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ABSTRACT 

The aim of this thesis is to apply new media phenomenological and enactive 

embodied cognition approaches to explain the role of haptic sensitivity and 

communication in personal computer environments for productivity. Prior theory 

has given little attention to the role of haptic senses in influencing cognitive 

processes, and do not frame the richness of haptic communication in interaction 

design—as haptic interactivity in HCI has historically tended to be designed and 

analyzed from a perspective on communication as transmissions, sending and 

receiving haptic signals. The haptic sense may not only mediate contact confirmation 

and affirmation, but also rich semiotic and affective messages—yet this is a strong 

contrast between this inherent ability of haptic perception, and current day support 

for such haptic communication interfaces. 

I therefore ask: How do the haptic senses (touch and proprioception) impact our 

cognitive faculty when mediated through digital and sensor technologies? How may 

these insights be employed in interface design to facilitate rich haptic 

communication? 

To answer these questions, I use theoretical close readings that embrace two 

research fields, new media phenomenology and enactive embodied cognition. The 

theoretical discussion is supported by neuroscientific evidence, and tested 

empirically through case studies centered on digital art. 

I use these insights to develop the concept of the haptic figura, an analytical tool 

to frame the communicative qualities of haptic media. The concept gauges rich 

machine- mediated haptic interactivity and communication in systems with a 

material solution supporting active haptic perception, and the mediation of semiotic 

and affective messages that are understood and felt. As such the concept may 

function as a design tool for developers, but also for media critics evaluating haptic 

media. The tool is used to frame a discussion on opportunities and shortcomings of 

haptic interfaces for productivity, differentiating between media systems for the 

hand and the full body. 
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The significance of this investigation is demonstrating that haptic communication 

is an underutilized element in personal computer environments for productivity and 

providing an analytical framework for a more nuanced understanding of haptic 

communication as enabling the mediation of a range of semiotic and affective 

messages, beyond notification and confirmation interactivity. 
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Touch is not optional for human development. […] From consumer choice 

to sexual intercourse, from tool use to chronic pain to the process of healing, 

the genes, cells, and neural circuits involved in the sense of touch have been 

crucial to creating our unique human experience. 

 David J. Linden in Touch (2016) 
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INTRODUCTION 

 

The haptic sense, linking sensations of touch, posture, and position, is vast and 

complex, distributed over our bodies, and extended outwards through movement. It 

is an inherent component in human experience and consciousness and frames our 

embodiment. Still, mediation of social communication and productivity primarily 

uses screens and smooth surfaces lacking texture or tactile cues, and so the visual 

sense guides and frames our means for navigating information, producing 

knowledge, managing relationships, and more. Experience is inherently 

multisensory, our senses do not operate separately or independently of each other, 

but rather simultaneously. And while our haptic apparatus plays a significant role in 

human perception, it is currently underemployed in our everyday interaction with 

computers.  

I am investigating how haptic communication and interfaces beyond touch screen 

surfaces can be integrated into our personal computer environment, setups which 

today are primarily engaging us via screens, leaving other modalities in the 

background. This is problematic not only because it neglects the rich multisensory 

quality of human experience, but also because it affects our sense of embodiment 

and as a result our cognitive functions.  This coincides with the fact that more and 

more of our daily activities are mediated through the screen. And while haptic 

interfaces are becoming more sophisticated (i.e. detailed input/feedback devices), 

we still lack both a precise understanding of how haptic technologies address 

material, semiotic and affective dimension of communication, and descriptions of 

how haptic gestures and control can fluently enter current personal computer 

environments aimed for productivity. 

The title Haptic Media Scenes aims to frame the specificity of the haptic interface 

and growing and dynamic field of research on haptic communication. It also points 

to the unique role of haptic media in engaging performing bodies, mediating tactile 

and proprioceptive sensations, as well as meaning and affect, as active explorations 
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of space. This is reflected in the use of the case study as a research strategy, 

analyzing works of digital art exploring haptic experience and sensitivity. 

Topic and background 

The visual iconography of the graphical user interface (GUI) introduced  

in the late ‘70s for desktops, and later laptops, was designed to ease the  

interaction between human and machine. This interface has framed personal 

computing environments for decades. Nonetheless, it situated the interactor1  

in a keyboard-mouse-screen hardware setup while leaving much of the body’s 

appreciation for tactile and proprioceptive input unaddressed. Mobile touch screen 

devices attempt to counter this shortcoming, but as the same icon-based GUI has 

transcended into the mobile domain of applications, and the hardware interface is a 

smooth touch screen surface—these devices are still constricting the user from the 

rich perceptive environment of haptic information.  

Many of these shortcomings may be accommodated by engaging our inherent 

tactile and proprioceptive understanding and appreciation of shape, texture, and 

locative space and motion in directing goals and solving tasks, and commonplace 

haptic technologies do exist, embedded in our various touch screen devices. 

However, these devices’ primary interfaces are smooth, non-tactile surfaces. By 

letting you tap, swipe, trace and pinch, they support single and multi-touch gestural 

input. But as the surfaces lack sufficient tactile markers, the user must additionally 

use the sense of sight to navigate. The haptic output repertoire is limited to rather 

static vibration feedback, mostly used for simple notifications and confirmation, 

leaving very much to be desired.  All in all, we see that visual language dominates the 

capture and reading of information in such interfaces, whereas haptic interactivity is 

primarily utilized to navigate and input information, leaving out the richness 

inherent in haptic communication. 

 
1 The term interactor was introduced by Nick Montfort in Twisty Little Passages: An Approach to 

Interactive Fiction (2003), to describe the role of the reader in interactive fiction, as an active contributor to 
the literary experience. In this dissertation I will use the term interactor more broadly to situate the active 
participation and contribution in interactive experiences in general. 
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The extent of active haptic exploration is framed by our embodiment, the ability 

of our body to engage in sensorimotor couplings with the world. The moment of 

touch is more than a physical encounter between two bodies, it is also a moment 

loaded with meaning and emotion. In encounters with media machines, 

communication is dependent on more than a rich material support for haptic input 

and haptic feedback, the system also needs to acknowledge the rich semiotic and 

affective content inherent in haptic interactivity.  With digital technologies and 

availability of sensor technology, hardware and software solutions for active haptic 

perception for input and feedback is increasingly supported. What is lacking is a 

shared understanding of what rich haptic communication entails.  

Research on haptic interaction is dispersed over several research fields, ranging 

from human-computer interaction (HCI) and neuroscience, to theoretical treatments 

in philosophy, sociology, and psychology, and finally in artistic experimentation and 

reflection. HCI research has emphasized the transmissive qualities of haptic 

interaction, the mechanical and digital rendering of haptic signals, and has focused 

less on haptic communication as a nuanced message-carrying activity, involving 

aspects of affect and semiotics. On the other hand, theoretical reflections often 

present insufficient insight into the practical aspects of designing a well-functioning 

haptic device. There are also few descriptions that set the limits and potential for the 

haptic interfaces, or the extent of haptic communication as a means to address tasks 

and actions for productivity in multimodal/cross-modal interfaces. 

The extent and role of haptic sensitivity in mediating experience is 

underappreciated in human-computer interaction, and the field is in need of a 

concept framing haptic communication as well founded materially, and supporting 

semiotic and affective messages. Haptic interfaces also come with certain limitations 

and possibilities that need to be framed accordingly. 

To successfully understand the potential role of haptic communication in 

interfaces, we need to source insights across disciplines. This thesis therefore draws 

upon theoretical insights from new media phenomenology and the enactive-
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extended embodied cognition framework2 which argues the active role of the body 

in shaping cognitive processes. The theory is supported by neuroscientific evidence 

and reflected in a critical analysis of a series of multimodal interactive artworks.  

Outcome and research questions 

This thesis study aims to source a cross disciplinary field of research on haptic 

interactivity, in order to frame rich machine mediated haptic communication, and 

present potential and limitations in haptic interfaces for productivity. Specifically, I 

aim to establish a connection between embodied reach and distribution of cognition 

as theorized in the extended and enactive embodied cognition framework, 

enactivism and extended functionalism, and the specific role of the haptic perception 

in cognition. 

I address the ability of the haptic sense to mediate not only contact confirmation 

and affirmation, but also rich semiotic and affective messages—demonstrating the 

contrast between the inherent ability of haptic perception, and current day support 

in haptic systems. I use these insights to develop a concept and analytical tool that 

gauges the richness of haptic communication as a means to help researchers and 

developers. I will use this tool to frame a discussion on opportunities and 

shortcomings of haptic interfaces for productivity. By productivity I mean day-to-

day tasks and actions we perform, at work and at home, to design and create, 

produce knowledge, handle information, manage our productions and relationships, 

which are currently maintained by desktops, laptops, and mobile devices.  

Finally, I aim to promote works of digital art as valuable research objects for 

interrogating haptic sensitivity and mediation. The research and discussion in this 

thesis are driven by two questions: 

 
2 There are several positions in the embodied cognition thesis, rooted in the extent of an agent’s 

embodiment and cognitive reach. The strongest view is proposed by Andy Clark and David Chalmers in the 
extended mind thesis and enactivism proposed by Shaun Gallagher and Francisco J. Varela. Both positions 
argue that an agent’s cognitive processes are extended and enacted into the environment, beyond the brain 
and body proper.  See chapter 3 for a richer discussion of these positions. 
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Research question 1: How do the haptic senses (touch and proprioception) 

impact our cognitive faculty when mediated through digital and sensor 

technologies?  

I will use theories of new media phenomenology to argue that digital and sensor 

technologies present novel opportunities for extending sense of agency across 

modalities and space, by means of body schema revisions. I will use theories 

presented within enactivism and extended functionalism to argue that cognition is 

not a purely mental activity, but an embodied process, that may be distributed. The 

first research question is explored and answered in chapter 1, 2 and 3. 

Research question 2: How may these insights be employed in interface design to 

facilitate rich haptic communication? 

I will argue that haptic communication needs to be framed in accordance with the 

material solution of the system and its ability to support haptic perception, as well as 

delivering semiotic and affective messages. Haptic interfaces will, additionally, need 

to be scrutinized for the tasks and actions they accommodate to function as useful 

personal computing environments for productivity. The second research question is 

answered in chapter 4 and 5. 

Theoretical framework and research terminology 

The theoretical close reading embraces two research fields, new media 

phenomenology and enactive embodied cognition, supported by neuroscientific 

evidence, and tested empirically through case studies centered on digital art. 

The phenomenological framework, presented by Merleau-Ponty and actualized for 

digital media by Mark B.N Hansen,  explores and underlines the significance of the 

body in the study of consciousness, the objects of direct experience, and the 

structure of experience. The body is a medium of experience, not a material object, 

which sets the extent of our embodiment.3 Phenomenology argues the inherently 

 
3 Embodiment may be used to discuss all aspects of a phenomenon or thing, the quality of an idea as in 

“charity is the embodiment of compassion.” If not stated otherwise, I will use the term embodiment in the 
phenomenological sense, to denote the bodily mediation of experience as informed by sensorimotor activity. 
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active quality of subconscious or even preconscious perception in guiding actions 

and directing goals, and the permeating role of tactile and proprioceptive sensations 

in perception. For this reason, phenomenology is no longer a purely theoretical 

exercise to understand the relationship between bodily experience and the 

formation of consciousness:  

it also becomes key in helping us understand the potential of haptic technologies. 

Contemporary consumer technologies utilize gesture and touch technologies—

haptics are becoming more mainstream. For this reason, phenomenology has 

something to offer practitioners and theorists of human-computer interaction of 

today. Equally, the enactive embodied cognition thesis as presented by Shaun 

Gallagher holds that physical characteristics of the body, techniques and tool-use are 

shaping cognitive processes, which are significantly influenced in the encounter with 

digital and sensor technologies. 

The theoretical close reading is tested empirically through the use of case study 

research chapter by chapter. A significant number of the cases are sourced from the 

art world. Works of digital and electronic art are specifically apt in demonstrating 

new or innovative uses of haptics and cross-modal interactivity. Artworks are also 

unique sources for problematizing aspects of human nature and goals of 

technological innovation less biased by economic forces and policy, and as such a 

very suitable research object for digital culture. 

Adapting insights from so many different research fields begs for a literature 

review explaining the core terminology I will be using throughout the dissertation, 

particularly the notions of touch, haptic and haptics. The additional treatment of 

relevant research terminology relating to ocularcentrism, body schemata, embodied 

cognition, and theory of interaction and interface will be framed individually in 

chapters 1-5.  

Main findings 

In this thesis I demonstrate that screens, while great surfaces for organizing thought 

and visualizing complexity, are poorer mediators of presence. The mediation of 
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presence depends on the support of rich haptic, not only tactile, perception, beyond 

visual representation. I build upon the claim that our action potential is set by the 

body schema, plastic motor control programs that frame bodily reach, and which are 

influenced by habit, techniques, tools, and technologies (Gallagher 2001,149; 

Carman 1999, 219), to show that extending haptic perception allows for new 

sensorimotor couplings, and extends our action potential and allows us new 

experiences of consciousness.  

A key contribution of this thesis is the concept of haptic figura, which I introduce 

as an analytical tool to frame the communicative qualities of haptic media. 

Specifically, the concept gauges rich machine mediated haptic interactivity and 

communication in systems with a material solution supporting active haptic 

perception, and the mediation of semiotic and affective messages. 

I show that there are specific limitations and opportunities inherent in haptic 

media interfaces with regards to productivity, both in stand-alone systems or 

integrated in audiovisual mixed reality systems. Certain haptic tasks, pertaining to 

physical thinking processes, spatial creativity, and gestural control, are best 

supported by hand interfaces, while experiences of presence in virtual and 

augmented reality systems benefit from full-body interfaces. 

Thesis chapter overview 

Haptic Media Scenes consists of five chapters, each centered around a key concept 

relevant to the discussion on haptic interactivity and communication, which is 

framed in theory and empirically analyzed in case studies. The conclusion in each 

chapter sets the premises for the following chapter, but the chapters may also be 

read individually. 

Chapter 1 discusses the concept of ocularcentrism by means of the pervasive 

screen interface and aims to show how different vision technologies impact the 

sense of embodiment and mediation of presence.  

Chapter 2 introduces the concept of body schemata as theorized in 

phenomenology. Body schemata are motor-control programs that govern our 
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potential for action, the bodily space. The schemata are not fixed but shaped through 

processes of confirmation and revision. Tactile and proprioceptive sensations are 

central to body schema revisions, as a frame for haptic agency and repertoire 

represented in all sensorimotor coupling with environments. The extent of our 

embodiment is set by the sense of ownership and agency of actions, and is as such 

framed by tools, techniques, and technology.  

Chapter 3 investigates the concept of embodiment and cognition as extendible, 

theorized in the embodied cognition framework, and exemplified through cases of 

technological extension of touch and proprioceptive senses. Embodied cognition 

argues that there is a deep connection between embodiment and cognition, 

proposing that not only are a significant amount of cognitive processes inherently 

embodied, we also use our bodies to strengthen processes of learning and 

remembering. Our embodiment may be extended beyond the skin border, through 

the use of tools or via technology as cross-modal mediations, virtual reality or 

telepresence experiences, and cognitive processes are exteriorized beyond the body 

with cognitive technologies. However, the limit of embodiment and cognitive 

distribution is not set. To frame machine mediated haptic communication we still 

need to set a preliminary border. And in accordance with enact embodied cognition, 

this border is set at the reach of sense of ownership and agency. 

Chapter 4 introduces the concept of haptic figura to frame machine mediated 

haptic communication. The haptic figura is proposed as an analytical tool for 

investigating material, semiotic and affective qualities of haptic communication. 

Haptic materiality is dictating the degree of authenticity of haptic interactions, both 

in terms of reproducing or mirroring sensory experience and affording rich active 

haptic perception. The material solution supports the successful transmission of 

haptic signals, as signs and messages, and potentially, affective content. Haptic 

semiotics is analyzing the tactile-gestural communication, where the semiotic 

solution enforces the requirements for moving beyond informational exchange, to a 

domain of meaning generation and interpretation of haptic messages. 
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Chapter 5 extends the notion of haptic interactivity and communication to frame 

haptic interfaces for productivity, the ability to perform desired tasks and actions. 

The chapter presents relevant design strategies and metaphors and identifies 

elements of user interactivity suitable for interfaces affording rich haptic 

communication and productivity. These findings are discussed in three distinct 

interactive scenarios, the Hand, the Body, and The Sign, each headlining specific 

opportunities and limitations of different haptic interfaces. 
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LITERATURE REVIEW 

Haptics in Interactive Scenarios  

 

The term haptic has been used fairly differently in various research fields over time, 

and still to this date there is no consistent definition of the term. For this reason, I 

will offer the reader a short introduction to the concept and its usage before 

proposing an understanding suitable for the discussion ahead. I will distinguish 

between haptic (a term both used to denote the sense of touch, and as well as the 

somesthetic senses), haptic perception (active use of the haptic senses), and 

haptics—that is, technologies directed at the haptic senses.  

Haptic sensitivity: from touch to haptic perception 

The history and research on the sense of touch, in philosophy and medical science, 

from antiquity to the present, is extensive and well deserving of its own treatment,4 

and beyond the scope of the short introduction provided in this literature review.   

Touch, from being analyzed strictly as a skin sense which responds to external 

stimuli, has also been an object of philosophical contemplation and reasoning, 

proposed as the primary source for human experience. Its unique position is 

understandable. Touch is the only sense that is not centered in one specific location 

or organ in the body. It is everywhere—close to ubiquitous to our bodies.  

Most phenomenological studies of the structure of human experience include an 

account of bodily, sensory perception, and several scholars have provided us with 

 
4 For a longer treatment of the history of touch, I recommend David Parisi’s dissertation Touch Machines: 

An archeology of haptic interfacing (2008). Parisi’s book Archeology of Touch:  Interfacing with Haptics from 
Electricity to Computing (2018) provides a comprehensive treatment of the history of touch and touch 
technology. Here, Parisi follows research on the haptic apparatus in medical sciences in the 18th, 19th and 
20th century, and points to the quantification of the haptic sense seen in the development of haptic 
technologies (haptics). Equally, he gives the reader an insight into the understanding of haptic and haptics in 
visual art and media aesthetic research conducted in the last 30 years.  
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insightful analyzes of the sense of touch. In 1954 Hans Jonas formulated a 

phenomenology of the senses, arguing for the unique role of touch as a rooting 

mechanism confirming reality. When we touch, sensing and the sensed coincide, and 

any illusion is dispelled.  As such, sight alone is an insufficient sense conduit to form 

a meaningful understanding of the world. No matter how extensive the reasoning 

qualities of our intellect, we need to include touch sense data to fully grasp reality. 

Jonas concludes that “[t]ouch is the truest test of reality:  It can dispel every 

suspicion of illusion by grasping the doubtful object and trying its reality in terms of 

the resistance it offers to my efforts to displace it” (Jonas 1954, 516). With the 

introduction of virtual objects with artificially rendered textures, the claim of touch 

separating reality from illusion needs to be refined and nuanced. Still, the overall 

treatment of touch in philosophical settings points to the significance and 

importance of the sense and offers valid arguments for including tactile sense data in 

interactive scenarios. But to form a more accurate language of touch interactions, we 

need to include other areas of study on the sense of touch, such as the work done in 

the fields of psychophysiology and human-computer interaction. 

From touch to haptic 

The word haptic first appeared in Max Dessoir’s extensive paper “Ûber den 

Hautsinn” published in 1892, to  suggest a field of medical research on the sense of 

touch.5 As pointed out by Titchnerer in his review of the paper the following year, 

“Dr. Dessoir proposes the word Haptics to cover all cutaneous sensibility with the 

exception of temperature-sensation.” (1893, 76). At this point important pioneering 

experiments on skin sensitivity had already been conducted by anatomist Ernst 

Heinrich Weber identifying the two-point threshold on human skin, which is the 

threshold for discriminating between two individual points of touch, and for the first 

time establishing a map of the skin (Weber 1851). From Weber’s early experimental 

designs, research on the touch sense in the field of physiology and psychology was 

 
5 In the same work Dessoir introduced and coined the term psychophysiology pointing to the 

interdisciplinary field of physiology and psychology in understanding the human sense of touch. 
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enriched by several scientists towards the beginning of the 20th century: Max von 

Frey, continuing Weber’s work developed an instrument for identifying pressure 

points on the skin, as well as policing strict guidelines for experimental methodology 

(Grunwald & John, 20-21), experimental psychologist Révész offered the initial 

contribution connecting the haptic sense and blindness (1938), psychologist Katz 

argued for and proposed a methodology for psycho-physiological research directed 

at the haptic sense (1925, 1989), Skramlik’s comprehensive monograph The 

Psychophysiology of the Senses of Touch provided a detailed overview and 

presentation almost all haptic and tactile perception studies done to date (1937). 

Together, these researchers provided us with the foundation for 

psychophysiological research on the haptic sense.  

Haptic vision and visual art 

Beyond its introduction in medical sciences in the late 19th century, Austrian art 

historian Alois Riegl has been attributed the first scholarly introduction of the term 

haptic. In his foundational work Late Roman Art Industry (1901;1985), Riegl 

introduces the notion of tactile vision by distinguishing between tactile and optical 

modes of representation. The year after, in the article “Late Roman or Oriental” 

(1902, 1988), Riegl exchanges the term tactile with haptic. The conventional reading 

of Riegl suggests that he considered all haptic experiences essentially visual. In this 

view, visual experiences trigger the haptic sense, and the role of the haptic sense is 

to assist and confirm visual perception. However, as David Parisi pinpoints in 

reading Riegl’s take on sculpture, Riegl in that work explicitly describes the sense of 

touch as a “pre-dominant” source of perception (2008, 72), which suggests that Riegl 

does see the haptic sense operating independently of visual cues. This is in contrast, 

Parisi argues, to the way Riegl’s work positions the connection between haptic and 

vision and how it  is referenced and used in visual art, where many art critics  and 

researchers either view the haptic sense as a function of the visual sense, or that the 

haptic sense, uncritically, is positioned as a remedy to an ocularcentric design 

regime.  
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Somesthetic senses: touch, proprioception and haptic sensing 

The terminology on touch has become increasingly nuanced in the last 50 years, 

especially with the expansion of the fields of neuroscience, experimental psychology 

and psychophysiology. An umbrella term for touch perception in the broadest sense 

is somesthesis, which includes the skin sense as well as the sense of position and 

movement of our limbs, often referred to as proprioception.6 In addition the term 

haptic is used to define a particular aspect of somesthetic sensing, namely active 

touch (Robles-De-La-Torre 2006, 27). In 1999, Craig and Rollmann provided a 

review on somesthesis, which they categorized as the sense of touch, haptic and 

kinesthesia (sense of movement), sense of temperature, and the sense of pain. In the 

review they differentiate between the active and passive touch,7 where haptic is 

defined as active exploration using the touch sense (314-315), primarily with the 

use of the hand. Although mentioning the position sense (proprioception) in the 

introduction, the word never re-appears in the text, and the term proprioception 

only shows up in references. 

A decade later, a second review of studies of the somesthetic senses is given by 

Hollins (2010). The somesthetic sense now consists of the sense of touch, sense of 

temperature and sense of pain. Here the touch sense is defined by the following 

parameters: tactile acuity (originally mapped by the two-point threshold experiment 

developed by Weber), vibrotraction (dynamic stimulation governed by intensity and 

pitch), texture perception (feel of surface), perception of location and movement 

(localization of skin stimulus), affective touch, and tactile attention (inhibition of 

return, attentional blink). The mention of the term proprioception is missing 

altogether, except in references. The terms haptics is briefly addressed in the 

introduction as the “study of active exploration (especially) by the hand” (244), 

referring to the research of Jones & Lederman on sensorimotor perception, again 

separating passive tactile sensing from active, which is considered haptic (2006). In 

 
6 Some researchers differentiate between the sense of limb position as proprioception from the sense of 

limb movement as kinesthesia. In the following I will use proprioception to account for both sensations. 
7 The distinction between active and passive touch was noted already by Ernst Heinrich Weber (1851). 
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a neurophysiological review on haptic sensing by Henriques and Soechting haptic 

sensing is defined as “the extraction of information about an object's properties such 

as its size, shape, and texture by means of exploratory manual movements” (2005, 

3036). What these reviews show us is that in the fields of experimental psychology 

and physiology the term haptic sense or haptic perception is specifically used to 

denote active exploration using the sense of touch. Haptic sensing involves more 

than purely tactile sensations, but also sensations relating to position and 

movement, namely proprioception. 

Linking touch and proprioception 

The review above suggests an intimate bond between touch and proprioception 

that deserves a closer look. Mark Paterson, based on the research of Cole (1995) and 

Oakley et al (2000), proposes that the haptic is “relating to the sense of touch in all 

its forms” and lists proprioception and tactile forms of perception among these. 

Proprioception includes vestibular, kinesthetic, and cutaneous sensations, while the 

tactile is “pertaining to the cutaneous sense, and more specifically the sensation of 

pressure (from mechanoreceptors) rather than temperature (thermoreceptors) or 

pain (nociceptors)” (Paterson 2007, ix). In line with Paterson, Brian Massumi 

suggests haptic to cover more than the sense of touch. He offers a more nuanced 

understanding of haptic, which he sees as an interaction between three different 

sensory states:  

 

[P]roprioception, defined as the sensibility proper to the muscles and  

ligaments as opposed to tactile sensibility (which is “exteroceptive”)  

and visceral sensibility (which is “interoceptive”). Tactility is the sensibility  

of the skin as surface of contact between the perceiving subject and the  

perceived object. Proprioception folds tactility into the body, enveloping  

the skin’s contact with the external world in a dimension of medium depth: 

between epidermis and viscera.” (Massumi 2002, 58)  
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Proprioception becomes a significant contributor to the touch sense as it extends the 

touch dimension from the skin surface outwards into the world and inwards 

throughout the body.  Paterson and Massumi’s proposals stand up to experimental 

scrutiny as well. In a setup led by cognitive scientist Frederique de Vignemont, test 

subjects were given proprioceptive stimulus (by vibrating the biceps or triceps 

muscles) on the right upper arm while touching the right index finger on the left one. 

Depending on whether the biceps or triceps muscles were stimulated the subjects 

reported that their index finger felt as though it either was elongated or shrunk.   

The vibration of muscles produced the proprioceptive illusion which resulted in a 

distorted tactile interpretation of size, suggesting that “tactile perception of an 

external stimulus is mediated by the proprioceptive representation of the body part 

that is touched” (Vignemont et al. 2005, 1286). This effect was not equally 

prominent when the triceps muscles were vibrated, producing the proprioceptive 

illusion of shrinking the fingers, suggesting we are bound by some body 

representations or schemata in the direction of growth.   

In other words, we have empirical evidence that the sense of touch is highly 

integrated with the proprioceptive sense, especially regarding the sense of size. But 

this is far from the only reason why the significant interconnection between touch 

and proprioception should be acknowledged.  

The haptic sense in human-computer interaction 

In the fields of computer science and human-computer interaction the haptic sense 

is often defined by how we can interact with it technologically, in the analysis of 

design parameters for interacting with and manipulating people and objects. As such 

the haptic sense is understood in terms of its ability to recognize variances in 

pressure, stiffness, position, resolution and force magnitude (Tan et al. 1994). This is 

a rather mechanical approach, which will fail to identify the subtler aspects of 

human multisensory experience. A less singular and strict definition is offered by 

researcher and computer scientist Karon Maclean, who uses the term haptic to 

denote the touch sense, more specifically the ability to recognize texture, 
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temperature, pressure, and pain as well as the ability to interact with the touch 

sense (2008, 149). Maclean’s approach also takes interactive elements of touch 

sensing into account, but without specifically addressing the role of proprioception. 

This lack is remedied in a more recent review of tactile and haptic sensing by 

robotics researchers Silvera-Tawil, Rye and Velonaki, who summarize the 

complexity quite well:  

 

The somatosensory system comprises two different subsystems: cutaneous 

and kinaesthetic [62], [63]. The cutaneous subsystem involves physical 

contact with the outer surface of the body and generates sensory inputs 

through receptors embedded in the skin. The kinaesthetic subsystem receives 

sensory inputs from receptors in muscles, tendons and joints, and provides 

information about the position and movement of the body and limbs. 

Typically, the term “tactile” is used to describe conditions affected by the 

cutaneous subsystem alone, while the term “haptic” is used to describe inputs 

that combine both the cutaneous and kinaesthetic subsystems. (Silvera-Tawil 

et al. 2015, 231-232) 

 

 

In discussing the role of haptic sensitivity in interactive scenarios, I find it suitable 

and in accordance with this research review to discuss tactile sensations as 

specifically relating to the skin, and proprioceptive sensing as relating to the 

sensations of position, posture and limb movement. I will use haptic sensitivity (the 

ability of the haptic sense to read perceptive cues and signals) to denote the 

combined tactile and proprioceptive sensing, and the term haptic perception to 

denote the active exploration of environments and manipulation of objects, using the 

haptic senses. In Chapter 4, I will offer the reader a more detailed overview of 

possible parameters for interacting with the haptic sense, suggesting the concept of 

the haptic figura to understand the material, semiotic and affective qualities of 

interacting with the haptic sense.  
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From haptic to haptics: understanding haptic media 

We also need to distinguish between haptic and haptics. Whereas haptic refers to the 

actual sense, haptics stands for the wide range of technologies that are directed 

towards the haptic senses—input and feedback mechanisms alike—and that are 

more often labelled as haptic technologies and haptic interfaces. In terms discussing 

technologies that aim to generate artificial touch and proprioceptive sensations a 

valuable distinction can be made between noninvasive haptic technologies, invasive 

haptic stimulation (stimulating the brain or nervous system), and robot haptics 

where robots are provided with an artificial touch sense, generated by force and 

tactile sensors (Culbertson et al 2018). In this dissertation, I will primarily be 

concerned with noninvasive haptic technologies, although valuable insights into 

haptic interaction are found in research on robot haptics, particularly work on 

machine recognition of social and affective touch sensations. 

The history of haptics may be traced from the early tactile interaction with 

electricity in the 18th and 19th century, via the development of applications for 

teleoperations during WW2 as proposed by David Parisi (2008), however, such a 

treatment is beyond the scope of this review. For the purpose of our discussion, a 

more recent and suitable origin may be proposed in the development of haptic 

displays (that utilize force feedback mechanisms), pioneered by Margaret Minsky in 

her work on texture simulations (Minsky et al. 1990) and continued in Brook’s work 

on haptic displays for scientific visualizations in project GROPE (Brooks et al. 1990). 

The jump from scientific explorations on haptic technologies to a commercially 

available haptic interface came with the arrival of Phantom, the first desktop haptic 

display8 developed by Sensable Technologies (now Geomagic) in 1996 (Massie & 

Salisbury 1994; Geomagic 2017). And during the last decade consumers have been 

presented with trackpads and tactile displays that respond to a wide range of haptic 

input and gestures, as well as offering a limited haptic feedback repertoire (mainly 

 
8 This first and later haptic technologies that offered tactile and proprioceptive feedback over larger 

surfaces has been labelled displays, which may be confusing as display is primarily associated with visual 
screen media.   
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force vibrations). From the mid-90s and increasingly in the 00s, a range of 

international conferences and workshops have been organized on the topic of 

haptics, such as IEEE World Haptics, Eurohaptics, and the HAID workshop running 

from 2006-2013. In recent years the conferences have included contributions from a 

larger cross-disciplinary field, such as new media art and design, however the 

majority of contributions are grounded in the fields of neuroscience, 

psychophysiology, robotics, mechanics, and engineering, as well as computer science 

(i.e. Eurohaptics9, World Haptics10, and Smart Haptics11).   

While tactile displays and touch screens dominate the market of consumer 

haptics, both hardware and software solutions have improved significantly in recent 

years, specifically in the fields of haptic feedback. Haptic glove systems, gestural 

controllers, and the implementation of haptics in virtual and augmented reality 

applications, are areas of research that deserve particular attention. In chapter 5, 

three interactive scenarios, presented under the headings the Hand, the Body, and 

the Sign, discuss potential and limitations of these new directions in haptics. 

 
9 http://eurohaptics2020.org/ 
10 http://www.worldhaptics2019.org/ 
11 https://www.smart-haptics.com/ 
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1 SCREEN MIRAGE  

Oculus Prime and the Haptic Turn 

 

In our everyday life we interact with objects and people using the full extent of our 

sensory apparatus. All of the senses participate in gathering information that forms 

the content of our experience. That does not mean that all senses play an equal role, 

or that the roles stay fixed from experience to experience. Whereas the sense of 

hearing is not critical in the act of consuming food, it is significant in enjoying a radio 

show. Many of the devices we engage with are designed to cater to a particular 

sense. Screens are one such device perfectly designed to entice our visual sense—

and they surround us. 

I am caught in a daily screen migration routine. Each morning the mobile phone 

provides me with the status of my network communication: I skim incoming emails 

and sort them by urgency, before I take a quick scan through my social media news 

feed. Later, I move to a tablet or laptop for news and general productivity. In 

between places and sections of the day I revisit the mobile phone, before retreating 

to a larger screen in the evening for TV-entertainment, gaming, or a wall-projected 

movie experience. These are my personal screens: close to my body, in my home and 

workplace, but they are hardly the only screens I engage with throughout a day.   

Screens have become the prominent media for information gathering and task 

handling, not only in our personal life and work situation, but increasingly in every 

aspect of our daily public lives. Flickering advertisement screens in malls and travel 

centers, ATMs, screens on vending and ticket machines, and searchable information 

screens, are but a few of the screen media surfaces I encounter in a day. Screens 

almost seem to be following us throughout the day. Close up and from a distance, at 

different ratios, and increasingly ubiquitous, masquerading as mirrors and windows, 

doors of perception. It seems we have moved on to the next general-purpose artifact, 

each of which has a dominating feature in human history: from the Stick, to the 



 

38 

Wheel, to the Screen. How have screens come to be the prominent media artifact 

they are today and what does this entail for us?  

Current personal computing interface setups today—either the GUI/WIMP of 

laptop/desktops or the touch screen of mobile devices as a navigational surface—

prioritize the sense of sight, and are as such ocularcentric. Due to the primary 

position of the screen, these hardware interfaces downplay the role of other bodily 

senses as preceptors of information. The screen, as currently utilized, promotes 

certain experiences while demoting others. Still, experiments in the art world 

demonstrate proprioceptive and haptic qualities of screen media, and the 

introduction of haptic input and feedback systems shows the broader potential of 

the screen medium in engaging our somesthetic senses more directly.  To answer the 

question above, I will investigate how screen media affect the sense of embodiment, 

by analyzing their ocularcentric and haptic properties. More specifically, I will 

situate the screen in current personal computer interfaces by discussing visuality in 

connection to screen properties, both material and representational.  

This chapter is divided into four main parts: Oculus Prime, the Multiple Screen, 

Screen Mirage, and the Haptic Turn. Part I presents ocularcentrism as a paradigm for 

thinking and machine design, as well as discussing possible effects of this paradigm. 

Part II offers insight into the diversity of screen media, both materially and as 

representational surfaces. Part III uncovers the lure of the ocularcentric screens; 

what makes these screens so attractive and yet limiting? Part IV discusses haptic 

qualities of screen media presenting digital artworks that utilize screens to reveal 

novel bodily experiences. 

1.1 Oculus Prime 

Vision technologies, ranging from screens to advances in machine vision, are 

dominating consumer technology for communication and productivity. Current 

interfaces of personal computing are highly ocularcentric in nature, meaning that the 

sense of sight is predominant in how we process content and options of 

functionality, although our hands are significant assistants in manipulating and 
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navigating within the interface. Beyond the technological limitations at the time of 

the standardization and commercialization of the PC in the early '80s, or the earlier 

formalization of first order cybernetics thinking in the mid-’40s, I argue, we can 

track the origin of this interface design (hardware setup and interface metaphors 

alike) in a Cartesian tradition of cognition, where sight is considered the main 

conduit for abstract reasoning and reflection.  

Ocularcentrism means the privileging of vision over other senses, and accounts 

for the prominent role of sight and visual perception and its connection to reason in 

Western philosophy. Ocularcentrism holds the premise that the sense of sight is 

primary and the most essential sense for conveying information. Ocularcentrism is 

already present in Platonic texts, such as in the cave allegory—where enlightenment 

comes from escaping the shadows by following the light. The sense of sight is 

connected to reason, enlightenment and thought. Still today, thinking processes 

leading to realizations and knowledge are gained through insights, enlightenment, by 

seeing something clear, focusing, etc.  In 1644 Descartes’ influential work Principia 

philosophiae (Principles of Philosophy) was published, a text which proposes the 

complete split between mind and body, summarized as Cogito Ergo Sum (“I think, 

therefore I am”), arguing for the disembodiment of thought and reason. This 

tradition of cognitive thinking, often referred to as Cartesianism, can be seen as an 

extension of early ocularcentrism, which has had an enormous impact on Western 

thinking and art, as well as technological development.  

Origin of ocularcentrism: distance and surface as an instrument 

for thought 

We may ask ourselves if ocularcentrism is inherent in human culture. We certainly 

know that it occurred prior to the mind-body dualism proposed by Descartes. It is 

one thing to distinguish human senses, identifying individual qualities, but another 

to prioritize one sense at the cost of others. To understand how the sense of sight 

has attained such a privileged position I first turn to philosopher Hans Jonas. In 1954 

he published the study “Nobility of Sight.” Here he outlined a phenomenology in 
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which he analyzes the distinctive qualities and limitations of the various senses 

individually. For the discussion ahead, it is his insight on the sense of sight which is 

particularly useful.  

Three characteristics make up his definition of the visual sense. Firstly, sight is 

simultaneous as visual sensations from various sources are paired the moment we 

open our eyes. Likewise, the stream of juxtaposed visual sensations is presented 

continuously. This is not the case, Jonas argues, with the auditory sense. We hear one 

thing, then the next in succession, and we have great difficulty in separating different 

spatial sources of sound. The touch sense, on the other hand, manages to synthesize 

touch sensations from various sources, but the sensations are still successive. 

Secondly, sight neutralizes cause-effect relationships because we can choose 

what, when and if, we want to look at something, and is as such the least realistic of 

the senses. For this reason, it is a selective sense, and Jonas argues that “from this 

distinction [between the object in itself and how it affects me] arises the whole idea 

of theoria and theoretical truth.” (Jonas 1954, 515)  

A third characteristic, and perhaps most pressing for this discussion, is his claim 

that sight operates with distance. Sight is probably the one sense that doesn’t benefit 

from increasing proximity with the object, as our eyes will struggle to put the object 

in focus. Sight, as such, is a sense for reflection, a device for theoretical exploration 

set apart from (or above) the immediacies of the physical world. Jonas gives us an 

inkling of how sight has been promoted since the renaissance and catered in the 

development of vision machines. It is the sense of reasoning, of information 

processing, detached from material and the immediate.  

The notion of distance and detachment is also reiterated in the work of historian 

and philosopher Walter Ong. In his treatment of the transition from spoken word to 

written text in Orality and Literacy: The Technologizing of the Word (1982), Ong 

notes how we are situated differently to the sense of sight than to auditory sense:   

 

Sight isolates, sound incorporates. Whereas sight situates the observer 

outside what he views, at a distance, sound pours into the hearer. Vision 

dissects, as Merleau-Ponty has observed (1961). Vision comes to a human 

being from one direction at a time: to look at a room or a landscape, I must 
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move my eyes around from one part to another. When I hear, however, I 

gather sound simultaneously from every direction at once: I am at the center 

of my auditory world, which envelops me, establishing me at a kind of core of 

sensation and existence. (42) 

 

Ong continues to explain how these qualities of sight become particularly articulated 

in the process of writing, because “[w]riting separates the knower from the known 

and thus sets up conditions for ‘objectivity’, in the sense of personal disengagement 

or distancing.” (45) So, not only does it seem to be an inherent quality of the visual 

sense to promote abstraction and objectivity due to the distance it places between 

subject and object, me and the world. There is also reason to suggest that the 

distance is exaggerated with writing, as the visuality of writing on a flat surface leads 

to a distance between reader and text (viewer and screen), a place of separation and 

analysis, whereas speech (sound) harmonizes and integrates.12 

The idea that the visual first became distanced from the body senses when we 

began using flat surfaces to show images and text is supported in the work of 

Barbara Tversky. She discusses how different visualization strategies have been 

implemented throughout time to collectively present and structure thought, starting 

with a group of hominids living 750,000 years ago. In contrast to speech and 

gestures which only exist in situ, visual representation on two-dimensional surfaces 

offers novel opportunities for organizing though. As she states: 

 

[P]aper, silk, parchment, wood, stone, or screen, are more permanent; they 

can be inspected and reinspected. Because they persist, they can be subjected 

to myriad perceptual processes: Compare, contrast, assess similarity, distance, 

direction, shape, and size, reverse figure and ground, rotate, group and 

regroup; that is, they can be mentally assessed and rearranged in multiple 

ways that contribute to understanding, inference, and insight. (2010, 500)  

 
12 It is worth noting that while Jonas and Ong seem to agree on sight being a distancing sense, they are 

occupied with different aspects of sound. Jonas discusses how sound may never be a distancing sense as we 
cannot turn it off—we hear continuously as vibrations hit our ears, one after the other in sequence. Ong, on 
the other hand, is preoccupied with the omnidirectional quality and, consequently, harmonizing effect of 
hearing. We hear from all directions at the same time, as opposed to vision, which is framed by the direction 
of our gaze.  
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It is not only because these articulations could be stored in a record that the method 

of visual representation rose to such a specific position, it has also to do with the 

spatial qualities of visualizations, Tversky argues: 

 

[T]hey allow human agility in visual-spatial processing and inference to be  

applied to visual-spatial information and to metaphorically spatially abstract 

information. In contrast to purely symbolic words, visual communications can 

convey some content and structure directly. They do this in part by using 

elements, marks on a page, virtual or actual, and spatial relations, proximity 

and place on a page, to convey literal and metaphoric elements and relations. 

(502)  

 

This suggests that not only is sight a distancing sense that stimulates objective 

reasoning, this ability of abstraction also seems to be accentuated in processes of 

visualization. Already present as a strategy in early hominin culture for organizing 

life and sharing plans, these processes show how inherent the foregrounding of 

visual representation is in structuring thought. It definitely suggests that 

ocularcentrism has old roots, and also gives us a first idea why screen media has 

become so powerful and ubiquitous. However, beyond visualization as a method for 

thinking, moving into the middle of the 20th century, an additional layer was added 

to the ocularcentric lens, namely that of thought and information as disembodied 

entities.  

Cybernetics and visual perception 

While ocularcentrism is well-rooted in society, it is in the early concept and design of 

media devices and computers in the ‘40s informed by cybernetics that its influence 

becomes obvious. Cybernetics, which connects the idea of the feedback loop with the 

concept of information flow, was first formulated during the Macy conferences 

running from 1943-1954. Here prominent and influential scholars across disciplines 

discussed and presented papers on the nature of systems and communication 

between systems formulating a new paradigm for understanding interactions 
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between man and machine. In How We Became Posthuman N. Katherine Hayles 

identifies how key contributions from selected scholars built the first cybernetic 

lens, giving rise to an intellectual paradigm that views man  and machine as 

information processing entities (1999).13 From Claude Shannon (1953) came a 

theory of information which advanced a view of information as non-material 

patterns without meaning, Warren McCulloch and Wlater Pitts provided a concept of 

neurons as networked system for information processing (1943),  and John Von 

Neumann’s theory of cellular automata (Von Neumann and Burks 1966), as well as 

his architecture of the digital computer, became a proof of concept. The man with the 

vision largely responsible for assembling the lens was Norman Wiener. During the 

first and the consecutive conferences, a corpus of a first order cybernetics 

perspective was formed, where systems were conceived as informationally closed 

(no information would enter the system from the outside) and homeostatic (self-

sustaining and able to self-regulate through feedback loops). In extension, all 

mechanical, electrical, and even biological systems were viewed through this 

cybernetic lens. The machine as well as the human brain were considered closed 

systems that regulate themselves via feedback loops. The system could be observed 

from the environment outside, but the environment did not influence the system.  

 
13 In her book, Hayles identifies three waves of the cybernetic movement leading up to the late 90s and 

the date of the publication. The first cybernetic wave, retrospectively labelled 1. order cybernetics, ran from 
1945-1960. Here the main focus was on the concept of homeostasis viewing man and machines as 
informationally closed, self-regulating systems. In the 60s the concept of reflexivity was introduced in 
cybernetic thinking through the contributions of von Foerster (observing systems), Maturana and Varela 
(autopoiesis), as well as Luhmann (system theory), and redefined cybernetics. Reflexivity as a concept 
introduced a second-order of cybernetics. It proposed that the environment, thought of as the observer of the 
system, affects the system, and is in turn a system that can be observed. Autopoietic theory proposed that 
events outside a system were able to trigger events within, but system and environment were nonetheless 
separated by boundaries through which no information could pass through. System can self-organize, but it 
cannot experience anything outside the system, only its systemic organization. Information and meaning is 
reconnected, but only within the system, as reflexive loops. The idea of reflexivity was not particularly 
welcomed by the science of physics community as it severely threatened the notion of objectivity in the 
system to be observed. In the 1980s a third wave of cybernetics came about centered around the concept of 
emergence and virtuality. From viewing self-organization of systems as production of internal organization, 
self-organization was seen as emergence. Hayles extends the history of the cybernetic movement with her 
contribution in the reference book Critical Terms for Media Studies (Hayles 2010). She proposes a fourth 
wave of cybernetics that began in the 2000s emphasizing the notion of mixed reality - the merging of virtual 
and real environments. Finally, she suggests a third wave of cybernetics is coming about focusing on the 
construction of the observer in social and linguistic environments, powered by the onset of networked 
technologies and mixed reality environments.  
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This perspective was embraced by engineers and system theorists alike and 

supplanted itself in machine design and early artificial intelligence theory. 

Hayles identifies the theoretical mechanism that allowed us to arrive at the 

concept of bodiless information as the platonic form (1999, 12). The platonic form 

consists of two moves. First, the platonic backhand, where one reduces the 

complexity and messiness of the world to simplified, abstract forms. The second 

move, the platonic forehand, which is also the more problematic move, arises when 

we then theorize that the simplified abstraction is the original form of reality from 

which complexity forms. As such, materiality is a question of instantiation. This 

mechanism promoted thinking of both machines and humans as closed information 

systems/processors, where the body functions as a mere sensory organ providing 

the brain with data for internal processing and concluding: Descartes’ split set in 

practice. 

Media theorist Mark B.N. Hansen follows the impact of first order cybernetics and 

discusses how the ocularcentric premise in system design notably manifests itself in 

the conceptualization of and experimentation with early virtual reality technologies 

(the head-mounted displays, in particular). He tracks how psychologist J.J. Gibson’s 

work on visual perception and the concept of affordances and perceptual invariants 

(Gibson 1950, 1977), is presented as an argument that (virtual) reality can be 

presented via the visual sense alone, and argues that there exists a “deep connection 

between linking the privileged role of vision with the desire to explain 'reality' in 

terms of information (or, more precisely, informational exchange between system 

and environment). In both cases, what is left out is the grounding role played by the 

body and by experiential modalities—tactility, proprioception, internal 

kinesthesia—proper to it” (Hansen 2006, 118).  The onset of personal computers in 

the ‘80s equally foregrounded visual presentation and iconography as the main 

mediators of information, via the WIMP/GUI setup.14 Even today, sensory data 

acquired by, and feedback given from, touch and proprioceptive senses are not 

 
14 In human computer interaction design, WIMP refers to user interfaces which utilizes Windows, Icons, 

Menus, and Pointers. WIMP is a type of GUI, a Graphical User Interface, and the WIMP/GUI setup became the 
predominant user interface for personal computers. 
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particularly developed for personal computer environments, even though we see a 

rise in ambient and wearable technologies that monitor selected body features. We 

do tap, swipe and pinch to navigate our devices, and health apps and similar 

monitoring devices are equipped with bio sensors that measure our steps, pulse, 

temperature, moisture levels and movement patterns. But much of our active 

interaction with computers is offered at the mercy of the screen, even more so with 

touch-sensitive screens, where content and functionality, the representational and 

the navigational layer, is presented via the one and the same surface. 

The ocularcentric regime extends itself into the very production of images we 

access through our screens. Maybe we don’t expect these representations to be 

reworked or adjusted in any way. Yet much of their construction is digital. The 

framing, the capturing, the presentation, the distribution and embedding of the 

image is happening outside the realm of the human observer. Through 3D imaging 

techniques, simulation programs, virtual reality environments, face recognition and 

tracking-mapping technology we are presented with visual landscapes beyond our 

inherent perceptive range. In short, not only are screen technologies the main 

interface for social, entertainment and data handling purposes, vision itself is on the 

verge of becoming machinic, automated,15 or even algorithmic in that we use digital 

technologies to see and to explore the world. 

The machine eye 

Galileo Galilei pointed his telescope at the sky and identified the Jovian Moons, and 

the rugged surfaces of our own natural satellite. The mechanical extension of sight 

gave Galileo access to new worlds. Four centuries later using NASA’s interactive real-

time technology Eyes on the Solar System, we can follow the spacecraft Juno as it 

orbits Jupiter with the option to filter the image feed to include readings of the 

magnetic field, aurorae, and the radiation belt of the gas giant (Greicius 2015). All 

 
15 In New Philosophy for New Media, Mark B.N. Hansen distinguishes between machinic (borrowed from 

Deleuze) and automated vision (borrowed from Virilio), where machinic vision points to cases where digital 
technology extends human vision beyond “the organic-physiological constraints of human embodiment”  and 
an automation of vision refers to the replacement of human vision by scientific and military instruments, as 
well as other visual prostheses (Hansen 2004, 99). 
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this is presently available to you via a screen connected to the internet. Likewise, 

with the development of electron microscope technology we can see cells and even 

atoms. The development of vision technologies to extend our sense of sight by giving 

us access to remote objects and translating data into our visual range, has not only 

increased our scientific understanding, it has boosted human experience. However, 

given the highly multisensory quality of our perception, we need to acknowledge the 

impact of technologies set to promote and extend specific senses, while disregarding 

others.  

