.4 Contributions
In this dissertation, the focus of the research is to exploit multi-temporal remote

sensing data from different sources for agricultural monitoring applications in order
to improve the efficacy of practices used in precision agriculture. This work was
mainly carried out for two research themes. First, to address the applications of
UAV and satellite based remotely sensed imagery in the field of viticulture. The
second is to use sentinel-2 multispectral image time series for land cover and crop
classification, and to estimate the crop biophysical parameters. Major contributions
in this research are listed as follows.

• A detailed analysis and comparison between UAV and satellite based multi-
spectral imagery is performed to assess the variability in vineyard. An effec-
tive approach is adapted to investigate the effect of spectral reflectances from
inter-row soil on the satellite driven vegetation index. For robust analysis,
three different NDVI maps are derived by considering: (i) the whole cropland
surface; (ii) only the vine canopies; and (iii) only the inter-row terrain.

• A frame work is devised to generate an automatic coverage path plan for
agricultural unmanned ground vehicles (UGV) by using the RGB imagery
acquired from unmanned aerial vehicle (UAV) of hilly vineyard environment.

• CNN based approach is proposed to refine the moderate resolution satellite
driven vegetation maps by using spatial information from its neighbors and
high resolution UAV imagery.

• An improved land cover and crop classification method is developed based
on temporal feature learning from multi-temporal satellite imagery. A super-
vised deep learning based frame work is adopted that comprises of Recurrent
Neural Network (RNN) that extracts temporal correlations from time series
of sentinel-2 data in combination with Convolutional Neural Network (CNN)
to analyzes and encapsulate the crops pattern through its filters.

• Several spectral vegetation indices are derived from sentinel-2 multi-temporal
images for maize crop and their relationship are assessed with the in-field mea-
surements of biophysical parameters such as Above Ground Biomass (AGB)
and plant height.

1.5 Organization of the thesis
This thesis presents a collection of work done in the field of Precision Agriculture

by analyzing multi temporal remote sensing data and developing methodologies for
agricultural applications to further improve the efficacy of practices used in farming
systems. This thesis is organized as under:
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• Chapter 2 provides a brief introduction to Remote sensing and its role in
the precision agriculture applications. It also provides technical background
about various remote sensing platforms like satellites, Airborne, UAVs and
their contribution in agricultural applications. Furthermore, it gives introduc-
tion to several spectral vegetation indices derived from multi spectral imagery
including their applications in the precision agricultural domain.

• Chapter 3 discusses state of the art methods and their contributions to
exploit the potential of huge volume of remote sensing data. It provides
discussion on several machine learning methods, which includes regression,
classification, and clustering. Brief introduction on neural networks and their
role in supervised classification is provided.

• Chapter 4 presents research contributions during doctoral studies in which
several methods are proposed to analyze remote sensing data and its applica-
tions in the field of Precision Viticulture. This chapter is divided into three
sections, and each section is dedicated for one addressed application. Sec-
tion 4.1 will provide a detailed analysis and comparison of UAV and satellite
based imagery to assess the variability in vineyard. Section 4.2 discusses an
application of UAV imagery to generate a path plan for ground vehicle for a
challenging vineyard environment. Finally in section 4.3, a methodology to
refine satellite based vegetation indices using high resolution UAV imagery is
presented.

• Chapter 5 presents multi temporal approaches to exploit the potential of free
available moderate spatial resolution satellite imagery. First, a novel method-
ology for land cover and crop classification based on Recurrent-Convolutions
Neural Network is presented in section 5.1. Moreover in section 5.2, rela-
tion ship between satellite driven spectral vegetation indices and biophysical
parameters of crop is analyzed and presented.

• Chapter 6 concludes all the work done during the doctoral studies with some
recommendations for future work.
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Chapter 2

Background on Remote Sensing

Remote sensing is a widely used technique which acquires information of an ob-
ject or observes phenomenon from a distance using sensors without making physical
contact. A few decades back, it was initially known for acquiring data from space-
borne satellite and airborne platforms equipped with the optical and radar sensors
[22]. In recent years, image and spatial data acquisitions from Unmanned Aerial
Vehicles, Unmanned Ground Vehicles and Ground sensors are also considered as
remote sensing methods. Because of exceptional technological developments, the
remote sensing has significantly used for various applications, and also, the per-
formance has drastically improved [218]. It is now hard to delimit the boundaries
of remote sensing applications as the observation space is not limited to only the
land cover classifications and traditional topographic mapping but also being used
in other disciplines such as agronomy, hydrology, meteorology, geology, oceanogra-
phy, etc. Remote sensing is gaining immense importance with the advancements in
technological aspects, such as imaging sensor developments and exponential rise in
information infrastructure, including processing data, data storage and communi-
cation among the technological devices. Moreover, with the advancements in aerial
platforms in particular, UAS (Unmanned Aircraft System) also known as UAV (Un-
manned Aerial Vehicle), have increased the performance of remote sensing methods
and broaden up the application areas [156].

2.1 Remote Sensing Platforms for Precision Agri-
culture

Remote sensing technique aims to observe the physical parameters of the desired
object space with time. There are four key characteristics of any remote sensing
platform that define its applicability and performance: (1) the sensor type: sensors
are mainly categorized as active for example Synthetic Aperture Radar (SAR)
and passive such as optical imager and thermal imager, (2) spatial resolution also
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known as GSD (Ground Sampling Distance), (3) temporal resolution: revisit time
of the platform which determine the data acquisition frequency, (4) object range,
the distance between the sensing platform and observed object. There are several
operational aspects associated with the existing remote sensing platforms are listed
in Table.2.1 that are considered before selection.

Figure 2.1: Illustration of remote sensing platform for precision agriculture [1].

Table 2.1: Operational aspects of Remote Sensing Platforms

Operational Aspects
Remote Sensing Platforms

Satellite Airborne UAS Mobile/static
(ground)

Observation space Worldwide Regional Local Local
Sensor diversity MS/HSI/SAR MS/HSI/LiDAR/SAR MS/LiDAR/HIS MS/LiDAR (HSI)
Maneuverability No/limited Moderate High Limited
Ground coverage Large (10 km) Medium (1 km) Small (100 m) Small (50 m)
FOV Narrow Wide Wide/super wide Wide/super wide
Revisit rate Day Hours Minutes Minutes
Spatial resolution 0.30–300 m 5–25 cm 1–5 cm 1–5 cm
Spatial accuracy 1–3 m 5–10 cm 1–25 cm 3–50 cm
Deployability Difficult Complex Easy Moderate
Operational risk Moderate High Low Moderate
Cost High Medium Low Low

Remote sensing platforms are typically categorized according to the sensor sys-
tem type, including platforms based on satellite, aerial, and ground sensors (Fig-
ure. 2.3). These platforms with their accompanying imaging systems can be distin-
guished based on the altitude of the platform, the spatial resolution of the equipped
sensor, and the minimum revisit time of the platform. Spatial resolution determines
the area that defines the smallest pixel of the imaging systems. Low spatial res-
olution images imply large pixels with increased soil or plant heterogeneity. For
the evaluation of temporal patterns in soil or plant features, platform revisit time
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is significant. Images acquired by satellite and aerial platforms are often severely
affected by cloud cover [147], while the ground-based remote sensing is not relevant.

Figure 2.2: Spectrum .

2.1.1 Satellites
Satellites equipped with sensors have been the source of information mainly for

earth observation programs since the past four decades. NASA launched its first
Landsat-1 mission in 1972. Later, with the technological developments in satellite
systems, a new era of commercial satellites was begun after the launch of IKONOS
in 1999. Role of satellite-based remote sensing can be realized by the fact that
more than 50 countries are presently operating and nearly 600 satellites carry sen-
sors that are used in Earth observation missions. Mounted sensors on satellites
capture data that span the electromagnetic spectrum, detect visible light, thermal
infrared, and SAR (Synthetic Aperature Radar), spectrum is shown in Figure. 2.2.
The type of sensor and the type of orbit that the platform travels is based on the
monitoring mode and data collection. Satellite-based remote sensing platforms are
considered to be the most stable and reliable platforms as compared with others
such as airborne, UAS and ground-based.

From the beginning era of satellite missions, satellites with the on-board sensor
continue to progress in imaging systems by their performance, and incorporating
better spatial and spectral resolution [166]. Multiple sensors were also considered in
a cooperative sense and gained significant attention of the remote sensing research
community. The type of satellite orbit generally determines the monitoring capabil-
ities of a satellite. The orbit that satellite follows is a circular or elliptical designated
by the satellite system. Different orbital path (polar orbit, sun-synchronous orbit,
geostationary orbit ) are followed to achieve continuous monitoring (meteorology)
and mapping (land cover mapping). Satellites fly in cycles for specific sensors [182],
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Figure 2.3: Illustration of observational cube of remote sensing platforms [218].

commonly in constellations, results in shorter revisit times, and the Earth globally
may be observed several times a day.

Recent satellite missions, such as Landsat, Sentinel-2, offer high temporal res-
olution as compare to other freely available multispectral data sources, therefore
these are preferred. Due to this fact, extensive time-series data can be acquired
for numerous applications such as vegetation monitoring, ocean monitoring, post-
earthquake analysis, urban land change etc. The images captured by satellite-based
sensors cover a large area that is used to observe the desired phenomena at a global
scale. There are external sources that act as noise while acquiring images by the
remote sensing platforms such as atmospheric interferences, geometric noise. How-
ever, state of the art hardware and software (atmospheric corrections, geometric
correction, georeferencing, sensor calibration etc.) resources are used in satellite-
based remote sensing to cope with the interferences which make this platform as the
most stable and reliable among all others. Drawbacks of satellite-based platforms
are their high cost and their strictly fixed revisit schedule, so data cannot be ac-
quired at desired days and timings as needed in some applications. The revisit time
of the platforms varies from twice in one day to 16 days, depending on the orbital
path of the satellite. The other limitation is with those satellite platforms which
are equipped with optical sensors are sensitive to weather conditions, especially
when the weather is cloudy. Many studies have addressed this issue and proposed
various cloud masking methods and achieved some excellent results but not suffice
the limitation [236].
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Table 2.2: Most common satellite missions for remote sensing and their technical
details

Name Launch Country Sensor GSD 1 Range
(m)

Swath
Width
(km)

Revisit Time
(day)

Aqua (MODIS) 2002 USA 36 HSI 1000 x 1000 2330 1–2
500 x 500

Ikonos-2 1999 USA PAN 0.8 x 0.8, 3.2 x
3.2

11.3 3

4MS 250 x 250

RapidEye 2008 Germany 5 MS 6.5 x 6.5 77 1–5.5

QuickBird-2 2001 USA PAN 0.7 x 0.7 16.8–18 1–3.5
4 MS 2.6 x 2.6

Pleiades 1 2011 France PAN 0.5 x 0.5 20 1
2012 4 MS 2 x 2

Sentinel-1 2014 EU C-band 5 x 5 80 12
2016 SAR 5 x 20 250 6 (dual)

25 x 40 400

WorldView-3 2014 USA PAN, 8 MS, 8 MS 0.3 x 0.3 13.1 1–4.5
(SWIR), 12 MS 1.2 x 1.2 , 3.7 x

3.7

Landsat-8 2013 USA PAN, 11 MS 15 x 15 , 30 x 30 185 16

Sentinel-2 2015 EU 13 MS 10 x 10 , 20 x 20 290 10
2016 60 x 60 5 (dual)

EnMap 2017 Germany 232 HIS 30 x 30 30 4

ICESat 2003 USA 2 HIS 70 (footprint) N/A 8

TanDEM-X 2007 Germany X-band 1 x 1 5 x 10 11
SAR 3 x 3 1500 x 30

16 x 16 1500 x 100

SkySat 2013 USA PAN Video 1.1 x 1.1 2 x 1 0.5 (2015)
2014 PAN 0.9 x 0.9 8 0.12 (2017)
2015 4 MS 2 x 2

ICESat-2 2018 USA 1 HIS 10 N/A N/A
(9-beam) (footprint)

Sentinel-3 2015 EU 21 MS 300 ×x300 1270 0.25
2017 11 MS 500 x 500 1420

(IR) 1000 x 1000 750 (nadir)

RADARSAT-2 2007 Canada C-band 3 x 3 20 24 (OR)
SAR 100 x 100 500

SPOT-6 2012 France PAN 1.5 x 1.5 60 1–5
SPOT-7 2014 4 MS 6 x 6

TerraSAR-X 2007 Germany X-band 1 x 1 5 x 10 11
SAR 16 x 16 1500 x 100
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List of satellites which are more common in the remote sensing research community
is presented in Table.2.2 with their specifications [187]. Among all these, some satel-
lite provides data freely, which is available online, while others offer a commercial
solution. The commercial satellites such as Pleiades-1 launched in 2011 equipped
with panchromatic (PAN) sensor (GSD 0.5x0.5m) and multi spectral (MS) sen-
sor (GSD 2x2m), and revisit time of one day that makes this platform promising
where finer details with the high temporal resolution is needed. QuickBird-2 is an-
other example of a commercial solution that comes with PAN and four MS imaging
sensors with a GSD of 0.7 × 0.7m and 2.6 × 2.6 m respectively with a temporal
frequency of 1–3.5 days. Indeed, these commercial solutions offer data products
with better spatial and temporal resolution but at the expense of high cost, which
may not be suitable to promote the research culture and its implementation for
remote sensing applications. In contrast to commercially available satellites, there
are some satellite missions come with open access data policy, which for example,
data products of Landsat-8 and Sentinel are freely available with moderate spatial
and temporal resolutions. Landsat-8 was launched in 2013 by the United States
Geological Survey (USGS) that provides PAN and 11-MS data with 16-day revisit
time.
Senitnel-2(A/B) mission was launched by European Space Agency in 2015 and 2017
respectively which comprises a constellation of two polar-orbiting satellites. Key
features of sentinel-2 satellite such as wide swath with (290km), High revisit time
(5 days), fine spatial resolution (10m) and spectral resolution (13 bands) make it
promising among other freely available satellite platforms. It is widely used in
various applications such as vegetation monitoring, forest management, maritime
monitoring.

2.1.2 Airborne
The airborne platform had been the main source of geospatial data in the past.

Since the launch of commercial satellites for land remote sensing systems with
30cm imagery became commercially available, the difference between spaceborne
and airborne imagery is becoming negligible. However, with the introduction of a
new state of the art sensing technology, LiDAR sensors can be effectively used with
the airborne platform at a lower speed to offer better point distribution. Airborne
platforms are flexible compared to satellite platforms as the flight schedule, types
of sensors, speed of the aircraft are in human control. Nevertheless, the coverage of
this platform can be at a regional level which is smaller than satellite-based ones,
but rather greater than the UAV platforms. Some examples of airborne platforms
used for remote sensing [187] are mentioned in Table.2.3.

14



2.1 – Remote Sensing Platforms for Precision Agriculture

2.1.3 Unmanned Aerial Vehicles (UAVs)
Unmanned Aerial Vehicles also frequently termed as drones, are controlled re-

motely by an operator, currently gaining immense attention among the remote
sensing research community due to recent technological advancements. Over the
past few years, research and development in UAV systems have broadened up the
application areas. UAVs in variant sizes with different weights are available, the re-
mote sensing community, however, is mostly dealing with the lightweight systems.
Among all the UAV applications, remote sensing shares a little percentage of the
market at the moment; however, it will increase with the reduction of cost of the
sensors and with relaxed aviation/airspace policies.

Table 2.3: Types of UAVs and their discription

Weight
(kg)

UAV Type Manufacturer /Model Flying
Time (min)

Flying
Speed
(m/s)

Sensors

0.7 Fixed-wing senseFly/eBee RTK 40 11–25 Camera
1.3 Quadro copter DJI/Phantom 2 25 15 Camera
2.5 Fixed-wing Trimble/UX5 50 22 Camera
2.7 Fixed-wing Topcon/SIRIUS PRO 50 18 Camera
6.1 Fixed-wing AeroVironment/Puma AE 210 23 Camera
6 Quadro copter Microdrones/MD4-1000 90 12 Camera/LiDAR
4.6–6.6 Hexacopter Aibotix/Aibot X6 30 14 Camera
5 Fixed-wing Trigger Composites/Pteryx 120 12.5–15 Camera
5.1–5.8 Fixed-wing Hawkeye UAV/AeroHawk 90 16.5–19.5 Camera
6.9–9.5 Hexacopter TRGS/Li-AIR 15 8 LiDAR
9.5 Octocopter Altus UAS/Delta X8 10–14 12 Camera/LiDAR
25 Octocopter Riegl/Ricopter 30 22 LiDAR/camera
38 Fixed-wing American Aerospace/RS-16 720–960 33 Camera

UAV platforms are a dynamic, customized and budget-effective alternative to
satellite and airborne platforms. Communication and navigation system are con-
sidered as main functioning blocks along with the sensors. There are mainly two
types of UAVs are used in remote sensing applications, a) Fixed-wing, b) Multi-
rotor. Aspects that need to be considered before selection of the UAV type for a
particular application are flying time, pay load carrying capability, the total weight
of the UAV including all mounted sensors, the maximum attainable altitude of the
UAV, flying speed and control.
Generally, fixed-winged solutions deliver better in terms of flight time and are
used primarily in agricultural monitoring. On the other hand, multirotor type
like quadcopters, hexacopters and octocopters, are more manoeuvrable and can be
used virtually anywhere and therefore are preferred for research purposes. Typ-
ically, GPS and IMUs are used for navigation and flight control and multi-rotor
solutions support a number of flying operations. In some cases, GPS accuracy is
compromised as the high-performance GPS device with lightweight are extremely
expensive with respect to the total cost of the UAV. There are three main as-
pects 1) on-board power available on UAV, 2) regulations to fly UAV in the
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area, 3) communication range between the UAV and operator, that determines
the flight height and distance of a UAV for remote sensing. In most of the coun-
tries, commonly used rules (without a license) allow up to 150 m of flying height
and line of site operations. With these limitations, flying campaign for the only
small area can be carried out, and thus communication system range becomes
less relevant. On the other hand, the most appropriate regulations require pi-
lot license and the local aviation authorities to apply and approve the advance
flight plan. In this case, there are no such hard limitations on flying height
and range. Specific country wise regulatory information can be found at http:
//www2.isprs.org/com-missions/comm1/icwg15b/resources.html. At the mo-
ment, there are many UAV based solutions available in the market that are appli-
cable in the agricultural remote sensing. Few examples are listed in Table.2.3 with
attributes associated with the UAV based remote sensing.

2.1.4 Proximal Remote Sensing
There are limitations of satellite-based remote sensing for precision agriculture

summarized in [147]. Images in the visible and near-infrared bands, acquired by
the satellite platforms are often get affected by the clouds. However, SAR based
imagery acquired by satellite or airborne is not affected by the cloud cover. There
are also other challenges such as calibration of the raw data to true surface re-
flectance, correction of atmospheric interferences, and georeferencing the imagery.
Given the above limitations, proximal remote sensing technique was introduced for
crop growth monitoring since the past few decades that involves agricultural vehi-
cles mounted with the sensors and handheld sensors. It can be used for real-time
site specific management. Scheprs and francis [221] performed an analysis to mea-
sure chlorophyll contents in maize crop during the silking stage under the variable
Nitrogen fertilizer rate using soil plant analysis development (SPAD) meter. Usage
of SPAD meter and its role in precision agriculture are discussed in [177, 144, 219].
Other types of sensors, such as RGB optical sensors, multi-spectral sensors and
thermal sensors, mounted on the ground vehicle or platform, have also been used
in numerous studies. The main purpose of proximal remote sensing is a real-time
assessment of crops to aid in decision-making practices.

