
Stellingen

Behorende bij het proefschrift

From Computability to Executability
A process-theoretic view on automata theory

Paul van Tilburg

27 October 2011

1. The Church-Turing thesis states that "every computable function can be computed with a Turing machine." We propose the following executability thesis: "A process describes the behaviour of a computing system if, and only if, it can be simulated by a reactive Turing machine." [Chapter 6]

2. The research questions that arise when allowing for intermediate termination in specification languages, as introduced by means of the empty process in the dissertation, warrant a study by itself. [Chapters 3-6]

3. While up to language equivalence many notions coincide, such as different termination conditions and classes of languages, they do not coincide up to (branching) bisimilarity; this makes the process-theoretic perspective more interesting from a research point of view. [Chapters 3-5]

4. This dissertation rigorously forma lises the memory and the interaction with the memory of the pushdown automaton and the Turing machine. This formalisation, which treats notions that are traditionally left implicit, improves the models, particularly for educational purposes. [Chapters 4-6]

5. It is sufficient to add the left-merge operator from ACP as an auxiliary operator to obtain a finite sound and complete axiomatisation for CCS with restriction and relabelling but without communication. [AILT08a, AILT08b]

6. Using the binary operators sequential and parallel composition, respectively, we can concisely specify the data types stack and bag. There is no clean, binary operator that allows us to give the specification of a queue in a similar form. The proposed queue­merge operator comes close but yields a small subclass of the queue languages. [Cui +09]

1

7. The integration of automata and process theory leads to an improved basis for a bachelor

course. The resulting theory provides better menta l models for the students to think

about both computation and interaction.

8. In the field of computer science, regular expressions are used everywhere. However,

grammars are generally clearer and more expressive. Programming languages - in

particular the ones that deal with string manipulation - would benefit from incorporating

them as first-class citizens.

9. When a proof, definition or construction cannot be expressed elegantly, one is not

done with the research. The danger with elegant results is ironically that they can be

underappreciated, as they may seem trivial and easily obtained.

10. It requires an infinite amount of review and rework iterations to obtain a perfect

dissertation.

11 . The world would be a better place if people would pay less attention to the media and

more to themselves and their environment.

12. In contrast to current belief, it is possible to do all the Ph.D. research and write a complete

dissertation without the intake of a single drop of coffee.

References

[AILT08a] L. Aceto, A. Ing6Ifsd6tti r, B. Luttik, and P. J. A. van Tilburg. Finite Equational

Bases for Fragments of CCS with Restriction and Relabelling. Tech. rep. CS­

report 08-08. Eindhoven University of Technology, 2008.

[AILT08b] L. Aceto, A. Ing6lfsd6ttir, B. Luttik, and P. J . A. van Tilburg. "Finite

Equational Bases for Fragments of CCS with Restriction and Relabelling".

In : Proceedings of TCS 2008. Ed. by G. Ausiello, J . Karhumaki, G. Mauri,

and L. Ong. IFIP International Federation for Information Processing 273.

Springer-Verlag, 2008, pp. 317-332.

[Cui+09] P. J . L. Cuijpers et al. Queue Merge: a Binary Operator for Modeling Queueing

Behavior. Tech. rep. CS-report 09-02. Eindhoven University of Technology,

2009.

2

From Computability
to Executability

A process-theoretic view
on automata theory

Paul van Tilburg

Copyright © 2011 by Paul van Tilburg

Some rights reserved. This work is licensed under the Creative Commons Attribution­

ShareAlike 3.0 Unported License. To view a copy of this license, visit the web

page http: 11 creati vecornmons. orgllicenseslby- sal3. OI or send a letter to

Creative Commons, 444 Castro Street, Suite 900, Mountain View, CA, 94041, USA.

IPA Dissertation Series 2011-11

ISBN: 978-90-386-2630-7

A catalogue record is available from the Eindhoven University of Technology Library

Typeset with Np< (Tp<Live 2009)

Cover design by Sofie van Schadewijk

Printed by Printservice Eindhoven University of Technology, The Netherlands

;J'
0 -
Cl

TU I Technische Universiteit
Eindhoven e University ofTechnology

NW'o
Netherlands Organisation for Scientific Research

The work in this thesis has been carried out under the auspices of the research school

IPA (Institute for Programming research and Algorithmics). The author was employed

at the Eindhoven University of Technology and supported by the Netherlands Organ­

isation for Scientific Research (NWO), project "Models of Computation: Automata

and Processes" (nr. 612.000.630).

From Computability to Executability
A process-theoretic view on automata theory

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen

op donderdag 27 oktober 2011 om 16.00 uur

door

Paulus Johannes Adrianus van Tilburg

geboren te Breda

Dit proefschrift is goedgekeurd door de promotor:

prof.dr. J .C.M. Baeten

Copromotor:
dr. S.P. Luttik

Contents

Contents

Figures

Glossary

Preface

1 Introduction
1.1 Automata & Formal Language Theory
1.2 Concurrency Theory
1.3 Integration
1.4 Similarities & Differences
1.5 Thesis Outline

2 Preliminaries
2.1 Labelled Transition Systems 2.1.1 Behavioural equivalences 2.1.2 Branching degree, inertness and norm 2.2 The Process Theory TCP,,. 2.2.1 Subtheories

2.2.2 Kleene star
2.2.3 Axiomatisation
2.2.4 Greibach normal form

3 Finite-State Systems
3.1 Finite Automata

vii

ix

xi

xv

1
1
2
3
4
6

9
9

10
11
13
16
16
17
19

21
22 3.2 Linear Specifications . 25 3.2.1 Correspondence . 26 3.3 Regular Expressions . 30 3.3.l Correspondence . 31 3.4 Conclusions . 34

