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We present PureCake, a mechanically-verified compiler for PureLang, a lazy, purely functional programming
language with monadic effects. PureLang syntax is Haskell-like and indentation-sensitive, and its constraint-
based Hindley-Milner type system guarantees safe execution. We derive sound equational reasoning principles
over its operational semantics, dramatically simplifying some proofs. We prove end-to-end correctness for the
compilation of PureLang down to machine code—the first such result for any lazy language—by targeting
CakeML and composing with its verified compiler. Multiple optimisation passes are necessary to handle
realistic lazy idioms effectively. We develop PureCake entirely within the HOL4 interactive theorem prover.
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1 INTRODUCTION

High-level languages often claim to provide strong guarantees for the programmer. For example:
Haskell’s strong typing demarcates stateful and pure computations, and its lazy evaluation reduces
unnecessary computation; Rust’s borrow checker prevents use-after-free bugs and thread-unsafe
behaviour. Compilers for these languages reject programs which are semantically ill-defined,
removing the burden of safety from the programmer. By contrast, it is non-trivial to avoid undefined
behaviour in more low-level languages such as C++. However, high-level languages require longer
compilation paths to generate efficient code, providing greater scope for miscompilations which
could compromise intended guarantees.
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End-to-end verification prevents such miscompilations: any bugs in a compiled binary must
come from the input source code. CompCert [Leroy 2009] first showed that this was feasible for
featureful, optimising compilers by verifiably compiling a subset of C99. Inspired by CompCert,
the verified CakeML [Kumar et al. 2014; Myreen 2021a] compiler compiles a Standard ML-like
language. Note that CakeML is a functional programming language in which memory safety is
guaranteed by type safety at the source and verified garbage collection.

Compilation of Haskell-like languages presents unique challenges. These languages implement
lazy evaluation: expressions are computed only when needed, and never recomputed on reuse. This
necessitates purity: computations are free of side-effects (stateful operations and I/O) by default,
leading to referential transparency. That is, equal expressions give rise to equal values in all contexts,
corresponding to the programmer model of equational reasoning. However, programmers can still
access stateful features and interact with the surrounding execution environment using monads.
Therefore, compiling these languages with some semblance of realism requires at least:

• efficient call-by-need evaluation without compromising equational reasoning;
• demand analysis to compute values eagerly when they are unconditionally required; and
• monadic reflection to generate idiomatic imperative code for stateful monadic operations.

It is extremely difficult to achieve these desiderata correctly, efficiently, and simultaneously: the
Glasgow Haskell Compiler (GHC) has over 5000 open issues at the time of writing.1

We create PureCake: to the best of our knowledge, the most realistic certified compiler for a lazy
functional language to date, and the first which verifiably implements the features above.

Contributions

In this paper, we make the following contributions.

• We implement the first end-to-end verified compiler for a non-strict, purely functional
programming language, with:
– sound equational reasoning;
– Haskell-like indentation-sensitive parsing;
– *verified two-phase constraint-based Hindley-Milner type inference;
– *verified demand analysis;
– verified optimisations for the compilation of non-strict code; and
– *verified monadic reflection.

• The items marked (*) above have not been mechanically verified before, even in isolation.
• We demonstrate that CakeML is a convenient back end for verified, optimising compilation
of high-level languages.

All of the work described in this paper has been developed within the HOL4 theorem prover.

2 OVERVIEW

In this section, we give a high-level tour of the PureCake development.

PureLang and its Metatheory (§ 3). Our source language (PureLang) implements standard func-
tional constructs: first-class functions, recursion, algebraic data types, and pattern matching (§ 3.1).
It also borrows several features from Haskell: indentation-sensitive parsing (§ 4.1), which accepts a
simple Haskell-like syntax; mutually recursive top-level definitions; the seq operator; and a built-in
IO monad, which provides stateful arrays, exception-handling, and a foreign function interface (FFI).
PureLang’s features target a significant subset of CakeML’s mature language.

1A recently-fixed bug sent type-checking into an infinite loop.
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1 numbers :: [Integer]

2 numbers =

3 let num n = n : num (n + 1)

4 in num 0

5

6 factA :: Integer -> Integer -> Integer

7 factA a n =

8 if n < 2 then a

9 else factA (a * n) (n - 1)

10

11 factorials :: [Integer]

12 factorials = map (factA 1) numbers

14 app :: (a -> IO b) -> [a] -> IO ()

15 app f l = case l of

16 [] -> return ()

17 h:t -> do f h ; app f t

18

19 main :: IO ()

20 main = do

21 arg1 <- read_arg1

22 -- fromString == 0 on malformed input

23 let i = fromString arg1

24 facts = take i factorials

25 app (\i -> print $ toString i) facts

Fig. 1. A small PureLang program printing a user-specified prefix of the factorial sequence. We have removed
boilerplate definitions for brevity.

Formally, PureLang is specified using two ASTs (§ 3.2): high-level compiler expressions are
used in compilation, and are considered syntactic sugar for simpler semantic expressions, which
provide ground truth for semantics. PureLang’s compiler expressions are inspired by Core in the
Glasgow Haskell Compiler (GHC) [Peyton Jones and Launchbury 1991]. Semantics of PureLang is
cleanly defined in stages (§ 3.3): translation from compiler expressions to semantic expressions;
pure, call-by-name evaluation to weak-head normal form; and stateful interpretation of monadic
operations. We use a variant of interaction trees [Xia et al. 2020] as our semantic domain to model
PureLang’s observable behaviours: termination, runtime type errors, and FFI calls.
We use applicative bisimulation to mechanise an equational theory over PureLang’s semantic

expressions (§ 3.4), proving it congruent via Howe’s method [Howe 1996]. Standard contextual
equivalence (equality of observable events under all contexts) coincides with our equational theory.
Hindley-Milner typing rules for PureLang’s compiler expressions (§ 3.5) do not satisfy subject

reduction, preventing a standard proof of type soundness. We establish soundness using an alter-
native syntactic sugar which does satisfy subject reduction, using our equational theory to prove
unconditional equivalence with compiler expressions.

Compiler Front End (§ 4). Our indentation-sensitive parsing expression grammar (PEG) is inspired
by Adams [2013] and the CakeML parser, and parses concrete syntax that is largely a subset of
Haskell’s. Before compilation, top-level functions are sorted to minimise mutual recursion (§ 4.2).

We implement and verify non-standard, two-phase type inference (§ 4.3) inspired by the Helium
teaching compiler [Heeren et al. 2003]: typing constraints are separately generated then solved.
Our approach is open to the addition of language features and high-quality error messages.
Demand analysis (§ 4.4) uses seq to precompute expressions whose values are unconditionally

required. Binding group and demand analyses are verified entirely within our equational theory.

Compiler Back End (§ 5). We define three intermediate languages: ThunkLang, EnvLang, and
StateLang (§§ 5.2 to 5.4 respectively). Like PureLang, each has two ASTs: compiler and semantic ex-
pressions. Compilation to the call-by-value ThunkLang introduces thunks, and optimisation passes
minimise their usage in key locations. In EnvLang, semantic definitions begin using environments
rather than substitutions. StateLang implements both thunks and monadic operations as stateful
primitives; the latter is monadic reflection [Filinski 1994, 2010]. Therefore, its semantics does not
require separate stages for pure evaluation and stateful interpretation.
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op ::=
| cons cname
| tuple
| prim primop
| monadicmop

ce ::=
| var x
| op[ cen ]
| _ xn . ce
| ce · cen
| let x = ce1 in ce2
| letrec xn = cen in ce
| seq ce1 ce2
| case x = ce of cnamen [ xnm ] → cen

e ::=
| var x
| op[ en ]
| _x . e
| e1 · e2
| let x = e1 in e2
| letrec xn = en in e
| seq e1 e2
| if e then e1 else e2
| eq? cname arity e
| projn cname e

Fig. 2. PureLang operations op, compiler expressions ce, and semantic expressions e.

Targeting CakeML (§ 6). Compilation targets CakeML, but CakeML’s functional big-step seman-
tics [Owens et al. 2016] uses an oracle to model FFI behaviour where PureLang’s interaction tree
semantics models all possible FFI behaviours. We verify an interaction tree semantics for CakeML,
deriving the corresponding novel compiler correctness theorem. Verifiably bootstrapping [Myreen
2021b] PureCake transports its end-to-end correctness theorem down to its compiler binary.

3 PURELANG

3.1 Features

Figure 1 showcases a small PureLang program accepting an integer = on the command line and
printing the first = numbers of the factorial sequence. PureLang syntax is indentation-sensitive
and inspired by Haskell; GHC accepts this program with minimal tweaks. Features common to
functional languages are supported: first-class functions (map on line 12), general recursion (factA
on lines 6-9), algebraic data types and pattern matching ([]/h:t on lines 16-17).

PureLang borrows several other features from Haskell. Top-level declarations are mutually
recursive and can be reordered freely. Evaluation is call-by-need: expressions are computed only as
deeply as they are inspected and never recomputed, so infinite data structures can be constructed
(e.g., numbers on lines 1-4). Eager evaluation can be forced using Haskell’s seq operator.

The built-in IOmonad permits effectful computation (main on lines 19-25), inspired by its namesake.
Aside from the standard return/bind (which are masked by do-notation), it provides the ability to
create/update/query mutable arrays, raise/handle exceptions, and perform FFI calls (e.g., for I/O).

3.2 Formal Syntax

Figure 2 defines PureLang operations op, compiler expressions ce, which are inspired by GHC’s
Core, and semantic expressions e. Compiler expressions consist of variables, operations, multi-arity
_-abstractions/-applications, let-statements, recursive bindings, sequencing, and pattern matches.
Operations include data construction, primitives over built-in types, and the monadic operations:
return/bind; exception-handling (raise/handle); mutable array operations (alloc/len/deref/update);
and FFI interaction (action). Note that we formalise the operations tuple and monadicmop as
cons cname using reserved cnames, but present them separately for clarity. Pattern matching is
shallow, considering only constructor name and arity.
Semantics of compiler expressions is defined via desugaring (exp_of) to semantic expressions e,

which removes multi-arity _-abstraction/-application by nesting single-arity ones, and removes
case by introducing if-, eq?-, and proj-statements (eq. (1), below). To desugar case x = ce of rown

we assign exp_of ce to x and test it against each row of the pattern match (row = cname[ yn ] → ce′)
with if/eq?. If a row matches both constructor name (cname) and arity (n), proj statements extract

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 145. Publication date: June 2023.