2.2 Spectral Vegetation Indices
Remote sensing of vegetation is frequently performed by capturing the electro-

magnetic wave reflectance information from plant’s canopies using passive sensors.
It is a well-established phenomenon that the reflectance of light spectra from plants
changes with plant type, water content within tissues, and other inherent factors.
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2.2 – Spectral Vegetation Indices

The reflectance from vegetation or emission characteristics of vegetation is deter-
mined by chemical and morphological properties of the canopies or leaves [250].
The primary uses for remote sensing of vegetation are based on the following light
spectra: (i) the ultraviolet region (UV), ranges from 10 to 380 nm; (ii) the visible
spectra, which are comprised of the blue (450–495 nm), green (495570 nm), and
red (620–750 nm) wavelength ranges; and (iii) the near and mid infrared bands
(850–1700 nm) [43]. Advancements in high resolution spectral instrumentation
have brought an expansion in the number of bands captured by the remote sensing
platforms, which are employed to determine various indices to characterise vegeta-
tion status. One of the most used indexes derived from multi-spectral information
is is the Normalized Difference Vegetation Index (NDVI)which is formed by the
normalized ratio between the red and near infrared bands [102]. Direct use of
NDVI is to describe canopy growth or vigour; hence, numerous works have made
a comparison of it with the Leaf Area Index (LAI) [206], where LAI can be ex-
pressed as the measured area of one-sided leaves per area of soil [61]. Vegetation
information from remote sensing images is described by differences and changes of
the green leaves from plants and canopy spectral characteristics. The most popular
validation process is through direct or indirect correlations between VIs obtained
and the vegetation characteristics of interest by infield measurements, such as veg-
etation cover, canopy size, LAI, biomass, growth, and vigour assessment. Besides,
more established approaches are used to assess VIs using direct and georeferenced
methods by monitoring plants to be matched with VIs obtained from the same
plants for calibration purposes. Jordan [99] introduced in 1969 one of the first VIs
named Ratio Vegetation Index (RVI), which is based on the principle that plant’s
canopies or leaves absorb relatively more red than infrared wavelength; RVI can be
represented mathematically as

RV I = R

NIR
(2.1)

Where NIR is the near infrared band and R is the red band. Because of the spectral
characteristics of vegetation, bushy plants have low reflectances for the red band and
shows a high correlation with LAI, and chlorophyll content of leaves [170]. The RVI
has been used extensively for vegetation monitoring and green biomass estimations,
particularly, at high-density vegetation coverage, since this index is susceptible to
vegetation and shows good correlation with plant biomass. Richardson et al. [179]
proposed the Difference Vegetation Index (DVI) that can be expressed as

DV I = NIR − R (2.2)

The DVI can be applied to monitoring the vegetation ecological environment due
to its sensitivity for change in the background soil. As previously mentioned, the
Normalized Difference Vegetation Index (NDVI) is the most extensively used for

17



Background on Remote Sensing

agricultural monitoring applications; proposed by Rouse Jr. et al. [186], that can
be expressed as

NDV I = (NIR − R)
(NIR + R) (2.3)

NDVI values ranges between 0 and 1, because the index is calculated by a normal-
ization procedure, it is sensitive to green vegetation even for low vegetation covered
areas. NDVI is frequently used in research related to regional and global vegetation
monitoring and has found to be associated with not only to the plant’s biophysical
parameters such as canopy structure and LAI but also to canopy photosynthesis
[60, 69]. Nevertheless, it is sensitive to the reflectances from background soil, soil
colour, atmosphere, cloud and cloud shadow, and leaf canopy shadow, which further
requires remote sensing calibration. To overcome some deficiencies of NDVI and
RVI in describing the spectral behaviour of vegetation and soil background, Huete
[88] proposed the Soil-Adjusted Vegetation Index (SAVI), which can be expressed
as follows:

SAV I = (NIR − R)(1 + L)
(NIR + R + L) (2.4)

The model as mentioned above of a soil vegetation index was proposed to improve
the sensitivity of NDVI to soil backgrounds, where L is the soil conditioning index,
which improves the sensitivity of NDVI to soil background. With the rising interest
in remote sensing applications in agriculture, many vegetation indices have been
introduced which can be found in [241].
Since the past few decades, several techniques have been developed in the field of
remote sensing image analysis. Besides well known statistical approaches, many
recent methods, based on techniques taken from the field of machine learning, are
successfully developed and deployed. Remote sensing based vegetation indices are
used as features in many most of the classification and regression tasks. A significant
aim of machine learning algorithms in remote sensing is supervised classification,
which is perhaps the most extensively used technique for classification of remotely
sensed imagery. In the following chapter, a brief introduction to machine learning
and the different paradigms in remote sensing is given.
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Chapter 3

Machine Learning for Remote
Sensing Data Analysis

With the recent development of several Earth observation platforms with in-
creased spatial and spectral resolution along with higher revisit times, remote sens-
ing gives more accurate information on land cover and the environmental status
than ever before. Furthermore, different Earth-observation systems, equipped multi
spectral and SAR systems, operate in different wavelengths, ranging from visible
to microwave. The data acquired from the platforms as mentioned earlier, con-
sequently provide different but complementary information. The classification of
such huge data might be considered complex; however, on the other, concerning
recent and upcoming satellite missions, remote sensing applications become even
more attractive.
In some cases, comprehensive knowledge of the system is required to model the
systems, which are often known as physics-based modelling methods. These mod-
elling methods do not use data directly; however, data can be used to calibrate the
parameters of the model. These methods are instrumental in modelling large areas
provided that the model is accurately calibrated and parameterized [84].
For over a decade, biophysical and geophysical models using remote sensing data
were developed and employed in many applications. For instance, the addition
of remote sensing data sets, acquired from NOAA and NASA satellite platforms,
into PHYSGROW plant growth model presented an opportunity to generate forage
production maps even for large areas. Input parameters of PHYSGROW such as
daily temperature, precipitation rate, vegetation indices in particular normalized
vegetation index (NDVI) derived from remotely sensed data were girded to analyze
the spatial autocorrelation [6]. Furthermore, maps produced from remote sensing
data and physics-based models are used in drought detection and can be augmented
with the geographic information system (GIS), which further could be linked with
the agro-economic models, natural resources monitoring and management. In [68],
the land surface temperature derived from satellite observations is used along with
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the surface energy balance model to evaluate groundwater consumption by vegeta-
tive land cover.
Over the years, remote sensing data analysis has been in practice to measure
changes in natural and manage landcover such as water bodies, crops and forests.
Special attention has been paid to fully exploit the potential of remote sensing data
in order to use in the production of environmental and agricultural statistics. Sta-
tistical machine learning methods in remote sensing data analysis can be defined
as a tool in such scenarios where a statistical relationship between spectral infor-
mation coming from remote sensing platforms and ground/field measurements is
established.
Many application areas have been addressed with the use of remote sensing images
during the past few decades. Apart from well-known statistical approaches, numer-
ous recent methods are established based on machine learning techniques. Signifi-
cant use of machine learning algorithms in remote sensing is supervised classifica-
tion, which is conceivably the most extensively used image classification method. A
brief description of machine learning and the different paradigms in remote sensing
is given in the following sections.

3.1 Machine Learning
Machine Learning is a sub-field of artificial intelligence and usually refers to

the evolution of methods that optimize their performance in an iterative way by
learning from the data. These methods can be predictive (e.g., a regression model)
and describe a particular phenomenon (e.g., a classification model) and identify,
for example, between different classes of patterns. In remote sensing domain, ma-
chine learning methods often focus on land cover classifications and consequently
contribute to valuable input information for various environmental monitoring sys-
tems, for example, in the flood forecast system and urban degradation. As an
example, to differentiate various land cover classes, the machine learning algorithm
learns to distinguish different types of the class pattern (i.e. land cover classes).
Let us consider the detection of a particular land cover type, e.g., artificials such as
buildings, to be a generic machine learning problem. The corresponding machine
learning formulation will be:

f : x → y = f(x) (3.1)

where x is a feature vector derived from the image and y represents a scalar which
shows the occurrence (y = 1) or non occurrence (y = 0) of a building x in that
image. Note that the values chosen for y are arbitrary. Generally, machine learning
aims at predicting the function f from some prior data. To this end, numerous
methods have been introduced to achieve this goal. These methods can be further
categorized in several ways, e.g., mainly depending on the type of the training data,
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the form of function f(x) and inherent assumptions on the underlying density
function (Figure 3.1). There are two main categories, such as unsupervised and
supervised, based on whether these approaches incorporate a priori knowledge while
the decision making process by using labelled training data or not. In contrast, the
semi-supervised methods belong to a particular type that relies on information
coming from both labelled and unlabelled data or samples.

Training data
availablility?

Supervised
classification 

Unsupervised 
classification 

Semi-supervised
classification 

Mixture
methods

Non-
parametric

Yes No

Parametric

Clustering

Bayes 
classifier 

Density
estimation

Discriminative
classification 

-Neural network 
-Support vector machines
-Random forest
-Decision trees
 ....

-K-nearest neighbor
-Histogram
methods
 ....

-Maximum likelihood
classifier 
-Minimum Risk
....

Figure 3.1: General overview of classifier categories [23].

• Supervised algorithms: These algorithms can be used in a situation when
a set of labelled data or samples (xi, yi) where i = 1 to l , and training data
is available. The goal is to predict the value y corresponding to a new sample
x, i.e. determining the class membership of x.

• Unsupervised algorithms: These correspond to the situation where only
the data, i.e., (xj) j= 1 to l, is known and the main goal is to describe how
the data is spread in the form of several clusters.

• Semi-supervised algorithms: In this case, the two previous approaches
are combined. The learning is based on both the available set of labelled
samples (xi, yi) and also on some additional data (xj) where j=l+1 to l+u
for which no prior knowledge yj is available.
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3.2 Neural Networks
A neural network (NN) sometimes referred as an artificial neural network (ANN)

can be defined as “a computing system made up of a number of simple, highly inter-
connected processing elements, which process information by their dynamic state
response to external inputs” [24]. NNs are generally arranged in layers. Layers are
created from several interconnected ’nodes’ which include an ’activation function’.
Input sequences are fed to the network through the ’input layer’, which communi-
cates to single or multiple ’hidden layers’ where the actual processing is performed
via a scheme of weighted ’connections’. The hidden layers are then connected to an
’output layer’ where the network’s output can be taken as shown in the Figure. 3.2.
Even though the NN has good universality, a single network framework does not

Hidden layerInput layer Output layer

1
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2

3

4

Output

Figure 3.2: Basic units on neural networks.

have the potential to address all problems. Many different types of NN frameworks
have been developed to address various types of research problems, whereby prov-
ing the significance of network frameworks. The back-propagation NN (BPNN)
and generalized regression NN (GRNN) are two common examples of the classical
neural network framework. Generally, the four established NN architectures are
the autoencoder (AE), convolutional neural network (CNN), deep belief network
(DBN), and recurrent NN (RNN).
One of the basic NNs architecture is back-propagation NN. In BPNN (Figure. 3.3),
at the minimum one hidden layer is present which connects one input and one
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3.2 – Neural Networks

output layer. Layers are formed with several neurons (also known as nodes). The
BPNN mainly involves forward and backward propagation: the nodes in the input
layer are carried through each hidden layer consecutively to reach the final output
layer. Incase the required results are not achieved in the output layer; then the
errors are back-propagated to update the weights of the nodes of each hidden layer
iteratively to minimize the error.

The NNs applications in remotely sensed images differ from those in natural

Hidden layerVisible layer Output layer Output

W1 W2

Input layer

I
N
P
U
T
S

Figure 3.3: Back propagation neural network (BPNN) structure.

images, the remotely sensed images usually have more complicated and diverse
patterns, as well as richer spatio–temporal and spectral information that can be
used, thus higher requirements are required on the processing methods of remotely
sensed images. Thanks to the introduction of deep learning (DL) with strong abil-
ity of in feature representation, DL has been introduced into environmental remote
sensing and applied in many aspects, including land cover mapping, environmental
parameter retrieval, data fusion and downscaling, and information construction and
prediction. The following sections will further discuss CNN and RNN architectures.

• Convolutional Neural Networks (CNNs): Convolutional Neural Net-
works (CNNs), dating back decades, is one of the classical forms of modern
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DL [115]. CNNs were inspired from classical concepts of computer vision the-
ory [212], [46] and a study of the brain’s visual cortex [87]. CNN involves a
series of basic units stacked between the input and output layers Figure. 3.4.
Each basic unit may incorporate the subsequent operational layers: convolu-
tional, pooling, and activation layers. Firstly, in the convolution layer, input
data is fed through numerous local filters which perform convolution opera-
tion [246]. The output data with the same dimension as the input data are
usually obtained. The pooling layer extracts the low-dimensional data from
the input data during multiple operations, such as max-pooling and average-
pooling operations. The nonlinear operations are adapted in the activation
layer to improve the nonlinear fitting ability of CNN. The dimension of the
output and label data should be as close as possible to each other throughout
the set of shrink operations.
Although these have been applied practically and successfully in image classi-

I
N
P
U
T

C
on
v

Po
llin

g

N
on
-li
ne
ar

C
on
v

Po
llin

g

N
on
-li
ne
ar

N
on
-li
ne
ar

C
on
v

O
U
T
P
U
T

......

Figure 3.4: convolutional neural network (CNN) structure.

fication [115] ever since the 1990s, CNNs were not scaled to large applications
because of technical constraints such as large volumes of data, theoretical lim-
itations, and lack of hardware performance. Despite that, at the ImageNet
ILSVRC competition [110] Geoffrey Hinton and his team showed the possi-
bility to train large architectures which can learn several layers of features,
each with increasingly more abstract internal representations. This was a
breakthrough moment in DL history and following this, CNNs became the
fundamental iconic symbol for the Deep Learning revolution [116].
Nowadays, CNNs have been successfully used in wide range of fields, such as
object detection [50, 64, 123], semantic segmentation [185, 27], signals pro-
cessing [171], face recognition [158] and feature extraction [234, 184]. So, over
the last decade, with the significant advancements of modern powerful gen-
eral purpose units (GP-GPUs), slightly improvements in the techniques (like
ReLu as activation functions) and the easy access to large quantity of data
[48, 124] encouraged researchers of all around the world in investigating and
discover increasingly more efficient and powerful architecture [81, 211].
In recent years, DL was widely used in data mining and remote sensing ap-
plications. In particular, image classification studies exploited several DL ar-
chitectures due to their flexibility in feature representation, and automation
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capability for end-to-end learning. In DL models, features can be automati-
cally extracted for classification tasks without feature crafting algorithms by
integrating autoencoders [228, 148]. 2D CNNs have been broadly used in
remote sensing studies to extract spatial features from high resolution images
for object detection and image segmentation [101, 135, 10]. In crop classifica-
tion, 2D convolution in spatial domain performed better than 1D convolution
in spectral domain [111]. These studies formed multiple convolutional layers
to extract spatial and spectral features from remotely sensed imagery.

• Recurrent Neural Networks (RNNs): A prerequisite of the model def-
inition for an ordinary NN is the independence of the input/input, out-
put/output, and input/output samples from each other. This condition makes
it impossible to learn the relationship between samples. However, many sam-
ples are correlated in real datasets, such as sequential data, and the traditional
network model cannot effectively cope with this correlation. RNN, LSTM and
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Figure 3.5: Recurrent neural network (RNN) structure.

GRU are models that can deal with sequences, utilize the correlation between
sequence data, and even generate sequences. As dipicted in Figure. 3.5, RNN
has three main parts with several hidden layers. Each unit of the input se-
quence is successively inputted into RNN to obtain the corresponding output
sequence unit of this phase and the in- formation to transmit to the next
phase. Such a task is performed to utilize the correlation within sequences.
As an improved version of RNN, LSTM contains forget, input, and output
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gates, which are used to control the filtering of the previous status. This
structure aims to obtain previous statuses that are influential to the present
in- stead of the most recent ones.
For many domains, ranging from natural language processing, handwriting
recognition, robot automation, and image captioning, sequence data analysis
plays an important role. In recent years, Recurrent Neural Networks has been
the primary tool for sequence learning [209]. RNNs allow to compile and rep-
resent information from context windows of hundreds of elements. Moreover,
over the course of recent years, the research community has come up to dif-
ferent techniques over many time steps to overcome training difficulty. This
can be seen by contrasting RNN with, for example, an architecture based on
Long Short-Term Memory (LSTM) [63] and Gated Recurrent Unit (GRU)
[33] the latter having achieved ground-breaking achievements [32, 11]. RNNs
are usually used when Sequential data analysis is needed. An example of
such a case is in Lyu et al [134] where RNN was exploited to make use of
spectral correlation, intra bands variability of multispectral data, and other
such sequential properties. In addition, LSTM model was also employed to
extract combined spectral-temporal feature representation from a pair of im-
ages ,acquired at different times and dates – to detect changes in remotely
sensed images [133].

3.3 Machine Learning paradigms for Remote Sens-
ing

Machine learning in remote sensing involves several paradigms such as classifica-
tion, regression, clustering, feature extraction, and dimensionality reduction shown
in Figure. 3.6. These aspects are often interdependent, e.g., before performing a
classification one might extract some additional texture features and also reduce
the dimensionality of the data set with feature selection techniques. Perhaps the
most commonly undertaken applications in remote sensing are feature reduction,
clustering and classification.

3.3.1 Classification
Classification is a process in which things or objects are recognized, differen-

tiated and divided into discrete set of groups are known as classes. Assignment
of classes is based on set of input variables also referred as attributes, factors, ex-
planatory variables. The relationship between the data and the classes into which
they are classified need to be well understood in order to split a set of data into
different groups or categories. In order to achieve this, computers are trained with
the known data set. Training is considered to be the most critical phase during
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Figure 3.6: Most common machine learning methods for remote sensing data anal-
ysis.

the classification process. Automated classification of remotely sensed images is
carried out by computer programs by learning the relationship between the data
and information associated with the classes of interest. Numerous learning tech-
niques have been used in the literature to improve the performance of programs
used for classification. Performance of the computer programs known as classifier
is generally assessed by the accuracy they achieve. Classification methods used in
remote sensing data analysis can be categorized as follows.
The major part of machine learning algorithms for remote sensing image analysis
is aiming perhaps for a supervised classification of the data. The machine learning
problem is to learn the function f , from a set of labelled examples, i.e. our training
samples whose class membership is known:

f : Rn → N, x → ĉ (3.2)

which assigns each sample to a particular class ĉ. In general such learning problems
are ill-posed and it is necessary to restrict the space of possible functions f . In
the following paragraphs, widely used supervised classification algorithms and their
applications in RS domain are discussed.

• Neural Networks (NNs): To able to deal with large data sets, recent
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developments in machine learning and particularly on deep learning appli-
cations have emerged in resulting huge improvements on taking account of
remote sensing based large-scale data. To this end, CNNs are devised to
process data that come in the form of multiple sequences, for instance, im-
ages acquired from multi-spectral sensors comprised of multiple 2D arrays
comprising pixel intensities in the multi spectral channels. To start with the
remarkable success achieved by AlexNet [5], numerous representation of CNN
models such as VGGNet [229], GoogLeNet [12], SPPNet [125], and ResNet
[230] have been introduced in the literature.
Besides, most of the CNN models used feed-forward approach in remote sens-
ing and computer vision applications as demonstrated by Ishii et al. and
alike tasks for satellite image classification approaches by using state-of-the-
art approaches [90, 162, 85, 62]. Nevertheless, numerous studies [151, 146]
showed a significant impact of low-quality or noisy data on the accuracy of
CNN models. Consequently, inspired by biological perception systems, some
recent studies introduced the use of recurrent and feedback features in CNNs,
that bring significant improvement to the existing feed-forward CNNs [126,
154, 248]. The combination of recurrence and/or feedback to CNNs often
tested with deep networks on natural scenes with comparatively good resolu-
tion color images.
Most of the applications of CNNs in remote sensing domain is Multi / hyper-
spectral image classification, in which CNNs were applied to obtain spatial-
spectral features, for either 1D convolution for the spectral domain [86], 2D
across the spatial dimensions [247, 253], or 3D across the spectral and the
spatial dimensions simultaneously [119]. Kussul et al. [111] discovered that
results in terms of classification accuracy could be improved with 2D con-
volution in the spatial domain in contrast to 1D convolution in the spectral
domain. Further, 1D convolution was applied by Guidici and Clark [71] to
multi temporal hyperspectral images in the spectral domain for land cover
classification. In these studies, convolutional layers in CNNs used as feature
extractors in the spatial or the spectral dimension, though rarely for the tem-
poral domain of remotely sensed image time series.
Recurrent neural networks (RNNs) are an advanced category of ANNs in
which the extended form of the conventional networks with loops in connec-
tions are adopted [41, 249]. RNNs are devised explicitly for sequential data
interpretation or analysis and have recently proved to be a successful form of
NNs in numerous remote sensing applications. Lyu et al. [133] used a RNN
to take full advantage of the sequential features of multispectral data, like
spectral correlations and band-to-band variability across the spectral dimen-
sion. In [149], authors used an encoder to generate multi-level convolutional
feature maps from shallow to deep; conversely, an RNN based decoder was
used to recursively obtain multi-scale features and accumulated those features
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sequentially to generate a high-resolution semantic segmentation image. The
key feature of RNNs is the capability of representing data in continuous di-
mensions with sequential dependency, and the frequent use of RNNs is in the
remote sensing to extract features from multi-temporal observations.

• Support Vector Machines (SVMs): Support vector machines is a super-
vised machine learning method and can be defined by a separating hyperplane
in an N-dimensional space which specifically classifies the data points. Hyper-
planes are referred as decision boundaries that is useful in classifying the data
points. Data points that fall on either side of the plane is recognized to vari-
ous classes. It is suitable for both regression and classification. Nonetheless,
it is widely used in classification tasks, such as Szuster et. al [213] performed
land use and land cover classification in tropical coastal zones. A hierarchi-
cal approach of SVMs has been compared with other classifiers to map nine
summer crops from ASTER satellite imagery and claimed overall accuracy of
88% [161]. Kernel selection for SVMs has been an important issue which is
addressed in detail in [235, 80].

• K nearest neighbor (K-nn): K-nn is well known non-parametric machine
learning technique used in classification and regression tasks. In the simplest
form of k-nn, image classification is performed by taking into account of
the majority vote of its neighbor pixels. The neighbors are usually assigned
weights so that the nearest neighbor contribute more with respect to the one
that are more distant. For instance, common scheme in which a weight 1/d
is assigned to each neighbor, where d is the distance to the neighbor. The
neighbors are chosen in such as way from the objects for which the class or
value is known. Although this method is easy to implement and fast, but
these are not always considered to be the best for remote sensing data. In
[140], k-nn method was adopted for forest inventory mapping and estimation
based on Landsat satellite imagery. Synergy of k-nn and SVM methods have
been exploited to perform classification on satellite images, it was found that
the accuracy and predictive ability is considerably improved [222].