Second sight 

With a starting point in phenomenology, philosopher Don Ihde describes our 

experience as consisting of  whole-body perception, that our “experience of some 

object that is seen is simultaneously and constantly also an experience that is 

structured by all the senses” (Ihde 2002, 38). Yet, he argues, in science practices 

machine-mediated visualization strategies are so embedded, that our whole-body 

perception becomes unbalanced. This shift to technological visualism in science, 

with its origin in the renaissance and the development of perspective painting, is 

traced back to the late 15th century to the works of Leonardo Da Vinci and Galileo 

Galilei, and the shift is twofold. Vision becomes the prime sense in science, and at the 

same time a specific type of vision is favored. Idhe states: “the shift to vision is an 

enhancement of the visual over and above and often to the detriment of either full 

perceptual or nonvisual perceptions” (41).  This development is continued today, 

where whole fields of science require the aid of a “second sight” which extends and 

enhances analog vision, i.e to make visible distant or small objects, or technically 

translate non-perceivable data into our visual range. However, this embedding of 

visualization is extending beyond science practice into our everyday life, through 

our interaction with the computational devices we carry with us. 
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Automated vision 

Computer vision16 is becoming a commonplace expression, signifying algorithms 

tailored to let the computer capture and interpret the physical world. We teach the 

machine how to see and read natural phenomena and human features, modify the 

content before it is (re)presented to us. The machine is now involved in the 

production and dissemination of algorithmic images from the widespread use of 

filters in selfies, to becoming the all-seeing eye recognizing facial features, postures 

and movements in databases and streams. We are offered an edited version of 

reality on screen, and this has an impact.  

Hansen, paraphrasing French media critic Paul Virilio, states that the body is not 

natural, rather it is “an index of the impact of technological change: the body as it 

coevolves with technology, and specifically, as it undergoes self-modification through 

its encounter with automated vision” (2004, 102). Here, Hansen points to the specific 

role of vision and the impact it has on the body perception proper, as it is modified 

by current vision technologies. Something has changed since the shift to 

technological visualism in the 15th century as identified by Ihde. Hansen continues: 

“In contrast to earlier technology like the telescope and the microscope (not to 

mention cinema itself), which function by extending [my emphasis] the physical 

capacities of the body, contemporary vision machines bypass our physiology (and its 

constitutive limits) entirely.”  The danger, he continues, is loss of significance: “what 

we face in today’s vision-machines is the threat of total irrelevance: because our 

bodies cannot keep pace with the speed of (technical) vision, we literally cannot see 

what the machine can see, and we thus risk being left out of the perceptual loop 

altogether.” (103) Beyond form-factor and interface constraints in vision 

technologies, we are becoming increasingly unaware of the automated and 

algorithmic editing of content presented to our personal screens. With the 

 
16 Computer vision and machine vision are often used interchangeably. While machine vision denotes 

the general use of machines to extend vision, ranging from the analog to the digital, computer vision is 
specifically tied to the computer, and the option of programmability involved in capture and interpretation of 
image and video. 
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development of algorithms such as deep video analysis17 and camouflage 

technology18 the camera feed on your screen might be severely edited and present a 

significantly altered or filtered representation of an event. We are training machines 

to see for us, identify and track objects, and in return we are given a summary via 

our screens. They offer us the hidden and imperceptible translated into a visual 

image. Through our engagement with vision technologies we seem to carry out a 

balancing act between extending the range of perception versus replacing human 

vision altogether. By developing vision machines that cater to the eyes alone, 

neglecting or even overriding non-visual sensory input, we might lose the ability to 

see and grasp what is presented to us. 

Screen essentialism  

Many of us find it difficult to imagine a computer without a screen. Or more 

specifically—to imagine how to interact with a computer without a screen. As we 

move from laptops with keyboards to tablets and mobile touch screens, screens are 

becoming the primary interface for engaging with a computer.  

In 2004 computer scientist and code poet Nick Montfort gave a talk at the MLA 

convention where he introduced the term screen essentialism to describe the 

position of new media critics to understand computers as essentially screen-based 

(Montfort 2004). Through his extensive practice and production of code artworks 

and programs, Montfort states that although screens now have become fixed in 

productive and creative computing environments, computers have, historically, been 

conceived without a screen. By addressing several artworks and programs created 

and running on screen-less computers, Montfort invited his audience to reconsider 

what a computer is and can be in terms of materiality, and more specifically, in 

terms of the creative production of electronic literature. Associate professor of 

 
17 Deep video analysis, e.g. Deep Fake, are machine learning tools for inserting visual elements and 

mapping them onto existing video footage. Deep Fake, in particular, allows you to replace a face of someone 
with another in a video. 

18 There are several projects devoted to the development of camouflage technology. The camouflage 
research group at MIT focuses on how to hide 3D objects that can adopt the appearance of various 
backgrounds presented via photographs and camera feeds. http://camouflage.csail.mit.edu/ 
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English at the University of South Carolina Upstate, George Williams, extends 

Montfort’s point arguing that screen essentialism is not only a historical perspective, 

it is very much present today and defines how interfaces are designed and conceived 

and used. He elaborates:  

 

Montfort points out that screen essentialism obscures the diversity of 

computing interfaces that have existed prior to the appearance of the modern 

electronic screen; in particular, as he describes, early computing programs 

relied on paper interfaces. Montfort’s point is historical, but screen 

essentialism also obscures the diversity of contemporary interfaces used by 

people with disabilities and, increasingly, by all people. (Williams, 2012) 

 

Screens are without doubt the dominant feature of personal computing 

environments today, whether it is a laptop, a phone or a watch. It is becoming 

essential to the point we have difficulties contemplating engaging with a machine 

without it. I argue that the core of this essentialism is rooted in early ocularcentrism 

and strengthened within the paradigm of first order cybernetic thinking. However, 

not all screens are ocularcentric and many engage our multisensory perception. In 

order to navigate between all these different screens, we need to get closer to the 

material and, in extension, representative qualities of the screen. 

1.2 The Multiple Screen 

Screens have over time come to signify a range of qualities and objects and are not 

that easy to define. A quick dive into popular encyclopedias and dictionaries19 

reveals a range of definitions in which the screen is equated with processes of 

concealment, selection and filtering, as well as being designated an object of 

separation, a selector or a surface. In his ongoing research to compile a history of the 

screen platform, media archeologist Erkki Huhtamo scrutinizes the screen media 

within its historical context and current cultural use (2004). Specifically, he 

 
19 Oxford Dictionary, Collins English Dictionary, Random House Kernerman Webster's College 

Dictionary, Merriam Webster Dictionary. The American Heritage® Dictionary of the English Language. 
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distinguishes public screen practices from private ones and seeks to pinpoint how 

the materiality and cultural context of different screen media technology has 

cultivated distinctive practices.  By following the migration of the meaning of the 

word screen, first appearing in dictionaries in the 14-16th centuries, to denote wall 

dividers, translucent hand-held picture-frames (folding screens), and fire shields—

objects pertaining to the domestic and private world—Huhtamo notes that in the 

1810 Oxford English dictionary, screens are defined as the projection surfaces used 

in the public mechanic magic lantern show Phantasmagoria (40). From this first 

divide, Huhtamo starts drawing a historical line between screens used within the 

privacy of the home and publicly accessible screens.  In addition to tracing screen 

practice within the private and public sphere, he notes that screen practice within 

the home is not always personal, but often shared (as with the introduction of 

television). Equally, many public screens are used by only one person at the time, e.g. 

public peep show installations.  

As this short introduction aims to demonstrate, screens are so many different 

things, and location, situation, as well as cultural and historical setting all influence 

their significance and purpose. If we are to navigate screen media and move on to 

identify specific ocularcentric qualities of such media, we need a guiding principle. I 

propose we start by distinguishing between screen materiality (the media platform) 

and the representation (screen metaphors) of the screen. These two approaches are 

discussed below in the Material Screen and Screen Metaphor sections, respectively. 

The Material Screen 

The material composition of the screen is informed by many factors. A taxonomy of 

screen platforms could be developed by differentiating various simple projection 

systems from computers whose surfaces operate as projectors, viewfinders for 

cameras, or interface and interaction surfaces—all of them screens as such in 

themselves. Another approach is analyzing screens in terms of the spaces they 

occupy, and discriminate private screens (desktop/laptop or phone screens) from 

ones that are more public in nature (information, advertising or propaganda 
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screens). Some screens are aimed at interior spaces such as galleries and cinema 

environments, others are featured in exterior/urban spaces (public interactive 

installations, telepresence or projection mapping events). However, an important 

distinction, and the one I will advocate, is set between the hardware and software 

system in itself, the screen material, and the content it presents, mediates, and most 

certainly shapes. This distinction is pursued by several media theorists. Media critic 

and researcher Ian Bogost argues that an investigation of various screen types and 

their specific properties needs to be part of any screen media analysis, in particular, 

the screen technology itself needs to be considered separately from its applications 

and the computer that runs it.  In a 2012 mailing list discussion on screens hosted 

and facilitated by the -empyre- community,20 Bogost states that:   

 

We need to attend both to the screen-as-concept and the specific screens  

that actually exist in the material world, and the complex relations of 

influence among them” as “the tendency to take the screen for the entire 

apparatus is a convenient metonymy, a nice shorthand in conversation, but it 

shouldn't (any longer) be a sufficient method to talk about the specifics of 

different technologies of representation. (2012a)  

 

Together with Montfort, Bogost has initiated the book series Platform Studies21 “to 

invite focused analyzes of specific platforms (computer platforms, in our case), and 

the relationship between the unique, and often very weird specifics of those 

platforms, and their influence on creativity and culture”(2012b). One of books in the 

series, dedicated to the Atari video computer system (Montfort and Bogost 2009), 

explores how the material properties of the phosphor screen, and limitations in 

computer processing power, presented constraints that radically informed the 

 
20 -empyre is a global network of curators, theorists, scholars and artists engaging in monthly 

discussions on topics related to the field of media art and digital culture. The discussions are facilitated by 
selected hosts and commenced in a mailing list format. http://empyre.library.cornell.edu/ 

21 Platform studies is a MIT Press book series which seeks to investigate the specifics of various 
hardware and software systems, and creative works produced with them. http://platformstudies.com/ 
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games made for the system. The ghost of McLuhan (1964) appears, reminding us of 

the formative qualities of the medium.  

Perception of material 

The perception of media content definitely depends on the screen material. While 

projection systems dominate in the presentation of content in larger show settings 

such as cinema, art exhibitions, and festivals, the most common screen platforms 

today are flat panel displays utilizing LCD, plasma or LED technologies for 

representing pixels. These computer screens project light toward the eye, in the 

additive RGB color format, matching trichromatic color vision held by humans, and 

most primates (Rowe 2002). Screen development in this area is primarily focusing 

on increased pixel resolution, frame size and thinness, as well as bendability of the 

screen surface.22  

This material design makes up the majority of screens used in personal 

computing today, from desktops and laptops, to tablets and phones. And despite 

variation in size, all of these screens are intended to present content similarly. 

Diverse screen material can present similar content, but the perceptive qualities will 

differ. And while we may have temporarily agreed upon the material setup for 

widespread screen use, there is value in examining alternatives that seek to 

challenge or at least extend this norm. The effect of screen material on media 

content has been theorized broadly, but there is also significant value in analyzing 

artistic demonstrations of screen media. When not restricted by demands for 

commercial application the significance of screen material can be investigated more 

freely. This can be seen in several of the works of artist duo Kimchi and Chips (Son 

and Woods n.d.), who challenge the notion of screen surface and components, 

making design decisions that radically inform the perception of content. 

 

 

 
22 But also an increasing support for haptic input and feedback. 
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Figure 1 and 2. Screenshot from video documenting 483 Lines (2014) by Kimchi and Chips. Courtesy of artists. 

 

The artwork 483 Lines (2014) is an analog projection system, where 483 nylon 

strings make up a media surface for projection. The number 483 corresponds to the 

visible scan lines—the number of lines of light—that constitute the image of a 

television screen utilizing the analog NTSC (National Television System Committee) 

standard. In 483 Lines, Kimchi and Chips widen the analog video picture to 16 

meters and simultaneously fold the image vertically to fit the gallery space. A video 

projection is fine tuned to map each of these lines, producing a layered image 

consisting 483 lines of video that can be viewed individually or in totality. Folded 

and layered imagery makes the video feed difficult to read as full format linear 

narrative. On the other end, it proposes that screen content can be presented 

spatially in novel ways, opening the doors for perceiving and experiencing visual 

content.   
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Figure 3 and 4. Screenshot from video documentation of Light Barrier (2014) by Kimchi and Chips. Courtesy of artists. 

 

 

      In Light Barrier (2014) the notion of screen material is taken further. Light is 

carefully directed towards a matrix of convex mirrors. Combined with water steam, 

the installation offers dreamlike manifestations. The screen appears a mirage or an 

ever-evolving phantom image. Again, the artists challenge what visual 

representations on a surface may be.  

Kimchi and Chips’ works show that the material foundations constituting screens 

are manifold, and certainly allow for a range of multisensory experiences. Strings 

and steam are but two alternative hardware solutions for disseminating content, and 

while admitting both these setups cater to specific media messages, as well as 

offering limited usability in terms of productivity—they do remind us of the 

diversity of screen material and its varied impact. Not only is the media content 

informed by the platform, it also directs how we interact with and use the platform. 

These and similar works demonstrate how projection systems present us with the 

opportunity to shape our own screen frame. But in personal computing 

environments, and even in show arenas and exhibition spaces utilizing screen 

projection, we somehow keep on returning to the flat rectangular shape. Why is this 

the case? 

The natural field of view and the rectangle 

The question of how screen proximity and screen sizes affect the sense of 

embodiment is a complex one, however there seems to be a relationship between 
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common screen sizes and our natural field of view. Given the various screen formats 

we engage with on a daily basis, what happens when the aspect ratio of the screen 

extends the field of view? The natural field of view (f.o.v) of humans23 when eyes are 

stationary, extends about 190° horizontally (up to 290° when allowed to wander) 

and 135° vertically (Howard and Rogers 1995, 32). Our binocular field makes up 

114° horizontally. This is our general visual aspect ratio. I note that the traditional 

TV and video formats, as well as the traditional viewfinder and image format of 

traditional still cameras, approximate the aspect ratio of our unaided f.o.v., matching 

visual perception without having to move our heads and body. The width of 

computer screens has increased in the last decades, partly to accommodate program 

menus, but also, I imagine, to better present visual narratives in films and games. 

This is akin to cinematic canvas, which most often are horizontal widescreens. The 

widescreen format will encourage head movements to a larger degree. While more 

specialized screen formats exist for use in museum settings and galleries, screens 

intended for the personal computer environments are given a more general shape 

due to the variety of functionality they are to present to the individual user. 

Presently, such screens will arrive in 4-5 main sizes with similar aspect ratio—

mobile, tablet, laptop, desktop monitor and TVs, all pertaining to a 16:9 16:10 ratio, 

many allowing for both vertical and horizontal rotation. These are our everyday 

screens, close to becoming ubiquitous to us. And again, the artists are there, to 

remind us of our everyday engagement.  

In the work Popular Screen Sizes (60", 55", 46", 40", 32", 27", 24", 21", 19", 17", 15", 

13", 11", 9.7", 7", 4", 3.5") artist Rafaël Rozendaal presents the interactor with a set of 

mirror surfaces representing the most common media surfaces we engage with on a 

daily basis. All of the surfaces are rectangular, and the choice to present the various 

screen sizes as mirrors with reflective surfaces is an intriguing one. Not only does it 

become striking how prevalent the rectangle is, the mirrors mimicking screens 

 
23 Perhaps unaided field of view is a more precise description as so much of our experienced view of the 

world is an enhanced, extended, skewed representation offered by technology (the extension of the human 
field of view through spectacles, telescopes, and microscopes and camera software applications).  

 



 

56 

become closed-loop surfaces that merely reflect our world back to us, in various 

frames, but always at the same scale.  

 

 

 
Figure 5 and 6. Rafaël Rozendaal’s installation Popular Screen Sizes (60", 55", 46", 40", 32", 27", 24", 21", 19", 17", 15", 13", 

11", 9.7", 7", 4", 3.5") (2011). Photos courtesy of Nordin Gallery. 

 

The work suggests what kind of media content the different sizes affords. 

Simultaneously, it reflects and frames fragments of the gallery backdrop and turns 

the mirrors into a set of live images, defined by the interactor's position and 

movement. As such, the artist explores the screen as a shape that actively 

participates in our perception, to the extent that we lose awareness of it. By 

presenting these shapes as a collective in a gallery setting, we are invited to 

recognize their place in our everyday lives. The geometrical shape of the screen has 

followed us for centuries and is becoming ever more present. How often do we not 

imagine our productions and present the results of them in the same rectangular 

surfaces that we first began to explore them through? There seems to be a framing of 

ideas, and a fitting of the ideas within the frame. PowerPoint presentations are an 

obvious example, however I imagine that the rectangular conditioning is deeper than 

that, considering book formats, landscape paintings, and (papyrus) scrolls, perhaps 

traceable all the way back to the first hominis letting the natural field of view set the 

frames of the visualization. 

Media critic Lev Manovich considers a screen any “flat, rectangular surface 

positioned at some distance from the eyes—[where] the user experiences the 
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illusion of navigating through virtual spaces, of being physically present somewhere 

else” (Manovich 2001, 99). This not only includes the multitude of computer displays 

and TVs in contemporary culture, but any framed surface that invites the spectator 

elsewhere or beyond the physical structure, material or space of the surface. And 

thus, every painting or drawing becomes a potential screen. Perhaps even theatrical 

stages, amfi or street theater stages may be considered screens in this context? As 

presented, the screen is any frame that encloses and separates the real from the 

virtual. Manovich offers his own hierarchical, top-down taxonomy of screens, based 

on how the framed surface presents visual information and negotiates between “two 

absolutely different spaces that somehow coexist.” The most general screen is the 

classical screen; static and fixed in our normal space and acting as a window into an 

equally fixed representative space where the difference is perceivable in terms of 

scale, color palette, or abstraction. He includes painting and still photography, as 

well as static computer displays in this category. A subtype of the classical screen is 

the dynamic screen. This screen type has, in addition to the aforementioned qualities, 

the ability to display different visual information over time, albeit sequentially, and 

encompasses the single channel view beginning with cinema and the later TV 

screens. With computers and VR systems, new opportunities have arisen in screen 

mediation, content can be presented in real-time and in multi-channel views (the 

windowed computer screen or the many TV channels that one can swap between in 

one viewing), disrupting the sequential, single view of events that have occurred in 

the past. These new screens constitute a third type of screen, after the classical and 

dynamic screen, labelled the screen of real time.  The subtype of real time screens are 

interactive screens, where the users may influence the image sequence displayed. 

Manovich uses radar as an example, but I imagine all use and display of mapping and 

tracking technologies would apply when displayed.  

Our fixation with rectangles in screen media systems is not new. As Manovich 

correctly points out this form can be traced to early camera projects systems. Even 

though history has provided us with exceptions, i.e. the round televisions sets of the 

early ‘50s or current takes on creating curved TV sets (which still must be 

considered rectangular), screens and the default layout of projected images have 
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been and are predominantly rectangular in shape. Manovich’s hierarchy gives us 

insight into the historical development of screens, however, he does not clearly 

separate between imaging technologies, various display media and the suggested 

screen types in his outline. Manovich’s emphasis on the screen’s function of framing 

a virtual space against a physical space, appears rather either-or, and discourages the 

classification of augmented reality screen applications where the layering of the 

virtual on top of the physical/actual in one screen representation. Secondly, 

Manovich’s insistence on screen as a rectangular, flat surface is problematic. This 

classification works rather well for paintings and cinema, but with the plethora of 

interactive computer screens and VR-experiences, the definition makes less sense. In 

fact, the introduction of virtual reality technologies forces Manovich to conclude that 

the screen has disappeared because, he claims, it overlaps our field of view (101). 

Using the terminology of immediacy and hypermediacy introduced by Bolter and 

Grusin (2000, 20-52), this it would mean that only hypermediate media, media 

where the interface or point of reference is visible to the user, are screen media. 

Immediate media are something else, which aim to hide the medium from its 

interactors altogether. Still, Manovich acknowledges a connection between screens 

and VR. He analyzes the relationship between subject and screen media—ranging 

from the camera obscura, cinema to the computer screen, and suggests that the 

subject is somewhat captured by the screen’s representational space, fixing our gaze, 

immobilizing our bodies. Virtual reality technologies, he states, “continues the 

screen's tradition of viewer immobility by fastening the body to a machine, while at 

the same time it creates an unprecedented new condition, requiring the viewer to 

move” (Manovich 2001, 111). Even if the screen has disappeared it still captivates 

us. This connection between increasing and overlapping field-of-view and bodily 

immobility is acknowledged by several theorists. 

Media archaeologist Huhtamo notes a parallel between an interactor’s body 

when engaging with peep devices24 and virtual reality technologies (specifically VR-

 
24 Peep devices are optical display machines designed as boxes with view holes for individual viewing. 

Including peep shows in which the boxes contained images, or motion picture devices such as the 
Kinetoscope (Bellis 2019) and Mutoscope (Robinson 1996, 56), or even early stereoscopic photography 
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solutions involving head-mounted-displays). Other than asking if both media 

technologies are allowing the viewer to “escape from the body’s physical confines  

by fleeting to some immaterial mode existence” (18), he does not dig deeper into this 

correlation. It appears, though, that screens that encircle the eyes generally seem to 

divorce the interactor from the body, as the body isn’t addressed or specifically 

targeted in these primarily visual narratives. This might suggest that these vision 

technologies more easily promote disembodiment.  

Both Manovich and Huhtamo suggest that VR technologies which enclose the 

eyes disrupt the interactor’s sense of embodiment. While Manovich suggests there is 

a conflict between the screen’s ability to immobilize the interactor and virtual reality 

narrative’s incentive to make the interactor move,25 Huhtamo advances the idea that 

such technologies offer out-of-body experiences. I will argue that both suggestions 

are legitimate, and that the notion of disembodiment is connected to the interactor’s 

ability to orient their bodies within the screen space. Something happens when we 

lose contact with the screen frame, as screens extend beyond our field-of-view or 

enclose them. In the following, we will discuss the former premise, while the latter 

will be the topic of discussion in the third section: Screen Mirage. 

The expanding field of view 

The classical cinematic experience is traditionally understood as big canvas movie 

projections intended for large, seated audiences. The big screen is meant to engulf 

you, engage your imagination and invite you into its narrative. Still, it is mainly a 

story for your eyes and in extension your mind. You are to remain seated, enthralled, 

while your mind wanders. Only slight head movements are needed to see the whole 

screen. While cinema is essentially a non-interactive, broadcasting media, 

techniques from virtual reality technologies, such as stereoscopic imaging,26 are 

 
presented within installations supporting several individual viewing stations such as the Kaiserpanorama 
(Luhmann, n.d.) 

25 By presenting a three-dimensional space which affords exploration through movement, few VR 
systems offer much more than tracking of the head as a means to navigate the virtual space. 

26 Stereoscopic imaging was introduced for home cinema setups in 3D TVs, but never gained popularity. 
Its failure was not only due to the expensive equipment needed to display 3D content. It also demanded an 
extreme finetuning, in positioning of equipment and furniture, to optimize the viewing environment for the 
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presently being introduced into the cinematic setup to extend the notion of reality 

and or presence. Further attempts to challenge the one-sidedness and immobility of 

cinema is explored within the field of expanded cinema which accounts for a range 

of formats and techniques arriving from film and performance and virtual 

interactivity. As Tate defines it, expanded cinema denotes “film, video, multi-media 

performance or an immersive environment that pushes the boundaries of cinema 

and rejects the traditional one-way relationship between the audience and the 

screen” (Tate 2018). The notion of interactivity is key, we are to engage with the 

narrative and place in which it is set. However, to allow the immobilized body to be 

re-engaged, and addressed, the expanded cinematic experience must go beyond the 

act of extending the field of vision. Interactivity should entail bodily movement.  

Beyond the field of view 

How far and how wide can the screen be before its character changes radically?  

There is a significant difference between the handheld smartphone, the TV-screen 

enjoyed from the distance of a sofa, the cinematic experience of the movies, and 

giant installations that extend our line of sight. What happens when the screen exists 

beyond the natural embodied field of view?  

 

 
stereoscopic effect, and finally, there was very little content made for this setup. Every person watching 
needed individual glasses calibrated to the screen and had to sit still during the session. And finally, very 
little content was ever made to support this setup. 
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Figure 7. Documentation footage of test pattern (enhanced version) (2011) by Ryoji Ikeda. Courtesy of the artist.  

 

New media artist Ryoji Ikeda’s installations are often large-scale projections, 

extending the field of view showing repetitive, minimalistic and mathematical 

scenarios, in which each visual movement is mapped to a sound. A person will need 

to physically turn her head and move around to see the entire work. In his renowned 

screen works test pattern (2011) and data.tron (2009-10), both part of his larger 

Datamatics project, the artist aims to texturize and materialize data, through image 

and sound, make it perceivable. The interactors walk on and are surrounded by a 

large screen. The very high frame rate in which the images and sounds are presented 

proves a test for the human perceptive response system, inviting you to make use of 

touch and motor senses in processing the incoming data. It is no longer an option 

only to let the eyes wander or let the head move to grasp the totality of the screen. 

Simple head movements and eye orientation are not sufficient to capture everything, 

and as a result these installations both allow and force the whole body to orient itself 

in relation to the experience. In contrast to virtual reality experiences presented via 

head-mounted displays, these works offer the interactor a chance to move beyond 

visual experience, as other bodily senses need to be engaged to fully grasp the 

totality of the work. Perhaps they even help the interactor recognize how their 

bodies play a role in terms of perceiving and organizing experience.  
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Figure 8. Documentation footage of Data.tron (2009-10) by Ryoji Ikeda. Courtesy of the artist.  

 

Both earlier and more recent versions of CAVEs (Cave Automatic Virtual 

Environments) offer similar bodily sensations. In these interactive environments 

interactors are surrounded by screens in which the projections match their 

movements and postures. Navigation of the space may occur via handheld 

controllers and/or gesture-recognition software, in addition to movement, and the 

visual projection is viewed through stereoscopic goggles. In contrast to strict virtual 

reality environments where the three-dimensional environment is mediated solely 

via a head-mounted display, CAVE goggles augment the screen environment by 

adding a virtual layer. This allows the interactor to see herself, her body as part of 

the environment. But much like virtual reality systems, beyond bodily orientation, 

the physical movement encouraged as a means to navigate the virtual narrative is 

limited and restricted by the physical space. My claim is that the size of the screen in 

relation to a human body forces this reorientation, rather than the novelty of the 

experience.  We need to move, re-position ourselves, actively explore the whole 

surface to grasp the totality of the screen environment and the content it mediates, 

and we see and feel ourselves as part of it—every time we engage with it. 
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Sum of the parts 

To guide our understanding of the screen as a medium, we have made several 

important distinctions. First and foremost, we discriminate between the platform 

(the screen material) and the content it mediates and shapes. Secondly, the screen is 

separated from any framed surface, with its ability to present dynamic content. This 

means that the media platform itself is not bound to fixed images or messages, but 

the content of varied design.27 As such, the screen is not limited to digital or 

electrical technologies, as mechanical projection systems like shadow theatre setups 

or the zoopraxiscope just as readily can present mixed moving images. The media 

archaeological approach provides us with a history of the screen, at the same time, 

recalling McLuhan, we need to keep in mind that each screen platform comes with 

its own possibilities and constraints, which frame the content. The material aspects 

of a screen (size, shape, fidelity, resolution etc.) impact users’ experiences. Projecting 

a cartoon or news program on a building affords a very different experience than 

seeing the same content on a small mobile device. Likewise, the time and place 

location of the screen and the time at which the content is shown, are important, and 

changing these will favor different experiences. Just think of the presentation of 

censored or taboo content on public screens, in contrast to viewing the same content 

in the privacy of one's home.  In terms of screen shapes there is a long-lasting 

preference for the rectangle, which can be traced back to earlier types of written 

records and presentation formats. Perhaps this preference is linked with our natural 

field of view, as a border for visual representation we can produce using our hands. 

The size of the screen is directly linked with our embodiment. When we engage with 

screens that go beyond the field of view something happens to our bodies, as our 

eyes are no longer able to contain the experience on their own. Virtual reality 

technologies based on head-mounted displays encircle our field of view, yet they 

promote disembodied experiences as the body is not given the proper option to 

 
27  As mentioned above, Lev Manovich describes paintings as a type of classical screen. Likewise, screens 

may refer to room separators and decorative panels, as well as light-proof drop-down curtains; all devices 
that protect you from or set you apart from something. Still, all of these devices are incapable of presenting 
dynamic content and fall beyond the scope of this discussion.  
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navigate in the same perceptive space as the visual sense. We need to move and 

reposition ourselves to grasp the totality. This process of reorientation is, as later 

chapters will show, of great importance. It is not only the material qualities of the 

screen that has made it so successful. It also has a high representative value, as a 

gateway metaphor that may be communicated, which adds to the versatility of this 

medium.   

Screen Metaphors 

The representative qualities of the screen are vast and the metaphors for describing 

the qualities of the screen are equally diverse: A frame for separating something 

from everything. A surface for emphasis and highlight. A (truthful) mirror or 

reflection of self. A mirage deceiving us from what is really there. A selector which 

includes and excludes. A channel for communication. A tunnel connecting places. A 

wormhole connecting times. Screens afford so many functions, options and roles, and 

we need to take this into account when analyzing any particular screen media. If we 

are considering screens as on-demand devices or multifunctional surfaces, we can 

easily imagine screens doubling as windows, a surface at the same time transparent, 

opaque and data saturated. To understand how and when such screens are to be 

used, they need to communicate their representative values.  

Windows, Frames, Virtual, and Screen 

Media theorist and historian Anne Friedberg has produced an extensive analysis of 

screen media. Her account opens with the narrative of Alberti’s window to describe 

the onset of Renaissance perspective paintings and arrives at a discussion of 

screenless images. In The Virtual Window: From Alberti to Microsoft she offers a 

comprehensive account of the historical and architectural development of the 

window (as a frame, mirror and metaphor), its many virtual surrogates, and the 

development of multi-windowed screen media. In addition, each media format or 

period is connected to a thinker offering a philosophical perspective or lens 

alongside the historical account of screen media periods. The first lens is offered by 
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Descartes and his use of window as a descriptor of the eye. The second lens is 

reserved for Heidegger's notion of the frame as a metaphor for “representational 

thought” (2006, 95), where he puts no emphasis on the screen apparatus itself, but 

rather on the thoughts and experiences it frames. Bergson’s definition of the virtual 

to distinguish between the possible and the actual constitutes the third lens. As 

Friedman elaborates, for Bergson “the term ‘virtual’ serves as a descriptor not only 

for the immateriality of memory but for the image that is mediated by ‘medium’ (his 

word)” (142), suggesting that Bergson considers the virtual to embrace both our 

mental imagery as well as actual images produced by screen media. Friedberg 

invites us to revisit earlier definitions of the virtual and challenges the notion that 

virtuality is merely the representation offered by a screen medium. Rather, she 

claims, it is “an immaterial proxy for the material,” a register of representations, 

both mimicry and simulacra (8). The fourth and final lens is provided by Paul 

Virilio’s understanding of the screen’s ability to “dissolve material space” (184), so 

that actual space is perceptually altered through screen media. How the GUI desktop 

metaphor represents office elements within a screen, or surface projections 

extending physical borders, are rather straightforward examples of such a 

dissolvement. But for Virilio, this development indicates that screen square is 

increasingly replacing the real horizon of our perception.  

In conclusion, the four lenses offer perspectives on the screen as an eye, as a 

container for representational thoughts, as a doorway to a virtual space of 

reproductions and hyperreality, and finally, as an immaterial space. Beyond offering 

these four lenses, Friedberg suggests that while we are still bound within the frame 

with all its qualities, potential and deceptions, the catering for the visual sense is 

now becoming multiple—we engage with multi-windowed frames within the screen, 

or multi-screens within our production milieu.  Friedberg asks: “Is there a new logic 

to vision as our windows, frames, screens are ever more fractured and virtually 

multiplied?” (242), but she does not offer a clear answer to what such a logic entails.  

Rather, she introduces her analysis within the conclusion: “The limits and 

multiplicities of our frames of vision determine the boundaries and multiplicity of 

our world” (7), which almost seems to suggest that any vision-based technology also 
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sets the boundaries for our experience. If so, it begs us to carefully consider the 

screen media interfaces we are designing and engaging with, in terms of providing 

fruitful and encompassing frames for our life experience. At the same time, 

Friedberg’s conclusion appears ocularcentric, arguing the pole position of vision and 

vision-frames (screens, displays, monitors, surface projections etc.) in mediating our 

reality. While screens certainly do mediate experiences, there are several limitations 

in this mediation, as we shall see below.  

The mirror and the mirage 

Screens are never just one thing, which makes it both tempting and useful to explain 

them in terms of metaphors. Multipurpose screens or on-demand screens often 

require metaphorical interpretation to allow the interactor to identify its use in any 

given situation. While metaphors are useful as guides, a metaphorical presentation 

of the screen may also collude its material impact. The most common metaphors 

utilized in presenting screens for productive personal computing environments 

production are typically centered around the frame as a selector of content and task, 

the window as an access point to particular places and people, and a doorway to 

virtuality—presenting the opportunities of the digital. On this note, some screens 

take up the qualities of the mirage, being illusory in terms of promising access to 

more than more than they might be able to mediate. And while screen metaphors in 

general are thoroughly explored in the new media art field, there is one set of works 

specifically concerned with the screen as a mirror. These works warrant particular 

attention as they force us to revisit our relationship with the screen as more than a 

relationship between the eye and the surface. The last sections of this chapter are 

dedicated to these two directions: The screen as mirage and mirror.  

1.3 Screen Mirage: Promise and Pitfalls 

Screens are gateway devices connecting times, places and spaces.  The extent to 

which the body is addressed or engaged in the interaction with the screen is what 

sets the ocularcentric frame. While many screens solely cater the eye, other screens 
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involve several senses. In the following section I will address screen setups selected 

for their ocularcentric qualities and discuss their attraction and shortcomings. What 

is the mirage—the promise and potential pitfalls of these screen media—that 

warrants special attention? I suggest that there is substantial evidence that most 

screen media are limited in what they can mediate of human experience and 

presence. 

I bring forth my smartphone and with close-to-automated gestures I stroke the 

screen surface and gain access to functionality within. The seductiveness is obvious: 

These devices are small, fitting the hand perfectly, and supermobile. They are 

enticing by virtue of functioning as a doorway to a plethora of experiences that are 

both productive, communicative, and entertaining, and even more—it is a personal 

wearable and an extension of self, holding memories and access points. However, 

access to these worlds and opportunities are funneled via a tiny screen which 

doubles as your input controller. This tiny gateway to all, which is so engulfing that 

we see people immersed in these devices whenever there seems to be a spare 

moment, also relies heavily on one sense. As material clicking noises previously 

associated with keyboard tapping are disappearing with touch interfaces, the 

sensorium is further constricted. 

A feast for the eyes 

This singular fixation on the eyes in mediating experiences is a recurring theme in 

the design of vision technologies. And as we discussed above, this premise is 

specifically pursued in virtual reality technologies in which screens encloses the 

eyes, shutting the body proper out.  

Where the 1st generation of VR developed in the ‘80s and ‘90s, had the tendency 

of trapping its users in the “barfogenic zone”,28 new VR hardware might have 

lessened the gap between real and virtual visual perception, but not closed it 

altogether. This perceptual gap coined the “uncanny valley” by robotics professor 

Masahiro Mori, was first used to describe the discomfort and uneasiness humans feel 

 
28 Coined by Thomas Piantanida in 1993, then head scientist at SRI International Virtual Perception 

Program, to describe the nauseating feeling most people experienced when using head mounted displays. 
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by perceiving robots that look almost, but not fully human (Mori 2012). We feel this 

discomfort because we empathize with the robots, and the more realistic they 

appear the more disturbing the (diminishing) gap is felt. Mori thus proposes a 

relationship between likeness and affinity. Professor Paul Dizio, psychologist at 

Brandeis University, reapplies the notion of the uncanny valley to describe recent VR 

technology development stating that “the more physically realistic the rendering 

becomes, the more icky the perception becomes” (Barras 2014). One may wonder if 

the feeling of uncanniness is an important one, as it makes us able to realize that we 

are indeed presented with an interface, a screen, albeit persuasive, and not a direct 

connection to what is shown. There exists a notion that the failure of the virtual 

reality technology of the ‘90s was due to low-resolution imagery, high latency, 

insufficient view field and pixel depth, and that if these things were to be mended, 

virtual reality environments would not only be fully immersive, you would be 

present. The argument was restated by Facebook CEO Mark Zuckerberg after 

acquiring VR hardware Oculus Rift earlier in 2014: “This is really a new 

communication platform. By feeling truly present, you can share unbounded spaces 

and experiences with the people in your life” (Zuckerberg 2014). The promise of VR 

is still captivating our hearts and minds, we want these experiences and transfer our 

present state from here to a virtual or telepresent there. What is not so certain is that 

virtual reality technologies as they are proposed presently can ever fulfill this 

promise. 

The trust in the eyes as the sole provider of presence and conceiver of reality is 

repeated in the promise of eye tracking technology.  In 2012 I visited the Ars 

Electronica Center and Future Lab, an impressive building in Linz, Austria, housing 

(among other things) an artistic research center and an exhibition space in the style 

of a science museum with interactive installations suitable for audiences of all ages 

and abilities. I did, however, notice that there was a striking emphasis on eyes; on 

interfaces where eye rotation was tracked, and the movement path and pauses acted 

as selectors and triggers for control of a software presented via screen. Eye tracking 

in itself is a widely adopted technology with several applications both in psychology 

and medical research, as well as the advertising industry, providing data on how a 
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subject reads or scans a given environment. Eye tracking interfaces, on the other 

hand, where the user actively operates an interface with her eyes to navigate its 

environment, are something else. There are noteworthy candidates, among them 

Eyewriter.29 This tracking project was initially developed for graffiti artist Tempt 

who, severely affected by ALS, has been paralyzed neck down and unable to perform 

his art unaided. The Eyewriter interface provided him and others in similar 

situations a possibility to operate a simple graphics program with eye movements 

alone.  

These are specific uses, but to what extent is eye-tracking useful for operating 

interfaces for able-bodied persons? Obviously, the passive reading of human eye 

movements means we will have records of the line of sight and focal points at any 

given time. Not only is this data useful for usability studies trying to identify how and 

what we track in our environment. In various VR-applications (either artworks, 

games or advertising) it would also allow us to orient visual content towards the 

binocular vision of the interactors at all times. Still, if the same technology is 

becoming an interface for active interaction, where specific eyes gesture becomes 

input signals, this is ocularcentrism taken to its extreme. Not only do you have to 

process available information via the sense of sight, the same organ is also the 

interaction controller, leaving the interactor caught in a visual feedback loop.  

Screen miniaturization and body proximity 

Just as we discussed how larger screen surfaces force the interactor to move to grasp 

the totality of the experiences, the perceptive experience will equally be influenced 

as screens become smaller and is set closer to the body. Current head-mounted 

displays for virtual reality are still rather cumbersome and restrict movements as 

the interactor is engulfed by the virtual, cutting of the physical environment. Some 

promise on that end is seen in smart glass devices capable of augmented reality 

 
29 www.eyewriter.org 
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experiences, such as Magic Leap,30 Hololens,31 or Google Glass,32 screen bifocals 

meant to be worn close to the eyes as goggles. Here tiny cameras track and map the 

surroundings and human features, and relevant digital data is superimposed onto 

the field of view of the user. Current augmented reality goggles are too expensive, 

bulky, and visually restrictive to function well as day-to-day wearables. However, 

their promise intrigues developers and technology enthusiasts alike, and a great deal 

of effort is currently involved in ongoing development of smart glasses and contact 

lenses. The promise of smart glasses and screen proximity is taken to the extreme in 

an episode of the science fiction series Black Mirror called the “The Entire History of 

Self” (Welsh 2011).   

 

 
Figure 9. Screenshot from the Black Mirror season 1 series episode “The Entire History of Self.”  

 

In this near-future world all humans are equipped with screen contact lenses 

powered by a tiny memory implant. As a result, the eyes function as cameras that 

 
30 https://www.magicleap.com/ 
31 https://www.microsoft.com/en-us/hololens 
32 https://www.google.com/glass/start/ 
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record everything, as well as displays for playback. In this world, nothing is private 

or hidden, and consequently never forgotten. Recorded footage can be cast to any 

display for public viewing or played back in before one’s own retina. But as a result, 

people strive to be intimate and do not trust their bodily perception. They live in 

closed-off personalized worlds, detaching themselves from experiences, as they rely 

solely on the ability of the lens to capture reality, and play them back. The Black 

Mirror scenario is taking the concept of the eye screen to the extreme. Yet, these 

devices downplay the role of the body, by rewarding the eye with the key role as a 

mediator of life experiences. Visual input and stimuli are given a much higher weight 

in funneling life experience to the brain. This funneling is occurring not only 

sometimes, but all the time the device is active. And as the screen moves closer to the 

body, the ability to turn it off or even remove it becomes increasingly difficult. In the 

Black Mirror episode, the main character goes to extreme lengths to get rid of the 

device and ends up performing ad-hoc surgery on himself to remove the implant.  

Screens affect our sense of embodiment, and just as large screens force us to use 

our bodies to orient ourselves, screens that engulfs the eyes are prone to give us out-

of-body experiences, as they restrict us from navigating physical space. Considering 

the ongoing miniaturization and increased body proximity of screen media, it seems 

relevant to ask if we need media distance to be able to reflect on the medium itself? 

What happens there is no mediation of an artifact, e.g. in cases where the projected 

image is presented in your mind only? In these cases, your brain becomes the 

display. Your previously private inner images are now populated by externally 

immigrating images. The material object has disappeared and can no longer remind 

you of the reality of the mediation. If the object of mediation is disappearing, we will 

need a public discourse to regain a grasp or rather, gain a prehension (pre-

apprehension) of our own perception of experienced reality.  

What is certain is that the bodily distance of the screen media as well as its size 

affect how we may relate to it. Sight, as we discussed previously, benefits from 

distance. It is when we capture the object in its totality with our eyes, that we 

separate from it. Large-scale screens will force us to utilize the full body apparatus to 

grasp the object. On the other end, we find small screens that function as an eye 
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layer. We will never be able to take a step back to distance and separate ourselves 

from these screens, should they come too close.    

Screen mediation and presence 

Screens by themselves are insufficient media for mediating presence, the feeling of 

being here, and yet they are often presented as if they do, especially in virtual reality 

and telepresence scenarios. The advertised promise of video conferencing to 

mediate real presence, as the system connects physical spaces via screens, is but one 

example of the rooted belief in the ability of the visual sense to convey complete 

perceptive experiences. While the mind seems to have an adequate capability to fill 

the missing holes of sensory input, by allowing unimodal visual representation to 

present reality to us, we are at risk of promoting sensory blindness. The 

inadequacies of two-dimensional screen displays in mediating presence on its own, 

delivering experiences that are incomplete, disembodied and selective, can be 

countered with the support of haptics as later chapter discussions will show. Still, 

there is a persistence and seductiveness of the screen media as the go-to interface 

which begs for insight into what screens may reveal and what they may camouflage. 

Many artists have explored the limits of screen mediation. In Screens - Viewing 

Media Installation Art Kate Mondloch investigates how viewers experience screen-

based media, especially in gallery and museum settings (2010). Mondloch offers 

insight into the limits of screen mediation in her discussion of screen-based media 

art installations. One of her key examples is Ken Goldberg’s well-known work 

Telegarden33 as this artwork shows the difficulties in mediating presence in a 

twofold way. Whether the audience is accessing the work off-site via the Internet or 

on-site next to the garden—they are never allowed to directly engage with the 

garden. Mondloch concludes that “these artworks show that mere connectivity may 

not be enough to turn telepresence into presence.” (91) Instead, they often end up 

 
33 Ken Goldberg’s installation Telegarden features a small garden with selected plants, which is tended 

and nurtured by a robotic arm. The arm is controlled via a web-based interface allowing spectators, within 
the physical space of the garden or elsewhere in front of a screen, to water the garden and plant seeds. 
http://www.ieor.berkeley.edu/~goldberg/garden/Ars/ 
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revealing interactive restrictions to the interactor, that which cannot, or is not 

mediated—namely complete embodied presence. The limits of screen mediation are 

connected to the ability to mediate perception directly. Philosopher Hubert Dreyfus 

points to the difficulties in assessing evidence without direct multisensory access to 

objects of perception. In his discussion of telepresence technologies where presence 

is mediated through displays he notes that “as more and more of our perception 

becomes indirect, read off various sorts of distance sensors and then presented by 

means of various sorts of displays, we are coming to realize how much of our 

knowledge is based on inferences that go beyond the evidence displayed on our 

screens” (2000, 53). He identifies two paths that telepresence experiences might 

take. Either they will offer 100% sensory involvement with the mediated 

space/place, and as such invoke the epistemological doubt first presented by 

Descartes, and in extension a reactualization of mind-body dualism. What is real, 

what can be trusted? Mediated presence with no perceivable glitches (no lag, full 

resolution, repleteness, and with risk) presents us with experiences which we 

cannot verify, nor disqualify. Otherwise, they will offer those sensory glitches that 

make us able to distinguish the reality of here, versus the mediation of there. In fact, 

this is perhaps the unintended mode of most telepresence. 

Media artist and engineer Myron Krueger argued for the potential of immersion 

and telepresence using interactive three-dimensional environments as his prime 

medium for exploration, as opposed to strict 2D mediation. His proposal for such a 

space was VIDEOPLACE, a responsive environment developed in the mid-1970s with 

an extensive catalogue of applications, ranging from single-player games to multi-

user telepresence programs. The environment demanded no goggles or gloves for 

exploration, as cameras tracked the position and posture of the interactor in real-

time. The silhouette of the interactor was projected on screen as she engaged with 

virtual entities or other participants.  
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Figure 10. Screenshot from the Artwheels Interaction, one of the many interactive player games developed for 

the VIDEOPLACE Environment, presented at the Golden Nica Prix Ars Electronica 1990. Here a VIDEOPLACE 

interactor is being rolled down a string held by a VIDEODESK participant. Source image from Ars Electronica 

Archive. 

 

Krueger has shown skepticism towards 2D-displays as systems for mediating 

presence as they primarily cater to our conceptual selves. However, he claims that 

3D responsive environments are capable of such transfer—provided they offer real-

time interaction and the bodies of the human participants are active while engaging 

with the environment. In a 2002 interview with CTheory’s Jeremy Turner, Krueger 

makes his argument clear: “The degree of physical involvement [is] the measure of 

immersion” (2002). And immersion is a measure of the extent to which an interactor 

perceives herself as physically present in a non-physical world. Virtual 

environments and interfaces must therefore build on our real-world experiences to 

bridge our conceptual and physical world. The human body is the ideal interface, 

around which we should form our technologies. And while current VR-technologies 

aren’t up to the task of mediating full-range sensory experiences, at least not just yet, 

Krueger reminds us of the centrality of the body as a motor in future screen 

applications.  
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1.4 The Haptic Turn 

Throughout this chapter we have discussed how the material solution and 

metaphorical representation of the screen affects our sense of embodiment.  

The material solution dictates the experiences supported by the screen, and the 

representative value shapes the role given the screen. We have discussed how 

screen size and the distance of the screen media from the body affect our ability to 

scrutinize it. And finally, we have noted there exists a foregrounding of vision in 

screen media, a belief that real life experience can be fully mediated via vision 

technologies alone. That said, not all screen experiences are ocularcentric. Haptic 

qualities are introduced into our everyday computing environment with the 

introduction of portable smart devices equipped with touch screens. The everyday 

consumer is presented with the option to navigate screen surfaces with their hands 

and be rewarded with selected haptic feedback.  And while this is one step away 

from ocularcentric screen media, the coupling of navigation and presentation on the 

same surface locks the user in a visual feedback loop.  

Many scholars and developers argue, with good reason, for a move towards a 

more body-centered model of perception. Media theorist Hansen, among others, 

finds a solution within the arts, new media art in particular. He proposes that, with 

its exploration of and experimentation with sensor, communication, and haptic 

technologies, “new media art configures the body as a haptic shield …. [and] 

transforms this haptic prosthetic function into the basis for a supplementary 

sensorimotor connection with the digital” (2004, 121-122). As later chapters will 

show, haptic technologies offer a significant promise in mediating a richer and more 

nuanced experience of the digital, than screen-only interfaces. But even screens may 

be utilized to actively trigger haptic sensations.  

The Body in the Screen 

There are screen experiences that promote contact with haptic senses that are 

otherwise ignored or underutilized in our everyday engagement with screen 

technology. We have already discussed how large screen projections force 
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interactors to move their bodies to grasp the screen experience. But there are also 

other strategies for involving our haptic senses in screen media. VIDEOPLACE aside, 

the new media art scene of the late ‘60 and early ‘70s gave rise to several artworks 

that interrogated the screen as media for body awareness. These works scrutinize 

the relationship between the screen display and the body of the viewer, through 

different setups that experiment with the concept of mirror and the separation of 

video cameras and display monitors.   

 

 

 
Figure 11. Screenshot from Bruce Nauman’s Live-Taped Video Corridor (1970). Courtesy of the artist. 

 

One well-known example is Bruce Nauman’s Live-Taped Video Corridor (1970), an 

installation consisting of two monitors at the end of a narrow corridor, each monitor 

displaying a video feed. The upper video feed captures the interactor from behind as 

she walks down the corridor towards the monitors, presenting an ever-diminishing 

image, while the bottom monitor shows pre-taped footage of the same corridor, 

empty of people. The installation is eerie in several ways. In the attempt to catch an 
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image of herself on the top monitor, the interactor only ever sees herself from 

behind, walking away from the camera eye. Movement becomes oppositional, as 

walking towards the screen is shown as walking away. Attempting to get a clearer 

view of oneself in the video image by approaching the screen, will lead to the 

opposite. As you approach the screen, the image zooms out. The bottom monitor 

which appears as a live feed of the same scene, has edited the interactor out 

altogether. The combined screen setup completely contradicts the expected visual 

signals we usually get about the body’s position when approaching a mirror image, 

forcing us to re-direct our attention towards our body, its posture and position.   

