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Abstract: The use of Unmanned Aerial Vehicles (UAVs) in viticulture permits the capture of
aerial Red-Green-Blue (RGB) images with an ultra-high spatial resolution. Recent studies have
demonstrated that RGB images can be used to monitor spatial variability of vine biophysical
parameters. However, for estimating these parameters, accurate and automated segmentation
methods are required to extract relevant information from RGB images. Manual segmentation of
aerial images is a laborious and time-consuming process. Traditional classification methods have
shown satisfactory results in the segmentation of RGB images for diverse applications and surfaces,
however, in the case of commercial vineyards, it is necessary to consider some particularities inherent
to canopy size in the vertical trellis systems (VSP) such as shadow effect and different soil conditions
in inter-rows (mixed information of soil and weeds). Therefore, the objective of this study was to
compare the performance of four classification methods (K-means, Artificial Neural Networks (ANN),
Random Forest (RForest) and Spectral Indices (SI)) to detect canopy in a vineyard trained on VSP.
Six flights were carried out from post-flowering to harvest in a commercial vineyard cv. Carménère
using a low-cost UAV equipped with a conventional RGB camera. The results show that the ANN
and the simple SI method complemented with the Otsu method for thresholding presented the best
performance for the detection of the vine canopy with high overall accuracy values for all study
days. Spectral indices presented the best performance in the detection of Plant class (Vine canopy)
with an overall accuracy of around 0.99. However, considering the performance pixel by pixel, the
Spectral indices are not able to discriminate between Soil and Shadow class. The best performance
in the classification of three classes (Plant, Soil, and Shadow) of vineyard RGB images, was obtained
when the SI values were used as input data in trained methods (ANN and RForest), reaching overall
accuracy values around 0.98 with high sensitivity values for the three classes.

Keywords: precision viticulture; remote sensing; spatial variability; image analysis; random forest;
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1. Introduction

Identification of spatial variability of vine biophysical parameters is a key aspect in Precision
Viticulture (PV). PV uses this information to manage yield and grape quality by considering the fact
that there is variability within the vineyard [1]. Identifying spatial variability of vine biophysical
parameters is useful for winegrowers who want to apply site-specific management strategies to low or
high vigor areas or plots inside the vineyard instead of implementing a uniform management practice
throughout a whole vineyard. In this context, Remote Sensing is one of the major tools used in PV for
multi-temporal monitoring of size, shape, and vigor of grapevine canopies [2].

Most of the applications of PV use multispectral imagery from airborne sensors and/or satellites,
for a remote determination of vineyard variability caused by differing topography, soil characteristics,
management practices, plant health, and meso-climates by Vegetation Indices (VI) [3]. VI are algebraic
combinations of several spectral bands designed to highlight the contrast of the vegetation’s vigor
and vegetation properties (canopy biomass, absorbed radiation, chlorophyll content, etc.) [1,4].
The most common VI used in PV are the Normalized Difference Vegetation Index (NDVI) [5],
Soil Adjusted Vegetation Index (SAVI) [6], and Green Normalized Difference Vegetation Index
(GNDVI) [7]. These indices are based in the fact that healthy, vigorous vines will exhibit strong
near-infrared reflectance and very low reflectance in the visible region of the spectrum [1,8]. Once the
VI have been calculated, they are classified into a pseudo-color index images, whereby distinct color
classes represent manageable differences in vine variability [9]. The use of VI maps has proven
to be an invaluable tool to viticulturists interested in evaluating spatial variability in canopy vigor
and subsequent crop performance [10]. However, in practical terms, the applicability of satellite or
airborne imaging in PV has been limited by poor revisiting frequency, low spatial resolutions, high
operational costs and complexity, and lengthy delivery of analyzed images [11,12]. In this regard,
recent technological advances make the acquisition of vineyard surface images possible at a low
altitude by using Unmanned Aerial Vehicles (UAVs) (multi-rotors, fixed wing airplanes, helicopters,
etc.). This technology allows the acquisition of ultra-high spatial resolution aerial maps with low
operational costs and near real-time image acquisition [12].

Compared with satellite remote sensing and aerial images captured by manned aircraft, UAVs
can be deployed easily and frequently to satisfy the requirements of rapid monitoring, assessment, and
mapping in natural resources at a user-defined spatio-temporal scale [13]. Cameras on board UAVs
acquire finer resolution images than satellite or aerial aircraft systems, hence UAV images allow us to
detect many details and features not normally visible in low-resolution aerial or satellite imagery [14].
This aspect is very important when pixels are large in relation to the surfaces or objects. Under these
conditions, a large proportion of pixels are mixed, as they include canopy, soil, and shadow [10].
In commercial vineyards, the use of images with resolutions higher than 25 cm presents problems
associated with the misclassification of the plant, soil, and especially shadow proportion (very small
size in images acquired at midday). This is a consequence of the small and restricted canopy size,
particularly in high-quality trained on vertical trellis systems (VSP), which are managed to have low
vigor canopies.