• Random Forest (RF): It is an ensemble machine learning method that is
widely used for classification and regression. Random forest method is a type
of classification tree methods under the well-known decision trees which are
discussed earlier in this section. It consists of set of trees constructed from
random sample of the training data. Keichi et. al [217] adopted RF method
for crop classification of upland fields using time series data acquired from
Landsat 7 ETM data. They claimed 81% overall classification accuracy with
the Kappa 0.70. It is indeed an important step for any classifier to select
the input features to be used to perform classification task, in this regard,
Pengyu et. al [76] proposed a method of feature selection of MODIS temporal
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data using random forest for early crop classification in Kanas, USA. In some
studies [189, 174], comparison has been made between the RF classifier and
other traditional classifier for classification of remotely sensed imagery. A
detailed discussion on the applications of RF in the field of remote sensing
can be found in [16].

3.3.2 Clustering
The concept of clustering involves the grouping of objects with similar char-

acteristics into set of clusters. Objects within the same cluster are similar to one
another, while different to the objects in other clusters. An example of cluster-
ing is the identification of the zones with similar land use in an earth observation
database. Wide range of approaches for clustering are being widely used in many
different fields. Major approaches include partitioning algorithms, density based,
grid based, model based and hierarchy algorithms. For example, pixels of an image
are allocated into groups based on the similarity measures extracted by the cluster-
ing algorithm. Performance of the clustering method is generally assessed by the
intra-class and inter-class similarity. High intra-class similarity will produce better
clustering results while inter-class similarity should be low to achieve good results.

• K-means: It is most commonly used method for clustering. It is based
on iterative process that break down the data set into K predefined non-
overlapping subgroups also known as sub clusters where each data point is
the member of single group. It keeps trying to make inter cluster data points
as homogeneous as it could be, at the same time it also tries to maintain
considerable distance among the clusters so that these can be distinguished
from each other. One of the examples of k-mean in the literature is to classify
high resolution satellite data into several classes, that is further used to map
the different land cover [220].

• Gaussian Mixture Models: A Gaussian mixture model belongs to a cate-
gory of probabilistic model that implies all the data points are generated from
a mixture with unknown parameters of a finite number of Gaussian distribu-
tions. For example, Gaussian mixture model was used to map urban areas
using very high resolution remotely sensed imagery [216].

3.3.3 Regression
In statistical modelling, regression approach is used when the relationship is

estimated between dependent variable (often called as outcome variable) and in-
dependent variable (often known as predictor). Similar to classification approach,
the regression model is trained by means of set of input attributes or variables for
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which the response in known. An example of regression from remote sensing do-
main is the estimation of crop yield based on variables (vegetation indices) derived
from remote sensed imagery. There are many regression methods ranging from
simple linear regression to currently famous methods inspired by neural networks
as mentioned in Figure. 3.6.

• Linear Regression: In this type of regression, linear approach is followed to
model the relationship between a dependent variable and explanatory (often
known as predictor) variable. The relationship is modelled based on lin-
ear predictor function whose model parameters are estimated from the data.
In case of dealing with only one explanatory variable, the process is called
simple linear regression. Linear regression was the first form of regression
analysis to be extensively investigated, and commonly used in practical uses
[yan2009linear]. Anup et. al [167] produced a model to estimate crop yield by
employing linear regression on the remote sensing data. In another example,
linear regression was used to predict reflectance of synthetic spectral imagery
using archived satellite images [189].

• Boosted Regression Trees: Boosted Regression Tree (BRT) models in-
corporate two techniques: decision tree and methods for boosting. BRTs
repeatedly attempts to fit many decision trees to boost the accuracy of the
model. This modeling method has the ability to fit complex nonlinear rela-
tionships and it does not require the pre data transformation [52]. Zhang et.
al used BRTs model to assess the impacts of eleven metrological factors of
hand, foot and mouth disease in china [251].

• Neural Networks: Neural networks are commonly famous for classifica-
tion tasks, however, can be used in regression problems. Neural network is
composed of number of layers; an input layer which represents the input or
predictor variable, one or more number of hidden layers that are represented
by an activation function for each hidden node acted on the weighted input
coming from previous layer, and a single output layer in case of regression
and may have multiple output layers in case of classification. Few examples of
neural networks used for regression tasks includes Shao et. al [195] tested and
compared neural network with traditional methods ( SVM and classification
trees) to classify land cover with the limited training data, xiao et. al [237]
used a general regression neural network to estimate the leaf area index (LAI)
from multi temporal remote sensing data. In past few years, neural networks
were progressively being used for the estimation and prediction of LAI from
remote sensed data [120], [243]. Recently, Reddy et. al [173] used LSTM to
predict NDVI across different regions.
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3.3.4 Dimension Reduction
Usually data acquired from remote sensing sources involves wide range of vari-

ables, dimensionality reduction is used to create small set of new variables that
represents most of the information contained in the large (original) set of variables.
These new variables are also referred as features and can be used as input of any
other process for analysis. Dimensionality reduction is used prior to deploy machine
learning model on the original data. A machine learning model which is trained
on a large number of features or variables, becomes increasingly dependent on the
data and model gets over fitted, leading to poor performance of the model. One
of the major motivations to use dimensionality reduction is to avoid over-fitting
by reducing the size of input features. There are several dimensionality reduction
methods being used by the researchers. The most common and well-known meth-
ods are mentioned in Figure. 3.6.

In this chapter, several machine learning paradigms for remote sensing appli-
cations have been discussed. Introduction to NNs and their potential application
in the remote sensing domain have also been highlighted. In the next chapters,
these ML methods are used to address different research problems considered in
this dissertation.
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Chapter 4

Research contributions related to
Precision Viticulture using UAV
and Satellite Imagery

Since last few decades, precision agriculture has received significant attention in
the agricultural community [157, 37]. Precision viticulture (PV) can be defined as
sub-domain and emerging field, that address the problems during the grape produc-
tion cycle and propose appropriate techniques to improve quality and productivity
of vineyards while reducing cost and potential damage to the environment due to
fertilizers, pesticides, machinery, and fuel [8, 199]. Inter- and intra-vineyard spatial
variability is considered as a critical factor for vine-growers to describe and predict
the outcomes in terms of yield and quality [20, 205, 169]. Nowadays, the evolu-
tion of new technological instruments provides us with possibilities to consider and
adopt new methods to solve viticulture related problems [74, 114, 72, 168]. To this
end, remote sensing (RS) has already demonstrated its potential and effectiveness
in spatio-temporal vegetation monitoring by describing biophysical characteristics
of plants such as vigour that can be used to assess the quality and yield of crop
field [94, 136].
In this chapter, research contributions related to precision viticulture are presented
in the following sections which includes (i) variability assessment of vineyard using
UAVs and satellite imagery (4.1), (ii) automatic coverage path plan for agricultural
unmanned ground vehicles (UGV) by using the UAV imagery (4.2) and (iii) CNN
based approach to refine the moderate resolution satellite driven vegetation maps
by using high resolution UAV imagery (4.3).
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4.1 Variability Assessment of Vineyard using UAVs
and Satellite Imagery

In agriculture, remotely sensed data plays a crucial role in providing valuable
information regarding the status of crops, soil and other relevant objects involved
in effective crop management. In particular, various spectral indexes have been
proved to be useful tools in describing crops variability, both in term of spatial
and temporal dimensions. In this work, detailed analysis and comparison of mul-
tispectral imagery of vineyards, acquired from decametric-resolution satellite and
low altitude Unmanned Aerial Vehicle (UAV) platforms, is presented. The effec-
tiveness of Sentinel-2 imagery and high-resolution UAV aerial images was evaluated
considering the well-known relation between Normalized Difference Vegetation In-
dex (NDVI) and vineyard vigour. To be compared with satellite imagery (10 m of
resolution), high-resolution data from UAV were pre-processed. In addition, three
different NDVI indexes were defined considering the (i) whole cropland surface,
the (ii) sole vines canopy and (iii) sole inter-row terrain, respectively, to properly
analyses the unbundled spectral contribution of the different elements in the vine-
yard environment. Results show that raw satellite imagery, with moderate spatial
resolution, cannot be directly used to describe the variability of vines rows in vine-
yards reliably. Indeed, the contribution of inter-row surfaces to the remotely sensed
dataset may mainly/deeply affect the NDVI computation, leading to biased crop
descriptors. On the contrary, vigour maps computed from UAV imagery, consid-
ering only pixels representing the crop canopies, results to be more related to the
in-field assessment concerning the considered satellite ones. The proposed approach
can be extended to other crops typologies which are grown by rows or without in-
tensive layout, where the crop canopies do not extend on the whole surface or where
the presence of weeds is relevant.
Part of the work described in this section. 4.1 has been previously published in
"Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard Vari-
ability Assessment" [107].

4.1.1 Background and Related Work
Over the last couple of decades, PA has earned significant attention in the

agricultural community [157, 37]. In viticulture, addressing difficulties during the
production cycles by defining appropriate crop management, the PA approach has
the final aim to improve vineyard yield and grape quality while reducing waste,
costs and environmental impact [8, 199].A proper knowledge of the spatial variabil-
ity between and within crop parcels is considered as a key factor for vine growers to
estimate the outcomes in terms of yield and quality [20, 205, 169]. In this context,
remote sensing (RS) has already proved its potential and effectiveness in spatiotem-
poral vegetation monitoring [74, 114, 72, 168]. Indeed, data provided by optical
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sensors of multispectral and hyperspectral imagery systems are profitably exploited
to compute a wide set of indices (such as the wide dynamic range vegetation index,
the normalised difference red-edge index Index, etc.) by properly describing several
crop biophysical characteristics [94, 136].
Furthermore, multispectral and hyperspectral imagery has been the source the red
and near infrared bands used for vegatation monitoring and these bands are cap-
tured by the optical sensors [13, 252]. The combination of red and near infrared
already showed the potential to approximate plant vegetation vigour, that describes
biophysical parameters [145, 72].Among the wide set of defined spectral indices, the
normalized difference vegetation index (NDVI) is one of the most extensively used,
since it is strictly related to crop vigour and, thus, to the estimated quality and
quantity of field production [55, 49, 208, 96, 98].
Satellite multispectral imagery, due to sensors features and platforms altitude,
covers extensive areas. In addition, many satellite programmes (such as Land-
sat, MODIS, ASTER, SPOT, Sentinel-1 and Sentinel-2) are nowadays providing
free datasets, thus promoting satellite imagery exploitation for many agricultural
applications [164, 82, 183, 244, 200], even with the multi-sensor data fusion ap-
proach [190]. Examples of valuable research contributions are the low-resolution
Modis and high-resolution IKONOS satellite imagery exploitation for mapping
vineyard leaf area [208, 97].
However, dealing at vineyard level is quite challenging for the RS applications
because of physically discontinuous nature of vine canopies, medium size cover
with respect to interrow soil, interrow reflected signal and shadow [49]. These fac-
tors must be considered and processed to separate vegetation from interrow soil.
Therefore, processing steps are needed such as masking (to separate vine row and
interrow), shadow minimization in order to calculate the reliable spectral index for
vegetated area. After these processing steps, one can exploit spatial variability of
index/vigour and interpret to generate prescription maps. The ultimate goal is to
use these maps in precision viticulture practices for maximizing grape quality and
yield while minimizing the environmental impact and net production cost [8, 199].
At the moment, UAVs and Airborne are considered to be the most effective re-
mote sensing platforms for agricultural monitoring due to providing high spatial
resolution imagery and flexible flight scheduling, that leads to having accurate and
timely monitoring and decision making of crops. In the PV domain, with high
resolution imagery, it is possible to differentiate between vegetated/canopies and
non-vegetated/interrow pixels, that certainly improves the separation and interpre-
tation of canopies and interrow soil. However, during the UAVs image acquisition
campaign of a vineyard, due to the limitation on field of view of the optical sensors,
many images are required to cover the whole area to generate an ortho-mosaicked
image.
However, when considering crops with discontinuous layouts, such as vineyards and
orchards, remote sensing becomes more challenging [18]. Indeed, the presence of
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inter-row paths and weed vegetation within the cropland may deeply affect the
overall spectral indices computation, leading to a biased crop status assessment.
Indeed, novel approaches and algorithms using Unmanned Aerial Vehicle (UAV)
or satellite based multispectral imaging have been developed for vegetation pixels
classification [193, 160, 163]. Low altitude platforms, such as UAV and airborne
sensors, by providing imagery with a high spatial resolution (even a few centime-
tres) and a flexible flight scheduling [91], allow differentiating between pure canopy
pixel and other objects in the scene [128, 39, 130, 93, 73] or even to classify different
details within canopies [178, 4, 51].
In this work, a detailed analysis and comparison of vineyards MSI, provided by a
decametric resolution satellite and low altitude UAV platforms, is presented. The
effectiveness of the MSI from Sentinel-2 and from the UAV airborne sensors, with
very high resolution, was evaluated by considering the well-known relation between
the NDVI and crop vigour. In particular, this work is structured as follows: Sec-
tion.4.1.2 to Section.4.1.6 reports information on the considered study area, on
data acquisition from the satellite and the UAV platforms, and on the performed
data processing to allow a comparison of the NDVI computed from different im-
agery sources. The results obtained by the data processing and comparison are
discussed in Section.4.1.7 and Section.4.1.8. Section.4.1.9 reports the conclusions
and future developments.

4.1.2 Materials and Methods
A vineyard located in Serralunga d’Alba (Piedmont, northwest of Italy), cov-

ering a surface of about 2.5 ha, was selected as a field test. The cropland, whose lati-
tude and longitude positions range between [44.62334◦44.62539◦] and [7.99855◦8.00250◦]
(World Geodetic System 1984-WGS84), includes three vineyard parcels (named
“Parcel A”, “Parcel B” and “Parcel C”) cultivated with the Nebbiolo grapevine,
with an area of around 0.36, 0.69 and 0.19 ha, respectively shown in Figure.4.1.
The vineyard is on a sloped land conformation, with an elevation ranging from
330 to 420 m above sea level and a predominantly southwest orientation. Due to
the irregularity of the terrain morphology in terms of altitude and soil properties,
the selected vineyard is characterised by a great variation in vine vigour within
and between parcels. To extend the study to several vine phenological phases,
the acquisition campaigns were performed from April to September 2017.

4.1.3 Satellite Time Series Images
The Sentinel-2 satellite is equipped with a multi-spectral imaging sensor that

measures Earth’s Top of Atmosphere (TOA) reflected radiance in 13 spectral bands
ranging from 443 nm to 2190 nm. The technical details of Sentinel-2 along with its
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highlighted by a yellow square. The map is represented in false colours (NIR, Red and Green 
channels). 
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A vineyard located in Serralunga d’Alba (Piedmont, northwest of Italy), covering a surface of 
about 2.5 ha, was selected as a field test. The cropland, whose latitude and longitude positions range 
between 44.62334° 44.62539°  and 7.99855° 8.00250°  (World Geodetic System 1984-WGS84), 
includes three vineyard parcels (named “Parcel A”, “Parcel B” and “Parcel C”) cultivated with the cv 
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The vineyard is on a sloped land conformation, with an elevation ranging from 330 to 420 m 
above sea level and a predominantly southwest orientation. Due to the irregularity of the terrain 
morphology in terms of altitude and soil properties, the selected vineyard is characterised by a great 
variation in vine vigour within and between parcels. To extend the study to several vine phenological 
phases, the acquisition campaigns were performed from April to September 2017. Indeed, vigour 
varies during the phenological cycle from its minimum, after bud break (April), to its peak in the 

Figure 4.1: Selected test field located in Serralunga d’Alba (Piedmont, northwest of
Italy). The boundaries of the three considered parcels, named “Parcel-A”, ”Parcel-
B” and “Parcel-C”, are marked with solid green polygons. The cropland region,
represented by pixel s8,20 of the Sentinel-2 tile, is highlighted by a yellow square.
The map is represented in false colours (NIR, Red and Green channels).
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spatial resolution and spectral ranges are summarised in Table.4.1. The Sentinel-2
imagery database, processed at different levels, can be downloaded from https://
scihub.copernicus.eu/dhus/#/home. In this study, cloud-free level-2A Sentinel-2
Bottom of Atmosphere (BOA) reflectance images were used. The Level-2A imagery
was derived from Level 1 by applying scene classification, atmospheric and BDRF
correction algorithms, using SNAP toolbox (6.0) and sen2core processor (2.5.5) pro-
vided by the ESA [181, 103]. Additional details about the Sentinel-2 MSI products
can be found in [194].

Table 4.1: Information on satellite and UAV based acquired datasets.

Dataset
Name Acquisition Date Data Source Time Difference

(days)

D1 5 May 2017 UAV +5
S1 30 April 2017 Satellite −5
D2 29 June 2017 UAV −7
S2 6 July 2017 Satellite +7
D3 1 August 2017 UAV −4
S3 5 August 2017 Satellite +4
D4 13 September 2017 UAV −4
S4 17 September 2017 Satellite +4

The selected satellite tiles were acquired on four dates during the 2017 growing
season (see Table.4.2) to consider different vegetative vine status. Only red and
near infrared bands (bands 4 and 8, respectively) were used in this study. The
pixels completely included within the boundaries of the three considered “Parcel
A”, “Parcel B” and “Parcel C” were selected, as shown in Figure.4.1. All relevant
information regarding the satellite imagery processed in this study is organised and
summarised in Table.4.1 and Table.4.2.

4.1.4 UAV-Based Imagery
The UAV-based MSI were generated with the Agisoft PhotoScan® software

(Agisoft©, 2018) https://www.agisoft.com/ processing imagery blocks of more
than 1000 aerial images acquired with an airborne Parrot Sequoia® multispectral
camera (Parrot© SA, 2017 [2]). The UAV path was planned to maintain the flight
height close to 35 m with respect to the terrain by properly defining waypoint sets
for each mission block on the drone guidance platform on the base of the GIS crop-
land map. With this specification, the aerial images GSD resulted to be 5 cm can
be seen in Figure.4.2.
A camera geometric calibration procedure was performed before the image align-
ment task; moreover, a radiometric calibration was applied to the image blocks by
using the reference images of a Micasense calibrated reflectance panel [21] acquired
before and after each UAV flight. A set of 12 ground control points, whose positions
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were determined with a differential GNSS system (with an accuracy of 0.1 m), was
placed on selected vine trellis poles within the vineyard to georeference the MSI in
a geodetic coordinates frame.
The UAV flights were performed on four different dates over the 2017 crop season
(15 May, 29 June, 1 August and 23 September), according to the satellite visiting
dates mentioned in Table.4.2.

4.1.5 In-Field Vigour Assessment
The vigour of the vines within the three considered parcels in the study site

was evaluated based on the results of a specific in-field survey performed by trained
operators and on the past experience of the farmer. In the considered study site,
the vigour variability is mainly related to the pedological soil conformation and to
the water availability, since irrigation is not allowed by Piedmont regulation. The
vigour classification was performed by defining three classes: low “L”, medium “M”
and high “H”. A specific data processing was performed to make the in-field vigour
assessment comparable to decametric resolution imagery. In particular, a 10 m ×
10 m map was obtained by rastering and clustering a vector GIS map provided
by expert agronomists made by a set of three vigour class layers, according to
Sentinel-2 pixel location.

Table 4.2: Technical details of the considered and adopted platforms and sensors.

Satellite UAV

Platform Sentinel-2 8-rotors custom UAV

Sensors
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4.1.6 Data Processing
In this section, specific methods for data processing, developed to compare

and investigate the imagery derived from the two platforms with different spatial
resolutions, are presented and discussed in detail.

A tile S, derived from the satellite platform, can be considered as an ordered
grid of pixels s (i, j), with indices i and j representing the pixel row and column
locations in the raster matrix, respectively. Each pixel s (i, j) was here defined as
s (i, j) = [αs (i, j) , βs (i, j) , nR (i, j) , nN (i, j)]T ⊂ S, where αs (i, j) and βs (i, j) are the
latitude and longitude coordinates (expressed in WGS84) of the upper left corner
of pixel s (i, j), respectively, and nR (i, j) and nN (i, j) are the pixel digital numbers
in the red and near infrared bands (12 bit representation), respectively.

Data D derived from the UAV flights were defined as an ordered grid of pixels
d (u, v) = [αd (u, v) , βd (u, v) , mR (u, v) , mN (u, v)]T ⊂ D, where pixel d (i, j) coor-
dinates αd (i, j) and βd (i, j) (latitude and longitude in WGS84) are related to the
pixels centre and mR (i, j) and mN (i, j) are the pixel digital numbers in the red and
near infrared bands (16 bit representation), respectively.

A graphical representation of the defined parameters for the satellite and UAV-
based datasets is shown in Figure.4.3.
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of pixels d (u, v) belonging to satellite imagery D, located at αd (i, j) and βd (i, j).
Selected UAV pixels belonging to G (i, j), used for comparison to satellite pixel
s (i, j), are highlighted in light green.

The evaluation of effectiveness in describing vineyard variability by the satellite
and UAV multispectral imagery was focused on the plants vigour assessment by
using the NDVI. The NDVI value for satellite pixel s (i, j) can be easily computed as

NDV Isat (i, j) = nN (i, j) − nR (i, j)
nN (i, j) + nR (i, j) (4.1)
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by using the spectral information provided by the digital numbers nN (i, j) and
nR (i, j) of the red and near infrared bands. Figure.4.5a shows the NDV Isat map
obtained by applying Equation (1) to the entire set of selected pixels representing
“Parcel A”, “Parcel B” and “Parcel C” of the Sentinel-2 tile of 7 July.
To allow the comparison of the UAV-based MSI and of the Satellite imagery, a
preliminary downsampling procedure of the high-resolution UAV imagery was per-
formed. A portion of UAV dataset D, made by pixel cluster G (i, j), which is related
to satellite pixel s (i, j), was defined as

G (i, j) =
{︄

d (u, v) ∈ D
⃓⃓⃓⃓
⃓ αs (i, j + 1) ≤ αd (u, v) < αs (i, j) ,

βs (i, j) ≤ βd (u, v) < βs (i + 1, j) , ∀u, v

}︄
(4.2)

With this approach, satellite pixel s (i, j) and the portion of UAV map G (i, j) repre-
sent the same section of vineyard cropland, with latitude and longitude coordinates
ranging between [αs (i, j + 1) αs (i, j)] and [βs (i, j) βs (i + 1, j)]. As an example, an
enlargement of UAV map subset G (8,20), related to satellite pixel s (8,20) and
highlighted in Figure.4.1 by a yellow square on the field test map, is displayed in
Figure.4.4.