PureCake: A Verified Compiler for a Lazy Functional Language 145:5

constructor arguments, which are assigned to the corresponding pattern variables (yn) before
desugaring the continuation. Failed pattern matches produce runtime type errors (fail); the last
row in a case can optionally be a catch-all to avoid these.

exp_of (case x = ce of rown)
def
= let x = exp_of ce in expandG [ rown ]

expandG [cname[ yn ] → ce′, rowm ]
def
= if (eq? cname n (var x)) then

let yn = projn cname (var x) in (exp_of ce′)

expandG [ ]
def
= fail else expandG [ rowm ]

(1)

3.3 Semantics

We use a variant of interaction trees [Xia et al. 2020] for our semantic domain, cleanly modelling
non-termination and interactions with the surrounding execution environment. In this section we
review interaction trees and their implementation in HOL4, before examining PureLang semantics.

Interaction Trees (ITrees). ITrees are a data type for representing the interactions of computations
with their environments. Intuitively (but not technically), they are a coinductive variant of the free
monad, i.e., a potentially infinite series of uninterpreted interactions. Each interaction is a pair: a
computational output and a continuation, which accepts the environment’s response and produces
the rest of computation. In Coq, ITrees are the coinductive interpretation of the following grammar:

itree � ' ::= Ret (A : ') | Tau (C : itree � ') | Vis (� : Type) (4 : � �) (: : � → itree � ')

That is, an ITree with event type � and return type ' is either: Ret A , an immediate halt to produce
A ; Tau C , a silent step which carries on as C ; or Vis � 4 : , an output 4 which expects a response 0 : �,
before continuing as : 0. Tau nodes permit expression of silently diverging computations without
violating Coq’s guardedness condition. However, ITrees must be equated via weak bisimulation
(they can differ by a finite number of silent steps).

Modified ITrees in HOL4. The definition above is not expressible in HOL4’s simple type theory
(� is a type-level function; Vis quantifies over the type �)—we must modify it. We require � to
be simply typed and lift quantification of � to the top-level. Foster et al. [2021] faced the same
issue when defining ITrees in Isabelle/HOL; instead they chose to remove �, forcing environment
responses to share the same type as program outputs (�).

As HOL4 has no guardedness condition when writing co-recursive functions, we further remove
Tau; ITrees can be equated by strong bisimulation once more (which coincides with HOL4 equality).
To recover the ability to express silent divergence, we add a nullary Div constructor, which we can
straightforwardly produce using non-constructivity of HOL4’s logic (eq. (2)).

Our final definition is below. Note that it is less expressive than the original: the (simple) types of
program outputs � and environment responses � are fixed at the top-level. Fortunately, PureLang
semantics requires only fixed types for both (see paragraph below). Note also that we use our
modified ITrees as a convenient semantic domain only, as discussed further in § 8.

itree � � ' ::= Ret (A : ') | Div | Vis (4 : �) (: : � → itree � � ')

Semantics of PureLang. We must define a semantics function for PureLang: J e K : itree � � '

for appropriate instantiations of �, �, '. Figure 3 shows the key definitions required: weak-head
normal forms wh, and our instantiations of �, �, '.
The only externally observable effects of PureLang programs are communications with the

surrounding environment via FFI. Visible program outputs � consist only of FFI calls: a pair of an
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wh ::=
| constructor cname[ en ]
| tuple [ en ]
| monadicmop[ en ]
| lambda x e
| literal lit
| error
| diverge

E ::=
| ffi (ch, s)

A ::=
| ok s
| failffi
| divergeffi

R ::=
| termination
| error
| failffi
| divergeffi

Fig. 3. Machinery for PureLang semantics: weak-head normal forms wh and instantiations of parameters �,
�, and ' for the itree type.

FFI channel name ch and argument s (both of type string2). Environment responses � consist only
of FFI outputs: successful return of a string, failure, or lack of return (i.e., divergence). As in CakeML,
PureLang FFI functions are written in C: ch is effectively a function name, and the various strings are
proxies for the low-level byte arrays used to interface with the C functions. PureLang’s observable
return values ' are therefore successful termination, runtime type error, or FFI failure/divergence.
We build our semantics function using three intermediate stages, shown here with their types:

1. evalnwh : (= : =D<) → e → wh 2. evalwh : e → wh

3. L−,−,−M : wh → ^ → f → itree � � ' for stacks ^ and mutable stores f.

First, pure evaluation produces weak-head normal forms in a functional big-step [Owens et al.
2016] style (evalnwh e = wh), i.e., a recursive, fuelled, call-by-name interpreter for semantic expressions.
The weak-head normal form diverge indicates running out of fuel. Note that monadic operations
monadicmop[ en ] are both weak-head normal forms and expressions (4).

Second, we lift to non-fuelled evaluation (evalwh e = wh) by classically quantifying over clock =,
and derive clean semantic rules, e.g., for eq? and proj (eq. (1), pg. 5):

evalwh e
def
=

{

wh if ∃=. evalnwh e = wh ∧ wh ≠ diverge,

diverge otherwise, i.e., ∀=. evalnwh e = diverge.
(2)

evalwh e = constructor cname[ en ]

evalwh (eq? cname n e) = true

= < < evalwh en = wh

evalwh e = constructor cname[ em ]

evalwh (projn cname e) = wh

Third and last, we statefully interpret monadic operations monadicmop[ en ] using a stack
machine with mutable state. Machine states consist of a weak-head normal form wh, a stack of
continuations ^, and mutable state f : ⟨wh, ^, f⟩. We define this stack machine as a coinductive
function L−,−,−M that produces ITrees. We omit a formal definition here, instead showing de-
scriptive equations we have derived in fig. 4 (note the absence of Tau nodes during silent steps).
Machine states with diverging or ill-behaved expressions emit Div and Ret nodes respectively. A
bind-statement continues as its left-hand expression, pushing a bind-continuation onto the stack;
conversely a return pops a bind-continuation off the stack. Raising an exception pops successive
continuations off the stack until a handle-continuation is reached. Array operations interact with
mutable state, e.g., len queries the length of an array in the state. An action-statement produces a
visible (Vis) node which both contains the output message of the program and accepts response
0 from the environment to construct the remainder of the ITree coinductively. We elide the full

2Unlike Haskell’s String, PureLang’s string is not a list of characters—rather, an efficient representation using packed
bytes (like Haskell’s Text.)
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L diverge, ^, f M = Div L error, ^, f M = Ret error

L bind e1 e2, ^, f M = L evalwh e1, bind • e2 :: ^, f M

L return e, Y, f M = Ret termination

L return e1, bind • e2 :: ^, f M = L evalwh (e2 · e1), ^, f M

L raise e1, frame :: . . . :: handle • e2 :: ^, f M = L evalwh (e2 · e1), ^, f M

evalwh e = literal (loc l) ⇒ L len e, ^, f M = L return
(

int |f (;) |
)

, ^, f M

L action (msg ch s), ^, f M = Vis (ch, B) (_0. . . .)

where bind e1 e2
def
= monadic bind[e1 e2], similarly for other monadic operations above.

Fig. 4. Selected derived rules for L−,−,−M, PureLang’s stateful interpreter for monadic operations.

definition of the Vis construction due to its verbose checking of FFI errors; suffice it to say that a
well-formed environment response of ok s′ generates the ITree L return (str s′), ^, f M.

We can then define the semantics of expressions straightforwardly using the empty continuation

stack and initial empty state: J e K
def
= L evalwh e, Y, ∅ M.

Note that the equation for bind e1 e2 implies that monadic operations are strict: e1 is always
weak-head normalised and statefully interpreted regardless of its usage in e2. PureLang I/O is
therefore not lazy; lazy I/O is known to break referential transparency.3

3.4 Equational Reasoning

Haskell programmers rely on equational reasoning, “stepping through” program execution by
unfolding function definitions. Here we describe our formalisation of equational reasoning and
prove its coincidence with contextual equivalence.
We adopt untyped applicative bisimilarity from Abramsky’s lazy _-calculus [Abramsky 1990]

as an equivalence relation on expressions. That is, a relation satisfies applicative simulation if it
is closed under weak-head reduction and application of any resulting weak-head normal form.
Each possible weak-head normal form (wh) imposes a restriction; for example functions require
applicative simulations to satisfy (for closed e1, e2, e):

e1 R e2 ⇒ evalwh e1 = lambda x1 e
′
1 ⇒ ∃x2 e

′
2. evalwh e2 = lambda x2 e

′
2 ∧ ∀e. e′1 [

e/x1] R e′2 [
e/x2]

Applicative bisimulations are symmetric applicative simulations, and applicative bisimilarity (e1 ≃

e2) is the greatest applicative bisimulation. We derive strong proof principles for applicative bisimi-
larity using up-to techniques [Pous 2016], and so show it is an equivalence.
We must also prove it is a congruence: expressions formed from bisimilar sub-expressions are

themselves bisimilar. Howe’s method [Howe 1996] is a well-studied technique for establishing
congruence. A short summary of the technique follows; Pitts [2012] gives a detailed account.

Applicative (bi)similarity is extended to open terms using closing substitutions (open (bi)similarity,
Γ ⊢ e1 ≲ e2 and Γ ⊢ e1 ≃ e2 for free variables Γ). We define Howe’s construction, an inductive
definition of a relation Γ ⊢ −R�− from a relation Γ ⊢ −R−. By construction, R� is closed under
substitution and is a congruence. To demonstrate congruence of open bisimilarity, we prove
Γ ⊢ e1 ≲

� e2 iff Γ ⊢ e1 ≲ e2. Expression equivalence (e1 � e2) is straightforwardly defined in terms
of open bisimilarity. We turn our attention to uses of expression equivalence.

3See https://mail.haskell.org/pipermail/haskell/2009-March/021064.html.
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We define U-equivalence using permG~ , which swaps all instances of variables G and ~ in an
expression (whether bound or free). In particular, U-equivalence is the transitive closure of a relation
−RU− which swaps the variable bound at a single site while carefully avoiding free variables, e.g.:

y ∉ freevars e ⇒ (_x . e) RU (_~. permG~ 4)

We show thatU-equivalence is contained within expression equivalence.We define capture-avoiding
substitution (e⟨e′/x⟩) as a freshening of bound variables followed by ordinary substitution. By noting
that freshening is a special case of U-conversion, we prove the following standard V-equivalence:

(_x . e) · e′ � e⟨e
′
/x⟩

Expression equivalence also coincides with contextual equivalence (e1 ∼ e2), defined as equality
of observable events (i.e., ITree equality) under all closing contexts:

e1 ∼ e2 iff e1 � e2 e1 ∼ e2
def
= ∀C. JC[e1] K = JC[e2] K

To prove the right-to-left direction, we use congruence of expression equivalence and strong
bisimulation on ITrees. To prove the converse, we take the contrapositive: given two inequivalent
expressions, we construct a context which distinguishes them.