 

 
Figure 12. Screenshot from Peter Campus’ Three Transitions (1973). Courtesy of the artist. 

 

Another important work is Peter Campus’ influential video artwork Three 

transitions (1973). In a 10-minute video the artist investigates the notion of self and 

body image in three different segments. In the first of the three, we see the artist 

standing in front of a paper canvas. He turns towards the canvas and starts to slowly 

cut a hole in the canvas. What we realize, as the first cut is made and a sharp object is 
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protruding from the artists back, is that we are looking at a projection of a video feed 

of the artist from the flipside of the canvas. The scene gives the impression of the 

impossible case of a person folding into and out of himself. The viewing sensation is 

visceral, as I try to place myself and my body in this scenario. These works and 

others similar to it investigate real-time video recordings and feeds that are either 

presented asynchronously in time or asymmetrically in space, constantly challenging 

the interactor’s expectations of body image and body position, giving rise to new 

bodily awareness. Something happens when the visual image no longer matches the 

actions of the body. Asynchronous and asymmetrical mediations of body images 

trigger haptic sensations, as we are physically reminded of our own position and 

movement in space. Screen experiences centered around the mirror image affect the 

sense of embodiment, and as we shall see below, digital technologies, as opposed to 

analog and electrical, allow for a whole new set of mirror images to be explored and 

experienced. 

Reflection and identification in the mirror 

The mirror image is a recurring theme in many works of digital art. These works 

investigate notions of self-perception, mirror reflections and identity. It might seem 

convenient and easy to label the physical glass mirror and the reflection it produces 

as real and oppose them to artworks investigating the mirror image utilizing digital 

and sensor technology, cameras and network communication. However, such a 

distinction is hardly sufficient or even beneficial. Any mirror image, whether analog 

or digital, reflects a body image open to interpretation by the spectator. We always 

have a bias when looking at ourselves, informed by tradition, society and history.  

The analog mirror image is essentially inverted (flipped back to front) and offers 

a very particular reflection. Moreover, the physical mirror media itself is always 

informed by its makers. Attributes such as size, curve and frame of the mirror, as 

well as the quality of the mirror indicating its ability to reflect the physical 

characteristics of light, are all parameters that come into play in the design. 

However, there are some key features locked to analog mirror media. The image 

reflection is always produced in real-time, so there exists a synchronicity between 
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the spectator appearing in front of the image and the production of the reflection. 

Synchronicity is key in establishing a person’s ownership of the mirror image. 

Furthermore, the analog mirror media is bound by its features—it will always 

produce the same kind of reflection as dictated by its physical attributes. A plane 

mirror surface with high quality glass and reflective coating will always produce a 

reflection with the same color rendering and size of the spectator, while curved 

surfaces will move the convergent point of beams of light either in front or behind 

the mirror image surface—skewing the image reflection accordingly. The same 

analog mirror will always produce the same reflection (under same light conditions). 

As such the mirror images are inherently symmetric and offer predictability. This is 

also a feature that promotes ownership between the viewer and her reflection.  A 

third and equally important feature of the analog mirror image is its passive 

mediation. A spectator need not actively engage with the media to capture (as in 

either holding or generating) its reflection or presentation.    

While there is a rich history of playful experimentation with the analog mirror 

images (variations of curved, spherical and non-reversed images), digital and sensor 

technologies have brought a whole new range of images into existence. Cameras and 

projectors, motion and body sensors, as well as rich datasets recording human 

activities within a given space and time period, are all becoming elements 

constituting the attributes of a new mirror image.  This is an opportunity of 

investigation and experimentation that has engaged a range of contemporary artists.  

Mediation of the body image 

The mirror image has been with us at least since Narcissus sat by the pool and fell in 

love with his reflection. Today it is cultivated in a rich selfie culture and 

disseminated through social media. While the mythical Greek demigod failed to 

recognize the mirror image reflection as himself, he did recognize another with 

whom he identified and adored. Only a few species of animals (primarily mammals) 

pass this mirror-test, the ability to recognize themselves in a mirror. In 

psychoanalysis this is referred to as the mirror stage, first introduced by Jacques 

Lacan in the late ‘30s. While marking a turning point in mental development, the 
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mirror stage is also seen as a key element in (trans)forming the self as it promises 

the infant it will overcome current limitations in “motor impotence” and gain body 

control. As Lacan proposes:  

 

For the total form of his body, by which the subject anticipates the maturation 

of his power in a mirage, is given to him only as a gestalt, that is, in an 

exteriority in which, to be sure, this form is more constitutive than 

constituted, but in which, above all, it appears to him as the contour of his 

stature that freezes it and in a symmetry that reverses it, in opposition to the 

turbulent movements with which the subject feels he animates it. Through 

these two aspects of its appearance, this gestalt—whose power [prégnance] 

should be considered linked to the species, though its motor style is as yet 

unrecognizable—symbolizes the I's mental permanence, at the same time as it 

prefigures its alienating destination. (Lacan 2006, 76) 

 

It is through the investigation of the mirror image, first considered an Other, before 

it is recognized as a Self, that an ego forms. The mirror stage is then a question of 

identification and marks a point after which the relationship to our bodies is 

primarily mediated by the image. However, this equated relationship between 

mirror image, body image and identification, seems somewhat simplified, especially 

in terms of analyzing more abstract works of mirror art. Instead, I turn to 

phenomenology, where the body image is, rather than identification, considered a 

conscious representation and active reflection of how I perceive my body. 

Philosopher Shaun Gallagher has provided a well-argued and useful analysis of the 

concept of the body image (1986). Here he proposes that it is either in situations of 

forced reflection, i.e. in illness, fatigue, pain, arousal and so on (which Gallagher calls 

“limit-situations”), or in voluntary reflection, that we become conscious of our 

bodies. This consciousness is never global, we are not conscious of every part of our 

body’s relationship to every other part. Instead, he argues the body image as a 

mental state consists of three elements. It involves the body as it is perceived in my 

immediate consciousness, as well as my conceptual construction of the body (as it 

appears in my immediate consciousness and as a result of an intellectual 

understanding), and thirdly, it holds my emotional attitude towards and feelings of 
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my body (546). The body image is, as a conscious awareness of our own bodies, 

triggered by reflection, and informed by perceptual, cognitive and emotional 

experience. In terms of analyzing artworks that deliberately experiment with mirror 

presentations, the phenomenological lens seems more beneficial than the 

psychoanalytical approach, as it opens up for a more nuanced discussion of the role 

and limitation of the body image, rather than considering it an identificator of self. 

Searching for the body image  

What happens when mirror mediation is no longer symmetrical, where the reflected 

image is not indistinguishable from the spectator, but becomes separated, distorted 

and even unrecognizable? What bodily reactions occur when the interactors need to 

actively search for their body image or its representation in the mirror image? And 

how does time feature into the mediation of the mirror image in terms of how we 

respond to delays or randomness? These are all conditions that bring us in contact 

with limit-situations, where we are forced to reflect upon our own expectations of 

body image. But there is also something else at stake in these experiences. In the 

active search of the body image, we engage more than conscious cognitive processes,  

a set of bodily responses are activated as well. But exactly what kind of processes are 

these?  

In the following a set of artworks will be presented, which each complicates the 

relationship between mirror image and body image, as the mediation of the mirror 

image becomes increasingly asymmetric and temporarily distorted.  

Passive asymmetric mediation 

The first set of works deals with asymmetric mediation of mirror image, as they 

are split from the viewer, or distorted in terms of proportion or resolution. What 

they have in common is the passive mediation of the mirror image. The interactor is 

not required to move (or make sounds) for the mirror image to be present.  
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Figure 13 and 14.  Screenshots from video documentation of A Parallel Image (2008) by Gebhard Sengmüller. Courtesy  

of the artist.  
 

Gebhard Sengmüller’s A Parallel Image is an electronic (analog) camera obscura. 

The real time shadow-image of any spectator standing in front of the sculpture 

aperture is rendered through a series of light bulbs making up a screen, situated on 

the sculpture’s rear end. This installation differs from the classical mirror-image art 

works, as the interactor is disconnected from the mirror and not able to visually 

perceive her reflection, and never will be able to. That option is reserved for other 

spectators in the exhibition space. The mediation of the image happens in real-time 

and is symmetric to the body it maps, however, the production of the mirror image 

and its presentation appears on two separate surfaces that cannot be perceived at 

the same time, instilling a spatial asymmetry. The presentation surface reflects a 

mirror image as if the spectator stands behind the surface (which she does). The 

split image is forcing two very different processes, which both may be considered 

phenomenological limit-situations. On the one hand, as the presentation surface is 

unavailable to her, the spectator is compelled to imagine her body posture and 

appearance as the machine will render her, before her inner eye. Simultaneously, 

she will position her mental mirror image several meters away from her, dislocating 

an otherwise close encounter between body and its reflection. It is also important to 

note that the work itself seeks to make explicit the technological forces at work in 

producing mirror images. 

Split analog mirror images may invite conscious reflection about our body 

position and posture at the time, but it remains largely a mental exercise, as opposed 

to a physical one. The asymmetric mediation of the mirror image invites us to look 
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for ourselves, so what happens when the materiality of the mirror extends into the 

virtual?  

This is a central theme in the works of interactive artist Daniel Rozin, who 

specializes in mirror-image installations. A significant part of his work focused 

around mechanical mirror construction and virtual augmentations, allowing almost 

any material to become a mirror surface.  These mirrors are all set up the same way. 

Hundreds of small wooden bits, pieces of trash, or steel tiles make up the mirror 

plane. Each mirror piece is connected to a servo motor and thus movable using 

control software. Depending on the angle of the individual pieces, incoming light is 

reflected differently making it possible to indicate shadow and highlights as the key 

constituents of a mirror image. A camera hidden within the mirror pieces, records 

the spectator. The camera feed is translated by control software turning pixels into 

the individual pieces of the mirror image. The images are conveyed in real-time, 

providing the viewer with a symmetric and as such consistent mirror image, 

although the different images may either match the view of the interactor 1:1, or 

enlarge or shrink selected body parts.  
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Figure 15. Screenshot from video documentation of Wooden Mirror (1999) by Daniel Rozin. Courtesy of the artist. 

 

The latter is the case with his early work Wooden Mirror from 1999 where the 

mirror image becomes a head portrait, thus enlarging and isolating the interactor's 

head in real-time. This framing, as well as choice of material (wood and a sepia color 

palette), hints to old family photographs, placing the interactor in a historical time. 

She is invited to inspect herself from this new perspective, as a person of the past 

where merely the face and head posture are mediated, rendering the body 

irrelevant. When the interactor moves closer to the mirror, the overall image is 

enlarged at the cost of facial details. This is because resolution is fixed in the material 

solution, not the image, yielding human strategies for inspection useless, and more 

specifically, the traditional act of inspecting oneself in the mirror. Additionally, as the 

interactor moves, the individual pieces of the wooden mirror make sharp clicking 

noises as they render the image anew. This auditory tracking invokes bodily 
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attention towards the tiniest of movements and changes in posture. The virtual and 

material qualities of the mirror image invoke not just attention to body image 

representation, they also force the interactor to physically reflect on distance to and 

degree of movement in relation to the work. 

 

Figure 16. Screenshot from video documentation of Penguins Mirror (2015) by Daniel Rozin. Courtesy of the artist. 

 

The notion of self-recognition and image distortion in terms of resolution is taken 

further in Rozin’s Penguins Mirror (2015), as the artist detaches the mirror image 

from the wall. Here 450 stuffed penguins on rotating motors are situated on a gallery 

floor, presenting a low resolution, binary (black and white) mirror image of any 

interactor standing in front of the penguin colony. Data from a motion detector is fed 

to a control software to produce a real-time silhouette of forward-facing penguins. 

The mirror image is simplified in terms of color and resolution to the extent that it is 

not possible to recognize a particular person, only the identification of a biped with 

two arms and a head. These simplistic representations of bodies in terms of 

resolution and color may hint to something original and particular to a human body, 

as individual features are lost. Bodily gestures and postures become key 

identificators of what a body is.  
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Active asymmetric mediation 

The second set of artworks is centered around the active mediation of the mirror 

image, conditioning the posture and movements of the interactor.  The interactive 

element is central to these works, as it is only through movement or deliberate 

inactivity the mirror image will appear.  

 

 
Figure 17. Screenshot from video documentation of Rust Mirror (2009) by Daniel Rozin. Courtesy of the artist. 

The Rust Mirror (2009) work projects the mirrored silhouette of the spectator 

onto a surface consisting of hundreds of rust steel tiles. As the viewer moves about 

and actively explores her mirror image, small trickles of rain will form in the image. 

The raindrops will increase in number as the person becomes more active 

particularly when getting closer to the work. Eventually the image of the body will 
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be overtaken, in the same way raindrops distort the reflecting pool. In this screen 

experience, the interactor will need to make an active choice in search of her body 

image or its representation. The participant is conditioned to stay still if she wants to 

see herself with clarity. And in many ways, it distills some of the sensations 

provoked by Nauman’s work. Distance and inactivity are rewarded with a clear 

mirror image. But how truthful is this representation of self as still and unmoving? 

The work certainly explores the assumption that an active, moving body cannot be 

captured in an image. 

 

Figure 18. Screenshot from video documentation from BoxedEGO (2008) by Alvaro Cassinelli. Courtesy of the artist. 

 

Many mirror artworks are occupied with the effects of dislocating the observer 

from her mirror image. While Sengmüller’s A Parallel Image does this quite literally, 

other artists take it further. Alvaro Cassinelli’s installation BoxedEGO appears as a 

straightforward stereoscopic peephole camera placed on a platform in a corner of 

the gallery space. Out of plain sight, two cameras are mounted in the ceiling in front 

of the platform. When curious observers decide to take a sneak-peak through the 

peephole, they see a miniature version of the platform in the gallery space. However, 

as soon as they breathe or talk, this first image feed is replaced with a live image of 

themselves operating the camera. The live image is scaled down to exactly fit the 

peephole camera’s box interior, as if the gallery space is appearing inside it. The 
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artist, in accordance with the title of the work, calls it the “double trap of self” 

(Cassinelli & Ishikawa 2008, 1), and argues that the camera first captures the 

curiosity of the observer—its ego, and secondly the observer himself.  Only if the 

observer stands perfectly still, will he be slowly purged from the image.  The mirror 

installation has an additional perceptive layer, because as the users see themselves 

from behind and above, at first sight it appears they are looking at someone else. As 

they recognize their own body posture, position and appearance in the image, the 

image reflection is connected to the self. This is also reinforced as proprioceptive 

and tactile feedback correlates with the live feed. Watching yourself touch the 

peephole box will produce tactile sensations. However, the process seems to 

reiterate, engaging the observer in a perpetual loop between light out-of-body 

experiences and self-identification. In opposition to Rozin’s Rust Mirror the 

participant produces the mirror image through activity, not by passivity. 

Asynchronous mediation—the mirror of time and collective 

A third set of mirror artworks utilizes digital technologies to generate virtual layers, 

elements of temporal dislocation and collective representation, in the mirror image. 

 

 
Figure 19 and 20. Screenshots from video documentation of Time Scan Mirror (2004) by Daniel Rozin. Courtesy of the 

artist. 

 

In Time Scan Mirror (2004) Rozin experiments with the passing of time in the 

production of a mirror image. The mirror is a projected screen, showing a time-

delayed and slightly skewed mirror image of the viewer. We see our movements 
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over time, presented within the metaphor of the timeline. The aesthetics of a 

temporal body image connects present actions with a reflection of the past, forcing 

bodily responses beyond the conscious reflection of self-image. How did I just move, 

how can I move to affect the timeline differently?  This is a temporal representation 

of an individual body in motion. But timed bodily signatures of the collective have 

also been utilized in mirror imagining, to produce personal mirror images of us. 

Temporal representation of the collective in the mirror image is found in Chris 

Lee and Henry Chang’s Pulse Mirror (2012). The work records the audience’s pulse 

when engaging with the artwork and transforms each person’s individual heart rate 

into a pulsating dot as a biometric record. Each of the dots, representing the timed 

biofeedback of the collective, make up a visual mirror-image of the current viewer. 

The internal state of the group is represented in the image of the one, as a temporal 

haptic-visual connection. My body, as represented in the image, is made up of the 

pulsing hearts of the group, inviting affective tactile sensations and a physical 

recognition and tracing of one’s own body surface.   

 
Figure 21. Screenshot from video documentation of Pulse Mirror (2012) by Chris Lee and Henry Chang. Courtesy of the 

artists. 
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The concept of representing a collective in the image is taken one step further in 

Brigitta Zics’ Mirror_SPACE installation: the users’ faces are scanned in real-time by 

an infrared sensor, gathering data which it then proceeds to calculate into mood 

values. The internal states— mood values—are translated and coupled with 

network data (from stock exchanges and weather forecast centers) producing an 

abstract virtual mirror image of the user which is presented on screen. The user is 

confronted with a real-time virtual interpretation of herself, an abstract mirror-

avatar as such. Additionally, the avatar is semi-autonomous of the user, meaning its 

actions are partly mirrored by the user’s movements, partly controlled by proximity 

to other virtual objects. 

 

Figure 22. Screenshot from video documentation of Mirror_SPACE (2003/2004) by Brigitta Zics. Courtesy of the artist. 

 

The work is occupied with the phenomenal image (an image of a reciprocal body 

as it experiences, affects and is affected by, the world), offering us an opportunity to 

reflect on not only an optical mirror image, but other forces that make up our 

experience of the world. She calls it a system that mirrors a space where the user 

becomes “a node that is networked with the whole of existence” (Zics 2005). The 
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work confronts us with the notion of the personal mirror image (of me) versus a 

public mirror image (audience movements in the exhibition space merged with 

network data), perhaps arguing the interconnectedness between us. Equally, the 

body is no longer directly figuring in the image, offering a rather asymmetric 

representation of self. We need to connect the dots and actively search the 

representation to identify ourselves, but it is not the body image we will find, rather 

machine responses to our actions, coupled with the representation of previous 

interactors. The work emphasizes that we are never just an individual body, we exist 

in a space within a collective, and while we influence these surroundings by our 

being, it also shapes us in return. But with so many layers of machine translation and 

interpretation within this interactive space, it becomes a question of whether we 

agree with the image representation of our collective self, or reject it.  

What all of these selected artworks offer is a chance for interactors to engage 

with their mirrored self, independent of real-time and place, at the risk and 

opportunity of exposing our bodies to ourselves. Some mirror works barely trigger 

more than a conscious reflection of the body image, largely as a mental activity, and 

do perhaps reiterate the state of self-emancipation and growth as suggested in the 

mirror stage. But as the mirror images become increasingly asymmetric and 

asynchronous, they trigger a next step of self-identification which has to do with 

reacquainting ourselves with inherent skills and competencies held by our bodies in 

engagement with tools and the environment. This also makes me question how 

much of ourselves we need to recognize in order to accept what the mirror presents 

and engage with it.    

There is an ongoing, intimate connection between the body and the visual, in our 

tactile and proprioceptive versus visual recognition of the body. Just consider how 

the sense of sight helps us keep balance, as an addition to the vestibular system. 

What many of the artworks above do is disconnect the symmetric and synchronous 

visual feedback about a body’s extension and position in space, as well as tactile 

engagement with the environment. In doing so, they force our bodies to apply other 

skills to orient themselves, and consequently give us temporary access to a 
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predominantly pre-conscious motor-control program, which often is referred to as 

the body schema. 

Closing the perceptual gap 

Vision machines have a significant impact on how we experience reality. The 

transformative power of these technologies seems to be neglected in the race to 

satisfy our hunger for them. We are mesmerized by the image, the power it has to 

instill in us the belief that it portrays the truth, the whole truth, or the truth that 

matters. Positioning the screen as the primary interface makes us forget the richness 

of our whole-body perception. At the same time, the roots of the screens are so 

embedded in our social, cultural and scientific practice that we have difficulties 

realizing what is left out. As such we need to be aware of what the screen is 

concealing, and the nature of the screen mirage. Complete media transparency is not 

the solution either, as it hinders critical reflection. When screen media are no longer 

consciously perceivable to us, we lose the ability to criticize the medium. In selected 

works of electronic and digital art, we are shown what kind of presence the screens 

have difficulties mediating, but they also present opportunities for displaying touch 

and proprioceptive elements of our perceptive experience, as sensorimotor 

responses are reflected back to us via other modalities. The ability to examine your 

reasons for acting and the influence of these actions, is key to critical thinking and 

reflexivity. Mirror works offer this opportunity for reflexivity. Pre-conscious haptic 

responses are triggered and made available to us through engaging with these 

artworks, and we are given a chance to expose and critically assess the capabilities 

of screen media in conveying presence.  While the analog mirror is primarily 

engaging a body image, the conscious awareness of our own bodies, artistic 

experimentation realized in various mirror artwork seem to go beyond the active 

exploration of an individual body image. It appears to put us in contact with a 

particular set of skills, competences and sensations held by our bodies, that we are 

rarely consciously aware of in our everyday life. This skill set is governed by body 

schemata which are the topic of the following chapter. 



 

2 BODY SCHEMATA 

Evolution and Revolution of  

Haptic Repertoire and Agency 

 

In the first chapter I unpacked how our sense of embodiment is affected by extensive 

screen use, which foregrounds vision in the interaction with machines. While 

screens and other vision technologies are very useful as surfaces for organizing 

thought, they are insufficient as mediators of presence. We have been identifying 

ourselves, seeing ourselves, and constantly re-confirming our body image primarily 

through ocularcentric technologies, instead of technologies that are addressing our 

full body schema. Experiments with mirror image, connecting haptic sensations with 

vision, reveal body competences and sensations we seldom engage with consciously, 

making us aware of the richness of body perception and our embodiment in relation 

to different media interfaces. Perhaps they even offer us an insight into the 

conditioning power of interfaces and how they dictate the terms of interaction.  

What is certain is that our interaction with machines is influenced by the machine’s 

ability to address our sensory apparatus alongside any prosthesis added or used in 

conjunction with the body. Sensory information gathered by the haptic—the touch 

and proprioceptive senses—constitutes a significant component in the way we form 

hypotheses about what an object is, and how it can be manipulated, and is seldom 

recognized in our everyday interaction with computers and media technologies. This 

leaves much to be desired.   

This chapter presents the claim that our bodies are key mediators of the actions 

we can perform in the world, and furthermore that this action potential is extendible 

as we learn skills and engage with tools and technologies. Inherent in this claim is 

the idea that different skills and technologies afford different actions, and as such 

should be regarded with scrutiny when designing media interfaces.  I use the 
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concept of the body schema, as presented by phenomenologist Maurice Merleau-

Ponty, as a map for our action potential. Body schemata are preconscious knowledge 

pools that keep track of how a particular body can act in the world, what it is capable 

of doing. Furthermore, Merleau-Ponty suggests that the body schema is revised as 

we break habits, learn new skills or use different tools and technologies. By 

identifying processes governing the body schema, processes of confirmation and 

revision, I seek to establish the significant role of tactility and gesture, the haptic 

apparatus, in addressing the body schema.   

The chapter is divided into four parts: Body Schemata and Plasticity, Evolution 

and Adaptation, Active Revisions, and finally, Haptic Repertoire and Agency. Part I 

presents the concept of body schemata, its connection to body image, and how these 

schemata are established and revised as we use and act with our bodies. Part II 

investigates our historical co-evolution with technology as a process that gradually 

extends and modifies our body schema.  Part III investigates how bodily 

performance, technological augmentations, and telepresence scenarios may radically 

revise our body schema, and revisits the concept of mirror vision and screen 

presence pointing to the potential and limits of visual-haptic (ideal-motor) 

mediation. Part IV argues the unique qualities of haptic perception and the role of 

gesture as movement form. 

2.1 Body Schemata and Plasticity 

The concept of body schema (plural schemata) was introduced over 100 years ago, 

and has since been riddled with different meanings, and been used interchangeably 

with body image. The body schema/image distinction seems to be settled, in which 

the concept of the body image is denoting a primarily visual and conscious 

mediation of the body. But still, the understanding of body schema is not the same 

within different research fields. An important distinction must be set between 

cognitivists advocating the body schema as a representation of body posture, and 

phenomenologists presenting the body schema as a dynamic enactment of the body 
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in space. The latter approach will be pursued in this thesis, introduced by the 

treatment of the term in the phenomenology Maurice Merleau-Ponty, and his 

suggestions for processes of confirmation and revision of body schemata.  

Origin of the body schema and its connection to the body image 

The concept of a postural schema was first introduced in 1911 by neurologists 

Henry Head and Gordon Morgan Holmes. They arrived at the conclusion that there 

must be a fundamental standard, a model of previous postures and movements, 

against which postural changes are measured: 

 

By means of perpetual alterations in position we are always building up a 

postural model of ourselves which constantly changes. Every new posture or 

movement is recorded on this plastic schema, and the activity of the cortex 

brings every fresh group of sensations evoked by altered posture into relation 

with it. (Head & Holmes 1911, 187) 

 

Head and Holmes also claimed that visually acquired images of posture and 

movement, the body image, cannot be the source postural schema, as the visual 

sense is insufficient in keeping track of postural changes. Additionally, they argued 

that postural schema is never a conscious model or program, as opposed to body 

image. We might have thought that Head and Holmes’ proposal was sufficient to 

separate schema from image. However, in 1923 Paul Schilder published Das 

Körperschema: Ein Beitrag zur Lehre vom Bewusstsein des Eigenen Körpers in which 

he introduces the concept of the body schema. He describes it as a mental 

representation of our final body’s position, equating it with Head and Holmes’s 

concept of the body image. As such, this text becomes the starting point for 

confusion lasting decades mixing the two concepts. Philosopher Shaun Gallagher has 

done significant and important work in tracking the usage of concept body schema 

and the body image in scholarly texts in the 20th century (1986), with the aim to 

propose a clear distinction and relationship between the two. He writes: 
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The body schema is neither the perception, not the cognitive understanding, 

not the emotional apprehension of the body. The body schema, as distinct 

from the body image, is a non-conscious performance of the body.34 (548) 

 

The body schema is a motor-control program that appropriates habitual postures 

and movements, as well as incorporating elements of its environment into itself (i.e. 

tools and instruments). Gallagher summarizes the body schema as “an active, 

operative performance of the body,” and how “the body experiences its 

environment” (548).  In a more recent text Gallagher slightly updates his definition 

suggesting that:  

 

The body schema is a pre-noetic (automatic) system of processes that 

constantly regulates posture and movement - a system of sensory-motor 

capacities and actualities that function without the necessity of perceptual 

monitoring. (2001, 149) 

 

The notion of non-conscious is changed to pre-noetic or pre-conscious, and the 

emphasis on independence of perceptual monitoring is highlighted.  Still, the body 

schema is not a simple reflex, despite the automatic quality of the processes it 

governs. In recent years scholars and scientists have largely accepted this distinction 

between body schema and image, where body schema is used to identify and 

describe semi-automated, pre-conscious motor skills and program our bodies utilize 

to engage with the environment and tools.  

 
34 It is important to note that Gallagher does not claim that body image and body schema are functioning 

independently of each other, as there are several cases of body image influencing the body schema (as 
suggested with mirror vision experiments), and vice versa (in cases where physical training improving body 
performance and capability changes our body image).  
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From representations to lived body 

There are slight, but important differences in how the body schema is 

conceptualized in various fields.35 While philosophers have been criticized for 

producing too abstract descriptions of body schemata to be applicable as 

explanations for experimental data, neuroscientists on the other hand have tended 

towards detailed and careful concepts that offer little new insight and perspective. 

One well-known proposal by neuroscientists Schwoebel and Coslett suggests body 

schema to be “a dynamic representation of the relative positions of body parts 

derived from multiple sensory and motor inputs (e.g., proprioceptive, vestibular, 

tactile, visual, efference copy) that interacts with motor systems in the genesis of 

actions” (2005, 543). It is noteworthy that they underline that body schemata are 

fueled by multisensory and motor input. However, the word representation is 

somewhat problematic as it connotes distinct mental states, rather than embracing 

the explicit and pre-conscious experience and action of the body promoted in 

phenomenology.  It is this distinction that truly separates the fields. Body schemata 

are never mental representations of a body action potential. They are dynamic 

enactments of the bodies in space. 

The idea that action generation is one of the core capabilities of the body schema 

is shared by present-day phenomenologists, and this point specifically is extended in 

Gallagher’s definition. He proposes that actions controlled by body schema can be 

“precisely shaped by the intentional experience or goal-directed behavior of the 

subject” (2001, 150), and in doing so he hints at the habitual qualities of the body 

schema as well as the potential for shaping it (through bodily articulation of a 

person’s intentions for actions). Still, none of the conceptualizations referenced 

above illustrate how these processes of shaping the body schema come into play. A 

starting point for the investigation of processes governing the body schema can be 

found in the works of Maurice Merleau-Ponty and his notion of the lived body.  

 
35 A thorough treatment of conceptualizations of the body schema in phenomenology, neuroscience and 

psychoanalysis is provided by Helena De Preester and Veroniek Knockaert in Body Image and Body Schema : 
Interdisciplinary perspectives on the body (2005). 
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The phenomenal world of Merleau-Ponty 

Maurice Merleau-Ponty’s contribution to promoting and enriching the concept of 

body schema is significant, and he is one of the pioneers in describing mechanisms 

governing the body schema, and its inherent plasticity. In Merleau-Ponty’s world the 

body schema is updated by acquiring new skills or using new tools to engage with 

the world. So, the exact nature of the body schema and the process of how the body 

schema is revised is worthy of exploration. At first glance this revision process 

appears to take the form of a preconscious conversation between the body sensory 

apparatus and the outside environment. Perhaps when Merleau-Ponty describes the 

body as “an attitude directed towards a certain existing or possible task” (Merleau-

Ponty 2002, 114), he suggests that the body affords something as possible to do. 

What are the triggers in the environment or situations that make my body encounter 

something as possible? And as these processes are bound in preconsciousness, how 

can I get familiar with this inherent knowledge of my body? To get closer to an 

answer we need to dig into the world of Merleau-Ponty and key terms in his 

phenomenological project: The notion of the lived body, schema corporel (body 

schema), bodily space, and the phenomenal field. 

In Phenomenology of Perception (2002) and The World of Perception (2008) 

Merleau-Ponty provides the reader with an extensive and thorough investigation of 

human perception. Building on the works of Edmund Husserl, especially his concept 

of Leib (lived body), Merleau-Ponty too argues that our bodies are lived—that the 

subject is first and foremost a being-in-the-world.36 The body is the first receiver of 

experiences, and this experience is key to human understanding and self-awareness. 

We experience the world with all of our body, simultaneously, all senses are 

involved in participating in that which exist outside our bodies, even though we 

 
36 In Merleau-Ponty’s wording the lived body is neither situated nor gendered—this phenomenological 

worldview does not regard a particular “female body located in Dakar in the 1990s,” but any body that will 
and has ever lived. The lived body is universal and unspecific. However, as noted by media artist Marco 
Donnarumma in reading feminist philosophers Young (1980) and Shildrick (2002), “female, transgender, 
intersex and differently abled bodies, as well as those bodies considered ‘monstrous’ in particular societies 
because of their differences and vulnerabilities” (2016, 97), are all specific bodies that do not fit well into 
Merleau-Ponty’s notion of the phenomenal body. 
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might not be consciously aware of the full multisensory range. This perceiving body 

is the lived body. As such, our perception is active, and it is through actions/acting in 

the world that we become self-aware. Perception is a process of orienting oneself 

toward the world, and consciousness is a collection of what I can do, not just what I 

am thinking. Each body is unique in its action, but similar bodies share perceptive 

content. In the  The Cambridge Companion to Merleau-Ponty, philosopher Taylor 

Carman points to this codependent coupling of the system (our bodies) and the 

environment in Merleau-Ponty’s framework: “[m]y body is perceptible to me only 

because I am already perceptually oriented in an external environment, just as the 

environment is available to me only through the perceptual medium of my body” 

(2004, 68).  It is also important to notice that this engagement is pre-reflective and 

pre-conscious. Merleau-Ponty states that “[m]y body has its world, or understands 

its world, without having to make use of my ‘symbolic’ or ‘objectifying function’” 

(2002, 162).  

Furthermore, Merleau-Ponty states that our bodies are in a precognitive, pre-

representative engagement with objects in the outside world, which is an 

engagement that is framed by the body schema. The body schema (schema corporel) 

is “an integrated set of skills posed and ready to anticipate and incorporate a world 

prior to the application of concepts and the formation of thoughts and judgements 

(Carman 1999, 219)” and as such, the body schema is comparable to a habit, driven 

by a what Merleau-Ponty call a “motor intentionality” (Merleau-Ponty 2002, 117).  

Although he argues that the structural framework of the body schema is set in an 

early stage of life, he presents the body schema as a “system of equivalences” which 

constantly aim towards a perceptual balance between the perceptual background 

and changes or movements in the environment (163). We are deeply interconnected 

with the world we experience. Merleau-Ponty argues that we are not merely acting 

presently in the world, our actions are also directed by a phenomenal field, that is, 

the individual and personal background of experiences, training, and habits that 

shape our perception. And because we are set in the phenomenal field (as inherently 

as we are embedded in space-time) our perception is directed—we choose what to 



BODY SCHEMATA 

 

100 

inspect, we select what to focus on. Our perception thus anticipates the future, we 

are existing towards tasks in a “spatiality of situation” (114). The body schema is the 

agent connecting the body to an environment, unifying the body proper, space and 

movement. This bodily space is our action space.  

Confirmation and revision of the schema 

The body schema sets the bodily space which is organized by a subject’s potential for 

action in the world. The bodily space changes when the subject acquires a skill or the 

body itself changes (with the use of prosthetics, tools and instruments, or through 

injuries). In short, different bodies afford different bodily spaces. The body schema 

thus appears to have plastic qualities, which suggests that it also can be revised. And 

there seem to be two forces present in shaping the body schema: Processes of 

confirmation informed by habits, training, and experience, and processes of revision 

primed by breaking habits, learning new skills, and changing the action potential of 

our bodies. Merleau-Ponty offers his own vocabulary for the difference between the 

two processes, as abstract and concrete movements (2002, 127-128). Concrete 

actions are ones that we do out of habit—they confirm the body schema. The 

abstract actions are performative. They are actions we perform, through play, 

impulse, improvisation, and prototyping—and are for this reason non-habitual. In 

other words, the body schema is formed by two processes: A process of confirmation 

by our habit-actions and a process of revision through performativity. To give an 

example of this, imagine a person with no physical handicaps, going through her 

everyday tasks in a wheelchair. How she meets the world from the perspective and 

restrictions of the wheelchair will force her to reconsider simple day-to-day 

operations usually done unconsciously, out of habit. The same restrictions will most 

likely let her identify other qualities of her bodily motility.  

We engage with the world through body movements, in the form of gestures and 

postures, by directing our body towards possible actions. When we acquire new 

skills or introduce new prostheses we are acting in non-habitual ways. Where 

habitual use binds an instrument to a particular use or preferable body actions 
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confirming the body schema—processes of play, performance, tinkering, and even 

hacking, invites us to revisit body potential and objects in the world.  

Exploring bodily space and cues for action 

The plasticity of the body schema is set by the body’s ability to identify cues for 

action in a bodily space. The extent to which our bodies are able to investigate and 

extend bodily space, our potential for action, is the extent of the plasticity. So, before 

we look into strategies for extending bodily space or our bodies, we will look more 

closely into how this process of identifying action potential takes place. 

From reactive to enactive exploration 

Inherent in the concept of the body schema is the claim that we exist towards tasks, 

our body orients itself towards actions it perceives as potential for it, and downplays 

the importance of others, a process governed by habit as well natural limitations. We 

do not form mental representations of our goals before we act, nor do we simply 

react to our environment on reflex. There is a level of intentionality to our motor-

control programs. We establish the world through our engagement with it, 

experience and understanding arise as we enact.  This difference between 

representation of goals, and reactive and enactive exploration of space is 

investigated in Simon Penny’s installation Petit Mal: an Autonomous Robotic Artwork.  
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Figure 23. Simon Penny’s Petit Mal: an Autonomous Robotic Artwork (1989-2005). Photo credits: Jonathan Gröger. 

 

Petit Mal is an autonomous robot which responds to the world as it finds it, but it 

does not create it. It is engineered in the tradition of reactive robots, and as Penny 

himself states: “Petit Mal has no memory. It makes no maps. It makes no 

authoritative world pictures. It just reacts to the world as it finds it every moment” 

(ARTE television 2006). As such it is critiquing the focus on artificial intelligence 

system engineering in robotics, in which the robotic actions are results of previously 

formed representations of goals based on environmental maps. Rather, the work 

underlines the claim that we need to engage the world with our bodies to 

understand it, by creating a robot that explores the concept of “kinesthetic 

intelligence”—or an inherent knowledge bodies have of the space around them. The 

inherent knowledge of Petit Mal is governed by two parameters: it is drawn to hotter 

things and avoids colder things, and it will not move closer than 75 cm to anything. 

While Petit Mal is a reactive robot, it is not curious nor does it have articulated goals 

(although it may appear so), but it does have behaviors that afford a rich kinesthetic 
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repertoire, exploration of space. This indicates that mental representations of goals 

are not necessary for navigating an environment, and the capabilities of a body to 

perform independently of conscious thought. But it also demonstrates the 

shortcomings of the robot in forming lasting relationships and building habits for 

actions. Humans have this ability to revise their actions, based on perceptive 

experience. We act in accordance with goals, that are both informed by the 

capabilities of their bodies, as well as the phenomenal field of past experience, 

cultural preference and history. This specificity also shapes our body’s ability to 

identify perceptual cues and recognize actions.  

Perceiving cues and recognizing action potential 

In 1979 J.J. Gibson published The Ecological Approach To Visual Perception and 

introduced the concept of affordances as cues in the environment that guide 

perception. Affordances are unchanging, invariant, and exist prior to perception. He 

separates affordances from properties and qualities of objects, proposing that:  

 

Phenomenal objects are not built up of qualities; it is the other way around. 

The affordance of an object is what the infant begins by noticing. The meaning 

is observed before the substance and surface, the color and form, are seen as 

such. An affordance is an invariant combination of variables, and one might 

guess that it is easier to perceive such an invariant unit than it is to perceive 

all the variables separately. It is never necessary to distinguish all the features 

of an object and, in fact, it would be impossible to do so. Perception is 

economical. (Gibson 1979, 135) 

 

Affordances are unique to each animal, Gibson suggests, which I interpret as 

affordances being unique to a type of body. Having a specific body does not only 

determine how I can explore a bodily space, I will also read the environment in 

accordance as I have different means of approaching it. A door knob offers very 

different affordances to a fly, a mouse, a child and a grown human being.  A decade 

after Gibson, cognitive scientist and usability designer Donald Norman took the 
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concept of affordance into his own hands, and the reintroduction and modification of 

the concept presented in The Psychology of Everyday Things in the late ‘80s and 

throughout the ‘90s quickly rose in popularity in the human computer interaction 

community (1988). His take on affordances was and is normative, as he sought to 

present a model for what an engineer or designer needs to take into consideration 

and include for their product or service to be successfully understood by users.37 

Norman has re-engineered the concept of affordances to include only those actions 

intended by the designer to be performed, that are perceived and recognized by the 

user. As such he creates a concept catering to the developer, who opts to design a 

product or service for a specific user in mind. Affordance of an object is a measure of 

a designer’s capability to present its action potential. However, this idea of 

affordance excludes the many unintended or unimagined actions that other people 

identify through their engagement, play, and tinkering with the object.38 Secondly, 

his concept is very much rooted in cognitivism. Affordance is formatted from being 

perceptive cues in an environment that is perceived directly, to becoming a mental 

representation involving higher cognitive processes. For this reason, Gibson’s initial 

take—of affordances being the perceived (but not necessarily recognized) invariants 

(pertaining to the object or artifact)—is more flexible. The perceptual experience of 

encountering an object will give rise to a specific set of affordances, that only a 

specific body bound by its unique bodily design and capabilities, as well as learned 

skills and experience, have access to. And this access is not directed by recognition, 

and as such, Gibson concept of affordances very much connects to the 

phenomenological approach proposed by Merleau-Ponty, that we exist towards 

 
37 In the 2013 revised edition of his bestseller Psychology of Everyday Things, renamed The Design of 

Everyday Things, Norman introduces the concept of signifiers to make a better distinction between possible 
actions an object affords, and how these actions are discovered. Partly to mend some of the confusion that 
arose from the rather radical re-conceptualization of the term affordance, but also to update the design guide 
to better describe and tutor the developers of virtual objects. 

38 The intended and imagined functionality of an object, as proposed by a designer, often differs from the 
actualized functionality. Many examples of the uncommunicated intentions of the designer are found in 
specialized user interfaces (just consider the many attempts to make remote controls for TV’s or heat pumps 
with too many buttons all given equal importance, or UIs for specialized appliances such as washing 
machines or GPS systems). 
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tasks. Each body has unique encounters with an environment, and affordances are 

actualized in this encounter.  

While the autonomous robot Petit Mal perceives environmental cues fitting its 

robotic body’s capabilities, it lacks the ability to form goals, and end up merely 

reacting to them. An enactive exploration of space entails that we establish our 

environment as we act in it. It is a dynamic process, where we orient our bodies 

towards tasks. But humans do not only respond actively to perceptive cues as we 

direct perception towards tasks, we also have a unique ability to extend our 

potential for action. 

Techniques and tools to postulate goals 

By utilizing body techniques or binding tools into our body schema, we redefine our 

bodily space or space for action. The notion of bodily space and our potential for 

being-in-the-world is not only a phenomenological concern, it has also been 

confirmed in recent neuroscientific evidence. Based on experiments, cognitive 

scientist David Kirsh argues that our brains construct a layered presentation of 

space (2013). Bodies exist in several spaces at once: the peripersonal space (near-

body), the extrapersonal space (beyond the reach of our limbs) and personal space, 

which is the space inhabited by our body proper. Peripersonal space of particular 

importance as this is the space we consider within reach for action. As such, the Crab 

Nebula in Taurus constellation is trapped in our extrapersonal space. While we can 

investigate it through a telescope, we cannot (at this point) directly interact with it. 

This is not the case with some telepresence systems, such as selected 

videoconferencing systems, or tele-intimacy devices.39 Here input and feedback 

loops designed for several modalities may be constructed between two distanced 

spaces—and for this reason must be considered part of our peripersonal space. 

There are not only phenomenological arguments for such a claim, this extendibility 

 
39 There exists a range of telecommunications wearables focusing on communication of tactile affect, 

proposed in projects like the T-Jacket (http://www.mytjacket.com/) for or the Hugshirt 
(http://cutecircuit.com/the-hug-shirt). 
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of peripersonal space is also reflected in the material situation of the body. Kirsh 

points to empirical studies of Japanese macaques and humans by Maravita and Iriki 

(2004) which conclude that “neurophysiological, psychological and 

neuropsychological research suggests that this extended motor capability is 

followed by changes in specific neural networks that hold an updated map of body 

shape and posture” (Kirsh 2013, 3:7). Instruments extend our peripersonal space 

and increase our potential for actions in the world. By doing this, they also shape our 

goals. “In addition to altering our sense of where our body ends each tool reshapes 

our ‘enactive’ landscape’ —the world we see and partly create as active agents” 

(3:3). Our perception not only has direction, with the use of tools we also postulate 

goals.  Tools extend what we perceive as possible tasks in a given space and 

situation. What is perceived as possible will affect the goals formed and activities 

chosen, and indirectly shape our interests and attentiveness towards the world. As a 

new parent, I have reconfigured my perception of public space accessibility as my 

body now “includes” a baby-stroller, which to a great extent defines my day-to-day 

goals. My peripersonal space is revised with the extension of the stroller, and it 

dictates what I find achievable (the set of actions I consider) within a given timeslot. 

We engage with the world through exploration and towards tasks, as we identify 

cues for actions. Our ability for identifying actions is dependent on the natural setup 

of a human body, the bodily space it exists in, and the techniques, tools and 

technology used to extend either the body or the space. While the plasticity of the 

body schema is substantial, there also seem to be some natural limitations to what 

we can do. Body schemata seem to have certain pre-noetic restrictions, perhaps 

coded in our DNA. As an example, we only grow bigger, never smaller, and similarly, 

we have five fingers and toes, and symmetric body halves. We are also always privy 

to a cultural and historic conditioning of body habits and techniques, stored in the 

body schema which is binding its subjects in a time and place, that might be difficult 

to counter.  

This points to another insight. As Gallagher puts it, it is “not just brains, but 

bodies and environments, and social and cultural practices undergo interrelated 



BODY SCHEMATA 

 

107 

reuse or plastic changes due to their on-going, dynamical interactions across all 

relevant timescales” (Gallagher 2018, 10). Our body schemata are never truly fixed 

but set in a time and place of human evolution and practice. 

2.2 Evolution and Adaptation: The technical mediation of 

the body schema 

The plasticity of the body schema accommodates for revisions, and our ability to 

extend action potential is closely connected to our ability to integrate techniques and 

tools in the body schema. I will argue that the development and use of technical 

strategies and tools to extend our action space is inherent in human nature. We have 

always explored our action potential and in turn revised our body schema in 

conjunction with tools and technology.  

Some revisions take place over a long time, almost glacial in nature, either as an 

outcome of the slow evolution of the physiology and physical capability of man 

formed by natural selection or developed over time as result of specific cultural 

strategies and habits framed by technology. On the other end we have abrupt body 

schema revisions resulting from radical augmentations offered by diverse 

technology, both as temporary and permanent configurations. In this following we 

will discuss this first class of revisions, before moving onto the second class in part 

III.  

The technical body and learned habits 

A huge part of our day-to-day actions are automated skills or techniques governed 

by habits, learned or formed naturally over time, where we repeat and in turn 

confirm previous actions towards a task or goal. But every so often we engage in 

new actions to overcome an obstacle or get access to new experiences. We take that 

extra big step over a puddle of rain to avoid getting wet, or acquaint yourself with a 

friend’s SLR-camera on which all the buttons are located elsewhere than on our own. 
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In these moments we become aware of the bodily habits we are maintaining, but 

also how quick we can adapt to new situations and setups.  

Following the line of thought proposed by Merleau-Ponty we are primarily 

engaging with the lived body through concrete movements, habitual movements. 

These bodily gestures are our means for acquiring and confirming habits through 

exploring the world and enacting intentions. These actions are also heavily 

influenced by culture and tradition. As already noted in the work of French 

sociologist and anthropologist Marcel Mauss in the ‘30s, there is an intricate 

relationship between the forming of habitual gestures and body language, called 

body techniques, and tradition, culture, and social interaction. Starting from the 

observation of various casual techniques, for example digging, running or striding, 

Mauss suggests that there exists a cultural conditioning of body gestures or 

mechanisms of the body, which are learned and consequently, have each their own 

specific cultural form. He points to the “the social nature of the habitus” (1992, 458), 

the social aspect of habits separated by education, cultures, status, tradition, and 

fashion, and significantly less by individuals. Techniques of the body differ from 

others in that they are “traditional and effective,” meaning they are “felt by the 

author as actions of a mechanical, physical or physicochemical order and that they 

are pursued with that aim in view” (461). And this is where Mauss really gets 

interesting. He proposes that “man’s first and most natural technical object, and at 

the same time his first technical means, is his body” (461), and that this is a 

technique we need to differentiate from instrumental techniques (how we 

incorporate tools into our body schemas) in understanding how bodies relate and 

engage with the world. Part of the body schema is conditioned by traditional, 

cultural, and social sensorimotor habits. Beyond the initial abilities of grasping, 

seizing and pointing, a lot of body movements are learned, becoming body habits, 

imposing ways of walking, posturing, touching, gesturing. Mauss' proposal that our 

bodies are inherently technical is an assumption we will bring with us through the 

rest of this investigation.  
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Technogenesis 

In Bodies in Code Mark B. Hansen expands on Merleau-Ponty’s concept of the body 

schema in his discussion on new media interfaces. To underline the intentionality of 

the body schema Hansen defines the body schema as a “flexible, plastic, systemic 

form of distributed agency [my emphasis] encompassing what takes place within the 

boundaries of the body proper (the skin) as well as the entirety of the spatiality of 

embodied motility” (2006, 38).  This agency of bodily movement and position 

defines our prepersonal domain, the space of motor-intentionality which couples the 

body with the environment, an “organism–environment coupling operated by our 

nonconscious, deep embodiment” (20). The body schema contains knowledge not 

only about the action potential of the body proper (contained by the skin), but also 

about the peripersonal space (the space within reach of the body limbs—natural as 

well as prosthetic). Tool-use thus has a particular impact on the body schema. 

Hansen continues:   

 

[F]irst, the body is always in excess over itself; second, this excess involves the 

body’s coupling to an external environment; and third, because such coupling 

is increasingly accomplished through technical means, this excess (which has 

certainly always been potentially technical) can increasingly be actualized 

only with the explicit aid of technics. (39) 

 

In tune with Merleau-Ponty, Hansen claims that the body schema is always 

technologically mediated. Our embodiment is realized in conjunction with tool-use.  

In fact, we are not only beings-in-the-world, actively perceiving bodies that 

experience the world. We are also bodies-in-code. Integrated with, and defined by the 

techniques and tools we develop and use, we co-evolve40 cognitively through our 

 
40 The concept of technogenesis and co-evolution is well-developed in Bernard Stiegler’s renowned book 

series Technics & Time (1998, 2008, 2010). Here the concept of co-originarity is introduced to define the co-
evolvement of humans and technics. Much of this co-evolution happens so slowly and gradually that it may 
slip our attention, however, Stiegler suggests that certain technological revolutions, such as the Industrial 
Revolution in the 18th century, have introduced too radical conditions on humans to go unnoticed. During 
this time man became acutely aware of how connected his being is with technology. I would propose that the 



BODY SCHEMATA 

 

110 

engagement with technology in a process labeled technogenesis (Hayles 2012, 10). 

In this sense tools are never neutral, they are a specific historical articulation of 

human action potential. Equally, a tool cannot be considered separate from the body, 

as we shape and direct our bodies much in the same ways as we direct our tools 

towards tasks. This relationship between bodies, tools and time is often referred to 

as technicity signifies the tool as it emerges in situ, collectively. The technical aspects 

of embodiment should be understood as temporal, something that changes over 

time, in particular places and within certain collectives. 