When compared with piloted aircraft, UAVs provide a much safer and cost-efficient means
of data acquisition. Furthermore, the vineyards can be frequently surveyed to study ongoing
phenomena at different phenological stages. Recent studies have demonstrated that high-resolution
RGB images obtained by low-cost cameras can be used to monitor spatial variability of vine biophysical
parameters [15,16]. Nevertheless, for an accurate evaluation of vineyard attributes from very
high-resolution RGB imagery, automated procedures are required to rapidly extract the information
coming from the vegetation (vine canopy pixels). Within-vineyard images contain different ground
covers other than grapevines, i.e., ground vegetation, wood, shadows, etc. [14]. Therefore, for the
construction of accurate vineyard maps, all non-vine row vegetation needs to be identified and
removed to aid in the accurate estimation of plant biophysical parameters [9,14,17].
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Several spectral and spatial approaches for vine field and vine row detection have been proposed
for aerial imagery. The simple VI approach assume that all vine canopy pixels have a reflectance or
vegetation index value greater than a threshold [10]. However, similarities in the spectral response
of inter-row grass and other vegetation with that of vines make it difficult to differentiate between
them [18]. Another technique used to segment vineyards is the texture analysis method using Fast
Fourier Transform (FFT) or the Gabor filters [17,19,20]. However, texture analysis only gives a high
performance when vine rows are continuous: the performance decreases when the periodic pattern of
the rows is disrupted by row discontinuities caused by missing vines and other vineyard structures
(e.g., sheds, irrigation infrastructure, and native vegetation) [18,21]. Therefore, the objective of this
study is to compare the performance of four classification methods (K-means, Spectral Indices (SI),
Artificial Neural Networks (ANN), and Random Forest (RForest)), for vine canopy detection using
ultra-high resolution RGB Imagery acquired with a conventional camera mounted on a low-cost UAV.
The classification methods were chosen to ensure representative methods from the different types of
commonly used classification methods. We compared: K-means (cluster based) which is a standard
and well-known method for classification. ANN and RForest are two of the most used machine
learning methods now. RForest assume a discrete finite domain, whereas ANN can model continuous
variables. Finally, we added two less popular but very useful SI as classifiers.

In Section 2, we present the materials and methods: first we describe the study area (Section 2.1)
and then the UAV imagery acquisition (Section 2.2). After this, the classification methods are presented
in Section 2.3. The SI are presented in Section 2.3.1, followed by the K-means, ANN, and RForest
methods in Sections 2.3.2, 2.3.3 and 2.3.4, respectively. The method used for assessing the classification
accuracy is presented in Section 2.4. The results of this study and their discussion are presented in
Sections 3 and 4. Finally, the main conclusions are presented in Section 5.

2. Materials and Methods

2.1. Study Site

Datasets were captured during the 2013–2014 growing season in a commercial vineyard
(Vitis vinifera L. cv. Carménère) located in the San Clemente Valley (35◦27’ L.S; 71◦29’ L.W; 171 m.a.s.l.),
Region del Maule, Chile. The climate in the area is Mediterranean semi-arid with an average daily
temperature of 17.1 ◦C and a mean annual rainfall of 679 mm. The summer period is usually dry
and hot (2.2% of annual rainfall), while the spring is wet (16% of annual rainfall). The grapevines
grafted on Paulsen-1103 were planted in 2007 (north-south rows) with a distance between rows equal
to 2.5 m, a distance within rows of 1.5 m (planting density of 4000 vines ha−1) and trained on VSP with
the main wire 1 m above the soil surface. Carménère vines were drip irrigated using one 4.0 L·h−1

dripper per vine. The soil in the vineyard is classified as Talca series (Fine, mixed, thermic Ultic
Haploxeralfs) with a clay loam texture and an average bulk density of 1.5 g·cm−3. At the effective
rooting depth (0 to 60 cm), the volumetric soil water content at field capacity and wilting point were
0.36 and 0.22 m3·m−3, respectively.