4 Pushdown Systems
37

-vii-

CONTENTS

4.1 Pushdown Automata

4 .1.1 Termination Conditions

39
43

4.2 Sequential Specifications . 51

4.2.1 Correspondence . 53

4.2.2 Decidability . 63

4.3 Explicit Interaction . 69

4.3. l According to the FSES Interpretation 70

4.3.2 According to the FS Interpretation 72

4.4 Conclusions . 74

4.4.1 Future Work . 76

5 Parallel Pushdown Systems

5.1 Parallel Pushdown Automata

5.1.1 Termination Conditions

5.2 Basic Parallel Specifications

5.2.1 Correspondence

5.2.2 Decidability

5.3 Explicit Interaction

5.4 Conclusions

5.4.1 Future Work

6 Computable & Executable Systems

6.1 Reactive Turing Machines

6.2 Expressiveness of RTMs

6.2. l Effective & Computable Transition Systems

6.2.2 Boundedly Branching Computable Transition Systems

6.2.3 Parallel Composition

6.2.4 Universality

6.3 Explicit Interaction

6.4 Conclusions

7 Conclusions
7.1 Automata

7.2 Specifications

7.3 Explicit Interaction

7.4 Future Directions

Bibliography

Index

Summary

Samenvatting

Curriculum Vitae

- viii -

79
81
85
90
91
97

102
106
108

109
111
116
116
119
125
125
128
138

141
141
142
143
143

145

151

157

159

161

Figures

2.1 Two transition systems that belong to the same equivalence class with respect to divergence-preserving branching bisimilarity. 12 2.2 Removing an inert T-transition. 12
3.1 Two examples of finite automata. 23 3.2 An example NFA that is not branching bisimilar to any DFA. 24 3.3 Another example of a finite automaton. 27 3.4 A finite automaton without a linear specification with postfixing. 29 3.5 Infinitely branching transition system associated with an unguarded specification. 30 3.6 A finite automaton that has no regular expression up to bisimilarity. 31 3. 7 A finite automaton. 32 3.8 Classical correspondence results from automata theory. 34 3.9 Correspondence results from a process-theoretic perspective. 35

4.1 An example of a pushdown automaton. 40 4.2 The transition system associated with the example PDA according to the (FS)ES interpretation. 41 4.3 Stack over 'D = { 0, 1 }. 43 4.4 A pushdown automaton that is not initially terminating. 44 4.5 The transition system associated with the PDA that is not initially termi-nating according to the FSES interpretation. 44 4.6 An example of an initially-terminating pushdown automaton. 45 4. 7 Modified pushdown automaton for FSES to ES. 45 4.8 Modified pushdown automaton for FSES to ES preserving divergence. . . 45 4. 9 Modified pushdown automaton for FSES to FS. 48 4.10 Modified pushdown automaton for FSES to FS preserving divergence. . . 48 4.11 The counter pushdown automaton. 49 4.12 The transition system associated with PDA of Figure 4.11 according to the FS interpretation. 50 4.13 The transition system associated with automaton of Figure 4.11 according to the FSES interpretation. 50 4.14 Overview of the different classes of pushdown transition systems. 50

- ix-

FIGURES

4.15 Forgetful stack over 'D = { 0, 1 }. 55

4.16 A transition system with unbounded branching. 57

4.17 A pushdown automaton simulating sequential specification E. 58

4.18 A pushdown automaton that is not pop choice-free. 60

4.19 The transition system associated with the PDA of Figure 4.18. 60

4.20 The transition system associated with sequential specification defining the

PDA from Figure 4.1.. 61

4.21 Diagram of the always-terminating stack specification. 73

4.22 Classical correspondence results from automata theory. 74

4.23 Correspondence results for the FSES interpretation. 77

4.24 Correspondence results for the FS interpretation. 77

5.1 An example of a parallel pushdown automaton. 82

5.2 Bag over 'D = { 0, 1 }. 85

5.3 A parallel pushdown automaton that is not initially terminating. 86

5.4 The transition system associated with the PPDA that is not initially

terminating according to the FSEB interpretation. 86

5.5 The counter parallel pushdown automaton. 88

5.6 The transition system associated with the automaton of Figure 5.5

according to the FSEB interpretation. 88

5. 7 Schematic overview of an attempted counter PPDA using the FS interpre-

tation. 88

5.8 Overview of the different classes of parallel pushdown transition systems. 89

5.9 A parallel pushdown automaton simulating basic parallel specification E. . 93

5.10 The transition system associated with the basic parallel specification

defining the counter PPDA. 96

5.11 Correspondence results for the FSEB/ FS/ FSTB interpretations. 107

6.1 An example of a reactive Turing machine. 112

6.2 An RTM that enumerates and sends the string 1#11#111# 115

6.3 The transition system T0 • . 117

6.4 The transition system T1 • 118

6.5 Diagram of the step fragment. 123

6.6 Diagram of the deterministic computable transition system simulator. . . . 124

6. 7 Diagram of the queue specification. 130

6.8 Diagram of the tape process. 132

6.9 Relation between an RTM transition and specification transitions. 136

6.10 Correspondence results. 139

- x -

Glossary

This section provides an overview of often used symbols and acronyms. Per item we
give a short description and a reference to the (sub)section of its introduction.

Sorts & Variables

A a, b,c, ... actions
A T a, b,c , ... actions (including unobservable)
A * w action sequences, words
e c, i , o, ... channels
'.I i ,j, k indices
'D d,e,f, ... data symbols
'D* a ,6,(data symbol sequences, strings
£(X) L languages (accepted by X)

M automata
M(X) µ ,v multisets (over X)
N I,N,X, ... names
N* ~,x,ry,p name sequences
N m,n natural numbers
'.P p,q process expressions

E,E8 ,E5 , ..• recursive specifications
R regular expressions
'.R relations

s s, t, u, ... states
'J(X) T labelled transition systems (associated with X)

Multisets

0
[x]
µ(x)
xEµ
µ t;;.v
µl±lv
µ-v

empty multiset
singleton multiset
occurrences of x in µ
same as µ(x) 2'.: 1
multiset inclusion; µ(x) :S v(x) for all x
union of multisets; (µ 1±1 v)(x) = µ(x) + v (x)
difference of multisets; (µ - v)(x) = µ(x) - v(x)

- Xl -

(2.1)
(2.1)
(2.1)
(2.2)

(2.2.4)
(2.2)
(4.1)
(2.1)
(3.1)
(5.1)
(2.2)

(4.2.1)
(2.1.1)

