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ABSTRACT 

The research field of machine learning and supervised image classification is quickly developing. There 

are many studies regarding the different use cases of image classification. However, a comprehensive 

study on the primary algorithms in ArcGIS Pro has not been assessed for numerous classes. This study 

attempts to bridge that gap by evaluating the effectiveness of the three primary classification 

algorithms available in ArcGIS Pro, and to determine an optimal algorithm for the given study area. 

This scope covers 12 classes of land cover in San Joaquin County, California. Maximum Likelihood, 

Random Forest, and Support Vector Machine were tested based on their general usability in image 

classification as well as their proven characteristics through research. The training and ground truth 

validation data were provided by USGS, in the form of a Landsat 8 image, and crop planning map. The 

accuracy assessment was performed with a stratified random sampling strategy. Based on the Kappa 

statistic, this study determines Random Forest (Kappa = 0.68, Accuracy = 0.76) to be the most suitable 

algorithm for detecting a series of crop types, bodies of water, and urban spaces apart from the rest 

of the land cover in San Joaquin County, California, USA. In addition to determining a preferred 

algorithm, it is also apparent that certain parameters when tweaked, produce the optimal classifier for 

this dataset. In this case, this means most parameters set to default, with an increased spectral detail 

and a decreased spatial detail. What this indicates for crop planning is that the current algorithms used 

in California are already quite effective at accurately identifying unique types of land cover. This builds 

confidence in the field, however parameters could be similarly tweaked to produce an even better 

classification. This study can be useful for improving crop and water planning. 
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1. INTRODUCTION & LITERATURE REVIEW 

1.1. BACKGROUND 

Climate change has drastically altered the Earth’s environment (Hürlimann et al., 2022). The state of 

California in the United States is particularly susceptible to climate change effects (Cavagnaro et al., 

2005, p. 9). Research has shown that California is now facing increased volatility and unpredictability 

in rainfall (Swain et al., 2018) which greatly affects the various ecosystems in the state. When 

considering that this state produces 50% of the country’s fruits and vegetables and employs 1.1 

million people (Cavagnaro et al., 2005, p. 3), environmental changes can quickly become major 

economic problems if not monitored and properly addressed. For these reasons, California has 

become an interesting study area prospect. The findings from this study can then be applied to other 

areas with similar climates. 

Remote sensing, a process that determines various parts of the Earth’s surface, usually based on 

satellite imagery (USGS FAQ, n.d.), has been useful in determining land cover changes in relation to 

climate change (Bontemps et al., 2011; Yang et al., 2013). Monitoring of the Earth’s surface using 

remote sensing has been a regular practice for ecological organizations because it is efficient and 

generally accurate enough off which to base decisions (Bontemps et al., 2011). However, as Yang et 

al. argues, continued research and testing is needed to evaluate the algorithms and their inputs 

(Yang et al., 2013). The following project aims to perform this evaluation by assessing three 

supervised classification algorithms in correctly distinguishing 12 types of land cover. 

 

1.2. LITERATURE REVIEW 

Various studies have delved into the effectiveness of supervised classification algorithms in 

determining land cover types and their relevance to the studies of climate change (Bontemps et al., 

2011; Khatami et al., 2016; Potapov et al., 2015). The study locations range all over the world and in 

various types of ecosystems. Their purposes also range from agricultural planning (Ali et al., 2022a; F. 

Li et al., 2022) to environmental research (Gessner et al., 2013) to general mapping (Abdollahi et al., 

2022). Although there is a plethora of research on the topic, many papers found in the field attempt 

to improve or predict crop yields, for example. Li et al. (2022) focused on a set of cotton fields in 

Xinjiang, China as their purpose was to model the cotton yield. Ali et al. (2022) also brings to light 

many researchers who aim to predict crop yield through remote sensing by measuring soil content 

and moisture levels. Because many of the studies include only one type of land cover in the image, 

there is even more reason to study the effectiveness of classification algorithms, as homogenous 

land cover areas tend to result in the most accurate classification (Gessner et al., 2013; Mishra et al., 

2019). This means that since it is a more challenging task to classify heterogenous land areas, there 

are potentially missed insights into how algorithms behave when applied to more varied land cover. 

Other algorithms tend to have a strong tradeoff between accuracy and interpretability, such as 

Decision Trees (DT) (low accuracy, high interpretability) or Deep Neural Networks (DNN) on the other 

end of the spectrum (high accuracy, low interpretability) (Sheykhmousa et al., 2020). However, 

Random Forests (RF) and Support Vector Machines (SVM) tend to balance the two measures as can 

be seen in Sheykhmousa et al.’s figure A in the annex. For this reason, numerous studies have 
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evaluated RF and SVM against one another as they have excelled in image classification contexts 

(Sheykhmousa et al., 2020). A great deal of literature compares SVM, RF, and other algorithms, such 

as K-Nearest Neighbors (KNN) (Thanh Noi & Kappas, 2017) although many exclude MLC. Some of the 

most extensive studies have even performed comparisons of seven classification algorithms at once 

(Osisanwo et al., 2017). Although Osisanwo et al.’s study compared Naïve Bayes, it still did not 

include MLC. Therefore, this paper aims to cover the research gap of evaluating and comparing three 

of the most common image classification algorithms when using ArcGIS Pro: RF, SVM, and MLC. 