2.2. UAV Imagery Acquisition

Flight campaigns were carried out from post-flowering to harvest. The RGB imagery was acquired
with a low-cost UAV (Table 1). This UAV is a vertical take-off and landing aircraft built out of carbon
fiber. Remote control is used to start the UAV’s motors and manage take-offs and landings. The rest
of the flight is performed with autonomous navigation using GPS waypoints. The camera used in
this study, was a RGB camera (Panasonic Corporation, model Lumix DMC-FT4, Osaka, Japan) with
a 4000 × 3000 (12 Mega Pixels) pixel detector with an angular FOV of 47.6◦ × 36.3◦ and provided
0.019 m·pixel−1 resolution at an altitude of 60 m above ground level (AGL). Six dates under completely
clear sky conditions at acquisition time (midday 13:00 in local time) were selected for the analysis
(Day of year (DOY) 315, 22, 29, 63, 72, and 78).
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Table 1. Unmanned aerial vehicle (UAV) specifications.

Characteristic Description

Type Quadcopter
Dimensions Diameter 100 cm, height 45 cm

Weight 5.4 kg with batteries (maximum weight on fly 9.0 kg)
Engine power 4 multirotor motors × 250 W gearless brushless motors powered by a 14.8 V battery

Auto pilot HKPilot Mega 2.7
Material Carbon with delrin inserts
Payload Approximately, 3.0 kg

Flight mode Automatic with waypoint or based on radio control
Endurance Approximately, 21 min (hovering flight time) and 18 min (acquisition flight time)

Ground Control Station 8-channels, UHF modem, telemetry for real-time flight control
Onboard imaging sensor Conventional RGB camera

2.3. Description of the Classification Models

2.3.1. Spectral Indices as Classification Methods

For calculating the spectral indices (SI), color channel information (Digital Numbers; DNs) was
extracted from the JPEG files for each of the three separate color channels (RDN, GDN, and BDN).
The difference index (2G_RBi), was computed as proposed in [22] as the difference of the divergence
of both red from green and blue from green, using absolute channel brightness (Equation (1)):

2G_RBi = 2·GDN − (RDN + BDN) (1)

Also, the Green percentage index (G%) was calculated as follows:

G% =
GDN

RDN + GDN + BDN
(2)

For using the SI as a classification method, it is necessary to have threshold values. These values
were obtained by applying the Otsu’s multilevel thresholding method (MOM) implemented in Matlab
(Matlab R2014a, Mathworks, Natick, MA, USA) considering one threshold i.e., two classes: Plant and
Soil. This method finds the optimal thresholds by maximizing the weighted sum of between-class
variances [23–25].

2.3.2. K-Means Clustering Method

K-means is a simple, unsupervised and clustering method that classifies the input data objects
into multiple classes based on their inherent distance from each other [26]. K-means is generally used
to determine the natural grouping of pixels present in an image. This method is attractive in practice
because it is straightforward and it is generally very fast. K-means partitions the input data set into k
clusters defined by the user.

The clustering algorithm assumes that a vector space is formed from the data features and tries to
identify natural clustering of the data features. Each cluster is represented by an adaptively changing
center (also called cluster center), starting from some initial values named seed-points. K-means
clustering computes the distances between the inputs (also called input data points) and centers, and
assigns inputs to the nearest center. The method follows a simple and easy procedure to classify a
given data set through a certain number of clusters fixed a priori. The main idea is to define k centroids,
one for each cluster. The initial locations of the centroids should be chosen with care because different
initial locations can yield differing clustering results. Ideally the initial locations should be chosen to
ensure that they are located as far away as possible from each other [26]. This algorithm assigns each
pixel to one of the k clusters defined previously. Following this, every pixel must be assigned to a class.
This was done comparing ground true data with the cluster. The cluster with the best coincidence with
the plants locations is assigned to the Plant class. The one with the best coincidence with the soil, is
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assigned to the Soil class. The K-means clustering method was implemented using kmeans function
from the stat package [27] of the Comprehensive R Archive Network (CRAN).

For this study, two different models were estimated using the K-means method. The first using
the R, G and B channels as input data (K-means); and the second using the R, G, B channels, and
the SI (from Section 2.3.1) as input data (K-means.ex). In both models, the maximum number of
iterations allowed was limited to 50, and the number of clusters was set to 3. The algorithm used in
both models was the one presented in [28]. The initial location of the centroids was chosen randomly
using 10 random sets. The details and parameters used for the model are shown in Table 2.

Table 2. Details of the predictors, training samples and parameters used in K-means, Artificial neural
network, and Random Forest methods.