3.5 Type System

PureLang has a standard Hindley-Milner type system [Hindley 1969; Milner 1978]. Typing judge-
ments are defined over compiler expressions (ce), but soundness must be proved with respect
to desugared expression (e) semantics (§§ 3.2 and 3.3). Therefore, we consider a semantic ex-
pression e well-typed if there is some well-typed compiler expression ce which desugars to it.
However, type preservation does not hold of case-statements, which desugar into nested if-/eq?-
/proj-statements (eq. (1), pg. 5). A successful pattern match substitutes a bare proj-statement into
the continuation expression, e.g.:

(evalwh ◦ exp_of)
(

case x = cons cname[ce] of cname[y] → ce′
)

=

evalwh

(

(exp_of ce′)
[

cons cname[exp_of ce]/x
] [

proj0 cname (cons cname[exp_of ce])/y
]

)

But a proj-statement can only be produced by desugaring a case-statement, and well-typed case-
statements must be exhaustive; in other words, proj-statements are only well-typed when several
of them are found together (representing an exhaustive pattern match). Therefore, a bare proj-
statement is ill-typed in general and the reduction above violates type preservation.

Our proof of type soundness is therefore non-standard. We define a syntax of “typing expressions”
tce and associated typing rules. Typing expressions satisfy type preservation by construction, due
to the introduction of safeproj, which desugars as follows:

exp_of (safeprojmn cname tce)
def
= if (eq? cnamem (exp_of tce)) then projn cname (exp_of tce) else⊥

Use of the always-diverging ⊥ ensures that a bare safeproj never produces a runtime type error,
unlike a bare proj-statement. Therefore, desugaring tce-flavoured case to produce safeproj instead
of proj permits proof of type preservation once more.

Using our equational theory (§ 3.4), we show that any compiler expression ce is equivalent to its
injection into typing expressions (tcexp_of):

⊢ wf? ce ⇒ exp_of ce � exp_of (tcexp_of ce)

The precondition wf? asserts that expressions are syntactically well-formed (e.g., no empty case-
statements), and is guaranteed by our typing rules. We use this result to lift type soundness to
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compiler expressions. Note that indirection through typing expressions tce is just a proof technique;
they do not appear in the compiler implementation.

4 COMPILER FRONT END

4.1 Parsing Expression Grammar (PEG) Parsing

Parsing and lexing convert textual source files into PureLang compiler expressions ce (fig. 2,
pg. 4). Input files should be complete programs, with a definition of main. A file’s definitions
(def 1, . . . , def =) are combined into a single letrec-statement, i.e., as if they had been written
let {def 1; . . . ; def =} in main. Data type declarations (using data, only at the top-level) are
passed separately to type inference (§ 4.3); the compiler only needs constructor names and arities.

To support Haskell-like indentation-sensitive syntax, we augment CakeML’s PEG support with
the indentation relations of Adams [2013]: each -8 in a traditional context-free grammar production
# → -1-2 . . . -= gains an annotation describing how its indentation relates to that of the non-
terminal # . The indentation of a terminal is a column number in the input string; the indentation
of a non-terminal is governed by the annotations of the -8 on the right-hand side of its production.

We use the same set of relations chosen by Adams [2013]: {=, >, ≥, ⊛}, where the first and second
arguments are the indentations of an -8 and the non-terminal # respectively (⊛ is the universal
relation: ∀=<. = ⊛<). For example, our PEG rule for type signatures is: |Decl| → |Ident|= ’::’> Ty> ,
where |# | is a naming convention indicating that the indentation of non-terminal # is equal to
that of its first token. This rule requires the double-colon token (’::’) and the type (Ty) to appear to
the right of the Decl, which itself appears in the same column as the Ident.

We adapt CakeML’s PEG-parsing algorithm by recording the set of possible indentations #2 for
the current non-terminal during PEG-evaluation. To initialise this set, we combine the indentation
set #? of the parent non-terminal with the indentation relation associated with #2 . When exiting a
production, we pass the final set back to #? and adjust it with respect to #2 ’s indentation relation.
We represent indentation sets symbolically, as every indentation is one of four forms: a closed

interval [8 . . . 9], a lower-bounded set [8 . . . ], anywhere (N), or nowhere (∅). These forms are closed
with respect to operation of the parsing algorithm: no further forms are required to represent
indentation sets as the parser manipulates and combines them when entering, traversing, and
exiting productions (rule right-hand sides).

Patterns in case-expressions consist of a constructor name (or tuple) applied to arguments which
are all variables, or an underscore as a catch-all in the last branch. In particular, nested patterns
are not supported. There is a tension here due to our compilation to CakeML’s source language:
CakeML supports richly nested patterns, which it flattens and compiles away in an early pass of
its compiler. But to target these, each intermediate language of the PureCake compiler would also
have to support nested patterns, significantly complicating their semantics.
Parsing is verified to terminate on all inputs. Testing shows that it accepts many well-formed

Haskell-like programs (§ 7).

4.2 PureLang

We first transform the program from a single letrec-statement into a series of nested let-/letrec-
statements, using a dependency analysis to partition bindings into minimally mutually recursive
groups such that no binding group requires variables from later groups.
Immediate dependencies (G uses ~) of each binding G are apparent from its free variables, and

computing a transitive closure (G uses+ ~) gives all dependencies. Bindings can then be sorted with
respect to an ordering derived from the dependency relation: G ≤ ~ iff ~ uses+ G and G = ~ iff G ≤

~ ∧ ~ ≤ G . Our sorting algorithm is “pseudo-topological”: it permits cyclic dependencies for equal
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elements, i.e., mutually dependent elements can remain in the same binding group. Correctness of
the algorithm states that for any dependency G uses ~, ~’s binding group is no later than G ’s.
We transform code using the resulting nested binding groups, and clean it up after type infer-

ence (§ 4.3): we convert non-recursive, singleton letrec-bindings to let, and delete unused bindings.
This pass is proven sound entirely within our equational theory (§ 3.4). A valid split of a collection

of recursive bindings xn = en into ym = e1m and wj = e2 j ensures all e1m do not depend on any wj .
We show that the pseudo-topological sort produces nested valid splits. It then suffices to show that
a valid split permits nesting of a single letrec:

valid_split xn = en ym = e1m wj = e2 j ⇒

letrec xn = en in e � letrec ym = e1m in (letrecwj = e2 j in e)

4.3 Constraint-Based Type Inference

Hindley-Milner type systems are popular due to their decidable type inference. However, well-
studied algorithms W, J , and M [Lee and Yi 1998] are notorious for impenetrable type errors.

Instead, we pursue a two-phase algorithm which separates generation of typing constraints from
their solving. HM(- ) [Odersky et al. 1999] is a well-studied example of constraint-based inference,
parametrised on a signature - to specify and prove sound two-phase inference for a variety of ML-
like type systems at once. This generality is unnecessary for our purposes. Instead, we mechanise a
proof-of-concept subset of the Haskell-tailored Top: a framework used to produce clear, precise
error messages in the Helium teaching compiler [Heeren 2005; Heeren et al. 2003]. Algorithms
W and M are equivalent to specific solving strategies within Top. Helium’s open-source, near-
complete implementation of Haskell 98 provides a roadmap for high-quality error messages and
additional language features (e.g., typeclasses) in future versions of PureCake. Separating the two
phases also modularises their implementations and proofs. To the best of our knowledge, we are
the first to mechanise such an approach and demonstrate its applicability to verified compilation.
Note that CakeML’s verified Hindley-Milner type inference uses a traditional, one-pass algorithm.

We assume familiarity with Hindley-Milner type schemes (f ::= ∀U . g), typing judgements Γ ⊢

ce : g , parametric polymorphism, and unification. Polymorphism is introduced by ruleHMLet (fig. 5)
only for type variables not free in the typing context. Using this rule, standard inference algorithms
first infer the type of ce1 fully and generalise it with respect to Γ to produce ∀Un . g1, before using
the result to infer the type of ce2. Two-phase inference must generate constraints for ce2 without
type information for ce1. Then when solving constraints, it must soundly generalise g1 with respect
to Γ. Therefore, constraint syntax must be expressive enough to “remember” the monomorphic
type variables found in Γ. We give an intuitive overview of Top’s solution, referring interested
readers to prior work [Heeren 2005] for full details.

Judgements are of the form M ⊢ ce : g ⇒ � ; C, which reads “for monomorphic type variables
M , ce has type g subject to assumptions � and constraints C”. Inference is mostly bottom-up: free
term variables are assigned fresh type variables which are recorded in the assumptions multiset
A (TopVar, fig. 5). Assumptions bubble up to the binding which introduced their term variable; as all
these assumptions must represent the same type, unification constraints (g1 ≡ g2) are generated per-
assumption (e.g., TopLam, fig. 5). Monomorphic type variables are introduced by non-let bindings
and passed on to sub-expressions top-down (e.g., TopLam, fig. 5).

The rule TopLet (fig. 5) uses implicit instance constraints g1 ⪯M g2 to record monomorphic type
variables" for constraint solving: g1 must specialise the scheme obtained by generalising g2 with
respect to" . These constraints can only be solved once the set freevars(g2) −" (g2’s generalisable
variables) is stable, i.e., disjoint from type variables in other constraints. We omit details of our
straightforward constraint solving algorithm for brevity.
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Γ ⊢ ce1 : g1 Un ∉ Γ

Γ, x : ∀Un . g1 ⊢ ce2 : g2

Γ ⊢ let x = ce1 in ce2 : g2
HMLet M ⊢ var x : U ⇒ [x : U] ; ∅

TopVar

Un ,M ⊢ ce : g ′ ⇒ � ; C

M ⊢ (_ xn . ce) : (Un → g ′) ⇒ � \ xn ; C ∪
⋃

= {g ≡ Un | xn : g ∈ �}
TopLam

M ⊢ ce1 : g1 ⇒ �1 ; C1 M ⊢ ce2 : g2 ⇒ �2 ; C2

M ⊢ (let x = ce1 in ce2) : g2 ⇒ �1 ∪ �2 \ x ; C1 ∪ C2 ∪ {g ⪯M g1 | x : g ∈ �2}
TopLet

Fig. 5. Selected Hindley-Milner typing rules and Top inference rules.