Three specific NDVI indices were defined to perform a detailed analysis of the
radiometric information provided by the UAV-based MSI, and then to compare it
with the satellite one. In detail, they were computed from the UAV high-resolution
data by considering: (i) the whole cropland surface represented by G (i, j); (ii) only
the crop canopy pixels and, for completeness; and (iii) only the pixels represent-
ing the inter-row terrain. Using all pixels in subset G (i, j), the comprehensive
NDV Iuav (i, j) for the UAV imagery was defined as

NDV Iuav (i, j) =
∑︁

u
∑︁

v
mN(u,v)−mR(u,v)
mN(u,v)+mR(u,v)

cardG (i, j) ∀d (u, v) ∈ G (i, j) (4.3)

By applying Equation (2) to raw UAV map D, an NDV Iuav map congruent (prop-
erly aligned and with the same spatial resolution) to the ones derived from the
satellite imagery (NDV Isat) can be obtained, as shown in Figure.4.5b for the UAV
imagery acquired on 29 June 2017.

Since within a vineyard UAV orthophoto, with a GSD of 5 cm, the pixels repre-
senting the vine canopies can be detected, a more accurate crop NDVI computation
with respect to NDV Iuav can be performed. For this task, a pixel classification pro-
cedure is thus required for each subset G (i, j) to define two different groups of pixels
Gvin (i, j) and Gint (i, j), with Gvin (i, j)∪Gint (i, j) = G (i, j) and Gvin (i, j)∩Gint (i, j) = ∅,
representing crop canopies and inter-row surfaces, respectively. The automatic clas-
sification procedure described in Comba et al. (2015) [38] was adopted. Figure.4.4b
reports the obtained pixel classification belonging to subset G (8,20) into the two
groups Gvin (8,20) and Gint (8,20). By exploiting the spatial information concerning
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Figure 5. (a) Enlargement of subset 𝒢(8,20) of UAV map 𝒟 , highlighted by a yellow square in 
Figure 1, is represented in false colours (NIR, Red and Green channels); (b) classification of pixels 𝑑(u, v) ⊂ 𝒢(8,20) into two classes: 𝒢 , representing vine canopies (green), and 𝒢 , representing 
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3. Results 

Three vineyard parcels (named “Parcel-A”, “Parcel-B” and “Parcel-C”), selected for their 
peculiar spatial distributions and different micro-climate conditions, were considered in this study 

Figure 4.4: (a) Enlargement of subset G (8,20) of UAV map D2, highlighted by a
yellow square in Figure.4.1, is represented in false colours (NIR, Red and Green
channels); (b) classification of pixels d (u, v) ⊂ G (8,20) into two classes: Gvin, rep-
resenting vine canopies (green), and Gint, representing inter-row surfaces (brown);
(c) computed NDVI values of vine canopies pixels Gvin; and (d) inter-row surface
Gint.
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the location and extension of the vine canopies, an enhanced NDVI computation
can be defined as

NDV Ivin (i, j) =
∑︁

u
∑︁

v
mN(u,v)−mR(u,v)
mN(u,v)+mR(u,v)

cardG (i, j) ∀d (u, v) ∈ Gvin (i, j) (4.4)

An example of the enhanced NDVI definition, by considering only the NDVI of the
pixels representing the vine canopies, is reported in Figure.4.4c, while the complete
NDV Ivin map for the June dataset is shown in Figure.4.5c. For completeness, the
NDVI index was computed also for the vegetation in the inter-row, such as weed
or grass, as

NDV Iint (i, j) =
∑︁

u
∑︁

v
mN(u,v)−mR(u,v)
mN(u,v)+mR(u,v)

cardG (i, j) ∀d (u, v) ∈ Gint (i, j) (4.5)

to further evaluate the contribution of no-canopy reflectance to the comprehensive
NDVI computed from satellite imagery. The obtained NDVI map for the inter-row
areas, obtained by processing the UAV imagery of 29 June, is shown in Figure.4.5d.

4.1.7 Results
Three vineyard parcels (named “Parcel-A”, “Parcel-B” and “Parcel-C”), se-

lected for their peculiar spatial distributions and different micro-climate conditions,
were considered in this study Figure.4.1.
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Figure 4. Comprehensive (a) 𝑁𝐷𝑉𝐼  map, computed from satellite imagery 𝒮 , and (b) 𝑁𝐷𝑉𝐼  
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Figure 4.5: Comprehensive (a) NDV Isat map, computed from satellite imagery S2,
and (b) NDV Iuav derived from UAV imagery D2. (c) Enhanced vineyard NDV Ivin
map, processing UAV imagery D2 by considering only canopy pixels Gvin and (d)
NDV Iint map considering only inter-row surface Gint. In all represented NDVI
maps, only pixels (i, j) completely included within “Parcel A”, “Parcel B” and
“Parcel C” boundaries are shown.

45



Research contributions related to Precision Viticulture using UAV and Satellite Imagery

Remote Sens. 2019, 01, x FOR PEER REVIEW  11 of 18 

 

(Figure 1). To extend the performed analysis to different vineyard phenological phases, four imagery 
acquisitions were performed (UAV airborne campaigns) and considered (satellite Sentinel-2 
platform) during the 2017 crop growing season (Table 2). Regarding the evaluation and the 
comparison of the effectiveness of the satellite and UAV-based imagery in describing and assessing 
the variability within and between vineyard parcels, four different NDVI maps were computed. More 
in detail, the 𝑁𝐷𝑉𝐼  map (Equation (1)) was derived from satellite imagery while imagery acquired 
with the UAV platform was processed to obtain three different NDVI maps: (i) a comprehensive 𝑁𝐷𝑉𝐼  map (Equation (3)) by considering the spectral information provided by both pixels 
representing vine canopies and inter-row surfaces; (ii) an 𝑁𝐷𝑉𝐼  map for vineyard canopies 
(Equation (4)); and (iii) an 𝑁𝐷𝑉𝐼  map for inter-row paths (Equation (5)), by considering only one 
group of pixels at a time. To be able to compare UAV-based imagery with the satellite imagery, with 
a GSD of 10 m, high-resolution imagery from the UAV airborne platform was downsampled using 
Equation ((2)). The congruence between each spatiotemporal map pair was investigated using the 
Pearson correlation coefficients, adopted as a map similarity measure [59], after performing a 
normalisation procedure to focus on the relative differences of each map pair. 

A preliminary analysis investigated the coherence of the adopted dataset by comparing the 𝑁𝐷𝑉𝐼  map and the properly downsampled comprehensive 𝑁𝐷𝑉𝐼  map for all three considered 
parcels and for the four acquisition campaigns. The coherence between the information provided by 
the two platforms was confirmed by the values of the obtained Pearson correlation coefficients, 
named R / , which were higher than 0.6 for more than 75% of the performed comparison, and 
never lower than 0.55. All the obtained R /  values, which showed a considerable similarity 
between the maps derived from the satellite and UAV raw imagery, are organised in Table 3. The 
correlation plots for imagery pair 𝒟 /𝒮 , detailed for “Parcel A”, ”Parcel B” and “Parcel C”, are 
shown in Figure 6a–c, respectively. 

 

Figure 4.6: Scatter plots of NDVI values from NDV Isat map (x-axis) and: (a)
the comprehensive NDV Iuav map (y-axis); (b) the enhanced NDVI values of map
NDV Ivin (y-axis); and (c) the enhanced NDVI values of NDV Iint map (y-axis),
using imagery pair data D2/S2. The regression model and data pair correlation
coefficients are also reported.

To extend the performed analysis to different vineyard phenological phases,
four imagery acquisitions were performed (UAV airborne campaigns) and consid-
ered (satellite Sentinel-2 platform) during the 2017 crop growing season reported in
Table.4.2. Regarding the evaluation and the comparison of the effectiveness of the
satellite and UAV-based imagery in describing and assessing the variability within
and between vineyard parcels, four different NDVI maps were computed. More in
detail, the NDV Isat map (Equation (1)) was derived from satellite imagery while
imagery acquired with the UAV platform was processed to obtain three different
NDVI maps: (i) a comprehensive NDV Iuav map (Equation (3)) by considering the
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spectral information provided by both pixels representing vine canopies and inter-
row surfaces; (ii) an NDV Ivin map for vineyard canopies (Equation (4)); and (iii)
an NDV Iint map for inter-row paths (Equation (5)), by considering only one group
of pixels at a time. To be able to compare UAV-based imagery with the satellite im-
agery, with a GSD of 10 m, high-resolution imagery from the UAV airborne platform
was downsampled using Equation (2). The coherence between each spatiotemporal
map pair was investigated using the Pearson correlation coefficients, adopted as a
map similarity measure [214], after performing a normalisation procedure to focus
on the relative differences of each map pair.
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Figure 7. Vineyard test site classification into three vigour classes on the basis of the observed in-field 
vigour assessment. Classes “L”, “M” and “H” refer to low, medium and high vigour, respectively. 

Figure 4.7: Vineyard test site classification into three vigour classes on the basis
of the observed in-field vigour assessment. Classes “L”, “M” and “H” refer to low,
medium and high vigour, respectively.

A preliminary analysis investigated the coherence of the adopted dataset by
comparing the NDV Isat map and the properly downsampled comprehensive NDV Iuav
map for all three considered parcels and for the four acquisition campaigns. The
coherence between the information provided by the two platforms was confirmed by
the values of the obtained Pearson correlation coefficients, named RSat/UAV, which
were higher than 0.6 for more than 75% of the performed comparison, and never
lower than 0.55. All the obtained RSat/UAV values, which showed a considerable
similarity between the maps derived from the satellite and UAV raw imagery, are
organised in Table.4.3. The correlation plots for imagery pair D2/S2, detailed for
“Parcel A”, ”Parcel B” and “Parcel C”, are shown in Figure. 4.6(a–c), respectively.
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Table 4.3: Pearson correlation coefficients results of the NDVI maps compari-
son procedure.

RSat/UAV RSat/vin RSat/int

Map pair D1/S1 D2/S2 D3/S3 D4/S4 D1/S1 D2/S2 D3/S3 D4/S4 D1/S1 D2/S2 D3/S3 D4/S4
Parcel A 0.63 0.71 0.58 0.55 0.31 0.33 0.45 0.40 0.52 0.65 0.56 0.49
Parcel B 0.60 0.68 0.62 0.65 0.39 0.40 0.37 0.38 0.56 0.61 0.60 0.62
Parcel C 0.64 0.67 0.60 0.72 0.41 0.61 0.28 0.51 0.59 0.67 0.54 0.66

Once the coherence of the adopted dataset was verified, the quality of the in-
formation provided by the two typologies of NDVI maps was investigated, focusing
on the well-known relationship between the considered index and the vegetative
condition of the vineyard. This task was performed by comparing NDV Isat and
NDV Iuav maps to the in-field vigour assessment provided by expert operators,
which classified the different regions of the considered vineyard into three different
vigour classes shown in Figure. 4.7. The results of the performed analysis of vari-
ance (ANOVA), which provided p-values from 0.04 to 0.26, did not prove significant
difference between vigour groups means for all the considered parcels (Figure.4.8a).

4.1.8 Discussion
The decametric resolution satellite imagery revealed some limitations in describ-

ing substantial information regarding the status of vineyards where the crop radio-
metric information could be altered by other sources (e.g., inter-row paths) that, in
the case of crops grown by rows, could be influential and could negatively affect the
overall assessment. This effect was confirmed by the strong relation found between
the satellite NDV Isat map and the NDV Iint map, derived by the UAV imagery
considering only the inter-row pixels, with Pearson correlation coefficients RSat/int
of the 12 performed comparisons ranging from 0.49 to 0.67 (Table.4.3) and with
more than 65% of spatiotemporal map pairs achieving RSat/int> 0.60. On the con-
trary, the relation between the satellite NDV Isat map and the enhanced NDV Ivin
map, produced by considering only pixels representing vine canopies within the
UAV imagery, appeared to be weak. Further analysis revealed that about 75%
of the Pearson correlation coefficients RSat/vin, obtained by comparing NDV Isat
and NDV Ivin maps of all three considered parcels for four acquisition campaigns,
were found to be lower than 0.41. All the obtained values of RSat/vin are organ-
ised in Table.4.3. This analysis shows that in those crop types where the inter-row
surfaces and paths involve a relevant portion of the cropland, such as vineyards,
the radiometric information obtained by moderate spatial resolution satellite plat-
forms are not satisfactory to assess crop status and variability properly. Indeed,
depending on the specific adopted crop management strategy, the inter-row surface
can be covered by grass, by other crops for pest and disease integrated control or

48



4.1 – Variability Assessment of Vineyard using UAVs and Satellite Imagery

it could be bare soil. In all these conditions, the vineyard vigour could often be
in discord with the inter-row areas, leading to biased vineyard vigour assessments
from decametric spatial resolution imagery.Remote Sens. 2019, 01, x FOR PEER REVIEW  13 of 18 
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Figure 4.8: Box plots representation of: (a) NDV Isat values derived from satellite
imagery; and (b) enhanced NDV Ivin values derived from UAV imagery, considering
only canopy pixels, divided into three groups on the basis of the observed in-field
vigour classes “L”, “M” and “H”.

In addition, the effectiveness of the NDV Ivin and NDV Isat maps in discrim-
inating the vigour of the considered parcels in accordance with the experts in-
field assessment was investigated with the ANOVA method. For what concern
the NDV Ivin map, the ANOVA, obtaining p-values ranging from 2.47 × 10−3 to
6.88 × 10−8 (4.4), confirmed that the observed variability of the vineyards within
the test site was well described by the NDV Ivin map. Boxplots of the NDV Ivin val-
ues, divided in the three vigour classes, are shown in Figure.4.8b. On the contrary,
the ANOVA results considering NDV Isat map showed that the variability of the
vineyards within the test site by satellite platform was not significantly in accor-
dance with the experts in-field assessment (Table.4.5). This additional verification
confirmed the main result of the presented analysis, proving that, in the case of
crops where the inter-row surfaces involve a relevant portion of the cropland, such
as vineyards, the radiometric information acquired by satellite platforms can have
difficulties properly evaluating crop status and variability. In these situations, im-
agery with a high spatial resolution is required to properly assess variability within
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and between vineyards.

Table 4.4: Results of the ANOVA of UAV based NDV Ivin map in relation to the
three vigour classes from in-field assessment.

Source DF SS MS F-Value P-Value

Parcel A
classes 2 1.360807 0.680403 30.092543 5.46 × 10−8

Error 31 0.700921 0.022610
Total 33 2.061721

Parcel B
classes 2 2.713501 1.356750 71.166427 6.86 × 10−7

Error 63 1.201062 0.019064
Total 65 3.914563

Parcel C
classes 2 0.867121 0.433560 9.199357 0.00247
Error 15 0.706941 0.047129
Total 17 1.57406
DF: degree of freedom, SS: sum of squares, MS: mean square

Table 4.5: Results of the ANOVA of satellite based NDV Isat map in relation to
three vigour classes from in-field assessment.

Source DF SS MS F-Value P-Value

Parcel A
classes 2 0.308368 0.154184 3.458293 0.044081
Error 31 1.382101 0.044584
Total 33 1.690464

Parcel B
classes 2 0.393805 0.196903 4.892817 0.010587
Error 63 2.535323 0.040243
Total 65 2.929128

Parcel C
classes 2 0.198502 0.099251 1.455564 0.264401
Error 15 1.022811 0.068187
Total 17 1.221313

4.1.9 Conclusions
In this work, a detailed analysis and comparison of multispectral imagery of

vineyards, provided by decametric resolution satellite and low altitude UAV plat-
forms, is presented. The effectiveness of the Sentinel-2 imagery and the high-
resolution UAV aerial images was evaluated by considering the well-known relation
between the NDVI and vineyard vigour. A cropland located in Piedmont (Ser-
ralunga d’Alba, Italy) was selected as the experiment site to perform four image
acquisition campaigns, which were properly scheduled according to the main vine
phenological stages.
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The results show how, in the case of crops where the inter-row surfaces involve
a relevant portion of the cropland, such as vineyards, the radiometric information
acquired by decametric resolution satellite platforms has difficulties in properly
evaluating crop status and variability. In these situations, the vigour of the vine-
yard could often be in discord with the inter-row areas (e.g., grass, plants for pest
and disease integrated control, or soil), leading to biased vineyard vigour assess-
ments from decametric resolution imagery, such as the Sentinel-2 imagery. This was
proved by a detailed analysis of the radiometric unbundled contribution of different
elements within the cropland, performed by defining three different NDVI indices
from the high-resolution UAV imagery, considering: (i) the whole cropland surface;
(ii) only the crop canopy pixels; and (iii) only the inter-row terrain pixels.

In this study, the NDVI maps derived from the satellite imagery were found
not to be in accordance with the in-field crop vigour assessment. In addition,
the satellite-based NDVI maps were found to be more related to the NDVI maps
computed by the high-resolution UAV imagery, considering only the pixels repre-
senting inter-row surfaces. As a validation, a new type of NDVI map from the UAV
imagery, generated by considering only the pixels representing the vine canopies,
was defined. The effectiveness of this last type of map in describing the observed
vineyard vigour was found to be relevant.

The proposed approach can be extended to other crop typologies that are grown
by rows or without intensive layouts, where the crop canopies do not extend on the
whole surface or where the presence of weeds is relevant.
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4.2 Automatic Path Planning for Unmanned Ground
Vehicle using UAV imagery

Over recent years, as farmers and industries have moved towards minimizing
human workload on fields, the use of automated machines on fields has grown sig-
nificantly. These machines help in restricting human labour for tasks such as har-
vesting, fertilizing, land preparation, plant health monitoring, and seeding. With
this development, the role of field machines in management of agricultural environ-
ments has become an essential facet of precision agriculture. However, to maximize
automated work on the field, agricultural machines need path planning besides be-
ing equipped with an autonomous navigation system. Path planning is especially
vital and a challenge for regions such as mountain vineyards, due to the terrain
morphology.
This work proposes a workflow to generate an automatic coverage path plan for
unmanned ground vehicles (UGVs) using georeferenced imagery taken by an un-
manned aerial vehicle (UAV). First, image acquisition is performed over a vineyard
to generate an orthomosaic and a digital surface model, which are then used to
identify the vine rows and inter-row terrain. This information is then used by the
algorithm to generate a path plan for UGV.
Part of the work described in this section. 4.2 has been previously published in
"Automatic Path Planning for Unmanned Ground Vehicle Using UAV Imagery"
[258]. My contributions in this publication as a coauthor are as follows: Conceptu-
alization, Formal analysis, Investigation, Writing—review editing.

4.2.1 Background
Automated machines are being favoured in agriculture by both farmers and in-

dustries alike in a bid to minimize human labour in performing tasks on the field.
These vehicles have to be equipped with an automatic navigation system and have
to be able to select their paths, depending on the specific area as well as to avoid
obstacles. Path planning is done – usually by an on-field expert for autonomous
agricultural machines – to cover the crop field plots, thus, increasing agricultural
productivity. There have been notable advancements in path planning methods,
with different optimization methods, for both single and multiple coordinated ve-
hicles. [57] discusses these. Vehicles also make use of greedy algorithms to find
efficient routes in order to fulfil base requirements of covering the whole field [153].
Path planning for known environments is done by first portioning the area into
smaller polygonal areas called parcels. The best route for each parcel is calcu-
lated, and finally, the results are compiled and aggregated. Several optimization
techniques have been implemented to find an approximate solution that solves the
coverage path planning problem, such as neural networks [245] and genetic algo-
rithms [75]. As such, with a wide variety of available optimization techniques at
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disposal, selecting suitable algorithms is an essential step for both proper path
planning and environment modelling.
High Spatial Resolution Imagery (HSRI) can be used to characterize areas and dis-
tinguish between the different plantations, inter-row terrains, and boundaries [45].
HSRI and emergence of newer image processing methods have also furthered the
analysis and classification of vegetative and non-vegetative pixels from textured
images. Fast Fourier Transform (FFT) and Garbor Filtering, discussed in [45, 39,
38], determines inter-row width and row orientation however it presents a problem
in boundary precision and particularly when missing plants are present.
This work proposes a workflow that automatically generates coverage path plan
for UGV using high resolution imagery acquired from UAV. Study area and data
acquisition related details are discussed in section 4.2.2 and 4.2.3 respectively. Data
processing, mask generation and algorithms used in the study are discussed from
section 4 to 8 followed by the conclusion and future work.

4.2.2 Study Area
The survey site was a rural area - near the town of Baldichieri d’Asti (AT) in

Piedmont – called “Basso Monferrato Astigiano”, and it was a hilly area dominated
by forests and vineyards [202]. The area of interest here specifically, the property
of “Azienda Agricola Ciabot”, is around 2 ha and it is present with obstacles both
inside and outside. There are also a few areas, and woods overall round the area.
Although the path planning was done solely for the small area with only one obstacle
– to test, as a first step – the image acquisition and 3d modelling were made for
the entire area. (Figure 4.16).