(2.2)
(2.2)
(3.3)

(2.1.1)
(2.1)
(2.1)

(5 .1)
(5.1)
(5.1)
(5.1)
(5.1)
(5.1)
(5.1)

GLOSSARY

Actions

£

T

/
#a (w)
c?d
c!d
cM

Data

*
0
D
,I,[,]
a,(,e,aL, oR
rx•

empty word
unobservable action
explicit termination action
number of occurrences of action a in word w

receive data element d over channel c
send data element d over channel c
communicate data element d over channel c

empty string
stack/bag/ tape symbols
stack symbol indicating the stack is empty
bag symbol indicating no element is removed
special stack/bag symbol preventing emptiness
tape symbol indicating the tape cell is blank
special tape marker symbols
tape strings
coding (of x) into a data string

(2.1)
(2.1)

(4.2.2)
(2.1)
(2.2)
(2.2)
(2.2)

(4.1)

(4.1/ 5.1/ 6.1)
(4.1)
(5.1)

(4.1.1)
(6.1)
(6.1)
(6.1)

(6.2.2)

Automata & Transition Systems

i
!

s!

~

----++

---+>

a [d/o] ,

a [d / µJ,

a [d /e]M ,

Equivalences

initial state
set of final states
transition relation
termination predicate (for states)
transition or step labelled with action a

optional transition
multiple transitions, may include unobservable transitions
transitive closure of ~
reflexive and transitive closure of ~; same as -4.

pushdown automaton transition
parallel pushdown automaton transition
reactive Turing machine transition

language equivalence
strong bisimilarity
strong bisimilarity without termination
branching bisimilarity
divergence-preserving branching bisimilarity
rooted divergence-preserving branching bisimilarity

- xii -

(2.1)
(2.1)
(2.1)
(2.1)
(2.1)
(2.1)
(2.1)
(2.1)
(2.1)
(4.1)
(5 .1)
(6.1)

(2.1)
(2.1.1)
(4.2.2)
(2.1.1)
(2.1.1)
(2.2.3)

GLOSSARY

Process Expressions

0 deadlocked or unsuccessfully terminated process (2.2)
1 empty or successfully terminated process, skip (2.2)
a.p action prefix (2.2)
p.a action postfix (3.2.1)
p+q alternative composition, choice (2.2)
p·q sequential composition (2.2)
p llq parallel composition (2.2)
p ~ q left-merge operation (2.2)
plq communication merge operation (2.2)
oc (p) encapsulation of communication over channel c (2.2)
'rc(p) abstraction of communication over channel c (2.2)
[p Jc same as -rcCoc(p)) (2.2) N der =p defining equation for name N (2.2)
(+ 1) optional 1-summand (2.2)
[+ l] c conditional 1-summand with condition C (2.2)
L ie3 Pi alternative composition over index set ~ (2.2.4)

Acronyms

ACP Algebra of Communicating Processes [BK84] BCP Basic Communicating Processes [BBR09] BPA Basic Process Algebra [BK84] BPP Basic Parallel Processes [Chr93] BSP Basic Sequential Processes [BBR09] ccs Calculus of Communicating Systems [Mil80]
CSP Communicating Sequential Processes [Hoa85]
DFA Deterministic finite automaton (3.1)
EB Termination on empty bag (5.1)
ES Termination on empty stack (4.1)
FS Termination on final state (4.1)
FSEB Termination on both final state and empty bag (5.1)
FSES Termination on both final state and empty stack (4.1)
FSTB Termination on both final state and transparent bag (5.2.1)
GNF Greibach normal form (2.2.4)
NFA Non-deterministic finite automaton (3 .1)
PDA Pushdown automaton (4.1)
PPDA Parallel pushdown automaton (5.1)
RTM Reactive Turing machine (6.1)
TSP Theory of Sequential Processes [BBR09]
TCP Theory of Communicating Processes [BBR09]

-xiii-

Pref ace

When I was taught process algebra in my Bachelor curriculum, I was struck by its
elegance. Process algebra takes something that is very natural to most of us - we
have all been taught mathematics and algebra in high school - and uses it to deal with
processes rather than numbers. Regardless of its practical use in software verification,
it has always provided me with a clear way to model systems in my mind. This goes
beyond models of computer systems and encompasses any kind of system we might
encounter in the real and virtual world.

It was exactly this feeling that drew me to the project "Models of Computation:
Automata and Processes," which eventually became my Ph.D. research project. Its
aim is to integrate automata theory - something taught to every computer science
student around the world - with process theory. It provided me with a chance to
study the core of process algebra and establish an "improved" theory that included
the nowadays very important notion of interaction in a clean and systematic manner.
It turned out that questions from the process-theoretic point of view were the most
interesting, as automata theory mostly ignores the notion of interaction with the
environment and focuses on the outcomes rather than the processes or behaviour.

The desire to establish this "improved" theory has led me to the decision to rework
all publications written during the course of this project into a monograph. Although
there are many unanswered questions, many gaps, and many things left to do, I hope
this thesis provides a suitable overview.

Acknowledgements

The stereotype of a Ph.D. student is a student that sits alone in his/ her office till late
in the evening, digging through papers, trying to find answers to research questions.
While there obviously was work that I had to do alone, and there was digging and
trying, being a Ph.D. student was nothing like the stereotype I described above.
The main difference in my experience is in the word "alone": I was surrounded by
colleagues, friends, and family that contributed to a great working atmosphere with
lots of social activities. For this I want to thank a lot of people, all this work would
not have been possible without them.