2.3 Active Revisions: Radical plasticity through 

improvisation, augmentations, and telepresence 

We have discussed how our bodies engage with the environment by actively 

exploring, identifying cues, and generating actions. We have also seen how 

intrinsically we incorporate body techniques and tools to explore our surroundings. 

We gradually alter and extend our action space through our engagement with 

technology.  This is an evolution that is somewhat fluid and gradual that it may 

almost seem invisible to us, but not always. As mentioned above, we have witnessed 

technological advances that have collectively revolutionized the way we use our 

bodies, how we communicate with each other, and explore the world, which 

constitute a significant and collective revision of our body schema. While many body 

schema revisions stem from passively acquired skill sets and tool-use, that have 

come into play sub-consciously over time, there are also many revisions that are 

introduced to us actively, where we take specific steps to extend our bodily space 

and action potential. These active revisions will be discussed below under the 

headings: The Playful Body, The Augmented Body, and the Telepresent Body.   

 
digital and network revolution of the 20th century has brought many similar reactions. Instead of being 
independent masters of technology, we again need to rephrase and re-consider the conditioning power of 
technology on human agency. 
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The Playful Body: Breaking habits and acquiring new skills 

Active revisions are most often triggered through individual exploration. Returning 

to Merleau-Ponty, he proposes that body schemata are revised through engaging in 

abstract movements. Improvisation and play are key drives for bringing forth such 

movements. His prime example is the man who decides to take alternate routes back 

home from work each day. Walking home, his unconscious habit-movements are 

challenged by each new turn. His conscious choice to improvise, becomes a method 

for breaking habits and acquiring new skills.  Abstract movements are also made 

available by resetting or changing the bodily space as we extend the reach of our 

bodies through the use of tools, or even altering our bodies. But what extensions in 

terms of body augmentations, alterations and telepresence experiences are likely to 

be arranged into the body schema? As we discussed above there seem to be some 

natural limitations to what actions a body schema may facilitate. 

The Augmented Body: the potential of embodied reflection 

If we alter the body (through implants and prostheses causing different 

augmentations and alterations), we change the action potential of that body, and as 

previously stated, different bodies afford the recognition of different tasks. Several 

media artists, Stelarc being a prominent one, suggests that bodily play and 

improvisation is not enough. We need to hack our bodies, which are currently stuck 

in the glacial slowness of evolution, to match the radical development of our 

thinking. In other words, we need to challenge biological evolution through hacks to 

match the revolution of thought, as we by altering and augmenting our bodies to give 

rise to new experiences. Stelarc’s many art projects show his dedication to the 

potential of body augmentations, some more dire than others, but also to some 

inherent restrictions. 

In the following, I will discuss two artworks that investigate the experience of 

having additional or significantly altered limbs, aiming to trigger novel and 
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conflicting body sensations. I propose that these sensations give us an inkling of 

potentials and limitations in body schema revisions. 

 

 

Figure 24: Stelarc performing Handwriting with the prosthetic body sculpture Third Hand in 1982 at the Maki Gallery, 

Tokyo. Photo by Akiro Okada.  

 

We can all recognize the gestural and cognitive effort in coordinating two hands to 

write one word. In HANDWRITING: Writing One Word Simultaneously with Three 

Hands, which is one of the many performances incorporating the Third Hand 

prosthetic, Stelarc takes it further. Here three hands simultaneously co-write the 

word “EVOLUTION,” the prosthetic arm being a semi-autonomous limb triggered by 

muscle contractions. As Goodall sensibly notes:  

The functions of pinch-release, grasp-release and wrist rotation in the third 

hand were controlled by electrical signals triggered from muscle contractions 

in the leg and abdomen. Stelarc was effectively ‘writing’ with multiple parts of 
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his body. At the same time, the robotic prosthesis was tapping into his energy 

system in order to perform an action that did not entirely belong either to it or 

to him. He was working towards a symbiosis, and the handwriting 

demonstrations were, in his words, ‘to do with developing a relationship with 

the extra limb, something traditionally connected to identity and 

identification.’ (Goodall 2017, 78) 

 

The work of Stelarc provides an example of the habitual relationship between body 

parts in coordinating actions, and the challenges in including an additional limb with 

some agency. In this case, the overall prosthetic design appears unrealistic. There is 

little linkage between the cognitive process of writing and how it is executed in the 

body, and contractions in middle-torso and leg muscles. Likewise, the element of 

robotic agency seems closer to that of a controller, executing pre-programmed tasks 

based on muscle contraction as triggers. However, for the audience the work has 

significant symbolic value, as it invites us to reflect on the action potential and 

control of a third arm. Haptic sensations may arise from physically imagining how 

this novel body extremity may be operated, enabling embodied reflection. This 

opportunity for embodied reflection on potential bodily augmentations, is explored 

in several artworks, and is elegantly presented in recent mirror work centered 

around the hand discussed below. 

The extensibility of the hand 

Augmented Hand Series (2014) is an interactive software installation by Golan Levin, 

Chris Sugrue and Kyle MacDonald, which investigates the concept of a hand as an 

interface for the world. The system allows its players to see their hands transformed 

in real-time beyond the (currently) possible forms, giving rise to both playful and 

uncanny experiences. The installation is set up as an open small box with an opening 

for the player’s hand to be placed, and a touch screen on top which displays the 

projection of her hand in real-time. By sliding a finger on the touch screen, the player 

switches between transformations.  The system captures video of the player's hand 

posture and its movements and displays the hand actions with various 
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transformations. The transformations target the hand only, not the entire field of 

view, which is key in connecting the visual representation of the transfigured hand 

to your own hand. 

The system can add an image of an extra digit or remove one, as well as varying 

the length on the fingers or giving them the same length, either by stretching the 

fingers or by adding a knuckle. Some of the transformations seem to imbue the digits 

with some independence, letting them wander off seemingly random in different 

directions. Others again will exaggerate or delay the movements of the digits. Some 

are complete transfigurations, bending and stretching the digits in impossible and 

somewhat grotesque directions, which in reality would mean that most of the bones 

were broken and the hand no longer functioning. And finally, there are 

transformations that are centered on the palm, emulating breath by letting the palm 

surface expand and retract, as though the hand is an independent being, breathing 

on its own. 

This installation is simple in its premise, but provides a rich object of 

contemplation and experience, giving rise to bodily reactions and reflections on 

what a hand is, what we take for granted, how hands are used both in general and 

individually, but also how they could potentially be used if reconfigured.  As such 

this work induces embodied reflection providing us with insights on the hand as an 

interface. 

Figure 25, 26, and 27. Screenshots from Augmented Hand Series (v.2), Live Screen Recordings, video documentation by 

Golan Levin (2015), featuring the hand transformations Variable Finger Length (left), Plus One (middle), and Two Thumbs 

(right). Courtesy of the artist. 

 

There seem to be two categories of transformations. One set presents hand 

alterations that could be possible in a future world, or which have already taken 
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place in some of us born with genetic mutations leading to hands with more or less 

than the appointed five digits or finger limbs. These visual transfigurations are funny 

and strange as they invite the player to become perceptually aware of how their 

hands are operated, and in extension reconsider what a hand may reach and 

perform. I know I am looking at my own hand, as it is presented to me with all its 

familiar features (scars, nail shapes etc.), and as a digit is removed, I find myself 

trying to identify what finger is missing. As a digit is added, I am wondering what 

muscles to activate to move it. Similar perceptions arise as the fingers are added or 

removed, forcing/inviting the player to consider how such fingers can be bent, and 

in extension consider what tasks such a hand could perform. How would you use a 

hand with an extra thumb? The second category deals with alterations which we 

commonly would conceive as damaged hands—as only a hand with no or broken 

bones would allow for such transfigurations.  

 

Figure 28 and 29. Screenshots from Augmented Hand Series (v.2), Live Screen Recordings, video documentation by Golan 

Levin (2015), featuring the hand transformations Angular Exaggeration (left) and Vulcan Salute (right). Courtesy of the 

artist. 

 

The first category instills curiosity, while the other gives rise to discomfort, as the 

“damaged” hands still seem to function. As such, the artwork seems to indicate that 

there are body schema revisions that are very difficult to implement in finding a 

neural path for engaging a limb in completely non-conventional ways, while others 

are more likely to be accepted into a revised version of the schema.  



BODY SCHEMATA 

 

116 

This artwork bears close resemblance to the mirror artworks presented in 

chapter 1, in that the embodied sensation is promoted by purely visual means as no 

touch nor proprioceptive senses are actively engaged in this scenario. And while it 

may dictate the extent of discomfort that can be experienced during the interaction, 

it reiterates the potential of mirror-vision transfers. 

  

Body transfer by mirror-vision 

The Augmented Hand Series seems to provoke certain sensations in the interactor,  

and a clue to what they may be about is found in neuroscientific research. The 

proportional size of the projected hand image to the interactor’s real hand and the 

fact that the image is transferred in real-time, is key in linking the player’s 

perception of her own hand to the augmented version of the hand. The fact that it 

looks like your own hand and moves like your hand, binds you to the image of the 

hand. The installation triggers the same responses in the player as participants in 

various mirror-vision illusions, or body transfer illusions, which trick the brain to 

assume ownership for a new or different body part.  

A well-researched setup is the rubber hand experiment, first presented in the late 

‘90s (Botvinick & Cohen 1998) and continued in the early 2000s (Ehrsson et al. 

2004). In these experiments the participant sits at a table with both their hands 

placed on top. One hand is hidden from sight behind a veil or box and replaced with 

a rubber hand or a mirror image of the opposite hand. As long as the illusory hand 

holds approximately the same position and is similar looking to one’s own hand, 

actions performed in real-time (such as being touched or hurt) on the illusory hand 

will give rise to sensations in the hidden hand. Botvinick and Cohen refer to this as 

the “three-way interaction between touch, vision and proprioception,” which 

features in how we identify our own bodies. In later research Ehrsson and team 

suggest that we have a neural mechanism for “bodily self-attribution”, a system 

which stores the extent/reach of our bodies. This mechanism is multisensory— 

meaning that if one sense (i.e. the visual sense) is particularly targeted, we can 

interrupt the mechanism and induce body transfer illusion. However, the illusion is 
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dependent on synchronous visual and tactile stimuli, as well as a congruent position 

of the rubber hand. 

So, symmetric and synchronous visual feedback is key in linking a new or altered 

body part to your own. We can assert that the Augmented Hand Series induces this 

illusion in its players. However, something else is at play in this artwork. What 

happens to us when we are given the option to try out (at least visually) our new, 

augmented limbs?  

Mirror-therapy and movement 

Variants of body-transfer experiments have been used in treatment of people with 

damaged or missing body limbs. In his research on phantom limbs, neuroscientist 

V.S. Ramachandran works with amputee patients suffering from pains in hands and 

arms they no longer possess. He has developed a treatment called mirror-therapy 

centered around a mirror box where reflections of their healthy limb projected onto 

the position of the phantom limb (Ramachandran and Rogers-Ramachandran 1996). 

The patient is then asked to look in the mirror while moving both the healthy and 

phantom limb symmetrically and at the same time. The treatment has been 

successful in allowing patients to mentally target and move the phantom limb, and 

thus relieving the pain. This research seems to suggest that we have neurological 

maps that govern the movement and extension of different limbs. So, we have a 

brain map for our hands and what they can do, and another one for our feet.41 

Another key point in this research is that the effect takes place through movement. 

We need to move the limbs in order to access, activate and alter the neural map 

governing the limb. As such, this is a description that very much fits into the concept 

of the body schema, which is revised through movement. It seems fair to suggest that 

 
41 The concept of neurological maps or brain maps was first introduced in the late ‘30s by Wilder 

Penfield who performed direct neural stimulation on brains to identify the location of sensory and motor 
systems, which are the brain centers responsible for processing input from the different sensorimotor 
receptors (Penfield and Jasper 1954). By the time of discovery brain maps were considered fixed. It was 
later, through the significant contributions of neuroscientists like Michael Merzenich, that these maps were 
shown not to have fixed functions, rather they can be re-wired by training the brain to create new neural 
pathways (Merzenich et al. 2009). 
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the sensations that arise from playing (i.e. moving, stretching fingers and palm) with 

the Augmented Hand Series installation are somesthetic responses making us 

consciously aware of the neural map and body schema governing our hand.  

The nature and nurture of brain plasticity 

If you ask people if they “remember” their tail, most of us can easily pinpoint exactly 

where it would be and how they would operate it, although it is millions of years 

since our ancestors lost them. Sitting here writing I instinctively know how to move 

it to the left and right, but I don’t sense the tip of my tail. I am curious if an 

experience involving mirror-vision feedback would be able to trigger this sensation? 

There is an element of plasticity to the work distribution of the brain. It is able to 

reuse neurons to represent new things—or to have new neurons take the role of 

previously damaged ones. This is seen in people with damages or disabilities, able to 

extend one sense to provide sensory input previously (or usually) handled by 

another sense (e.g. the developing the sense of echolocation; the ability for the blind 

to “see” their surroundings by emitting clicking sounds).42 There are also those with 

localized brain damage which has governed particular movement or speech, who 

through directed treatment become able to use a new part of the brain to perform 

the same tasks (e.g. the success of constraint-induced movement therapy on stroke 

victims).43  Both of these scenarios involve a strenuous amount of training over 

 
42 A recent study published by Thaler et al is measuring the range and richness of human echolocation 

using eight blind expert echolocators. (Thaler et al. 2018) 
43 Constraint-induced movement therapy (CIMT) is a group of neurorehabilitation treatment procedures 

first proposed by behavioral neuroscientist Edward Taub. The treatment is aimed at patients that have 
suffered from damage to the central nervous system, primarily stroke, although treatment has also been 
extended to victims of cerebral palsy, MS, and spinal cord damage. The core of treatment is restricting 
movement in functioning body parts to force the brain into finding a new path to motor-nerves in a 
paralyzed limb. The treatment originates from a set of controversial experiments on monkeys led by Taub in 
the ‘60s early ‘70s. Paralysis was induced on the forelimbs of infant monkeys by disconnecting sensory nerve 
paths from an extremity (called somatosensory deafferentation). Simultaneous movement was restricted in 
other limbs that would otherwise compensate for the non-working limb (Taub et al. 1973).  Experiment with 
deafferentation of extremities on monkeys was first performed by Sherrington and F.W. Mott at the end of 
the 19th century aiming to identify the origin of movement (Mott and Sherrington 1895). Here Sherrington 
noticed that the sensory disconnection of nerve path resulted in the monkeys not moving their limbs, even 
though the motor path was operational. From this he concluded that all movements are the result of reflexes 
originating in the spinal cord, and not from the brain, and pioneered a way of thinking of movement that 
lasted well into the second half of the 20th century.  By building on the original experiment including the use 
constraints, Taub not only introduced the basis of a treatment method, he also proved that the reflexes are 
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weeks, months and years compelling the body to update its schema by rerouting 

neural connections. And as such it is fair to ask about the speed of brain plasticity: 

how quickly can this be applied? It seems that parts of the mechanism governing our 

body schema are protected by the slowness of evolution. The nature-nurture 

equation in the forming and sustaining of inherent qualities of the body image and 

schema is not easily unraveled. Part of the program seems hardwired in our genetic 

code, and as such, becomes very hard to break.  We seem to have a built-in desire for 

symmetry, born out of an evolution of failed and confirmed designs for survival, 

stretching millions of years. Symmetry in bodies is found throughout the animal 

kingdom. The setup with sets of two limbs (arms, legs, wings etc.) mirrored over 

body halves, is a very successful design, shared by all mammals and birds (and many 

insects as well). The design specifics seem to be part of us, hidden in genes and 

sustained through social, cultural and technical interaction.  

Other parts of the body schema will more easily form/reform through the 

breaking of a habit or experimental play and is primarily limited by our concept of 

what a normal body is and can do. It is a schema informed by a historical body image 

that we bring with us, and the body image of what we consider natural today. When 

is an extension of the body schema considered natural and when is it considered 

cyborgian? And how do we perceive the cyborgian? There is a stark contrast 

between the dystopian vision of machine-ridden cyborgs that have lost their 

humanity (e.g. Darth Vader of the Star Wars universe) versus the positive notion of 

the prosthetically enhanced individuals seen in current prostheses advertisements 

or in filmatic presentations of the superhumans (e.g. the Iron Man series). 

Here the Augmented Hand Series installation seems to bridge the natural and the 

cyborgian, by layering our experiences of what a hand currently is, with the prospect 

of what it can be—independent of the interactors’ utopic or dystopic view on 

augmentations. In this way it shares the qualities of Donna Haraway’s famous 

concept, the Cyborg: A neither-nor creature which exists between dualities, and 

 
not primarily responsible for movement, our brains plays a significant part, and that depending on the 
capabilities of our bodies, our brains will try to find a way to get its message across. 
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because of this in-between position is capable of nurturing and sharing new 

experiences (1991). Of the two sets of transformations offered by the Augmented 

Hand Series system, the first set is more apt in letting us experiment with an 

extended body schema, triggering neurons to form new connections. Even though 

the experience is temporary, lasting only while the interactor uses the system, the 

sensation offers her new sensations and a visceral concept of what an augmented 

hand could be, can be, or even should be— challenging the current norm. The second 

set of transformations are perhaps too uncanny in their transfigurations to induce 

other than imagery of broken, damaged, or dead hands (although such 

transformations might be a desire for some). 

The Augmented Hand Series offers the interactor a rich environment for re-

conceptualizing the notion of what a hand is and can do. It promotes thinking about 

how a hand can be utilized if augmented, and at the same time lets the interactor 

revisit how we currently use hands—encouraging us to contemplate what role 

hands have as our interfaces with the world. More importantly, as digital and sensor 

technologies develop, we see works of digital art offer us a laboratory setting for 

exploring insight from both phenomenology, and re-staging or expanding on 

findings from neuroscience. We are able to simulate (with obvious limitations) the 

effect of altered body schemata and new directions interface design. 

The Telepresent Body: Re-embodiment in remote lands 

Insights from various mirror works can be re-applied in the analysis of telepresence 

and telemanipulation applications. These are systems set to present scenarios that 

extend peripersonal space, by connecting distal locations and times. However, the 

success of the setup is varying, much due to the insistence of strict visual 

representation of the remote location. The extension of the body schema happens in 

conjunction with extension of action space. We need to be able to act within the 

space to feel present, so how may embodiment re-introduced in a telepresent 

landscape or remote space?  Mirror vision strategies have revealed that a symmetric 

(same position and size) and synchronous (real-time rendering) visual mediation of 
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the body is needed to link a new or altered body part to your own. But, as the rubber 

hand experiment shows, not only is a symmetric visual mediation of the hand 

important, the hand must be moving synchronously in order to induce a sense of 

ownership, or else the body image/body schema correlation will break. Interestingly 

enough, research suggests that this does not hold true for all full body illusions, the 

sensations of transfer of the full body into virtual or telepresence environments. An 

insightful literature review and analysis by Lesur et al. on body illusions (2018), 

suggests that asynchronous visuo-tactile stimulation (the temporal mismatch 

between the presentation of visual and tactile sensory input to a participant), is only 

sufficient to induce a break in body image-body schema interactions such as rubber-

hand experiments and similar mirror vision setups involving limbs, but not 

necessarily in first person perspective full-body illusions (1PP FBI).  How come?  

Findings from several experimental setups, particularly the work of Maselli and 

Slater (2013, Maselli et al. 2016), suggest that there is a “link between head-related 

visuoproprioceptive coherence during 1PP FBIs44 and the integration of 

sensorimotor signals” (2018, 102). In other words, breaks in body image-body 

schema integration during asynchronous visuotactile stimulation, only occurred 

when head-related movements were not permitted, proposing the importance of 

mediated head-movements in establishing and maintaining body ownership. 

Additionally, the survey reveals that sensations of body transfer of limbs, as opposed 

to first person perspective full-body illusion with optical flows matching head 

movements, are more prone to body image-body schema breaks as a result of 

asynchronous mediation of  visuo-proprioceptive and visual-motor cues. Head-

related sensorimotor signals are key in mediating body schema revisions in first 

person virtual or telepresence scenarios for the full body. There is still a lot of work 

to be done here, but these initial findings are important, and may provide a sharper 

understanding of the potential of head-mounted displays in mediating experiences 

of presence, at least sensations of body ownership.  

 
44 1PP FBI = First person-perspective full-body illusions 



BODY SCHEMATA 

 

122 

From sense of ownership to sense of agency 

A sense of ownership, in which one experiences the body part or body as one’s own, 

may be introduced by visual mediation. But it is not sufficient on its own for 

inducing a sense of agency, understood as the experienced possibility of generating 

actions (Gallagher 2000). In everyday interaction we do not experience these two 

sensations apart, but in virtual reality as well as telepresence environments, these to 

sensation requires different means of mediation. Body schemata are, as previously 

discussed, are the main control program for guiding action, and must to some extent 

be acknowledged, to induce sensations of agency in the interactor.  

A way to connect ownership and agency of action in telepresence systems is 

through the visual mediation of haptic feedback, recounted in the work of Luna 

Dolezal. She lists a set of criteria for phenomenological re-embodiment, based on 

Dreyfus’s analysis of embodiment in telepresence scenarios (2000) and findings 

from experiments with telesurgery. In accordance with phenomenological thought 

the key aspect of embodiment is the mediation of motor-intentionality and ability to 

apply sensorimotor control programs, i.e. body schemata. While visual 

representation is important, it is the “transfer of the body schema, motor-

intentionality, and perception, where successful intentional action would induce a 

transparency of not only the technological interface with which one engages, but 

also transparency of the body in the remote environment” (Dolezal 2009, 220). 

Technically speaking, the interactor’s body must match the remote body visually. 

Secondly, the system must support rich sensory feedback. In addition to 

corresponding and seamless visual feedback of the environment, visual mediation of 

proprioceptive sensations, as in the perception of position of limbs, posture and 

movement, must be supported. The ability of the system to support proprioceptive 

awareness is key to induce a sense of agency.   

There is no need to perfectly emulate physical worlds for the feelings of presence to 

take place. The mediation of intentional actions is sufficient for the experience of 

embodiment in telepresence scenarios. To explain this difference, Dolezal presents 

two sides of embodiment, the intentional body and the sensory body:  
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These two aspects of the body, that is, the intentional body and the sensory 

body, are described in a distinction offered by Tsakiris and Haggard (2005, p. 

389) between the “acting self” and the “sensory self.” The acting self is “the 

author of an action and also the owner of the consequent bodily sensations,” 

whereas the sensory self is “solely the owner of bodily sensations that were 

not intentionally generated, but … passively experienced” (p. 389).” (221) 

 

The sensory body will always be here, but it is possible that the intentional body, the 

acting self, could be transferred there. This distinction is also what sets the 

limitations of telepresence scenarios, as the transfer of full corporeality or the 

element of risk will never be fully possible, because the sensory body is stuck here. 

This shows that visual technologies are sufficient for mediating sensation of body 

ownership, and that matched with corresponding visual mediation of haptic 

sensation may promote a sense of bodily agency, allowing the interactor to engage in 

intentional actions, and experience feelings of re-embodiment in remote locations.  

The potential of extending embodiment by utilizing corresponding visual 

mediation of proprioceptive awareness appears to be extensible into virtual worlds 

as well. Media researcher Rune Klevjer proposes the concept of prosthetic 

telepresence in gaming environments utilizing player avatars, as a means to induce 

sensations of embodiment in virtual and telepresence scenarios. He argues that 

“[t]he prosthetic avatar functions both as the player’s bodily extension into screen 

space and as a proxy or replacement for the player’s body as an object in external 

space.” (2012, 21). This experience is embodied in contrast to cinematic experiences 

where “there is no actual space to be inhabited, only images, and there is nothing off-

screen except our own mental projections’” (22). The reasons for embodiment are 

threefold; not only does the avatar resemble the physical likeness of the interactor 

and thereby “evok[e] familiar body schemas”, the games also offer an simulation of 

tangibility through the “conceit of continuous materiality” as the avatar at all times is 

capable of manipulating and traversing the gaming environment, through mediated 

experiences of agency, intentionality, and locomotion. Finally, the character is 
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projected as a humanoid in the fictional narrative, strengthening the bond between 

avatar and gamer.  

Klevjer claims that the sensation of embodiment is mediated via the body image, 

through the visual presentation of the capabilities of the avatar for spatial, task-

oriented actions (8). I note that he separates proxy embodiment from interfaces 

promoting direct interaction (using hand and fingers to manipulate and navigate 

virtual worlds and objects) and what he labels as “mirror” interfaces, where the 

interactor’s movements and shape are mapped into the gaming environment (14). 

This, I would guess, is due to the lack of body proxy as the interactor directly 

mediates her embodiment. The remote body or avatar is both an extension and a 

relocation of the body, that engages the interactor's "locomotive vision"(1)—the 

sense of moving through the images, connecting the sense of ownership and agency. 

Klevjer claims that mirror vision strategies may produce sensations of body 

transfer, but only when mediated through an avatar. This line of argumentation 

frames a consistent and ongoing insistence that visual representation in key 

inducing bodily sensations of presence and telepresence, specifically when mediated 

via the body image. 

Potential and limits of visual representations of haptic actions  

A neuroscientific argument for the potential of screen-based mediation (particularly 

in scenarios where the user shall learn new skills), has been promoted through the 

research on mirror-neurons initiated in the early ‘90s led by neurophysiologist 

Giacomo Rizzolatti at the University of Parma. It proposes that we inhabit a mirror 

system (Rizzolatti and Craighero 2004) where neurons governing our sensorimotor 

system fire when we observe an action.45 This research suggests that seeing enables 

 
45 Mirror neurons were first identified by and presented in Understanding motor events: a neurophysical 

study by Di Pellegrino et al. in 1992. A common misunderstanding is that mirror neurons fire by all kinds of 
actions recognized by the viewer. However, the study suggests that mirror neurons only fire by particular 
actions, object-directed actions. It is not sufficient to see someone grasping non-existing objects, or moving 
towards objects, for the mirror neurons to react and fire (7). 
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action learning to some extent.46 Neuroscientist Vilayanur S. Ramachandran’s work 

on phantom sensations and mirror visual feedback (MVF)47 is providing a more 

nuanced view of the importance of sight in adjusting the body image, the plasticity of 

brain maps and congenital aspects of the body schema. The case of the 3-finger digits 

amputee (McGeoch and Ramachandran 2012) provides a powerful example of this, 

and involves a woman born with one hand missing two fingers, the thumb being one 

of the missing digits. Following an accident where the whole hand was amputated, 

the patient grew a phantom hand with the full five digits—suggesting that we have a 

hardwired, as well as culturally sustained schema for a hand consisting of 5 fingers 

including a thumb. This suggests that the brain from birth includes a representation 

of a complete hand. However, the phantom hand was not fully developed when it 

first appeared (two of the digits were half normal size), and the woman reported a 

sustained pain in the phantom hand. It was through mirror visual feedback 

treatment that the phantom hand grew into a normal, proportional hand, at which 

point the phantom pain receded. This example stresses the potential of visual 

feedback in forming and sustaining the body image, as well as its part readjusting 

inherent qualities of the body schema.  

Nevertheless, there are significant shortcomings in acquiring skills through 

purely idea-motor representations, proposed in the theory of common coding by 

(Prinz 1997) and motor resonance theory (Agnew et al. 2007) as they primarily 

promote the power of affordances recognized visually. Tactile (touch based) or 

proprioceptive (movement and position based) affordances that are first revealed 

 
46 It is important to realize that both cognitivists and phenomenologists have used mirror neuron 

research to front their respective arguments. The reason is that current mirror-neuron research does not 
clearly propose the order in which we come to recognize the goal of an action. Following the logic of the 
phenomenology of Merleau-Ponty it is the identification with another body action towards an intentional 
object, that engages my body. I recognize the goal of the action only after my body has identified the behavior 
of the other body. On the other hand, advocates from a stronger cognitivist tradition will argue from the 
concept of mental representations, stating what mirror neurons do, is allowing us to identify an action after 
we recognize the goal of it. See De Preester (2005) for a longer treatment on different phenomenological 
logics in mirror neuron theory.  

47 Mirror visual feedback is a technique developed by V.S. Ramachandran where one body limb is 
reflected and superimposed onto another limb or even phantom limb, where the stimulation of the former 
body parts is felt/sensed in the latter. This technique has particularly been utilized in the treatment of 
phantom pain in amputees. 



BODY SCHEMATA 

 

126 

through overt, physical involvement (such as gravitational pull, pain, resistance, 

pressure), are not recognized and acquired through idea-motor representation as 

they are hidden from sight and mirror cognition. While visual mediation of 

proprioceptive awareness might mediate a limited form of embodiment in scenarios 

where an avatar or remote body can act as a body proxy, there will still be a range of 

perceptive cues the avatar can’t mediate as the interactor never perceives them. 

Unseen haptic affordances, that may only be detected by tactile and proprioceptive 

senses, are underestimated as parameters for fully engaging with the environment.  

2.4 Haptic Repertoire and Agency 

We have presented the body schema as a motor control program that is constantly 

identifying possible actions the body can make based on its layout, posture, skills, 

and tools equipped. As such it directs world exploration with agency, as an 

intentional force that generates actions, not merely a sensory one that experiences 

them. And the activation of the schema is specifically related to movement. As we 

move, the body schema is revised. Perception is inherently active and multisensory, 

but each of the senses carry their own ability to explore and engage with the 

environment. 

Philosopher Alva Noë provides a powerful insight into why this is so, in his 

notion of sensorimotor contingencies. He proposes that there are patterns of 

dependence binding each sense modality, suggesting there are patterns in the 

environment that appear specifically to the sense of touch (e.g. , while others appear 

to the sense of sight (e.g. color), but that is not all. Each sense modality is directed by 

movement, as what we perceive is influenced by our movements. He states: “the 

ground of our encounter with these different objects—appearances in one modality 

or another—is sensorimotor skill,” which entails that “how things look, smell, sound 

or feel (etc.) depends, in complicated but systematic ways, on one’s movement. The 

sensory modalities differ in distinctive forms that this dependence takes” (2006, 

107-109). This seems reasonable, but it also carries some compelling implications. 
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For Noë, as shared in an interview, “the difference between seeing touching and 

hearing, is that these are all activities of exploring one and the same world, but 

making use of a different repertoire of sensory-motor knowledge, a different body of 

sensory-motor skill” and that this constitutes a “difference at the level of 

consciousness, a difference in the nature of the quality of experience" (History of 

Distributed Cognition 2014, 56.50-57.10). This also reiterates the claim that the 

extent to which a body is engaged in an interface, will influence the hypotheses we 

can make about the world and object we interact with. But there is more.  

The unique role of haptic sensation in sensorimotor coupling 

Our sensory apparatus, managing the full range of multisensory input, is deeply 

connected to our motor system by means of sensorimotor coupling.  Just as there is a 

strong sensorimotor coupling between vision and motor control, as discussed above, 

our haptic sensory apparatus is deeply connected to our motor system and 

culminates in sensorimotor coupling as tactile and proprioceptive sensations are 

delivered through touch and proprioceptive gestures.  However, the haptic sense, 

proprioception specifically, has a unique role in our motor system, unmatched by 

other senses, as it participates in all sensorimotor couplings, by means of guiding 

movement both internally and externally (Riemann and Lephart 2002). In relation to 

external environments proprioception is the quickest and/or most accurate means 

to adjust motor programs as unexpected changes occur, proprioception has even 

been proposed as “essential during the movement execution to update the 

feedforward commands derived from the visual image” (81). Internally, 

proprioception assists the motor system in planning joint movements, as it is 

superior in providing “the needed segmental movement and position information to 

the motor control system” (81). As such, we can establish a strong connection 

between haptic perception and motor control, coupled by means of our embodiment 

through our active and goal-directed exploration of our environment, which is 

inherent in all sensorimotor couplings. The head-movements that extend visual 

perception within a space is equally a sensorimotor coupling between motor system 
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and proprioception governing posture.  Even mediated vision may introduce novel 

sensorimotor couplings that introduce certain body schema revisions, however, it is 

largely due to a visual representation of motor and haptic sensations, which trigger 

haptic sensations in our bodies.   

Haptic gestures as movement form 

The haptic senses offer specific opportunities for addressing the body schema, not 

only through the assistive role of proprioception in all sensorimotor couplings, but 

also because the role of the haptic apparatus in actively perceiving spatiality, 

posture, and motion. The deep connection between the haptic sense, particularly the 

sense of proprioception, and movement, is articulated in gestures. Gestures (both 

tactile and proprioceptive) are significant movement forms that activate the full 

range of haptic perception, forging sensorimotor links between tactility and 

proprioception, postures, and body movement. Gestures are a significant contributor 

to all sensorimotor engagement with the environment, as a navigational strategy for 

traversing a space, but also as intentional movements connecting a body and tool, as 

gestures that shape our bodies into tools, or makes it possible for us to grasp and 

wield them.  

Engaging our inherent perceptive curiosity 

In this chapter the body schema has been presented as a significant contributor to 

human embodiment. It is contrasted to the notion of body image, which is conceived 

as primarily conscious and visual representation of a human body. Body schemata 

on the other hand are pre-conscious motor control programs that set the extent of 

the bodily space, the action potential of a body. The plasticity of the body schema is 

governed by processes of confirmation and revision. The confirmation of schema is 

framed by genetic predispositions of humans as a species, but also by habits 

informed by cultural conditioning of body techniques and training skills. Revision 

processes, made possible through broadening the prepersonal domain, are related to 
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the ability of engaging in abstract actions, by breaking habits, learning new skills, as 

well as extending the peripersonal space through tool-use, specifically because it 

makes possible the postulation of new goals.   

The body schema is enactive, directed by goals and existing towards tasks, and is 

the domain that generates bodily actions. Perception, directed by the body schema, 

is an active and pre-conscious activity, and not a mental representation or a map of 

possible actions we can take to reach a goal (as proposed in cognitivism and some 

directions of robotic research). There is an intimate connection between the haptic 

apparatus and the visual sense, and a symmetric and synchronous visual mediation 

of tactile and proprioceptive awareness may induce feelings of presence in both 

telepresence and virtual environments. Still, each sense has its own access to the 

environment which cannot be duplicated by another. Haptic affordances may not be 

perceived by sight alone. So, while the body schema is informed by multisensory 

input, ranging from haptic, auditory, to visual, it is activated through movement and 

bodily gestures. It is by moving that the body perceives cues in the environment that 

afford tasks it can perform. This underlines the importance of utilizing the haptic 

senses in our exploration of worlds as it has a unique ability to not only identify 

perceptual cues, but also direct and orient our bodies within the space.  

We must keep in mind that all activity shapes our body schema and bodily space. 

While eyes and fingertips currently are key players in interactive experience, by 

engaging more of our bodies, we can expand our perceptive landscape and enactive 

landscape—our awareness about the world, our potential for action, and our 

potential for thinking about the world. This proposal, that we think with the world 

and environments as we actively explore them using our bodies, is central to the 

next chapter. Here the theoretical framework of the thesis is further strengthened as 

the concept of physical thinking and the enactive embodied cognition thesis is put 

into play. While the enactive position has already been introduced to explain the 

ability of the body schemata in directing actions towards goals, there are additional 

implications that become profound when we consider the possibilities inherent in 

new digital and sensor technologies in extending sense of ownership and agency, 
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specifically centered around the formation of novel sensorimotor couplings and 

extending the haptic senses.  



 

3 EXTENDED EMBODIMENT 

Thinking Through Body-World Transitions 

 

Body schemata can be revised and extended as we acquire new body techniques, 

skills, and tools, and moreover, this technical engagement with the world is inherent 

in human evolution. In the following, I will expand on this principle by interrogating 

the potential of digital and sensor technologies in activating the plasticity of body 

schemata. Several theorists, Mark B. N. Hansen among them, have claimed that these 

technologies have a unique ability to extend these schemata, either by broadening 

the range of a given sense or even extending it onto other modalities, and as such re-

distributing the individual sensory weight of our multisensory and often 

technologically mediated perception. The ability to extend haptic senses and 

gestures provide us with a richer haptic vocabulary that can be utilized in personal 

computer environments, as we are able to articulate and execute haptic actions 

specifically to solve tasks. This, I will claim, not only provides us with richer 

interactive experiences, it also extends our cognitive apparatus. My claim is based on 

the assumption that cognition is always mediated through matter, it is articulated 

through our embodiment and formed by the capabilities of our bodies. Engaging 

with and reading material signs. To think otherwise would appoint us to be mind 

readers.  

In the following I will present the insights from the embodied cognition thesis as 

a continuance of the theoretical framework established in chapter 2 and connect it to 

the haptic. I will investigate how the haptic senses may be extended through digital 

and sensor technology, by analyzing selected works of digital art that target touch 

and proprioception. I will primarily be concerned with touch and proprioceptive 

input, and its translation into a broader sensory field, as machine mediation of haptic 

feedback is addressed more specifically in the fourth chapter.  I will apply the 

findings within the framework of enacted and extended embodied cognition thesis 

and theorize what effect it might have on our cognitive faculty.  
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The chapter is divided into four parts: Thinking with the World, Embodied 

Cognition, Extending the Haptic, and finally, The Expanse of the Body. Part I present 

extends the argument formed in chapter two, that bodily space sets our action 

potential, to suggest that our embodiment frames our cognitive ability to form 

hypotheses, our thinking about the world. Part II presents the embodied cognition 

framework as a continuance of the phenomenological premises, situating the role of 

the haptic in cognition. Part III discusses the promise of digital and sensor 

technologies in extending haptic sensations into other modalities, through the 

analysis of several digital works of art. Part IV examines proposed borders for 

embodiment and cognition, and the difficulties in setting them. 

3.1 Thinking with the World 

Cognition is not merely an isolated event in the brain, it is deeply and closely 

connected to our embodiment. We use our bodies to trigger and shape cognitive 

processes.48 As proposed in chapter 2, when we use tools and techniques we are not 

simply solving a given task, instead we are given particular opportunities to perceive 

the world, identify actions and form goals. When we extend our sensorimotor 

perception, we increase or alter the reach of objects we can engage with and in turn 

influence its goal-directed behavior. We not only extend our body schemata through 

the use of tools, we also extend our cognitive capacities. We think with the world. 

The idea is not a new one. In 1991 Francisco J. Varela, Eleanor Rosch and Evan 

Thompson presented their take on the nature of experience in The Embodied Mind.  

It presented an important critique towards methods developed and utilized by 

existing disciplines of cognitive science, psychology and branches of philosophy, in 

understanding human consciousness. Even though the main research object in 

phenomenology is human experience, it too, the authors suggest, is centered on 

 
48 The close connection between the haptic senses and cognitive faculty is demonstrated in the touch-

based language of Braille. The tactile recognition of texture (tactile acuity and texture perception) has an 
immediate semantic correlation—there is a direct translation between haptic input and mental processing of 
haptic sense data into meaning. 
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theoretical reflections, lacking “a pragmatic dimension” (2016, 19). This critique is 

primarily extended towards Husserlian approaches, but also Merleau-Ponty’s 

project is called into question as an insufficient method for grasping the richness of 

human experience. Instead they look at non-Western approaches to philosophy of 

experience, particularly Buddhist practices and tradition of mindfulness meditation, 

to arrive at a new concept of theoretical reflection, promoting “a change in the 

nature of reflection from an abstract, disembodied activity to an embodied 

(mindful), open-ended reflection” (27). Mind and body work in conjunction to arrive 

at theoretical reflections and these reflections are embodied. This is the pragmatic 

dimension needed to enrich our understanding of human experience. We use our 

previous experience to identify potential actions in our surrounding milieu, and this 

is a significant trait of the embodied mind approach. Departing from the theory of 

self-organizing systems which are systems that have operation closure (have 

autonomy) and are capable of structural coupling with the environment,49 

characteristics shared by all living systems, the authors argue we are neither closed-

off minds operating independently of the world around us, nor are we slaves to each 

and every aspect of our environment. Rather, we are initiating our surroundings 

based on skills and experience, and in turn get shaped by them. But even more 

significantly, this very design proposes that our actions in the world, specific to our 

biology and culture, are highly influencing cognitive processes, we create our own 

“cognitive domains.” As an example, the categories of color are not given a priori, 

rather they are “experiential, consensual, and embodied: they depend on our 

biological and cultural history of structural coupling” (171). Cognitive content is 

shaped by the kind of experiences a body may have. This enactive approach by 

Varela, Rosch, and Thomson, presenting cognition as embodied action, is two-

parted: “(1) perception consists in perceptually guided action and (2) cognitive 

structures emerge from the recurrent sensorimotor patterns that enable action to be 

 
49The concepts of operational closure and structural coupling are two critical design criteria of self-

organizing systems, and key in Maturana and Varela’s autopoietic theory presented in Autopoiesis and 
Cognition: the Realization of the Living (1972). This work became one of the key texts defining the second 
wave or order of cybernetics thinking concerned with the concept of reflexivity in systems, running from the 
‘60s to mid-80s.  
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perceptually guided” (173). With these two statements, the authors formed the first 

proposal for the embodied cognition thesis, which later has developed in several 

directions as will be discussed below. But before we head into the present-day 

application of the thesis, we need to present two additional contributions to the 

framework of embodied cognition, namely the concepts of epistemic actions and 

extended minds. 

Epistemic Actions  

The concept of epistemic actions was first presented in the article “On Distinguishing 

Epistemic from Pragmatic Action” by Kirsh and Maglio (1994). Here they 

differentiate between pragmatic actions that change the world and epistemic actions 

that change the mind. Pragmatic actions “actions whose primary function is to bring 

the agent closer to his or her physical goal” (515), and epistemic actions “—physical 

actions that make mental computation easier, faster, or more reliable—are external 

actions that an agent performs to change his or her own computational state (513). 

While pragmatic actions simply are means to perform a physical task, e.g. lifting a 

rock, epistemic actions aim to reduce the cognitive load of solving a problem or task, 

by means of using the body. These actions improve (easier, faster, more reliable) 

cognition by “1. reducing the memory involved in mental computation, that is, space 

complexity; 2. reducing the number of steps involved in mental computation, that is, 

time complexity; 3. reducing the probability of error of mental computation, that is, 

unreliability" (514). We utilize our bodies to find and gather information that is 

hidden or hard to detect, reducing strain on memory and planning processes, but the 

strategy is also perpetualized internally in sensorimotor processes, as 

proprioceptive information is gathered to prepare the motor system for actions to 

come. Kirsh and Maglio’s position is well summarized by Simon Penny stating that 

“[t]hey assert that thinking is enhanced or made possible by the manipulation of 

things in the world and identified with artifacts (and associated sensorimotor 

procedures) as epistemic action”. These are actions that allow an “offloading of 

cognition into the external could simplify or speed the task at hand” (2017, 201). 



EXTENDED EMBODIMENT 

 

135 

And while Kirsh and Maglio uses cognitivist terminology by presenting the brain as a 

computer and thinking as computation, the idea that vi use our bodies to aid and 

even improve cognitive processes, has been adopted into a wider embodied 

cognition framework.  

Extended Minds 

Building on the concept of epistemic actions developed by Kirsh and Maglio, a theory 

of the extended mind was formulated by professor of philosophy Andy Clark and 

David Chalmers in 1998. The extended mind argument holds that when we are 

physically performing a problem-solving task, we do not only use physical actions to 

solve the task, but our motor actions also to determine how the problem is solved. 

Clark and Chalmers suggest that epistemic actions promote a coupling between the 

body and the world, and through that coupling “that part of the world is (so we 

claim) part of the cognitive process” (8). They call this outward directedness active 

externalism which is achieved when “the human organism is linked with an external 

entity in a two-way interaction, creating a coupled system that can be seen as a 

cognitive system in its own right” (8). Clark and Chalmers suggest that it is not just 

selected cognitive processes, rather the mind that is extended beyond the borders of 

the brain into the environment incorporating non-biological resources. 

Both the concept of epistemic actions and the extended mind thesis has heavily 

informed the framework of embodied cognition. But as already encountered in the 

above recollection, the notion of an embodied mind is not clear cut, as there are 

diverging ideas on the ability of cognitive extension into the environment, and the 

role of embodiment. These differences will be explored in the next part, presenting 

various positions within the embodied cognition thesis, and specifically, the enactive 

position. 
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3.2 Embodied Cognition: from representation to 

enactivism 

The embodied cognition thesis proposes that our bodies and our interaction with 

tools both initiate and advance our thinking and knowledge about the world. 

Support for the view is found in various experiments investigating how animals 

(primates primarily) and humans (children and adults) interact, solve tasks, identify 

and use tools. The embodied cognition framework is increasingly included in 

robotics, artificial intelligence, as well as social and cognitive psychology research, 

but there is far from a consensus among the different fields. What separates the 

different positions in the field is to what extent embodiment is proposed as involved 

in cognition—what cognitive tasks are embodied?—and secondly, the extent to 

which mental representations feature in cognition. Shaun Gallagher has provided an 

extensive and rich overview (2011) of the many different variants and directions in 

embodied cognition.50 He points to the very different positions theorists hold in 

terms of understanding the role and influence of embodiment in cognitive processes, 

as well as what part mental representations play in these processes.  

On one end of the spectrum we find the proponents of the minimal embodiment 

position, such as Alvin Goldman and Frédérique de Vignemont (2009), who hold that 

the brain is significantly separated from both the body proper and its immediate 

environment. Body actions and postures are as such insignificant constitutive 

contributors to cognitive processes. The body is primarily a biological brain host, 

 
50 Margareth Wilson has also offered a well referenced overview of the diverse research field of 

embodied cognition. She states that while the different positions all agree that “cognitive processes are 
deeply rooted in the body's interaction with the world” and that “the mind must be understood in the context 
of its relationship to a physical body that interacts with the world” (Wilson 2002, 625), there are also 
significant differences between them. Wilson continues to present six distinct claims held by individual and 
distinct advocates. 
1. Cognition is situated (connected to tasks) 
2. Cognition is time pressured (bound by real-time environment) 
3. We off-load cognitive work onto the environment (using the environment as an archive and external 
memory) 
4. The environment is part of the cognitive system (cognition is distributed among the entire interactive 
situation) 
5. Cognition is for action (no representations for representation sake, only for priming actions) 
6. Off-line cognition is body based (make use of sensorimotor functions covertly) 
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and the extent to which its embodiment interferes with cognition is via body 

formatted representations; mental representations of selected body actions and 

postures. Embodiment via body formatted representations are reduced to neuronal 

processes, such as mirror-neuron activity. And it is only the body representation in 

the brain that plays a role in cognition. Goldman and Vignemont argue for their 

position using the neural reuse hypothesis. This hypothesis proposes that neural 

circuits can be reused as “neural circuits originally established for one use can be 

reused or redeployed for other purposes while still maintaining their original 

function” (2018, 9). However, as Gallagher proposed, this hypotheses actually 

promotes a stronger view of embodied cognition, than furthered by the minimal 

embodiment proponents, as even mirror-neurons activations are exapted 

deployments of previous motor function (and as such bodily functions), that 

originated in the body and not the brain (10). 

So, if embodied qualities are inherent in neural activity, it seems appropriate to 

investigate other positions of embodied cognition that increasingly consider the role 

of embodiment in cognition. 

Extended functionalism: body neutrality and representationalism 

The extended mind perspective, the proposal that we extend our minds into the 

world as we engage with it, was later developed by Andy Clark to include the notion 

of cognitive technologies. This position was first presented in Natural Born Cyborgs: 

Minds, Technologies, and the Future of Human Intelligence (2003), and later 

elaborated and defended in Supersizing the Mind: Embodiment, Action and Cognitive 

Extension (2008). Clark’s particular take on embodied cognition—labelled as 

extended or functional cognition—argues that by solving a task, we engage in body-

world cycles, an action of supersizing the mind. A body-world cycle is a “set of 

problem-solving state transitions whose implementation happens to involve a 

distributed combination of biological memory, motor actions, external symbolic 

storage, and just-in-time perceptual access” (Clark 2008, 69). We extend ourselves 

into the environment when we engage with it to solve a problem or task. This 
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process is furthered through tool-use, not only because we extend our reach within 

an environment, but the tool itself may hold opportunity for use that is only revealed 

as we engage with it. A tool is presented to us with a given function, but as we 

interact with the tool and allow our body to wield it, modified uses, new uses or even 

new tools may arise. Through exploring our relationship with technology and tools 

we are shaping new thinking systems and new design environments that further 

invites thinking processes. Simply glancing at something is insufficient for coupling 

with an object in our environment, coupling is a real-time event, that intends to 

turns “some object, which in and of itself is not usefully (perhaps not even 

intelligibly) thought of as either cognitive or noncognitive, into a proper part of some 

cognitive routine” (87). This is what separates us from animals, our inherent cyborg-

hybrid nature formed by what Clark calls “cognitive technologies.” And cognitive 

technologies are particularly open for coupling processes. We engage in loops with 

these cognitive technological environments. Clark offers a broad definition of what 

constitutes such technologies, ranging from language, counting, writing, number 

systems, printing, digital encodings “to the digital encodings that bring text, sound, 

and image into a uniform and widely transmissible format” (2003, 4). Even non-

biological elements (instruments, media and notation), are part of creating extended 

cognitive systems. The system of exchange is described by Clark as a process of 

continuous-reciprocal-causation (CRC) which “occurs when some system S is both 

affecting and simultaneously being affected by activity in some other system O. 

Internally, we may well confront such causal complexity in the brain since many 

neural areas are linked by both feedback and feedforward pathways” (1998, 356). 

With CRC Clark seeks to describe how bodies and tools figure in cognitive processes, 

in that it is a mutual influential relationship between physical gestures and tool use, 

and thinking, in that they both affect one another. As he exemplifies it: “Think of a 

dancer, whose bodily orientation is continuously affecting and being affected by his 

neural states, and whose movements are also influencing those of his partner, to 

whom he is continuously responding!” (356) The concept of CRC is very much in line 

with phenomenological thinking, which promotes consciousness as an embodied 
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experience resulting from engaging with the world. The being-in-the-world is a 

reciprocal relationship between body and environment driven by intention. 