 

1.3. STUDY SITE 

The study site consists primarily of San Joaquin County, of the state of California, in the United 

States. Figure 1, shown below, displays a map of the study area, provided freely by the United States 

Geological Survey (USGS). 

 

Figure 1: Scope of Satellite Image San Joaquin County, California (USGS, 2022) 

 

There is reliable ground truth data for this county, provided by USGS in 2019, and updated in 2022. 

Further, this particular county encompasses numerous types of crops as well as bodies of water and 

urban areas, so more varied land cover will be included in the input, addressing the previously 
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mentioned research gap. The study attempts to determine the most appropriate algorithm for 

detection of each crop category. First, the following classes are identified, based on the available 

crop classes from USGS, which will be used to validate as ground truth data. The 12 classes are 

defined in Table 1 below. 

 

DESCRIPTION ABBREVIATION VALUE 

Rice R 2 

Pasture P 3 

Grain and Hay G 4 

Truck Crops T 5 

Field Crops F 6 

Citrus and Subtropical C 7 

Deciduous D 8 

Vineyard V 9 

Water W 10 

Young Perennial YP 11 

Urban U 12 

Unspecified X 20 

 

Table 1: Land Cover Classes 

 

The results will then be based on the evaluation of the algorithm when looking at accuracy levels 

regarding all specified classes, including the unspecified class. The unspecified class is a designated 

class for all other land types which are outside the scope of this study. The crop types were chosen 

because of the importance of farming in California as well as the availability of accurate and reliable 

ground truth data. By classifying vegetation in a state with increasingly frequent droughts (Swain et 

al., 2018), the study will evaluate the performance of each algorithm while contributing to improved 

monitoring in a volatile state (Swain et al., 2018).  
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1.4. RESEARCH QUESTION & OBJECTIVES 

The research question behind this study is as follows: What is the effectiveness of each tested 

algorithm in distinguishing classes of land cover when compared with ground truth data?  

This then leads to the research objectives, which are two-fold: 

1) it aims to evaluate the effectiveness of the three primary classification algorithms available in ArcGIS 

Pro, and 

2) to determine an optimal algorithm for the given study area of San Joaquin County, California, and 

its respective 12 land cover types, including 9 different crop types. 
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2. DATA & METHODS 

As mentioned in chapter 1, section 1.3 Study Site, there are 12 land cover classes, including water. 

These land cover classes are based on those available in the 2019 Crop Mapping files (updated most 

recently prior to the start of this study in August 2022), which will be used as ground truth data in the 

validation and evaluation phase of this project. The classes were defined by the Department of 

Water Resources (DWR) for use in crop planning purposes. It is important to note that the initial 

ground truth files were developed with the Random Forest algorithm. However, equally important is 

that the DWR had the original classification updated based on local knowledge. Further, this map is 

regularly updated with the most recent information validated at a ground level (Planning 

I15_Crop_Mapping_2019, 2022). 

 

2.1. DATA 

2.1.1. Criteria 

This study will be based on publicly available data from the USGS Earth Explorer. The USGS Earth 

Explorer allows any user to search through many different types of satellite images using filters. As 

the Landsat series of images are often used in other similar studies and are one of the best sources 

for this type of research (Mohammady et al., 2015), this study also uses a Landsat 8 image from 

USGS. This Landsat 8 image consists of 30m spatial resolution, and the coordinate system is WGS 

(World Geodetic System) 1984 UTM (Universal Transverse Mercator) Zone 10N. Based on research 

explained below, there are three filters which are especially important when selecting data for this 

project. 

1) As cloud cover can greatly affect the accuracy in satellite images (Cracknell & Reading, 2014; 

Lary et al., 2016), only images with less than 10% cloud cover are considered (Kopeć et al., 

2020). The algorithms will be trained on the selected satellite images as the USGS provides 

complete and trustworthy ground truth data along with respective coordinates. 

2) Satellite images taken during the summer months are the best candidates for study, as they 

avoid the problem of snow or ice appearing and altering the ground cover features. Further, 

and more importantly, the ground truth data being used is most recently updated in August 

of 2022. To match the validation most accurately, the input must also be taken from the 

same time period, or as close as possible to most closely resemble the land cover during this 

time.  

3) Lastly, the satellite image should be taken only from the daytime selection to provide the 

greatest amount of usable data. The data extracted from nighttime images generates more 

noise and results in less accurate predictions (Ni et al., 2020). 