Method Predictors Training Samples Parameters

K-means R, G, B - 3 centers, 50 max iterations
K-means.ex R, G, B, G%, 2G_RBi - 3 centers, 50 max iterations

ANN R, G, B 672 size = 4, decay = 0.1
ANN.ex R, G, B, G%, 2G_RBi 672 size = 5, decay = 0.1
RForest R, G, B 672 trees = 500

RForest.ex R, G, B, G%, 2G_RBi 672 trees = 500

2.3.3. Artificial Neural Networks

Artificial Neural Networks (ANN) are mathematical models inspired by the structure and
behavior of the human brain. ANN are recognized as powerful and effective tools to solve complex
dependencies that are difficult to analyze using other traditional statistical methods [29]. ANN are
commonly used for classification in data science, grouping feature vectors into classes, allowing the
analyst to input new data and find out which label fits best. Among the different types of ANN, the
multilayer perceptron (MLP) is one of the most commonly used. It is constituted by multiple layers
and the information is transferred from the input layer to the output layer (feed-forward). This kind of
ANN is based on supervised learning (or “machine learning”), which relies on the use of input and
output datasets (the “training” datasets) to iteratively change the weights until the simulated outputs
are similar to the observed ones. To minimize the error, the algorithm employs the values of the error
calculated in the previous iteration and then updates the weights. All numerical ANN calculations
were performed using R package nnet [29], which constructs the standard single-hidden-layer neural
network with neurons based on logistic function neurons.

In addition to nnet, the R package caret [30] was also used. This package helps with tuning the
model parameters using intensive re-sampling with replacement in order to reduce uncertainty and
then, choose the “optimal” model across these parameters. This optimization process in known as
“bootstrap”, and the ANN generated by this process, as “bootstrap based artificial neural networks”.
For this study, the parameters size and decay were optimized with a bootstrapping process. The size
parameter represents the number of units in the hidden layer, and the decay parameter controls the
weight decay in the optimization process. We tried different ANN with sizes ranging from 1 to 7,
and decay s of: 0.0, 0.1 and 0.001. Two different models were trained, the first using the R, G, and
B channels as input data (ANN), and the second using R, G, B, and the SI as input data (ANN.ex).
The training dataset was composed of 672 manually selected samples. The details and parameters
used for the model are shown in Table 2.

2.3.4. Random Forest

Decision trees are powerful and popular tools for classification and prediction. In this sense,
two well-known ensemble methods are boosting (e.g., [31]) and bagging of classification trees [32].
In boosting, successive trees give extra weight to points incorrectly predicted by earlier predictors.
In the end, a weighted vote is taken for prediction. In bagging, successive trees do not depend
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on earlier trees, each tree is independently constructed using a bootstrap sample of the data set.
In the end, a simple majority vote is taken for prediction. In 2001, [33] proposed the Random Forest
(RForest) method, which is an ensemble approach used for classification. The methodology includes
construction of decision trees of the given training data, matching the test data with these and adding
an additional layer of randomness to bagging. In addition to constructing each tree using a different
bootstrap sample of the data, random forests change how the classification or regression trees are
constructed. In standard trees, each node is split using the best split among all variables. In a random
forest, each node is split using the best among a subset of predictors randomly chosen at that node.
This somewhat counter-intuitive strategy turns out to perform very well compared to many other
classifiers, including discriminant analysis, support vector machines, and neural networks and is
robust against over-fitting [33,34].

In this study, the RForest method was implemented using randomForest package obtained from
Comprehensive R Archive Network (CRAN) [35]. Two models were trained: the first using the R, G,
and B channels as input data (RForest) and the second using those channels and the SI as input data
(RForest.ex). The number of trees to grow was set to 500, the proximity was measured among the rows,
and the importance of the predictors was assessed. These models were trained using the same training
set as in the ANN (672 samples). The details and parameters used for the model are shown in Table 2.

2.4. Accuracy Assessment

A confusion matrix was used to assess the classification accuracy from independent validation
samples. Kappa index, Overall Accuracy (OA), and Sensitivity were derived from confusion matrix to
quantify the performance of classification methods using the R package caret. Independent validation
samples were selected manually from RGB sample images for the six dates analyzed. The total number
of validation samples for the Plant, Shadow, and Soil classes were 1500, 750, and 1500, respectively.
The Sensitivity was estimated as the relationship between the samples predicted correctly as a class
compared with the number of samples of that class, predicted correctly or incorrectly. The OA
represents the percentage of samples predicted correctly. Finally, the Kappa statistic is a measure of
the accuracy relative to what would be expected by chance. The latter is an excellent performance
measure when the classes are highly unbalanced [36]. About 70% of the pixels of the images used in
this study belong to the Soil class. This implies that a random classifier would predict the Soil class
with a high accuracy. At the same time, between 20% and 30% of the pixels belong to the Plant class.
So, predicting this class with a random classifier would predict the Plant class with a low accuracy.