Functional embodied cognition, or extended functionalism, proposes that most 

cognitive processes can be run fully in the brain, without the aid of the body or 

external world, but it will not necessarily run as efficiently. As an example, Clark 

argues that tactile engagement with cognitive technologies is more prone to system 

coupling, than engagements that are purely visual in nature, because the haptic 

apparatus more actively engages our problem-solving capabilities. The CRC process 

considered a sufficient structure for forming extended cognitive systems, but not a 

necessary one. While CRC is prone to occur when the product of the task is cognitive 

(forming an argument, solving a task), Clark also claims that we extend cognition 

when we access the memory of our smartphone, which are processes that do not 

involve CRC (Gallagher 2014, 46.01). The cognitive system starts with the brain, then 

body, then environments, but it is not always extended outwards, and cognition 

need not include bodily processes to be extended. The body is rather the first 

extension, before continuing into the world through equipment, tools and 

technologies.  

Another key aspect with functional/extended embodied cognition is the concept 

of body neutrality. This proposes that the physicality of the system that supports 

cognition is not relevant, it could be biological or artificial or even multiple. The key 

is the function of the system. It has been argued that there is an element of 

representationalism present in the position, inherent in the claim that different 

bodies may produce identical experiences if higher representational processes 

adjust the sensory input through a process of “compensatory adjustments” 

(Gallagher 2014, 46.34). As Gallagher notes, Clark’s proposal “allow[s] the possibility 

that the cognitive system will provide “compensatory downstream adjustments” 

that would, so to speak, even out differences in the experiential aspects that 

accompany cognition (2011, 64). The concept of body neutrality inherent in 

functional embodied cognition and later formulations of this proposal is in 

significant disagreement with the phenomenological position of Merleau-Ponty and 
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later enactive positions of embodied cognition, in that unique bodies produce unique 

experiences.  

Enactivism: sensorimotor contingencies and environmental cues 

In the previous chapter we introduced the notion of enactive exploration as a 

process of establishing our environment as we act in it. We also discussed how we 

may reshape the enactive landscape, the world we perceive and partly create 

through actions, as we extend our bodies through techniques and tool-use. The core 

idea of enactive embodied cognition or enactivism is well summarized by one of its 

proponents, Shaun Gallagher:  

 

[E]nactive theorists claim that the (human) bodily processes, as well as 

environmental factors, shape and contribute to the constitution of 

consciousness and cognition in an irreducible and irreplaceable way. 

Specifically, in the enactive view, biological aspects of bodily life, including 

organismic and emotion regulation of the entire body, have a permeating 

effect on cognition, as do processes of sensory-motor coupling between 

organism and environment…[S]ensory-motor contingencies and 

environmental affordances take over the work that had [in functional 

embodied cognition] been attributed to neural computations and mental 

representations.” (Gallagher 2011, 65) 

 

The enactive position in embodied cognition discards the functional position of body 

neutrality, as it almost eradicates51 the notion of mental representation in cognition. 

Rather cognition is shaped by sensorimotor contingencies, the patterns of 

dependence which binds each sense modality to specific environmental affordances. 

These contingencies are unique to each body, the body’s ability to move and to 

extend its perceptual range and cannot be replaced by another body. Furthermore, 

the enactive position holds that not only unique sensorimotor contingencies, tools 

 
51 There are proponents of a radical enactivism (REC) in which argues that the mind is embodied to the 

extent that the constitution of cognition is non-representative. This view is presented in Hutto and Myin’s 
book Radicalizing Enactivism: Basic Minds without Content (2013). 
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and cognitive technologies form shape and extend cognition. Several additional 

biological functions and affective aspects of embodiment shape perception and in 

extension cognition, such as hunger, fatigue, emotion, and mood, both autonomic 

and peripheral factors. As cognition arises from an active and directed engagement 

with the world, intersubjective interaction is also embodied. Facial expressions, 

posture and gestures from other humans, also engage embodied responses that 

direct perception and affect our postulation of goals.  

Both extended functionalism and enactivism are positions that are hard to 

quantify in neuroscientific research, in fact there is no consensus within the 

scientific research community on the border of cognition and peripersonal space 

(Rowlands 2010, 210). While theorists of all the positions present well-structured 

arguments and empirical evidence to strengthen their claims, none of it is decisive, 

as exemplified in the presentation of mirror-neuron research and neural reuse 

hypothesis to both support a cognitive and enactive view simultaneously! Yet, there 

is an increasing emphasis on embodied and distributed cognition, e.g. in robotics 

research, in understanding and developing intentional agents. And the idea that 

bodies, tools, and body techniques shape cognition, allow us to think with our 

bodies, is powerfully demonstrated in the case of physical sketching as a tool for 

learning and remembering. 
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Physical thinking: the promise of gestural shorthand and physical 

sketching 

 

The dwindling importance of the makeshift organ that is our hand would not 

matter a great deal if there were not overwhelming evidence to prove that its 

activity is closely related to the balance of the brain areas with which it is 

connected...Not having to ‘think with one’s fingers’’ is equivalent to lacking a 

part of one’s normally, phylogenetically human mind.  

 Leroi-Gourhan in Gesture and Speech (1993, 255) 

 

By engaging the sensorimotor apparatus in performing tasks, our ability to acquire 

new knowledge as well as to remember it is increased, and the importance of body 

enactment in grasping and learning should not be underestimated. An experiment 

run in 2010 by David Kirsh notably underlines this point. Here he measured 

professional dancers’ ability to learn a part of dance routine, either mentally (by 

imagining the routine), through “marking” (a gestural shorthand where one is 

modelling key elements/phrases of the dance routine using the body), or full-out 

practice of the routine (Kirsh 2012). The results suggest that marking proves most 

efficient in learning and remembering the routine, even better than the full-out 

practice of the routine. The poorest results occurred when the dancers solely 

practiced by mentally simulating the dance. Kirsh suggests that marking or body 

modelling is so successful because this allows us to physically connect a dance 

concept to a more ideal movement. In other words, marking allows us to anchor a 

mental image onto a physical structure, what Kirsh labels “projection” (2013, 3:18). 

Kirsh claims that the physical act of sketching (the act of marking or similar methods 

of projecting) activates analogous cognitive processes as playing with a physical 

models in that they both “drive(s) our perceptuo-motor system into a state of 

expectation, and we tacitly assign probabilities to outcomes conditional on what we 

might do ourselves” (3:25). This process of engaging tactile and sensorimotor 

apparatus in human activity is what Kirsh labels physical thinking. He proposes that 
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“when people think with things they rely on the world to simulate itself and in so 

doing they stimulate themselves” and continues: “[Humans] use their bodies not just 

to act on the world and enact or co-create a personal world, they use them to 

represent, model and ultimately self-teach. They use their bodies as simulation 

systems, as modeling systems that make it possible to project onto unseen things” 

(3:26). This proposes that memory and learning, clearly cognitive processes, are 

very much influenced and improved by involving the body in process.  

Kirsh definitely includes the notion of representationalism in his take on 

embodied cognition, as we utilize mental images to connect and enhance cognitive 

processes with physical actions. Kirsh’s main hypothesis extends minimalist 

approaches to embodied cognition position, which propose that our cognition in 

great part depends upon internal simulation of how things work, to include the 

notion of external simulation as a means to activate motor-intentionality enabled 

through physical thinking, particular to the extended and enactive views. 

Furthermore, he seems to exist between an extended and enactive position within 

embodied cognition, arguing for both situatedness and distributive qualities of 

cognition. Arriving from the concepts of epistemic actions, as physical actions that 

offload cognitive processes into the external physical realm, Kirsh has called for a 

perspective on cognition as is situated—bound by the actions in which a problem or 

task is performed or explored. This position appears closer to enactive than 

extended functionalism, in that specificity of the situated body—without overtly 

stating the different bodies can’t produce the same experiences. His proposal for 

establishing research on situated cognition, pushes the need for a broad analysis of 

the role of “hints and scaffolds, symbolic affordances and mental projection, thinking 

with things, self-cueing and metacognition, and an enactive theory of thought” (Kirsh 

2009, 303). In line with extended views he argues for distributed qualities of 

cognition, suggesting that it may be socially distributed within a group, extended 

beyond biological systems into non biological resources by means of causal coupling, 

or distributed over time within a culture (Hollan et al. 2000). The degree of 

situatedness and the distributive range of cognition is not fixed between embodied 
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cognition researchers and theorists. While there is evidence that cognition is both 

situated in the body as it performs actions, and distributed beyond the skin border, 

we do not have neurological evidence that can precisely set this border. An overall 

claim in this thesis departing from phenomenology—namely that any engagement 

with the world, machines and environments, is framed by our embodiment—is best 

supported in a strong embodied cognition perspective, and perhaps most accurately 

in enactivism with its emphasis on the specificity, the situatedness, and uniqueness 

of the body in perceiving and experiencing the world.  

The haptic in embodied cognition 

The extended functionalist perspective proposes the haptic apparatus is more 

efficient in causal body-world coupling, as it more actively engages problem-solving 

capabilities. This is literally demonstrated by Kirsh in the process of physical 

sketching. While we may perform certain processes of learning and memorization by 

mental imagining aided by visual representations on a screen, we optimize the 

results by remembering and organizing thought through physical sketching. We 

think with our hands. The potential of physical sketching as gestural shorthand 

directly underlines the significance of gestures as movement forms and as epistemic 

actions that aid cognitive processes, and simultaneously the limits in visual 

presentation of cognitive tasks. The enactive view holds that bodily actions influence 

and extend our thinking, fueled by a process of movement as sensorimotor couplings 

are formed. Each sense has an inherent ability to identify environmental cues, 

guiding perception, but the haptic sensation of proprioception is involved in all 

motor activity, and as a result in all sensorimotor couplings.  

Haptic technologies differ from screen technologies in an extended-enactive 

embodied cognition perspective, for several reasons. First, we have noted the 

limitations of visual representation of cognitive tasks, in processes of learning and 

remembering. But more so haptic technologies allow us to extend the haptic senses, 

either by means of reading haptic gestures as input, or by mediated haptic feedback 

from virtual or telepresence environments. As the haptic apparatus is involved in all 
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sensorimotor coupling, these technologies are capable of introducing novel sense 

experiences which in turn shape consciousness and cognition. In the following, we 

will discuss this potential of digital and sensor technologies in extending the haptic 

senses. 

3.3 Extending the Haptic 

We have several technologies that are specifically aimed at extending sight, and we 

are increasingly developing technologies that target other aspects of our 

multisensory perception. And a particular promise for sensory extension identified 

in new digital and sensor technologies. Media theorist Mark B.N. Hansen claims that 

these technologies are in a unique position to grant us conscious access to our body 

schema and broaden the prepersonal domain, as they make possible interactive 

scenarios where our sensorimotor responses are reflected back to us via other 

modalities (2006, 20). This is the case with many interactive mirror artworks, but 

the potential of these media technologies is considerable. Digital and sensor 

technologies provide us with extraordinary means to obtain new experiences, as we 

can extend and augment the sensory range (color space, auditory range, spatial 

distance, and touch experiences) by layering the virtual onto the real, translating 

sensor data into formats specific for one modality or mapping content from one 

modality into another.  

Mechanical and electrical52 technologies have also provided us with interactive 

scenarios that extend our sensory apparatus. Every so often you will find mechanical 

gear exhibits in science museums where children input kinetic energy to power a 

greater machinery. Also, consider the tradition of hand-cranked music boxes, where 

regular hand movements power the instruments to produce and adjust the pitch and 

 
52 With electrical technologies I refer to technologies made with analog electronics that utilize the 

continuous range of current to represent signals and information. This is opposed to digital signals that have 
a set range between two values, 0 and 1, depending on sample rate (resolution). Very often computers and 
other electronic devices are made with both digital and analog circuits, e.g. the old-style electric radio with 
digital display. 
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presentation of the sound.53 Similarly, electrical technologies have offered a range of 

sensory extensions, early telecommunication being a key candidate. However, the 

interactive experiences made possible with digital technologies are ever more 

nuanced, particular and explicit in what kind of human sensory expression these 

systems process and utilize. The opportunity for explicit and accurate tracking of 

such a wide array of sensory and motile articulations has grown with the 

development of sensor technologies. And with digital technologies we are given the 

ability to take analog measures and translate them into precise digital values that 

can be mapped to literary anything, making bodily events such as muscle movement, 

skin friction, heartbeat, pulse, moisture, temperature, and similar, input factors in 

interactive scenarios offering novel sensorimotor experiences. Inherent these 

technologies lie the opportunity to induce temporary experiences of synesthesia—a 

technologically mediated synesthesia, coupling previously unmatched sensory 

experiences. We are part of revolution in terms of interactivity, as our sensory 

repertoire is expanded. While all senses are potential targets for extensions, we will 

pay particular attention to haptic sensory extensions. 

In the following I will demonstrate how touch and proprioception may directly be 

targeted and probed by media technologies, extended into audio-visual sensory 

realms. These are areas of novel sensorimotor coupling that are currently most 

explored. Relevant and useful scenarios are found in the artworld, in works of digital 

art, which are much less dependent on commercial success, public recognition and 

acceptability to be considered relevant and important, and thus inclined to follow 

artistic curiosity and consequence to its own end. This combination of creative and 

independent exploration and media critique provides unique insights, exposing 

media potential. 

 
53A unique example is found in the Marble Machine—a musical device consisting of several instruments, 

whose main engine is a crankshaft that when turned will push 2000 marbles through the device playing a 
score (Ferreira 2016).  
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Extending tactile sensation and the moment of touch 

While there are many projects aiming to present you with a feeling of touch in 

virtual or telepresence environments,54 these devices are most often designed with 

the intention to mimic and emulate touch experiences of the physical world, 

allowing an interactor to touch and feel virtual objects. The promise of touching the 

virtual or telepresent is rarely problematized beyond syntax as an engineering 

problem of mapping haptic input and mediating haptic feedback. The translation of 

any touch experience into an electrostatic or vibrotactile pattern, is as much a 

semantic and even affective exercise, as a syntactic one. As mediated haptic feedback 

is problematized in chapter 4, in the following we will be concerned with haptic, 

touch and proprioceptive, input, the moment of touch, and its translation into a 

broader sensory field. The artist duo Scenocosme has made several works of art that 

aim to make visible and audible the moment of touch, as reflected in their mission 

statement:  

 

We suggest to seek out the hidden, to feel elements of reality which are 

invisible or to which we are insensitive. We use the idea of the cloud as a 

metaphor of the invisible because it has an unpredictable form, it is in an 

indeterminate status of metamorphosis, and because its process escapes our 

perception. […] If we take as an example the energetic clouds of living beings, 

the physical boundaries of their bodies can become permeable through the 

usage of sensory technology and we take advantage of this permeability in 

order to design extraordinary relationships between humans, living beings 

and the surrounding environment. (Lasserre and Ancxt 2012, 142)  

 

The metaphor of the cloud as a domain of potential relationships is present in most 

of Scenocosme’s work. With sensor technologies they seek to form novel 

connections between us extending the border of our body. In the interactive artwork 

Urban Light Contacts the notion of relationship is particularly emphasized as it 

 
54 TeslaTouch (Bau et al. 2010) or Tactai Touch (“Tactai Inc.” n.d.) are two projects particularly aimed at 

emulating tactile sensations. 
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demands two or more people for the experience to become perceptible to the 

interactors.  

 

Figure 30 and 31: Scenocosme’s interactive installation Urban Light Contacts connects sound and visual scenes as 

mediations of different tactile interactions (left). The work encourages social interaction, here demonstrated at the 

Festival Les Nuits de Lauzerte in Lauzerte, France in 2016 (right). Courtesy of the artists. 

 

The artwork consists of a central pedestal with a metal ball on top of it. The 

spectators are invited to touch the ball and as such become the mediator of the 

interactive experience. However, nothing will happen until a second interactor 

touches the person touching the ball. The moment of human touch is made audible 

and visible, and the soundscape and coloration will “vary according to the intensities 

of bodies’ electrostatic energy” (Lasserre and Ancxt n.d.). One the one end the work 

is turning the interactors to human instruments,55 but more importantly it is inviting 

spectators to engage in new bodily relationships as we caress each other, extending 

a tactile space often reserved for intimate and personal, to an urban one. The 

sensory extension is bound in a semantic and affective dimension, which is seen and 

 
55 A commercial application of these principles is found in devices such as the midi controller TouchMe 

which, when coupled with standard musical software, allow users to play back beats and soundscapes by 
touching one another or objects (“Playtronica TouchMe” n.d.). 
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heard. The richness of tactile actions and the notion of proximity are further 

explored in Scenocosme’s Phonofolium which investigates a potentially 

communicative and affective relationship with plant life (Scenocosme 2011). 

Interactors are invited to engage with a tree, by getting closer to and finally touching 

its leaves. Both the process of closing in on the tree, and the moment of touch are 

sonified, allowing the interactor to engage in novel haptic conversations. Both of 

these artworks show how touch may be extended and give rise to novel and 

significant experiences. Specifically, they demonstrate that the moment of touch is 

not just a temporal physical encounter between two bodies, it is an equally a 

moment of meaningful and emotional exchange, that can be experienced and 

explored across modalities.  

Extending proprioception by stretching time, mapping posture 

and gestural control  

Our perception of movement is very much bound to the experience of time. The 

notion of stretching time is a well-explored strategy in film media and comedy, by 

speeding up or slowing down the playback, accentuating or arresting movements 

and gestures. 
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Figure 32. Screenshot from the work Unnamed Soundsculpture (2011) by Daniel Franke and Cedric Kiefer. Courtesy of the 

artists. 

 

With motion capture and digital rendering in 3D we are offered additional 

opportunities for stretching time and presenting movement over time, unveiling 

proprioceptive and motor qualities specific to a body. In the Unnamed 

Soundsculpture artwork by Daniel Franke and Cedric Kiefer (2011), the movements 

of a dancer are captured by a motion sensor and rendered as a digital body made up 

of 22000 different points. The digital body is caught in a visual lag as movement 

points are distributed in time. The effect is intriguing, allowing the viewer to become 

consciously and physically aware of the minute postural and gestural changes in a 

body movement, which are otherwise too fast for us to notice. The motion points 

appear as a textural skin of the sculpture, akin to grains in an hourglass. This directly 

corresponds to the temporal theme, the slowing down of time, the seeing 

movements in time, over time, caught in time. The perceptive experience may be 

compared to the one achieved by asynchronous mediation in mirror works—such as 

the Time Scan Mirror by Daniel Rozin discussed in chapter 1—but not quite. In the 

latter work, the body in the image is not yours, but rather a body. And while both 

works experiment with the passing of time, the movement of the digital body is not 

initiated by you. Rather than functioning as a coupling mechanism extending 
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presence into the screen, the Unnamed Soundsculpture invites the viewer to reflect 

on bodily movement in general, consciously reflect on the proprioceptive and motive 

abilities of the body. The purely visual mirroring of temporally hidden body postures 

and movement is nonetheless an example of how proprioceptive qualities may be 

extended into other modalities, to produce novel experiences and insights.  

From temporal to habitual recognition of posture 

The extension of proprioception is further demonstrated in works centered on 

postural mapping, the capturing and active representation of body posture in time. 

In Rafael Lozano-Hemmer’s interactive installation Body Movies (the sixth work in 

the Relational Architecture Series), images of individual body postures are matched 

by the active positioning of the audience bodies. In advance, over one thousand 

photographic portraits taken of people in the streets of several major cities, which 

are later grouped into several scenes, before being projected one-by-one onto the 

outer wall of a building. A second projection layer produced from several bright 

xenon lamps completely hides the portrait layer, as the wall surface is cased in 

white, bright light. However, as people walk in front of the building they are caught 

in the light and their bodies cast large shadows onto the wall. The silhouettes range 

between two and twenty-five meters depending on the interactors’ position from the 

light source. The audience can embody the portraits by moving around to match 

them. When all the portraits are matched in a scene, the installation blacks out 

before presenting a new scene for the audience to match. 
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Figure 33. The Body Movies installation by Rafael Lozano-Hemmer, presented as part of Sapphire '02, Atlantico Pavilion, 

Lisbon, Portugal (2002) where the projected shadows are matched by passers-by. Photo available under a Creative 

Commons Attribution -Noncommercial-Share Alike 3.0 Spain License. 

 

The matching of silhouettes is present in early shadow theatre, from which this 

installation is inspired, and is certainly a trigger for proprioceptive awareness, as 

you play with the scaled reflection of your own body. However, something more is at 

play in this work. The photographic portraits offer a visual presentation of specific 

and even individual postural forms, beyond the contour. I can move myself and 

position myself to map a another’s person's posture producing an awareness around 

my own habitual postures as well as exploring the gestural poses of others, and 

secondly, there is a collaborative effort involved in matching the scene in its entirety. 

We need to relate to others and position ourselves within a three-dimensional space 

to match the imagery of the two-dimensional surface.  

Both Lozano-Hemmer and Franke and Kiefer’s works are exploring the potential 

and qualities of postural mapping, as a means to let us physically or mentally match 

another body, and contemplate our own embodiment—the specificity and generality 
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of our own habitual gestures and postures. They also demonstrate the power of 

extending proprioceptive qualities into the visual realm. However, it is but one of 

many opportunities inherent in mapping proprioception.  

Proprioception and gestural control 

The demonstration of proprioceptive mapping at its core is demonstrated in several 

works by Marco Donnarumma, where proprioceptive sense data is mapped and 

wielded through gestural movement and control. In the visceral performance 

Ominous (2012), Donnarumma uses the strain and delicate movement of the body to 

incarnate a sound sculpture. Sensors attached to the artist's arms register the sound 

of muscles as they are flexed and relaxed, truly recording the proprioceptive activity 

of his body. The muscle sound sensors are accurate and minute, recording each 

minuscule movement, from the bending of the little finger to the intense flexing of 

upper arm muscles. The artist calls it biophysical music, as the sound produced from 

moving and straining the muscles, is amplified and made audible to the spectator. 

The technology involved, the Xth sense muscle sound sensor, is developed by the 

artist and collaborators (Donnarumma 2011). It is conceived and intended as an 

extension and augmentation of the body mediating proprioceptive sense data 

directly from the body, rather than a controller for an interface capturing control 

data. Microphone sensors attached to upper arms capture low frequency sound 

waves originating from muscle movement and blood pressure. This sound 

information is given to a computer in real-time which analyzes and identifies specific 

sound gestures and patterns. These sound patterns are amplified algorithmically and 

distributed via a multi-channel sound system.  
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Figure 34 and 35. Screenshots from video documentation of Ominous (2012) by Marco Donnarumma. Courtesy of the 

artist. 

 

The Ominous performance starts with the artist standing almost completely still, 

curving his hands in front of him. In the background one can hear a silent humming. 

It is not unwelcome nor uncomfortable, actually it feels rather familiar. Like the 

embrace of a close friend. What we hear is the amplified sound of Donnarumma's 

body, relaxed, except from maintaining the posture of the curved hands. Eventually 

his hands start to move—outwards as in pulses, and in circles, as if stroking a 

growing round object. Visually, we are given enough cues to imagine the object at 

hand, but what makes the experience complete, is listening to the strain of the 

artist’s muscles as he forms the object, proprioceptive data is resonating, allowing us 

to feel the weight and shape of the object. We are experiencing a perceptual coupling 

between the imagined object formed by the gestures of the performer, and the 

sound, as proprioceptive and auditory sense data are linked. As the performer molds 

the sculpture with his hands, we get to know the material it is made of. It becomes 

incarnated, of matter. We see it, we hear it, and we feel it. The notion of affordances 

comes into play, beyond the concept of visual cue recognition as presented by 

Gibson and Norman. Instead Donnarumma appeals to our tactile and proprioceptive 

sense recognition. We perceive the strain, through the indication of gesture and 

sound, and immediately know what force is required to produce that strain. Through 

the experience we are offered bodily sensation previously unavailable to us. While 

Donnarumma’s own intent and interest with the Xth Sense technology is centered on 
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the artistic experimentation of body augmentation and biophysical music, he 

acknowledges its many potential areas of use. The technology can readily be applied 

as a traditional instrument where one maps a range of individual muscle gestures to 

a tone scale making it possible to play chords and melodies, or as gestural controller 

where individual gestures and postures can work as input patterns for close to any 

computation task.  

The Unnamed Soundsculpture, Body Movies, and Ominous all present 

opportunities for novel sensory experiences as proprioception is extended into the 

visual and auditory realm. Donnarumma’s work not only argues for the novel 

sensorimotor coupling occurring as proprioception is made audible, it demonstrates 

the potential of proprioceptive activity to be utilized for gestural control. 

Extending embodiment 

The artwork presented above offers a modest and surely incomplete demonstration 

of the potential of new digital and sensor technologies in extending embodiment via 

the haptic senses. Understood from an enactive perspective engaging with these 

interactive scenarios—experiencing the moment of tactile and proprioceptive 

activity as it is captured and extended—will promote novel sensorimotor couplings, 

as additional environmental cues and affordances are made available to us. These 

novel cues and affordances guide perception, allowing us to identify new 

opportunities for action. Our embodiment is extended means extending action 

potential, which influences our thinking processes and hypotheses about the world. 

The enactive approach is also reiterated in the artwork’s proposal that tactile and 

proprioceptive sensations, as they are extended into audiovisual realms, may 

mediate affective and semantic content, experiences of emotion and meaning, as 

embodied cognitive processes.  

But what are the limits of extension? When is a tool, technology or technological 

mediation of me no longer considered a part of me, but something else? New digital 

and sensor technologies present endless opportunities for translating and mediating 

bodily engagement, to the extent that we no longer recognize our own contribution. 
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And secondly, what may be considered the final limit of cognitive extension beyond 

the body border? 

3.4 The Expanse of the Body 

The body is extendable, and we think with our bodies. Within this claim lies the 

assumption that our embodiment may be extended, extending action potential, and 

with it the ability to form new hypotheses about the world. While enactivism is 

concerned with the embodiment of cognitive processes, extended functionalism 

takes this premise further. As we engage in causal coupling with cognitive 

technologies proposed by Clark, cognition may be extended way beyond our bodies 

and bodily space. So, what are the limits of cognitive distribution? And how is it 

mediated through technology? From skull border, to skin border, to the extent of 

human agency in encounters with autonomous technical systems, the full expanse of 

the human body is not fixed.  

The border of the skin 

 

[The skin] is the oldest and the most sensitive of our organs,  

our first medium of communication, and our most efficient protector [...].  

Even the transparent cornea of the eye is overlain by a layer of modified  

skin [...]. Touch is the parent of our eyes, ears, nose, and mouth. It is the  

sense which became differentiated into the others, a fact that seems to be 

recognized in the age-old evaluation of touch as 'the mother of the senses'. 

 Ashley Montago (1971) cited by Pallasmaa in Hapticity and Time  

 (2000, 79) 

 

What is the role of the skin in an embodied cognition perspective?  

In disagreement with Andy Clark and the formulation in extended functionalism, I 

am not certain there is a fluid transition of cognitive processes between subjective 

self and the objective world, between the brain and skull, the body, and the world. 
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We are not the same as the world, there is a border that separates the subject from 

the object: the skin. The skin is a border in that it mediates the transitions between 

the external and the internal, as a connector between the extrinsic world, the body 

proper and the mind.   

This emphasis on the specificity of skin and tactile sensation, presented by 

Montagu, above, resonates in Merleau-Ponty’s phenomenological position of 

perceiving the world. Perception is a reciprocal relationship between the perceiver 

and that which is perceived, and this event is taking place on the skin surface: To 

touch is to be touched (Merleau-Ponty 2008). The world rubs on us as we engage 

with it, proposing a twofold role of the skin as border and mediator. The skin 

functions as a self-identifier, of me as an individual, and as a member of humanity. 

But it also serves as a potential (although not exclusive)56 identificator, in the 

biometric reading of exterior body features to identify a body, as fingerprints and 

retinas are scanned. The role as an identifier or self-container, is reiterated in 

psychoanalyst Didier Anzieu’s work. He argues that the skin itself is an ego, a skin 

ego that fulfill three main functions: 

 

[A]s a containing, unifying envelope for the Self; as a protective barrier for  

the psyche; and as a filter of exchanges and a surface of inscription for the first 

traces, a function which makes representation possible. To these three 

functions, there correspond three representations: the sac, the screen, the 

sieve…[and] that as a mirror of reality. (1989, 98)  

 

The skin functions as a container and a protective shield for body and mind, but 

perhaps most relevant for our discussion, Anzieu considers the skin a surface for 

inscription (for affective touch, as well as the reading of expression and body 

language). For these reasons, he proposes that the skin is crucial in constituting 

cognitive functions and structures. So, while there are specific functions of the skin 

 
56 We have other means of identification besides skin readings. In addition to DNA-testing, we see an 

increase in machine reading of body signatures, e.g. motion, face and gesture recognition, that become 
increasingly suitable for identification. 
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as a border in terms of identification, protection, its function as a surface for socio-

affective communication that mediate cognitive processes reiterates the twofold role 

of skin. The border is not fixed, nor absolute. So many things do transition through 

the skin—moisture, temperature, pulse. But as we have argued, so does 

embodiment. As established in the introduction, there is a gradual transition from 

internal to external haptic sensations, as proprioception folds tactile sensations 

inwards and outwards as gestures and movements. And furthermore, these haptic 

sensations may be extended, as we utilize techniques, tools and technology to extend 

peripersonal space, and into other modalities. 

Technical mediation and extension of cognition 

 

‘Red or white, Carrie?’ 

I opened my mouth as if to answer him, but nothing came.  

Normally, in that instant between the question and the response,  

the AM would have silently directed my choice to one of the two options.  

Not having the AM’s prompt felt like a mental stall in my thoughts.  

 Alastair Reynolds in Zima Blue and Other Stories (2009, 437) 

 

Significant processes of cognition include the ability to form hypotheses about the 

world and recording it to memory. While we use our bodies to organize and 

strengthen thinking processes, and record memories for later recall, we also use 

storage devices to help us remember names and numbers, events and deadlines, as 

placeholders for thoughts. Increasingly, we use these technical memory systems to 

make decisions based on previous preferences, as seen in increasing use of 

information retrieval and recommendation algorithms which “remember what you 

like, have liked, and what other people who like the same as you, also like.” Bernard 

Stiegler takes this premise to its full extent in his notion of technogenesis, human co-

evolution with technology. Human memory is inherently technical, he claims, and 

always has been. We have exteriorized ourselves into artifacts since our ancestors 

wielded the first stone tools two million years ago. In the construction of 



EXTENDED EMBODIMENT 

 

159 

hypomnemata (technical memory aids or technological exteriorizations of memory) 

whether the manuscript, the photography, digital encodings or the Internet, these 

systems frame and embody the act of remembering (2010, 67). Stiegler argues this 

process is set in time and space, our evolution is essentially technical, in a history of 

memory. We have increasingly moved from exteriorizing memory with techniques, 

to sorting memory through technology, and with the digital revolution we have 

departed “from individual exteriorizations of memory functions to large-scale 

technological systems or networks that organize memories” (67). Stiegler labels 

these technological systems cognitive technologies (in accordance with Andy Clark), 

which increasingly partakes in human cognitive processes.  

The effect of technical memory devices on decisions-making, is explored by 

science fiction author Alastair Reynold in his short story Zima Blue cited above. In 

this fictional world, most people use neural implants to record memories as an 

inherent and inseparable component of cognition, however, some still use Aide 

Memoires, AMs for short, that are external memory recorders hovering around the 

body, that may be turned off. The story presents a connection between technical 

memory storage and decision-making processes, made notable once the AM is 

removed. The lack of assisted memory causes the character to sense holes in her 

knowledge, coinciding with Stiegler’s claim that “[t]hese cognitive technologies, to 

which we consign a greater and greater part of our memory, cause us to lose ever-

greater parts of our knowledge” (2010, 68). Our ability to make a choice is highly 

influenced or even lost in an algorithm rendering of historical preferences. But as the 

story continues, the AM in contrast to neural memory implants, may be turned off, 

leaving the recording and recalling of memory to the organic brain. This, the story 

asserts, may present novel opportunities from ever arising. As events are recorded 

to memory, unassisted by algorithmic organization, emotions and specific meaning 

may be attached to the memories, presenting an opportunity for the weight of a 

choice to be redistributed when recalled to make a decision based on preference. If 

the technical mediation of memory and related cognitive processes becomes direct, 

we lose the critical distance needed to become aware of the function and 
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conditioning effect of the technical system. While Stiegler appears skeptical to the 

opportunity for technical media distance, as vi inherently condition and are 

conditioned by technical media, he does not consider us slaves of technology, rather 

our contingent relationship with technics is an essential human quality. As we create 

new technical systems, we also make critical decisions and intentional designs about 

its use, whether or not those become facts. 

In the extended mind thesis promoted by Clark and Chalmers (1998) the authors 

distinguish memory from beliefs and assumptions about the world embedded in 

memory. So, while extended memory may be temporarily inaccessible, as we turn 

devices off or move beyond the range of communication, or even sleep, we still have 

our beliefs. Clark and Chalmers propose that temporary inaccess from the cognitive 

extension is irrelevant for convictions and assumptions about reality embedded in 

extended memory to exist, rather the causal coupling is contingent on its ability to 

be available on-demand (15). It appears that the link to a memory, knowing where 

something may be found, becomes the new set of memories that we need to keep in 

our minds and bodies. 

Distributed agency—cognitive technologies and assemblages 

But the technical mediation of cognition might even be more severe. What if we 

consider these technical systems and cognitive technologies that assist and extend 

human cognition, semi-autonomous agents with their own set of cognitive processes 

and sense of agency? This assumption is central to the recent research of N. 

Katherine Hayles. Hayles distinguishes between thinking and consciousness as 

higher-level cognitive processes, from nonconscious cognition which is not specific 

to the human species, but may exist in other biological organisms as well as 

computational media. 

 

Cognition is a much broader capacity that extends far beyond consciousness 

into other neurological brain processes; it is also pervasive in other life forms 
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and complex technical systems. Although the cognitive capacity that exists 

beyond consciousness goes by various names, I call it nonconscious cognition. 

(Hayles 2017, 9)  

 

Examples of nonconscious cognitive functions are pattern recognition, body 

representation, information processing, and perceptual adjustments (2019).  

Hayles suggests that we extend our agency through interaction with technical 

nonconscious cognition. Nonconscious cognitive processes “occur[] at multiple 

levels and sites within biological life forms and technical systems[,]” and “[c]ognitive 

assemblage emphasizes cognition as the common element among parts and as the 

functionality by which parts connect” (2016, 32). It is through cognitive 

assemblages, network system structures, that human agency and technical cognition 

coincide and influence each other. She proposes that these technical systems or 

cognitive technologies, induced with their specific capacity for non-conscious 

cognition, run with an increasing level of agency. Trading algorithms, self-driving 

cars, and autonomous drones, are examples of systems which extend human 

cognitive capabilities, that run with a significant level of agency (45). With the 

considerations of Stiegler and Hayles, it becomes difficult to discern where human 

embodiment and cognition ends, as well as our agency, in our encounter with 

increasingly capable, intentional and cognitive technical media. 

The extent of the intentional agent 

So where do I end? Or begin?  

Within the enactive perspective I find a simpler and perhaps a more practical 

proposal to frame embodiment and cognition. The extent of cognitive distribution is 

matching the extent of embodiment, framed by the domain of ownership and agency. 

The reach of a body and bodily intent, the intentional agent, is defined by a sense of 

ownership coupled with a sense of agency. Gallagher presents this distinction 

elegantly. 
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Ownership is framed by the “sense that I am the one who is undergoing an 

experience” and agency as the “sense that I am one who is causing or generating an 

action, for example, the sense that I am the one who is causing something to move” 

(2000, 15). When mediated and extended sensory experiences no longer are 

experienced as your own, or you no longer experience yourself as the intentional 

agent generating these actions, the border for bodily and cognitive extension is 

reached. And perhaps this makes more sense. As I walk from home, disconnected 

from the Internet, I realize that there are limits to my reasoning, there are 

hypotheses and plans I can’t finalize as I lack information stored in an external 

database. I don’t feel my agency stretching all the way throughout the Internet into 

the storage vaults holding the insight I need, but I feel connected to it. The link is 

mine, a part of me. 

From extensions to communication 

We have the opportunity to extend our embodiment through new technologies, as  

new sensorimotor couplings are formed. The haptic senses are unique in this context 

as they partake in all sensorimotor coupling: Proprioceptively, as an inherent 

contributor to the motor system, and by the power of tactile skin sensations that 

cover the full extent of our bodies. The potential of any individual body is unique, 

however similar bodies (e.g. species-specific bodies) might share similar 

experiences. As we extend our embodiment, we also redefine the action space, 

allowing us novel experiences that influence the hypotheses we make about the 

world. This is a cognitive process, suggesting that cognition may be extended 

throughout our bodily space as well. The process of using movements (gestural 

shorthand) or physical objects to strengthen cognitive processes of learning and 

remembering is an example of how cognition is offloading into the environment.  We 

have found evidence that cognition may be distributed beyond the body proper, 

through the application of tools to extend peripersonal space, but also that sensory 

extensions into other modalities are likely to affect and influence cognitive 

processes.  The scientific research has not settled, neither in theory of empirically, 
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the extent of embodiment, nor what kind of cognitive processes that may permeate 

skin and skull, ranging from sub/nonconscious functions to higher level conscious 

thinking. While there is no doubt that we are exteriorizing memory and offloading 

selected cognitive processes into technical media, and that this shapes and informs 

our thinking, we have not set the expanse of the human body. For the purpose of the 

discussion ahead, the enactive approach seems to be the most beneficial track to 

follow, namely that the extent of the intentional agent is set by her sense of 

ownership of experience, and agency of actions. 

There is a special role reserved for the skin as a communication surface and 

mediator of semiotic and affective content, extending from the tactile to the 

proprioceptive through haptic interactivity. We have discussed how haptic 

sensitivity may be mapped, extended and distributed across spaces, and modalities, 

but less about the machine mediation of haptic feedback made possible through 

haptic technologies. Inherent in the haptic connection lies the opportunity for 

meaningful and emotional messages. 

The facilitation of haptic communication, by extending the sense of ownership 

and agency, is most often reflected in the material solution, but we must also 

consider the semiotic and affective dimensions of machine mediation and 

communication. But what exactly are the semiotics of haptic interactivity, and what 

is the role of affect? In the following chapter I introduce the concept of the haptic 

figura as an analytical tool to identify and qualify the material and semiotic solution 

of haptic devices, and the potential of affect in haptic interactivity. 
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4 INTERACTIONS  

Haptic Figura as Material Signs for 

Communication 

 

In the previous chapter we discussed how the haptic senses can be extended into 

other modalities or telepresence situations, presenting the rich world of mediated 

haptic sensuality. In this chapter we will develop this discussion to investigate the 

notion of haptic communication. Media artists and scholars use the word haptic to 

denote everything from touch technologies to media that respond to people’s 

gestures, it becomes difficult to understand what haptic media are or can be, and the 

term is as such in need of clarification. This chapter investigates the intimate 

relationship between touch, tactility, proprioception, and gesture, and proposes the 

concept of the haptic figura to describe the material and semiotic qualities of haptic 

interaction, as an attempt to provide the reader with a tool for analyzing and 

differentiating various haptic media artifacts. The recognition of haptic input in 

computers is becoming more commonplace, particularly when considering touch 

screens, biometric sensors, and motion capture devices. However, the commonly 

available haptic feedback repertoire is still rather limited. In the following, I aim to 

give the reader an overview, if not a complete taxonomy, of significant material and 

semantic parameters of haptic interaction, and the central role of affect in this kind 

of communication.  

The chapter is divided into eight parts: From Haptic Extensions to 

Communication, The Capability of the Haptic Senses, The State of Haptic Media, The 

Scope of The Haptic Figura, Haptic Materiality, Haptic Semiotic, Haptic Figura and 

Affect, and The Haptic Figura and Interface. Part I outlines the backdrop for 

understanding haptic communication, as consisting of transmissive, interpretive and 

interactive elements. Part II presents the capabilities of the haptic senses in 

consideration of interfacing with machines. Part III discusses the present-day 
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application of haptic technologies. Part IV introduces the concept of the haptic figura 

as a means to evaluate machine-mediated haptic communication in terms of its 

material solution, and ability to mediate semiotic and affective messages. Part V 

offers an overview of haptic hardware and areas of use as a means to frame the 

material solution of a system and what kind of haptic perception it supports. Part VI 

discusses potential and challenges in designing haptic signs, alphabets or even 

languages, to be utilized in machine mediated communication. Part VII investigates 

the close connection between haptic perception and affect. And finally, part VIII 

discusses the role of the haptic figura in interfaces, and the notion of a haptic 

interface.  

 

4.1 From Haptic Extensions to Communication 

Haptic communication: transmissions, interpretation and 

interactivity 

We use the words communication and interaction quite loosely in everyday 

conversation, without there being any need to clarify to one another what we mean  

by it, specifically.  However, to have a useful discussion on haptic communication a 

rudimentary working definition is in order. Communication theory has fronted three 

important aspects of communication over the last 70 years, viewing communication 

respectively as transmissions, as acts of interpretation, and as interactions. In 

framing haptic communication we need a model that can take a whole range of 

communicative items into consideration, the qualitative aspects of transmission, 

messages of meaning, and interactivity—ranging from non-verbal signals, signs, 

symbols, icons, gestures, motions and proxemics, and even vocal language into 

consideration. All of these aspects have a role in haptic communication. 

The transmission model of communication was first promoted by Shannon & 

Weaver (1949). It was based on telecommunication studies, which analyzed how 
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signals were being encoded, transmitted, and lastly, decoded. Communication was 

understood as the successful transmission of messages. This framework was later 

refined in the 60s by David Berlo proposing the sender-message-channel-receiver 

(SMCR) model of communication, which is today known as linear models of 

communication. It is an important contribution, because it underlines the role of the 

media platform in conveying and forming messages, which is relevant when 

discussing machine-mediated haptics. What it doesn’t take into consideration is the 

challenges connected to an “objective” encoding and decoding of signals. We all 

know that the person next to you may fail to grasp the intention of your statement 

even though it is articulated to perfection and rendered perfectly in the receiver’s 

ears. The fact that we do not necessarily interpret signals identically at any given 

time or place, is one of the significant shortcomings of the transmission model. To 

mend this an information model of communication was developed in the field of 

semiotics, seeking to understand the production and interpretation of meaning in 

acts of communication. Here one considered pragmatic (relationship between sign 

and interpreter), syntactic (relationship between signs) and semantic (relationship 

between sign and object) rules of communication, a distinction first noted by Charles 

W. Morris in Foundations of the Theory of Signs (1938). The role of semiotics in 

haptic communication will be further investigated later in the chapter, with a 

particular emphasis on the role of tactile and gestural signs, symbols, icons, and 

figures. 

But communication is more than the transmission and interpretation of 

messages. If not always, then very often we do something when we communicate—

we act. John Austin (1962) theorized the element of actions in communication as 

speech acts, a work that was continued by his student John Searle who identified five 

classes of speech acts: declarations, commissive, expressive, directives, and 

representatives (1969). These communicative acts are interactive, some even 

collaborative: they present relationships between two or more bodies, and they can 

be more or less successful. The extent to which media environments we act within 

promote social actions, they will have a significant effect on communication and 
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interactivity. In terms of machine mediation of haptic sensations, what form would a 

haptic “speech act” take, and how are these kinds of social acts connected to affect? 

The activities and tasks a haptic media environment supports, will influence social 

interactivity. 

So, how do these three understandings of communication, the transmission 

model, semiotics and speech act theory, relate to haptic communication? We need to 

interrogate haptic interactivity through all of these lenses. I find it problematic that 

haptic communication between human and machine is often described in terms of 

how the machine can detect and convey touch, postures, positions, motion, and 

forces, in a primarily transmissive manner. Much research is centered on the 

description and understanding of the encoding and decoding of signals, while very 

little attention is given to semiotic qualities, and the role of the machine as a 

platform for (inter)actions.   

This is not a purely theoretical issue. We are starting to see machines that are 

capable of interpreting haptic input and that can propose relevant haptic output 

based on the reading of the situation and environment, as well as rendering affective 

responses, so we need a broader scope to grasp the essence of haptic 

communication. In the following we will look at some noteworthy attempts to 

understand haptic interactivity in human-machine communication. 

Embodiment in human-computer interaction design 

To arrive at a model of interaction that specifically deals with embodiment (and the 

haptic senses in particular) as well as the relationship between human and 

machine/system, there are several well-established theories to consider, each 

emerging from its own specific field of research.  From the mid-60s to mid-80s the 

theoretical framework and mindset of designers and developers was rooted in early 

cybernetic reasoning (as discussed in the chapter 1), which came to influence the 

development of the personal computer environment we work with today. The 

graphical user interface (GUI), the introduction of the desktop metaphor, as well as 

the hardware interface of the desktop itself (screen, mouse, keyboard)—all limit the 
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role of the multisensory body, with their focus on screen-based mediation of visual 

content and limited physical manipulation and interaction. In the early ‘90s the field 

of human-computer interaction (HCI) research grew. This was a cross-disciplinary 

research field connecting principles and findings from cognitive psychology, 

engineering, industrial design, computer science and humanities, exploring and 

theorizing the intricate relationship and exchange between men and machines.  

An important insight that came to shape both industrial and web design was 

introduced in the pioneering work of Donald Norman: The Psychology of Everyday 

Things (1988). This work (re-)introduced the notion of affordance (inherited from 

psychologist J.J. Gibson) to explain how we perceive possible ways to interact with 

physical objects and interfaces, providing developers with basic design and usability 

principles for physical interaction. His principles have later been applied in screen-

based graphical user interface design with varied success. Ultimately, the concept of 

affordance became too vague and nonspecific to offer a clear direction.  In a later 

edition of the book (2013), Norman introduced the notion of signifiers, to limit his 

guide to the design of actions that are intended by the developer, as well as 

perceived and recognized by the user. At this point the design guide entered a 

closed-loop relationship between the intentions of the developer (as limited or 

directed as they may be), and her success rate in terms of communicating this 

intention to an end-user. Furthermore, the tactile component in identifying and 

manipulating objects as part of how a body can interact with the world, is no longer 

given particular consideration in the design guide. This makes Norman’s 

contribution insufficient for understanding how we engage the world with the haptic 

senses.  

Embodied interaction 

On the path towards a model which is simultaneously dealing with the haptic 

experience as well as the machine medium, there are important findings in Paul 

Dourish’s concept of embodied interaction. In Where The Action is: The Foundation of 

Embodied Interaction Dourish investigates the relationship between action and 
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meaning, and the mechanism of coupling (2004). He extends Heidegger’s theory of 

equipment (the concepts of present-at-hand and ready-to-hand) and the hermeneutic 

circle of interpretation, both outlined in Heidegger’s foundational Being and Time 

(1927). Dourish defines embodied interaction as “the creation, manipulation, and 

sharing of meaning through engaged interaction with artifacts” (Dourish 2004, 126). 

Dourish’s proposal is more an argument for the benefit of including tactile cues and 

physical manipulation in interaction design, without positioning it or connecting it to 

the embodied cognition thesis or similar theoretical or experimental research on the 

active role of the body in perception,57 which would offer that argument more 

weight. Still, Dourish managed to re-introduce the importance of haptic engagement 

and response to a human-computer research community much centered on visual 

representations. He also reiterated the significance of interpretation and production 

of meaning in embodied interactions, beyond written and vocal communication. 

Haptic interaction: from HCI, HRI, to HMC 

From the late ‘90s and into the ‘00s, the term human-computer interaction (HCI) has 

gradually been replaced by more specific concepts of interaction, often relating to a 

particular field (e.g. human-robot interaction or haptic interaction). The concept of 

haptic interactions appears on first glimpse to perfectly denote perspectives on 

interaction suited for this discussion. However, from the early 1990s the term 

haptics has been closely connected to devices and interfaces that relate to the haptic 

senses, and haptic interaction has become a terminology and discipline mostly 

associated with technological development in engineering and computer science 

research (Kajimoto et al. 2015) primarily directed at the sense of touch, and 

detached from the broader aspects of haptic experience. And as mentioned above, it 

is a research field primarily concerned with describing the transmissive qualities of 

haptic communication.  

 
57 See chapter 3 



INTERACTIONS 

 

171 

Human-machine communication58 as a research field, combining insights from 

earlier human-computer and human-robot interaction research, has been 

established the last five years, as a reminder that we need to extend our analysis 

from mere interactivity to communication. HMC understands communication as the 

“creation of meaning among humans and machines” by “focus[ing] on people’s 

interactions with technologies designed as communicative subjects, instead of mere 

interactive objects” (Guzman and Lewis 2020, 71). Here they present the machine as 

a subject, highlighting the significance of the semiotic qualities of human-machine 

interaction, as well as presenting the pressing need to understand machine 

communication as something other than human-to-human communication.  

We need to expand our understanding of human-machine interactivity, to include 

both parties, if we are to grasp the versatility and extent of haptic communication, 

and a good place to start is by unveiling the plentitude of the haptic senses. 

4.2 The Capability of the Haptic Senses 

I will start from a definition of haptic interaction as the study of machine recognition 

and interpretation of human touch, proprioception (and even affect) in the form of 

postures and gestures,59 as haptic input,  and machine mediation of tactile and 

proprioceptive responses, in the form of haptic feedback. So, a thorough 

understanding of the haptic senses is critical in both understanding and designing 

rich haptic environments. While a history of the term haptic and haptics was 

presented in the literature review, we will need a closer physiological understanding 

of the haptic senses for the discussion ahead. 

 
58 The website for the Human-Machine Communication (HMC) Interest Group of the International 

Communication Association (ICA). https://humanmachinecommunication.com/ 
59 I will primarily be discussing machine recognition of haptic input and output, and only briefly discuss 

haptic media, e.g. gesture controllers, utilizing machine vision analysis of gait, gestures and posture. 
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From touch to gestures 

The sense of touch is elementary and vast. Touch is the first sense to develop in a 

fetus, enabling it to separate self-touch from external touch, and it covers our entire 

body. Touch is a complex sense, offering us the ability to recognize texture, 

temperature, pressure, and pain. We also have different modes of interacting with 

the touch sense, as we can distinguish between passive touch where a moving object 

touches our skin, and active touch which describes our ability for texture 

recognition, grasping, and manipulation of objects. The sense can also both work in 

proximity with objects, as well as at a distance in recognizing heat, gravity and static 

electricity (some people tagging themselves as highly sensitive, state they can sense 

other types of radiation such as magnetism and x-rays, although there is insufficient 

scientific evidence to support such claims).  