First of all, I want to thank my supervisor, my promotor, Jos Baeten for putting me
on this path years ago with his process algebra lectures and for stimulating me with
big ideas and thoughts ever since. His enthusiasm for the field and also for my project

-xv -

PREFAC E

in particular never failed to motivate me. The same also holds for my daily supervisor,

my co-promotor, Bas Luttik. Having been my Master's project supervisor, I knew what

to expect from him, but I feel that he exceeded my expectations. He always knew

exactly when I was stuck, when I had just realised it myself, and never failed to get

me unstuck. Then, there was also his relentless (in a positive way!) feedback, helping

me to work towards perfect, correct and clear text. I greatly admire him for being

able to give detailed feedback even after the tenth iteration. His feedback has been

invaluable and I hope that you, as reader, can see this shine through in this thesis. I

really could not have wished for better supervisors!
Special thanks also go to my reading committee: Erik de Vink, Faron Moller, and

Jan Willem Klop. They have my sincere gratitude for reading and checking my thesis

and their timely response. Special thanks go to Erik de Vink for his detailed feedback

which has led to quite an improvement of the thesis. I want to thank Jan Bergstra

for taking place in my defence committee, and also Jan Friso Groote for being able to

step in at the very last moment to complete the committee.

Because one generally only does a Ph.D. defence once, I wanted to fulfil all

the usual traditions by having paranymphs. I want to thank Admar Schoonen for

accepting the paranymph duty, but also for all his support throughout the years, as

housemate and as friend. You cannot imagine how much talk about all kinds of

worries, organisational matters and problems he had to endure. Discussions with

him, being an electrical engineer rather than a computer scientist, forced me to think

differently about the things I was working on. This has led to greater understanding

of the field than I had previously thought possible.
My other paranymph is Alexandra Silva. Because she was one year ahead of

me, she could always provide me with valuable advice about the thesis, the defence,

and many other organisational issues. But besides that, she has been immensely

supportive and has helped me through some rough patches. I still remember the first

IPA days during which we met and it has been a series of joyous and "gezellige" social

events since. I thank her for all the dinners with our joint IPNCWI friends, and our

great, much-needed holiday in the Algarve. Since she seems to think I know some

Portuguese, let me put it in other words for her: "Xana, agradero-te do fundo do meu

corarao pela tua ajuda, apoio e amizade!"
If there is such a notion as a spare or co-paranymph, then the honours must be

given to Bram Senders. Bram has always shown great interest in my work and has

always been willing to listen to and comment on my struggles, problems and writings.

I much admire him for that and also for his thorough review of the thesis draft

(twice!) and for providing detailed comments. He did all this outside the working

hours of his freelance programming job. Surely, diversity must be one of his strengths!

I am happy that my group of friends does not solely consist of academic and

technical people; some variety cannot hurt. One of my non-academic friends is Sofie

van Schadewijk, who designed the beautiful cover of this thesis. I want to thank

her for being willing to create this nice design. When I started to think about what

the cover should look like, I had no idea it would turn out this well! It is quite

an achievement given that the topic is quite abstract, and I am pretty sure Sofie

underestimates her own talent.

-xvi -

ACKNOWLEDGEMENTS

The Spacelabs office in the Potentiaal building has always been a secondary home
and working place to me. I want to thank my friends Anne Pijl and Marcel Moreaux
for their presence there and their support. I'm guessing they have some idea of how
an occasional cup of tea with some (small) talk in an environment that feels like home
can help. Other friends related to Spacelabs, one way or another, or to Utopia whom
I would like to thank for their support are: Bas Kloet & Henrieke Quam~, Christian
Luijten & Marly Luijten-van Geel, Lise Pijl & Erwin Scholtens, Jacco Kwaaitaal, Jama
Ruwen & Marije Schillhom van Veen, Lotte Oostebrink & Fons Vermeulen, Marcel de
Boer & Ello Cuypers, and Sjoerd Simons. Special thanks go to Wouter Lueks, from
whom I received much support via Utopia. I think we shared the same goals, issues
and attitude while finishing our respective theses and were both ready to help each
other out. I wish him good luck with his upcoming Ph.D. student time, I am sure he
will succeed.

I also want to thank Eddie van Breukelen, Joke van Oers, and Werend Vrijlandt.
We all know it is quite tough to keep in touch relatively frequently with friends from
high school and I am happy we made it work.

I must not forget to thank my friend Stefan van der Linden. Without his endless
supply of music set recordings and his company at parties I would never have made
it through the hours and hours of writing.

Quite a large part of my Ph.D. student period was spent at my student apartment
before I moved to my own home. I think that my flatmates and I had a great thing
going and sometimes I still miss the good old days. For great memories and support, I
want to thank my flatmates : Arwin Goharani, Coen Kuijstermans, Come Aerts, Frank
Boon & Annemiek Consten, Harm van de Ven, Pim Cramer en Ruud van Velzen.
Homies4life!

A great thing about the group in which I worked was that it was a member of IPA
(Institute for Programming research and Algorithmics) , a Dutch national research
school. And, because the group was a member, I was a member, albeit unknowingly
at first. IPA provides a good way to expand your knowledge of other fields than your
own but also to get to know other Ph.D. students across the country. My involvement
with IPA was increased by Hugo Jonker, who talked me into becoming a member of
the IPA Ph.D. council without me knowing what I was getting myself into. I wish
to thank him for that. I also want to thank IPA management, Tijn Borghuis, Michel
Reniers, Tim Willemse en Meivan Cheng, for the excellent organisation of the IPA days
and (basic? advanced?) courses. They were enjoyable and I look back on them with
fond memories, which would have not existed without the presence of my fellow
Ph.D. students and friends : Alexandra Silva, Arie Middelkoop, Adam Koprowski,
Behnaz Changizi, Carst Tank.ink, Cyntia Kop, David Costa, Frank Takes, Gijs Kant,
Joost Winter, Ji:irg Endrullis & Rena Bakhshi, Jose Proen~a, Jose Pedro Magalhaes,
Marijn Schraagen, Mark Timmer-van der Stam, Michie} Helvensteijn, Pim Vullers,
Sander Vermolen, Stephanie Kemper, Stijn de Gouw, Yangjing Wang and Young-Joo
Moon.

Another highlight in my Ph.D. student time is the summer school in Bertinoro in
2010. Can anyone think of a better place to be? My thanks go to a few foreign
friends I met at the summer school for their company: Andrea Cerone, Andres

-xvii-

PREFACE

Aristizabal, Filippo Bonchi, Jeremy Dubreil, Massimo Callisto, Miguel Andres, Mario

Alvim, Romain Beauxis and Sophia Knight.
Over the years I have had many colleagues; a university is a fluid, ever changing

environment. However, special to me are the people whom I have shared offices with.