Formalisation Details. We first verify Top declarative inference rules, proving soundness with
respect to PureLang’s type system (§ 3.5). We implement a concrete inference algorithm in a
state-exception monad to enable generation of fresh unification variables. We prove that if the
algorithm succeeds, its output is sound with respect to the declarative rules. Composing these
proofs with type soundness shows that successful inference in a well-formed namespace of data
types (ns) guarantees safe semantics:

⊢ nsOK? ns ∧ infer=B ce = OK ⇒ safe_itreeJ exp_of ce K

Note that we do not expect to prove completeness of type inference. This is because PureLang aims
to be a verified Haskell-like language, and in general Haskell type inference is not complete due to
its polymorphic recursion and rich type system. Testing shows that type inference accepts all of
the well-typed programs we have written so far (§ 7).

4.4 Demand Analysis

Laziness can be a powerful tool, allowing users to create unbounded structures, e.g., an infinite list
of the factorials (fig. 1, pg. 3). However, delaying the evaluation of expressions (thunking) requires
storing values on the heap. This can have a detrimental side-effect: the factorial function below has
a space complexity of Θ(=) if compiled naïvely:

letrec fact = _x . _acc. if var x = 0 then var acc else (var fact) · (var x − 1) · (var x ∗ var acc) in e

The accumulator acc is evaluated only on the very last recursive call of fact, requiring storage of a
new thunk on the heap at each iteration. If instead we use the seq operator to force the evaluation
of acc every time we enter the fact function, overall space complexity is reduced to O(1).

letrec fact = _x . _acc. seq (var acc) (if var x = 0 then . . . else . . .) in e

The prefixing of seq (var acc) does not change semantics here, because in both branches of the
if-statement the value of acc is unconditionally required. However, in general it is non-trivial to
detect such requirements automatically. Therefore, the goal of our demand analysis is to force
the evaluation of as many variables as possible without affecting semantics, so permitting later
optimisations to remove as much unnecessary laziness as possible. Optimising compilers for lazy
languages with any realism must implement demand analysis to avoid the bottleneck of heap usage,
a common issue for functional programming languages. But we cannot be too greedy, or we may
change program semantics, e.g., by transforming a terminating program into a diverging one.
An expression 4 demands a variable G if we can prefix 4 by forcing G without changing its

semantics, according to our equational theory (§ 3.4). By contrast, in GHC, demands are defined as
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C ⊢ (var x) demands x

C ⊢ e1 demands x

C ⊢ e2 demands y

C ⊢ (let y = e1 in e2) demands x

C ⊢ e2 demands x x ≠ y

C ⊢ (let y = e1 in e2) demands x

C ⊢ e1 demands x

C ⊢ (seq e1 e2) demands x

C ⊢ e2 demands x

C ⊢ (seq e1 e2) demands x

J let x = ⊥ in seq fail (var x) K = Ret error

J let x = ⊥ in seq (var x) (seq fail (var x)) K = Div

Fig. 6. Selected demand analysis rules. Rules above the line are sound with respect to � (§ 3.4); the rule below
requires ≈ due to the counterexample shown.

an implication: if evaluating G gives a type error, then so should evaluating 4 [Sergey et al. 2014].

e demands x
def
= e � (seq (var x) e)

e demandsGHC x
def
=

(

evalGHC (var x) = error ⇒ evalGHC e = error
)

A sanity check shows our definition is not weaker than GHC’s, i.e., e demandsGHC x ⇒ e demands x.
Its construction will also simplify soundness proofs for forcing variables using seq. We derive some
clean rules for this definition in the upper part of fig. 6. The context� allows us to use e.g., demands
extracted from e1 and e2 in the expression let x = e1 in e2.
To implement a non-trivial demand analysis, we need several other seemingly intuitive rules.

However, these are not sound with respect to our equivalence relation (�, § 3.4) because PureLang

uses two inequivalent semantic values which correspond to a bottom element: silent divergence
and runtime type errors. For example, a desirable rule and its counterexample are shown in the
lower part of fig. 6. Instead, we follow the approach of Sergey et al. [2014] by verifying our demand
analysis with respect to an equational theory which conflates silent divergence and runtime type
errors. In particular, we refine � (§ 3.4) to produce a new relation, ≈. Using ≈, we can rederive all
rules that held for �, as well as the desirable rules that did not hold for �. However, we must ensure
that demand analysis does not transform a diverging program into one which produces type errors.
Note that the converse (turning an ill-typed program into one that diverges) is not possible, as
ill-typed programs are rejected before demand analysis. We therefore prove that demand analysis
preserves well-typing of its input, and so its output cannot produce type errors either.

The definition above is simplistic; to capture more complex patterns we need new properties. In
particular, function demands and demands when applied allow us to derive the rules in fig. 7.

Function Demands. We wish to capture the demand on ~ in the expression (_x . var x) · var y, so
we define function demands: function 4 demands its =th argument when sufficiently applied.

e demandsf (=,m)
def
= ∀G em . en demands x ⇒ (e · em) demands x

Demands When Applied. Partially applied functions arise commonly in functional programming.
For these, we must be able to calculate information about the potential demands that occur when
the function is fully applied. For example, this can be useful in the following code:

(let f = (_x1 . _x2. var x1 = var x2) in (var f ) · (var y1)) · (var y2)
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C ⊢ e1 demandswa (x, = + 1)

C ⊢ (e1 · e2) demandswa (x, =)

C ⊢ e demandswa (x, =)

C ⊢ (_w. e) demandswa (x, = + 1)

C ⊢ e demandsf (=,<)

C ⊢ (_w. e) demandsf (= + 1,< + 1)

C ⊢ e demandswa (x,<)

C ⊢ (_x . e) demandsf (0,< + 1)

C ⊢ e1 demandsf (= + 1,< + 1)

C ⊢ (e1 · e2) demandsf (=,<)

C ⊢ e1 demandsf (0, = + 1)

C ⊢ e2 demands x

C ⊢ (e1 · e2) demandswa (x, =)

Fig. 7. Selected rules for −demandsf− and −demandswa−.

We formalise this notion quite directly below, i.e., recording that an expression 4 demands G when
applied to = arguments. From this definition, it is clear that e demandswa (x, 0) iff e demands x.

e demandswa (x, =)
def
= ∀ en . (e · en) demands x

Analysis of Recursive Functions. Critically, we have also formalised an analysis for closed recursive
functions. This is necessary for cases such as the factorial example at the beginning of this section.
Assuming closed expressions and distinctness of bound variables, we prove the following theorem,
where reformulate binds e′ prefixes all recursive calls in e′ to functions in binds with a forcing of the
demands in binds, and mark_demanded ds 45 prefixes arguments ds with seq in function body 45 :

(

∀ 5 ′ ds GB e′ d . (5 ′, ds, _GB. e′) ∈ binds ∧ d ∈ ds ⇒ (reformulate binds e′) demands 3
)

⇒ letrec
{

5 = 45
�

� (5 , ds, 45 ) ∈ binds
}

e ≈

letrec
{

5 = mark_demanded ds 45
�

� (5 , ds, 45 ) ∈ binds
}

e

Our implementation is naïve: it inserts seq too eagerly. Future work will make it more strategic,
relying on our verification methodology (§ 5.1) to minimise the proof effort incurred when intro-
ducing e.g., heuristics for seq-insertion. We will optimise away more artefacts in later intermediate
languages (§ 5.2), and find further demands by analysing pattern matching and constructors.

5 COMPILER BACK END

Figure 8 illustrates the structure of the PureCake compiler. This section describes the back end, i.e.,
the parts under the dotted line. We first explain our general approach to compiler proofs, before
examining each intermediate language and the verification of its passes in turn.

5.1 Method: Verify Compiler Relations, Not Functions

We separate verification of compiler passes from their implementations to keep the PureCake
compiler extensible: verification of new passes should be minimally impacted by the design choices
of previous ones. Therefore, instead of verifying semantics-preservation of concrete compiler
functions, we verify syntactic relations encapsulating each pass. It then suffices to define concrete
functions and prove they inhabit the relations. This two-phase approach has several benefits:

• Relations can easily impose syntactic restrictions on input code by narrowing their domains.
By contrast, similarly restricting total functions requires cumbersome invariants which must
be carried between proofs. Now, each relation can be verified orthogonally instead.

• Unlike functions, relations can remain high-level, avoiding concrete details such as free/bound
variables, inventing fresh names, etc.
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Language Compiler implementation Comments on verification

Concrete syntax

PureLang (§ 4.2)
ce from fig. 2

pure call-by-name
(subst. semantics)

ThunkLang (§ 5.2)
pure call-by-value
(subst. semantics)

EnvLang (§ 5.3)
pure call-by-value
(env. semantics)

StateLang (§ 5.4)
impure call-by-value
(env. semantics)

CakeML source

lexing, parsing, desugaring

split letrecs; simplify

type inference

simplify

demand analysis
annotates with seqs

translate into call-by-value;
introduce delay/force;
avoid delay (force (var ))

lift _-abstractions out
of lets/letrecs

simplify force expressions

reformulate to simplify
compilation to StateLang

compile delay/force and
IO monad to stateful ops

push · unit inwards

make every _-abstraction
bind a variable

translate to CakeML;
attach helper functions

can reject input; unverified

preserves � (§ 3.4)

sound: rejects ill-typed programs

preserves � (§ 3.4)

preserves ≈ (§ 4.4) and well-typing

proof split into five relations;
implementation stays within their composition

implementation stays within transitive closure
of semantics-preserving syntactic relations

proof composed of three relations:
1. implement IO monad statefully
2. implement delay/force statefully
3. tidy the result

implementation stays within transitive closure
of semantics-preserving syntactic relation

front end (§ 4)

back end (§ 5)

Fig. 8. High-level summary of the compiler’s intermediate languages and compilation passes. Back end proofs
adopt a recurring approach: syntactic relations characterise code transformations, the relations are proven to
preserve semantics, and the compiler is verified to stay within the relation (§ 5.1).

• Complicated passes can be composed of several simpler relations while requiring only a
single implementation function, reducing proof complexity without sacrificing performance.

• Compiler functions can be optimised without redoing their core verification.

This can be viewed as a simple separation of concerns: relation verification focuses on code
transformations, and function verification focuses on bookkeeping between compiler passes (that
is, ensuring each function produces code satisfying the restrictions of its relation).

5.2 ThunkLang

ThunkLang is the first intermediate language of the PureCake compiler. It resembles PureLang
closely, and similarly has two ASTs (ce for compilation, and e for semantics, where exp_of expands
the former to the latter). However, ThunkLang is call-by-value and introduces new primitives for
handling thunks: delay and force. These new constructs have the following semantics:

• delay e delays evaluation of e by embedding it into a thunk value;
• force e evaluates e to a thunk value, before forcing evaluation of the expression within.

