51 research outputs found

    Using Augmented Reality and Internet of Things to improve accessibility of people with motor disabilities in the context of Smart Cities

    Get PDF
    Smart Cities need to be designed to allow the inclusion of all kinds of citizens. For instance, motor disabled people like wheelchair users may have problems to interact with the city. Internet of Things (IoT) technologies provide the tools to include all citizens in the Smart City context. For example, wheelchair users may not be able to reach items placed beyond their arm’s length, limiting their independence in everyday activities like shopping, or visiting libraries. We have developed a system that enables wheelchair users to interact with items placed beyond their arm’s length, with the help of Augmented Reality (AR) and Radio Frequency Identification (RFID) technologies. Our proposed system is an interactive AR application that runs on different interfaces, allowing the user to digitally interact with the physical items on the shelf, thanks to an updated inventory provided by an RFID system. The resulting experience is close to being able to browse a shelf, clicking on it and obtaining information about the items it contains, allowing wheelchair users to shop independently, and providing autonomy in their everyday activities. Fourteen wheelchair users with different degrees of impairment have participated in the study and development of the system. The evaluation results show promising results towards more independence of wheelchair users, providing an opportunity for equality improvement.This work was partly funded by the Spanish Government through projects TIN2012-34965 PIGALL, TIN2011-27076-C03-02 CO-PRIVACY, TIN2014-57364-C2-2-R SMARTGLACIS, TEC2015-71303-R SINERGIA, and TSI-020602-2012-147 IRIS. The authors also acknowledge support from Obra Social “la Caixa” -ACUP through project 2011ACUP00261

    Assisting Navigation and Object Selection with Vibrotactile Cues

    Get PDF
    Our lives have been drastically altered by information technology in the last decades, leading to evolutionary mismatches between human traits and the modern environment. One particular mismatch occurs when visually demanding information technology overloads the perceptual, cognitive or motor capabilities of the human nervous system. This information overload could be partly alleviated by complementing visual interaction with haptics. The primary aim of this thesis was to investigate how to assist movement control with vibrotactile cues. Vibrotactile cues refer to technologymediated vibrotactile signals that notify users of perceptual events, propose users to make decisions, and give users feedback from actions. To explore vibrotactile cues, we carried out five experiments in two contexts of movement control: navigation and object selection. The goal was to find ways to reduce information load in these tasks, thus helping users to accomplish the tasks more effectively. We employed measurements such as reaction times, error rates, and task completion times. We also used subjective rating scales, short interviews, and free-form participant comments to assess the vibrotactile assisted interactive systems. The findings of this thesis can be summarized as follows. First, if the context of movement control allows the use of both feedback and feedforward cues, feedback cues are a reasonable first option. Second, when using vibrotactile feedforward cues, using low-level abstractions and supporting the interaction with other modalities can keep the information load as low as possible. Third, the temple area is a feasible actuation location for vibrotactile cues in movement control, including navigation cues and object selection cues with head turns. However, the usability of the area depends on contextual factors such as spatial congruency, the actuation device, and the pace of the interaction task

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    Haptic Media Scenes

    Get PDF
    The aim of this thesis is to apply new media phenomenological and enactive embodied cognition approaches to explain the role of haptic sensitivity and communication in personal computer environments for productivity. Prior theory has given little attention to the role of haptic senses in influencing cognitive processes, and do not frame the richness of haptic communication in interaction design—as haptic interactivity in HCI has historically tended to be designed and analyzed from a perspective on communication as transmissions, sending and receiving haptic signals. The haptic sense may not only mediate contact confirmation and affirmation, but also rich semiotic and affective messages—yet this is a strong contrast between this inherent ability of haptic perception, and current day support for such haptic communication interfaces. I therefore ask: How do the haptic senses (touch and proprioception) impact our cognitive faculty when mediated through digital and sensor technologies? How may these insights be employed in interface design to facilitate rich haptic communication? To answer these questions, I use theoretical close readings that embrace two research fields, new media phenomenology and enactive embodied cognition. The theoretical discussion is supported by neuroscientific evidence, and tested empirically through case studies centered on digital art. I use these insights to develop the concept of the haptic figura, an analytical tool to frame the communicative qualities of haptic media. The concept gauges rich machine- mediated haptic interactivity and communication in systems with a material solution supporting active haptic perception, and the mediation of semiotic and affective messages that are understood and felt. As such the concept may function as a design tool for developers, but also for media critics evaluating haptic media. The tool is used to frame a discussion on opportunities and shortcomings of haptic interfaces for productivity, differentiating between media systems for the hand and the full body. The significance of this investigation is demonstrating that haptic communication is an underutilized element in personal computer environments for productivity and providing an analytical framework for a more nuanced understanding of haptic communication as enabling the mediation of a range of semiotic and affective messages, beyond notification and confirmation interactivity