Additionally, the relative contribution or relevance of each channel and index was calculated. For
the ANN methods, the procedure was based on [37], which uses combinations of the absolute values
of the weights. For the RForest methods, we used the mean decrease in accuracy as proposed in [32].
The relative contribution or relevance presented was normalized as a percentage, assigning a value of
100 to the most relevant channel/index.

3. Results

Threshold values for SI were obtained by applying the Otsu’s multilevel thresholding method.
The obtained values were analyzed in terms of the OA with the validation samples for the Plant class.
Figure 1a,b show the comparison between OA and threshold values obtained by the Otsu method for a
selected flight in Veraison period (DOY29). For both SI, the threshold values obtained by Otsu method
are very close to the optimum values indicated in the simulation carried out with the entire range
of threshold values. Same results were obtained with all dates analyzed in this study. Furthermore,
an example of visual interpretation of thresholding process of 2G_RBi for Plant class is presented in
Figure 1c.
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Figure 1. Example of the comparison between overall accuracy and threshold values for Spectral
indices. (a) Difference index (2G_RBi); (b) Green percentage index (G%) and (c) Visual interpretation
of thresholding process of 2G_RBi for Plant class. Values below 40 are shown in black, equal to 40 in
green, 50 in yellow and 60 in red.

The parameters OA, Kappa index and Sensitivity for the different methods are presented in
Table 3. The method with the best OA for the six dates analyzed is the spectral indices (2G_RBi)
reaching an average value of 0.98. This method also has the best Kappa index (average value of 0.96).
The second method with the best performance is the ANN (both configuration ANN and ANN.ex)
reaching an average OA and Kappa index of 0.97 and 0.95, respectively (Table 3). One important
characteristic of this method is that presents a high Sensitivity to detect the Plant, Soil, and Shadow
classes. In the case of Sensitivity to detect the Plant class, ANN had average values of 0.94 and 0.95 for
the basic and extended version, respectively. In the case of RForest method, OA values registered in
the experiment were lower with average values of 0.87 and 0.94 for the basic and extended version,
respectively. Additionally, for the machine learning methods, we measured the contribution of each
input variable to the classification OA (Table 4). In the models that only used the R, G, and B channels
as input data, the channels R and G were the variables which contributed more to the OA. In the
extended methods using also the spectral indices, the major contributor to the OA was the G% for both
cases (ANN.ex and RForest.ex) (Table 4).
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Table 3. Performance of the different classification methods.

Method Flight1
DOY315

Flight2
DOY22

Flight3
DOY29

Flight4
DOY63

Flight5
DOY72

Flight6
DOY78 **Avg.

Overall Accuracy (Kappa Index)

* G% 0.98 (0.98) 0.96 (0.91) 0.98 (0.97) 0.94 (0.88) 0.97 (0.93) 0.93 (0.85) 0.96 (0.92)
* 2G_RBi 0.99 (0.98) 0.97 (0.94) 0.99 (0.98) 0.97 (0.94) 0.97 (0.94) 0.98 (0.95) 0.98 (0.96)
K-means 0.81 (0.71) 0.58 (0.35) 0.53 (0.29) 0.64 (0.47) 0.54 (0.29) 0.48 (0.21) 0.60 (0.39)

K-means.ex 0.96 (0.83) 0.60 (0.38) 0.55 (0.32) 0.71 (0.57) 0.56 (0.32) 0.49 (0.22) 0.64 (0.46)
ANN 0.98 (0.97) 0.96 (0.93) 0.99 (0.98) 0.96 (0.94) 0.98 (0.97) 0.93 (0.89) 0.90 (0.95)

ANN.ex 0.97 (0.96) 0.96 (0.94) 0.99 (0.99) 0.96 (0.94) 0.98 (0.98) 0.94 (0.90) 0.97 (0.95)
RForest 0.96 (0.94) 0.90 (0.84) 0.88 (0.82) 0.83 (0.73) 0.90 (0.84) 0.75 (0.60) 0.87 (0.79)

RForest.ex 0.97 (0.96) 0.96 (0.94) 0.98 (0.96) 0.91 (0.86) 0.95 (0.93) 0.89 (0.83) 0.94 (0.91)

Threshold Values Estimated Using the Otsu Method

* G% 0.45 0.40 0.41 0.39 0.39 0.39 0.40
* 2G_RBi 63.27 37.22 40.04 34.41 33.28 31.08 39.88

Sensitivity (Plant Class)

K-means 0.02 0.00 0.55 0.42 0.07 0.56 0.27
K-means.ex 0.00 0.00 0.38 0.46 0.23 0.39 0.24