I started out with Michiel van Osch and Nikola Trcka. I want to thank them both for

getting me started, their advice and company. I also want to thank Carst Tankink for

his company and discussions during his Master's research period. The biggest part of

my Ph.D. student time, however, I have spent with Helle Hansen as my officemate.

Full of wise advice and always ready to pour me some nice herbal tea, which I will

surely miss, I want to thank her and wish her well with the next step in her career in

Nijmegen.
Other special colleagues are of course my co-authors. I want to thank Luca Aceto,

Anna Ing6lfsd6ttir, Leonardo Vito and Tim Muller for their participation. I think

our papers have turned out really well! Special thanks go to Pieter Cuijpers, who

has provided a basis for many of the solutions in this thesis. It has always been

inspiring to work with Pieter as he has a slightly different view at things, due to his

background. This has often led to ingenious solutions. In addition, I want to thank

Clemens Grabmayer for suggesting to us the term reactive Turing machine.

Related to my co-authorship was my work visit to Iceland. Luca Aceto arranged

my visit to Reykjavik University in 2009. I want to thank him for this opportunity,

but also Amar Birgisson for making this entire trip such a joy. Coincidentally, we met

briefly after the IPA days in the Netherlands before he returned to Iceland, just a few

months before I planned my trip. As a result of this coincidence, I was able to get in

touch with him, stay at his place for a few weeks and tour Iceland together. This is

something for which I still feel indebted to him. I want to thank the friends I made

in Iceland, Gylfi 1>6r Guomundsson, Hanna Maria l>orgeirsd6ttir, Ida Kramarczyk,

Matteo Cimini, Pall Runar l>rainsson, Sigrun Arnmendrup, Stefan Freyr Stefansson,

Willard l>6r Rafnsson, and l>6rhallur Halfdanarson, for a trip that I will never forget.

I started my work within the group of Formal Methods, in which I felt right

at home. The working atmosphere within FM was very good and I enjoyed our

joint lunches and FM traditions such as: the informal lunches, Sinterjos and the

Christmas Tapas. I want to thank my FM colleagues for heavily contributing to this

atmosphere: Bas Luttik, Erik de Vink, Erik Luit, Francien Dechesne, Harsh Beohar,

Helle Hansen, Jasen Markovski, Jos Baeten, Kees Huizing, Meivan Cheng, Ronald

Middelkoop, Ruurd Kuiper, Simona Orzan, Sonja Georgievska, Suzana Andova, and

Wan Fokkink. Special thanks goes to Rob Nederpelt, my internship supervisor from

a long time ago, who was always ready to provide me with writing advice and has

reviewed some parts of the thesis.
A year ago, the Formal Methods group was merged with the Design and Analysis

of Systems (DAS) group into the Formal System Analysis (FSA) group. This joining

was almost only organisational in origin, as the FM group already did a lot of things

together with the DAS group. I appreciate this joining, our "ver-oedering", and want

to thank the fellow Ph.D. students and colleagues that I gained through this merge for

their support in many ways: Frank Stappers, Hans Zantema, Jan Friso Groote, Jeroen

Keiren, Maciej Gazda, Matthias Raffelsieper, MohammadReza Mousavi, Muhammad

-xviii-

ACKNOWLEDGEMENTS

Atif, Neda Noroozi, Rob Hoogerwoord, Sjoerd Cranen, Tim Willemse, Tineke van den
Bosch, and Wieger Wesselink. Additional thanks have to go to Aad Mathijssen and
Bas Ploeger; they left before the groups merged but I already considered them as my
colleagues. I want to especially thank Herman Geuvers for discussion and pointers to
related work with respect to Chapter 6.

Besides my colleagues and my friends (through all sorts of connections), there
was always family to support me. I am very happy to have received support from so
many relatives; they were always ready to help or ask how things were progressing. I
want to thank my grandparents, Jan & Nettie, and aunts, uncles, and cousins: Loes &
Emiel, Daan, Freek, Margo & Theo, Thijs, Jorieke, Stef, Rob, Bram, Merel, Stijn, and
Jan & Jo, for their support.

Finally, the greatest support and love came from my close family. I do not think
there is a better set of parents I can wish for. Martin & Ria have always let me find my
own way, and I ended up here, finishing my Ph.D. project. The challenge has been
overcome with their help and support, and for this I can hope I make them proud in
return. I have always felt that, when I got stuck, my mother was ready to jump in and
do the work for me if she could. I am also happy to finish my Ph.D. time in the same
year as my brother Tom and his girlfriend Jorine who have deserved their Master's degree. They have struggled through a long period of writing, which I can relate to,
and I think they can be proud of the result. For all three of us, a new life starts. I wish
them much success and luck in the future!

I cannot but hope that I did not forget anyone. (If so, I am very sorry.) I also hope
that the long list of people above shows that getting a Ph.D. degree is more than just
doing research (alone) . I am ever grateful for the opportunities, the knowledge, the
experiences, the personal development, and social contacts that I have gained in the
process.

-xix -

Paul van Tilburg
Eindhoven, August 2011

Chapter I

Introduction

The foundations of computer science were laid in the 1930s, when computability
theory emerged as the theory that studies which functions are computable. At the core
of the computability theory is the theory of automata and formal languages, which
provides models of computing agents and means to reason about them. Here we
mean by computing the application of a deterministic algorithm that transforms input
into output. With the advent of the first computer terminal in the 1970s, the uprise
of inter-computer networks and multi-processor systems, and the recent introduction
of multi-core processors, the notion of interaction has become increasingly more
important. Concurrency theory, split off from the classical automata theory a few
decades ago, provides models of computation similar to the models given by the
theory of automata and formal languages, but focuses on concurrent, reactive and
interactive systems. Using this theory we can obtain a notion of executability on top
of computability by additionally considering interaction.

In this thesis we will investigate the integration of the two theories - automata
and concurrency theory - by taking prominent results from the field of automata
theory and considering them from a process-theoretic perspective. We first discuss
the background of both theories in this chapter. Then, we will consider the most
prominent similarities and differences between the two theories and indicate what
we adopt as leading research questions. Finally, an outline of the contents of the
thesis is given per chapter.