Note that ThunkLang remains pure and stateless: each time a thunk is forced, the expression within
is re-evaluated. We implement sharing of thunk evaluations later, in StateLang (§ 5.4).
Compilation from PureLang to ThunkLang is verified by composing five semantics-preserving,

syntactic relations. By dividing one big leap in implementation into five smaller steps in proof, we
keep verification tractable without sacrificing performance.
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var x thunk
−−→ force (var x)

ThkVar

e1 thunk
−−→ e′1 e2 thunk

−−→ e′2

e1 · e2 thunk
−−→ e′1 · delay e

′
2

ThkApp

e1 thunk
−−→ e′1 e2 thunk

−−→ e′2

let x = e1 in e2 thunk
−−→ let x = delay e′1 in e′2

ThkLet

e1 thunk
−−→ e′1 e2 thunk

−−→ e′2 fresh ∉ freevars e2

seq e1 e2 thunk
−−→ let fresh = e′1 in e′2

ThkSeq

Fig. 9. Selected rules from − thunk
−−→ −, the first proof relation between PureLang and ThunkLang.

The first relation (− thunk
−−→ −) characterises a naïve, direct translation. We show some of its rules

in fig. 9; note that in ThkSeq, we simply assert the existence of a sufficiently fresh name (fresh).
Though this relation expresses one possible semantics-preserving translation, it does not produce
high quality code. For example, it permits generation of code containing many occurrences of
delay (force (var x)). From just the few rules above, this inefficient pattern can arise whenever a
variable is passed as a function argument, or let-bound. We avoid this bad code pattern by a simple
mechanism: we use a smart constructor (mk_delay) instead of producing delay operations directly.

mk_delay ce
def
=

{

var x if ce = force (var x),

delay ce otherwise.

Usage of mk_delay is justified by the unthunk compiler relation, which permits conversion of any
delay (force (var x)) to var x. We use three other syntactic relations to justify removal of various
other bad code patterns, particularly around case-statements.
For each of the five syntactic relations −R− (R ∈ {thunk−−→ , unthunk, . . .}), we prove that any

transformation mapping e to e′ and satisfying 4 R 4′ must give rise to equal observational semantics:

⊢ 4 R 4′ ∧ safe_itree J 4 Ksource ∧ closed e ⇒ J 4 Ksource = J 4′ Ktarget

As is common, this correctness theorem assumes that the source expression (4) never fails (safe_itree)
and is closed, i.e., it is a whole program. Both are guaranteed by type inference (§ 4.3). We prove
these theorems in three stages: one simulation proof per layer of our three-layered semantics (§ 3.3).
The uppermost simulation proof produces an equality between ITrees: J−Kpure = J−Kthunk when
R = thunk

−−→ , otherwise J−Kthunk = J−Kthunk for the other four relations.
We prove that compilation from PureLang to ThunkLang (pure_to_thunk) stays within the com-

position of our five syntactic relations (first − thunk
−−→ −, then three others, and finally unthunk). We

appeal to the correctness theorems for all five relations to derive correctness for pure_to_thunk:

⊢ safe_itree J exp_of ce Kpure ∧ closed (exp_of ce) ⇒

J exp_of ce Kpure = J exp_of (pure_to_thunk ce) Kthunk

We intend to perform several further ThunkLang-to-ThunkLang optimisations; at the time of
writing only two are implemented. The first lifts delayed _-abstractions bound by a letrec-statement
into their own variable bindings; lookups of the delayed _-abstraction under a force operation can
be replaced with direct lookups of the _-abstraction itself, speeding up calls to known functions. The
second reduces repeated forcings of variables with a form of common sub-expression elimination:
force (var x) is transformed into var y, hoisting let y = force (var x) in . . . up in the syntax tree.
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⌊return ce⌋
def
= let x = ⌊ce⌋ in __. var x

⌊raise ce⌋
def
= let x = ⌊ce⌋ in __. raiseprim (var x)

⌊bind ce1 ce2⌋
def
= __. ⌊ce2⌋ · (⌊ce1⌋ · unit) · unit

⌊delay ce⌋
def
= alloc [false, __. ⌊ce⌋]

⌊force ce⌋
def
= let x = ⌊ce⌋ ; x0 = x [0] ; x1 = x [1] in

if var x0 then var x1 else

letw = (var x1) · unit in

x [0] := true ; x [1] := varw ; varw

Fig. 10. Extracts of the compilation (⌊−⌋) from EnvLang to StateLang. Here, __. ce is a _-abstraction which
does not bind an argument.

5.3 EnvLang

EnvLang is the intermediate language which follows ThunkLang, and is only a minor stepping stone
towards its own successor, StateLang (§ 5.4). It closely mirrors ThunkLang, except its semantics
relies on environments rather than substitution. Its ce data type also specifies top-level constructors
for each monadic operation (return, bind, raise, action, etc.) for ease of compilation to StateLang.

5.4 StateLang

EnvLang is compiled into StateLang, a language which differs significantly from its predecessors.
In StateLang, we introduce stateful (as the name suggests) and I/O primitives, and compile away
thunk operations delay and force.

We perform two major steps in the first pass of compilation to StateLang:

• Monadic operations are compiled to suspended computations: functions that accept a “trig-
ger” unit input before performing their effectful operations. Stateful (i.e., exception-handling,
arrays, I/O) monadic operations are realised as stateful primitives, a form of monadic reflec-
tion [Filinski 1994, 2010].

• Thunk operations delay and force are compiled to stateful operations which share values, so
that repeated forcing of a thunk does not incur duplicate evaluations.

The compiler implements both transformations simultaneously. However, we use two distinct
syntactic relations to keep proofs tractable: one for a naïve translation into StateLang, and another
which compiles away thunk operations. Therefore, the semantics of StateLang must support the
thunk values (and corresponding force/delay operations) of EnvLang. Note also that a top-level
PureLang program is monadic; it is therefore compiled to a suspended computation in StateLang,
and must await unit input to trigger the evaluation of its monadic effects in the correct order.

Figure 10 illustrates some of the implementation of this initial pass (denoted ⌊−⌋). In particular,
monadic operations return, raise, and bind are compiled to suspended computations; correct
compilation of bind relies on the right-to-left evaluation order of StateLang and CakeML. Monadic
raise is also compiled to primitive raiseprim. Thunks become arrays of length two: the first element
is a flag indicating whether the value has already been forced, and the second is either a suspended
computation (if the flag is false) or the final value (if the flag is true). Therefore, delay compiles to
an array allocation (alloc) with the flag set to false. To compile force ce, we first compile ce and
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read the flag (x [0]) in the resulting thunk-array: if true, we simply return the already-forced result
(x [1]); otherwise we force the suspended computation by applying it to unit, update (−[−] := −)
the thunk-array (setting the flag to true and storing the final value w), and finally return the value
w. Note here that the update to a thunk-array is not type-preserving, i.e., it is a strong update.
The key correctness proof here is that of the removal of thunk operations. Unusually, we

perform this low-level simulation proof in two directions, i.e., both a forward and a backward
simulation—usually, it suffices to do either, but the other is not required. This is due to a mismatch
in step-counting: in forward simulation, we prove that for every = steps of the source program,
the target program takes at least = sufficiently similar steps (vice versa for backward simulation).
In other words, to rely on only one direction of simulation, compilation must monotonically
increase or monotonically decrease the number of steps taken by a program. However, this does
not hold for the compilation of thunks to stateful operations (fig. 10) which “remember” the
results of previous computations: compiled delay operations require more steps; and compiled
force operations can effectively skip any finite number of steps incurred in EnvLang by simply
“remembering” a previously-forced result rather than recalculating it.

Following this initial pass, we implement one further optimisation within StateLang. Figure 10
shows that the result of compilation is a soup containing _-abstractions that ignore their argument
(__. −) and applications to a unit (− · unit). We clean this up by pushing applications to unit in
through let-/letrec-/case-statements and simplifying (__. ce) · unit to ce wherever possible.

A Note on Semantics. As in all predecessor languages, exp_of : ce → e maps compiler expressions
to semantic expressions in StateLang. However, the semantics of StateLang is otherwise quite
different: a small-step CESK machine [Felleisen and Friedman 1987] produces the expected ITree.
There is also no need for stateful interpretation of monadic operations (§ 3.3), as StateLang

implements its effectful operations as primitives (i.e., they are handled by the CESK machine).
We note one subtlety: when forcing a thunk value (i.e., using force to compute the delayed

expression contained within), all stateful operations are temporarily forbidden by StateLang

semantics. As force is inherited directly from the pure EnvLang, it must also be pure in StateLang.
In particular, repeated forcings of the same thunk must produce the same value: it does not make
sense to statefully share a previously computed value if this value can change. StateLang semantics
is therefore parametrised by a flag which indicates whether we are mid-evaluation of a thunk.
Forcing a thunk temporarily sets this flag (forbidding stateful operations), only clearing it once the
evaluation is complete. In the meantime, any stateful operations cause runtime type errors.

Compiling StateLang to CakeML. StateLang was designed to match CakeML closely, simplifying
its compilation. However, CakeML does not support _-abstractions which do not bind arguments,
so a StateLang-to-StateLang pass gives a fresh bound variable name to each of these. We realise
PureLang primitive operations as CakeML primitives, noting that PureLang’s FFI calls operate on
strings and must be implemented as CakeML FFI calls operating on low-level byte arrays. PureLang
data type declarations extracted from parsing (§ 4.1) must be compiled into CakeML data type
declarations too. We elide these technicalities as they are of limited interest.

6 TARGETING CAKEML

Targeting CakeML leverages its mature optimising compiler and end-to-end correctness guarantees.
However, CakeML’s results are with respect to its oracle semantics, which produces linear I/O traces
by using an oracle function to model the surrounding execution environment. This is incompatible
with PureLang’s more general ITrees, which model all possible environment responses in their
branching structure. We must therefore equate these two semantic styles.
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Existing Definitions and Results in CakeML. CakeML uses a functional big-step style [Owens
et al. 2016] semantics: a clocked (or fuelled) recursive interpreter. This style streamlines compiler
proofs, particularly as the functional style leverages HOL4’s powerful equational rewriter. Semantic
results are pairs of an outcome and an I/O trace; as in eq. (2) (pg. 6), classical quantification over
the clock distinguishes diverging and terminating computations. The I/O trace is a growing log
of the program’s I/O events: each entry contains an output from the program and the response
received from the environment. An oracle parametrises the semantics, and is used to determine the
environment’s response on any given output. Note that the I/O trace may be infinite for diverging
programs: it is calculated as the limit of all finite I/O traces.