ANN 1.00 0.93 1.00 0.92 0.95 0.84 0.94
ANN.ex 1.00 0.94 1.00 0.92 0.96 0.86 0.95
RForest 0.94 0.85 0.81 0.65 0.82 0.67 0.79

RForest.ex 0.98 0.92 0.95 0.78 0.88 0.73 0.87

Sensitivity (Shadow Class)

K-means 0.00 0.00 0.00 1.00 0.00 0.00 0.17
K-means.ex 1.00 0.00 1.00 0.00 0.00 0.00 0.33

ANN 0.94 0.94 0.96 0.98 1.00 0.98 0.97
ANN.ex 0.92 0.94 0.97 0.96 1.00 0.98 0.96
RForest 0.94 0.78 0.80 0.84 0.86 0.42 0.77

RForest.ex 0.94 0.96 0.97 1.00 1.00 1.00 0.98

Sensitivity (Soil Class)

K-means 0.00 0.00 0.61 0.68 0.01 0.64 0.32
K-means.ex 0.01 0.00 0.62 0.78 0.00 0.00 0.23

ANN 0.98 0.99 1.00 1.00 1.00 1.00 0.99
ANN.ex 0.97 0.99 1.00 1.00 1.00 0.99 0.99
RForest 0.99 1.00 0.99 1.00 0.99 1.00 1.00

RForest.ex 0.98 1.00 1.00 1.00 1.00 1.00 1.00

Table 4. Relative contribution to the overall accuracy of each input variable for the machine learning
methods evaluated.

Input Variable ANN ANN.ex RForest RForest.ex

R 100 52.94 66.86 55.45
G 73.21 0 100 0
B 0 45.31 0 16.77

G% - 100 - 100
2G_RBi - 50.12 - 82.96

The standard automatic method, K-means, with both configurations, performed poorly with
average OA values of 0.64 for the extended version and 0.6 for basic version. This effect is clearer in
the results of Kappa index, in which case the method presented very low average values of 0.39 for
K-means and 0.46 for K-means extended. This indicates a limited performance for detecting the Plant
class, which is corroborated by low Sensitivity for the Plant class, with average values of 0.27 for
K-means and 0.24 for K-means extended.



Remote Sens. 2017, 9, 268 9 of 14

Figure 2 shows the results of different classification methods using R, G, B channels and the
spectral indices as input data. Spectral indices as classification methods do not allow to discriminate
between Soil class and Shadow class (Figure 2e,f). On the other hand, the K-means method tends
to confuse the Soil class with the Shadow class and the Plant class with the Shadow class (Figure 2b).
The machine learning methods (ANN.ex and Rforest.ex) produced similar results (Figure 2c,d).
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4. Discussion

4.1. Perspectives and General Study Limitations

The development of new techniques for UAV image analysis is an important aspect for PV, because
today UAVs are rapidly replacing to other platforms for vineyard monitoring. The key strengths of UAV
are the high spatial ground resolution and a reduced planning time, which allows for highly flexible
and timely vineyard monitoring [15,38–40]. This study presents results using different classifications
methods to detect and segment the vine canopy in ultra-high-resolution RGB imagery obtained
from UAV. On very high spatial resolution images, the plantation and training patterns become
distinguishable, providing great discrimination and characterization potentialities [39]. The potential
utility of the presented study, is high, considering that the methodology was tested under standard
commercial vineyard conditions (vines trained on VSP). Even though the study was limited to six
UAV flights (from post-flowering to harvest) at a single vineyard site. Furthermore, the methodology
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presented as a case study for vineyards could be extrapolated to other sparse crops, where the effect of
soil, shadows, and weeds need to be considered and eliminated from the analysis. Further validation
in several vineyards, vine varieties, and other crop types is required to support stronger conclusions.

Recent studies have demonstrated that high-resolution RGB images obtained by low-cost cameras
can be used to monitor spatial variability of vine biophysical parameters. [15] estimated the leaf
area index (LAI) of a vineyard with a conventional digital camera (Canon PowerShot) mounted on a
micro-UAV using the structure from motion (SfM) technique. In the same way, [16] estimated LAI of a
vineyard using data from a hyperspectral camera (VNIR imaging sensor) and a low-cost standard RGB
camera (GoPro Hero3) onboard a UAV system. In this study, the determination coefficient (r2) for the
relationship between ground truth LAI and 2D GRVI map from the aerial RGB ortho-mosaic was 0.73.

To improve the evaluation of vineyard attributes from UAV images, automated tools are required
to rapidly extract relevant information from canopy excluding the effect of soil and shadow. In this
regard, [14] indicated that when the analyses were focused only on the cultivated areas, excluding
ground and shadows, vegetation index maps change significantly.