 

2.2. PREPROCESSING 

The true color resolution of the image is made by compiling seven bands of a satellite image, to 

create a composite image in ArcGIS Pro which is then classified. Please refer to Chapter 1, Figure 1 to 
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see a composite band of Red (Band 4), Green (Band 1) and Blue (Band 2), which provides a more 

contrasted and realistic understanding of the land cover than other band combinations. 

2.3. METHODS 

Recording and pulling from the same coordinates each time, the same area and features are 

maintained for each test run of the algorithms. Further, by keeping a consistent training baseline, the 

resulting scores are comparable to understand how effective and accurate each algorithm is. They 

will be evaluated with a confusion matrix, which then generates the most agreed upon statistic for 

this measure - Cohen’s Kappa statistic (Gómez & Montero, 2011). 

This study follows the workflow for supervised image classification, as shown in the flowchart in 

Figure 2. The Configure stage is changed each time the method is performed for a different 

classification method – three times total for this study. The next step is to train the classifier on the 

given dataset. When training the algorithm, the initial strategy was to use points, which could vary in 

pixelation. However, through trial and error, it was found that a polygon specific to the crop area in 

the map was more effective at training the algorithm, and more accurate as it was better fitted. 

Another important point here is for each class to have a proportionate number of training points 

given its significance in the dataset. To ensure proportionately equal distribution, the “stratified 

random” option in ArcGIS Pro is selected. Next, the algorithm is processed through the program to 

classify the entire dataset, which in this case is the composite band image. Using the training data 

and assigned classes, every pixel in the image is assigned a value. The assignment of this value is 

explained more thoroughly in each of the classifiers’ subsections in chapter 2.4. Finally, before the 

process is complete, errors can be corrected by reclassifying them to the known class. This step is 

especially beneficial in real-world use of classification algorithms. However, this study will only make 

use of this step for major errors in wide swaths of land as the purpose is to study the algorithms with 

as little effects of interference as necessary. This process is performed three times and is then 

followed by the accuracy assessment and evaluation which will be explained in chapter 2.5. 

 

Figure 2 : Classification Workflow 
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2.4. CLASSIFIERS 

This study compares the classification ability of the three primary supervised image classification 

algorithms in ArcGIS Pro. These are Maximum Likelihood Classifier (MLC), Random Forest (RF), and 

Support Vector Machines (SVM). These were chosen based on their reliability in ArcGIS software and 

their capabilities shown in numerous related studies (Cracknell & Reading, 2014; Lawrence & Moran, 

2015; Maulik & Chakraborty, 2017; Rao et al., 2022; Thai et al., 2012). 

 

2.4.1. Maximum Likelihood Classifier (MLC) 

According to Sun et al., the MLC algorithm is agreed in the field to be the most accurate and most 

stable classifier. It consistently performs with high levels of precision and accuracy (Rebinth et al., 

2021; Sun et al., 2013) when classifying satellite images. It follows the Bayesian theory which has a 

focus on statistical likelihood. The algorithm used for MLC can be found in the study, Automatic 

remotely sensed image classification in a grid environment based on the maximum likelihood method 

(Sun et al., 2013). Each pixel is calculated using this formula. However, since it is primarily used as a 

pixel-based method (Sun et al., 2013), it therefore may not perform as strongly as other algorithms 

when used in object-based classification. In addition, another study showed that the MLC algorithm 

struggled to differentiate between agricultural land and rangelands (Mohammady et al., 2015). 

 

2.4.2. Random Forest (RF) 

Although MLC is a popular classifier, a study attempting to categorize many classes such as this one 

may be better fitted to use Random Forest (RF) (Adugna et al., 2022; Cracknell & Reading, 2014). 

Basing off a very simple classifier of Decision Trees (DT) (Maxwell et al., 2018), RF uses many decision 

trees to build a stronger classifier. Many trees are grown at once and then a majority vote 

determines the optimal partition of data to determine the correct class (Cracknell & Reading, 2014; 

Maxwell et al., 2018). Man et al. provides a diagram helpful in understanding the RF process, 

displayed in Figure 3: 
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Figure 3: Random Forest Algorithm (Man et al., 2018) 

 

Research has found that RF is a strong performer due to a few reasons: they can handle high 

dimensionality, they do not require hyper tuning of parameters, and they are able to rank features’ 

importance (Xia et al., 2018). Although much tuning is not required, there are two basic parameters 

that must be determined for RF to work properly – the number of trees and the number of features 

at which to split (Thanh Noi & Kappas, 2017). According to some, a greater number of trees, around 

100, produced better results (Basheer et al., 2022). However, because solid results have been 

obtained using the default parameters (Thanh Noi & Kappas, 2017; Zhang & Roy, 2017), this study 

will also begin by using the same parameters. Further, there is danger in too few trees, such as low 

accuracy and low precision, or too many trees, which can result in overfitting. 