4.2.3 Fieldwork and data acquisition for base map genera-
tion

Due to shadows in the area, caused by specific exposures in the area, two ac-
quisition campaigns were carried out in the same day (at 10:30 am and at 5:00
pm) in October 2018. Also, to allow georeferencing, 16 Ground Control Points
(GCPs) targets had to be placed because of the lack of natural points in the area.
Coordinates for these points were measured using a Network Real-Time Kinematic
(NRTK) Global Navigation Satellite System (GNSS) techniques [34]. The NRTK
survey was performed by a SP80 Trimble GNSS receiver, using the real time cor-
rection of the permanent GNSS station of Canelli. The UAV was selected based on
size of the study area, flight times, and projected survey outputs. The used plat-
form was a DJI Phantom 4 Pro, equipped with a RGB camera with focal length
8.8 mm, CMOS sensors 13.2 x 8.8 mm, pixel size of 2.4 m. The flights were planned
using the open source software Mission Planner that connects the platform to the
ground station. This tool was also used to set all the parameters of the flight plan,
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Figure 4.9: UAV imagery acquisition points and positions.

configuration of the flight (nadir images in North-South direction), height of the
flight (33 m to have a Ground Sample Distance, GSD, of 8 mm) and the overlap
between different images (80% longitudinal and 60% transverse overlap) Figure.
4.9. The duration of each flight was about 15 minutes and a total of 261 images
for the first flight and 209 images for the second flight were acquired.

4.2.4 Data Processing and Validation
In the 3D model generation, data is processed to extract the orthophoto, the

Dense Digital Terrain Model (DDTM), and the Dense Digital Surface Model (DDSM)
[223]. Commercial software Agisoft PhotoScan 1.2.6 was used for processing the
data, with the images acquired from each flight being processed in a single block.
These steps were followed routinely: alignment and orientation of the cameras, geo-
referencing the images by GCPs Figure. 4.15 (horizontal and elevation accuracy
are less than 2 cm), point cloud densification (about 80 million points) [3]. The
software was used to generate the mesh and the DDSM, and additionally, for this
case, the DDTM was also generated. By using the “Classify ground point” tool
on the software, unsupervised classification of the point cloud could be performed
to detect solely the points on the surface the terrain [70]. The classification was
performed based on three main parameters:

• max angle: maximum slope of the ground within the scene (20°);

• max distance between the point above the ground and terrain model (0.05 m);

• cell size of the largest area that does not contain any ground points (1 m2).

The parameters chosen were based off of the features of the area, described in
section 4.2.2. The procedure yielded outputs of DDTM, DDSM, and an orthophoto
in raster format with cell size of 0.02 m, in WGS84 UTM 32N coordinate system.
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Figure 4.10: Ground Control Points placments for georeferencing.

4.2.5 Mask generation for path planning

Figure 4.11: Binary mask representing vine rows generated by 3D geometric infor-
mation. points and positions.

This step defines a typical binary image (see Figure. 4.11) where pixels with non-
zero values represent vineyard lines, buildings, and all other potential obstacles for
the UGV path. 3D geometric information was used to develop a methodology and
by considering the differences between DDSM and DDTM, potential obstacles were
mapped. The final map came as a result of splitting the differences into two classes:
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(greater than 0.50 cm, and smaller than 0.50 cm). Using the “Raster Reclass” tool,
non-zero value was assigned to the differences greater than 0.50 cm which represent
the presence of obstacles and zero value to the differences smaller than 0.50 cm
which represent the ground. This process was carried out for both flights’ data and
the masks were merged together to attain a more complete overview.

4.2.6 Steps to generate path plan
From here on the three vineyard fields (Figure. 4.16) focused on in the study

area, are referred to as parcels. The algorithm proposed will automatically generate
a path plan for the UGV to follow in order to cover a parcel.
The algorithm was developed with a generic approach to cater to crops that have
considerable inter-row spacing for the UGV movement. This approach is summa-
rized in the flowchart in Figure 4.12.

Path Planning Path search

Path smoothing 

A* search

Gradient descent 

Parcels ClusteringRows Detection

Rows approximation

Clustering

Clustering error
correction

Defective rows
correction

Ordinary least
squares 

Dirichlet process

Parcel Coverage Steps generation

Figure 4.12: Workflow of UGV path generation.

4.2.7 Parcel recognition and rows clustering
The algorithm first detects the rows that represents the vegetation; with each

group of the interconnected black pixel representing one canopy row cluster. The
steps are based on the concept of visiting masks (section 4.2.5) using sliding win-
dows: proceeding diagonally downwards from the first pixel in the upper left to
the pixel in the bottom right. The type of vegetation density is of importance here
since it determines the width called ρ, which is used to specify sliding windows.
However, since distances differ for different plantation types, a threshold value for
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ρ has to be specified. For example, vine rows are more distant as compared to
maize rows which are nearer to the vineyards. ρ = 7 was used for the environment
being investigated in this study. Moreover, due to the acquisition being made in the
post-harvest season of vineyards, some missing parts of vine rows were discovered
during the mask generation process.

Figure 4.13: Clustering.

In particular, cases where more than one parcel per map is being dealt with,
there may be a narrow path between the two parcels through which the farmer
or the vehicle can pass, and the problem is then considered twofold. It is then
necessary to effectively recombine the segments belonging to the same row. The
segments are recombined by finding the line of best fit for each cluster, and by per-
forming a linear regression for each row. The parameterization for this was done
by Ordinary Least Squares (OLS) method. It uses the given set of variables to
determine parameters of a linear function. It minimizes the sum of squares of the
difference between dependent variable observed/provided in the dataset and those
predicted by the linear function involved.
The linear function mostly took form as a first-order polynomial, since the canopy
rows are, usually, disposed of as straight lines.However, there are limitations to the
model which were observed and dealt with accordingly. An instance of this is when
the points are distributed along the vertical line and the variance occurs, primar-
ily, in the horizontal direction. In such a case, the OLS will not give a suitable
parametrization of the model because it is designed for points with variances in the
vertical direction. To solve this, before projecting the data points into the OLS
space, the clusters were rotated through 90° which gave such verticality. Finally,
when the process has recurred for all the rows, they need to be grouped into sepa-
rated parcels.
To this end, it is imperative that a proper criterion is set to correctly correlate only
the rows that are in the same parcel so that all possible errors are avoided.
The literature analysis [7, 100] reveals the most significant issue to be: not knowing
the number of parcels within a field beforehand – unless the final user specifically
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feeds this information to the algorithm. Due to this, simple or other hardware-
demanding algorithms were discarded [225, 78] and the clustering was implemented
using the Dirichlet Process model. The discarded models include the K-means or
DBSCAN.
Parcels separated by a free space of a higher dimension with respect to the inter-
row distance of the same parcel can be identified uniquely by using their respective
slope. This will result in a collection of tightly arranged slopes, provided that they
belong to the same parcel. Since different slopes may be present, the statistical
distribution of angular coefficients, in general, will be multimodal. Behind this is
the assumption that all data is generated from a finite number of distributions –
with unknown parameters – and this allows us to exploit the Dirichlet Process.
Although it may be, in some cases, that the slope feature is not enough on its own
to restrictively bind together the correct rows, this problem can be solved with the
introduction of a new feature correlating rows based on their mutual positioning.
Mean point coordinates are picked for each row and distant mean points are ruled
to – most likely – not be part of the same cluster.

Figure 4.14: Mean points of rows.

There is an apparent drawback to this method though, which arises due to
labelling errors occurring in smaller pieces of land with non-contiguous rows. Cor-
rection for this is done by considering the majority of row’s neigbors, and this
process is repeated recursively until no more label changes are needed. Two con-
tiguous rows are connected by the extension of the approximating line from the end
of the particular row’s extremes until it reaches the neighbor’s (Figure 4.16).

4.2.8 Steps generation and path planning
To guarantee the coverage, the UGV needs to receive some nodes along the

path between the starting position and the goal. One potential solution to this is
to exploit the approximating line between the two close rows. This information
can then be used to create a grid that overlays the parcels, and whose dimensions
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Figure 4.15: Zoomed in view of rows connection.

must be such that is navigable by a robot freely without any cause or incident.
This requires the addition of a safety distance. The rows are thus extended in both
directions in such a way that the robot can perform the curve. The average point
is computed in such a way so that, in the end, the robot lies precisely in the middle
of the two rows.

Still, the robot must be provided with an assigned order by which it must cover
the rows. For this, a sorting function has been developed such that it minimizes
the euclidean distance between consecutive positions. It can also be configured to
either cover all the parcels in the map or just a single one.
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Figure 4.16: Case Study. From left to right: overview, vineyard enhancement, path
plan.

Following this, the planner is developed by implementing the A* algorithm
[77], which determines the optimal path between the points by using the previously
generated points as the starting and goal nodes, respectively. This also allows the
avoidance of obstacles that may be involved. The A* trajectory is soothed by
running the first-order iterative optimization Gradient Descent algorithm.

4.2.9 Conclusion and future work
In this work, an automatic coverage path planning for UGV for hilly vineyard

environment is proposed. UAV imagery is used to obtain a DDTM and a DDSM,
which are used to build the mask for the path planning. The experimental results
show that the work as a whole presents some significant contribution in coverage
path planning for UGV in the challenging environment like hilly vineyards that can
be useful for the farmers to manage agricultural tasks.

There were some issues encountered when dealing with environments that de-
viated significantly from one parcel to another while remaining in the same study
area. However, we were able to deal with this by considering one parcel at a time
in our work. The same approach can be tested and expanded to different vineyard
fields in the future, and through considering acquisition campaigns in accordance
with the peak phenological stage of the vineyard.
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4.3 Refining Satellite based Vegetation Indices
using UAV Imagery

Vegetation monitoring of agriculture crops through their phenological cycle as-
sists farmers/agronomist to perform agricultural practices in an effective way to
achieve maximum yield while reducing the environmental noise caused by excessive
application of chemicals. Numerous remote sensing platforms equipped with optical
multispectral sensors such as satellite, airborne and unmanned air vehicles (UAVs)
have been in practice for vegetation monitoring. Satellites imagery captured by
onboard multispectral sensors is widely used due to their broad coverage and high
revisit time. Whereas, UAV imagery is preferred where more detailed information
regarding vegetation is needed while it is expensive and time-consuming if more fre-
quent campaigns are to be conducted. In this work, the vineyard site is considered
to evaluate the reliability of employing satellite images for vegetation monitoring.
Indeed, satellite imagery with moderate spatial resolution cannot describe the veg-
etation status at vine rows level due to the mixed nature of pixel, expressing the
cumulative effect of inter-row terrain and vine rows. Consequently, a pixel re-
finement is needed to minimize this effect. In this work, a convolutional neural
network (CNN) based approach is introduced to gain benefits from high-resolution
UAV imagery to refine the vegetation maps derived from moderate resolution satel-
lite images over a vineyard.
Part of the work described in this section. 4.3 has been previously published in
"Refining satellite imagery by using UAV imagery for vineyard environment: A
CNN Based approach" [104].

4.3.1 Background
Satellite remote sensing data has been widely used since the past two decades

for various applications such as agricultural monitoring, forestry, environment mon-
itoring and management, land use monitoring and many more. In recent times, the
availability of easily accessible and free multispectral satellite data with reasonable
spatial- temporal-resolution has brought new opportunities to researchers and sci-
entist to exploit the possibilities for near real-time agricultural monitoring. Spectral
vegetation indices derived from optical imagery through various satellite platforms
have been used to assess the vegetative conditions of crops, yield forecast, bio-
physical parameter estimation of major crop types such as Maize, Wheat, Lucern,
Barley etc [15, 175, 25]. Nevertheless, the use of decametric satellite imagery is still
challenging for vegetation monitoring for the crops with the row formation having
considerable interrow soil separation like vineyards.
Precision agriculture and, in particular, precision viticulture proved to be an im-
perative approach to improve agricultural products and quality by optimising crop
practices [168]. Based on the information of the inherent variability within parcels,
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Figure 4.17: Study site located in Serralunga d’Alba (Piedmont, northwest of Italy):
map derived from UAV is shown and Sentinel pixels are shown as overlapped region
for vineyard fields.

this approach demands new and more reliable methods for crop monitoring goals
[107, 169]. In our previous work [107], a time series of sentinel-2 multispectral
decametric images and UAV centimetric images acquired between May 2017 and
September 2017 were used to compare vigor variability in a vineyard located in
Serralunga d’Alba Piedmont, northwest of Italy. Normalized Difference Vegeta-
tion Index (NDVI) was calculated for both imageries and comparison had been
performed between them, including with the vigour map generated from the field
expert. It was concluded that decametric satellite imagery could not be used di-
rectly to describe the vigour status of vineyard due to the influence of interrow
terrain.
Some past works have used high resolution images acquired from UAVs to refine

satellite driven vegetation indices from multispectral imagery. In [91], estimates
of canopy structure and biochemical parameters obtained from moderate spatial
resolution satellite imagery were improved using high resolution UAV multispec-
tral imagery. In another study, T.W. Cui et al. [44] described how high resultion
airborne SAR based images can be used to refine satellite imagery driven esti-
mates of macro-algal coverage in the yellow sea. In the past few years, a branch
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of machine learning, known as deep learning, has achieved significant successes in
the field of Computer Vision (CV) [81], Natural Language Processing (NLP) [36],
speech recognition [31], and automated reasoning [142]. It is made possible due to
its intrinsic capability to learn not alone the mapping function from pre-processed
input to output, but also the data representations itself. Certainly, representations
learned by deep learning architectures are much more disengaged and representa-
tive to effectively solve assigned tasks. That is accomplished by hierarchical neural
network-based architectures which gradually built more complex and abstract con-
cepts on top of simpler ones. Deep learning provides the ability to learn more robust
mapping functions as well as a substantial generalization power than conventional
machine learning methods.

In this study, a novel deep learning framework is used to refine satellite driven
vegetation maps using high resolution images taken by UAV over vineyard. The
remainder of this work is organized as follows. Some details about study site and
data set are discussed in Section 4.3.2. Section 4.3.4 and 4.3.5 provides information
of the proposed framework and the proposed architecture. Finally, the experimental
discussion and results are discussed in Sections 4.3.6, followed by conclusions.

4.3.2 Study Area and Data Set
A vineyard located in Serralunga d’Alba (Piedmont, northwest of Italy), cov-

ering a surface of about 2.5 ha, was selected as a field test (see Figure. 4.17).
The cropland, whose latitude and longitude positions range between [44.62334°,
44.62539°] and [7.99855°, 8.00250°] (World Geodetic System 1984- WGS84). The
Sentinel-2 satellite is equipped with a multi-spectral imaging sensor that measures
Earth’s Top of Atmosphere (TOA) reflected radiance in 13 spectral bands ranging
from 443 nm to 2190 nm. In this study, cloud-free level-2A Sentinel-2 Bottom of
Atmosphere (BOA) reflectance images were used. The UAV-based multispectral
imagery were generated with the Agisoft PhotoScan® software (Agisoft©, 2018)
processing imagery blocks of more than 1000 aerial images acquired with an air-
borne Parrot Sequoia® multispectral camera [107].

4.3.3 Data Pre-processing
In our previous study [107], preprocessing steps were performed on UAV im-

agery such as orthomosiacing, georeferencing, binary mask generation for vine rows.
NDVI and two additional up scaled maps were derived representing sole canopies
and inter rows. NDVI map was also generated from satellite imagery depicted
in Fig. 1. The main objective of this work is to refine the satellite imagery us-
ing up scaled map generated from UAV imagery that represents the sole canopies
contribution is considered as ground truth in this study.
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Figure 4.18: Overview of the designed network, named RarefyNet, used for refining
Sentinel pixels.

4.3.4 Proposed Method
A convolutional neural network (CNN) with residual connection has been used

to generate a non-linear mapping function F (X(i), Θ) between y(i) and X(i), where
y(i) is the ground truth instance obtained from downscaled UAV images and X(i) is
a sample instance acquired from Sentinel-2 images that has to be refined. More for-
mally, X = {Xi} is a group of all pixels obtained from sentinel NDVI maps depicted
in Fig. 5.1 used for training, testing and validation examples, and Y = {yi} is a set
of downscaled NDVI pixels derived from the UAV images. So, given X and Y, opti-
mization method was adopted to train a deep learning-based model, hereafter called
RarefyNet, and estimate its parameters Θ using L2 norm ∥x∥2 = (∑︁n

i=1|xi| 2) 1
2 as

loss function. To provide the architecture with much more exhaustive spatial in-
formation and consequently improve the overall model performance, we used for
each input data X(i) not only the target Sentinel-2 pixel to enhance, X

(i)
1,1, but also

its K neighbourhoods. So, the created training data set is a tri-dimensional tensor
X ∈ Ri×j×k where i are the sample points and 2-D slices Xi,:,: are the training
patches with K = j × k.

4.3.5 RarefyNet Architecture
An overview of the RarefyNet is depicted in Figure. 4.18; each X(i) training

sample feeds a stack of two Inception blocks, Figure. 4.19, that gradually extracts
spatial correlation between the K neighborhoods pixels and the target central pixel.
X

(i)
1,1. Later, a Global Average Pooling (GAP) operation [210] is employed reduce

the rank of the processed tensor and construct a 1-D array that feeds a fully con-
nected section with exponential linear units (ELU) as the activation function. GAP
operation degrades the spatial dimensions of the secondary Inception block three-
dimensional output tensors, explicitly making feature maps to be confidence maps
of concepts. Finally, a residual connection blends the processed information with
the original Sentinel-2 pixel, and terminate fully connected layer with rectified linear
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units (ReLU) function produces the final prediction ŷ(i). The residual connection
inspired by [215, 122, 143], they implemented super-resolution networks, which
plays a primary role inside the overall network; it considerably simplifies the role of
the model, moving its objective towards a mere refining operation of pixels derived
from satellite imagery. Indeed, the network does not have to recreate the value of
the input pixel but progressively learns how to use the starting satellite input value
and its spatial information to improve its content of information with its internal
learnt representations. In Fig. 5.2, the structure of the two initial Inception blocks
is shown; patches Xi,:,: are concurrently elaborated by a cascade of convolutions
with different filters size and dilatation rates. Indeed, distinct kernel sizes exploit
the different combination of correlations between data and, on the other hand,
atrous convolutions take advantage of non-local spatial correlations. Furthermore,
batch normalization [210], as regularization technique, is applied to every branch
before ELU activation function. Consequently, in the first block, an input patch
X(i) with shape (j, k, 1) is processed in an output tensor of shape (j, k, n1) where n1
is the number of derived features maps. The second Inception block builds on top
of this tensor, creating more high-level representation and consequently generating
a multi-dimensional array with n2 features.

The complementary use of deep learning-based methods are different regular-
ization techniques to restrain the parameter space and 1 × 1 convolutions to reduce

Conv  1x1

Conv  3x3

BatchNorm

ELU

Conv  2x2

BatchNorm

ELU

Conv  1x1

BatchNorm

Conv  1x1* 

BatchNorm

ELU

Concatenation
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Figure 4.19: Detailed view of proposed Inception block used in the first two layer
of the overall architecture mentioned in Fig.4.18.
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Figure 4.20: Scatter plot with regression equation and correlation coefficient (a)
relation between Sentinel raw pixels and ground truth is presented, (b) coherence
trend between predicted Sentinel pixels and ground truth.

the model size, offer a light-weight efficient solution to build a complex nonlinear
map between satellite and UAV pixel information.

4.3.6 Experimental Discussion and Results
In this section we perform an experimental evaluation of the proposed method-

ology using data described in previous section, which further enlarged with a simple
data augmentation technique. Firstly, an ablation study, reported in Tab. 4.6, has
been performed in order to highlight the importance of the residual connection and
consequently define the overall structure. Then, results on the test set are discussed
and compared with the non-refined satellite pixels.

4.3.7 Data set Creation
We first processed raw data, in order to create a set of training satellite pixel

samples X = {Xi} with the related ground truth labels Y = {yi} coming from
UAV images. First of all, sentinel data and down sampled drones acquisitions
have been divided in temporal couples. Then, a zero padding operation have been

Table 4.6: Correlation of train set and test set for both network architectures.

Proposed without Residual Proposed with Residual
X-train r 0.74 0.85
X-test r 0.71 0.81
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performed on both maps in order to obtain a rectangular shape dimension on both
samples. Finally, working simultaneously on both pairs of raw data, patches of
3x3 have been extracted constructing a tri-dimensional tensor X ∈ Ri×3×3 and
Y ∈ Ri×1 where Xi,:,: are the training patches with K = 3 × 3 and Yi are the
ground truth. So, Xi,:,: is a training sample with its K neighbors where Xi,1,1 is
the sentinel pixel to be refined and Yi the UAV related sample. Moreover, in order
to enlarge the number of available training examples, a simple data augmentation
process have been applied; considering only one sample i and maintaining fixed the
central sentinel pixel Xi,1,1 and ground truth Yi, it is possible to generate a new
sample rotating the K neighbors pixels. So, from a single sample i it is possible
to produce (K − 2) new samples for each original training data point. After the
samples extraction from raw data, we adopted a simple pipeline of two steps to pre-
process the data. A train test split with a percentage of 20% has been performed in
order to divide the data set tensor X, with shape (968, 3, 3), in a training and test
set. Subsequently, the training set has been processed with the data augmentation
technique just explained, producing a final Xtrain tensor with shape (2520, 3, 3).
It is worth to notice that no re-scaling was necessary due to the intrinsic nature of
NDVI data.