In my discussion of the haptic senses in the literature review, I noted that touch is 

deeply connected with proprioception (and the vestibular senses), to the extent that 

it is difficult to state where tactile sensations end and proprioceptive sensations 

begin. So, the haptic domain clearly extends beyond the sense of touch. The haptic 

sense is a common denominator for  proprioceptive and tactile sensations, where 

proprioception is responding to sensations in muscles, tendons and joins, and 

involves bodily movement (kinesthesia) and gestures, and tactile sensations are 

indicating sensations in skin, such as vibration, pressure, and skin deformation 

(stemming from skin stretch and skin slip).   

The common conception also suggests a deep connection between the haptic and 

gestures. When describing John Carpenter’s interactive screen projections,60 Willis 

presents haptic art as “artworks that respond to people's gestures: pointing, 

pushing, waving, touching” (Willis 2014). In line with this, I consider both tactile and 

gestural interaction as haptic, as the proprioceptive feedback from gesturing directly 

responds to and shape our tactile sensations, and as a result are so deeply 

 
60 Willis discusses Carpenter’s Dandelion Clock (n.d.) and Trailer’s Anemone (2013), two interactive wall 

projections where the interactor uses her hands to interact and shape the projection.  
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interconnected that it makes little sense to consider them separate interactive 

categories when evaluating haptic media.   

Haptic sensitivity and sensorimotor control 

Tactile and proprioceptive sensitivity 

Our tactile sensitivity61 is primarily in debt to mechanoreceptors. Mechanoreceptors 

are sensory receptors recording mechanical pressure, stretching and rotation, 

typically measured as frequencies of vibration between 0,4-1000Hz, and are found 

on the nerve fibers and nerve endings (corpuscles) in the skin (Jones and Smith 

2014). They are distinguished by their receptive field (size of field that is activated 

when receptors are stimulated) and rate of adaptation (how fast receptors adapt to 

the transition between active tactile stimulus, and static, nonactive, stimuli, or said 

differently, how fast the receptor change their response based on the state of tactile 

stimuli). In terms of tactile sensitivity it follows that if the receptive field is small 

(type I), the tactile sensation is high and more specific, whereas larger receptive field 

(type II), will yield less sensitivity over a larger skin area, proposing that certain skin 

areas are better at detecting specific and pinpointed tactile input. In addition, the 

rate of adaptation (slowly adapting and fast adapting) will dictate how fast and 

specifically different types of tactile input can be recorded, or in other words, how 

well it records movement. As a result, we have four different types of 

mechanoreceptors (FAI, FAII, SAI, and SAII) distributed throughout the skin on our 

bodies, offering different kinds of tactile sensitivity, responding to vibrations of 

various frequencies.  As an example, our hands (fingertips in particular), lips, and 

foot soles are densely populated by FAI mechanoreceptors, which are fast adapting 

with small receptive fields, and respond well to frequencies between 1,5-100Hz , 

 
61 While the sense of touch is used to describe more than strict tactile sensations, such as sensations of 

pain, temperature, and itching, our discussion on haptic interactions are first and foremost concerned with 
haptic (tactile and proprioceptive) sensitivity. That said, we are already seeing haptic media interfaces that 
experiment with stimulus of pain (nociceptors) and thermal receptors to create plausible virtual 
environments. 
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meaning these areas are better suited at detecting precise and dynamic tactile 

stimulus, such as skin deformation, and, in consequence, direction, as two or more 

points of touch can be applied in sequence within a short time frame. The sensation 

of motion is essential to grip/grasp moving objects. 

On the other hand, our hands also have slowly adapting receptors with small 

receptive fields (SAI), sensing frequencies of vibrations between as little as 0,4 up to 

3Hz. These are essential in identifying objects, as they sense precise spatial details, 

curves and object edges.  Fast adapting receptors with large receptive fields (FAII), 

are the largest receptors and also the ones found mostly distributed over the body 

and is for that reason the most studied. These receptors respond to frequencies 

between 10-100Hz, but are most sensitive to frequencies between 250-500Hz. These 

receptors are fast adapting in that they are very sensitive to changes in force applied 

to the skin, recording transitions very well. (Jones and Smith 2014, 280-281). Slowly 

adapting receptors with large receptive fields (SAII) are key in detecting skin stretch 

(not so much skin indentation) and are thought to work in conjunction with other 

fast adapting mechanoreceptors and proprioceptive receptors to detect movement 

of grasped objects (Fleming and Luo 2013).  A separate kind of nerve fibers, called C-

tactile afferents (CT afferents or C fibers), have more recently been identified, 

responsible for the sensation of pleasant touch, achieved via slow, gentle movements 

e.g. experienced when petted or caressed. (Jones 2018, 17), suggesting that we have 

a particular sensitivity directed at affective touch.  

We can measure tactile sensitivity in the skin in terms of spatial and temporal 

resolution. Spatial resolution calculated from the two-point threshold method62 

which the minimum distance two stimulated points in the skin before they are 

experienced as one point. In fingertips that distance is 1 mm. Spatial resolution is 

also measured based on how well we detect unevenness, during static touch and 

strokes. As expected, we detect smaller bumps if when stroked/stroke the object. On 

the fingertips a difference in sensitivity of 13 nm as opposed to 0,2 has been 

 
62 As presented in the literature review, the two-point threshold method identifies the threshold for 

discriminating between two individual points of touch, formulated by Ernst Heinrich Weber in 1851. 
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measured (Skedung et al. 2013). The temporal resolution is measured in the length 

of time between pulses applied/delivered to the skin, for the sensation to be 

perceived as following one another and not as simultaneous. Currently this is 

measured to be 5 ms, which is better than vision, and less than audition (Jones 2018, 

48).  To summarize, signals from mechanoreceptors are responsible for recognizing 

location of points (spatially and temporally), orientations of objects, and pressure of 

force.  

Our proprioceptive sensitivity is situated in the muscle spindle receptors (which 

record changes in muscle length), Golgi tendon organs (which record changes in 

muscle tension - the perception of force), and joint receptors. Together with tactile 

sensory signals from mechanoreceptors, these spatial and motor signals allow us to 

sense the direction, amplitude and velocity of the movement of the limb and changes 

in limb position.  

Tactile perception plays a key part in proprioceptive sensing and vice versa. For 

this reason, it truly makes sense to talk about haptic sensitivity, as opposed to either 

tactile or proprioceptive sensitivity, when discussing tool use and interacting with 

haptics.  It also becomes apparent that the extent to which a haptic media device is 

able to track and map these variances in sensitivity will dictate what tasks and 

actions it can mediate. As an example, vibration feedback at 100Hz (which is the 

average feedback frequency of a touch screen phone) can only be recorded by some 

fast-adapting receptors, mostly FAII, and therefore only suitable for specific types of 

tactile notifications. 

Sensorimotor control and active touch 

Our haptic, and tactile perception specifically, is also greatly interwoven with our 

ability for sensorimotor control (Jones and Smith 2014, Johansson and Westling 

1984). The tactile apparatus detects a range of sensory signals, which allows it to 

perceive and recognize texture/roughness, pressure/weight, edges, curvature, and 

surface slip. These are qualities that are sensed passively, e.g. when an object is 

pushed against the skin. By actively exploring our environments with our haptic 
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senses, we utilize the tactile and proprioceptive sensitivity in conjunction with our 

sensorimotor control. This allows us to experience sensations of shear, friction, 

compliance (the softness/hardness or elastics of an object), larger shapes, and 

inertia (Jones 2018, 18), as it is first when we manipulate objects, certain tactile 

qualities are available to us. In our skin lies tactile signals that are key in “encoding 

the magnitude, direction, timing and spatial distribution of the fingertip forces” (40) 

which appear to us during active exploration. This sensorimotor contingency entails 

that the range of our haptic sensitivity will depend on whether we are actively or 

passively engaging with the world, which again is another parameter to consider 

when designing haptic media devices that accommodates haptic input and haptic 

feedback.  

From haptic sensitivity to haptic perception 

Haptic perception is vast and complex as noted above, and in terms of interacting 

with objects, and, in extension, machines, there are specific qualities that inform this 

interaction.  Human haptic receptors respond to three main categories of sensory 

input: namely vibration, force (sensation of pressure and resistance), and motion 

(sensation of movement and, in extension, duration). These sensations allows us to 

perceive geometrics (size, shape, orientation, curves), material (surface texture, 

temperature), compliance (elastics or how fast/slow an object/substance is 

displaced), and viscosity (how much force must be applied to an object/substance 

for it to gain velocity) (Jones 2018, 52-58). We also distinguish between passive and 

active sensing, in which active sensing allows us access to a whole new range of 

perceptions, as we manipulate objects. A subset of active sensations is called 

exploratory procedures (Lederman & Klatzky 1987). These procedures denote 

simple haptic gestures we perform to reveal certain properties of an object, e.g. 

squeezing a ball to confirm how hard it is. Later developed by Jones & Lederman in 

Human Hand Function, the authors list six different procedures performed to 

relevant properties. We utilize lateral motion to perceive texture, unsupported 

holding to identify weight, we apply pressure to uncover the hardness of an object, 
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we enclose object to identify volume or global shape, we apply static contact to sense 

temperature, and finally, contour following to grasp global shape or exact shape 

(2006, 77). We often use these procedures in conjunction to identify objects. 

No doubt the haptic apparatus is complex and versatile, and as we have seen 

above there are several parameters that need to be considered when designing 

precise and meaningful interactions utilizing haptic input and haptic feedback 

functionality in humans and in machines. We have a long history of designing tools 

and media interfaces that recognize our tactile and proprioceptive capabilities, 

allowing for a range of haptic input. I am especially thinking of tools made for our 

hands, in the shape of pins, levers, buttons, and wheels. But as we also have a highly 

developed sense for responding to tactile and proprioceptive feedback, and while 

there are devices offering machine mediated feedback, the repertoire is still rather 

limited. 

4.3 The State of Haptic Media 

From tactile media to haptics 

The go-to haptic media of today are different touch screen devices that recognize a 

set of haptic inputs and provide a limited repertoire of haptic output.63 There are 

also specialized and customized devices and biometric sensors for health 

monitoring, gaming, music performance,  experimental art, that consider more 

varied bodily input (pulse, heartbeat, temperature, moisture) and haptic feedback 

(pneumatic or electric vibrotactile pulse patterns in seats or wearables) than 

handheld commercial communication devices. These provide us with an idea of how 

 
63 Developers who seek to implement tactile feedback in touch screen devices are offered many 

applications where they can test different feedback patterns. In running the apps like Haptic Effect Preview 
which later transitioned into the Haptic Test Tool app (downloaded August 2016 and October 2018 
respectively, both for Samsung Galaxy S7), a repertoire of haptic feedback patterns that can be produced 
with any present-day Android or Apple device, is made available. Both apps suggest a rather optimistic range 
of vibro-tactile patterns - all buzzing with approximately the same Hz frequency, categorizing the patterns 
types with ambitious names such as Collision, Engines, Textures, Alerts, Pulses and so on. However, the 
perceived feedback is not very varied, and in many cases indistinguishable from one another. 
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much richer day-to-day computing can be. We also have many gesture recognition 

systems which primarily track haptic input: motion tracking devices (utilizing 

camera and depth sensors) such as Kinect, data gloves (equipped with 

accelerometers, gyroscope and bend sensors), or controllers (e.g. Freespace or Wii). 

Machine mediated force feedback provides the interactor with tactile and 

proprioceptive sensations in the form of vibrations, electrostimulation, and 

sometimes heat. Previously most feedback devices were mechanical grounded (to a 

surface) to offer the force necessary, but the most common feedback devices are 

embedded in mobile devices, providing simple buzz-feedback. 

If we consider all of these media systems, it is clear that haptics can and should 

be understood as more than tactile screen devices. Media theorist Mark Paterson 

discusses how the concept of haptic media has been understood as interfaces that 

only target the sense of touch, and suggests an expanded sense of haptics that 

includes a wider set of the somesthetic senses: "one that spans across bodily surface 

(especially cutaneous pressure, 'mechanoreceptors'), bodily interior (especially 

muscle-based stretch receptors necessary for proprioception, 'proprioceptors') and 

the touchable and manipulable parts of an object (e.g. the touchscreen, the button, 

the lever)" (2017, 1548). It is such a view of haptics through which examples of 

haptic media that will be discussed.  

Sensory emulation, semiotics, and affect 

There appear to be at least three levels for haptic technologies to engage and 

interact with users, often working in conjunction. First, we have technologies that 

specifically aim to emulate sensory experiences, such as temperature, surface 

textures, and forces, and in a way “fool” our haptic sense to accept these as real. A 

prime example is haptic clothing, i.e. the TeslaSuit64 (which will be discussed more 

thoroughly in the final chapter), that aims to produce complete virtual sensory 

experiences for the wearer, most often coupled with AR/VR-glasses to fully immerse 

 
64The TeslaSuit is a full-body wearable utilizing biometrics, motion capture and various haptic feedback 

technologies to emulate virtual sensory experiences.  https://teslasuit.io 
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the interactor in a virtual environment. A key feature of many of these technologies 

is that the interactor does not need to be consciously aware of the sensory 

stimulation provided to be effective. In fact, these technologies benefit if the sensory 

stimulus is seamlessly incorporated into your experience without you thinking 

about it, as you would everyday life sensory experiences. You are rarely consciously 

aware of the hardness of your bike seat or surface texture of your keyboard, unless 

you are forced (either by discomfort or conscious choice) to pay attention to this.  

This type of haptics gets a lot of commercial attention, particularly fueled by the 

promise of immersion offered by the second coming of VR.  

A second type of haptic technologies aims to facilitate the communication of 

meaning and intention, providing the interactor with an interface for receiving and 

transmitting signs and messages. These technologies need to be specific in when and 

where (on the body) they are applied, as they need to capture the interactor’s 

attention, either by offering event notifications or more cognitively demanding 

operations, such as interpreting incoming and composing outgoing messages. We 

see a lot of development in haptic warning and assistance systems (most commonly 

designed as simple buzz notifications, alerting the user that something has 

happened, or is about to). From event confirmation or event notification 

desaturating screen interaction, to assisting operating different vehicles or aircrafts 

(force feedback in steering wheels/sticks, belt, pedals and seats) or even guiding 

orientation, positioning, and direction (force feedback in wearables indicating when 

the user is off-track, e.g. in telesurgery, racing games or navigation). A third type of 

technology aims to interpret and communicate affective content. These are 

technologies that aim to identify particular emotional states based on haptic input 

from the user (caring strokes versus violent beatings) and in return offer different 

responses based on that input. There is an increase in the development of social 

touch and affective touch systems within robotics. 

While the first type of haptic technology is the most developed at this point, with 

its ubiquitous qualities, this chapter also seeks to investigate the potential of haptics 

as an interface for communication of signs, messages and emotional content, that 
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can function on its own or as part of a mixed reality setup including screen 

interfaces. Many researchers and engineers working with haptic interactivity are 

primarily focusing on the structure and sophistication of the encoding/decoding 

method of touch data (mapping and tracking of different parameters and modalities) 

promoting a rather reductive view of haptic communication. Despite there being a 

range of devices that were designed with primarily encoding/decoding parameters 

in mind, it is still useful to analyze the interaction these devices offer through a 

broader scope. 

I argue we need to move from a purely transmissive understanding of haptic 

communication to include interpretation and interactivity.  Specifically, I seek to 

interrogate haptic media interactions for their material, semiotic and affective 

qualities, and in the following I will introduce the haptic figure as a means to frame 

this analysis. 

4.4 The Scope of the Haptic Figura   

The haptic figura is an analytical tool that addresses both the material and semiotic 

qualities of haptic interaction (machine rendering of haptic input and machine 

mediated haptic response/feedback). As we shall see, in the heart of haptics we also 

connect with the affective dimension of haptic interactivity.  

From iconography to material sign 

The range of sense impressions we are able to recognize and interpret is vast. In 

addition to harboring complex parameters for recognizing and reading haptic 

signals, we produce haptic postures and gestures that form meaning clusters (signs), 

either to present concrete words in an alphabet (a non-visual alphabet or sign 

language), or tactile metaphors that trigger our ability for abstraction. This shows 

that we have rich potential for reading and communicating using our haptic sense. 

By turning haptic cues into haptic signs, we can extend our human-machine 

communication significantly, we may even teach our bodies to interpret a new 



INTERACTIONS 

 

181 

language.  Previous and successful interface design, e.g. the GUI/WIMP65 framework, 

introduced the desktop metaphor which utilized communicative vehicles such as 

icons and symbols to bridge human intention and machine potential. This type of 

interface is, as discussed in the early chapters, a primarily visually centered 

interface, carrying components that are less relevant when considering haptic 

interactivity. Icons are graphical, related to the image, a pictorial likeness to the 

things they represent, and as such binds it to the visual representation of the 

reference. Symbols on the other hand are culturally specific and conventional and 

prove for that reason difficult to be utilized in interface design.   

So, we need an alternative to analyze the flow of signals between humans and 

machines. Signs function as signals (which may take the form of bodily gestures), 

communicating a meaning. Signs in interface design have been heavily related to 

icons and sign processes (reading/writing via engaging with icons). To offer a move 

beyond a purely iconographic thinking in haptic interface design, I propose to use 

the metaphor of the figure, and consider signs as figures, that is, as expressions that 

combine aspects of meaning, reference and affect. The figure is versatile as it may 

simultaneously symbolize a fact or an ideal. That is, the figure is weighing the 

materiality of the sign equal to the idea it represents. Let’s dig into this and allow me 

to use Auerbach’s notion of the figure as a starting point. In his well-known essay 

“Figura” he proposes the following: 

 

Figural interpretation establishes a connection between two events or 

persons, the first of which signifies not only itself but also the second, while 

the second encompasses or fulfills the first. The two poles of the figure are 

separate in time, but both, being real events or figures, are within time, within 

the stream of historical life. Only the understanding of the two persons or 

events is a spiritual act, but this spiritual act deals with concrete events 

whether past, present, or future, and not with concepts or abstractions; (1984, 

53)  

 

 

 
65 Graphical user interface with the window/icon/menus/pointer setup. 
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With figural interpretation Auerbach proposes a new way of reading and 

interpreting religious (primarily Christian) texts (which really is proposing a new 

way of interpreting reality). A person or event prefigures another in history, and the 

latter is a fulfillment of the first (e.g. Joshua is a figure and Jesus the fulfillment of the 

figure). The figural relationship between the two is what will bring forth the full 

significance of the story. As such the figure signifies itself and what it represents 

(point towards), and what it represents is a realization of the signified. 

What I bring with me from this perspective is that the figure exists between eidos 

(idea) and schema (forms perceivable by the body), it is both an idea and flesh, and 

the sensuous aspect cannot be reduced to a sign. The meatiness of the figure is 

significant. I suggest that by moving from icon to idea-form thinking, the concept of a 

haptic figura has the ability to function as a liberating metaphor in interface design, 

freeing us from strong iconographic representation when developing haptic media 

technologies. Instead we may aim to identify, capture and emphasize inherent 

qualities of the haptic sense. The haptic figura promotes the intrinsic value of the 

communicated sign, as both form (the haptic gesture itself) and idea (what it refers 

to) are of equal importance.  

Metaphor and methodological tool 

I see the haptic figura function as a metaphor that reminds us of what is important to 

consider when involving haptic senses in personal computing environments. The 

haptic figura emphasizes the material and semiotic qualities of human-machine 

interaction, as it emphasizes the materiality of the sign, the embodied quality of 

communication between bodies. But I also see it is a methodological tool for 

analyzing haptic interactivity, by putting individual attention to the haptic gesture as 

a material and visceral act, as well as the sign itself as a bearer of a particular 

encoding that may be exchanged and possibly interpreted (be a bearer of meaning). 

The haptic figura captures the message-carrying gestures in human-machine 

interaction. While the haptic figura offers insight on the overall haptic 

communication between man and machine, as an investigative metaphor and tool 
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for understanding tactile and gestural input signals and signs, it will be directed 

more specifically towards haptic feedback, as this is the field of haptic 

communication that is most lacking. 

The haptic figura addresses two aspects of haptic communication—the physical 

expression (haptic gesture) and the communicated sign. I will discuss these two 

aspects under the following headlines: haptic materiality and haptic semiotics, in a 

first attempt to sharpen the analytical tool. 

4.5 Haptic Materiality 

The material solution of haptic media defines and frames the support of haptic 

perception, the active exploration arriving from tactile and proprioceptive cues.  

As an example, tactile systems will not acknowledge proprioceptive signals, and may 

only simulate force feedback sensations. Likewise, full material support is not 

necessary for all kinds of interactions. So, to arrive at an understanding of how the 

material solution influences haptic communication, we need to distinguish tactile 

and haptic media, input and feedback solutions, to the extent it interfaces with a 

body-part of the full body.  

Haptic technology can be distinguished in several ways.  Generally haptic 

technologies cover all kinds of systems that mediate real or emulated haptic 

sensations, perceptions and interactions between man and machine. There are 

systems that are specifically designed to decode haptic input, others that encode and 

apply haptic feedback, and some do both. We can also distinguish haptics for robots 

(machine recognition of haptic sensations), invasive haptics (e.g. brain stimulation), 

and non-invasive haptics. This chapter is most concerned with non-invasive haptic 

feedback technologies, as that is where the potential of haptic technologies is least 

understood and theorized. For this reason, the section on materiality is primarily 

focused on the encoding and application of haptic feedback, although there will be 

cases where the machine recognition of human touch is part of the haptic systems 

discussed.  
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Haptic systems exist in many shapes and relationships to the body, ranging from 

hand-operated surface technologies (tactile and haptic displays) to full-body 

wearables (exoskeletons or suits). An important distinction is made between purely 

tactile systems and devices that engage the full haptic sensory apparatus 

(proprioception included). While tactile systems primarily target sensations in the 

skin, such as vibration, skin stretch and skin slip, fully haptic systems can also utilize 

sensations of force and motion. Traditionally, systems that offer force feedback 

sensations have required heavy actuators that dictate the design solution terms of 

size, degree of freedom (DoF),66 and mobility.  

There are many proposals for organizing haptic feedback technologies, and a 

useful distinction is introduced by Culbertson et al., contrasting between graspable, 

wearable and touchable haptics (2018). Graspable haptic devices are grounded and 

specifically targeting proprioceptors (utilizing force-feedback and sensation of 

motion). Wearable haptics are primarily tactile (targeting sensations in the skin via 

vibrations, skin stretch, and deformation), and may be both grounded and 

ungrounded.67 Touchable systems can target tactile, proprioceptive or our full haptic 

sensitivity, and either be grounded or ungrounded (mobile). Another proposal for 

classification separates devices targeting proprioceptors that are body-grounded or 

world-grounded, and devices that are purely tactile and ungrounded (Pacchierotti et 

al. 2017). Others again propose a division between  passive devices (systems 

utilizing passive actuators for force sensations, such as a break, and hence offer low 

DoF), rigid haptic controllers (grounded haptic systems with active actuators), and 

ungrounded systems (primarily tactile systems, or haptic systems using tactile 

actuators or gyros (Yano et al 2003)).  

 
66 In mechanical engineering and robotics, DoF or degree of freedom, denotes the mobility of a rigid 

body. A highly mobile body has 6 degrees of freedom, as it can move: Left, right, up, down, forward, 
backward, pitch (tilt forward and backwards), roll (pivot from side to side), as well as yaw (turn left and 
right). In the design of haptic feedback systems, the DoF is measured in terms of many kinds of movement 
the device may offer feedback for.  

67 Culbertson et al. also include exoskeletons in this category, which being body-grounded (but not 
world-grounded) will be able to provide proprioceptive cues to the wearer. 
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The distinction between grounded and ungrounded is particularly relevant for 

haptic feedback devices, in terms of how force-feedback may be applied, as 

grounded devices can utilize the natural resistance of a body or environment 

(world) in generating forces. This brings us to another important design choice, 

namely the decision of utilizing admittance or impedance control to determine how 

haptic feedback forces are applied and controlled. In admittance devices the system 

detects the movement (as in force) applied by the user and offers (or controls) 

resistance according to the object or surface it simulates. As such it applies forces 

onto the user. Admittance systems are great for emulating stiff surfaces, but not so 

much low inertia (Keemink et al. 2018) nor offering forces in multiple directions 

(low DoF). Admittance devices are therefore useful for applications where 

significant force needs to be applied in a specified direction. Impedance devices, on 

the other hand, reflect or resist forces, and take the position of the user as a starting 

point for the force response. For this reason, they struggle with emulating stiff 

surfaces, but are great for rendering low level sensations of inertia. Due to the cost 

and ease of design, impedance systems are also the most common, and it is the 

control solution used in most tactile and haptic surfaces, as well as displays for 

teleoperation. 

To be able to navigate the many different haptic technologies, I have suggested 

some categories to distinguish between them. We need to consider the machine 

mediation of haptic input and haptic feedback apart, and also between full-body 

interfaces and haptic media directed at particular limbs or areas of the body.  

But perhaps the most important distinction is made between tactile, proprioceptive 

and haptic devices, and the ability of the different systems in supporting haptic 

perception, as it frames mobility, force representation, and tactile sensitivity. 

In the following we will take a closer look at a set of different systems, affording 

tactile, proprioceptive, and haptic perception, respectively. Namely, tactile displays, 

selected haptic surfaces, and controllers. 
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Tactile displays for the skin 

Tactile sensations in haptic feedback systems are mostly presented as tactile 

displays and surfaces, which offer sensations of static pressure (skin indentation), 

skin stretch/skin slip, and vibration, by stimulating mechanoreceptors in the skin. 

The most common delivery methods for these sensations are static tactile, 

electrotactile, vibrotactile stimulation giving the interactor a sense of geometric and 

material qualities, as well as a sensation of force (primarily through the use of small 

tactile actuators applying pressure against the skin). 

 

 

 
Figure 36. Press photo of Haptic Edge Display which utilizes static tactile stimulation. Image sourced from 

project website.  

 

 

Systems utilizing static tactile stimulation are most often pin based arrays where 

linear actuator motors (LRAs) or piezoelectric motors (which are utilizing 

mechanical motion to charge the motor) in the form of mechanical actuation that 

indents the skin, presents the touch sensation. Braille displays or tactile arrays are 

common systems utilizing this kind of tactile stimulation, but we also find novel 

mobile controllers, such as the Haptic Edge Display,68 where an array of linear 

actuators, placed in a single direction on the device, can be arranged to present 

different buttons and controllers for the user (Jang et al. 2016).   

 
68 The Haptic Edge Display was first developed at Tangible Media Group at MIT, later continued by 

Sangjune Jang. http://www.sjjang.com/haptic-edge-display 



INTERACTIONS 

 

187 

In electrotactile or electrocutaneous stimulation electrical charges (formulated as 

brief and constant pulses) are presented to the nerve endings in the skin directly via 

arrays of electrodes. A design advantage in using electrotactile stimulation is there 

are no motors involved, ergo the component contains no moving parts, which makes 

it robust and less prone to adding unwanted vibration/noise. On the other hand, 

moisture is needed for conductivity, which makes the solution less versatile. Another 

disadvantage is the small dynamic range of the sensation, meaning that the range of 

stimulation from it being perceptible to becoming painful, is small. Some systems 

utilize combinations of electrotactile stimulation, to better emulate the sense of 

force. One example is transcutaneous electrical nerve stimulation (TENS or 

TNS/EMS) which combines electrical muscle stimulation (EMS) with transcutaneous 

electrical nerve stimulation (TENS).69 Finally, electrotactile stimulation requires 

little power, and is therefore relevant for wearable systems running on batteries. 

Vibrotactile stimulation can be achieved in several ways. The most common 

method is in combination with electrostatic tactile actuation, where the skin 

vibration is achieved mechanically as motors transferring electrical charges are 

causing the perceptible mechanical motion. There are mainly two types of motors 

commonly used to produce vibration sensations, electromagnetic and piezoelectric 

vibration motors.70  Vibrotactile stimulation can also be achieved without motors 

using electrical charges, but in contrast to electrotactile solutions, stimulation from 

 
69 This type of combined electrotactile stimulation is utilized in several haptic wearables, among them 

the full-body Teslasuit (https://teslasuit.io/) 
70 Of electromagnetic motors, eccentric rotating mass vibration motors (ERM) and in linear resonant 

actuators (LRA) are the most common. In ERMs vibration is created by rotating, uneven centripetal force, 
and delivers vibrations above 100Hz. This means they primarily target the Parcinian corpuscles (which we 
remember fast adapting receptors with large receptive fields), meaning this kind of vibration will be sensed 
by a larger skin area, and therefore not be very specific. While these motors are cheap and have been used 
extensively, they have been gradually replaced by LRAs and piezoelectric actuators. In LRAs and solenoids, 
there are no external moving parts, and vibration is produced from a linear motion (up/down or back/forth) 
from a central mass. Inside the LRA a spring is tensed from the pressure from central magnetic mass that is 
set in motion by an electrical signal via voice coils. Both of these vibration motors convert electricity into 
kinetic energy via electromagnetism, but the LRAs are more efficient (both energy and timewise) and 
responsive (less latency from activation until the vibration starts).  
Piezoelectric actuators generate electricity which causes vibration when a material stressed by mechanical 
motion, such as bending or pressure. In addition, they can vibrate in several directions, as opposed to LRAs 
and ERMs, and as LRA’s they require less power to run. Piezoelectric actuators can come in many different 
sizes and layers, in addition to offering vibration at many different frequencies, making them incredibly 
versatile and relevant when designing haptic feedback solutions.  
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electrovibration is indirect as no charge passes through the skin. Mechanical skin 

deformation is caused by electrostatic forces which arise when fingers slide over 

display. So, fingers need to be in motion and function as the actuator, to produce the 

skin deformation effect. This technology has been successfully implemented in 

several tactile displays.71 Electrovibration is generally a great solution for surfaces as 

the technology is easily scalable, there is no noise as no motors resonating causing 

unwanted frequencies, the feedback potential is instant and even across the entire 

surface. However, it affords only one tactile signal per surface. 

Force touch 

Vibration sensations derived from vibration motors are good for several types of 

sensation, and have been key in creating experiences of texture, as well as illusions 

of motion, strokes, and pulling. However, vibration is not particularly useful in 

creating sensations of force. As Culbertson states in an interview with Phys.org: 

“With vibration, you can create the feeling of motion, but it doesn't feel like you're 

mimicking a human touch—it just feels like buzzing," she said. "It's also very hard to 

isolate vibration, so people just tune it out" (Dawson 2018). Emulating the sensation 

of force (e.g. sensing weight and stiffness) is the most challenging aspect of purely 

tactile surfaces, and beyond vibrotactile vibrations, tactile actuators72 have been the 

main method to deliver force sensation in the form of skin pressure. In addition to 

the delivery methods discussed above, we also see novel development in the field of 

microfluidics,73 where arrays of pneumatic actuators and air produce suction and 

pressure.  However, not all experiences of pressure are generated by actuators 

 
71 TeslaTouch (Bau et al. 2010) is a tactile feedback technology derived from electrovibration labeled 

Electrostatic Friction, which has also been utilized in the Revel project by Disney Research (Bau and 
Poupyrev 2012). Similarly, Apple has developed their own version of electrovibration for the touch surfaces, 
labelled Taptic Engine, combining a static force sensor with a lateral vibrator, which is customized for 
different Apple devices. 

72 Tactile actuators include LRAs (primarily used in pin-based displays), solenoids, piezoelectric 
actuators, pneumatic actuators, ultrasonic transducers, and microfluidics. 

73 The wearable HaptX glove (https://haptx.com/technology) and NewHaptics’ Holy Braille project 
(https://www.newhaptics.com/holy-braille-project) offering full-page tactile displays for graphics are two 
recent devices utilizing microfluidics.  
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physically touching your skin. There are also projects, such as UltraHaptics,74 which 

present mid-air haptics via non-contact displays, where various pressure sensations 

in the skin, allow the user to feel shape and texture, even 3D images in the form of 

haptic holograms. What is agreed upon is that we need to move beyond buzz 

sensations generated from vibration methods, to actuated force feedback to produce 

authentic force sensations. 

From tactile, proprioceptive to haptic devices 

So, we have tactile displays and wearables75 that deliver tactile sensations, including 

emulated force sensations from different kinds of actuator technologies. Another 

field of haptics is primarily directed at proprioceptors (often called kinesthetic 

devices), which are mostly good at presenting deep force sensation, and little tactile 

feedback. In kinesthetic devices force feedback is primarily offered via bigger 

actuators in combination with position and force sensors to deliver precise 

sensations. These devices are therefore good at presenting sensations of 

stiffness/hardness, movement, and weight, but offer very little information of 

surface texture and local geometry. Haptic devices, on the other hand, aim to 

combine the best of worlds, by offering both tactile (relating to the skin) and 

proprioceptive (relating to muscle movement and posture) sensations. In these 

devices, forces recorded by proprioceptors are delivered in conjunction with tactile 

feedback, to successfully combine both types of haptic feedback. Furthermore, they 

have a greater potential for active haptic perception, where we explore and 

manipulate objects and virtual worlds with our full haptic apparatus. As we 

discussed earlier, these are actions that allow us to experience sensations of friction, 

shear compliance, inertia, and larger shapes. Sensation of shear and friction are key 

 
74 https://www.ultrahaptics.com/ 
75 One example of tactile wearables are haptic armbands, where the most common ones are smart 

watches and heath monitors offering haptic feedback in the form of vibration (i.e. Fitbit). However, we also 
see the development of haptic armband utilizing tactile actuators to produce more natural force sensations. 
By adding single rows of actuators in the arms, these are devices which may be able to target social and 
affective touch sensations, emulating strokes and pats, by activating actuators in a given direction. 
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in emulating the feeling of contact or impact. Impact sensations have generally been 

the most challenging to produce in haptic devices and have usually been solved 

using vibration to emulate feelings of texture and contact (Hannaford and Okamura 

2008, 730). The facilitation of haptic perception is essential in teleoperations or 

virtual environments where the interactor needs to be able to manipulate virtual 

objects and recognize surfaces. But the more complex the haptic media system, the 

less mobile and versatile they are.  

Haptic surfaces and controllers 

Haptic surfaces typically utilize pin arrays controlled by actuators to emulate 

stiffness, shape, and ideally, the texture of surfaces. These are most often designed 

using large pin arrays, that instead of just offering force touch sensation in single 

direction as is the case with linear arrays, they emulate real-life surfaces that we can 

explore actively. For this reason, they are also often big and cumbersome, with fixed 

surface resolution. We haven’t made a comprehensive haptic surface, so far the 

devices are either offering little in terms of texture representation, or the haptic 

interaction is one-way, as is the case with visuo-haptic environments. One example 

of this is the inFORM project developed Tangible Media Group at MIT. InFORM is a 

haptic shape display consisting of an array of actuators that is rendering three-

dimensional content over distance. This display allows users to create shapes, as 

well as manipulate physical objects over distance. The system can change its surface 

based on shapes, gestures and postures mapped from the interactor (Leithinger et al 

2014).  
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Figure 37. Pressphoto of developer Sean Follmer interacting with the inFORM device. Downloaded from 

Tangible Media Group, MIT, under a CC-NC-ND license. 

 

 

However, inFORM is merely mirroring gestures and postures virtually before 

translating this data into actuator positions on the shape display. The machine is not 

really interpreting and responding to a human gesture. The interactor will also only 

experience a visual feedback of the tele-touch.  There are also haptic surfaces made 

with pneumatics (often called deformable crusts), where the sensations of shape and 

stiffness are achieved by controlling the surface (and not by forming the surface with 

pins underneath). These soft robotic solutions only offer stiffness control. However, 

in conjunction with electrostatic stimulation or ultrasound vibration, more tactile 

sensations such as texture or friction may be applied.  

Haptic controllers (specifically for hands) are becoming more commonplace and 

have found their use in virtual and augmented reality settings. In contrast to haptic 

surfaces, haptic controllers are not aiming to represent real-world environments. 

Instead they aim to emulate sensations in a specific area (a hand, or selected digits), 

or represent virtual objects for the hand.  The latter approach is becoming more 

common in haptic controller design, as simulating objects, as opposed to simulating 

hands, is less complex. One example of this is the TORC (TOuch Rigid Controller), a 
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grounded haptic hand controller designed to understand objects in terms of 

compliance (sensation of elastics), texture, shape, and size. The TORC targets the 

thumb and two index fingers, in the thumb operates a track pad which ensures 

texture sensation, the two index fingers are coupled with vibration motors, and 

between the index finger and thumb you find a pressure sensor (Gonzales Franco 

and Ofek 2019).  

 

 

Figure 38 and 39. Screenshot of TORC (TOuch Rigid Controller) by Microsoft Research (left). Pressphoto of 

Reactive Grip Motion Controller by Tactical Haptics (right). Both images courtesy of the developers. 

 

 

Controller application is very much influenced on them being rigid or grounded, 

as in the case with TORC, or if they are ungrounded, such as the Reactive Grip 

motion controller.76 This controller is also novel in how actuator technology and 

sliding plates are applied to produce more natural force feedback, specifically 

mimicking forces of friction and shear, the detailed sensation of strain on impact 

with an object or surface (Provancher 2014, 19).  A general insight is that haptic 

controllers supporting haptic force feedback easily become cumbersome, and rather 

specialized, designed for certain tasks at the cost of others. With haptic surfaces that 

are inherently grounded, the specificity of the interfaces becomes even more 

pronounced. 

 

 
76 The Tactical Haptics Reactive Grip is a mobile haptic controller specifically designed for VR 

environments that supports sensation of shear and friction. https://tacticalhaptics.com/ 
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The role of materiality in the haptic figura 

I have proposed haptic materiality as one analytical aspect of the haptic figura.  

Haptic materiality is a measure of authenticity—the extent to which active haptic 

perception, our intent for action, is supported in the material solution. Authenticity 

does not entail an exact duplication of real haptic sensations. Rather, it is understood 

as the extent to which the perceptive opportunities we expect when manipulating 

objects or navigating an environment with our bodies, is translated when interacting 

with virtual objects or worlds. The potential for haptic perception (achieved when 

combining passive tactile and proprioceptive sensations, with sensations derived 

from engaging our sensorimotor apparatus by manipulating and actively exploring 

objects and environment) in communication is significantly influenced by material 

qualities. This entails the support of physical sensations of force, as well as detailed 

tactile sensations of surfaces. The degree of authenticity in haptic communication is 

a measure of the successful implementation of these two parameters, both when 

passively and actively experiencing an environment.  

But haptic communication is more than a measure of hardware platform and 

functionality in terms of authentic mediation. Haptic media devices also afford the 

opportunity to establish a connection between sensation and meaning, which leads 

us to the second aspect of the haptic figura—haptic semiotics. 

4.6 Haptic Semiotics 

We have discussed the significance of material choice and design of haptic devices in 

terms of mediating authentic sensory experiences, also in virtual worlds or tele-

environments. We still need to steer clear of a reductionist view, where haptic 

sensing is reduced to a grammar of signals (the receptors and emitters of signals, the 

signal to the skin system and back, and so on), when we already know that haptic 

communication may offer so much more. If we are to understand haptic 

communication beyond the purely transmissive qualities, it is fruitful to consider the 

interpretative qualities of haptic interaction, where we may view haptic signals as 
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messages sent via and from machines that carry meaning and intention. Can we even 

think of these haptic technologies as giving us access to a new language of touch and 

proprioception that is constructed and learned or is it more useful to consider this 

exchange on its own terms?  

In the following I discuss the concept of signs and messages, and connect it to the 

idea of haptic iconography, a current direction in interaction design for the sense of 

touch, to present a framework for haptic semiotics. I consider haptic semiotics to be 

the second significant part of the haptic figura, emphasizing message-carrying 

qualities in haptic communication. 

Haptic signs and semiology 

Contemporary linguists Charles Sanders Pierce (1839–1914) and Ferdinand de 

Saussure (1857–1913) marked the beginning of a theory of semiotics, the study of 

sign processes in the production of meaning. Pierce, who coined the term semiotic, 

understood this process as triadic, analyzing the relationship between sign, object, 

and the interpreter, including both the external world (the object), and the internal 

representation (within the interpreter). Saussure chose instead a dualistic approach, 

understanding meaning to be a relationship between signifier (the word uttered) 

and the signified (the mental concept), proposing no necessary link between signifier 

and signified. Pierce and Saussure mainly considered symbols and signs to be visual 

and linguistic (written or spoken words) and paid less attention to meaning and 

interpretation of touch gestures. So moving beyond Saussure’s and Pierce’s 

contributions, I find a valuable insight in Lazzarato’s Signs and Machines: Capitalism 

and the Production of Subjectivity, where he (building on Guattari’s work) proposes 3 

classes of signs: a-semiotic encodings, signifying semiologies and a-signifying 

semiotics.  He distinguishes between semiotics and semiologies, where semiotics is 

the study of signs that are being exchanged before or beyond the realm of 

interpretation (e.g. human DNA and crystalline structures (a-semiotic encodings) or 

machine code (an a-signifying semiotic). Signifying semiologies are the study of the 

interpretation of signs or signs that are becoming semiologies (these are symbolic, 
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able to produce meaning).  Haptic signs fall under a symbolic signifying semiology, 

which includes all “pre-signifying, gestural, ritual, productive, corporeal, musical, 

etc... semiologies” (Lazzarato 2014, 67). He continues arguing that “[s]ince symbolic 

semiotics are 'transitional, polyvocal, animistic, and transindividual,' they are not 

easily assigned to individuated subjects, to persons ('I,' 'you')" (69), which suggests 

to me that haptic signs may have a broad cultural and social applicability. The claim 

that certain haptic gestures and postures are more or less universal, is not new.  

 

Figure 40. Illustration from John Bulwer's 1644 book Chirologia, a compendium of manual gestures from 

religious, social, literary and medical contexts, e.g. the gestures of Applause, Honor, Admiration or Invitation. 

Public domain. 

 

As early as in the 16th century, physician and natural philosopher John Bulwer 

argued for a natural hand language of gestures which was closely connected to the 

faculty of reason. He collected manual gestures and gestures of speech and 

discussion in the two books Chirologia and Chironomia published together in 1644.  
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Although many of the gestures are recognizable to me now, I also find many of them 

difficult to interpret or distinguish from one another, proposing that haptic gestures 

and postures are not completely resistant to cultural change. 

Haptic alphabets 

We already have dedicated alphabets for reading and writing with the haptic sense. 

Some of them are purely tactile, while others are based on sign-gestures directed at 

the sense of sight. Sign languages for hearing impaired and deaf are developed for 

many languages (e.g. Norwegian sign language, ASL etc.) where gestural signs make 

up individual letters, words, and concepts, and they come with their own grammar 

(“Om tegnspråk” 2016). Similarly, we have hand alphabets such as LORM77 

developed for the deaf-blind, where reading and writing is conducted through a set 

of touch signs presented as points and stroked patterns on the receiver’s palm.  

The Braille language, developed for visually impaired and blind people, is built of 

cells of up to 6 dots to make up letters, punctuation, numbers, mathematical signs 

and some contractions. Braille can be read and written, and is, as such, a complete 

tactile alphabet. Sign languages, on the other hand, are not considered written 

languages.  I would argue that the potential for inscription is present in all of these 

languages, even though the LORM and sign languages initially don’t provide a 

permanent written record. How different then is the process of writing with a pen or 

typing on a keyboard from touch and gestural signing if the signs could be stored or 

directly transcribed? So, we know that we may learn new haptic alphabets with 

relative ease, that information can be read and written (provided that the signs are 

stored). How can this help us understand and develop a richer human-machine 

interaction which better addresses our haptic senses? 

 
77 The name of the alphabet arrives from its inventor Hieronymus Lorm, a pseudonym for philosopher 

and writer Heinrich Landesman (1821-1902) who himself lost his hearing and sight at an early age 
(“Landesmann, Heinrich; Ps. Hieronymus Lorm” 2003).  The LORM alphabet has its primary user base in 
Europe, Germany specifically.   
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Towards a haptic language? From signs to message 

There is no doubt the haptic repertoire is rich and diverse, and in considering haptic 

semiotics when designing communication signs in interactive scenarios, we might 

move beyond simplistic mappings of touch and proprioceptive signals to 

communicate specific functionality and intention. As presented earlier in the chapter 

there are several distinctive features relating to haptic sense. We may actively 

explore objects and environments, or passively receive sensations, we can sense 

objects over distance or in proximity. Sensation may be directed at the skin only or 

the full haptic apparatus. Equally the intensity or force, as well as the duration and 

movement of the haptic sensation will dictate the potential of different haptic signs. 

Beyond this, the location of the touch on the body (in terms of sensitivity), emotional 

intent, cultural background, and content and prosody of any concurrent speech all 

feature in when interpreting the sense of touch. So, where to begin? 

In her work with human-machine interfaces and haptic perception Hong Z. Tan 

and team identified and evaluated five different parameters to be considered in 

interfaces directed at the haptic sense: pressure, stiffness, position, resolution and 

force magnitude (Tan et al. 1994).  These are parameters we utilize in our 

interaction with people and objects, and they can similarly be considered 

parameters of a rich haptic input and feedback repertoire, as well as in the 

construction of haptic signs. For tactile sensations based on vibration, amplitude, 

frequency, rhythm, and envelope, have been considered the most significant 

feedback parameters (Culbertson et al. 2018, 394). Insights in preferred input and 

feedback methods for handheld devices may be hinted at in an experiment aiming at 

creating and representing haptic messages using a handheld device (Rantala et al. 

2011).  The participants were asked to deliver their preferred haptic input methods 

(stroking, moving or squeezing), for different types of messages (e.g. agreeing to a 

text message, alert a friend, a message to a loved one) to a haptic device, and later 

rate the same message, synthesized and rendered with haptic actuators. The 

participants reported that primarily tactile input (squeezing and stroking gestures) 

was preferred input methods for more affective content. Moving (and thus engaging 
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proprioceptors) was considered a less precise input method to specify message 

intent. And most importantly, the interactors sought a common haptic lexicon to 

“define the meanings of different messages” (303).  

From binary cues to vibrocons, tactons and haptic icons 

Application of haptics semiotics have been primarily utilized in information displays 

(mostly utilizing vibrotactile stimulation), offering the message carrying signals in 

the form of binary cues, signing on/off states, correction of direction, or notifications 

(of events or teleoperation presence). But haptic interaction may afford so much 

more, and there already exists a significant body of research on haptic interaction 

design, particularly haptic feedback and sign design. In 2001 Van Erp and van Veer 

presented a basic set of tactile coding principles for the design of tactile navigation 

symbols, labelled vibrocons, to aid car driving, particularly to aid information 

relating to direction and distance. Direction was coded using body location (tap on 

either shoulder) and motion (simulating movement towards left or right using 

several actuators), and distance was coded using rhythm and intensity. Their 

experimental setup using vibrocons showed an increase in reaction time and 

reduced mental effort when responding to incoming data from driving. A couple of 

years later, computer scientist Karon Maclean introduced the concept of haptic icons 

defined as “brief computer-generated signals, displayed to a user through force or 

tactile feedback to convey information such as event notification, identity, content or 

state.” (MacLean & Enriquez 2003, 352). Their early studies were primarily for 

passively presented icons (not actively explored by the user), and with single 

parameter stimulus, before aiming for more complex interactive environments. One 

significant finding from the studies was that haptic stimulus must be sequenced in 

time, as humans otherwise have difficulties distinguishing them from one another, 

and that beyond frequency, wave shape and force magnitude were the most 

important factors perceptually. In later more comprehensive studies on rhythmic 

touch the MacLean research team created a set of 84 distinguishable tactile stimuli, 

concluding that subjects were most likely to respond to unevenness and note length 
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(Ternes and MacLean 2008). The research of MacLean and team suggests that 

sequence, signal difference, and signal length are the parameters that are most easily 

recognized by users.  

At the Multimodal Interaction Group at the University of Glasgow, Lorna Brown 

produced her dissertation on haptic sign design. In her dissertation work, Brown 

introduced the concept of tactons, an abbreviation for tactile icons, which are 

structured vibro-tactile messages. Her research concluded that six design 

parameters can be utilized in presenting vibrotactile messages: rhythm, spatial 

location, roughness, intensity, and intensity change overtime, and secondly, that 

such messages can be learned by users (Brown 2007). Brown’s research introduces 

spatial location and roughness to the overall parameters introduced earlier by 

MacLean, and also highlights the potential of rhythm when creating haptic messages. 

I do find the notion of haptic figures as rhythm to be particularly intriguing as I 

associate rhythm with often subconscious creative processes, as well as and pattern 

recognition processes, but I still need to connect this personal association to a larger 

picture coupling the sense of touch and creative/abstract thinking. Brown’s second 

conclusion, that haptic messages are readily grasped by users is corroborated in a 

recent study with vibrotactile stimuli conducted by researchers at the University of 

Tampere. They found that both primed and unprimed subjects evaluated the 

stimulus almost equally, suggesting the potential and intuitiveness of meaningful 

haptic signs (Lylykangas et al. 2013). In a 2008 study where haptic icons were used 

to assist subjects collaborating remotely in a single-user application taking turns, the 

participants reported that 1) haptic icons were easy to learn and recognize even 

under high cognitive workload and 2) that they preferred the multi-modal setup 

with the haptic component to a purely visual one (Chan et al 2008). This last study 

underlines the potential of using haptic technologies (particularly feedback) to ease 

day-to-day computer interaction, not only because they are easy to learn, but also 

preferable to a non-haptic setup. 
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The role of semiotic in the haptic figura 

Semiotics in haptic communication is primarily demonstrated in binary signs 

(on/off, yes/no, day/night, more/less etc.) featured in various notification features. 

But there are several fruitful approaches to frame and mediate haptic sensitivity and 

intent, beyond binary cues.  The haptic sense allows for a range of parameters to be 

utilized in forming more nuanced signs and messages, as demonstrated in several 

experimental setups. While we might arrive at haptic alphabets that are shared 

across culture and times, linguistics, the study of language, has shown that the form, 

meaning and context is not set in stone, and too complex and culture-specific, to 

function as a suitable end-goal for haptic communication. But, if not a shared haptic 

language, there is a worded need for a shared glossary or dictionary to guide 

machine mediated haptic interaction to remove ambiguity from haptic messages. 