CakeML’s core correctness results refer to its functional big-step semantics; however relational
big-step and CESK machine [Felleisen and Friedman 1987] semantics have also been specified.
The former is proved equivalent to the functional big-step style, but the latter is not specified for
top-level declarations and its equivalence proofs omit I/O traces for diverging outcomes.

CakeML’s compiler correctness theorem states: compilation of a program which does not cause
a runtime type error produces machine code with identical semantics up to out-of-memory errors.
Machine code semantics is also specified in a functional big-step style per-architecture (Fox et al.
[2017] give a full account). The “lack of runtime type error” assumption is common for optimising
compilers: ill-formed programs can be optimised arbitrarily.

New Definitions and Results. To support our work on PureCake, we augment CakeML’s CESK
semantics with top-level declarations, and strengthen equivalence results to equate I/O traces for
diverging outcomes. We also define a new ITree-producing semantics for CakeML in a CESK style.
Though we cannot directly equate linear oracle semantics with branching ITree semantics, we
can derive a linear trace (tr) from an ITree (tree) by traversing it using an oracle (Δ): tree Δ

{ tr . To
traverse a Vis node, we obtain the environment’s response by appealing to the oracle, informally:

Δ(4) = A ∧ : (A )
Δ

{ tr ⇒ Vis 4 :
Δ

{ (4, A ) :: tr

For any oracle, the trace derived from the ITree semantics is identical to the one derived from the
CESK semantics. Combining the various equivalence results gives:

trace derived from
=

CESK
=

relational big-step
=

functional big-step
ITree semantics semantics semantics semantics

(3)

We now prove a novel version of CakeML’s compiler correctness theorem phrased only in terms
of ITrees. We define an ITree-producing semantics of machine code, proving trace-equivalence
with the existing functional big-step semantics. Then the composition of compiler correctness and
eq. (3) states for a given oracle and program: if the trace derived from the source semantics does
not include a type error, the trace derived from the machine semantics must be either identical, or
some prefix terminated by an out-of-memory error. We lift this single-trace result to a relation on
ITrees extensionally (an ITree is characterised exactly by its derivable traces), producing theorem 1.

Theorem 1. ITree-based CakeML compiler correctness.

⊢ target_configs_ok config machine ∧ safe_itree J prog K ∧

compile config prog = Some code ∧ code_in_memory config code machine

⇒ Jmachine KM prunes J prog K

Given well-formed compiler/machine configurations (target_configs_ok) and a source semantics
with no derivable type errors (safe_itree), the compiled program can be installed in memory (code_-
in_memory) with a machine semantics (J−KM) which prunes the source semantics. Pruning is
straightforwardly defined as ITree equality up to out-of-memory errors and ill-formed FFI responses.
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PureCake Compiler Correctness. Theorem 2 establishes correctness for the PureCake compiler. If
the compiler converts an input string str to output CakeML AST ast , then the compiler frontend has
both successfully parsed str to a PureLang compiler expression ce and a well-formed namespace
of data types ns and type-checked ce to deduce that it is safe, i.e., free from runtime errors. The
observable semantics of ce and ast are then related by itree_rel, which equates the PureLang and
CakeML ITree-based semantics modulo their slightly differing types. In particular, itree_rel relates
CakeML’s low-level byte array I/O with PureLang’s string I/O.
Theorem 3 reformulates compiler correctness to highlight that apart from its frontend, the com-

piler is total: all programs which parse and type-check successfully will also compile successfully.
Testing shows that the frontend accepts all of the well-formed programs we have written so far (§ 7).
Theorem 4 composes theorems 1 and 2 to give end-to-end guarantees from ce to machine code.

Theorem 2. Compiler correctness.

⊢ compiler str = Some ast ⇒

∃ ce ns. frontend str = Some (ce, ns) ∧

safe_itree J exp_of ce Kpure ∧
itree_rel J exp_of ce Kpure J ast K

Theorem 3. Alternative compiler correctness.

⊢ frontend str = Some (ce, ns) ⇒

safe_itree J exp_of ce Kpure ∧
∃ ast . compiler str = Some ast ∧

itree_rel J exp_of ce Kpure J ast K

Theorem 4. End-to-end correctness.

⊢ compiler str = Some ast ∧ compile config ast = Some code ∧

target_configs_ok config machine ∧ code_in_memory config code machine

⇒ ∃ ce ns. frontend str = Some (ce, ns) ∧ Jmachine KM prunes J exp_of ce K

A Verified Compiler Binary. We build on CakeML’s verified bootstrapping [Myreen 2021b], which
relies on proof-producing synthesis of CakeML AST [Myreen and Owens 2014]. Given computable
HOL4 functions (e.g., the PureCake compiler), this synthesises CakeML code which is proven to
implement the input HOL4 faithfully. Composing synthesis with in-logic evaluation of the CakeML
compiler produces a binary that is faithful to the verified PureCake compiler definition.

7 EVALUATION

We have written non-trivial programs to demonstrate expressivity of PureLang and usability of
the PureCake compiler, and implemented various library functions from Haskell’s Prelude. So far,
we have encountered no issues: PureCake accepts all well-formed programs we have written.
QuviQ have further used PureLang to reimplement a virtual machine for smart contracts from the
Haskell-based Cardano blockchain platform. In future work, they will automatically generate test
cases to probe for discrepancies in the behaviour of binaries compiled by PureCake and GHC.

The PureCake development totals over 100 kLoC (measured using wc -l) in HOL4. For compari-
son, CakeML’s source semantics and compiler are 350 kLoC; though, CakeML’s development is
much more mature and PureCake’s contains several unincorporated features at the time of writing.

7.1 Performance Metrics

We measure performance of PureCake optimisations in the style of an ablation study: removing
individual optimisations highlights their contributions to the efficiency of generated code. Isolating
optimisations is tricky due to PureCake’s verification and multiple intermediate languages: some
passes cannot be disabled without breaking proofs, and others are necessary to transform between
languages. For example, compilation from PureLang to ThunkLang (§ 5.2) carries out several
optimisations which cannot be separated. Therefore, we consider the following, isolatable passes:

• pure, binding group analysis and the associated cleanup within PureLang (§ 4.2);
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Fig. 11. Graphs showing the performance impact of optimisations—the base-2 logarithm of a ratio of mea-
surements (execution time or heap allocations in bytes) with/without the optimisation: log2 (

<without/<with). The
±all bar shows impact with/without all optimisations considered. Negligible error bars are omi�ed.

• demands, demand analysis within PureLang (§ 4.4);
• thunk, the mk_delay smart constructor and optimisations within ThunkLang (§ 5.2); and
• state, pushing in applications to unit within StateLang (§ 5.4).

Experimental Setup. We use five benchmark programs, each taking natural number input = and
outputting: primes, the =th prime; collatz, the longest Collatz sequence of numbers less than =; life,
the =th iteration of Conway’s Game of Life from a particular initial state; queens, the number of
solutions to the =-queens problem; and qsort, imperative quicksort of an array with length =. For
each program, we measure execution time and total heap allocated by the CakeML runtime (as
reported by CakeML’s debug output) using an Intel® Xeon® E-2186G and 64 GB RAM.

Analysis of Results. Figure 11 shows our results. Optimisations reducing unnecessary thunk
allocation and forcing in ThunkLang improve time and space efficiency considerably. Pushing in
unit in StateLang improves efficiency for the monad-heavy qsort benchmark in particular. Binding
group analysis in PureLang has little effect, but is necessary for other passes to operate.
However, demand analysis in PureLang can cause slight regressions: it is overeager (§ 4.4),

aggressively inserting seq to produce many force operations in ThunkLang. Some of these are
removed by optimisations, but a number are not caught. In future work, we will strategically insert
fewer seq operations (with minimal proof burden due to our methodology, § 5.1), and optimise away
more force operations in ThunkLang with additional passes. Note that though demand analysis can
cause increased allocations, it produces better liveness properties: data is live for shorter durations,
enabling effective garbage collection and a lowered heap footprint. In particular, we have written
simple programs which quickly exhaust heap space unless transformed by demand analysis.

8 RELATED WORK

Verified Compilation of Haskell-Like Languages. We touch on some work on verified variants of
Haskell by the CoreSpec project. Formal specifications of the syntax, semantics, and typing rules
of GHC’s Core have been used to propose language extensions such as dependent types [Weirich
et al. 2017]. The hs-to-coq [Breitner et al. 2018] tool translates Haskell code to Gallina, Coq’s
specification language, permitting reasoning about real-world Haskell library code. The tool itself
is unverified, but effectively internalises Haskell’s equational reasoning within Coq. In future
work, the project aims to derive an executable Coq model of Core automatically from GHC’s
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implementation, permitting integration of Coq-verified optimisations in GHC as plugins. The
CoreSpec project focuses on faithfulness to GHC, where we consider end-to-end correctness.

Stelle and Stefanovic [2018] produce the first verified compiler for a minimal, lazy _-calculus with
an explicitly call-by-need semantics. Compilation to a high-level instruction machine preserves call-
by-need value sharing; conversely reasoning about source-level programs is challenging and non-
termination is not considered. PureLang uses a call-by-name semantics to enable straightforward
equational reasoning while supporting a featureful language.
McCreight et al. [2010] compile a textual version of GHC’s Core to CompCert’s Cminor via

Dminor: a strict, first-order, purely functional language with monadic effects, whose minimal type
system provides memory safety in cooperation with runtime checks. Much of the pipeline from
Dminor to Cminor is verified, including allocation of thunks; however, compilation of force is not.
GHC’s arity analysis pass [Breitner 2015] [-expands functions to avoid excessive thunk al-

locations. It is proved correct with respect to a simplified Core language, indirectly relying on
Launchbury’s natural semantics for lazy languages [Launchbury 1993] (HOLCF [Müller et al. 1999]
provides necessary domain-theoretic constructs). A call-by-need semantics is necessary to prove
performance preservation, i.e., that [-expansion will not produce repeated computation.

Optimising Compilation for Lazy Languages. Many decades of research have culminated in GHC,
providing clear inspiration for future versions of PureCake. At a very high level, techniques such
as closure conversion [Peyton Jones 1992] and selective lambda lifting [Graf and Peyton Jones
2019] reduce local definitions to sets of recursive equations, which can be evaluated using graph
reduction techniques [Johnsson 1984] (in particular, the spineless tagless G-machine [Peyton
Jones and Salkild 1989]). Meanwhile, strictness analyses reduce unnecessary thunk allocations
and associated bookkeeping [Peyton Jones and Partain 1993; Wadler and Hughes 1987], and
deforestation techniques [Wadler 1990] reduce allocation of intermediate data structures.