4.3.8 Experimental setting
In this section, we examine the settings of the final network architecture. The

basic RarefyNet, shown in Fig. 5.2, is the result of a careful design aimed at ob-
taining the best performance in terms of accuracy and computational cost. Indeed,
the final model is a light weight model with 16,296 trainable parameters that can
be easily trained with few samples without overfitting. Every inception block, as
depicted in Fig. 4.19, has four different branches with different filter size fn and
dilatation rates.
First of all, the 1x1 convolution halved the number of feature maps in order to be
processed by the following operation with a reduced computational cost. The first
inception block produces for each branch 8 feature maps n1 that are concatenated
in an unique output tensor, after being pre-processed by a batch normalization
layer and a ELU activation function. Equally, the second inception block produces
n2 = 32 filters for each branch that are concatenated in a final tensor that feeds
the global average pooling layer. A fully connected layer with 32 and 1 output neu-
rons processes the output tensor before the addition with the residual connection.
Moreover, a dropout regularization technique with p = 0.2 is placed between the
two fully connected layers in order to regularize the network and produce a much
robust and reliable model. Finally, an output neuron, with a rectified activation
function, closes the head of the network in order to compensate and mitigate the
presence of possible biases.
In order to find the best training hyperparameters for the optimizer, we used 10%
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of the training set to perform a random search evaluation, with few epochs, in order
to select the most promising parameters. Then, after this first preliminary phase,
the analysis has been focused only on the most promising hyperparameters value,
fine tuning them with a grid search strategy. Also, for the optimization process,
particular attention has been given to regularization using Adam with weight decay
[129] with η = 0.01 and L2 norm as loss function.

θt+1 = θt − η√
vt̂ + ϵ

mt − ηwtθt (4.6)

This is a simple fix to the classic updating rule of Adam optimizer, but that has
shown, in our case study, far better results than L2 regularization. In conclusion,
we fed our model with 2520 training samples for 500 epochs with a batch size of
64 while cyclically varying the learning rate value, η with a cosine aneling strategy
and reducing it every time the loss didn’t improve for 10 subsequent epochs. All
tests have been carried out with the TensorFlow framework on a workstation with
64 GB RAM, Intel Core i7-9700K CPU and a Nvidia 2080 Ti GPU.

4.3.9 Quantitative Results
Satellite set of pixels X = {Xi} were divided into training (70%) validation

(10%) and testing (20%). Coherence between the sentinel pixels X and ground
truth pixels Y was evaluated using pearson correlation and regression model which
can be seen in Fig. 4.20(a), which supports our conclusion in [4] that decametric
satellite images are not well correlated with ground truth that describes real state
of the vegetation over the vine yard. On the other hand, predicted sentinel pixels
from our proposed CNN architecture (4.20 (b)), are found to be well correlated
with the ground truth with 81% correlation, which is encouraging to use more fre-
quently available satellite imagery in combination with few available UAV imagery
for vineyard vegetation assessment.

4.3.10 Conclusions
In this work, a convolutional neural network (CNN) based approach was used

to refine the moderate satellite images by using more detailed vegetation maps de-
rived from centimetric UAV imagery over a vineyard. Predicted sentinel pixels and
ground truth were found more coherent with the correlation of r = 0.81 than raw
sentinel pixels. These out comes of our CNN based model encourage us to exploit
the possibility to apply similar methodology to refine more satellite images by using
few UAV images. In this way, monitoring with improved temporal resolution over
the vineyards may be possible using more frequent satellite images in combination
with few UAV images.
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Chapter 5

Research contributions in Multi
Temporal approaches for
Agricultural Remote Sensing

5.1 Improvement in Land Cover and Crop Clas-
sification based on Temporal Features Learn-
ing

For productive land use management, agronomists and agricultural agencies
must understand the use of current land and how to monitor changes over time.
As the spatial and temporal resolution of images from globally available satellites
(such as Sentinel-2) increases, we see new possibilities for using freely available
multi-spectral optical images for research, with decametric spatial resolution and
for more routine revisits for remote sensing applications of the field such as crop
classification and land cover (LC&CC), agricultural and environmental monitor-
ing, and management. Although the solutions that exist for cropland mapping can
be divided based on their per-pixel and object basis, a challenge presents itself in
cases of more agricultural crop classes and when these are considered at a larger
scale. In this work, we developed an optimal deep learning framework for pixel-
based LC&CC and implemented it based on Recurrent Neural Networks (RNN)
alongside Convolutional Neural Networks (CNN) using multi-temporal sentinel-2
imagery of central north part of Italy, which’s agricultural system is dominated by
the diversity of different economic crop types. This proposed framework is also
capable of learning time correlation of multiple images which allows a reduction
on stages of manual feature engineering and also on modelling crops phenological
stages. For the study, fifteen classes – including major agricultural crops – were
considered. Other commonly used machine learning algorithms for comparison
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were also tested, such as support vector machine SVM, random forest (RF), Kernal
SVM and gradient boosting machine (XGBoost). Compared to existing mainstream
methods, our proposed Pixel R-CNN, with an overall accuracy of 96.5%, showed
considerable improvement. Thus, this study was able to demonstrate that the Pixel
R-CNN based framework provides a very accurate system of assessing and employ-
ing time series data for multi-temporal classification tasks.
Part of the work discussed in this section 5.1 has been published in "Improve-
ment in Land Cover and Crop Classification based on Temporal Features Learning
from Sentinel-2 Data Using Recurrent-Convolutional Neural Network (R-CNN)"
[139]. My contributions in this work as coauthor are as follows: Conceptualiza-
tion, Data set preparations, Formal analysis, Investigation, Visualization, Writ-
ing—review editing.
In this work, we proposed a unique deep neural network architecture for LC&CC,
which comprises of Recurrent Neural Network (RNN) that extracts temporal corre-
lations from time series of sentinel-2 data in combination with Convolutional Neural
Network (CNN) that analyzes and encapsulate the crops pattern through its filters.
The remainder of this paper is organized as follows. Section 5.1.1 briefs about re-
lated work done for the LC&CC along with an overview of RNN and CNN. Section
5.1.2 provides an overview of the study area and raw data collected and exploited
during the research. Section 5.1.3, 5.1.4, and 5.1.6 provides detailed information of
proposed framework and the training strategies. Section 5.1.7 contains a complete
description of the experimental settings, classification results 5.1.8 and discussion
along with the comparison with previous state-of-the art results. Finally, Section
5.1.10 draws some conclusions.

5.1.1 Background and Related Work
With the global surge in population, there is an ever-increasing demand for

agricultural productivity and precision in land cover and crop classification and
their spatial distribution. It is vital that governments, policymakers, and farmers
improve decision-making processes involved in the management of the agricultural
practices and needs [66]. There is a growing necessity for useful cropland mapping
and monitoring [138] to be developed, as needed for the essential role of agriculture
in the management of our sustainable natural resources. Group on Earth Observa-
tions (GEO), with its Integrated Global Observing Strategy (IGOS), also emphases
on an operational system for monitoring global land covers and agriculture by using
remote sensing imagery.
The current systems in place for developing and maintain land cover and agricul-
tural maps have also benefitted majorly from Satellite and Geographic Information
System (GIS) [19]. Free sourced satellite data is one of the most used sources for
mapping agricultural land and analyzing relevant indices about crop field condi-
tions [238]. With recent advancements like the launch of Sentinel-2 – equipped
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with multispectral imager capable of providing up to 10m per pixel spatial resolu-
tion with five days revisit time – there is more potential for remote sensing domain.
Multi spectral time series data acquired from MODIS and LANDSAT have been
widely used in many agricultural applications such as crop yield prediction [95],
landcover and crop classification [192], leaf area index estimation [92], plant height
estimation [121], vegetation variability assessment [191] and many more. The re-
sults can also be improved by using two different data sources simultaneously to
extract more features. An example of this: Landsat-8 and Sentinel-1 used together
for LC&CC [112].
There are different options available to choose supervised or unsupervised algo-
rithms from, in order to map cropland, and these utilize mono or multi-temporal
images [240, 242]. According to the current evidence, multitemporal images perform
better than mono temporal mapping methods [66, 236]. For crop area estimation,
it is also sufficient to attain imagery that can potentially be used for crucial phe-
nological stages [59, 106]. [256] also showed that reduction in time series length
affects the average accuracy of the classifier. Enhanced Vegetation Index, derived
from 250 meters MODIS-Terra time series data, was used to establish crop patterns
and to classify major crops like cotton, corn, and soybean in Brazil [9].
The feature space for vegetation assessment and monitoring was enriched by the
exploitation and use of different vegetation indices (VIs) which are derived from
various spectral bands [255, 231]. Crop classification makes use of a wide variety of
common features of VIs such as normalized difference vegetation index (NDVI), nor-
malized difference water index (NDWI), enhanced vegetation indexes (EVI). Other
features used are statistical in nature, such as mean, standard deviation, and iner-
tial moment, and also include textural features such grey-level co-occurrence matrix
(GLCM). The accuracy of the algorithms involved can be increased by using ancil-
lary data such as census data, road density or coverage, and elevation. However,
all the features listed above – as well as other phenological metrics – make use of
large volumes of data which may significantly increase computational complexity
in contrast to the accuracy which then by relation has only improved slightly [131].
For this reason, [131] highlights the several feature selection methods that have
been proposed.
In [76], various features have been derived from MODIS time series and best feature
selection has been made using random forest algorithm.
LC&CC can also be classified as pixel based or object based. Blaschke also de-
scribes Object Based Image Analysis (OBIA) to demonstrate that satellite images
can be segmented into homogenous image segments by utilizing high resolution
sensors [17]. Many different object based classifications have been proposed that
pertain to utilization of satellite imagery for production of crop maps [152, 127, 117].

• Temporal feature representation: LC&CC has been the subject of many
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studies in the past, and a common classification approach that is adopted
currently is using VIs time series (derived from remotely sensed imagery) for
extracting temporal features and phenological metrics. There are also several
thresholds and simple statistics based procedures which help in calculating
the time of peak VI, Maximum VI, and other vegetation related metrics [227,
226]. These brought improvements in classification accuracy, as compared
to when using VI features exclusively [201]. In addition to these simpler
methods, more complex ones have also been adapted for extracting temporal
features and addressing the vegetation phenology [196]. A set of functions [58]
can also represent the time series of VI, and these include linear regression
[56], curve fitting functions, and the Markov model [198]. [239] also exploits
the Sigmoid function and it yielded improved results owing to not just the
ease with which phenological features (for vegetation variability characteri-
zation [47] ) but also its robustness. Nonetheless, even though the models
mentioned above provide considerable alternatives and flexibilities in deploy-
ment for assessing vegetation dynamics in fields, there are some practical but
very significant factors which make selecting these methods more difficult.
These practical shortcomings are highlighted by factors depending, mostly,
on external conditions, such as uncertain atmospheric conditions, intra-class
variability, empirical seasonal patterns, among others. Due to this, there is a
need for a proper approach that can take advantage of all the following infor-
mation available from the time series of VI and can finally extract temporal
patterns. Owing to the fact that the architecture proposed in our work is
based on pixel based classification, the following subsections are of note as
they provide relevant studies and descriptions.

• Pixel based crops classification: Khatami et. al. [108] highlights a de-
tailed critical review of the modern supervised pixel-based methods used for
land cover mapping. It was discovered that in terms of overall accuracy (OA)
– with an OA of about 75% - the support vector machine (SVM) for mono
temporal image classification. However, SVM is not only complicated; it is
also demanding for time series multispectral data applications with larger
area classifications. The second, with an OA of 74%, was Neural Networks
(NN) based classifier. Random Forest (RF) bases classifiers is another com-
mon approach for remote sensing applications [65], though it should be noted
that multiple features need to be derived and fed to the RF classifier for more
effective output. One of the newest and most powerful concepts integrated
into mapping is a branch of machine learning known as Deep Learning (DL).
DL can be used to solve a wide range of problems like signal processing,
computer vision, image processing, and natural language processing [116].
A different idea with DL is to break down complex problems into a series
of smaller, more simple mappings, each defined by a different layer of the
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model. In the end, these are composed hierarchically. Thus, it enables us to
not only describe the mapping to output but also the representation involved
as well. There are a plethora of modern models, frameworks, architecture,
and benchmark databases of reference imagery available for this purpose to
enable image classification domain.

• Neural networks (NNs): Convolutional Neural Networks (CNNs) date
back decades [115], emerging from the study of the brain’s visual cortex [87]
and classical concepts of computer vision theory [212], [46]. Since the 1990s,
these have been applied successfully in image classification [115].
Sequence data analysis is an important aspect in many domains, ranging from
natural language processing, handwriting recognition, image captioning, to
robot automation. In recent years, Recurrent Neural Networks (RNNs) have
proven to be a fundamental tool for sequence learning [209], allowing to rep-
resent information from context window of hundreds of elements. Moreover,
research community has over the years come up to different techniques to
overcome difficulty of training over many time steps. Applications of CNNs,
RNNs, and LSTM in the image classification domain are previously discussed
in Chapter 3.

5.1.2 Study Area and Data
The study site near Carpi, Emilia-Romagna, situated in center-north part of

Italy with central coordinates 44◦47′01′′N, 10◦59′37′′E was considered for LC&CC
shown in Figure 5.1. The Emilia-Romagna region is one of the most fertile plains of
Italy. Area almost 2640 km2 was considered which covers diverse crops land. The
major crop fields in this region are Maize, Lucern, Barley, Wheat, and Vineyards.
The yearly averaged temperature and precipitation are 14◦C and 843 mm for this
region. Most of farmers practice single cropping in this area.

Table 5.1: Bands used in this study.

Bands used Description Central
wavelength
(µm)

Resolution
(m)

Band 2 Blue 0.49 10
Band 3 Green 0.56 10
Band 4 Red 0.665 10
Band 8 Near infrared 0.705 10
NDVI (Band8-Band4)/ (Band8+Band4) - 10

To know about the spatial distribution of crops, we deeply studied Land Use
Cover Area frame statistical Survey (LUCAS) and extracted all the information
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Figure 5.1: The study site is located in Carpi, region Emilia-Romagna is shown
with the geo-coordinates (WGS84). RGB image composite derived from sentinel-2
imagery acquired in August-2015 is shown and the yellow marker showing geo-
locations of ground truth land cover extracted from Land Use and Coverage Area
frame Survey (LUCAS-2015).

we need for ground truth data. LUCAS was carried out by Eurostat to be able to
monitor the agriculture, climate change, biodiversity, forest and water for almost
all over the Europe [113]. The ground truth data was prepared using technical
reference documents of LUCAS-2015. Quantum Geographic Information System
(QGIS), open-source software for visualization, editing and analysis of geographi-
cal data, was used for importing spatial information of the crops and land cover
types as well the geo-coordinates for the regions that were considered in the study
segment. Pixels were selected manually by overlapping the LUCAS data and the
images, which allowed a considerable amount of ground truth pixels to be extracted
for training and testing the algorithm. Twin polar-orbiting satellites, part of the
Sentinel-2 mission, launched by European Space Agency (ESA) in 2015 can be
used for various application areas such as monitoring natural disasters, detecting
land cover change changes, monitoring forest, and perhaps most importantly in
agricultural management and monitoring.

It is equipped with multi-spectral optical sensors that captures 13 bands of dif-
ferent wavelengths. We used only high resolution bands that has 10meter/pixel
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Table 5.2: Sentinel-2 data acquisition.

Date Doy Sensing Orbit # Cloud pixel
percentage

7/4/2015 185 22-Descending 0
8/3/2015 215 22-Descending 0.384
9/2/2015 245 22-Descending 4.795
9/12/2015 255 22-Descending 7.397
10/22/2015 295 22-Descending 7.606
2/19/2016 50 22-Descending 5.8
3/20/2016 80 22-Descending 19.866
4/29/2016 120 22-Descending 18.61
6/18/2016 170 22-Descending 15.52
7/18/2016 200 22-Descending 0

resolution as shown in Table 5.1. It has also short revisit time (10days at the
equator and 5 days with twin satellites (Sentinel-2A, Sentinel-2B). Its popularity
in remote sensing is due to the full range of free data sources that are available and
the key features that it possesses, such as free access to data products available
at the ESA Sentinel Scientific Data Hub and with reasonable spatial resolutions
(which is 10m for Red, Green, Blue and Near Infrared bands), reasonable spectral
resolution, and high revisit times amongst others. In our study, we used ten mul-
titemporal sentinel-2 images reported in Table. 5.2, which are well co-registered
from July-2015 to July-2016 with close to zero cloud coverage. We made the initial
image selection based on cloudy pixel contribution at the granule level. The initial
image selection was performed based on the cloudy pixel contribution at the gran-
ule level. This pre-screening was followed by further visual inspection of scenes and
resulted in multi-temporal layer stack of 10 images. Sentinel Application Platform
(SNAP) v5.0 along with sen2core v 2.5.1 were used to apply radiometric and geo-
metric corrections to acquire Bottom of Atmosphere (BOA) Level 2A images from
Top of Atmosphere (TOA) Level 1C. Further details about geometric, radiometric
correction algorithms used in sen2cor can be found in [180]. Bands with 10 me-
ter/pixel along with the derived Normalized Difference Vegetation Index (NDVI)
were used for experiments as shown in Table 5.1.

5.1.3 Convolutional and Recurrent Neural Networks for
pixel based crops classification

A single multi-temporal, multi-spectral pixel can be represented as a two-dimensional
matrix X(i) ∈ Rt∗b where t and b are the number of time steps and spectral bands,
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respectively. We aim to use the two dimensional matrix X tocompute(i) a proba-
bility distribution F (X(i)) consisting of K probabilities, with K equivalent to the
number of classes. To achieve this, we propose a compact representation learning
architecture composed of three main building blocks:

• Time correlation representations - this operation extracts temporal cor-
relations from multi-spectral, temporal pixels X(i) exploiting a sequence-
to-sequence recurrent neural network based on Long Short-Term Memory
(LSTM) cells. A final Time-Distributed layer is used to compress and main-
tain a sequence like structure, preserving the multidimensionality nature of
the data. In this way, it is possible to simultaneously take advantage of
temporal and spectral correlations.

Figure 5.2: An overview of Pixel R-CNN model used for classification. Given a
multi-temporal, multi-spectral input pixel X(i), the first layer of LSTM units ex-
tracts sequences of temporal patterns. A stack of convolutional layers hierarchically
processes the temporal information.

In modern time series data analysis, RNNs are commonly used owing to out-
standing results achieved in their use in many fields and applications over the
years. Considering the simplest RNN, single-layered, (shown in Fig. 5.3), it
has similarities to a Feedforward neural network, except it also has a connec-
tion going backwards. The single layer is not only fed an input x(i), it also
receives h(i) (cell state) which is equal to the output neuron itself , y(i). In
this way, at each time step t the recurrent layer receives its own input x

(i)
t as
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well as an output from the previous time steps. This is also made possible by
a sort of intuitive ingrained memory that has an influence on all subsequent
outputs. In this example, it is straightforward to compute a cell’s output as
shown in Eq. 5.1.

y
(i)
t = ϕ(x(i)

t · Wx + y
(i)
(t−1) · Wy + b) (5.1)

where, in the context of this research, x
(i)
t ∈ R(1∗b) is a single time step of

a pixel with ninputs equal to the number of spectral bands b. y
(i)
t and y

(i)
(t−1)

are the output of the layer at time t and t − 1, respectively, Wx and Wy are
the weights matrices. It should be pointed out that although yt and x

(i)
t may

be comprised of an arbitrary number of elements noutputs , the representation
Fig. 5.3 does not change. The depth dimension simply hides all the neurons.
Unfortunately, the basic cell described above has many major limitations.
The most significant one is that during the training stage, the loss function
gradient fades away over time. Due to this, we adopted a more elaborated
cell known as peephole LSTM unit for time correlation representation; see
Fig. 5.4. This improves further on a concept proposed by Sepp Hochreiter
and Jurgen Schmidhuber in 1997. The main concept behind this is to enable
the network so that it learns what to use for the current state h(t), what to
store in a long term sate, what to throw away c(t), and to understand that, for
the basic unit, h(t) and y(t) are equal. That is performed with simple element-
wise multiplications working as ”valves” for the fluxes of information. Fully
Connected (FC) layers, receiving as input the current input state x(t) and the
previous short-term memory term h(t−1), control the elements , V1, V2 and

Figure 5.3: A recurrent layer and its unrolled through time representation. A multi-
temporal, multi-spectral pixel X(i) is made by a sequence of time steps, x

(i)
t , that

along the previous output h(i) feed the next iteration of the network.
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Figure 5.4: LSTM with peephole connections. A time step t of a multi-spectral
pixel x

(i)
t is processed by the memory cell which decides what to add and forgot in

the long-term state c(t) and what discard for the present state y
(i)
t .