    Hybrid wheelchair controller for handicapped and quadriplegic patients

    Get PDF
    In this dissertation, a hybrid wheelchair controller for handicapped and quadriplegic patient is proposed. The system has two sub-controllers which are the voice controller and the head tilt controller. The system aims to help quadriplegic, handicapped, elderly and paralyzed patients to control a robotic wheelchair using voice commands and head movements instead of a traditional joystick controller. The multi-input design makes the system more flexible to adapt to the available body signals. The low-cost design is taken into consideration as it allows more patients to use this system

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    手綱型入力装置を用いた自律度を調整可能な協調型電動車いすの操作

    Get PDF

    Novel Bidirectional Body - Machine Interface to Control Upper Limb Prosthesis

    Get PDF
    Objective. The journey of a bionic prosthetic user is characterized by the opportunities and limitations involved in adopting a device (the prosthesis) that should enable activities of daily living (ADL). Within this context, experiencing a bionic hand as a functional (and, possibly, embodied) limb constitutes the premise for mitigating the risk of its abandonment through the continuous use of the device. To achieve such a result, different aspects must be considered for making the artificial limb an effective support for carrying out ADLs. Among them, intuitive and robust control is fundamental to improving amputees’ quality of life using upper limb prostheses. Still, as artificial proprioception is essential to perceive the prosthesis movement without constant visual attention, a good control framework may not be enough to restore practical functionality to the limb. To overcome this, bidirectional communication between the user and the prosthesis has been recently introduced and is a requirement of utmost importance in developing prosthetic hands. Indeed, closing the control loop between the user and a prosthesis by providing artificial sensory feedback is a fundamental step towards the complete restoration of the lost sensory-motor functions. Within my PhD work, I proposed the development of a more controllable and sensitive human-like hand prosthesis, i.e., the Hannes prosthetic hand, to improve its usability and effectiveness. Approach. To achieve the objectives of this thesis work, I developed a modular and scalable software and firmware architecture to control the Hannes prosthetic multi-Degree of Freedom (DoF) system and to fit all users’ needs (hand aperture, wrist rotation, and wrist flexion in different combinations). On top of this, I developed several Pattern Recognition (PR) algorithms to translate electromyographic (EMG) activity into complex movements. However, stability and repeatability were still unmet requirements in multi-DoF upper limb systems; hence, I started by investigating different strategies to produce a more robust control. To do this, EMG signals were collected from trans-radial amputees using an array of up to six sensors placed over the skin. Secondly, I developed a vibrotactile system to implement haptic feedback to restore proprioception and create a bidirectional connection between the user and the prosthesis. Similarly, I implemented an object stiffness detection to restore tactile sensation able to connect the user with the external word. This closed-loop control between EMG and vibration feedback is essential to implementing a Bidirectional Body - Machine Interface to impact amputees’ daily life strongly. For each of these three activities: (i) implementation of robust pattern recognition control algorithms, (ii) restoration of proprioception, and (iii) restoration of the feeling of the grasped object's stiffness, I performed a study where data from healthy subjects and amputees was collected, in order to demonstrate the efficacy and usability of my implementations. In each study, I evaluated both the algorithms and the subjects’ ability to use the prosthesis by means of the F1Score parameter (offline) and the Target Achievement Control test-TAC (online). With this test, I analyzed the error rate, path efficiency, and time efficiency in completing different tasks. Main results. Among the several tested methods for Pattern Recognition, the Non-Linear Logistic Regression (NLR) resulted to be the best algorithm in terms of F1Score (99%, robustness), whereas the minimum number of electrodes needed for its functioning was determined to be 4 in the conducted offline analyses. Further, I demonstrated that its low computational burden allowed its implementation and integration on a microcontroller running at a sampling frequency of 300Hz (efficiency). Finally, the online implementation allowed the subject to simultaneously control the Hannes prosthesis DoFs, in a bioinspired and human-like way. In addition, I performed further tests with the same NLR-based control by endowing it with closed-loop proprioceptive feedback. In this scenario, the results achieved during the TAC test obtained an error rate of 15% and a path efficiency of 60% in experiments where no sources of information were available (no visual and no audio feedback). Such results demonstrated an improvement in the controllability of the system with an impact on user experience. Significance. The obtained results confirmed the hypothesis of improving robustness and efficiency of a prosthetic control thanks to of the implemented closed-loop approach. The bidirectional communication between the user and the prosthesis is capable to restore the loss of sensory functionality, with promising implications on direct translation in the clinical practice
    corecore