1.1 Automata & Formal Language Theory

Automata theory is the study of abstract "mathematical" machines and the com­
putational problems that can be solved using these machines. The theory has its
origins in the 1930s, when Turing defined a logical machine to define computable
numbers in [Tur37]. This and other models of computation, such as Kleene's
recursive functions [Kle36] and Church's A.-calculus [Chu36], lead to the emergence
of computability theory, the branch of mathematical logic that studies the theory
of effectively calculable (partial) functions. Interestingly, all these models turned out
to be equivalent: every effectively calculable function is computable with a Turing

- 1 -

1. INTRODUCTION

machine, a Kleene recursive function and is ?..-definable. This can be considered as

evidence for the Church-Turing thesis stating that any function that can be computed

at all, now and in the future, with any real-world computing device, can be computed

with a Turing machine.
Turing's logical machine had a finite number of states, capturing a program,

and a tape memory used during execution. Later, several definitions of various

kinds of automata were defined by the mathematicians Von Neumann [Neu56]

and Kleene [Kle56] to describe neural nets by means of a formal system. These

results were based on the neurophysiology research pioneered by McCullough and

Pitts [MP43]. The mathematical definitions of automata resulted in the link with for­

mal language theory: the study of the purely syntactic aspects of (formal) languages.

The first formal language is considered to have been defined by Frege in [Fre79] over

one century ago. Chomsky proposed the notion of a formal grammar in [Cho56].

While automata provide an operational way to describe computations and languages,

grammars accommodate a rather more generative approach. Correspondence results

between different kinds of automata and grammars followed and are described in

many textbooks on automata and formal language theory, for example see [Sud88,

Sip97, LinOl, HMU06] .
In [Cho56], Chomsky discerns three classes of languages, which he later extends

to four in [Cho59] : regular, context-free, context-sensitive, and recursively enumer­

able. Taking the corresponding automata as central notion, this thesis will follow the

Chomsky hierarchy and develop a process-theoretic view on each class. We will look

at process-theoretic analogies of classic results for these classes from automata theory

and see if they still hold. If not, we explore what extra conditions are needed to make

them hold.

1.2 Concurrency Theory

Concurrency theory is the study of reactive systems, i.e., systems that depend on

interaction with their environment during their execution. Petri showed in his

thesis [Pet62] that concurrency and interaction may serve to bridge the gap between

the theoretically convenient (Turing machine) model of a sequential machine

with unbounded memory, and the practically more realistic notion of extensible

architecture of components with bounded memory. Towards the end of the 1970s,

Milner observed that, for a thorough investigation of concurrency and interaction, it

is profitable to study these notions in isolation rather than to try and add them to

any of the existing models of computation. One of his desiderata for the design of his

algebraic process theories was "that there be only a single combinator for combining

processes which interact or which coexist" [Mil93]. In particular, the interaction of

a computing device with its memory is to be modelled using a symmetric notion of

interaction, considering the memory as a separate process.

A large part of the research within the field of concurrency theory is devoted

to process theory. In process theory, interaction between systems is treated as

a first-class citizen, as it was established by e.g. [Mil80] (see also [BaeOS]). It

-2-

1.3. INTEGRATION

embodies a powerful compos1t10n operator that is used to compose systems in
parallel, including their interaction. A system is usually either directly modelled as
a labelled transition system, or as an expression in a process description language
with a well-defined operational semantics that associates a labelled transition system
with each expression. Note that the presence of these central notions expose the
relationship with automata theory, as finite transition systems and process description
languages can be considered as the process-theoretic counterparts of finite automata
and grammars. The process description languages, also called process algebras,
CCS by Milner [Mil80, Mil89], ACP by Bergstra & Klop [BK84] and CSP by
Hoare [Hoa85] have been the most prominent for quite some years. Nowadays also
the rr-calculus, a process algebra devised by Milner [Mil99] that can be seen to some
extent as the interactive version of the A.-calculus [Chu32], has taken an important
place amongst the process theories. In this thesis we use the process theory TCPr
(Theory of Communicating Processes with -r) [BBR09] , which is a generic process
algebra encompassing key features of ACP, CCS and CSP .

One of the main contributions of concurrency theory is a richness of behavioural
equivalences on labelled transition systems that to a more or lesser extent preserve
the branching structure. In concurrency theory, behaviours are usually considered
modulo a suitable behavioural equivalence. In this thesis we shall mainly use
(divergence-preserving) branching bisimilarity [GW96], which is the finest behavioural
equivalence in Van Glabbeek's spectrum (see [Gla93] for an overview).

1.3 Integration

The theory of automata and formal languages was developed to provide models of
computing systems and to reason about them; it even turned out to provide powerful
models of computation in general. The theory has been very successful and became
widespread. It has many applications and appears in every academic curriculum
of computer science. On the other hand, the theory deals with the computation of
functions. It can no longer provide a basic model of a computer.

Nowadays, computers are systems that interact continuously not only with us but
also with each other; they are non-deterministic, reactive systems. An execution
performed by a computer is thus not just a series of steps of an algorithm, but it
also involves interaction. It has inherent non-determinism and cannot be modelled
as a function. Concurrency theory provides exactly this. We can see an execution
as a computation plus interaction as modelled in concurrency theory. To illustrate
the difference between a computation and an execution, we can say that a Turing
machine cannot fly a plane, but a computer can. An automatic pilot cannot know all
conditions beforehand, but rather can react to changing conditions real-time.

The goal of this thesis is to investigate the integration of automata and process
theory, exposing the differences and similarities between them. Because concurrency
theory split off from automata theory in the past, some notions are still the same.
For example, the notion of a finite automaton is the same as a finite -state transition
system; a linear grammar has only minor syntactic differences with a finite recursive

-3-

1. INTRODUCTION

specification over some process algebra. We consider classical definitions and results

from automata theory in a process-theoretic setting to make the integration explicit.

The attempt at integration hopefully increases the understanding of both theories.

There have been results that consider classical results from a process-theoretic

perspective, see for example [HS91, Gro92, BBK93, CHS95, Mol96, SrbOl, Sti03] .