4.2. Accuracy of Classification Methods

In this study, the methods analyzed had different performances for vine canopy extraction.
Our results indicated that the standard and fully automatic method K-means did not have satisfactory
performance when detecting the vine canopy. In general, K-means tended to detect two clusters inside
of Soil class (Figure 2d), due to the effect of the differences in the image values inside of the Soil class,
so Plant and Shadow classes ended up mixed in the same cluster. This generates a low sensitivity to
the defined classes and low performance values (Table 3). This problem could be related to the use
of three clusters for the classification of three classes. Using the same number of clusters as classes
enables labeling the cluster based on the class with the majority of the samples that fall within a
cluster. Some applications of K-means increase the number of clusters to improve the probability of
generating a set of clusters that correspond to the classes. However, to obtain a predefined number of
classes, it is necessary to make a reclassification process, mixing more than one cluster in one class.
This involves an additional step and makes the method harder to automatize. On the other hand, in
some specific cases (Flight 1, 3 and 4) the sensitivity detected for the Shadow class was high. In these
cases, K-means overestimated the Shadow class. Therefore, all validation points were classified in this
class (Sensitivity = 1). However, this does not imply that the K-means method has a good performance
since for these cases, the Sensitivity for the Plant and Soil classes was low, resulting in low OA values
from the method.

The method with the best performance in the detection of vine canopy was SI (2G_RBi),
complemented with the Otsu method for thresholding. The classified image with this method can be
used as a mask to crop the original image. The result of this process using 2G_RBi as classification
method is shown in Figure 3. One of the main advantages in the use of SI as classification methods
is that the process can be done without the need to use a specific software package to perform the
calculations of the indices. Furthermore, when the SI method is complemented by Otsu method, it is
possible to automatize the segmentation process. The threshold values obtained by Otsu method are
stable in time and not dependent on other a priori information [24,25]. Additionally, this process does
not have to be trained like ANN or RForest, so a training dataset is not needed. However, considering
the performance pixel by pixel, the SI do not enable the Soil and Shadow classes to be discriminated
(Figure 2b,c). The ANN and RForest methods produced satisfactory results, but these two methods
need to be trained to achieve good accuracy. This means that a trained data set must be manually
generated to calibrate the models. As well as this, these two methods had many different parameters
that affect the performance of the model. In this sense, the bootstrapping algorithm proves to be very
useful to find the optimal value of these parameters. [39], mentioned that the best result to discriminate
between vine and non-vine was obtained when using the R channel. In our work, the R channel was
the most discriminatory variable only for the ANN model. However, it was the second (Rforest and



Remote Sens. 2017, 9, 268 11 of 14

ANN.ex) or third (Rforest.ex) most contributing variable in the other models. The R channel was
outperformed by the SI when they were used (ANN.ex and Rforest.ex) and by the G channel in the
Rforest method (Table 4).Remote Sens. 2017, 9, 268  11 of 14 

 

 
Figure 3. UAV image masked using the result of the 2G_RBi classification method. 

It is important to note that when the spectral indices were used as auxiliary input data for the 
other classification methods, the models performed better than using only the R, G, and B channels. 
This is especially notable in the case of the Random Forest where the improvement was in the order 
of 8% of the OA.  

The analysis of different dates shows that the results of all methods were similar for all dates. 
The structure of the vineyard for the different dates was quite similar in terms of vegetation. A 
constant canopy shape was maintained during the growing season, especially after full bloom by the 
effect of the summer pruning practices and decreasing of the vegetative growth of the shoots from 
Veraison period. In the case of SI and machine learning methods, all dates presented high values of 
OA and Kappa index. Furthermore, the threshold values obtained by the Otsu method were stable 
during the experiment (Table 3), with low standard deviation values, 3.15 for 2G_RBi and 0.01 for 
G%. 

Table 5 provides a summary of most recent studies related to vine canopy extraction. The results 
obtained in this study are similar in terms of accuracy to those obtained in other studies carried out 
with complex methods and more expensive input data (e.g., Near Infrared images). In the case of 
satellite images, the highest resolution panchromatic bands are around 50 cm. With these type of 
images, the detection of the canopy is limited by canopy size especially in high-quality vineyards 
trained on VSP which are managed to have low vigor canopies. When pixels are large in relation to 
the surfaces or objects, a large proportion of pixels are mixed as they include canopy, soil, and shadow 
especially at the edges. In this regard, cameras onboard UAVs can acquire ultra-high resolution (e.g., 
in this study we obtained RGB images with a resolution of 0.019 m·pixel−1 with flights at 60 m of 
altitude). Thereby, UAV images allow us to detect many details and vineyard features normally not 
visible in aerial or satellite imagery. The vine canopy detection implemented in our study is based on 
a pixel by pixel performance of the analyzed methods, considering the small variations from the 
different surfaces (Plant, Soil, and Shadow classes) included in the vineyard images.  