I have proposed haptic semiotics as the second analytical aspect of the haptic 

figura.  Haptic semiotics is a measure of the potential for sending (encoding) and 

receiving (interpreting) messages via the haptic senses, where the facilitation of 

semiotics, the ability of a technology to both present and interpret concrete haptic 

signs, icons, messages, and even full alphabets, is studied. It investigates the 

potential for conversation, in terms of how messages may be exchanged, the 

challenge or ease in learning the alphabet or haptic language repertoire in question, 

as well as the potential for producing written records by means of storing 

conversations.  

Wielding the tool 

I have proposed the concept of the haptic figura as an analytical tool that addresses 

both the material and semiotic qualities of haptic interaction. Haptic materiality is 

really a degree of authenticity in terms of how well the technology can emulate real 

tactile and proprioceptive sensation, and facilitate active haptic perception. While 

tactile sensations are primarily related to stimulation of the skin (cutaneous), such 

as vibration, skin stretch and skin slip (friction), proprioceptive sensations are 

concerned with feelings of force-feedback and motion (sense of inertia, pressure, or 
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compliance). Haptic semiotics is a measure of the conversational qualities of the 

technology, where the element of interpretation and meaning production in tactile-

gestural communication is analyzed. There will be many haptic media devices that 

have strong and many-faceted material features, but hardly any semiotic qualities 

worth discussing, and vice versa. However, looking at both aspects when analyzing 

interactive qualities does illustrate potential and shortcomings of the haptic media 

in questions.  Also, the analysis will not cover a fully fleshed general purpose 

interface that accommodates and facilitates a range of actions and tasks, rather I 

wish to present specific interactive expressions and messages within a haptic media 

that are of particular relevance and importance, as a means to reveal basic 

interactive devices and methods for haptic interaction design. In the following I will 

use the haptic figura to present the mobile LORM glove. 

Tele-tactile conversations 

The LORM glove is a tactile tele-communication device developed at the Design Lab 

in Berlin, that lets interactors communicate with each other over distance using 

LORM.  

 

 

 

Figure 41 and 42. Press photos of the Mobile LORM glove. Left image shows how a user can input haptic data 

on the LORM glove. Right image shows how the user receives haptic output/feedback. Courtesy of developers. 
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The LORM alphabet is a tactile language where letters and words consist of touch 

gestures made out of points and lines, written on the receiver’s hand palm. The 

mobile LORM glove allows deaf-blind people to send and receive messages written 

in this sign language, functioning as a simultaneous translator. The gestural signs are 

either transferred from a touch screen device to the glove, or from a second glove 

palm to top of the glove, while the user sends their messages via the palm of their 

gloved hand. The haptic input is controlled by pressure sensors in the glove palm, 

and haptic feedback is delivered via vibration sensors at the back of the glove. As 

such, the mobile LORM glove offers the users a direct, symmetric dissemination of 

touch and touch gestures - as both input and feedback are communicated haptically, 

although rendered via text.  

The material and semiotic solution 

The glove is equipped with flat pressure sensors for input, that allows for continuous 

gestures, and the glove material and the sensors are elastic supporting a tight fit for 

each wearer. Haptic input is read via 35 fabric pressure sensors that correspond to 

the letters in the LORM alphabet, in addition a tactile guidance system is 

embroidered onto the glove to help the wearer trace the lines of the LORM alphabet. 

As some LORM letters require two taps on the same letter space, the designer added 

an extra sensor at the wrist area which functions as an ENTER key, signaling when a 

letter pattern is finalized. This is to ensure that LORM speakers with different 

writing speed can use the same glove and hardware configuration.  

The top of the glove hand is equipped with 32 vibration motors for haptic 

feedback which produce buzz vibrations similar to those found in mobile phones. 

The feedback application is designed to confirm that outgoing messages are sent, as 

well as rendering incoming messages into LORM patterns. The wearer may adjust 

the sensitivity of the pressure sensors and feedback to fit their need, but neither the 

pressure sensor will record nor the vibrotactile motor will render variations in force 

of a push or (simulated) stroke. By using a technique of linear cross fading, by 

gradually decreasing the force of one vibration motor, and gradually increasing the 
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force of next motor, an illusion of “funneling” is generated (Gollner et al. 2012, 130), 

giving the wearer the sense of motion (and not a point-by-point tapping sensation). 

Both tactile input and feedback is administered by a control unit attached to the 

forearm. The case holding this unit also contains the power cell and coupled with a 

power cell and switch to toggle the device on/off and between input and output 

states. 

The haptic feedback solution of the glove makes it suitable for notification, not so 

much to emulate real life touch. More importantly, the device only delivers passive 

buzz stimulation in the form of vibration and has no support for active (as in 

exploratory and manipulative) sensing. In terms of semiotic qualities, this device is 

specifically developed for LORM users, who already know this haptic language. For 

LORM users the learning curve is therefore not too steep. For other users the haptic 

sensation will most likely be experienced as random.  Considering alternative sign 

mappings, the glove is equipped with pressure points, as well as a tactile guidance 

system to facilitate stroke movements, that correspond with the letters in the LORM 

alphabet, in a fixed setup.  As neither haptic input (via pressure signals) nor haptic 

feedback (via vibration) supports variation in intensity of stimulation, the device 

offers little flexibility in terms of presenting a sign, beyond a fixed palm position. The 

glove offers written records of the haptic gestures it mediates, as messages sent and 

received are rendered via a text message engine. The control unit both translates 

sensor data provided by the LORM glove wearer to text, as well as receiving text 

messages and translating them into LORM glove sensor data.  One could, given 

alternate mappings of hand position, easily imagine this device being able to record 

any tactile conversation (beyond the LORM language), and replay them over 

distance at a later point. The mobile LORM glove project truly demonstrates the 

potential of rich tactile and gestural communication. And while it is a case where the 

semiotic qualities of a haptic device are demonstrated in a rather strict linguistic 

fashion, as a touch gestures is bound to a particular sign or gesture, it also has the 

potential to support a wider range of applications, if coupled with a richer material 

solution, and a more flexible semiotic mapping of touch gestures.  
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From semiotic to subliminal and affective messages 

Considering research in the field of human-computer interaction in terms of haptic 

input and output streams, we note that haptic technologies are more developed in 

terms of haptic input, and that the coupling of tactile and proprioceptive sensations 

in haptic feedback is challenging, both for passive and active sensing.  There exists 

valuable research on how to construct and present haptic messages that users 

understand and find easy to learn, as well as limitations to such design, and that we 

are far from uncovering a haptic language for interaction that is general and 

versatile.  There is a huge jump from designing haptic feedback that is static, simple 

and pre-programmed, to supporting more complex and saturated messaging 

systems. Is it even possible to define and settle on fixed parameters for building 

complex haptic messages?  

To classify the potential various haptic media, I have presented the concept or the 

haptic figura, as an analytical tool scrutinizing material and semiotic qualities and 

shortcomings of the interactions offered. It seems that media that offer realistic 

sensory emulation do not require the interactor to be conscious of the stimulation 

for the interaction to be successful, whereas semiotic transactions, on the other 

hand, seem to depend on an element of conscious processing for the message to be 

received and interpreted. At the same time, we are privy to a range of non-conscious 

messages that are delivered via the haptics sense, affective sensations. We easily and 

unconsciously differentiate between caresses and slaps and will automatically 

suggest that there are contrasting intentions behind the two haptic messages. Both 

kinds of messages may be represented through haptics, but they don’t seem to 

belong to a dimension that is purely material nor semiotic, but highly influenced by 

both. I call this dimension affect. And in the following I will discuss how the affective 

dimension fits into the concept of the haptic figura. 
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4.7 Haptic Figura and Affect 

Affect as a haptic coupling mechanism  

The mediation of affect seems to be an implicit possibility inherent in material 

solution. The haptic material may facilitate and/or influence affective sensations 

depending on the setup. That said, very little may be needed for the interactor to 

recognize emotional messages mediated through the machine or device. A single tap 

may be enough. 

However, the word message is essential here, as it suggests a communication of 

information, although not necessarily meaning. For this reason, affective messages 

most certainly have a semiotic quality/dimension, independent on whether the 

meaning of the message is conveyed. To further look at how affect is connected to 

the haptic figura, I turn to Massumi and Flusser who both offer insight into the 

bodily aspects of affect, particularly touch (the dynamic event of  touching and being 

touched) and the role of gestures (as an active representation of states-of-mind).  

Affect is a twofold concept. We have the ability to affect and be affected. This 

distinction was first introduced in Spinoza’s Ethics published in 1677, where he 

differentiated between AFFECTIO (affection/to affect) and AFFECTUS (affect/be 

affected). English translations made the distinction less obvious, by translating both 

terms to affection. This significant point is scrutinized in Deleuze’s published lecture 

on Spinoza (Deleuze 1978), where he concludes that “[a]ffectio is a mixture of two 

bodies, one body which is said to act on another, and the other receives the trace of 

the first.” (1978). As such, to affect is to blend with another body. In a more recent 

interview with Brian Massumi on his reading of Deleuze and the twofoldness of 

affect, Massumi presents two important and relevant insights. Namely that our 

ability for affect is dynamic. In fact, we are oscillating between being actively 

influencing (affecting) and passively receptive (being affected)—it is a relational 

tension between the two states. Secondly, he suggests that the transition between 

the two states can be felt (perceived), but it is not a subjective emotion (Massumi 

2009).  Here Massumi points to the visceral and bodily sensation of touch (tactile 
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and/or haptic sensations) as key in affective relationships, and that affect is a quality 

of general embodiment, not subjective, individual emotions. The relational tension 

between affecting and affected is an event or process. The event is felt (and has to do 

with embodiment as such, as bodies blend into and rub off on each other). What is 

felt is the affecting body connected with the body that is affected. Affect is therefore 

a coupling mechanism. This suggests that in a successful meeting between human 

and machine, primarily mediated through the interface, the machine capability for 

affect is of significance. The machine needs some ability to feel and be felt - to touch 

and be touched - to successfully partake in an affective relationship with the user.  It 

also proposes that if one of the parties do not have the ability to touch or be touched, 

the affective connection is disrupted. 

So, we need to touch (to feel) to be affected, but as we have discussed previously,  

touch is involved in all stages of haptic sensation (from inward haptic sensations to 

gestures and movements,  as we consider the role of proprioception in folding tactile 

sensations inwards and outwards our bodies. Similarly, haptic sensations can be 

mediated by other means than direct touch. Besides more rare synesthetic 

experiences coupling touch and other senses, people generally report that looking at 

e.g. brocade patterns or the tracking decorative ribbons and ornaments on various 

tapestries, wallpaper and curtains, produce haptic sensations. As such, seeing can be 

a haptic experience.  I want to continue these thoughts as we turn to Flusser and his 

work on gestures.  

Gestures as vehicles for intent and affective content  

In Gestures Vilém Flusser presents gestures as an expression of affect and meaning-

bearing actions that can be recognized (through interpretation) by others. Affect is a 

subset of bodily movements represented through gestures and is a particular 

expression (in fact a symbolic representation) and articulation of state-of-mind.  

Flusser proposes that this recognition of gestural intent is sub-conscious and rather 

automatic, although it is possible to analyze it retrospectively. Flusser distinguishes 

between reactions, which are passive expressions of state-of-mind, from gestures, 
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which are actions; active and symbolic representations of state-of-mind. It follows 

that gestures, as active and symbolic representations, can be interpreted.  

Furthermore, Flusser suggests that “[a]ffect releases states of mind from their 

original contexts and allows them to become formal (aesthetic)—to take the form of 

gestures.” (Flusser 2014, 6). Affect is then what guides the gestural performance, 

and also it is what can be recognized by others. Affect-driven gestures are separated 

from other bodily movements that are automatic reactions, and directly linked to a 

causal relationship. The Interpretation (the uncovering of meaning) of gestural 

actions are affective, as opposed to explanations of reactions.  

Affect is closely connected to both the material and semiotic qualities of haptic 

interaction. According to Massumi, affect is the event of touching and being touched, 

a haptic event. On Flusser’s note, affect is a symbolic expression of state of mind 

represented through gestures. As such, haptic interactions will always provide an 

opportunity for affective transmission, as long as the machine is able to recognize 

and mediate affective content.  

Affective content and the interpretation of touch 

When are haptic sensations experienced as affective? 

A tap on the body by another person, can mean so many different things depending 

on location of the touch on the body, when it is given, and how. The identification of 

different contexts governing touch communication, is also becoming important in 

human-robot interaction research, as we aim to teach robots to correctly label 

different kinds of touch. Human-robot interaction researcher Silvera-Tawil and team 

have identified four factors as significant when interpreting socio-tactile 

communication: namely touch modality, the location of touch, cultural background 

and communication context. Touch modalities are the “basic form of touch in which 

a tactile gesture is differentiated only by the spatiotemporal characteristics of the 

touch itself. Consequently, touch modalities are characterized by attributes such as 

intensity, movement and duration” (2015, 234). They are simple tactile patterns 

helping us separate a pat from a scratch or a push, but carry no particular message 
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on their own. To further identify the tactile message, the three other factors are 

taken into consideration.  It is not enough to recognize something as a hit or stroke 

on a given part of the body, we also need to take cultural and communicative 

preferences of the sender and receiver into consideration. These are criteria we 

subconsciously consider when we touch and are being touched, to be able to 

differentiate between an unintended, random physical encounter from a lover’s 

touch.   

In terms of creating haptic interactions that support the mediation of affective 

content, it follows that we need a rich material and semiotic solution that can 

support this kind of mapping and representation of the haptic event. But obviously 

there are additional concerns involved the moment a machine enters the equation of 

mediation and interpretation. There are challenges connected to the machine 

mapping and representation of affective, haptic content, that we would take for 

granted in human-to-human touch, namely that of resolution and fidelity, sensitivity, 

and balance of touch. As such, the technological solution we arrive at may support or 

disrupt the affective connection between two bodies.  

Resolution and fidelity of material solution 

Just as we have listened to music in the form of digital audio files with low 

resolution, tried to decipher facial features in low-res photos or videos, we also have 

poorly nuanced and simple haptics. We know that this impairs the quality of the 

experience, to the extent that the affective exchange is disrupted. But equally 

important to high definition is the ability to support haptic experiences that are 

seamless and continuous. Digital noise and temporal hick-ups are effectively 

blocking affective exchange. However, while high resolution and fidelity are 

important factors, we know that the successful mediation of affective content is 

dependent on more than the free, flowing distributed application of nuanced and 

flexible touch sensations. 
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Pattern recognition and sensitivity 

The affective relationship between the two bodies may become desensitized or even 

hypersensitized, as specific areas are stimulated similarly and repeatedly over time,  

or if only a few types of skin receptors are stimulated. Humans also have a gift for 

pattern recognition which works on a subconscious level, allowing us to identify 

repeating behaviors and common denominators. This has implications for haptic 

media that seek to mediate affective haptic sensations. In 2002 CuteCircuit designed 

the HugShirt,78 and although presented as the first wearable haptic 

telecommunication device, what it really afforded was the machine mediation of a 

hug, by recording the strength, location and duration of the (self-)embrace on a shirt, 

and transferring those values to another shirt. There is little flexibility in terms of 

delivering affective content, beyond the extent of self-embrace or actively targeting 

pressure sensors in the shirt. The device even comes with a HugShirt software which 

allows you to send pre-programmed “hugs” to another shirt. Similarly, the haptic 

feedback is delimited to specific areas of the body, in which may easily become 

repetitive and singular, and therefore losing its affective quality over time.  

Balance of the touch 

There are many examples of machine mediation imposing imbalances between 

receiving and delivering tactile messages, and this is of consequence when it comes 

to the successful transmission of affective content. As we discussed above, affect is 

the ability of a body to rub off on another, suggesting that any machine mediation of 

touch, will need to be two-sided. The machine needs to be able to recognize haptic 

input (the location, and its significance, as well as touch modalities), it needs to 

recognize the communicative and cultural context of the haptic event. But it also 

needs to be able to disseminate these tactile messages.  If these criteria are in place, 

haptic interactions may be both distal and atemporal, without losing its 

communicative and affective value. This challenges another idea, namely that 

 
78 Cutecircuit gives no mention of what kind of sensors they use to record the parameters of the touch, 

nor the nature of the actuators delivering tactile sensations to the receiver. https://cutecircuit.com/the-hug-
shirt/  
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affective transmissions and connections are governed by proximity as a means to 

ensure intimacy, a claim that will be investigated more closely below. 

To touch and be touched:  Proximity, intimacy, and affect 

Proximity Cinema is a performance work by Tiffany Trenda, that explores the 

relationship between proximity and intimacy (and potentially affective event of 

touching), in relation to digital technologies. I will consider the tactile and gestural 

communication, and present and discuss the imbalance and uneven mediation of 

touch and gestures making up the interaction. Trenda’s artistic work explores screen 

technologies, the mobile phone in particular, and how our relationships are affected 

by them. The performance presents the artist enclosed in a red, synthetic suit 

covered with forty small LCD screens that are coupled with proximity sensors, 

moving and standing among an audience. Depending on the proximity of the artist to 

the interactors the screen will display different content. If the artist is further away 

the screen will relay common sentences and words: “It’s OK”, “Don’t worry about it”, 

and “Go ahead”. If the interactor touches one of the screens, it will unveil a picture of 

the artist’s body covered by that area of the suit and screen. The artist on her end 

will aim to touch and caress the audience if allowed. The work demonstrates the 

kind of mediated intimacy many of us are becoming used to, as relationships with 

friends, family and lovers, are maintained and nurtured via screen and audio 

technologies.   

 

 
Figure 43 and 44. Screenshot from video documentation of Proximity Cinema (2013-15) by Tiffany Trenda. 

Courtesy of the artist. 
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It is important to note that the suit offers no tactile or haptic feedback. The haptic 

input from interactors is offered via a touch screen, which the artist cannot sense 

haptically, and tactile input from the artist is directly administered by her. There is 

no machine mediation of the tactile sensations beyond binary taps on the screens 

offering automated and scripted responses. This work actively demonstrates the 

many layers of a machine mediated relationship, and the limits of mediating affect 

via screen only. Secondly, machines that aim to facilitate the communication of 

affective messages, or interpret affective signs and relay affective responses, most 

certainly should consider the tactile and haptic qualities of the system. 

There is an imbalance in the affective relationship between the artist and the 

interactor. When the interactor touches the suit, the artist is offered very little tactile 

feedback, diminishing any affective messages offered. The artist is also blinded by 

the suit, leaving out any visual feedback of the touch. When the interactor touches 

the screen, the flow of messages is replaced by a still image of the artist's body—

disconnecting a very intimate connection between the person who touched and the 

person that is touched. The interactor is touch and image that is displaced from the 

moment of touch. It was created at another time and does not show the artist’s body 

of the present.  

On the other hand, the artist will act out affective gestures as she “hugs, caresses, 

and touches” the interactor (Trenda n.d.) For some, this proximity is very intimate, 

bordering on private. However, she offers no such vulnerability back. The artist is 

like a castle, enclosed and impregnable, yet displaying the most intimate of her—her 

naked skin—but only as a still image. She disrupts the touch from the event, the now, 

letting the interactors touch the past, and only mediated via a screen. We are often 

engaging with machines and devices that are creating such imbalances, much due to 

the design of the machines. Trenda amplifies this imbalance in her performance 

design. She makes a rather obvious distinction between the two bodies involved in 

the interaction, in terms of what can be shared between them, forcing a power 

imbalance: an imbalance of the affective relationship that disrupts the contact 

between the parties. While affective touch mediated by a machine is possible, there 
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needs to be a balance between touching and being touched, and systems that 

support rich and flexible transmission and recognition of haptic sensations.  

Machine recognition of affective touch 

The trajectory from mechanical and preprogrammed haptic feedback (e.g. massage 

chairs) to sophisticated machines that present open-ended interactive scenarios 

informed and adjusted according to tracking and mapping data from user and 

environmental inputs, is impressive. It also follows that one cannot interpret or even 

judge the potential of the latter, based on the performance of the former. The 

machine is no longer just a machine. There are several robots developed with the 

ability to recognize affective or emotional input.79 However, all of them are highly 

specific and narrow in the types of touch gestures they recognize and respond to. A 

more flexible design, developed by a research team led by human-robot interaction 

designer Dr. Silvera-Tawil, consists of an artificial skin which detects human 

affective messages with great accuracy. In their experiment, six emotions and six 

social messages transmitted from humans, were classified and applied on a 

mannequin arm with touch-sensitive artificial skin. The result was comparable to 

human recognition of the same messages (Silvera-Tawil et al 2014). This suggests 

that we are moving towards the introduction of machine surfaces that not only 

recognize and translate human gestures, but also interprets, and engage with, richer 

affective content.  

Affective coupling 

Affect is most surely a mechanism for coupling, and if successfully supported (by 

bodies that can both convey and interpret affective content), it can ensure event 

 
79 Notable projects include: Robot seal PARO, which has been used in elderly homes and among patients 

with dementia, can differentiate between strokes and hits, and responds accordingly.  It was developed by 
Intelligent System Research Institute, Japan AIST (Paro Therapeutic Robot 2016), Huggable developed by 
Personal Robots Group at MIT recognizes  nine different touch gestures (Huggable 2016), Probo developed at 
Vrije Universiteit in Brussel recognizes whether it is hugged, scratched, or hurt (Probo 2016), AIBO 
developed by Sony recognizes where it is touched/touch location (Sony Aibo 2016), and The Haptic Creature, 
a calming robot that breathes (Sefidgar et al. 2015; Altun & MacLean 2014). 
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encounters between man and machine. However, affective coupling is not a criterion 

for all kinds of haptic interaction or haptic interfaces. We have no need to couple 

with our health monitors or become one with our mobile phones. A key role of 

haptic media per now is merely to assist visual machine interactivity, offering 

notifications and alerts.  

4.8 Haptic Figura and Interface 

The material sign for communication and affective relationships 

The haptic figura is proposed as an analytical tool for investigating material, semiotic 

and affective qualities of haptic interaction. Haptic materiality is dictating the degree 

of authenticity of haptic interactions, both in terms of emulating sensory experience 

and affording rich active haptic perception. The material solution supports the 

successful transmission of haptic signals, as signs and messages, and potentially, 

affective content. Haptic semiotics is analyzing the tactile-gestural communication, 

where the semiotic solution enforces the requirements for moving beyond 

informational exchange, to a domain of meaning generation and interpretation of 

haptic messages. Haptic interaction also affords affective communication, in line 

with and beyond the transmissive and interpretative. If we are to achieve this kind of 

communication, we need to present haptic interactive experiences that allow for the 

exchange and recognition of affect, for emotional contagion, interpretation, and 

interaction.   

The haptic interface 

We see emerging technologies open the door for richer haptic interactive 

experiences, although many of them are still in early developmental stages. This 

chapter has focused on haptic feedback when discussing material and semiotic 

qualities of interactions, which might suggest that we have sorted it all when it 

comes to reading and interpreting haptic input needs. However, in terms of gestural  
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communication (beyond touch-gestures), the machine reading of gestural haptic 

input is not clear cut, and one is distinguishing between gesture recognition 

software that tracks hand gestures, or hand postures exclusively, as the machine 

recognition of hand gestures takes time. The rich tradition of haptic languages and 

sign systems have entered the world of interface design. With the design of haptic 

icons and tactons, which allow for the communication of more complex haptic 

messages, we still see that visual iconographic thinking still influences the scope of 

haptic input and feedback systems. It appears to be a pointless struggle to aim for 

the identification and classification of a complete haptic language for human-

machine interaction that is shared and universal to all, as the cultural and 

communicative context of the haptic signal is so diverse. However, by enabling 

technologies that record and analyze how we may explore and grasp our world with 

the haptic sense, we are at least identifying haptic figures (key material and semiotic 

features) that make sense to us today, and which may be implemented in personal 

computers based on individual, social or even cultural preferences.  

In the next chapter we extend our investigation and use of the haptic figura. We 

move from analyzing haptic interaction by measuring authentic sensations and 

message-carrying communication, to include the notion of productivity affording the 

general user and general tasks, as a criterion for more fully fleshed interfaces. We 

ask what kind of activities and tasks one can fulfill via well-designed haptic 

interactions, and what are the potential and limits of a haptic only interface?  

 



 

5 INTERFACE 

Haptic Media Scenes 

 

Interfaces are always layered in that they are multimodal platforms addressing the 

auditory, haptic, and sometimes even olfactory senses, in addition to the visual. The 

extent to which each modality is addressed in the interface, on the other hand, 

varies. The sensory targeting in ocularcentric interfaces, such as the graphical user 

interface (GUI), and the most common implementations of the touch user interface, 

both of which favor the visual sense, is very different from the setup of various 

responsive environments, wearables, and gestural controllers, tracking human 

posture and movement. So we need an overview, and in the following I will critically 

assess the notion of interface in an attempt to identify key elements, such as relevant 

design strategies, and even suitable metaphors, for media that affords and situate 

the haptic senses. In the previous chapter we discussed how the concept of the 

haptic figura can be used to analyze tactile and proprioceptive communication 

between human and machine. It proposes that this communication should be 

considered from both a semiotic and material perspective, in addition to scrutinizing 

its potential for affective mediation. We used the tool to uncover basic interactive 

devices and methods that are important and relevant for haptic interactivity. 

However, to consider fully fleshed interfaces, we need to also scrutinize the media 

for its ability to accommodate desired tasks and actions.   

This chapter is divided into six parts: Situating the Interface, The Body-Mind-

World Interface, The Hand: Creation and Exploration, The Body: (Re)presence and 

Experience, The Sign: Recognition of Gesture and Bodily Intent, and The Haptic 

Interface. Part I aims to situate the interface by offering known directions, design 

strategies, and types of mediation, that are of particular relevance in interfaces for 

haptic communication and productivity. Part II frames haptic productivity in three 

different setups of haptic media: in haptic only systems, or in multimodal or cross 
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modal interfaces. Finally, it introduces three interface scenarios, the Hand, The Body, 

The Sign, as fruitful directions. Part III presents haptic media interfaces for the hand 

as specifically apt to support creative production in 3D, performance, and spatial 

exploration. Part IV presents haptic media interfaces for the full body as key in 

mediating presence virtually or over distance. Part V discusses the promise of haptic 

recognition systems in identifying gestural commonalities and possible even bodily 

intent. Finally, part IV summarizes findings, presenting the reader with an overview 

of what haptic interfaces for productivity entail. 

5.1 Situating the Interface 

Before discussing interactive scenarios for the haptic senses, I need to clarify what I 

mean by interface.  There are several important proposals to address in that context, 

and at the same time it is important to emphasize that it is far beyond the scope of 

this thesis to give the reader the complete history and taxonomy of interfaces.   

The interface is a platform for dialogue between humans and their devices. In 

engineering terms, the user interface serves as the common ground connecting the 

user and a set of functionalities and content stored in a device. The interface should 

therefore address and adapt to a specific user in question to aid her in creating a 

meaningful relationship between actions taken and desired results, bridging the 

embodied user and computational processes. With the arrival of new haptic and 

sensor technologies, engineers, interface designers, neuroscientists, psychologists 

and philosophers alike ponder the opportunities inherent in platforms that explore 

the mediation between our different senses in human-machine interaction.  

In the following I will address key design strategies and metaphors making up 

the user interaction commonly utilized in different productivity environments, with 

the aim to identify UI elements suitable for interfaces affording rich haptic 

communication and productivity. 
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Historical backdrop: augmenting cognition and extending reality  

Augmenting cognitive function 

One significant direction for interface design is to present systems that aim to 

augment our cognitive function and affords general productivity. Humans have long 

envisioned how we may, could or should relate to and interact with machines. As 

early as in 1945, Vannevar Bush introduced his concept of the Memex, a machine 

that would function as an external memory library (Bush 1945). The idea of 

extension and augmentation was continued in the ‘60s. First Licklider presented his 

vision of man-machine symbiosis, conceptualizing a machine that is assisting and 

deeply involved in almost all cognitive tasks, influencing human thinking, and being 

influenced in return (1960). Two years later, Douglas Engelbart presented his 

conceptual framework for an interface augmenting the human intellect (1962). And 

six years later he released his first interface, based on the framework, namely the 

oNLine System (NLS) and his mouse prototype (Engelbart and English 1968). This 

system marked the starting point for the development of the graphical user 

interface. In 1972, Alan Kay, developed the concept of the graphical user interface in 

his presentation of the Dynabook (Kay 2011), a demo including all the known 

elements of the GUI, namely the interactive features such as graphical icons, 

windows, menus, and pointer.  

Although never built, the Dynabook inspired Kay’s continued work towards the 

first introduction and commercialization of the personal computer in the early ‘80s. 

The graphical user interface as it is implemented in desktops and laptops later found 

a new home in mobile touch screen devices, ranging from mobile phones to tablets.  

Extending reality  

Another direction in interface design has been to create and facilitate immersive 

experiences for the mind and body, with the aim to extend reality. The main design 

criteria for has been that the virtual environments should be interactive and 

rendered in three-dimensions to mimic real life. In the mid-80s Jaron Lanier 
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developed the visual programming language (VPL) for rendering visual three-

dimensional environments. Together with Thomas Zimmermann, the inventor of the 

data glove, they founded VPL Research, the first company to sell virtual reality 

interfaces, debuting in 1987 with the VPL Dataglove, wired gloves for traversing the 

virtual space. The next two years their virtual reality system expanded, and by 1989, 

their interface consisted of a head mounted display,80 the EyePhone, which 

introduced the interactor to a virtual environment and a full-body wearable, the 

Datasuit, which tracked and mapped the interactors position and movement in 

virtual space (Lowood 2019). The same year Jaron Lanier coined the term virtual 

reality to frame systems and projects relating to virtuality (Krueger 1991, xiii). 

Throughout the ‘90s we saw several takes on VR-solutions, a noteworthy design 

being the CAVEs (Cave Automatic Virtual Environments), first presented by the 

Electronic Visualization Lab in 1992 (Cruz-Neira et al. 1993). Here, the interactor is 

surrounded by screen projections on all sides which is cued to position and 

movement of the interactor, which is continuously tracked. The virtual space is 

navigated by sticks or data gloves, and the visual space is rendered in 3D by using 

stereoscopic goggles, presenting us with an early augmented reality experience.  

For the promise of the early VR/AR solutions of immersing the user in new 

realities, there were significant challenges both in the interactive solution as well as 

the design of applications for the solutions. The navigational setup (consisting of 

head mounted displays and gloves) were wired and cumbersome to wear, offering 

little bodily mobility. Equally the very slow frame rate, producing lag as users tried 

to orient themselves within the virtual space. With CAVEs, the surround screens 

made the system completely site specific. Equally, programming the systems for new 

narratives and scenarios, was complex and time consuming. These factors made 

early VR-experiences something left to be desired, leaving out the notion of 

seamlessness and general use.  However, they do represent a significant desire in 

human-computer interactivity. We want to be immersed in and partake in virtual 

scenarios and narratives.   

 
80 The first HMD was invented by Ivan Sutherland in 1968. 
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While early VR and CAVEs argued for novel embodied experiences, I have 

criticized the role of bodily interaction in these solutions (see chapter 1), 

questioning the ability of predominantly visual representations of reality in offering 

immersive, embodied experiences. This critique is shared by several, including artist 

and engineer Myron Krueger, who pre-Lanier proposed the notion of Artificial 

Reality, when designing immersive responsive environments, In Artificial Reality the 

human body is in the center of the interface, specifically demonstrated through his 

VIDEOSPACE responsive environment (previously discussed in chapter 1). The real-

time tracking and mapping of the position and movements of the body, in a three-

dimensional space are the key ingredients for creating such an environment 

(Krueger 1993, Turner 2002). The emphasis on real-time rendering of human 

gestures, position, and movement, even at the cost of realistic and high definition 

visual representations of virtual environment, is reiterating in current virtual and 

augmented reality design (Greengard 2019, 101-102)  

These two storylines, the machine that augments the intellect and the machine 

that extends reality, provide two directions for how we aim to be enriched by the 

machine. They have also inspired and resulted in two rather different design ideals 

and strategies for the user interface. 

Design strategies: from general productivity to natural 

interaction  

Most of the machines we surround ourselves with are specifically designed and 

shaped for certain tasks and actions. Your dishwasher, sewing machine, or 

loudspeakers are fitted with a user interface and form factors optimized for their 

intended function. However, the two directions presented above both aim for a more 

generalized use: the personal computer has always been intended to cover and 

facilitate a range of tasks and actions, and equally, VR/AR systems may be designed 

to present a range of narratives and scenarios. 

We also distinguish between the operating system (OS) and user interface (UI). 

These two entities are often strictly separated. The operating system is the 
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fundamental architecture and motor of the machine, into which the full set of 

instructions for running both software and hardware, as well as memory, is built. 

Humans rarely interact directly with these fundamental machine processes. Instead 

a representative layer, called the user interface, is presented to the interactor 

allowing her to communicate with the machine. In user interaction design there are 

specifically two different strategies worth mentioning: the presentation of 

functionality versus the mapping and tracking of natural actions in space.  

Functionality display 

An often-implemented strategy is letting the user interface present the functionality 

of the operating system to the interactor. This is most often done using icons (most 

often visual iconography) and menus. The user needs to explore the system to figure 

out how it works, unveil functions and methods to solve desired actions and tasks. 

This is the setup of the graphical user interface (GUI) of desktops, laptops, as well as 

tablets and phones. Traditional operating systems such as Linux, Windows or IOS 

have indirect and artificial methods for interacting with the machine, i.e. mouse or 

pointer. Whereas with mobile devices, running OS supporting touch screens, we 

interact with the graphical user interface directly, using our fingers and hands.  

To guide the interactor in uncovering the potential of the machine, many of these 

interfaces are utilizing metaphors to cognitively ease the transition from the 

complexity and strangeness of the machine system towards the identification of 

desired functionality. The representation of metaphors is achieved through a 

consistent iconography. A well-known metaphor for the graphical user interface is 

the desktop-metaphor, where icons and windows, as well as the environment itself 

(the screen surface), represents functions previously known from office 

environments, such as the office desk, bulk of papers, printing, documents, thrash 

etc., which became common place with the introduction of the personal computer in 

1984.  There seems to be a change in metaphorical use on app-based devices, from 

the Desktop screen (relating to the office), to the Home screen (relating to the 

personal sphere). These devices are closer to the body, more private, and in a way 
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become a part of you. What these interfaces have been very successful in, is 

representing a very general and broad range of functionality. The operating system 

supports such a variety of programs and applications, that these interfaces have 

been the go-to-media for general productivity the last three decades.  

Physical actions and natural interactions 

Another strategy for bridging the user with machine functionality is designing user 

interfaces that mimic natural interactivity with spaces and physical objects. This 

strategy is most certainly present in the design criteria of mapping and tracking 

human gesture, position, and movement in virtual reality environments.  The 

approach to create interfaces modelled on natural human actions or natural, 

intuitive processes are called natural user interfaces (NUIs). Interaction should be 

intuitive and accommodate interaction methods we know from operating in the real 

world (gestures, movements and touch). The interface is designed to be non-

obtrusive and invisible, with the aim to facilitate learning as you go.  As proposed by 

Wigdor and Wixon (2011). We need to distinguish between the interface device (e.g. 

the Kinect), technologies that may achieve natural user interaction (e.g. motion and 

force sensors or gesture control software), and reality-based user interaction. As 

mentioned above, it is fully possible to design for natural user interaction on a 

graphical user interface, e.g. multitouch support on touch screen surfaces running a 

graphical user interface. It is also possible to achieve realistic user interactivity using 

small, wearable devices that render physical objects a layer of virtuality, e.g. using 

reverse electrovibration as demonstrated with REVEL (Bau and Poupyrev 2012). A 

particular subgroup of NUIs are tangible user interfaces (TUIs) which aim to let the 

real, physical world merge with the simulation, as input equals output, placing 

computing in a physical environment. Physical representations (physical icons or 

other tangibles) are coupled with digital information and mediate digital 

representations. The interface aims to emulate the tactile way humans engage in the 

world and grasp reality.  The interactor only needs to know the function of the 

physical objects to engage with the interface, and never the workings of the 
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operating system. This strategy has been popular in designing novel musical 

instruments, such as, Reactable,81 but many prototypes have also been demonstrated 

in the multidisciplinary research field of human computer interaction and 

communication, such as Siftables82 or the now discontinued Microsoft Pixelsense.83 

The challenge with tangible user interfaces are that they are suitable for a limited 

range of activities and tasks, due to the specific design of the physical elements of 

interaction. While there is a lot of experimenting happening under the umbrella of 

physical computing and The Internet of Things, we are still to find general-purpose 

interactive objects that can be programmed to map a range of functions.  Still, one of 

the main arguments for tangible and more generally natural user interfaces is that 

you need no interface metaphor or visual iconography to let you identify what kind 

of machine you are interacting with, what different actions and tasks the system 

allows, and how you can perform them. Ideally, your body will lead the way, or at 

least ease the learning curve.  

Navigation and manipulation: representation of function versus mapping 

of body and space 

These two design strategies afford different means for navigating and manipulating 

interactive objects within the user interface. While the first one is concerned with 

displaying machine functionality in the form of visual representation of menus and 

icons on two-dimensional surfaces, the second strategy is concerned with presenting 

the user with possible tasks that can be achieved through physical actions by 

mapping human gestures, object behavior, and, in extension, three dimensional 

space.  

So, on one end you have machines that are versatile and allow for multi-use, such 

as personal computers and smaller mobile devices. Both of these machines have a 

general build and operating systems that allow a range of different applications to 

 
81 https://reactable.com/ 
82 https://www.media.mit.edu/videos/labcast-20-siftables/ 
83 https://docs.microsoft.com/nb-no/archive/blogs/pixelsense/ 
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run on them. The user interface is designed to present the functionality of the 

machine, using metaphorical representations to guide users to their functions. And 

on the other end you have user interfaces that aim for tangibility and mimicking 

natural interaction with objects and the environment. These interfaces are often 

specialized to afford specific functions or tasks, as seen in various musical 

instruments, gaming environments for storylines, or special purpose collaboration 

surfaces (mostly prototypes). 

Nature of mediation: hypermediacy or immediacy? 

We return to the distinction between immediate and hypermediate interfaces, 

briefly discussed in chapter 1. The immediate interface is transparent or even 

invisible and bears a resemblance to the ideal fronted in natural user interfaces and 

virtual reality applications, of system invisibility and intuitive interaction. The 

hypermediate interface, on the other end, is a many-faceted, presenting several 

interfaces within the interface. These user interfaces are functionality displays, 

where navigational structure and menus are presented to the interactor as means to 

identify ways to perform desired tasks (Bolter and Grusin 2000, 20-52). The 

hypermediate interface promotes learning through the conscious search of machine 

functionality as a way to understand the system, while the immediate system fronts 

learning through intuitive, sub-conscious interaction, as we use the already acquired 

knowledge of navigating real space and manipulating objects. For this reason it 

seems acceptable to suggest that more hypermediate interfaces, such as the general 

purpose productivity milieu instigated with the design of the PC, affords computer 

literacy (we are, in a way, forced to deal with the framework of the system to use it), 

while more immediate interfaces, governed by intuitive interaction and presentation 

of tasks rather than system functionality, supports and front a more “fluent” 

interactivity with the machines. The desire to create fluent interactions are many 

developer’s dreams, as it promotes interactors that very quickly understand what 
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they can do within the virtual environment, without knowing the system’s potential 

and limits.84 

Immersion, as in ability of a system to induce feelings of being present,85 is not a 

direct consequence of immediate interface design, although there is certainly an 

underlying claim that the direct presentation of interactive experiences will advance 

this feeling. That said, there are a range of hypermediate interfaces that are highly 

immersive, despite the functionality display. Many multiplayer online role-playing 

games (MMORGs) display menus, chat channels, group overview, skill and inventory 

bar, and similar, on top of the virtual environment—without losing player 

immersion. Interestingly enough, most of these games offer simple toggle shortcuts 

for changing between first and third-person views, as well as hide/show all menu 

bars, affording a more immediate gaming environment. This suggests that 

immersion may more easily be achieved with immediate interface strategies.  

Bodies as media 

When we, in consideration of hypermediacy and immediacy, examine interfaces that 

directly map and track body actions, as well as render haptic feedback, the question 

of what kind of interface the body is, becomes relevant. In continuance of Bolter and 

Grusin, Eugene Thacker proposes the body as “both a medium (a means of 

communication) and [...] mediated (the object of communication)” (2004, 9), but 

specifies that it is the intrinsic material and technical qualities of the body that 

should be considered. The body is a particular kind of media caught in the fluxus 

between the immediate and the hypermediate: “As an instance of immediacy, the 

 
84 The question of computer fluency versus literacy is also connected to the notion of tool ownership and 

control. Not knowing how a system works (machine potential and limitations, as well as repairability), put 
you at the mercy of the developer’s hand.  

85 There are several definitions of immersion, but for the discussion ahead I will present immersion as 
an objective quantifiable quality, relating to the material solution, which leads to feelings of presence, a sense 
of being. Presence is an outcome of immersion. This definition is based on the experimental insights of Mel 
Slater and Sylvia Wilbur, working with virtual reality systems. They argue that the degree of immersion is 
dependent on "the extent to which the computer displays are capable of delivering an [...] illusion of reality to 
the senses of a human participant." (Slater & Wilbur 1997,604). And as such immersion becomes an objective 
criterion relating to quality of virtual reality or telepresence equipment.  
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body is situated by the phenomenological concept of ‘embodiment’ or lived 

experience. However, as an instance of hypermediacy, the body is simultaneously 

framed by the sets of knowledge on the body, including medicine and science. The 

incommensurability between these—between embodiment and technoscience—is 

perhaps the zone of body-as-media'' (10). Within this preliminary definition lies 

Thacker’s proposal of biomedia, which emphasizes materiality of the biological body 

in intersection with technology (both bio and computer technology). Thacker is 

primarily concerned with biomedia as an approach to understand novel and deep 

technical configurations of the body, as a strategy and praxis for biotechnology. He 

seeks to differentiate it from strategies proposing technology as an external tool that 

merges with the body (the Heideggerian position),86 as an extension that adds new 

functionality, or as a machinic component that replaces or automates the body (14). 

For this reason, Thacker’s take on the body as an interface will be more relevant for 

invasive haptic interfaces, which are not covered in this dissertation. But even 

though we do not bring with us the full concept of biomedia, the insight that bodies 

fluctuate between immediacy and hypermediacy, is a quality and ability that ought 

to be recognized in the design structure for a haptic interface. We can intuitively 

emerge ourselves in interaction, but also shape ourselves to fit a particular setup. 

The haptic interface for productivity would benefit from being a hybrid system, 

including strategies from both design trends. We would ideally utilize our body’s 

immediate understanding of how the world works, utilize our haptic understanding 

of objects, motion, and space, but also communicate with a system that affords an 

element of generality and versatility, on which a range of applications can run. 

But is there such a thing as an immediate general-purpose environment? 

 

 
86 Reiterating Heidegger, immediacy may be seen as a technological solution presented to us “ready-to-

hand”, while hypermediate environments are tools presented for us “present-at-hand.” 
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5.2 The Body-Mind-World Interface: Haptic figures and 

presentation of action space 

What are the relevant design principles affording haptic interfaces for productivity? 

First of all, the criteria for rich haptic communication as framed by the haptic figura 

(material, semiotic, and affective qualities) should be taken into consideration, when 

designing user interactions. I would also argue that the interface metaphor for haptic 

interfaces, is the operability of the body. Our intrinsic and extrinsic87 understanding 

of how our bodies perform when engaging with objects or environments—that 

being the hand, feet, or the body proper—is what guides the interaction.  

Specifically, the interface ought to support rich haptic perception (based upon 

and extending natural real-world interaction), allowing interactors to actively 

explore an environment utilizing the full range of haptic sensitivity, both tactility and 

proprioception, to immediately and intuitively recognize what actions you can 

perform, and tasks you can do.  Within this material solution lies the foundation for 

nuanced message-carrying communication, and the potential of affect as a reciprocal 

relationship between human and machine or mediated by a machine.  

Presentation of action space: framing haptic productivity 

Interface design centered on the presentation of possible actions and tasks, before 

the structured display of system functionality, is also in line with a 

phenomenological approach to media design, and well embedded in embodied 

cognition thinking, in which the body’s preconscious understanding of its action 

space is factored in. Insights from phenomenology and enactivism discussed in 

chapter 2 and 3 suggest that our bodies engage in a reciprocal relationship with the 

world: we exist towards tasks, where possible postures and movements are 

constantly regulated pre-consciously by the body schema. Body schemata are pre-

 
87 Here I am distinguishing between intrinsic qualities of the body, general abilities shared by all humans 

and originating from the human genome, and extrinsic qualities, which are learned abilities and body 
techniques defined and made specific by tradition and culture. 
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conscious tactile and motor-control programs for solving spatial tasks and actions 

and denote the action potential of our bodies, as dynamic enactments of our bodies 

in space. Body schemata are revisable and extendable, as our bodies are exposed to 

novel activities and technologies. More importantly our perception not only has 

direction, with the use of tools we also postulate goals. In fact, a significant portion of 

our cognitive processes emerge as a result of our bodies interacting with the world. 

In this context, digital and sensor technologies, including haptic media, are 

unprecedented candidates for revising body schemata and extending cognition. 

These technologies allow us to move beyond the Heideggerian notion of extending 

bodily space through tool use or via abstract movements as proposed by Merleau-

Ponty. We may even extend one sense into another, forming novel sensorimotor 

couplings.  Within the realm of haptics, all of these strategies are possible, whether 

we are considering haptic only media, multimodal media or cross-modal synesthetic 

media.  

Not all actions and tasks are best tackled by the haptic senses. We rarely smell 

with our hands or hear with our eyes. So, when discussing tasks and activities, which 

ones are well suited for haptic media interfaces? We have implemented haptics in 

mobile devices, wearables, and simulators offering notifications, confirmation, 

directional cues, and speed regulation (Lylykangas et al. 2013). We have also begun 

the design of simple affective messaging. That said, haptic devices today are 

primarily concerned with material capabilities and the ability to simulate various 

touch sensations. The semiotics are often reduced to binary signs (on/off, yes/no, 

day/night, more/less etc.) featured in various notification features. However, most 

of these are applications based on the general-purpose environment already 

established, suggesting the early beginning of a hybrid system connecting immediate 

and hypermediate strategies.  

Haptics only? 

Can we imagine a standalone haptic interface for productivity? And what is a haptic-

only interface? If it entails a general productivity environment solely run by haptic 
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input and haptic feedback, I am not so sure. There is definitely a range of tasks and 

activities which would be significant for a productivity milieu which is not very well 

implemented in haptics today and may never be.  

We currently lack precise and efficient means for detailed handling of data. We 

have general sorting, grouping, selecting gestures in place, but when it comes to 

adding, controlling and fine-tuning parameters of digital files and systems, haptics is 

not accurate and nuanced enough.  Some insights come from the music industry. 

There has been a lot of experimentation with haptic controllers for music production 

and performance. Controllers available to consumers, are primarily assistants to 

visual music software, such as Ableton PUSH88 or Traktor Kontrol S4,89 and suited 

for live performance and playback rather than composition. These controllers also 

offer very little haptic feedback. For detailed studio production work, the meticulous 

and delicate adjusting of parameters in recording, mixing, and mastering processes, 

these controllers offer very little assistance. While we do see multi button mice 

which allow for diverse and specific mapping of functions for different 

applications,90 for more advanced haptic controllers utilizing spatial features and 

nuanced haptic input and feedback, the time it takes to map functions or personalize 

the device for a specific application makes them less attractive and useful.  

Secondly, reading and writing are two significant processes for a general 

production environment that lack a suitable implementation with haptics. Both 

reading and writing are closely bound to the visual or auditory sense, and it seems 

almost futile to consider a purely haptic rendering of these two activities. In regard 

to writing, we do have a range of graphic and screen tablets that support text 

recognition of handwriting, and in that way support haptic input of the written 

word. However, it has gained little popularity due to being less efficient and precise 

than writing using keyboard input. And there are certainly devices for the seeing and 

 
88 https://www.ableton.com/en/push/ 
89 https://www.native-instruments.com/en/products/traktor/dj-controllers/traktor-kontrol-s4/ 
90 In the case of RAZER Synapse, personalized template mappings of common tasks and actions (as 

shortcuts and system macros) for a range of  applications (Blizzard Games, Adobe Creative Suite etc.) can be 
uploaded and downloaded to any RAZER mouse, giving the user up to 11 programmable buttons: 
https://www.razer.com/synapse-3 
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hearing impaired that supports tactile writing and reading, such as Braille and LORM 

machine translators, but in terms of precision and efficiency offers little to the non-

impaired human.  

While I imagine haptics will advance in both data handling and linguistics, and 

might some day culminate in a haptic only implementation, our experience with 

interfaces and real-world environments is always multisensory.  So, rather than 

searching for the purely haptic interface, we may consider haptic sensitivity in 

isolation to identify its strengths. A key advantage of the haptic senses is the 

perception of three dimensions, reading objects and space. Presently, we see haptics 

becoming a key player in the growing field of spatial computing,91 with projects such 

as the Hololens.92 Spatial software allows for machine mapping of physical spaces 

and objects. These spatial reference points are represented in a virtual world layer. 

Combined with haptics (input controllers and feedback systems), position sensors 

and even eye tracking, these mixed reality worlds and their inhabitants can be felt 

and manipulated. And it is, perhaps, in the coupling of haptic with visual or auditory 

interactivity in multimodal setups, that the best application of haptics can be found. 

Multimodality 

The mouse is perhaps the best-known haptic device, with buttons and wheels to 

direct tactile input. But it is also one that is heavily dependent on its coupling with 

screen media and the visual sense. As interaction between the mouse itself and the 

pointer is indirect, the user will need to see the virtual object and environment in 

order to navigate it, by guiding the cursor. The mouse has been surpassed as a haptic 

device in the implementation of haptic controllers for VR-worlds. But even in these 

interactive scenarios, content and narrative are fed visually via a virtual or 

 
91 The term spatial computing was coined by Simon Greenwold in his MA thesis in 2003, defined as 

“human interaction with a machine in which the machine retains and manipulates referents to real objects 
and spaces” (11). 