However, no attempt has been made at full integration of the two theories as is done

in this thesis. There have also been other attempts to add a notion of interaction to

computability theory, see [LWOO, GSAS04, GSW06, BGRR07]. But here, the attempts

do not take full advantage of the results of concurrency theory. In all formalisations

of interaction machines we could find, interaction is added as an asymmetric notion.

The focus remains on the computational aspect, and interaction is included as a

second-class citizen. In this thesis we want to study a theory of executability that treats

computation and interaction on an equal footing, because we think that this will lead

to a more suitable theory of behaviour of contemporary computing systems. Note

that the full integration also has a practical side: the result can be incorporated into a

Bachelor course, providing students with an increased understanding of concurrent,

reactive systems.
The integration in this thesis includes the reinvestigation of, e.g., the corre­

spondence between finite-state automata, regular languages, regular expressions

and regular grammars, and the correspondence between pushdown automata and

context-free languages (see [Sud88, Sip97, LinOl, HMU06] for details of these

results). We also approach the classes of languages from a different angle and

consider the class of so-called parallel pushdown systems. Parallel pushdown systems

are obtained by replacing the sequential composition operator used in context-free

languages by the typical operator from process theory, the parallel composition.

1.4 Similarities & Differences

As we attempt the full integration, we consider the following important differences

in our approach with respect to both automata theory and process theory.

A main difference in approach with respect to automata theory is that we

use the semantics of concurrency theory, labelled transition systems, as a central

notion. Instead of looking at the classes of languages that are accepted by the

various kinds of automata, we look at the classes of transition systems associated

with the automata. This way; we can choose to divide out a suitable behavioural

equivalence to obtain the desired results. For example, languages can still be obtained

from the transition systems by dividing out language equivalence. We will see

that the way the transition systems are associated with each kind of automaton

provides the operational semantics of the automaton. For pushdown automata and

parallel pushdown automata we shall consider different termination conditions such

as termination on final state and termination on empty stack/bag. While the different

termination conditions yield the same classes of languages, we will see that they yield

different classes of associated transition systems.

-4 -

1.4. SIMILARITIES & DIFFERENCES

A second main difference between automata theory and concurrency theory is
that concurrency theory considers language equivalence to be too coarse to capture a
notion of interaction. Looking at an automaton as a language acceptor, acceptance
of a string represents a particular computation of the automaton, and the language
is the set of all its computations. But, using language equivalence we abstract
from moments of choice within the automaton. As a consequence, the language­
theoretic interpretation is only suitable under the assumption that an automaton
is a stand-alone computational device; it is unsuitable if some form of interaction
of the automaton with its environment (e.g. a user, other automata running in
parallel, etc.) may influence its behaviour. Concurrency theory offers other notions of
behavioural equivalence. We use the most fine-grained equivalence that preserves the
branching structure that the theory currently offers: divergence-preserving branching
bisimulation. We will see that when we reconsider classical, quite straight-forward
results from automata theory, e.g. the correspondence between pushdown automata
and context-free grammars, may no longer hold modulo this equivalence. In this
case we shall apply restrictions on languages and automata to remedy the situation.
Note that in between language equivalence and divergence-preserving branching
bisimulation equivalence, there are several other equivalence relations (see [Gla93]).
We shall sometimes drop divergence-preservation when this is necessary.

A third difference is that a notion of final state is often missing in concurrency
theory. For finite-state automata we have the notion of intermediate termination.
This means that termination might occur at the same time that the automaton can
continue with its computation/ execution. Recall that concurrency theory deals with
so-called reactive systems, which need not terminate but are always on, reacting
to stimuli from the environment. As a result, intermediate termination is often
neglected in concurrency theory. Using the process theory TCPn which includes
notation for a terminating process [BBR09], we obtain a full correspondence with
automata theory: a finite-state transition system is exactly a finite automaton. Note
that we still fully incorporate the reactive systems approach of concurrency theory:
non-terminating behaviour is also relevant behaviour, which is taken into account by
allowing for (infinite) recursion. Per kind of automata we will try to find a suitable
specification language, the process-theoretic counterpart of grammars, and investigate
the correspondence between the class of transition systems associated with the
automata and the class of transition system associated with the specifications.
In [Mol96], Moller presents an overview of the differences in expressive power
using labelled transition systems associated with notions that we find in this thesis,
such as finite-state automata, pushdown and parallel pushdown automata, several
specification languages and Petri nets. We will use and extend results from this
paper in the following chapters when we investigate the correspondences between
automata and specification languages. We will see that the presence of a terminating
process that also allows for continuation of execution makes a process theory too
powerful in the sense that a specification language can express more than what can
be executed by an automaton; this occurs in particular in combination with sequential
composition.

-5-

1. INTRODUCTION

A final difference between automata theory and concurrency theory is that

in automata theory for pushdown automata and Turing machines the interaction

between the finite-state automaton and its memory is left rather implicit. In

the upcoming chapters we will model for each kind of automaton the finite-state

automaton and its memory separately by means of a process description, and

show that using a parallel operator that allows for communication we obtain a

correspondence with the original automaton. This way we make the interaction

explicit, thus fulfilling Milner's aforementioned desideratum that the interaction of

a computing device with its memory should be modelled using a symmetric notion of

interaction, modelling the memory as a separate process.

1.5 Thesis Outline

Below we give an outline of the contents of the thesis and summarise the main

definitions and contributions of each chapter. Note that Chapters 3, 4, and 6

correspond to classes of the Chomsky hierarchy.

Chapter 2 recapitulates the basic definitions of labelled transitions systems and the

behavioural equivalences that are relevant. We also introduce the process theory

TCP, and several subtheories that are used throughout the thesis.