 

2.4.3. Support Vector Machine (SVM) 

The Support Vector Machine (SVM) classifier is generally accepted as one of the most commonly 

used and high performing algorithms in the field of remote sensing (Cervantes et al., 2020a; 

Lawrence & Moran, 2015; Thai et al., 2012). SVM is a popular model for image classification because 

it can handle heavier datasets, or in this case, larger images well (Cervantes et al., 2020b). It is able to 

detect complex patterns so well because it is able to generalize the image and is less susceptible to 

noise as compared to many other popular algorithms (Cervantes et al., 2020b). One parameter to be 

considered is the maximum number of training samples per class. When training the algorithm, the 

maximum number of training samples per class should equal zero, which ensures that all training 

samples will be used. 
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The diagram in Figure 4 below illustrates a simple representation of how the SVM works: 

 

Figure 4: Simple weighted layer of SVM (Goddard & Shamir, 2022) 

In addition, the mathematical formula to obtain the support vector can be found in Non-Parametric 

Image Classification Based on Convolutional Ensembles of Support Vector Machines for Small Training 

Sets (Goddard & Shamir, 2022). 

 

2.5. EVALUATION & ACCURACY ASSESSMENT 

When evaluating each algorithm, it is important to consider the relative size of each class to one 

another. Knowing that classes vary greatly in training sample size and density, the evaluation must 

also have equally distributed points and randomly across classes to avoid any bias. 

Using ArcGIS Pro, once the classification workflow is complete, a table is generated to display the 

classified and the actual ground truth value in numeric terms for each validation data point. The 

numeric value is dictated by the value associated with the given class from the training portion of the 

process. The actual ground truth numeric value is validated using the ground truth map, provided by 

the California DWR. While validating these values, it is imperative that the classified value is 

temporarily hidden from the researcher to avoid any possible bias. 

In image classification, the commonly and reliably used method of determining the best classifier is 

by computing the Kappa statistic (Y. Li et al., 2019). The accuracy assessment is performed by 

summing the predicted and actual values to compute the confusion matrix: totals of true positives 

(TP), true negatives (TN), false positives (FP), and false negatives (FN). With the confusion matrix, the 

Kappa statistic can then be computed using the following formula provided by Y. Li et al., 2019. 

Kappa = (PCC – PRE) / (1 – PRE) 

The probability of correct classification (PCC) represents accuracy, and is broken down into TP and TN 

as shown here: 

PCC = (TP + TN) / (TP + FP + TN + FN) 
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Further, the proportional reduction in error (PRE) is made up of the following formula, once again 

dictated by TP and TN: 

PRE = (TP + FP) × (TP + FN) + (FN + TN) × (FP + TN) / (TP + TN + FP + FN)2 

 

Using the evaluation measure of Kappa, which takes into account accuracy, the comparison can then 

be made between the three different algorithms – RF, SVM, and MLC as stated earlier. The highest 

resulting Kappa score is then proven to be the most appropriate classifier for this context (Anita et 

al., 2021). 

When validating the data for the accuracy assessment, it is important to capture a sufficient amount 

of information before calculating the evaluation metrics. Therefore, at least 30 validation points per 

class were used in this project, which is in line with similar studies. This is especially important 

considering the high number and variability of classes in this study. Earlier accuracy assessment 

rounds in this project were not successful, partially due to low numbers of validation points. 

The accuracy assessment is performed with a stratified random sampling strategy in an attempt to 

cover all classes equally and in an unbiased manner. As explained by Basheer et al., “stratified 

sampling is to divide the dataset or strata according to the characteristics of its attribute” (Basheer et 

al., 2022). By doing so, each group can be trained and validated in a more efficient way as the 

samples are already grouped by similar features (Basheer et al., 2022). 

The initial accuracy assessment table generated in ArcGIS Pro contains a default “GrndTruth” value of 

-1 for every point. Each point is then evaluated manually by comparing to the ground truth dataset 

and the correct value is input alongside the classified value. Points outside of the scope of the ground 

truth data were removed from consideration during the accuracy assessment. Further, when 

evaluating each in-scope point, all classified values are hidden from view in order to avoid any 

confirmation bias. Upon completing validation, the confusion matrix can then be computed by the 

ArcGIS Pro software. The resulting confusion matrices, as explained in the previous chapter, are 

displayed and explained in chapter 3.3. 
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3. RESULTS 

3.1. FINAL SPECIFIED PARAMETERS 

This section presents the final parameters specified for each algorithm. Each round of testing was 

started with the defaults and altered to understand better how the algorithm might improve. One 

important note here is that the common parameters among all three classifiers were kept consistent 

in order to ensure a fair comparison. For example, the segmentation section of the classification 

process, shown in the first section of each table, contain the same values for all three classifiers. In 

addition, the conditions for the accuracy assessment, namely the number of assessment points and 

the sampling strategy, remain the same for all classifiers. 

