64 research outputs found

    Verifying Concurrent Stacks by Divergence-Sensitive Bisimulation

    Full text link
    The verification of linearizability -- a key correctness criterion for concurrent objects -- is based on trace refinement whose checking is PSPACE-complete. This paper suggests to use \emph{branching} bisimulation instead. Our approach is based on comparing an abstract specification in which object methods are executed atomically to a real object program. Exploiting divergence sensitivity, this also applies to progress properties such as lock-freedom. These results enable the use of \emph{polynomial-time} divergence-sensitive branching bisimulation checking techniques for verifying linearizability and progress. We conducted the experiment on concurrent lock-free stacks to validate the efficiency and effectiveness of our methods

    State/event net equivalance

    Get PDF

    A Machine-Checked, Type-Safe Model of Java Concurrency : Language, Virtual Machine, Memory Model, and Verified Compiler

    Get PDF
    The Java programming language provides safety and security guarantees such as type safety and its security architecture. They distinguish it from other mainstream programming languages like C and C++. In this work, we develop a machine-checked model of concurrent Java and the Java memory model and investigate the impact of concurrency on these guarantees. From the formal model, we automatically obtain an executable verified compiler to bytecode and a validated virtual machine

    Executable Denotational Semantics With Interaction Trees

    Get PDF
    Interaction trees are a representation of effectful and reactive systemsdesigned to be implemented in a proof assistant such as Coq. They are equipped with a rich algebra of combinators to construct recursive and effectful computations and to reason about them equationally. Interaction trees are also an executable structure, notably via extraction, which enables testing and directly developing executable programs in Coq. To demonstrate the usefulness of interaction trees, two applications are presented. First, I develop a novel approach to verify a compiler from a simple imperative language to assembly, by proving a semantic preservation theorem which is termination-sensitive, using an equational proof. Second, I present a framework of concurrent objects, inheriting the modularity, compositionality, and executability of interaction trees. Leveraging that framework, I formally prove the correctness of a transactionally predicated map, using a novel approach to reason about objects combining the notions of linearizability and strict serializability, two well-known correctness conditions for concurrent objects

    PureCake: A verified compiler for a lazy functional language

    Get PDF
    We present PureCake, a mechanically-verified compiler for PureLang, a lazy, purely functional programming language with monadic effects. PureLang syntax is Haskell-like and indentation-sensitive, and its constraint-based Hindley-Milner type system guarantees safe execution. We derive sound equational reasoning principles over its operational semantics, dramatically simplifying some proofs. We prove end-to-end correctness for the compilation of PureLang down to machine code---the first such result for any lazy language---by targeting CakeML and composing with its verified compiler. Multiple optimisation passes are necessary to handle realistic lazy idioms effectively. We develop PureCake entirely within the HOL4 interactive theorem prover

    From computability to executability : a process-theoretic view on automata theory

    Get PDF
    The theory of automata and formal language was devised in the 1930s to provide models for and to reason about computation. Here we mean by computation a procedure that transforms input into output, which was the sole mode of operation of computers at the time. Nowadays, computers are systems that interact with us and also each other; they are non-deterministic, reactive systems. Concurrency theory, split off from classical automata theory a few decades ago, provides a model of computation similar to the model given by the theory of automata and formal language, but focuses on concurrent, reactive and interactive systems. This thesis investigates the integration of the two theories, exposing the differences and similarities between them. Where automata and formal language theory focuses on computations and languages, concurrency theory focuses on behaviour. To achieve integration, we look for process-theoretic analogies of classic results from automata theory. The most prominent difference is that we use an interpretation of automata as labelled transition systems modulo (divergence-preserving) branching bisimilarity instead of treating automata as language acceptors. We also consider similarities such as grammars as recursive specifications and finite automata as labelled finite transition systems. We investigate whether the classical results still hold and, if not, what extra conditions are sufficient to make them hold. We especially look into three levels of Chomsky's hierarchy: we study the notions of finite-state systems, pushdown systems, and computable systems. Additionally we investigate the notion of parallel pushdown systems. For each class we define the central notion of automaton and its behaviour by associating a transition system with it. Then we introduce a suitable specification language and investigate the correspondence with the respective automaton (via its associated transition system). Because we not only want to study interaction with the environment, but also the interaction within the automaton, we make it explicit by means of communicating parallel components: one component representing the finite control of the automaton and one component representing the memory. First, we study finite-state systems by reinvestigating the relation between finite-state automata, left- and right-linear grammars, and regular expressions, but now up to (divergence-preserving) branching bisimilarity. For pushdown systems we augment the finite-state systems with stack memory to obtain the pushdown automata and consider different termination styles: termination on empty stack, on final state, and on final state and empty stack. Unlike for language equivalence, up to (divergence-preserving) branching bisimilarity the associated transition systems for the different termination styles fall into different classes. We obtain (under some restrictions) the correspondence between context-free grammars and pushdown automata for termination on final state and empty stack. We show how for contrasimulation, a weaker equivalence than branching bisimilarity, we can obtain the correspondence result without some of the restrictions. Finally, we make the interaction within a pushdown automaton explicit, but in a different way depending on the termination style. By analogy of pushdown systems we investigate the parallel pushdown systems, obtained by augmenting finite-state systems with bag memory, and consider analogous termination styles. We investigate the correspondence between context-free grammars that use parallel composition instead of sequential composition and parallel pushdown automata. While the correspondence itself is rather tight, it unfortunately only covers a small subset of the parallel pushdown automata, i.e. the single-state parallel pushdown automata. When making the interaction within parallel pushdown automata explicit, we obtain a rather uniform result for all termination styles. Finally, we study computable systems and the relation with exective and computable transition systems and Turing machines. For this we present the reactive Turing machine, a classical Turing machine augmented with capabilities for interaction. Again, we make the interaction in the reactive Turing machine between its finite control and the tape memory explicit

    Doctor of Philosophy

    Get PDF
    dissertationAsynchronous circuits exhibit impressive power and performance benefits over its synchronous counterpart. Asynchronous system design, however, is not widely adopted due to the fact that it lacks an equivalent support of CAD tools and requires deep expertise in asynchronous circuit design. A relative timing (RT) based asynchronous asynchronous commercial CAD tools was recently proposed. This design flow enables engineers who are proficient in using synchronous design and CAD flow to more easily switch to asynchronous design without asynchronous experience while retaining the asynchronous benefits of power and performance. Relative timing constraints are the key step to this design flow, and were generated manually by the designer based on his/her intuition and understanding of the circuit logic and structure. This process was quite time-consuming and error-prone. This dissertation presents an algorithm that automatically generates a set of relative timing constraints to guarantee the correctness of a circuit with the aid of a formal verification engine - Analyze. The algorithms have been implemented in a tool called ARTIST (Automatic Relative Timing Identifier based on Signal Traces). Automatic generation of relative timing constraints relies on manipulation, such as searching and backtracking, of a trace status tableau that is built based on the counter example signal trace returned from the formal verification engine. The underlying mechanism of relative timing is to force signal ordering on the labeled transition graph of the system to restrict its reachability to failure states such that the circuit implementation conforms to the specification. Examples from a simple C-Element to complex six-four GasP circuits are demonstrated to show how this technique is applied to real problems. The set of relative timing constraints generated by ARTIST is compared against the set of hand generated constraints in terms of efficiency and quality. Over 100 four-phase handshake controller protocols have been verified through ARTIST and Analyze. ARTSIT vastly reduces the design time as compared to hand generation which may take days or even months to achieve a solution set of RT constraints. The quality of ARTIST generated constraints is also shown to be as good as hand generation
    • …
    corecore