Reasoning About Lazy Languages. Much work has focused on the cost of lazy evaluation, which
is complicated by stateful value-sharing. Moran and Sands [1999] created a framework to verify the
correctness and cost-improvement of compiler transformations: i.e., preserving semantics without
increasing evaluation cost. Recently, the clairvoyant call-by-value semantics [Hackett and Hutton
2019] has enabled local, modular reasoning for cost and improvement analyses [Li et al. 2021].

Schmidt-Schauß et al. [2015] prove equivalence of several notions of contextual equivalence in a
Core-like call-by-need calculus. Proof is via fully abstract translation to a call-by-name calculus, in
which they too employ Howe’s method.

Verified Compilation to CakeML. The mature CakeML ecosystem has become a useful common
back end for verified compilation, e.g., by Kalas and Isabelle/HOL.
Kalas [Pohjola et al. 2022] verifiably compiles a choreographic language, expressing global

specifications of deadlock-free communicating systems. Compilation produces a program per
endpoint such that simultaneous execution of all programs implements the global specification.

Hupel and Nipkow [2018] reify Isabelle/HOL terms in-prover before verifiably compiling them
to CakeML, so removing the formalisation gap of extracting programs verified within Isabelle/HOL
(c.f.Myreen and Owens [2014] for similar motivation in HOL4).

Usage of ITrees. ITrees are inspired by previous work on monads and algebraic effects/handlers:
they generalise the inductive I/O & action trees [Hancock and Setzer 2000; Swamy et al. 2020] and
general/program monads [Letan and Régis-Gianas 2020; McBride 2015], build on the modularity of
the “freer” monad [Kiselyov and Ishii 2015], and apply a resumption monad transformer [Piróg and
Gibbons 2014] to the delay monad [Capretta 2005] and its general recursion. Each ITree encapsulates
a (potentially infinite) series of uninterpreted events and continuations. Genericity over the type of
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events permits compositionality of: specification of semantics via the ITree monad; construction of
interpreters from event handlers; and equational reasoning. It further enables tailored extraction of
executable ITrees: users can flexibly target language primitives for efficient testing.

ITrees can be considered a Coq-compatible version of the prior constructions above. Our usage
is similarly motivated: we need to model uninterpreted effects, non-termination, and general
recursion in HOL4’s simple type theory. ITrees are conveniently expressible in HOL4 with minimal
modification. We noted (§ 3.3) that we use ITrees as a “convenient semantic domain only”, i.e., we
encode the observable behaviour of PureLang programs in the branching structure of ITrees. We do
not specify a compositional semantics using the ITree monad, or construct interpreters from event
handlers (even to the lesser extent permitted by our modifications). To reason about preservation
of semantics in compiler correctness proofs, we simply equate ITrees using strong bisimulation.
Future work might explore a denotational semantics for PureLang using the ITree monad.

As in § 6, ITrees are known to admit simple connections to trace-based semantics [Xia et al. 2020,
§7]. Koh et al. [2019] axiomatise system calls in the Verified Software Toolchain’s [Appel 2014]
separation logic for CompCert-flavoured C by using ITrees to specify their permitted external
interactions. Mansky et al. [2020] build on this by proving the ITree-based specifications sound
with respect to oracle-based CertiKOS [Gu et al. 2016] specifications, which consider only linear
traces. Like in § 6, their proofs rely on traversal of ITrees to derive traces. However, they consider
only one direction, showing that each ITree specifying the permitted interactions of a CompCert
system call encompasses all possible traces of the underlying CertiKOS specification. In particular,
the ITree can contain traces which are not derivable in the CertiKOS specification.

9 CONCLUSION AND FUTURE WORK

We have presented PureCake, an end-to-end verified compiler for PureLang, a featureful, Haskell-
like language. Our correctness results lift the achievements of CompCert and CakeML to the non-
strict, purely functional paradigm. PureLang’s equational theory permits straightforward reasoning
about its programs; its compiler front end implements novel formalisations of indentation-sensitive
parsing and constraint-based type inference; its compiler back end produces realistic code in the
presence of non-strict semantics, and targets the mature CakeML ecosystem. To the best of our
knowledge, ours is the first such language to provide these features.

Our work is only a first version of PureCake, and we have identified several immediate avenues
for fruitful improvements throughout the compilation pipeline: enriching PureLang’s syntax,
particularly the expressiveness of case-expressions; iterating on our proof-of-concept type inference,
taking inspiration from Helium to support more of Haskell 98; improving our implementation
of demand analysis; and further optimisations within our compiler back end. Further afield, we
envision a verified REPL for PureCake inspired by CakeML [Sewell et al. 2022].
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et al. 2023]. It contains a README.md file which describes how to verify our claims and build on our
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Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 145. Publication date: June 2023.

https://github.com/cakeml/pure


PureCake: A Verified Compiler for a Lazy Functional Language 145:23

REFERENCES

Samson Abramsky. 1990. The Lazy _-Calculus. In Research Topics in Functional Programming. Addison Wesley.
Michael D. Adams. 2013. Principled parsing for indentation-sensitive languages: revisiting Landin’s offside rule. In Principles

of Programming Languages (POPL). ACM. https://doi.org/10.1145/2429069.2429129
Andrew W. Appel. 2014. Program Logics - for Certified Compilers. Cambridge University Press. http:

//www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-
logics-certified-compilers?format=HB

Joachim Breitner. 2015. Formally proving a compiler transformation safe. In Symposium on Haskell. ACM. https://doi.org/
10.1145/2804302.2804312

Joachim Breitner, Antal Spector-Zabusky, Yao Li, Christine Rizkallah, John Wiegley, and Stephanie Weirich. 2018. Ready,
set, verify! Applying hs-to-coq to real-world Haskell code (experience report). Proc. ACM Program. Lang. 2, ICFP (2018).
https://doi.org/10.1145/3236784

Venanzio Capretta. 2005. General recursion via coinductive types. Log. Methods Comput. Sci. 1, 2 (2005). https://doi.org/10.
2168/LMCS-1(2:1)2005

Matthias Felleisen and Daniel P. Friedman. 1987. A Calculus for Assignments in Higher-Order Languages. In Principles of

Programming Languages (POPL). ACM Press. https://doi.org/10.1145/41625.41654
Andrzej Filinski. 1994. Representing Monads. In Principles of Programming Languages (POPL). ACM Press. https://doi.org/

10.1145/174675.178047
Andrzej Filinski. 2010. Monads in action. In Principles of Programming Languages (POPL). ACM. https://doi.org/10.1145/

1706299.1706354
Simon Foster, Chung-Kil Hur, and Jim Woodcock. 2021. Formally Verified Simulations of State-Rich Processes Using

Interaction Trees in Isabelle/HOL. In Conference on Concurrency Theory (CONCUR) (LIPIcs, Vol. 203). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2021.20

Anthony C. J. Fox, Magnus O. Myreen, Yong Kiam Tan, and Ramana Kumar. 2017. Verified compilation of CakeML to
multiple machine-code targets. In Certified Programs and Proofs (CPP). ACM. https://doi.org/10.1145/3018610.3018621

Sebastian Graf and Simon Peyton Jones. 2019. Selective Lambda Lifting. CoRR abs/1910.11717 (2019). arXiv:1910.11717
Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. 2016.

CertiKOS: An Extensible Architecture for Building Certified Concurrent OS Kernels. In Operating Systems Design and

Implementation (OSDI). USENIX Association. https://doi.org/10.5555/3026877.3026928
Jennifer Hackett and Graham Hutton. 2019. Call-by-need is clairvoyant call-by-value. Proc. ACM Program. Lang. 3, ICFP

(2019). https://doi.org/10.1145/3341718
Peter G. Hancock and Anton Setzer. 2000. Interactive Programs in Dependent Type Theory. In Computer Science Logic (CSL),

Vol. 1862. Springer. https://doi.org/10.1007/3-540-44622-2_21
Bastiaan Heeren. 2005. Top Quality Type Error Messages. Ph. D. Dissertation. Utrecht University, Netherlands. http:

//dspace.library.uu.nl/handle/1874/7297
Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. 2003. Helium, for learning Haskell. In Workshop on Haskell. ACM.

https://doi.org/10.1145/871895.871902
J. Roger Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. Amer. Math. Soc. 146 (1969).

https://doi.org/10.2307/1995158
Douglas J. Howe. 1996. Proving Congruence of Bisimulation in Functional Programming Languages. Inf. Comput. 124, 2

(1996). https://doi.org/10.1006/inco.1996.0008
Lars Hupel and Tobias Nipkow. 2018. A Verified Compiler from Isabelle/HOL to CakeML. In European Symposium on

Programming (ESOP) (Lecture Notes in Computer Science, Vol. 10801). Springer. https://doi.org/10.1007/978-3-319-89884-
1_35

Thomas Johnsson. 1984. Efficient compilation of lazy evaluation. In Symposium on Compiler Construction. ACM. https:
//doi.org/10.1145/502874.502880

Hrutvik Kanabar, Samuel Vivien, Oskar Abrahamsson, Magnus O. Myreen, Michael Norrish, Johannes Åman Pohjola,
and Riccardo Zanetti. 2023. Artifact for “PureCake: A Verified Compiler for a Lazy Functional Language”. https:
//doi.org/10.5281/zenodo.7782305

Oleg Kiselyov and Hiromi Ishii. 2015. Freer monads, more extensible effects. In Symposium on Haskell. ACM. https:
//doi.org/10.1145/2804302.2804319

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky, Benjamin C. Pierce, and Steve
Zdancewic. 2019. From C to interaction trees: specifying, verifying, and testing a networked server. In Certified Programs

and Proofs (CPP). ACM. https://doi.org/10.1145/3293880.3294106
Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: a verified implementation of ML. In

Principles of Programming Languages (POPL). ACM. https://doi.org/10.1145/2535838.2535841

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 145. Publication date: June 2023.

https://doi.org/10.1145/2429069.2429129
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
https://doi.org/10.1145/2804302.2804312
https://doi.org/10.1145/2804302.2804312
https://doi.org/10.1145/3236784
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.2168/LMCS-1(2:1)2005
https://doi.org/10.1145/41625.41654
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/1706299.1706354
https://doi.org/10.1145/1706299.1706354
https://doi.org/10.4230/LIPIcs.CONCUR.2021.20
https://doi.org/10.1145/3018610.3018621
https://arxiv.org/abs/1910.11717
https://doi.org/10.5555/3026877.3026928
https://doi.org/10.1145/3341718
https://doi.org/10.1007/3-540-44622-2_21
http://dspace.library.uu.nl/handle/1874/7297
http://dspace.library.uu.nl/handle/1874/7297
https://doi.org/10.1145/871895.871902
https://doi.org/10.2307/1995158
https://doi.org/10.1006/inco.1996.0008
https://doi.org/10.1007/978-3-319-89884-1_35
https://doi.org/10.1007/978-3-319-89884-1_35
https://doi.org/10.1145/502874.502880
https://doi.org/10.1145/502874.502880
https://doi.org/10.5281/zenodo.7782305
https://doi.org/10.5281/zenodo.7782305
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1145/2535838.2535841


145:24 H. Kanabar, S. Vivien, O. Abrahamsson, M. O. Myreen, M. Norrish, J. Åman Pohjola, and R. Zane�i

John Launchbury. 1993. A Natural Semantics for Lazy Evaluation. In Principles of Programming Languages (POPL). ACM
Press. https://doi.org/10.1145/158511.158618

Oukseh Lee and Kwangkeun Yi. 1998. Proofs about a Folklore Let-Polymorphic Type Inference Algorithm. ACM Trans.