 

3.1.1. Maximum Likelihood Classifier 

Table 2, below, displays the final parameters used to test and compare the MLC algorithm. The 

starting point was the default value in each section, which was then tweaked to improve the 

performance, in this case the spectral detail and spatial detail. 

Segmentation Parameter Final Value Default Value 

Spectral Detail 18 15.5 

Spatial Detail 5 15 

Minimum 

Segment Size in 

Pixels 

20 20 

Train Segment 

Attributes 

Active chromaticity color Active chromaticity color 

Mean digital number Mean digital number 

Accuracy 

Assessment 

Number of 

random points 

394 N/A 

Sampling 

Strategy 

Stratified Random N/A 

Table 2: Maximum Likelihood Classifier Parameters 
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3.1.2. Random Forest 

The final parameters for RF are shown here in Table 3. The parameters were purposefully maintained 

as similar to the other algorithms as possible. However, the training segment was tweaked slightly 

when the default maximum number of samples per class of 1000 resulted in poor accuracy and a 

value of 100 here was shown in other studies to produce improved results. 

Segmentation Parameter Final Value Default Value 

Spectral Detail 18 15.5 

Spatial Detail 5 15 

Minimum 

Segment Size in 

Pixels 

20 20 

Train Maximum 

number of trees 

50 50 

Maximum Tree 

Depth 

30 30 

Maximum 

number of 

samples per 

class 

100 1000 

Segment 

Attributes 

Active chromaticity color Active chromaticity color 

Mean digital number Mean digital number 

Accuracy 

Assessment 

Number of 

random points 

394 N/A 

Sampling 

Strategy 

Stratified Random N/A 

Table 3: Random Forest Parameters 
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3.1.3. Support Vector Machine 

The SVM classifier parameters, shown in Table 4, were maintained similarly to MLC. 

Segmentation Parameter Final Value Default Value 

Spectral Detail 18 15.5 

Spatial Detail 5 15 

Minimum 

Segment Size in 

Pixels 

20 20 

Train Maximum 

number of 

samples per 

class 

500 500 

Segment 

Attributes 

Active chromaticity color Active chromaticity color 

Mean digital number Mean digital number 

Accuracy 

Assessment 

Number of 

random points 

394 N/A 

Sampling 

Strategy 

Stratified Random N/A 

Table 4: Support Vector Machine Parameters 
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3.2. CLASSIFICATION RESULTS 

Below the final resulting classified images are displayed for each tested algorithm. In Figure 5, one 

can see the classified image according to MLC. 

 
Figure 5: Maximum Likelihood Classifier Final Result 

 
Figure 6: Random Forest Classifier Final Result 
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Figure 6 illustrates the RF final classification while Figure 7 shows the SVM final classification. As can 

be seen by comparing the images, one interesting finding is the difference between Random Forest 

and Support Vector Machine when deciding how to classify vastly different features. The majority of 

classes are representing various types of crops. However, water, urban, and unspecified classes are 

also included. When examining the mountainous areas of the county, RF found the closest in 

composition which is the urban class. This follows the logic that stone resembles concrete more than 

any crop type. This can be seen categorized by the vast swaths of grey. RF is a more cautious 

classifier than SVM. When attempting to classify part of the image in which the classifier may not 

have a clear match, SVM attempts to find the nearest possible class and assign it, thereby classifying 

the entire image as one class or another. 

RF at first glance appears to have the most accurate and precise results. However, one must be 

careful in the case of over-fitting. If there are too many trees, the algorithm can potentially over-fit to 

the training dataset. A common sign of this is high accuracy in validation and low accuracy when 

applying to new test data. 

 

Figure 7: Support Vector Machine Classifier Final Result 
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3.3. ACCURACY ASSESSMENT 

This section displays the confusion matrices for each of the three tested classifiers as well as the 

percentages of total area in the image per class. Class values correspond to the crops listed in Table 

1, with the accuracy score and kappa statistic calculated by ArcGIS Pro according to the formulas in 

chapter 2.5.  

3.3.1. Maximum Likelihood Classifier: 

In the MLC confusion matrix, shown below in Table 5, it can be deduced that in addition to having a 

lower overall accuracy and kappa statistic, the scores among individual classes are highly imbalanced. 

This gives the impression that the algorithm was perhaps overfitted for determining C_20 and C_8, 

unspecified and deciduous classes respectively. An interesting point here is that these two classes 

took up two of the largest shares of ground truth land cover in the study. Table 6 displays the 

percentages of all classes in relation to the total for further consideration. 