V3. Moreover, for the peephole LSTM cell, the previous long-term state c(t−1)
is added as an input to the FC of the forgot gate,V1, and the input gate,
V2. Lastly, the FC of the output gate is fed the current long-term state ct as
input. All “gates controllers” work with sigmoid as activation functions (green
boxes), instead of relying on tanh ones to process the signals (red boxes). So,
a peephole LSTM block’s signals can be summarized as follows: it has three
signals for input and output; two for the standard input state x(t) and one
cell output y(t). Here, the long and short term states are c and h respectively,
and through its internal controllers and valves, the unit can provide these
with useful information. Formally, as for the basic cell seen before, Eq (2).
Eq (7). summarizes how to compute the cell’s long-term state, its short-term
state, and its output at each time step for a single instance.

i(t) = σ(W T
ci · c(t−1) + W T

hi · h(t−1) + W T
xi · x

(i)
(t) + bi) (5.2)

f(t) = σ(W T
cf · c(t−1) + W T

hf · h(t−1) + W T
xf · x

(i)
(t) + bf ) (5.3)

o(t) = σ(W T
co · c(t) + W T

ho · h(t−1) + W T
xo · x

(i)
(t) + bo) (5.4)

g(t) = tanh(W T
hg · h(t−1) + W T

xg · x
(i)
(t) + bg) (5.5)

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t) (5.6)
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y(t) = h(t) = o(t) ⊗ tanh(c(t)) (5.7)

In summary, a first layer of LSTM is used to process multi-temporal and
multi-spectral X(I) which yields a cumulative output Y

(i)
(lstm). In the end of the

process, a TimeDistributedDense layer is used to execute a Dense function,
with the same weights, for all outputs attained over the time. This also
preserves the multidimensionality of the processed data. Eq.(8).

FtimeD(Flstm(X(i))) = (W · Y
(i)

(lstm) + B) (5.8)

• Temporal pattern extraction - This comprises of a series of convolutional
operations and rectifier activation functions, which map each of the elaborated
spectral and temporal patterns, non-linearly onto higher dimensional repre-
sentations. Thus, using a cascade of filters that extract meaningful features,
RNN output temporal sequences are processed and finalized for the successive
stage. Of these layers, the first one extracts a 2-dimensional tensor for each
instance. After this, in the second operation, each of the tensors is mapped
onto higher-dimensional space. This is executed by using two convolutional
operations, built atop each other, that extract more abstract representations
gradually by applying launched filters in a hierarchical order. The temporal
patterns extraction, for the first convolutional layer is expressed, as Fconv1.

Fconv1(FtimeD(F (i)
lstm)) = max(0, W1 ∗ Y

(i)
(lstm) + B1) (5.9)

where W1 and B1 represent filters and biases, respectively, and ’∗’ is the con-
volutional operation. W1, contains n1 filters with kernel dimension f1 x f1 x
c, where f1 is the spatial size of a filter and c is the number of input chan-
nels. The activation function for both of the layer units has been chosen as
Rectified Linear Unit (ReLU), max(0,x), as common for CNNs. Conclusively,
the process is summarized as such: the TimeDistributedDense layer’s output
Y

(i)
timeD feeds a stack of convolutional networks which gradually reduce the first

two dimensions, and slowly work on extracting the higher level representa-
tions and thus generating high-dimensional arrays. In addition, with the n1
and n2 filters common across all units, in order to execute the same operation
with a likely-sized dense fully connected layers, we would need a far greater
number of parameters and computational power. The synergy of CNN and
RNN presents an optimal and more efficient method of elaborating the overall
temporal pattern.

• Classification - this final operation maps the feature space with a probability
distribution F (X(i)) with K different probabilities, where K, as previously
stated, is equal to number of classes. At the end of the process, Y

(i)
conv2 the

extracted feature vectors are mapped onto a probability distribution of K
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probabilities, with K being set equal to the number of the classes. This is
done by performing a weighted sum and consequently a SOFTMax activation
function.

p̂k = σ(s(x))k = exp sk(x)∑︁K
j=1 exp sj(x)

for j = 1.., K (5.10)

where s(x)= W T .Y (i)
conv2 + B is a vector containing the scores of each class

for the input Y
(i)

conv2. During the training process, the Weights W and Bias B
are learned in a system that allows for the classification of the high dimen-
sional space arrays into K different classes. The estimated probability of an
extracted feature vector Y

(i)
conv2 belonging to class K, given the scores of each

class for the particular instance, is denoted by p̂k .

The complete list of operations makes up a compact, lightweight architecture
that can map, non-linearly, the multi-temporal information with its intrinsic nature,
and attain substantially better results as compared to the previous state-of-the-art
solutions. The present architecture was inspired by mental imagery studies of the
human brain [141], with the images being a form of inner neural representation.
Also, the combined practical use of RNN and CNN allows knowledge representation
to be distributed across the whole model thus allowing one of the most significant
characteristics of deep learning known as distributed learning to be exploited di-
rectly. This model, dubbed Pixel R-CNN, is depicted in Fig. 5.2.

5.1.4 Network Training
The overall mapping function F can be learned through the estimation of net-

work parameters Θ of the three different model parts. This can be achieved by
reducing the loss between the pixel class prediction F (X(i)) and the respective
ground truth y(i). Thus, provided with true class sets {yi} and the respective data
set with n pixel samples {Xi}, the categorical cross-entropy can be used as the loss
function:

J(Θ) = −1/n
n∑︂

i=1

K∑︂
k=1

y
(i)
k log(p̂(i)

k ) (5.11)

where y
(i)
k cancels all classes loss except for the true one. Using AMSGrad optimizer

[172], which is an adaptive learning rate method modifying the basic ADAM opti-
mizer algorithm [109], we can also minimize Equation 5.11. The overall algorithm
update rule without the debiasing step is:

mt = β1mt−1 + (1 − β1)gt (5.12)
vt = β2vt−1 + (1 − β2)g2

t (5.13)
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v̂t = max(v̂t−1, vt) (5.14)

θt+1 = θt − η√
v̂t + ϵ

mt (5.15)

The exponential decay of the gradient and the gradient squared are represented
by eq. 5.13 and eq. 5.14, respectively. Instead, with the Eq. 5.15., keeping a
higher vt term results in a much smaller learning rate, η , fixing the exponential
moving average and preventing to converge to a sub-optimal point of the cost
function. We used a technique called cosine aneling to vary the learning rate value
between certain boundary values in a cyclical fashion [204]. It is possible to attain
this value through a preliminary training procedure, whilst increasing the learning
rate linearly and simultaneously observing the loss function value. In the end, we
insert our only regularization methodology, known as “Dropout” [207], in the time
representation stage between the LSTM and the Time-Distributed layer. By this
simple adjustment, we can train more robust temporal patterns – which are also
noise-resilient - in the extraction stage. Without the hassle of relying on temporal
activations, we can use the CNN and achieve vastly improved abstraction of the
generated representations that distribute knowledge across all the available units.

5.1.5 Data set preparation
We processed raw data to create a set of n pixel samples X ={Xi} with re-

lated ground truth labels Y={yi}. Then, we applied Principal Component Anal-
ysis (PCA) – one of the most popular dimensionality reduction algorithms – to
do a visual inspection of the data set and to project the training set onto a lower
tridimensional hyperplane. Lastly, a discussion of the quantitative and qualitative
results accompanied by a detailed description of the architecture settings is also
presented. In order to find the devised architecture, the sample pixels need to be
extracted from the raw data and then reordered. So, the first RNN stage entails
that data points are collected in a slice of time series as needed. In order to achieve
successive pre-processing pipeline, we separated the labeled pixels from the raw data
and divided them into chunks of data to form a tri-dimensional tensor X ∈ Ri×t×b.
. In Fig. 5.5, a visual representation of the data set tensor X generation, where
fixing the first dimension Xi,:,: there are the individual pixel samples X(i) with t = 9
time steps and b = 5 spectral bands. However, it should be noted that the number
of time bands and steps are chosen arbitrarily based on the availability of raw data.

We pre-processed the data by adopting a simple two-step pipeline. Stratified
sample was applied to the data set tensor X to divide it with the shape (92116,
9, 5), in a training and test set. This is an important step, because of the natural
unbalanced number of instances per class in the data set Table . 5.3, and it preserves
the same percentage in the two sets. After selecting a split percentage for the
training of 60%, we obtained two tensors Xtrain and Xtest with shape (55270, 9,
5) and (36846, 9, 5), respectively. We also adopted standard scaling (x − µ))/σ, a
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t0 t1 t9

W

H

X(i)

Figure 5.5: Overview of the tensor X ∈ Ri×t×b generation. The first dimension i
represents the collected instances X(i), the second t the different time steps and b
the number of spectral bands.

Table 5.3: Land cover typyes contribution in the reference data.

Class Pixels Percentage

Tomatoes 3020 3.20%
Artificials 9343 10.14%
Trees 7384 8.01%
Rye 4382 4.75%
Wheat 12826 13.92%
Soya 5836 6.33%
Apple 849 0.92%
Peer 495 0.53%
Temp Grass 1744 1.89%
Water 2451 2.66%
Lucern 17942 19.47%
Drum Wheat 1188 1.28%
Vineyard 6110 6.63%
Barley 2549 2.76%
Maize 15997 17.37%
Total 92116 100%

common practice to facilitate the training, to normalize the two sets of data points.

82



5.1 – Improvement in Land Cover and Crop Classification based on Temporal Features Learning

Figure 5.6: Visual representation of the data points projected in the tri-dimensional
space using PCA. The three principal components taken into account preserve
64.5% of the original data set variance.

5.1.6 Dataset Visualization
For exploring and visualizing the generated points, we used the Principle Com-

ponent Analysis (PCA), which reduces the high dimensionality of the data set. For
this operation, we took the features of our data points to be components t and b.
By applying Singular Value Decomposition (SVD) and consequently selecting the
first three principal components , Wd = (c1, c2, c3), we were able to plot the different
classes in a tri-dimensional space, achieving a visual representation of the projected
data points. Fig. 5.6 shows the projected data points as plotted in a tri dimensional
space. It’s worth mentioning how much intra-class variance is present, except for
the water bodies. Majority of the classes lied on more than one hyperplane, which
also accounts for the difficulty of the task underhand and the studied data set. It
was also possible to perform an analysis of the explained variance ratio varying the
number of dimensions. In Fig. 5.7 it should be noted that on getting closer to
higher components, the explained variance trends stop growing fast. This can be
considered due to the intrinsic dimensionality of the data set. Thus consequently,
it can be assumed reasonably that the reduction of the number of time steps would
not greatly affect the overall results.
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Figure 5.7: Pareto Chart of the explained variance as a function of the number of
components.

5.1.7 Experimental settings
We will examine the final network architecture settings in this section. The

basic Pixel R-CNN framework – showcased in Fig 5.2 – was obtained as a result
of careful consideration and design aimed at obtaining optimal performances in
terms of both accuracy and computation. The final model, equipped with 30, 936
trainable parameters (less than 1 MB) is lightweight, fast, and more accurate than
the present high level modern solutions available. Following the suggested approach,
we used only an RNN layer with 32 output units for peephole LSTM cell randomly
turned off, having a probability of p = 0.2 with a Dropout regularization operation.
The peephole LTSM showed an improvement for all experiments, particularly in
overall accuracy with around 0.8% over the standard LSTM cells. Then, the Time
Distributed Dense transforms Y

(i)
(lstm) in a 9x9 square matrix that feed a stack of

two CNN layers with a number of features n1 = 16 and n2 = 32, respectively. A
one-dimensional array is produced with the first layer as a filter size of f1=3 and
the second as f2 = 7. Finally, Y

(i)
(conv2) is mapped to the probability of the K = 15

different classes using a fully connected layer with a SoftMax activation function.
We adopted ReLU as activations functions for the layers, except for the final one. We
used 10% of the training set for performing random search evaluations, with a few
epochs, to select the most promising parameters. This was in a bid to find the best
training hyperparameters for the optimizer. After this preliminary phase, we shifted
the analysis to be focused solely on the most promising hyperparameters’ value, fine
tuning them with a grid search strategy. So, for the AMSGrad optimizer we set
β1 = 0.86, β2 = 0.98 and ϵ = 10−9. Then, finally, while observing the loss function,
to estimate the initial value of this vital hyperparameter, we linearly increased
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the learning rate η as was previously shown with a preliminary procedure. So
conclusively, while cyclically varying the learning rate value using a cosine aneling
strategy, we fed our model more than 62000 samples for 150 epochs with a batch
size of 128. The testing was done with the TensorFlow framework operating on a
workstation with the following specifications: an Intel Core i7-9700K CPU, with
64GB RAM, and an NVIDIA 2080Ti GPU.

5.1.8 Classification Results
The classifier performance was evaluated with user’s accuracy (UA, overall accu-

racy (OA), producer’s accuracy (PA), and the most common metric for classification
tasks – shown in confusion matrix see Table 5.4 – the kappa coefficient (K) [112,
40, 42, 203]. The overall performance of our proposed Pixel R-CNN architecture,
indicated by overall accuracy (OA), is calculated as the ratio between correctly
classified total number of pixels and total ground truth pixels for all classes. The
pixels that were classified correctly for each class are denoted as the diagonal ele-
ments of the matrix. We calculated the individual class accuracy by dividing the
number of correctly classified pixels in each category by the total number of pixels
in each corresponding row, referred to as the User’s accuracy, and corresponding
columns, referred to as Producer’s accuracy. PA indicates the probability that a
certain crop type on the ground is classified as such. UA represents the probability

Figure 5.8: (a). Final classified map using Pixel R-CNN, (b). zoomed in region of
the classified map, and (c). Raw Sentinel-2 RGB composite of the zoomed region.

that a pixel classified in given class actually belongs to that class. We were able to
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achieve OA=96.5% and Kappa=0.914 with 15 number of classes with our proposed
pixel-based R-CNN method. This was for a diverse and large-scale area, and thus it
exhibited many improvements as compared to the other mainstream methods. The
highest UAs were for water-bodies and trees, with 99.1% and 99.3% respectively.
This is mainly because of the intra-class variability and minor NIR band reflectance
changes over time, although it was learnt quickly by our Pixel R-CNN framework.
Most of the classes, including the significant crop types such as Wheat, Lucern,
Maize, Vineyard, Soya, Rye, and Barley, had more than 95% UA. The worst class
was Grassland, classified with PA = 65% and UA = 63%. The primary confusion
of grassland class was with Lucern and Vineyard. On the other hand, Artificial
Class, which is comprised of roads, buildings, and urban areas, and represents pixel
reflectance with a mixed nature, was detected accurately with UA = 97% and PA
= 99%.

86



5.1 – Improvement in Land Cover and Crop Classification based on Temporal Features Learning
Ta

bl
e

5.
4:

O
bt

ai
ne

d
co

nf
us

io
n

m
at

rix
.

G
ro

un
d

Tr
ut

h
C

la
ss

ifi
ed

C
la

ss
es

To
ta

l
PA

T
M

A
R

T
R

RY
W

H
SY

A
P

P
R

G
L

W
T

LN
D

W
V

Y
B

L
M

Z

To
m

at
oe

s
(T

M
)

10
96

0
0

0
4

11
0

0
0

0
0

0
0

0
0

11
11

98
%

A
rt

ifi
ci

al
(A

R
)

0
37

52
8

1
2

0
2

1
9

9
12

2
6

0
4

38
08

99
%

Tr
ee

s
(T

R
)

0
31

29
67

1
0

0
0

3
10

0
17

0
2

0
0

30
31

98
%

R
ye

(R
Y

)
0

1
0

19
60

25
0

0
0

0
0

0
0

0
5

0
19

91
98

%
W

he
at

(W
H

)
38

7
0

22
1

49
81

6
0

0
10

0
14

1
2

38
42

53
60

93
%

So
ya

(S
Y

)
3

0
0

0
3

12
26

0
0

0
0

11
0

3
0

41
12

87
95

%
A

pp
le

(A
P

)
0

0
0

0
0

0
14

2
0

0
0

2
0

21
0

0
16

5
86

%
Pe

er
(P

R
)

0
0

11
0

0
0

27
12

4
0

0
0

0
6

0
0

16
8

73
%

G
ra

ss
la

nd
(G

L)
0

39
3

7
0

1
0

0
23

9
0

72
0

3
0

4
36

8
65

%
W

at
er

(W
T

)
0

0
0

0
0

0
0

0
0

90
6

0
0

0
0

0
90

6
10

0%
Lu

ce
rn

(L
N

)
0

0
0

2
0

2
0

0
48

0
72

50
0

26
0

10
73

38
98

%
D

ur
um

.W
he

at
(W

)
0

4
0

0
0

0
0

0
2

0
0

32
2

0
0

0
32

8
98

%
V

in
ey

ar
d

(V
Y

)
11

7
4

4
11

1
50

1
21

0
93

0
21

39
0

7
23

49
91

%
B

ar
le

y
(B

L)
0

1
0

2
24

0
0

0
1

0
1

0
0

81
7

0
84

6
96

%
M

ai
ze

(M
Z)

17
14

0
0

10
24

0
3

10
0

16
1

6
0

76
89

77
90

99
%

To
ta

l
11

65
38

56
29

93
21

98
50

60
12

71
22

1
13

2
35

0
91

5
74

88
32

6
22

14
86

0
77

97
U

A
94

%
97

%
99

%
89

%
98

%
96

%
64

%
93

%
68

%
99

%
96

%
99

%
96

%
95

%
98

%

Ta
bl

e
5.

5:
C

om
pa

ris
on

w
ith

re
ce

nt
st

ud
ie

s.

St
ud

y
D

et
ai

ls

Se
ns

or
Fe

at
ur

es
C

la
ss

ifi
er

A
cc

ur
ac

y
C

la
ss

es

O
ur

Se
nt

in
el

-2
B

O
A

R
efl

ec
ta

nc
es

P
ix

el
R

-C
N

N
96

.5
0%

15
R

uß
w

ur
m

an
d

K
ör

ne
r[

18
8]

,2
01

8
Se

nt
in

el
-2

T
O

A
R

efl
ec

ta
nc

es
R

ec
ur

re
nt

E
nc

od
er

s
90

%
17

Sk
ak

un
et

al
.

[2
03

],
20

16
R

ad
ar

sa
t-

2
+

La
nd

sa
t-

8
O

pt
ic

al
+

SA
R

N
N

an
d

M
LP

s
90

%
11

C
on

ra
d

et
al

.
[4

2]
,2

01
4

R
ap

id
E

ye
Ve

ge
ta

tio
n

In
di

ce
s

R
F

an
d

O
B

IA
86

%
9

Vu
ol

o
et

al
.

[2
24

],
20

18
Se

nt
in

el
-2

O
pt

ic
al

R
F

91
-9

5%
9

H
ao

et
al

.
[7

6]
,2

01
5

M
O

D
IS

St
at

+
ph

en
ol

og
ic

al
R

F
89

%
6

J.
M

.P
eñ
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For class Apple, obtained PA was 86% while UA = 68% which shows that 86%
of the ground truth pixels were identified as Apple but only 68% of the of the pixels
classified as Apple in the classification were actually belongs to class Apple. Some
Pixels (see Table. 5.4 ) belongs to Peer and Vineyard were mistakenly classified as
Apple.
We also compared our approach with other recent multi-temporal classifications.
We have shown the final classified map, with an example of the zoomed part and
the actual RGB image, in Fig. 5.8. To our knowledge, there isn’t a multi-temporal
benchmark dataset that compares the classification approaches on an equal foot-
ing. This is because some of the data sets available online for classification don’t
have ground truth of other land cover types such as Water bodies, Artificial land
(build-up) etc. Various dependencies have to be considered such as the extent of
the considered study area, the number of classes to be evaluated, and the number
of evaluated ground truth samples and this makes a direct quantitative comparison
very difficult. However, we provided a well related comparison of the study do-
main by their applied approaches, number of considered classes, used sensors and
achieved overall accuracy in Table. 5.5. Hao et al. [76], achieved 89% OAA by
using RF classifier on the extracted phenological features from MODIS time series
data. It was determined that, provided the data’s temporal resolution is sufficient,
it is possible to achieve good classification accuracies with handcrafted classification
algorithms and features. Still, the MODIS sensor data is not apt for areas of large
homogenous regions because of its low spatial resolution (500m). By using high
spatial resolution data from RapidEye sensor, Conrad et al [42] achieved 90% OA
for the nine considered classes. [203], shows features from optical and SAR were
extracted and used by the committee of neural network of multilayer perceptrons
to classify a diverse agriculture region. Recurrent encoders were employed in [188]
to classify a large area for the 17 considered classes. High spatial resolution (10m)
Sentinel 2-data was used and achieved 90% of OAA, thus demonstrating success-
fully that recurrent encoders are useful in capturing the temporal information of
spectral features, which leads to higher accuracies. Using the RF classifier, though
nine classes being considered, and the Sentinel-2 data, Voulo et al [224] achieved a
maximum 95% classification accuracy.

5.1.9 Non deep learning classifiers
We also tested four more traditional classifiers on the same dataset for com-

parison: Support Vector Machine (SVM), Kernal SVM, Random Forest (RF), and
XGBoost. All of these are quite considered as baseline models for classification tasks
[53] and are quite well known for high performance. SVM is capable of a nonlin-
ear classification, making use of the kernel functions by separating hyperplanes. A
widely used RF classifier is an ensemble of decision trees based on bagging approach
[197]. XGBoost is built on a gradient of framework of decision trees, something
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that garnered a lot of attention in the machine learning community. Both have
been used extensively in remote sensing applications. [131, 76, 65]. Each classi-
fiers involves hyper parameters which need to be tuned at the time of classification
model development.

Table 5.6: Comparison of Pixel R-CNN with non deep learning classifiers.