Program. Lang. Syst. 20, 4 (1998). https://doi.org/10.1145/291891.291892
Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009). https://doi.org/10.1145/1538788.

1538814
Thomas Letan and Yann Régis-Gianas. 2020. FreeSpec: specifying, verifying, and executing impure computations in Coq. In

Certified Programs and Proofs (CPP). ACM. https://doi.org/10.1145/3372885.3373812
Yao Li, Li-yao Xia, and Stephanie Weirich. 2021. Reasoning about the garden of forking paths. Proc. ACM Program. Lang. 5,

ICFP (2021). https://doi.org/10.1145/3473585
William Mansky, Wolf Honoré, and Andrew W. Appel. 2020. Connecting Higher-Order Separation Logic to a First-Order

Outside World. In European Symposium on Programming (ESOP) (Lecture Notes in Computer Science, Vol. 12075). Springer.
https://doi.org/10.1007/978-3-030-44914-8_16

Conor McBride. 2015. Turing-Completeness Totally Free. In Mathematics of Program Construction (MPC) (Lecture Notes in

Computer Science, Vol. 9129). Springer. https://doi.org/10.1007/978-3-319-19797-5_13
Andrew McCreight, Tim Chevalier, and Andrew P. Tolmach. 2010. A certified framework for compiling and executing

garbage-collected languages. In International Conference on Functional programming (ICFP). ACM. https://doi.org/10.
1145/1863543.1863584

Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput. System Sci. 17, 3 (1978). https:
//doi.org/10.1016/0022-0000(78)90014-4

Andrew Moran and David Sands. 1999. Improvement in a Lazy Context: An Operational Theory for Call-by-Need. In
Principles of Programming Languages (POPL). ACM. https://doi.org/10.1145/292540.292547

Olaf Müller, Tobias Nipkow, David von Oheimb, and Oscar Slotosch. 1999. HOLCF=HOL+LCF. J. Funct. Program. 9, 2 (1999).
https://doi.org/10.1017/s095679689900341x

Magnus O. Myreen. 2021a. The CakeML Project’s Quest for Ever Stronger Correctness Theorems (Invited Paper). In
Interactive Theorem Proving (ITP) (LIPIcs, Vol. 193). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/
10.4230/LIPIcs.ITP.2021.1

Magnus O. Myreen. 2021b. A minimalistic verified bootstrapped compiler (proof pearl). In Certified Programs and Proofs

(CPP). ACM. https://doi.org/10.1145/3437992.3439915
Magnus O. Myreen and Scott Owens. 2014. Proof-producing translation of higher-order logic into pure and stateful ML.

Journal of Functional Programming (JFP) 24, 2-3 (2014). https://doi.org/10.1017/S0956796813000282
Martin Odersky, Martin Sulzmann, and Martin Wehr. 1999. Type Inference with Constrained Types. Theory Pract. Object

Syst. 5, 1 (1999).
Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan. 2016. Functional Big-Step Semantics. In European

Symposium on Programming (ESOP) (Lecture Notes in Computer Science, Vol. 9632). Springer. https://doi.org/10.1007/978-
3-662-49498-1_23

Simon Peyton Jones and Will Partain. 1993. Measuring the effectiveness of a simple strictness analyser. In Glasgow Workshop

on Functional Programming (Workshops in Computing). Springer. https://doi.org/10.1007/978-1-4471-3236-3_17
Simon L. Peyton Jones. 1992. Implementing Lazy Functional Languages on Stock Hardware: The Spineless Tagless G-Machine.

J. Funct. Program. 2, 2 (1992). https://doi.org/10.1017/S0956796800000319
Simon L. Peyton Jones and John Launchbury. 1991. Unboxed Values as First Class Citizens in a Non-Strict Functional

Language. In Functional Programming Languages and Computer Architecture (Lecture Notes in Computer Science, Vol. 523).
Springer. https://doi.org/10.1007/3540543961_30

Simon L. Peyton Jones and Jon Salkild. 1989. The Spineless Tagless G-Machine. In Functional Programming Languages and

Computer Architecture (FPCA). ACM. https://doi.org/10.1145/99370.99385
Maciej Piróg and Jeremy Gibbons. 2014. The Coinductive Resumption Monad. In Mathematical Foundations of Programming

Semantics (MFPS) (Electronic Notes in Theoretical Computer Science, Vol. 308). Elsevier. https://doi.org/10.1016/j.entcs.
2014.10.015

Andrew M. Pitts. 2012. Howe’s method for higher-order languages. In Advanced Topics in Bisimulation and Coinduction.
Cambridge tracts in theoretical computer science, Vol. 52. Cambridge University Press.

Johannes Åman Pohjola, Alejandro Gómez-Londoño, James Shaker, and Michael Norrish. 2022. Kalas: A Verified, End-To-
End Compiler for a Choreographic Language. In Interactive Theorem Proving (ITP) (LIPIcs, Vol. 237). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ITP.2022.27

Damien Pous. 2016. Coinduction All the Way Up. In Logic in Computer Science (LICS). ACM. https://doi.org/10.1145/2933575.
2934564

Manfred Schmidt-Schauß, David Sabel, and Elena Machkasova. 2015. Simulation in the Call-by-Need Lambda-Calculus with
Letrec, Case, Constructors, and Seq. Log. Methods Comput. Sci. 11, 1 (2015). https://doi.org/10.2168/LMCS-11(1:7)2015

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 145. Publication date: June 2023.

https://doi.org/10.1145/158511.158618
https://doi.org/10.1145/291891.291892
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3372885.3373812
https://doi.org/10.1145/3473585
https://doi.org/10.1007/978-3-030-44914-8_16
https://doi.org/10.1007/978-3-319-19797-5_13
https://doi.org/10.1145/1863543.1863584
https://doi.org/10.1145/1863543.1863584
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/292540.292547
https://doi.org/10.1017/s095679689900341x
https://doi.org/10.4230/LIPIcs.ITP.2021.1
https://doi.org/10.4230/LIPIcs.ITP.2021.1
https://doi.org/10.1145/3437992.3439915
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/978-1-4471-3236-3_17
https://doi.org/10.1017/S0956796800000319
https://doi.org/10.1007/3540543961_30
https://doi.org/10.1145/99370.99385
https://doi.org/10.1016/j.entcs.2014.10.015
https://doi.org/10.1016/j.entcs.2014.10.015
https://doi.org/10.4230/LIPIcs.ITP.2022.27
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.2168/LMCS-11(1:7)2015


PureCake: A Verified Compiler for a Lazy Functional Language 145:25

Ilya Sergey, Simon Peyton Jones, and Dimitrios Vytiniotis. 2014. Theory and practice of demand analysis in Haskell. (June
2014). https://core.ac.uk/display/357603019 (Unpublished draft).

Thomas Sewell, Magnus O. Myreen, Yong Kiam Tan, Ramana Kumar, Alexander Mihajlovic, Oskar Abrahamsson, and
Scott Owens. 2022. Cakes that Bake Cakes: Dynamic computation in CakeML. In Programming Language Design and

Implementation (PLDI). ACM. https://doi.org/10.1145/3591266
George Stelle and Darko Stefanovic. 2018. Verifiably Lazy: Verified Compilation of Call-by-Need. In Implementation and

Application of Functional Languages (IFL). ACM. https://doi.org/10.1145/3310232.3310236
Nikhil Swamy, Aseem Rastogi, Aymeric Fromherz, Denis Merigoux, Danel Ahman, and Guido Martínez. 2020. SteelCore:

an extensible concurrent separation logic for effectful dependently typed programs. Proc. ACM Program. Lang. 4, ICFP
(2020). https://doi.org/10.1145/3409003

Philip Wadler. 1990. Deforestation: Transforming Programs to Eliminate Trees. Theor. Comput. Sci. 73, 2 (1990). https:
//doi.org/10.1016/0304-3975(90)90147-A

Philip Wadler and R. J. M. Hughes. 1987. Projections for strictness analysis. In Functional Programming Languages and

Computer Architecture (FPCA) (Lecture Notes in Computer Science, Vol. 274). Springer. https://doi.org/10.1007/3-540-
18317-5_21

Stephanie Weirich, Antoine Voizard, Pedro Henrique Azevedo de Amorim, and Richard A. Eisenberg. 2017. A specification
for dependent types in Haskell. Proc. ACM Program. Lang. 1, ICFP (2017). https://doi.org/10.1145/3110275

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic.
2020. Interaction trees: representing recursive and impure programs in Coq. Proc. ACM Program. Lang. 4, POPL (2020).
https://doi.org/10.1145/3371119

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 145. Publication date: June 2023.

https://core.ac.uk/display/357603019
https://doi.org/10.1145/3591266
https://doi.org/10.1145/3310232.3310236
https://doi.org/10.1145/3409003
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1007/3-540-18317-5_21
https://doi.org/10.1007/3-540-18317-5_21
https://doi.org/10.1145/3110275
https://doi.org/10.1145/3371119

	Abstract
	1 Introduction
	2 Overview
	3 PureLang
	3.1 Features
	3.2 Formal Syntax
	3.3 Semantics
	3.4 Equational Reasoning
	3.5 Type System

	4 Compiler front end
	4.1 Parsing Expression Grammar (PEG) Parsing
	4.2 PureLang
	4.3 Constraint-Based Type Inference
	4.4 Demand Analysis

	5 Compiler back end
	5.1 Method: Verify Compiler Relations, Not Functions
	5.2 ThunkLang
	5.3 EnvLang
	5.4 StateLang

	6 Targeting CakeML
	7 Evaluation
	7.1 Performance Metrics

	8 Related work
	9 Conclusion and future work
	Acknowledgements
	References