  

Table 5: MLC Confusion Matrix 

(C_2 = Rice, C_3 = Pasture, C_4 = Grain and Hay, C_5 = Truck Crops, C_6 = Field Crops, C_7 = Citrus 

and Subtropical, C_8 = Deciduous, C_9 = Vineyard, C_10 = Water, C_11 = Young Perennial, C_12 = 

Urban, C_20 = Unspecified) 
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MLC 

Class Percent of 
Total 

C_2 0% 

C_3 11% 

C_4 4% 

C_5 7% 

C_6 4% 

C_7 1% 

C_8 20% 

C_9 5% 

C_10 1% 

C_11 2% 

C_12 7% 

C_20 37% 

 

Table 6: MLC Percent of Total Image Area by Class 

(C_2 = Rice, C_3 = Pasture, C_4 = Grain and Hay, C_5 = Truck Crops, C_6 = Field Crops, C_7 = Citrus 

and Subtropical, C_8 = Deciduous, C_9 = Vineyard, C_10 = Water, C_11 = Young Perennial, C_12 = 

Urban, C_20 = Unspecified) 

 

3.3.2. Random Forest: 

The RF confusion matrix, in Table 8, on the other hand, shows more consistency among classes with 

more of the class values resulting in an accuracy score above 0.5. This translates well to the overall 

accuracy and kappa score, which rank highest among the three classifiers. According to the original 

kappa statistic benchmarks as shown in Table 7, 0.61-0.80 is considered a “substantial” agreement 

(Landis & Koch, 1977). Therefore, the RF classifier, with a kappa score of 0.68 falls comfortably within 

a range dictating substantial agreement. Percentages of each class can be assessed in Table 9. 

Kappa Statistic Strength of Agreement 

< 0.00 Poor 

0.00-2.00 Slight 

0.21-0.40 Fair 

0.41-0.60 Moderate 

0.61-0.80 Substantial 

0.81-1.00 Almost Perfect 

 

Table 7: Kappa Statistic Benchmarks (Landis & Koch, 1977) 
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Table 8: RF Confusion Matrix 

(C_2 = Rice, C_3 = Pasture, C_4 = Grain and Hay, C_5 = Truck Crops, C_6 = Field Crops, C_7 = Citrus 

and Subtropical, C_8 = Deciduous, C_9 = Vineyard, C_10 = Water, C_11 = Young Perennial, C_12 = 

Urban, C_20 = Unspecified) 

RF 

Class Percent of 
Total 

C_2 3% 

C_3 6% 

C_4 4% 

C_5 3% 

C_6 5% 

C_7 3% 

C_8 15% 

C_9 4% 

C_10 3% 

C_11 3% 

C_12 8% 

C_20 43% 

 

Table 9: RF Percent of Total Image Area by Class 

(C_2 = Rice, C_3 = Pasture, C_4 = Grain and Hay, C_5 = Truck Crops, C_6 = Field Crops, C_7 = Citrus 

and Subtropical, C_8 = Deciduous, C_9 = Vineyard, C_10 = Water, C_11 = Young Perennial, C_12 = 

Urban, C_20 = Unspecified) 
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3.3.3. Support Vector Machine: 

Lastly, the SVM confusion matrix, shown in Table 10, provides competition to RF. The Kappa score is 

only 0.00246 lower than that of RF and so it still provides a substantial strength of agreement in data. 

In addition, the overall accuracy of all classes amounts to 0.75, and only 0.008948 less than that of 

RF. However, when looking at individual classes, it becomes more apparent that SVM is not as 

successful as RF. C_2 (rice) and C_11 (young perennial) which show an accuracy of 0, a value that 

would be unacceptable for the purposes of crop, water, and general resource planning. These results 

suggest that RF is more adaptable to a diverse dataset, while SVM may be better suited to specific 

sets of features. Corresponding percentages of each class to make up the total area are listed out in 

Table 11. 

 

Table 10: SVM Confusion Matrix 

(C_2 = Rice, C_3 = Pasture, C_4 = Grain and Hay, C_5 = Truck Crops, C_6 = Field Crops, C_7 = Citrus 

and Subtropical, C_8 = Deciduous, C_9 = Vineyard, C_10 = Water, C_11 = Young Perennial, C_12 = 

Urban, C_20 = Unspecified) 
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SVM 

Class Percent of 
Total 

C_2 3% 

C_3 3% 

C_4 3% 

C_5 3% 

C_6 5% 

C_7 3% 

C_8 19% 

C_9 3% 

C_10 3% 

C_11 3% 

C_12 14% 

C_20 40% 

 

Table 11: SVM Percent of Total Image Area by Class 

(C_2 = Rice, C_3 = Pasture, C_4 = Grain and Hay, C_5 = Truck Crops, C_6 = Field Crops, C_7 = Citrus 

and Subtropical, C_8 = Deciduous, C_9 = Vineyard, C_10 = Water, C_11 = Young Perennial, C_12 = 

Urban, C_20 = Unspecified) 
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4. DISCUSSION 

4.1. CHALLENGES & MITIGATION STRATEGIES 

4.1.1. Data Collection & Quality 

One challenge which arose early on during the study was the data collection in terms of the search 

parameters, weather conditions, time of year, and so on. It was important to obtain the best quality 

image possible, which ruled out winter months, because of potential snow; cloud cover greater than 

10% (Kopeć et al., 2020) because of the obstruction of view, and it had to be during the same time of 

year as the ground truth data – as land cover composition can vary greatly from month to month 

depending on climate. 