Table 5. Comparison of recent studies related to canopy vineyard segmentation. 

Method Input Data  
Spatial 

Resolution 
Best Results from 

the Research Study 
Reference 

Dynamic segmentation, 
Hough Space 

Clustering and Total 
Least Squares 

techniques 
 

UAV.  
Near Infrared 

images 

5.6 cm ground 
resolution 

Average percentage 
of correctly 

detected vine-rows 
95.13% 

[2] 

Figure 3. UAV image masked using the result of the 2G_RBi classification method.

It is important to note that when the spectral indices were used as auxiliary input data for the
other classification methods, the models performed better than using only the R, G, and B channels.
This is especially notable in the case of the Random Forest where the improvement was in the order of
8% of the OA.

The analysis of different dates shows that the results of all methods were similar for all dates.
The structure of the vineyard for the different dates was quite similar in terms of vegetation. A constant
canopy shape was maintained during the growing season, especially after full bloom by the effect of
the summer pruning practices and decreasing of the vegetative growth of the shoots from Veraison
period. In the case of SI and machine learning methods, all dates presented high values of OA and
Kappa index. Furthermore, the threshold values obtained by the Otsu method were stable during the
experiment (Table 3), with low standard deviation values, 3.15 for 2G_RBi and 0.01 for G%.

Table 5 provides a summary of most recent studies related to vine canopy extraction. The results
obtained in this study are similar in terms of accuracy to those obtained in other studies carried out
with complex methods and more expensive input data (e.g., Near Infrared images). In the case of
satellite images, the highest resolution panchromatic bands are around 50 cm. With these type of
images, the detection of the canopy is limited by canopy size especially in high-quality vineyards
trained on VSP which are managed to have low vigor canopies. When pixels are large in relation to
the surfaces or objects, a large proportion of pixels are mixed as they include canopy, soil, and shadow
especially at the edges. In this regard, cameras onboard UAVs can acquire ultra-high resolution (e.g., in
this study we obtained RGB images with a resolution of 0.019 m·pixel−1 with flights at 60 m of altitude).
Thereby, UAV images allow us to detect many details and vineyard features normally not visible in
aerial or satellite imagery. The vine canopy detection implemented in our study is based on a pixel
by pixel performance of the analyzed methods, considering the small variations from the different
surfaces (Plant, Soil, and Shadow classes) included in the vineyard images.
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Table 5. Comparison of recent studies related to canopy vineyard segmentation.

Method Input Data Spatial Resolution Best Results from the
Research Study Reference

Dynamic segmentation,
Hough Space Clustering and

Total Least
Squares techniques

UAV. Near Infrared images 5.6 cm ground resolution
Average percentage of

correctly detected
vine-rows 95.13%

[2]

Histogram filtering, Contour
recognition, and

Skeletonisation process

UAV. Near Infrared
images. 4.0 cm ground resolution Average precision 0.971.

Sensitivity 0.971. [18]

Object-based procedure and
Ward’s Modified Method Aircraft. RGB images. 30 cm ground resolution OA for both

methods 0.87 [21]

Object-based procedure Satellite. Multispectral
WorldView-2 images.

50 cm Panchromatic
imagery. 200 cm

multispectral imagery.

OA values above 96% for
all datasets [41]

5. Conclusions

Our results demonstrate that it is possible to perform an accurate segmentation of vine canopy
from ultra-high resolution RGB images obtained by a UAV in clear sky conditions, using classification
methods for standard conditions of vineyards trained on VSP without cover crops in the inter-row.
The automatic K-means method with basic and extended configuration had the lowest performance
among the studied methods. On the other hand, the machine learning methods (ANN and RForest)
had a satisfactory performance, especially the ANN method, reaching an average overall accuracy
value of 0.97. However, these methods need some level of human intervention for calibrating the
model with a training data set. The SI complemented with the Otsu method for thresholding, had
a high overall accuracy and performed very well in the detection of Plant class. This method is
automatic and easy to apply since it does not need specific software to perform the calculations of
the indices. Furthermore, the threshold values obtained by the Otsu method are stable, and not
dependent on other a priori information. Complementary, the SI used as auxiliary input data for the
other classification methods (ANN.ex and RForest.ex) improved their performance reaching overall
accuracy values around 0.98 with high sensitivity values for the three classes (Plant, Soil, and Shadow).
These classification methods could be used to derive information from RGB images like the fractional
cover and monitoring the development of the vineyard.
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