Model Parameters OA

SVM
C: 0.01, 0.1, 1, 10, 100, 1000

79.50%Kernel: linear

Kernel SVM
C: 0.01, 0.1, 1, 10, 100, 1000

76.20%Kernel: rbf
Gamma: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8

Random Forest n_estimators: 10, 20, 100, 200,
500 max_depth: 5, 10, 15, 30
min_samples_split: 3, 5, 10, 15, 30
min_samples_leaf: 1, 3, 5, 10

77.90%

XGBoost

learning_rate: 0.01, 0.02, 0.05, 0.1

77.60%

gamma: 0.05, 0.1, 0.5, 1
max_depth: 3, 7, 9, 20, 25
min_child_weight: 1, 5, 7, 9
subsamples: 0.5, 0.7, 1
colsample_bytree: 0.5, 0.7, 1
reg_labda: 0.01, 0.1, 1
reg_alpha: 0, 0.1, 0.5, 1

Pixel R-CNN Mentioned in experimental settings 96.50%

We performed a “random search” approach to optimize the major hyperparam-
eters. The bold letters in Table. 5.6 denote the best values of hyperparameters, as
selected based on classification accuracies achieved for the validation set. Table. 5.6
also reports other details about the hyperparameters and the achieved overall accu-
racy (OA) for all the other traditional classifiers that were tried out (SVM, Kernal
SVM, RF, and XGBoost). The highest OA out of these non-deep learning classi-
fiers was for SVM, which had OA = 79.6%. It was followed closely by RF, Kernel
SVM, and XGBoost, which had 77.5%, 76.8%, and 77.2% respectively. However,
our proposed Pixel R-CNN based classifier attained an OA score of 96.5%, which
is far better than the non-deep learning classifiers. Indeed, handling large data sets
and learning temporal and spectral correlations is a challenge for the traditional
non-deep learning classifiers. With the advent of deep learning models in remote
sensing domain, there is increased flexibility which means that temporal features
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can be exploited in such a way that the amount of information gained is increased,
thus yielding better and more reliable results for classification tasks.

5.1.10 Conclusion and future works
In this work, we developed a unique deep learning architecture with Recurrent

and Convolutional Neural Network called Pixel R-CNN to perform Land Cover
and Crop Classification by using multitemporal decametric sentinel-2 imagery of
central north part of Italy. Our framework promises significantly better results as
compared to mainstream methods, attaining a 96.5% OA with Kappa = 0.914 for
15 number of classes. Besides, we also tested the other non-deep learning classifiers
such as SVM, RF, SVM Kernel, and XGBoost, all widely in use. In comparing the
results with our own proposed classifier and indeed, the comparison revealed our
method to be much more effective, more so when the classification accuracy can
be increased through the temporal feature extraction. One significant advantage
of our architecture is that by learning the time correlation of multiple images, it
is capable of performing automated feature extraction. This, thus, reduces the
modelling crops’ phenological stages and the manual feature engineering involved.
Nonetheless, the method is not exclusively limited to classification tasks and can
be extended to other applications that need the extraction of temporal features.
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5.2 Assessment of Biophysical Parameters of Crops
using Sentinel-2 Imagery

For maize crop, examining biophysical parameters such as canopy height and
above-ground biomass are the important agro-ecological indicators that are used
in describing the crop growth, photosynthetic efficiency and carbon stock. Remote
sensing is a broadly used approach and proved to be the most relevant source of
information that can be used to observe vegetative conditions over the agricultural
fields. In this work, sentinel-2 multispectral imagery is used to determine spec-
tral vegetation indices covering the different maize growth period by using some
visible bands, as well as the near-infrared band. The relationship was established
and analyzed between in-field measurements of maize biophysical parameters (such
as the height of the canopy and above ground biomass) and the derived spectral
vegetation indices from remotely sensed imagery using simple linear regression and
Pearson correlation to exploit the possibility of using satellite imagery for estima-
tion of crop biophysical parameters.

Part of the work described in this section. 5.2 has been previously published
in "Analyzing relationship between maize height and spectral indices derived from
remotely sensed multi-spectral imagery" [105].

5.2.1 Introduction and Background
Crop monitoring is an essential element in precision agriculture since it is used

to assess crop conditions over time, to foretell irrigation time, and predict total
yield. Besides, understanding crop growth model and its relevant biophysical pa-
rameters such as height and biomass are essential in crop monitoring to achieve
better results in agricultural productions [89, 35, 165]. Canopy height (Hcanopy)
and above-ground biomass (AGB) of crops are two essential biophysical parame-
ters that can be used to evaluate the growth of the crop for the study of precision
agriculture. The Hcanopy and AGB of crops also present important indications on
the light use efficiency, and carbon stocks in agricultural ecosystems [118], that can
be associated with the yield production and their environmental impact. A cost-
effective and quantitative estimation of crop biomass is useful in risk management,
policy-making, and decision-making for the national and global agricultural-related
businesses [15]. There are several methods of obtaining biophysical variables, the
direct one is to acquire the values of crop height and biomass is to measure the plant
height by tape and pluck plants and record the measurements of biomass by using
a conventional method adapted by the agronomists mentioned in [118]. Hence, it
is hectic, labour-intensive and time-consuming activity for agronomic experts and
ecologist to perform long-term measurements of crops spanning over large areas.
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From the last two decades, remote sensing has been emerged as the most valuable
resource in the domain of precision agriculture due to its capability to produce in-
formation about the condition of the crops over regional and global scales. Remote
sensing is a widely adopted approach for agricultural monitoring purposes. It can
be used to measures various spectral vegetation indices and estimate biophysical
variables over extensive croplands. Vertical plant structure is the foremost factor
responsible for the spectral reflectance of vegetative canopies in the visible and
near-infrared (NIR) spectral bands, and studies show that there are considerable
correlations between biophysical parameters and spectral vegetation indices (VIs)
using several combinations of visible, NIR, and shortwave reflectance [25, 26]. Nev-
ertheless, in the past studies, not much work has been carried out about crops
biophysical parameter estimation using satellite imagery due to low spatial and
temporal resolution.
In [175], images obtained from low-resolution satellite image time series (with spa-
tial resolution from 250m to 1000m) have been used for agricultural land monitoring
and management for over three decades. Although it can provide some relevant in-
formation for vegetation monitoring but also has some drawbacks due to the big
pixel dimensions, which leads to biased values of vegetative indicators. In moni-
toring crops, the development and progress of high spatial and temporal resolution
satellite sensors provide new prospects for the researchers to exploit this finely de-
tailed data for numerous applications. Recent satellite such as Sentinel-1 and -2,
SPOT5, QuickBird, WorldView-1 and -2 can provide high-resolution imagery with
a fine spectral and temporal resolution can be used to extract more precise and
reliable information in vegetation monitoring.
Several studies [176, 150, 79] confirmed the concept of estimating maize crop bio-
physical parameters such as height and biomass using UAV imagery. However,
UAV imagery shows some limitations such as difficulty in sensors calibration, strict
flights campaign following crop phenological cycles, labour extensive. Availability
of free moderate resolution satellite imagery, such as Sentinel-2, can be exploited for
estimation of the crops biophysical parameters. Accordingly, the focus of this study
is to compare the several vegetation indices derived from Sentinel-2 multi-temporal
imagery with maize biophysical parameter parameters Hcanopy and AGB. Based
on the analysis in this study, we offer some propositions on how to make full use
of the moderate spatial resolution images obtained from sentinel-2 in agricultural
monitoring such as height and biomass estimation of maize crop.
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5.2.2 Study Area and Data Set

Figure 5.9: The study site of city carpi, region emilia-romagna is shown with the
geo-coordinates (WGS84). RGB image composite derived from sentinel-2 imagery
acquired in August 2018 is shown and the red marker showing location points where
physical observations were taken.

In this study, several maize crop fields shown in Figure.5.9 are chosen from the
carpi, emilia-romagna region situated in the north part of Italy with the central
coordinates 44°39.24′N, 11°5.25′E. The emilia-romagna region is one of the most
fertile plains of Italy. Maize is one of the major crop type in this area, usually
sowed in late May, flowering near early August, and harvested late September. The
mean annual temperature is 14.2 C° with the coldest weather in late December
and January and the hottest in July. The average precipitation during the maize
phenological cycle is 89mm. Sentinel-2 consists of twin polar-orbiting satellite
(sentinel-2A and sentinel-2B) launched by European Space Agency (ESA) in 2015
and 2017 respectively and are used in several application areas such as land cover
detection and classification, natural disaster monitoring, forest monitoring and in
agricultural monitoring and management [194]. It is equipped with multi-spectral
optical sensors which captures 13 bands of different wavelengths shown in Table.5.7.
It has become more popular due to fact that it offers various key features such as,
free data availability at reasonable spatial resolution up to 10m (for Red, Green,
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Blue and Near Infrared bands), short revisit time and has good spectral resolution
among other available free data sources.

Table 5.7: Spectral bands of Sentinel-2.

Spectral Bands Central
Wavelength (µm)

Resolution
(m)

Band 1 (B1) – Coastal 0.443 60
Band 2 Blue 0.49 10
Band 3 Green 0.56 10
Band 4 Red 0.665 10
Band 5 (B5)– Vegetation Red Edge 0.705 20
Band 6 (B6)– Vegetation Red Edge 0.74 20
Band 7 (B7)– Vegetation Red Edge 0.783 20
Band 8 NIR 0.842 10
Band 8A (B8A)– Narrow NIR 0.865 20
Band 9 (B9)– Water vapor 0.945 60
Band 10 (B10)– SWIR 1.375 60
Band 11 (B11)– SWIR 1.61 20
Band 12 (B12)– SWIR 2.19 20

5.2.3 Methodology
In Figure.5.10, overall methodology used in this work is presented. Spectral

bands from multi temporal data products were extracted and atmospheric correc-
tion was performed to all bands using SNAP tool box provided by ESA.

Figure 5.10: Adopted methodology for comparing spectral vegetation indices (VIs)
derived from satellite imagery with biophysical parameters of maize crop..
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5.2.4 Vegetation Indexes
Various vegetation indices reported in Table.5.8 were derived from multi spectral

sentinel-2 imagery. These VIs were calculated as various combination of RGB and
NIR digital numbers associated with their corresponding bands.

Table 5.8: Vegetation Indices Formulation

Vegitation
Indices Formula Source

GLA (2G − R − B)/(2G + R + B)
GNDVI (G − R)/(G + R)

RVI NIR/R
NDVI (NIR − R)/(NIR + R)
EVI G∗∗(NIR − R)/(NIR + C1 ∗ R − C2 ∗ B + L)
WI (G − B)/(R − G)

Where NIR, R, G and B are atmospherically corrected surface reflectance. C1,
C2 are the coefficients of the aerosol resistance term. G∗ is the gain factor for EVI.
Coefficients adopted for sentinel-2 imagery are: G∗ = 2.5, C1 = 6, C2 = 7.5 and
L = 1. Most of these are the indicators of greenness of the vegetation crop that
can be compared with the biophysical variables of crop. In [67, 233], similar VIs
were derived and used for the estimation of leaf area content (LAI), chlorophyll
content and AGB. These VIs have the ability to describe the spectral variability of
vegetation canopies in space. RVI is one of the strong indicator that can provide
spectral variability. Sentinel-2 imagery were acquired (from late May till end of
September) in order to analyze the crop pattern in accordance with the maize crop
phenological period mentioned in Figure. 5.11. The Statistical values reported in
Table. 5.9 were derived by only those sentinel-2 pixels which were spatially and
temporally overlapped with the ground physical measurements. It was noted that
standard deviation of GNDVI and GLA were quite low as compared to other VIs.
EVI and RVI were found to be good descriptors of spatial variability in the study
fields.

5.2.5 Field Measurements
Considering the maize crop cycle shown in Figure. 5.11, four field measurements

were conducted on different dates in the selected 43 field plots mentioned in Figure.
5.9. These dates are subjectively chosen in accordance with the satellite imagery
acquisition dates in order to have reliable comparison for the similar environmental
and crop growth conditions. Each field plot has a large area, almost flat terrain, and
under uniform growing conditions. The geographic position (latitude and longitude)
of all the plots were recorded using a hand-held GPS. In each plot, the heights of four
representative maize plants were measured using a tape. Canopy hieght (Hcanopy)
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for each plot was calculated as the average height (m) of the measured maize plants.
Plant density (D, plant/m2) and AGB was determined according to conventional
method [118]. Statistical measure derived from physical measurements taken on
stage T3 (tasseling and flowering) are reported in Table. 5.10.

Figure 5.11: Maize growth development stages with satellite data acquisition dates
along with field crop height and biomass measurements.

Table 5.9: Basic statistics of the plot-wise spectral vegetation indices (VIs)

Spectral vegetation index Min Max Mean SD

NDVI 0.292 0.75 0.544 0.124
RVI 3.02 6.771 5.103 0.872
EVI 0.284 0.873 0.611 0.163

GNDVI 0.053 0.184 0.123 0.034
WI -0.254 0.391 0.134 0.151

GLA 0.014 0.089 0.051 0.019

5.2.6 Results Assessment
In this section, relative comparison between spectral VIs and maize biophysical

parameters are analyzed. Pearson correlation between all the VIs mentioned in Ta-
ble. 5.11 and maize bio- physical measurements (Hcanopy and AGB) are calculated
for the four different growth stages from T1-T4 shown in Figure. 5.11. It was noted
that the correlation values change significantly with time. Results showed that, at
growth stage T3 (Tasseling and flowering), high correlation were found between
physically measured maize parameters (Hcanopy and AGB) and VIs derived from
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Table 5.10: Basic statistics of field measurements.

Hcanopy
(m)

D
(plant/m2)

AGB
(kg/m2)

Min 1.58 4.35 0.79
Max 3.64 9.7 2.63
Mean 2.46 6.01 1.65
SD 0.47 1.27 0.48

Figure 5.12: False color representation of Vegetation indices (a) GLA ,(b) GNDVI,
(c) RVI, (d) NDVI, (e) EVI, (f) WI derived from sentinel-2 imagery for the study
area.
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satellite imagery as compared to other stages.
Nevertheless, spectral VIs showed less correlation to AGB as compared to Hcanopy.

Figure 5.13: Relationship between field-measured canopy height Hcanopy(m) and
VIs (NDVI, GNDVI, RVI, EVI, WI and GLA) derived from satellite imagery ac-
quired on maize growth stage T3.
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Figure 5.14: Relationship between field-measured biomass (AGB kg/m2) and VIs
(NDVI, GNDVI, RVI, EVI, WI and GLA) derived from satellite imagery acquired
on maize growth stage T3 .
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VIs such as RVI and EVI were found better descriptor for the Hcanopy with maxi-
mum correlation of 0.74, which shows that, VIs derived from high resolution imagery
such as sentinel-2, can be used to estimate maize crop height over the large crop
fields.
Moreover, scatter plots along with linear regression fitting lines for VIs and bio-
physical parameters (Hcanopy and AGB) are shown in Figure. 5.13 and Figure. 5.14
respectively, which revealed that EVI and RVI are more sensitive to Hcanopy than
the AGB.

Table 5.11: Pearson correlation between vegetation indices derived and height and
biomass field measurements for four different maize growth stages.

Pearson
Correlation

T1 T2 T3 T4

RNDV I−Hcanopy 0.55 0.58 0.63 0.57
RNDV I−AGB 0.58 0.59 0.59 0.51

RGNDV I−Hcanopy 0.34 0.42 0.66 0.43
RGNDV I−AGB 0.57 0.63 0.52 0.63

RRV I−Hcanopy 0.61 0.64 0.74 0.65
RRV I−AGB 0.59 0.55 0.51 0.58

REV I−Hcanopy 0.53 0.61 0.74 0.66
REV I−AGB 0.57 0.62 0.61 0.55

RW I−Hcanopy 0.36 0.41 0.51 0.38
RW I−AGB 0.47 0.59 0.48 0.51

RGLA−Hcanopy 0.36 0.52 0.63 0.51
RGLA−AGB 0.47 0.47 0.47 0.5
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Chapter 6

Overall Conclusions and Future
Work

Starting with the aim to take full advantage of advancements in the remote
sensing technology in terms of spectral, spatial and temporal resolution of remote
sensing data and to develop methodologies to address agricultural applications for
improving the efficacy of practices used in farming system. This thesis presents a
collection of work done as a part of doctoral studies in remote sensing using time
series data analysis for several agricultural applications. To be more specific, this
study is comprised of several research tasks and are divided in to two parts. First
part is devoted for the tasks related to precision viticulture. In first task, a de-
tailed analysis and comparison of multispectral imagery of vineyards, provided by
decametric resolution satellite and low altitude UAV platforms, is presented. The
effectiveness of the Sentinel-2 imagery and the high-resolution UAV aerial images
was evaluated by considering the well-known relation between the NDVI and vine-
yard vigour. The results show how, in the case of crops where the inter-row surfaces
involve a relevant portion of the cropland, such as vineyards, the radiometric in-
formation acquired by decametric resolution satellite platforms has difficulties in
properly evaluating crop status and variability. In these situations, the vigour of the
vineyard could often be in discord with the inter-row areas (e.g., grass, plants for
pest and disease integrated control, or soil), leading to biased vineyard vigour as-
sessments from decametric resolution imagery, such as the Sentinel-2 imagery. This
was proved by a detailed analysis of the radiometric unbundled contribution of dif-
ferent elements within the cropland, performed by defining three different NDVI
indices from the high-resolution UAV imagery, considering: (i) the whole cropland
surface; (ii) only the crop canopy pixels; and (iii) only the inter-row terrain pixels.
In this study, the NDVI maps derived from the satellite imagery were found not to
be in accordance with the in-field crop vigour assessment as confirmed by ANOVA
test and the obtained Pearson correlations coefficients values which ranges from 0.29
to 0.55 for three considered parcels. In addition, the satellite-based NDVI maps
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were found to be more related to the NDVI maps computed by the high-resolution
UAV imagery, considering only the pixels representing inter-row surfaces. As a val-
idation, a new type of NDVI map from the UAV imagery, generated by considering
only the pixels representing the vine canopies, was defined. The effectiveness of
this last type of map in describing the observed vineyard vigour was found to be
relevant which is backed by ANOVA tests and the obtained Pearson correlation
coefficients ranges from 0.58 to 0.64 for three vineyard parcels.

Another research problem discussed in this thesis is an automatic coverage path
planning for UGV for hilly vineyard environment. UAV imagery is used to obtain
a Digital Terrain Model (DTM) and Digital Surface Model (DSM), which are then
used in the mask generation to extract the vine rows. The experimental results
show that the work as a whole presents significant contribution in coverage path
planning for UGV in the challenging environment like hilly vineyards that can be
useful for the farmers to manage agricultural tasks.

As concluded earlier in the work of variability assessment of vineyard that NDVI
maps derived from sentinel-2 imagery were not found to be coherent with the refer-
ence data. So another research aim was to make use of the freely available satellite
data for vineyard vegetation assessment. To achieve this, refinement of satellite-
based NDVI maps is performed for vineyard assessment using high resolution UAV
imagery. In this work, a convolutional neural network (CNN) based approach was
used to refine the moderate satellite images by using more detailed vegetation maps
derived from centimetric UAV imagery. Refined NDVI map and ground truth were
found more coherent raw sentinel pixels which was confirmed by the Pearson cor-
relation coefficient R = 0.81. The synergy formed between satellite and UAV can
be more exploited to take full advantages of both platforms and the same approach
can be further extended to other crop types with the similar row formation.

In the second part of the thesis, multi temporal remote sensing data analysis was
performed only considering sentinel-2 satellite platform . A novel and optimal deep
learning framework for pixel-based Land Cover and Crop Classification is developed
and implemented based on Recurrent Neural Networks (RNN) in combination with
Convolutional Neural Networks (CNN) using multi temporal sentinel-2 imagery of
central north part of Italy, which has diverse agricultural system dominated by
economic crop types. Proposed framework is capable of automated features extrac-
tion by learning time correlation of multiple images, which reduces manual feature
engineering and modelling crops phenological stages. Fifteen classes, including ma-
jor agricultural crops were considered in this study. Other widely used traditional
machine learning algorithms such as support vector machine SVM, random for-
est (RF), Kernal SVM and gradient boosting machine also called XGBoost were
also tested for comparison. The overall accuracy (OAA) achieved by our proposed
Pixel R-CNN is 96.5% which shows considerable improvements from the other main-
stream methods. The future direction of this research could be the testing of same
framework on the other regions. There is still need of creating a global benchmark
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data set to test the performance of different classifiers at equal footings.
Estimating biophysical parameters of crops is the very essential for managing

agricultural practices.To this end, spectral vegetation indices were derived from
high resolution satellite (sentinel-2) imagery and compared with the field measured
biophysical pair of variables maize Canopy Height (Hcanopy) and Above Ground
Biomass (AGB). Derived vegetation indices were found well correlated with the
vertical structure such as height during the particular growth period (tasseling and
flowering stage) of maize. It was also noted that considerable correlation was found
between AGB and EVI but it was not consistent for all the crop growth stages. The
results showed that VIs such as EVI and RVI can be used to estimate Hcanopy.
This work also offers some suggestion on how to make use of the freely available
sentinel-2 satellite imagery to estimate the crop physical structure.

Considering the addressed remote sensing application in the field of precision
agriculture, there are some needs and suggestions for future research work. For
example, past archives of satellite-based remote sensing data at moderate to high
spatial resolution and ordinary spectral resolution should be combined with real-
time remote sensing data at high spatial and spectral resolution in order to improve
the decision-making process in precision agriculture. Similarly, more spectral infor-
mation should continue to be exploited to develop new spectral vegetation indices
that concurrently provide an accurate assessment of multiple crop features such as
(LAI, biomass, etc.) and stresses (e.g. water and N; weeds and insects, etc.)
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