4.1.2. Class Imbalance & Unlabeled Data 

One of the major challenges of image classification is the vast amount of unlabeled data (Qi & Luo, 

2022). This pairs hand in hand with the challenge of class imbalance which existed naturally in this 

study’s dataset. As the goal was to identify various crop types, and the satellite image contained only 

a limited amount of crop land cover, the resulting issue was that large swaths of the image contained 

unspecified land cover within the scope of the study. The proposed mitigation strategy for this 

problem was initially to follow an under sampling of the unspecified regions and oversampling of the 

labeled data. However, results from these initial attempts proved to misclassify the unspecified areas 

as one of the 11 land cover types (see Appendix figures A-H for a visual representation). When 

comparing with Figures 10-12 in the results section, one can see a clear difference when the training 

samples then changed to a stratified random sampling, a method which would ensure the same 

proportion of training samples to actual data. 

4.1.3. Researcher Impartiality in Assessment 

A secondary challenge occurred throughout the accuracy assessment. The assessment was 

performed by manually checking the ground truth data. However, to avoid bias in the manual check, 

the column containing the classified value needed to be hidden from view to maintain complete 

objectivity. 

4.1.4. Overfitting 

The last major challenge of this project was to balance between under and overfitting: overfitting 

being when the algorithm is highly trained and fitted to a specific dataset but does not perform as 

well when applied to new and unprocessed data (Hesamian et al., 2019). Between the primary and 

secondary trial runs, the training size had to be increased, and as the training dataset increased in 

proportion, the risk of overfitting increased as well. 
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4.2. FINDINGS & DISCUSSION 

From the beginning of the classification workflow, it was found that object-based classification tends 

to outperform pixel-based (Fu et al., 2017). This was supported by a diverse set of datasets. Further, 

it is generally agreed upon, and found in this study as well, that greater training samples provide a 

better fit to the algorithm and thus more effective learning (Basheer et al., 2022). By training the 

algorithm with polygon shapes which are specific to their classes, results improved from the initial 

round of testing which used only datapoints, which were circular in shape and not fitted to the data. 

The polygon shapes appear to have helped the algorithm distinguish boundaries in addition to 

setting a lower spatial detail. The lower spatial detail value helped to segment the image into distinct 

classes before the classification step and is more suited to distinguishing impervious features in the 

satellite image. Finally, the increased spectral detail helped create some distinction between land 

cover patches which are similar in feature characteristics and close together. Adjusting the spatial 

and spectral detail parameters was especially helpful in this study as the classes included many 

related crop types with potentially overlapping characteristics. 

These tweaks in training and parameters result in visible changes in the final classified results. One 

can view a dramatic improvement from early testing (round 1, seen in Appendix Figure A) to the final 

testing (seen in Results section Figure 10) regarding MLC, in addition to the other classifiers. Initial 

testing, performed with round datapoints in the training set and all parameters set to the default 

values, amounted to Kappa values of around 0.2. Final testing was performed with polygon training 

samples, a greater number of training samples, and tuned parameters, the Kappa value reached 0.68. 

As supported by many other researchers, it was also found that a greater number of training and 

validation samples greatly improved the classification output. Initial testing was performed with ten 

samples per class in a schema of 12 classes, to understand the parameters and their effects. 

However, the initial results could not be used to determine any conclusions due to low scores. 

Subsequent tests were performed with larger and more specific training samples as well as an 

increased number of validation points; at least 30 validation samples per class ensured a sufficient 

amount of data to validate against, especially considering the high number of classes in the confusion 

matrix. According to Ramezan et al, it was found that “RF, the algorithm with the highest overall 

accuracy, was notable for its negligible decrease in overall accuracy, 1.0%, when training sample size 

decreased from 10,000 to 315 samples” and that SVM was very sensitive to a decrease in sample size 

(Ramezan et al., 2021). 
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5. CONCLUSION 

5.1. SUMMARY 

This study seeks to address two research objectives: 

1) it aims to evaluate the effectiveness of the three primary classification algorithms available in ArcGIS 

Pro, and  

2) to determine an optimal algorithm for the given study area of San Joaquin County, California, and 

its respective 12 land cover types, including 9 different crop types. 