92 HoloLens is a mixed reality headset particularly targeted at training scenarios, coordinating eye 
movements and hand gestures to render navigate different applications, such as control panel, working with  
3D models, and interactive virtual guiding or training layers, aiding the interactor in a physical space.  
Combined with a haptic hand controller, the spatial computing paradigm is enforced, allowing the interactor  
to feel the objects rendered. https://www.microsoft.com/en-us/hololens/hardware 
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augmented reality solution and haptic sensations are primarily accompanying the 

experience, rarely setting it. Still, the design is based on immediate, direct 

interaction, and the user if offered relevant haptic feedback, in addition to haptic 

input when navigating the space. Such multimodal, mixed reality systems seem 

presently to be most promising when considering richer haptic communication, 

albeit not necessarily for general productivity. 

Cross-modality as technological synesthesia 

Finally, we have a range highly specialized devices that let you experience 

synesthetic sensations, such as hearing colors93 or tasting visual images.94 And we 

might easily imagine a range of future applications of haptics that utilize this 

premise.  As discussed in chapter 3, there is a range of media artworks that 

demonstrate the potential of extending haptic sensitivity into the visual and auditory 

realm, and further into novel areas of human sensation.  Beyond gestural controllers 

offering cross-modal feedback, the premise of detailed coupling of audiovisual-

haptic content is also proving significant for creating immersive VR experiences, 

both to extend the capabilities of hardware and to induce novel sensations in the 

interactor.  

Scenarios of haptic media: The Hand, the Body, and the Sign 

While there are many areas in which haptics may be applicable, we find that there 

are some areas in which haptics are more useful, such as assistant binary guidance 

systems (notifications, confirmations, and cues), object manipulation, texture 

recognition, and as a key sensory ingredient in creating immersive experiences in 

virtual environments. The applicability of the haptic medium depends on whether it 

 
93 Neil Harbisson, a cyborg activist being colorblind, has permanently attached an antenna to his head 

that allows him to perceive color (including infrared and ultraviolets) as auditory vibrations. 
https://www.ted.com/talks/neil_harbisson_i_listen_to_color 

94 The BrainPort Vision sensor captures visual input via a head-mounted camera, which is translated to 
electro tactile information, and delivered to an array placed on the surface of the tongue. 
https://www.wicab.com/brainport-vision-pro 
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utilizes haptics only, multimodal, or cross-modal, synesthetic mediations of haptic 

sensitivity. Likewise, one media type, such as wearables, as opposed to responsive 

environments, affords different activities, sensations and experiences—particularly 

in the realm of haptic feedback.95 To cover some of this diversity, I will interrogate 

three directions, or scenarios, of haptic media under the labels: The Hand and The 

Body, and The Sign. 

In addition to assessing haptic interactivity and communication in terms of the 

material foundation, semiotics and affect as framed by the haptic figura, each 

interface direction is considered by its potential for productivity. Here I interrogate 

the presentation of action space, affordable tasks and activities, and discuss the 

interface for its versatility and function as an immediate general-purpose 

environment. As implied in the word scenario, I am not only considering the current 

state of a technology, rather imagining ahead, to consider the implications of a 

complete implementation of the technology. 

 

5.3 The Hand: Creation and exploration 

 

I put on the gloves, they layer perfectly with my skin. 

Skin and gloves become one as I sit down  and clear the table,  

grouping current work files and dismiss them from view, before  

I initiate my maker space. I reach out and touch the ball-like  

object in front of me. I feel the shape, softness, and texture of it,  

and gently start to mold it into a figure, adding textures as I go.  

I want to make the imaginary creature from my daughter’s dream,  

the Peliphant, and have it printed before she is back home.   

 

 

This vignette expresses some of the potentiality of haptic hand interfaces. The hand 

is versatile, we use it for so much: to search and recognize, to grasp and hold, to 

 
95 Following the scope set in chapter 4, the discussion will only include non-invasive haptics, 

disregarding haptic implants and transplants. 
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shape and make things, to show affection and aggression, to indicate and point. How 

we use our hands has also evolved with the development of technology. Leroi-

Gourhan presents a somewhat linear evolutionary thread suggesting the hand has 

gone from being a tool to become a driving force. First the gesture and tool was the 

same, as we used the hand for manipulative actions, moving to directly motive action 

of the hand in which the hand tool is separated from the guiding gestures, to indirect 

mobility where hand gestures run a motor, to hand intervention where hand are only 

used to start a motor process, to what he recognizes as modern day practice, in 

which the “the hand is used to set off a programmed process in automatic machines 

that not only exteriorize tools, gestures, and mobility, but whose effect also spills 

over into memory and mechanical behavior” (1993, 242). With haptic media 

interfaces for the hand, these evolutionary steps may co-exist, allowing the hand to 

be the tool, the guiding force, and the initiator. In the following, I discuss two 

directions in hand interface design, one aimed at creative processes, and another at 

exploration.  

Thinking and creating with hands 

Haptic gloves (often generalized as data gloves) are wearable peripherals for 

computer interaction that utilize the position, tactile and proprioceptive gestures 

and forces the human hand, and may mediate both nuanced haptic input and 

feedback. Data gloves are not new to the market. Several conceptualizations and 

prototypes have been developed over the last decades, the first ones being wired, 

input-only devices starting with the Sayre Glove developed at the Electronic 

Visualization Lab in Chicago in 1976 (Sturman and Zeltzer 1994, 32). With recent 

advances in off-the-shelf microcontrollers and sensor technologies that we see 

wireless editions that could find their way into the everyday computer environment, 

equipped with both haptic input and feedback systems.  

Haptic gloves propose to record the way we use our hands to engage with the 

world and facilitate relevant feedback. We touch and put pressure on objects, our 

dexterous hand allows for a range of positions and gestures, such as pointing, 
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pinching, grasping, clutching, and stretching. And all of the above-mentioned actions 

have found their technological sensor equivalent which can be utilized in glove 

design. Gyroscopes and accelerometers are used for position and movement 

tracking, bend sensors record finger stretching and clutching gestures, and pressure 

sensors record the force of touch—and those are just a few of the input sensors on 

the market. Most gloves today have reduced haptic feedback systems, primarily 

provided by vibration. However, there are several initiatives aimed to extend the 

range of haptic feedback offered, i.e. the virtual touch sensor based on pneumatic 

actuation developed as part of the Hands Omni project96 or utilization of silicon 

nanomembranes equipped with electrotactile stimulators designed for fingertips 

(Ying et al. 2012), or various hand-held haptic feedback controllers, such TORC 

(Gonzales Franco and Ofek 2019) and Reactive Grip97 previously presented in 

chapter 4. Currently, haptic gloves are primarily presented as controllers, rendering 

haptic input, as cues for navigation and activation. Or as feedback devices rendering 

haptic data to enrich spatial and object recognition and manipulation in virtual and 

real environments.  

A glove project of particular interest, due to its versatility and potential for 

diverse applications, is Mi.mu.98 These gloves are equipped with a range of motion 

sensors, including flex sensors, which allow for a detailed mapping of hand gestures. 

The accompanying Glover software lets you track and map orientation (pitch, roll, 

and yaw), direction (forwards, backwards, left, right, up, and down), and store nine 

compound postures, such i.e. closed fist, pointing and open palm, as control cues for 

third party software (primarily as MIDI or OSC messages). The gloves run on 

batteries and transfer sense data over wi-fi, allowing the interactor significant 

mobility. In addition, the glove features vibration sensors and led-lights feedback. 

Project-initiator and singer-songwriter Imogen Heap is the person who currently 

has demonstrated the technology most significantly. In 2012 Heap, inspired by an 

 
96 Hands Omni project site: http://oedk.rice.edu/Sys/PublicProfile/25532450/1063096 
97 https://tacticalhaptics.com/ 
98 The Mi.mu glove project site: https://mimugloves.com/ 
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earlier MIT glove project, gathered a team of researchers and programmers to 

develop a musical performance tool for her shows, but ended up with a device that 

duals as a remote control and a musical instrument. Heap notes that this change in 

perception coincided with the development of the glove. In additional interviews,99 

she describes how she intended to develop gloves for performing her songs on stage 

as a playback device, but she ended up with an instrument on its own. Composing for 

and with the glove, the glove has become inherent in the design process of a musical 

piece. In an interview with Create Digital Music she states: “The gloves are like a 

second skin. They are part of me. An extension of me. I become hyperreal.” (Kirn 

2014).  Heap’s account of her experiences reiterates many of the points pressed by 

theorists discussed in previous chapters. Note how the transition of gloves being a 

performing tool to becoming a compositional tool might be considered an exercise in 

abstract movements. Or that the wearer experiences the glove as part of her, like a 

second skin, corresponding to how tools integrate in our phenomenal and lived 

body. Both processes that revise the body schema, according to Merleau-Ponty. We 

also note how Kirsh’s notion of the enactive landscapes (2013) features in, as the 

range of glove interactivity sets the field of production and equally invites new ways 

of composing.    

While different applications are currently developed for the Mi.mu gloves, it is as 

a gestural music controller and tool for live performance that the gloves have found 

their primary market value. Mi.mu and similar projects100 anchor the desire for 

hand-controlled devices that utilize natural hand movements and gestures—for 

creative production, such as composition, modelling, and live performance.   

Currently, most controller software for rendering haptic input and output are 

prototypical, or limited to simple customization, and bridge with few areas of 

 
99 Interview with Dezeen Magazine (Fairs 2014), interview on Dara O’Brian’s Science Club (O’Brian 

2012), and Wired Talk (Wired UK 2012). 
100 Two projects are worth mentioning here. The Beatjazz prototype developed by artist Onyx Ashanti, 

which is a handheld and mouth operated device for live performance, supporting musical improvisation, 
gestural sound design and looping (Ashanti n.d.). Secondly, the newly funded Kickstarter project, GripBeats, 
which is a armband reading haptic gestures from a 9-axis motor sensor and over thirty pressure points  to 
trigger sounds, samples, and melodies, as well as filters and effect from a custom software, or simply as a 
MIDI-controller for existing musical software (“GripBeats” n.d.). 
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application. In regard to the Glover software, the trackable gestures and postures 

could theoretically be mapped to any action of choice. Where Imogen Heap needed a 

performance device that let her move freely on stage, another person might require 

completely different feature mapping to promote creative actions. The reason 

flexible and easy-to-use software supporting versatile mapping of haptic gestures is 

still a thing of the future has to do with more than adhering to commercial value and 

strategies for securing funding for development. There is also a limit in how complex 

the coding and mapping scheme can be before users will be put off by the time it 

takes to become relatively proficient in using the device. A second challenge lies in 

the limited haptic feedback, reducing most haptic gloves to controllers, and not the 

rich explorers and manipulators of objects and landscapes they could be. 

Touching the virtual and afar: Exploration of new worlds 

We have haptic hand interfaces that encode rich tactile and proprioceptive input 

as haptic gestures for creativity and control. What is missing from most of these 

devices is rich and nuanced haptic feedback. There are few, if any, implementations 

that combine strong material solutions for haptic input as well as haptic feedback. In 

the case of UltraLeap, the two companies behind LeapMotion and UltraHaptics 

merged, to create a hand interface affording both haptic input and tactile feedback. 

The Leap Motion optical sensor tracks hand movements and gestures in real time, 

and functions as a controller reading haptic input. Combined with UltraHaptics 

modules (such as STRATOS), UltraLeap supports feedback as focused ultrasound 

emanating from display surfaces (Carter et al. 2013), allowing for mid-air tactile 

sensations for objects, surfaces, and shapes, and compound tactile signs such as 

Click, Dial, Lightning, Open:Close, Ripple and Scan (“Haptics | Ultraleap” n.d.) A 

limiting factor of UltraHaptics is that the interactor is fixed in a standing or sitting 

position in front of the optical sensor, and above the tactile feedback module, which 

reduces the action space accordingly. The stimuli from ultrasound emission is also 

restricted in terms of textural representation, and the setup offers no proprioceptive 

feedback.  
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The challenge of creating rich textural sensation has been tested in the Touché 

project (Sato et al. 2012), in which the interactor, by wearing a small armband, 

experiences various emulated tactile sensations when touching both physical, 

everyday object and virtual objects presentation via screens. And the ability to 

introduce rich tactile, if not total haptic feedback in virtual scenarios as well as over 

distance have certainly many upsides. While we may not feel the surface of Mars or 

experience the texture of a water molecule, there are certainly projects out there 

that aim to tackle distal and virtual sensing.   

One such project is the Tactile Telerobot, a haptic telerobotic hand for 

exploration and manipulation. This project is the fruitful collaboration between the 

Shadow Robot Company,101 and SynTouch,102 and HaptX.103 

The robotic hand skeleton for remote exploration is based on the Shadow 

Dexterous Hands design by the Shadow Robot Company. 

The robotic hands are equipped with a biomimetic tactile sensor, labelled BioTac, 

developed by SynTouch. This sensor will let the hands, specifically the touch sensing 

robotic fingertips, detect tactile information and feel the environment. The tactile 

sensor, the size of a fingertip, is quite elaborate, consisting of 19 electrodes and 

covered with silicone skin. Saline is injected between electrodes and skin, allowing 

measurements of changing resistance, when the sensors are pressed against 

something. To define tactile sensations, SynTouch has developed a rich database of 

touch profiles based on analyzing various materials. The sensor readings are 

represented in 15 dimensions of touch, deriving from five main categories of 

sensation:  Compliance (deformability), friction, texture, adhesion, and temperature. 

(“SynTouch Technology” n.d.). This allows the robotic hands to sample and 

represent a rich tactile collection of sensations.  

The sensory impressions recorded are delivered in real-time to the interactor 

controlling the robotic hand, via a haptic glove. The glove system, HaptX, can track 

 
101 https://www.shadowrobot.com/telerobots/ 
102 http://www.syntouchinc.com/en/ 
103 https://haptx.com/ 
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36 degrees of freedom which accords for detailed recording haptic input at almost 

every axis. Additionally, it offers rich haptic feedback, with the aim to replicate real-

world objects. The glove design consists of a flexible microfluidic skin consisting of 

pneumatic actuators and air microfluidic air channels, which allows for skin 

displacement and tactile pressure sensations, offering rich experience of texture and 

shape (Varga n.d.). As it comes with a light exo-skeleton the glove can emulate 

proprioceptive force sensations in addition to tactile ones, giving the interactor 

additional nuanced experiences of weight and size. Besides showing remote 

colleagues’ affection by giving them a massage, proposing that the system “fuses 

your hands with robot hands” (Tactile Telerobot Showreel | Control Robots with Your 

Hands 2019). The telepresence or virtual environment is presented to the interactor 

via a screen, and the combined corresponding visual and haptic feedback are the key 

criteria listed by Dolezal (2012), for extending sense of agency into remote lands.104    

With the Tactile Telerobot you are given a chance to explore distal and virtual 

spaces and use the refined abilities of the hand to search, identify, and manipulate 

objects, utilizing perceptive curiosity and enactive strategies. Several potential 

applications for the tactile telerobot are suggested by the developers, and each of 

them could drastically change who we solve problems that pose too much of a risk to 

humans or are set in worlds outside our normal perceptive reach and grasp. One 

application suggested for the robot are dangerous and critical operations such as 

nuclear decommissioning and bomb disposal, but also testing and manufacturing 

within different biomedical scenarios (handling biowaste, working with contagious 

material, vaccine development etc.). Another direction proposes the exploration of 

new frontiers, space, currently unavailable to humans. Likewise, the robot can 

introduce novel sensations of presence and interactivity, with immersive robot and 

VR/AR experiences. A third type of application is related to training, either within 

 
104 See chapter 2 for a discussion on re-embodiment in telepresence and virtual environments. 
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simulations or on-site via telepresence mediation.105 This aspect will be explored in 

more detail in the discussion on full-body haptic interfaces.   

Haptic gloves, either presented individually or in conjunction within a larger 

interface system, may be considered a strong candidate for a haptic interface for 

productivity. Utilizing the dexterity and gestural vocabulary already known by the 

hand we may interact with virtual as well as physical objects and space, use 

strategies for recognizing, arranging, placing, moving, search and sifting. However, 

most of these interactions centered around emulations of physical haptic sensations 

of objects and spaces, allowing us to utilize the already known operability of the 

hand. Rich semiotic interaction using haptics, is not only a question of the material 

solution, we need to recognize the signs as meaningful messages. Currently there are 

few implementations that demonstrate rich semiotic communication. As unveiled in 

the discussion of the haptic gloves for LORM-users in chapter 4, this device is 

successful because the users already know the tactile language.  

5.4 The Body: (Re)presence and experience 

Imagine the following: 

 

Class, is everyone suited up and ready?” my teacher asks.  

I am not sure if I am ready. It is my first time. “Ok, everyone step into  

the Experience Deck, we will link up with the other groups shortly.”  

Slightly nervous, I step in and watch our classroom transition into  

a large green hall room. One after another new groups of kids  

appear in the room. “Welcome, everyone, we have been looking  

forward to this shared biology class. Today will investigate  

the native wildlife of all our regions and share insights, but before  

we go to the first place, let’s take five minutes to get to know each  

other a little. Let’s shake some hands!” I shyly look around and see  

 
105 HaptX is already collaborating with Fundamental Surgery, who produces VR scenarios of various 

surgical operations. With the HaptX glove system the surgical simulation delivers relevant haptic feedback, 
resulting in a more realistic training scenario, both for on-site and telesurgical operations. 
https://www.fundamentalsurgery.com/ 



INTERFACE 

 

239 

the same expression in the other kids as well. I realize we are all  

new to this. More relaxed, I step forward and hold out my hand. 

Mediation of bodily presence and virtual space 

The idea of responsive environments as a method to induce feelings of presence is 

not new. Traditionally, these environments set the stage and physical border for a 

novel interactive experience. By tracking body movement, position and gestures, and 

matching it with most usually vivid visual and/or auditory feedback, interactors 

report sensations of immersion. Coupling haptic activity with visual and auditory 

response is a well-researched and developed strategy in media art for creating 

interactive experiences. Besides the Krueger’s experiments with VIDEOPLACE, David 

Rokeby’s Very Nervous System (2009) running from 1982-91, and Jeffery Shaw’s 

Legible City exhibited between 1988-91 (Shaw n.d.), are two early and strong 

examples emphasizing the centrality of bodily movement and position in 

interactivity, both as tools for navigating the interface, but even more as a means to 

create the sensation of presence and immersion.  

While we may imagine a purely haptic responsive environment, where the haptic 

input is rendered as haptic output, it is as space for multimodal and cross-modal 

interactive experiences these environments are successful. In these setups haptic 

input functions either as a navigational tool in a (audio)visual narrative, or as trigger 

for audio and visual mediation of space.  I am distinguishing between haptic media 

for the full body which are multimodal and cross-modal. Both track and render 

haptic input as cues to trigger events and actions, but where cross-modal setups are 

translating these cues into other sensory experiences, the multimodal setups include 

haptic feedback to guide and assist primarily audiovisual narratives.  While cross-

modal interactivity will be explored more closely in the last section, The Sign, this 

section seeks to unveil how full-body haptic media can be coupled in a multimodal 

setup to produce novel experiences and feelings of presence.   

As haptic input, the real-time machine reading and rendering of bodily 

movements and gestures can be tracked from wearables instead of cameras and 
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external motion sensors, interactors may liberate themselves from the stage, the 

physical responsive environment per se.  With this liberty comes another 

opportunity, namely that of offering rich haptic feedback. To my knowledge there 

are no well implemented ultrasound (or similar) devices that can deliver mid-air 

haptics for the full-body, so for nuanced haptic feedback for the full-body, we need to 

turn to wearables.  

Suit up and dive in!  

A rich haptic feedback system for the body can ideally deliver fluent and detailed 

sensations of force, vibration and motion, which can be presented as haptic cues, 

signal and signs, throughout the body surface. We have also come to a point in time 

where full-body haptic feedback is technologically feasible to be of real use, 

especially when combined with virtual and augmented reality narratives. 

In the following I will present a current full-body interactive haptic wearable 

developed for the commercial market, to discuss potential and perhaps inherent and 

shortcomings of such setups. The Teslasuit106 claims to enhance physical 

performance in selected situations and environments and showcases a segment of 

haptic technology that is currently popular in the developer community—tactile 

stimulus as emulation of reality.  The Teslasuit delivers haptic feedback and 

temperature control for emulating delicate touch sensations to feelings of physical 

strain and exhaustion for the user.  The haptic feedback mechanism is based on 

electrostimulation and is distributed over 80 suit points. Furthermore, it contains 

two biometric sensors for capturing and recording heart rate (EEG) and skin 

moisture, and is also rigged for motion capture, allowing body movements and 

postures to be recorded for later. This feature also allows for comparisons of 

performance over time, or as a basis for later suit programs. On that note, a 

dedicated software uploads various training scenarios or performance situations to 

the suit, with the aim to train reflexes and muscle memory (allowing certain gestures 

 
106 https://teslasuit.io 
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and movement combinations to be recorded to memory). The suit may be used 

separately coupled with augmented or virtual reality technology to present various 

scenarios where the interactor can practice for specific environments or situations—

and is targeted towards athletes, patients in rehabilitation, and training in specific 

industrial, medical, or manufacturing environments.  

The Teslasuit utilizes two types of electrostimulation techniques to offer a 

combined sensation of touch and force, labelled transcutaneous electro stimulation 

(TENS). TENS consist of transcutaneous electrical nerve stimulation (TNS) meaning 

that the suit passes direct electrical stimulation of the nerve endings in the skin, and 

electro muscle stimulation (EMS)—forcing the muscles to contract, simulating a 

sense of force (e.g. the feeling of weight) (Mikhalchuk 2017). The haptic feedback is 

purely tactile as it only stimulates the skin surface, giving the interactor a simulated 

sense of kinesthetics (motion and force). Electrostimulation, as opposed to other 

tactile stimulation strategies,107 does not require any moving parts as it contains no 

motors, in creating the sense of skin touch and force. And secondly, it requires 

moisture to be conductive. Direct electrical stimulation is rarely the preferred 

method for tactile experiences, as it can be unreliable, however, there are no public 

records of the Teslasuit having suffered from this. Overall, the Teslasuit definitely 

offers rich tactile feedback, but only pseudo-proprioceptive feedback (buzz-

vibrations), as no actuators are involved in the processing engaging real force 

sensations, such as pressure, inertia or compliance. If we are to imagine a rich haptic 

interface for the body, the lack of proprioceptive feedback will limit the action space 

for the interactor, hindering potential actions and tasks to be perceived. 

In terms of the material setup of the suit, and the intended use of it, it is fair to 

state that the communicative sign exchange in this interaction is first and foremost 

presented visually via the virtual and augmented reality story-lines, and not via 

haptics. I would also guess that most, if any, of the affective content, is coded 

 
107 This method of creating touch sensations separates it from common tactile media devices (such as 

your smartphone) more commonly utilizing vibrotactile stimulation where mechanical vibration caused by 
small motors within the device is the source of the touch sensation. Or electrovibration where the electrical 
force is mediated indirectly, and touch sensations are produced only when skin moves over the haptic media 
surface. See chapter 4 for more details on tactile surfaces. 
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visually, in which haptic feedback may offer congruent sensory support, but that 

doesn’t need to be the case. We can easily imagine the suit program to include 

gestural patterns that are experienced as affective, i.e. gentle strokes and pats. 

Scenarios as lived 

Teslasuit developers claim that their suit will offer us scenarios which will be 

experienced as lived (“Teslasuit” n.d.), but is the material and semiotic setup of this 

wearable sufficient to hold that claim true? I am wondering how realistic a simulated 

scenario or environment needs to be to induce feelings of presence? Or is almost 

perfect, or even roughly perfect, good enough to be a useful experience for the 

interactor. And is lived a measure of immersion in the experience? The suit 

experience will always also be a phenomenal experience, that is recorded to 

memory, no matter if the intended experience by the developer is matching the 

actual one perceived by the interactor. The experience may approximate sensing a 

real environment, it might even be sufficiently real enough for the user to fill in 

missing gaps of a full and rich physical experience to be useful and valuable. In 

virtual reality design immersion is measured in fidelity—the presentation of 

realistic (high definition), primarily visual, representations—and immediacy—the 

seamless and fluent presentation of the narrated experience. Both fidelity and 

immediacy are key to creating the experience of being there or here, but as of today, 

we have few congruent systems that have equal emphasis on both. Interactors 

report that seamlessness and fluency are most important to feel immersed in virtual 

environments (Greengard 2019, 93).  

In chapter 2 we discussed the difference between the sensory body and the 

intentional body. The sensory body is always here, whether sitting in front of a PC or 

embedded in a haptic suit, passively experiencing the world. The intentional body, on 

the other end, can be transferred, and become our means to experience presence in 

telepresence and virtual scenarios. What is needed to induce feelings of 

phenomenological presence and embodiment elsewhere, is an environment that can 

mediate our acting selves, our intentions for action. This requires not only a fluent 
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mediation of the media scene, as well as a rich material solution supporting visual 

feedback and haptic (tactile, but more importantly proprioceptive) perception. In 

addition, for the scenario to be experienced as truly lived, an element of risk needs to 

be present, which suggests that Teslasuit is still some way off before delivering 

experiences matching real life.   

From real life experience to training in VR/AR 

The main selling point of the Teslasuit is the potential of experiencing scenarios to 

train muscle memory and produce new bodily habits, particularly in scenarios 

coupled with VR/AR. There are no public test cases that illustrate the effect on users, 

however, the developers point to research done on haptic training in the field of 

carpentry which show a significant improvement in motor skills for both experts and 

novices when training in haptic-audio-visual environments (Mikhalchuk 2018a, Jose 

et al. 2016). An early research experiment with haptic-visual training showed that 

haptic guidance is most significant in training timing of motor skills, whereas the 

visual aid is more relevant when training position and shape (Feygin et al. 2002). 

The findings also show that each training situation requires that the specific lessons 

match a corresponding haptic gesture and visual representation, for the training to 

be effective. This indicates it may be challenging to develop a general-purpose haptic 

wearable fitting a range of scenarios and environments. As noted in a surgical 

training experiment combining VR simulation with haptic feedback, the design and 

mechanical quality of the haptic feedback system can highly influence the ability of 

the system to support the transfer of motor skills, despite being coupled with virtual 

reality simulation (Våpenstad et al. 2016). For these reasons, it is uncertain whether 

the increase in motor skills as shown in some experiments is transferable to the 

environment and scenarios provided by the Teslasuit, as both the haptic technology, 

VR/AR solution, and narratives, are novel, and aiming for success in many different 

areas. This becomes particularly relevant when considering the latest collaboration 
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Teslasuit has with virtual reality directors Next Frontier,108 whose recent project 

E.V.A aims to train astronauts in overcoming the physical and psychological 

challenges connected to long-term living in space. Various virtual reality scenarios, 

ranging from soothing visits to well-known Earth habitats (e.g. a forest) and 

engaging in sport activities, to training in zero gravity simulations, are all different 

programs in the process of being coupled with haptic sensations provided by the 

Teslasuit. Will poor simulations counteract the benefit of the training? In the case of 

zero gravity training, will an inaccurate simulation result in astronauts evolving 

faulty muscle memory?  As more and more tech companies start developing haptic 

media devices aiming to enhance performance in different industries, these 

questions will be increasingly important to answer, forcing further quantitative 

research into the field of performance measuring. 

The body as a communication surface 

The aim to emulate sensory experience, more than being a message-carrying 

channel, appears to be central in the Teslasuit design. For this reason, it may be 

closer to simulating a real-life experience as truly lived, than to represent language, 

as there is no need to be consciously aware and attentive for the sensory stimulation 

provided to be effective and useful.  And there are challenges connected to semiotic 

representation for haptics directed at other parts of the body besides the hands, in 

terms of perceptive attention. A lesson might come from the tactile language 

Vibratese proposed by Frank A. Geldard in the late ‘50s. Vibratese consisted of 45 

different tactile patterns distributed over the body, which could represent letters 

and numerals in the English alphabet (1957). And although Geldard’s experiments 

suggested it was easy to learn, the language is now longer in use (Pasquero 2006). 

Why not? A research review on tactile communication for the full body offers insight 

(Gallace et al. 2007). We become easily blind to tactile stimulus if many are 

presented simultaneously across the body surface. As such, Vibratese as a method 

 
108 https://next-frontier.com/ 
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for haptic communication is inherently challenging due to “the fundamental failure 

of early research to consider the central/cognitive as well as the peripheral 

limitations that may constrain tactile information processing across the body 

surface” (6). In addition, the tactile blindness phenomenon may occur in 

multisensory setup, if tactile signals are not presented congruently with other 

stimuli. This means that if a visual cue suggests that you should stop and a tactile cue 

indicates you turn left, your perceptive attention is split, and tactile stimuli may be 

lost. This tactile blindness becomes more explicit on full-body interfaces, than on the 

fingertips and hands. This is partly due to some body surfaces, such as backs, thighs, 

and legs, having either fewer or less specific tactile sensors, but also because these 

areas are rarely used for haptic communication. While the same research suggests 

we may train our sensitivity and ability of recognition and specificity, on other body 

surfaces (25), it still presents a current limitation in designing full-body wearable 

which support rich semiotic mediation. 

5.5 The Sign: Recognition of gesture and bodily intent 

 

I want to be alone when I read it. I rush home, enter, and snap  

my fingers three times before opening my palm. Lights turn on  

in the hall, living room, and office space, before my worktable is  

pulled out. I sit down, tap on the table, and open my email.  

There it is. The reply. I take a few breaths before opening it.  

And...I got it! The dream job. I tap and stroke my right arm.  

It is time for music! 

 

 

The last scenario is devoted to haptic media, gestural and motion controller systems 

specifically, that recognize and render haptic input as control signals for cross modal 

feedback. These are responsive environments and wearables that read haptic input 

such as position, touch and mid-air gestures, as well as movement, as control 

parameters for interactivity and user interaction. However, they offer no machine 
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mediated haptic feedback. Many of the hand interfaces discussed previously double 

as gestural controllers (e.g. Mi.mu gloves), both due to the limited feedback offered 

by the devices, but also because gestures are recorded and mapped as control cues 

to perform desired actions and tasks. I also wish to differentiate these controllers 

from machine vision software implemented in environments that track and map 

posture, gait, movement, facial features, etc. These are facial and gestural recognition 

systems most often hidden from us, operating in the background, that offer no 

feedback, neither haptic nor audio-visual. 

Building a haptic language: Recognition and classification of 

human gestures 

There is a significant amount of research and development directed at creating 

mapping and tracking software and learning algorithms to accommodate real time 

recognition of human gestures. Many of these programs search and populate large 

databases, libraries of tactile and gestural patterns, analyzed and classified. 

The most common strategy to capture gestures have been through camera based 

solutions, well known candidates being the optical sensor in the Leap Motion 

controller, or the Kinect motion and depth sensor, but we also have novel setups 

experimenting with wi-fi interference, such as WiSee (Pu et al. 2013). But we have 

not exhausted our options yet. The Soli project, initiated by Google ATAP,109 has 

developed a small radar system for recognizing movement and touch gestures, as 

key features of non-verbal language. The interface is based on a small gesture sensor 

where radar is utilized to track micro (sub-millimeter) movements of your hand as 

well as body movements with high positional accuracy. Radar as opposed to camera 

is also more energy efficient, is also not dependent on line of sight, and can see 

through other materials. Another advantage is that radar can recognize and track 

subtle and fine gestures like finger rub, which are otherwise difficult to detect by 

 
109 The site of Google ATAP and Soli project : https://atap.google.com/soli/ 
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gesture recognition software utilizing cameras, such as the Leap Motion sensor 

discussed above. 

Utilizing machine learning to recognize a large set of possible movements, the 

aim is to build a novel library of human gesture vocabulary (Lien et al. 2016, 142:6-

8). Currently the radar will be aware of your presence, whether or not you are there, 

if there are more than one interactor in the vicinity, and if you sit. It tracks body cues 

that onset interactions, such as reaching, leaning, and turning. A few hand gestures 

have also been added to the library, such as pinching (thumb-index finger, and 

thumb-pinky finger), dialing (finger rub), sliding, (finger slide), swiping (fast and 

slow hand wave), pushing, pulling, circling (with index finger), and palm hold (Wang 

et al. 2016, 855-6). As noted by Soli developers, it has taken a long time just to arrive 

at a version of swipe or slide gestures, as people intuitively will act out those 

gestures in many different ways.  This gesture set marks the starting point for 

applications, but the aim of the project is higher: As stated by one of the lead 

software engineers of the project, Patrick Amihood, that by analyzing the data 

signals captured by the sensor they are building a device that is “interpreting human 

intent” (Google ATAP 2015). We will return to the notion of intent.  

The first big commercial implementation of the Soli radar chip came with the 

mobile phone Google Pixel 4. And although the phone is postulated to offer new 

experiences of presence, reach and gestures (“Google Pixel 4” n.d.), the current 

implementation in Pixel is limited. The few gestures, such as fast and slow swipe, 

and features supported, can easily be replaced by other sensors, such as camera, 

accelerometer, and gyroscope. So, the idea about using radar as a method for reading 

haptic input as control parameters, exceeds the actuality, for now.  The challenge lies 

in the defining gestures that appear general and natural to us all, without 

introducing a too steep learning curve. As such, the project asks if there exists a 

shared natural tactile language or haptic action repertoire that can be unveiled 

(archetypical thinking) by this technology, or if they merely track current trends and 

cultural habits, and as such are more or less social constructions. But even if we are 

considering a linguistic construction, is it plausible to think that we can create an all-
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natural haptic language, as there are a plethora of nuances within every gestural 

twitch and turn? What is certain, is that the project aims to build a haptic vocabulary 

based on how we engage with the world, moving beyond the icon-thinking where 

the icon holds visual similarity to the object or event it represents, to identifying a 

haptic vocabulary shared between many of  us (and experienced as useful to us), 

even liberating us from the touch screen. 

From language to intent: Intention control and the role of bodily 

anticipation 

In chapter 3, the Xth Sense technology was introduced to show nuanced 

proprioceptive activity at the core of a biomusical performance system, where 

muscle sound is amplified and transposed into music. This technology could also be 

utilized as a haptic gesture recognition system, which given the right bridge software 

could function as a universal controller. A challenge in muscle sound as an interface 

paradigm for productivity environments may lie in the ability to present precise and 

accurate control signals, sometimes our muscles are sluggish.  This is a problem 

investigated by CTRL-labs in the development of a neural interface for the arm, 

CTRL-kit,110 in which electrical activity from the motor nervous system of the brain 

is mapped, to be used as a control input for a range of devices. The system listens 

into motor neurons as they signal action potential on its way to the hands. This 

signal activity is recorded and then sent to a deep machine learning network to 

decode the intention of the action, before returning the analysis as a control signal. 

This process is called intention capture and allows you, supposedly, to map most 

interactions currently possible with hands. You do not even have to move your 

hands, just thinking about them moving is enough to set off an action. This fits well 

with the phenomenological notion of the intentional body. However, the premise of 

no-movement is taken far in the founder’s claim that not only is intention control 

 
110 CRTL-kit is developed by CTRL-labs, as of fall 2019 a part of Facebook Reality Labs. 

https://www.ctrl-labs.com/ 
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close to universal, it may even free you from the mobility restrictions set by the 

body, as it “allows you to do [...] something kind of exotic, like dream about having 

eight arms and to propel yourself like an octopus. To not be victimized by your 

muscles” (Reardon 2018). First thing first, there is no support for this claim in the 

technology as it is currently demonstrated. And although Reardon proposes that the 

reading of motor neuron activity is a strictly neural activity suggesting that the 

motile action potential of a human body is primarily set in the brain, I am not so 

sure. His descriptions and demonstration of the technology suggest to me that 

intention control is the closest thing we have to getting a reading of the body 

schema. And if that is the case, the Octopus scenario is a long way away. As previous 

findings suggest (the extent of severe schema revisions discussed in chapter 2), our 

body schema is rather truthful to the species-specific genetic makeup, which leads 

me to believe that it will be an elaborate task to control eight arms with any 

precision or predictability. 

5.6 The Haptic Interface 

The three scenarios discussed above, centered around the Hand, the Body, and the 

Sign, all present different strengths and shortcoming of current haptic media 

implementations.  The principles of the natural user interface are deeply embedded 

in all of these initiatives, aiming to let natural, everyday interaction with real world 

objects, informed by our inherent and learned action potential, guide user 

interactivity.  However, looking beyond assistive applications of haptic feedback as 

notification and confirmation systems which are built upon current general-purpose 

systems such smartphones, most haptics are present in novel, specialized scenarios 

coupled with (audio)visual content.  The haptic interfaces for the hand show great 

promise in creative applications and spatial computing, to work with composition 

and performance, but also with modelling, both individually and in collaborations. 

However, it is as a tactile and gestural controller mediating control signals, cues and 

signs, triggering actions and events, the hand is currently most utilized. The full-
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body haptic interface is a scene for new virtual and telepresence experiences, as an 

assistant to virtual or augmented reality narratives.  

Haptic interfaces are presently, without doubt, most developed to render haptic 

input as control signals and signs, and as affective messages. And, of the three 

scenarios discussed, haptic feedback is, with few exceptions, presented in wearables, 

either for the hands or the full body. Responsive haptic wearables, that either 

support rich haptic feedback or trigger fluent audiovisual feedback, are reported 

taking on the role of a second or new skin, functioning as a border medium between 

the inner and the outer world, self and Other. Imogen Heap talks about her gloves as 

a skin layer, and Teslasuit developer suggests that “smart clothing is our cybernetic 

‘second skin’, which in the future can become the ‘sixth sense’ both when immersed 

in a virtual world and in space” (Mikhalchuk 2018b). We have previously discussed 

(in chapter 2) how the skin acts as a connector between the internal and the 

external, between subject and object, me and the other. And when considering haptic 

wearables, these media skins connect us with virtual and remote locations and 

sensations. However, the skin border is not absolute, so many things transit through: 

physical elements such as moisture, temperature, and pulse, but also our 

embodiment, as haptic (tactile and proprioceptive) and affective sensations. For 

haptic media, wearables, in particular, it is probably most relevant to see the skin as 

a communication surface (that traces and registers the external world), both affective 

touch, as well as the semiotic reading of expression and body language.  Sensory 

emulation as a communication strategy is certainly the most developed in full-body 

haptic interface, aiming to present the interactor with virtual sensations mimicking 

reality. And while there are many haptic media that are well-developed materially 

able to read nuanced haptic input, and present rich haptic sensations emulating real 

life experience, we lack implementations that can mediate rich semiotic content, 

specifically for the full-body, which is currently technologically and physically 

infeasible. The mediation of semiotic communication is still rather one-sided as few 

systems have implemented haptic feedback beyond binary notification and 

confirmation cues or as emulation of physical sensations. It is in the development of 



INTERFACE 

 

251 

gestural controllers that we have the strongest indications that a haptic language for 

the hands is in progress, with radar and neural reading of motor activity as novel 

strategies for capturing bodily actions as cues and signs for tasks and actions, and 

messages. However, insights from the Soli project in trying to unveil (or construct) a 

universal haptic language suggests that human intuition in terms of haptic 

interaction, may not be as general as we like to think. This is certainly an obstacle in 

creating a fully fleshed general-purpose haptic media for communication, at least 

one that can be intuitively grasped.  The immediate general-purpose environment is 

yet to come. 

 

 



 

252 



 

CONCLUSION  

Setting the Stage 

 

This thesis aims to present the significance of involving haptic perception in 

personal computing environments for productivity extending the screen-based 

milieu of today. I do so by demonstrating the unique role of haptic sensitivity in 

cognitive processes and the underutilized potential of involving rich haptic 

communication in interface design. Specifically, I have investigated how the haptic 

senses (touch and proprioception) impact our cognitive faculty when mediated 

through digital and sensor technologies, and secondly, how these insights are 

employed in interface design to facilitate rich haptic communication. The first 

research question was framed and discussed from two theoretical disciplines, 

namely new media phenomenology and enactive-extended embodied cognition. The 

second research question was investigated through the concept of the haptic figura 

and analyzed in three larger interface scenarios. Overall, the theoretical insights 

have been tested step by step through a set of case studies, based on works of digital 

art. 

The plot and the findings 

We have seen that the haptic senses are involved in all sensorimotor activities, 

which proposes that active sensory impressions, i.e. looking at something or 

directing your hearing, are specific sensorimotor actions all influenced by haptic 

sensitivity. The influence is twofold, both tactility as distributed through the entire 

skin surface, and proprioception as a key contributor to motor-control programs.  

I departed from the phenomenological claim that our action potential is set by the 

body schema, plastic motor control programs that frame bodily reach, which are 

influenced by habit, techniques, tools, and technologies, in processes of confirmation 

and revision. Furthermore, the schemata are driven by a motor intentionality, a 
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bodily agency, that identifies possible actions to reach goals—we exist towards 

tasks. All activity shapes our body schema and bodily space. Perception is not only 

an active process, it is enactive, we establish the world as we act in it. However, our 

perception not only has direction, with the use of tools we also postulate goals. Tools 

extend what we perceive as possible tasks in a given space and situation, the reach 

of our bodies defined as the peripersonal space, allowing us to form new 

sensorimotor couplings. I have argued that the extent of embodiment is set by the 

sense of ownership, experiencing an action as your own, combined with a sense of 

agency, the experienced possibility of generating actions. With digital and sensor 

technologies we have been given unprecedented opportunities for targeting and 

displaying touch and proprioceptive elements of our perceptive experience, and 

extend the peripersonal space—something which has been thoroughly explored in 

digital art. 

Founded in the enactive-extended embodied cognition framework, I have 

presented evidence that cognition may be distributed beyond the body proper, 

through the application of tools and technologies to extend peripersonal space, but 

also that sensory extensions into other modalities made feasible with technology, 

are likely to affect and influence cognitive processes. By involving more of our 

sensory apparatus in interactive scenarios, beyond eyes and fingertips, we can 

expand our perceptive and enactive landscape—our awareness about the world, our 

action potential, and our thinking about the world. The final border of embodiment 

and cognitive reach is still very much disputed, but in discussing machine mediated 

haptic communication, I have argued it is most beneficial to set this border in 

conjunction with the reach of motor intentionality, namely at the extent of sense of 

agency.  

While sense of ownership and agency are hardly separated in real-life 

interactions, the distinction may become apparent in machine mediated 

interactivity, specifically in setup that delimits haptic input and feedback, and this is 

the main reason screens, while great surfaces for organizing thought and visualizing 

complexity, are poorer mediators of presence on their own.  
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With these insights at hand, I turned to the second research question, to figure 

out how machine mediated haptic communication may be incorporated and useful in 

interfaces for productivity. This also called for taxonomy or a tool to help 

understand what rich haptic communication entails. I have argued that haptic 

interactivity in HCI has historically tended to be designed and analyzed from a 

perspective on communication as transmissions, sending and receiving haptic 

signals.  This narrow view is limiting in terms of envisioning and designing haptic 

interfaces that utilize the potential inherent in haptic sensitivity. 

A key contribution of this thesis is therefore the concept of the haptic figura, 

which I have introduced as an analytical tool to frame the communicative qualities of 

haptic media. Specifically, the concept gauges rich machine-mediated haptic 

interactivity and communication in systems with a material solution supporting 

active haptic perception, and the mediation of semiotic and affective messages that 

are understood and felt. This is not a measurement of poor or good haptics, rather it 

emphasizes that the capability of the haptic interface should be understood and 

utilized in terms of what kind of communication it supports. As such the concept 

may function as a design tool for developers, but also for media critics evaluating 

haptic media.  

The haptic figura frames the communication potential of haptic interfaces, and as 

such offers a good basis for measuring what tasks and actions a system may afford. I 

have shown that there are specific limitations and opportunities inherent in haptic 

media interfaces with regards to productivity, and several insights are worth 

mentioning. First and foremost, I have distinguished between haptics in personal 

computing environments based on GUIs, such as PC and mobile devices, and 

specialized haptic systems.  

The first category are general purpose systems with an operating system base, 

and a shared user interface, the GUI, onto which diverse applications are built. In 

these systems haptics primarily have an assistive function, offering cues for 

notifications, confirmations, and possibly direction. It is difficult to imagine a fully 

fleshed haptic system operating within the constraints of the GUI. Similarly, the 
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material solution of a system that can support rich haptic interactivity is specific 

according to the tasks and actions the system affords. To imagine a haptic interface 

that is rigged for all eventual haptic engagements, seems unrealistic, and definitely 

not very user friendly.  

The second category refers to specialized solutions where haptics are featured in 

stand-alone systems or integrated in audiovisual mixed-reality systems. Certain 

haptic tasks, pertaining to physical thinking processes, spatial creativity, and 

gestural control, are best supported by hand interfaces, while experiences of 

presence in virtual and augmented reality systems benefit from full-body interfaces. 

When considering haptic media interfaces for general productivity, particularly 

stand-alone systems, there are limitations that may be hard to overcome, as we lack 

precise and efficient methods for detailed handling of data, and linguistic processes 

such as reading and writing.  

From a communication perspective I have distinguished haptic media that aim to 

reproduce realistic sensations, to those who facilitate message-carrying and 

meaningful exchange. Within specialized haptic systems, sensory emulation as a 

communication strategy is most developed in full-body haptic interfaces, aiming to 

present the interactor with virtual sensations mimicking reality, and affective 

sensations. Implementations that can mediate rich semiotic content are most 

developed for hand interfaces, gestural controllers specifically. Rich semiotics for the 

full body is currently technologically and physically infeasible. 

Results and contributions 

In this thesis I aim to situate the haptic by bringing together insights from several 

disciplines. Specifically, I argue the significant role of the haptic senses in 

sensorimotor coupling and establish embodiment as extendible in accordance to 

sense of ownership and agency. With this backdrop I offer concrete arguments for 

targeting haptic senses in interface design. I also present interactive scenarios and 
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interfaces utilizing haptic senses and their usability, both potential and limitations 

for productivity.  

Specifically, I provide a concept that challenges a reductionist position where the 

notion of haptic communication is becoming a mere grammar of signals, 

classifying/analyzing the receptors and emitters of signals in the hand and body and 

how the signal reports to the skin and muscle system. Instead I present the haptic 

figura as a metaphor and analytical tool for analyzing haptic media. Departing from 

the concept of the figura as an idea-form, the haptic figura proposes that both 

material and semiotic qualities of machine mediated communication should be 

scrutinized, as well as the affective relationship regulated in the interaction. 

Finally, I point to the importance and relevance of using works of electronic and 

digital art as case study objects. In the heart of my research is the inquiry of 

identifying the unique position of digital and sensor technologies in targeting the 

haptic senses. Digital art and artistic expression provide us with a rare opportunity 

for investigating novel and creative development and experimentation with 

technology, which is not bound by demand for commercial application. This 

provides particular insights into haptic interactivity and communication. 

Research design: opportunities and shortcomings 

Any cross-disciplinary research design is challenged by the fact that several fields 

need to be addressed and sourced to adequately summarize the state of research 

and identify key insights. For obvious reasons there are nuances and historical 

observations and understandings that are overlooked in such a design. On the other 

hand, a cross-disciplinary research strategy may allow for known arguments and 

established conclusions to be challenged or even further strengthened, both in the 

process of framing and answering the research question(s). 

In this thesis I have sourced theoretical insights from new media 

phenomenology, embodied cognition and human-computer interaction research, 

sought empirical evidence from neuroscience, and framed my analysis through 
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works of digital art. All of these fields have specific premises, arguments, and 

insights valuable to the understanding of haptic sensitivity and machine mediated 

interactivity, and it is through this common analysis valuable findings have surfaced. 

Nonetheless, it is beyond the scope of any doctoral thesis to fully embrace several 

research fields, so I have made several selections in terms of which theorists to focus 

on, what frameworks within a field to get acquainted with, and what works and 

experiments to present. The field of embodied cognition is vast and by no means in 

agreement, instead I have aimed to show the breadth of the field and identified and 

argued for my position within the extended-enactive view. Similarly, the 

neuroscientific evidence and research on haptics, are experiment-based or 

prototypical, in which the results are relevant case-by-case.   

Future research 

While this research has touched upon the difference between specialized and 

generalized haptic systems, we still lack good descriptions for how haptics may 

enter more fluently into existing general-purpose frameworks in PCs and mobile 

devices, beyond notification functions. We also need to better understand the role of 

haptic sensitivity in shaping muscle memory and body schema, and what this entails 

for our cognitive processes. Scientific research is not settled, in theory nor 

empirically on the extent of embodiment, and what kind of cognitive processes that 

may permeate skin and skull, ranging from sub/nonconscious functions to higher 

level conscious thinking. 

I propose the haptic figura as a starting point for evaluating machine mediated 

haptic communication, as an outline for a taxonomy that considers haptic 

communication beyond the material solution and signal exchange, and recognizes 

the affective and semiotic dimension of haptic interactivity. We are just seeing the 

start of haptic semiotics as a research field, based on research on haptic icons and 

messages, and the attempts to create shared libraries for tactile and haptic cues and 

signals. The affective dimension of machine mediation of haptic communication is 
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still in its early stages, mainly situated in the robotics industry, teaching machines to 

recognize affective cues, and here I can imagine many useful cross-disciplinary 

projects connecting new media phenomenologists and enactivists, alongside 

developers and artists. 

Before you go... 

Already explored in science fiction, we can easily imagine haptic technologies 

allowing us to touch the untouchable, where we are offered illusions of sensing as 

complete as those in the Matrix. Sensory data read from a remote environment or 

created virtually, are translated and mapped into a format fitting the interactor’s 

body sensors, delivered as haptic representations. This may be sensory information 

that is beyond the scope of a human body to register: What does absolute zero feel 

like?  

In such a scenario we are confronted with a complete programming of the sense 

of touch. As vision is in danger of becoming automated through ocularcentric 

technologies, such a scenario would render touch algorithmic, and no longer able to 

act as a reality-checking device. The human observer and perceiver has been 

removed from the objects in the world.  

And where lies the edge of embodied extensions—alterations, augmentations, 

additions and replacements? We are still unclear on the limits of prosthetics, and the 

nature of the mapping function between our own action repertoire and tool-

supported action repertoire. What is certain is that how we decide to understand the 

mapping function—whether as code, as a translation, as interpretations, or as 

interactions, will be part of how tools are presented to us, and in turn, absorbed by 

us. 
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