To answer these questions, three image classification algorithms were researched, tested, tweaked, 

and compared to find optimal parameters and a best fit to the data. These three algorithms 

(Maximum Likelihood, Random Forest, and Support Vector Machine) were chosen based on their 

general usability in image classification as well as their proven characteristics through research. The 

data was in the form of a Landsat 8 image, provided by USGS, with 7 bands which were then 

processed and formed into a composite band for use in training. The ground truth validation data 

was also provided by USGS through the form of a crop planning map, which had categorized a wide 

swath of San Joaquin County into nine different crop types, as well as water, urban, and an 

unspecified group. 

Using the final confusion matrices as presented in chapter 3, the most effective algorithm tested was 

RF with an accuracy score of 0.75 and a Kappa statistic of 0.68. Although not in perfect agreement, 

the Kappa statistic of 0.68 still represents substantial agreement and can be used with some 

confidence. This result was obtained after multiple trials with varying parameters. The parameters 

for each algorithm were also tested and one can further deduce from this study that an increased 

spectral detail and a decreased spatial detail parameter enabled more effective learning. These were 

the most altered parameters, while the other parameters’ default values were sufficient to remain. 

 

5.2. INTERPRETATION & IMPLICATION 

Although RF and SVM both had very close Kappa scores of 0.68, their accuracy scores varied slightly 

with RF in the lead and SVM at 0.75. Therefore, the real implication is that both algorithms will 

provide similarly accurate and quality results even though RF is the chosen algorithm in this 

particular study. It is also important to note the other scores in the confusion matrix. If certain 

features are more important to classify, the ultimate algorithm may differ. For example, the SVM 

algorithm performed the best in terms of solely identifying urban spaces, with an accuracy score of 

0.89 on the class value of 20 (urban). Because of this, SVM would be best suited to differentiating 

between vegetation and urban land if the goal is only to have a two-class output. 
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5.3. LIMITATIONS 

As to be expected, the main issue in remote image sensing is incorrect classification. A major source 

of misclassification GIS is heterogeneous patches of land cover (Gessner et al., 2013). This project 

was a solid case study in classification in heterogeneous land cover as a single county in California 

consisted of 12 different classes and within those 12, nine of them were crop types. Some crop types 

contain more similar spectral detail to each other and were thus more difficult to distinguish from 

each other. This can be seen in earlier trials of the algorithms and even in the final confusion 

matrices, when two classes, for example classes 5 and 6 – truck crops and field crops, were more 

frequently misclassified with each other than with the other classes. 

Fadhillah et al. (2022) points out some limitations of the machine learning algorithms being used in 

this field. Many of these complicated algorithms lack information-extraction features and require 

long processing times (Fadhillah et al., 2022, p. 464). Their proposed solution involves hybrid models 

and optimization algorithms. Further, their results utilize correlation statistics with physical 

conditions in the study area to effectively determine landslide potential. Similarly, Thai et al. 

combined SVM and Artificial Neural Networks (ANN) to create and test a hybrid model and Okwuashi 

& Ndehedehe integrated Deep Neural Network (DNN) with SVM. Both draw on respective strengths 

of one learning model to address the gaps in the other. Combined and hybrid models as well as other 

complex solutions were out of scope in this study and therefore limited in the extent of answering 

how optimized certain solutions could be. 

Despite the pitfalls of supervised image classification, they remain the most accurate and efficient 

method. Traditional and manual methods of crop assessment are time consuming, labor intensive, 

and expensive (Ali et al., 2022b). Even the ground truth data for this study was done in part by 

machine learning methods – specifically Random Forest – before being aided by manual validation. 

As seen in the Appendix, in the second round Support Vector Machine testing, misclassification was 

obvious even prior to the accuracy assessment as large swaths of the image were misclassified as 

water. This, as opposed to human errors through manual work, was much easier to spot and correct 

through reclassification tools. Further, the use of remote sensing can classify much larger segments 

and much faster than any other method. Using a combination of supervised classification and manual 

assessment was a way of mitigating some of the natural limitations of either method alone. 

 

5.4. RECOMMENDATIONS FOR FUTURE WORKS 

In future works, it may be more effective to focus on fewer classes and more parameter testing. This 

study accepted a wide range of features which contributed to its limitations and resulted in 

potentially lower accuracy and Kappa scores than what it could have otherwise performed if there 

were fewer classes and greater distinction between them. 
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APPENDIX 

 

Figure A: Maximum Likelihood trial 1 result 
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Figure B: Maximum Likelihood trial 2 result 
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Figure C: Random Forest trial 1 preliminary result (1000 maximum number of samples per class) 
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Figure D: Random Forest trial 2 preliminary result (500 maximum number of samples per class) 
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Figure E: Random Forest trial 2 preliminary result (100 maximum number of samples per class) 
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Figure F: Support Vector Machine trial 1 result 
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Figure G: Support Vector Machine trial 2 result 
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Figure H: Support Vector Machine trial 3 result 
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ANNEX 

 

 

Figure A: Interpretability-accuracy tradeoff in machine learning classification algorithms 

 (Sheykhmousa et al., 2020) 
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