Chapter 3 discusses finite-state systems. It contains a process-theoretic view on the

classical correspondence results between the four ways to describe regular languages:

non-deterministic finite automata, deterministic finite automata, regular grammars

and regular expressions. A side-goal of this chapter is to recapitulate central notions

from automata theory, cast in our process-theoretic framework, as they will reappear

in the subsequent chapters. Automata are defined as finite transition systems;

regular grammars are defined as finite recursive BSP, -specifications called linear

specifications. Because regular expressions can be defined as process expressions

over TSP; , a subtheory of TCPr extended with the Kleene star, no casting in our

process-theoretic framework is needed. However, since the regular expressions

are not sufficient to describe all finite automata up to (branching) bisimilarity, we

propose regular expressions extended with parallel composition, communication, and

encapsulation as the process-theoretic counterparts of regular expressions.

The main definitions and theorems of this chapter are listed in the table below.

Finite-State Systems

Finite automaton
Regular language, finite-state process
Linear specification
Regular expression

Correspondence of finite automata and linear specifications

Correspondence of finite automata and extended regular expressions

-6-

Definition 3.1
Definition 3.3
Definition 3.9
Definition 3.20

Theorem 3.13
Theorem 3.24

1. 5. THESIS OUTLINE

Chapter 4 treats pushdown systems. We give semantics to pushdown automata by means of transition systems. As in automata theory, we have to consider two different termination conditions: termination on final state and termination on empty stack. We add to these conditions termination on final state and empty stack and find that up to divergence-preserving branching bisimilarity the transition systems associated with pushdown automata fall apart into different classes. We
introduce sequential specifications as the process-theoretic counterpart of context­free languages and investigate the correspondence with the pushdown automata for
the different termination conditions. We show that under certain restrictions it is decidable whether two sequential specifications define the same transition system
up to bisimilarity. Finally, we make the interaction within a pushdown automaton explicit by giving a finite-state process representing the finite control of the pushdown automaton and putting it in parallel with a stack process.

The main definitions and theorems of this chapter are listed in the table below.

Pushdown Systems
Pushdown automaton
Pushdown transition system
Pushdown language, pushdown process
Sequential specification

Class distinctions for different termination conditions

Correspondence of pushdown automata and sequential
specifications

Explicit interaction for pushdown automata
Decidability of bisimilarity on sequential specifications

Definition 4.1
Definition 4.4
Definition 4.6
Definition 4.17

Theorems 4.9 and 4.14,
Examples 4.10 and 4.15

Theorems 4.31 and 4.35

Theorems 4.42, 4.43, and 4.46
Theorem 4.40

Chapter 5 investigates parallel pushdown systems, obtained by analogy from pushdown systems by replacing sequential composition by parallel composition. We define parallel pushdown automata, parallel pushdown transition systems and basic parallel specifications. Following the preceding chapter, we consider the distinct termination conditions for parallel pushdown automata, with termination on empty bag instead of on empty stack, which again lead to different classes of parallel
pushdown transition systems. We introduce basic parallel specifications as the process-theoretic counterpart of commutative context-free grammars and investigate the relation between parallel pushdown automata and basic parallel specifications. In contrast with the previous chapter, we show that it is decidable whether two basic
parallel specifications define the same transition system up to bisimilarity, without needing to apply restrictions. Finally, we make the interaction within the parallel pushdown automata explicit by giving a finite-state process representing the finite control and putting it in parallel with a bag process.

-7-

1. INTRODUCTION

The main definitions and theorems of this chapter are listed in the following table.

Parallel Pushdown Systems

Parallel pushdown automaton
Parallel pushdown transition system

Parallel pushdown language, parallel pushdown process

Basic parallel specification

Class distinctions for different termination conditions

Correspondence of parallel pushdown automata and basic

parallel specifications
Explicit interaction for parallel pushdown automata

Decidability of bisimilarity on basic parallel specifications

Definition 5.1
Definition 5.4
Definition 5.5
Definition 5.16

Theorem 5.9, Examples 5.10,
5.13, and 5.14

Theorems 5.29 and 5.31

Theorems 5.41, 5.42, 5.43,
and 5.45

Theorems 5.36 and 5.38

Chapter 6 studies computable and executable systems and the relation with effec­

tive and computable transition systems and Turing machines. For this we present the

reactive Turing machine, a classical Turing machine augmented with capabilities for

interaction. Classically, Turing machines are associated with recursively enumerable

languages and unrestricted grammars. We define transition systems that can

be simulated by a reactive Turing machine as executable transition systems, and

consider TC Pr as the process-theoretic version of unrestricted grammars. Instead of

reinvestigating this correspondence we investigate the expressiveness of the notion of

reactive Turing machines to see if we can still simulate computable transition systems

and if it is universal with respect to executable transition systems. Again, we make

the interaction within the reactive Turing machine between finite control and tape

explicit.
The main definitions and theorems of this chapter are listed in the table below.

Computable & Executable Systems

Reactive Turing machine
Effective & computable transition system

Executable process

Correspondence of effective & computable transition

systems and reactive Turing machines

Universality of reactive Turing machines
Explicit interaction for reactive Turing machines

Definition 6.1
Definition 6.4
Definition 6.6

Theorems 6.22 and
Corollary 6.23

Theorems 6.30 and 6.31
Theorem 6.38 and

Corollary 6.39

Chapter 7 draws several conclusions and outlines future work.

-8-

Chapter 2

Preliminaries

In this chapter, we first briefly recap the basic definitions of labelled trans1t1on
systems and related notions. Then, we introduce the process theory TCPr (Theory of
Communicating Processes with -r) and several subtheories used in this thesis.

2.1 Labelled Transition Systems

From here onwards we assume the existence of a countably infinite set of action
symbols (or just: actions) of which A is some finite subset. We also fix an unobservable
action (also called silent or internal action), denoted by the symbol -r, assuming that
-r 1:- A; we denote the set Au { -r} as A r. We let a, b,c range over A ,,- .

DEFINITION 2.1. A labelled transition system T is defined as a four-tuple (S,->, i, t)
where:

1. S is a (possibly infinite) set of states,
2. -> s;:: S x A ,,- x S is an A,,- -labelled transition relation on S,
3. l E S is the initial state,
4. l s;:: S is the set of final states.

If (s,a,t) E ->, we writes~ t. Ifs is a final state, i.e. , s El, we write sl. /:::,.

Furthermore, we abbreviate the statement 's ~ t or (a = -r and s = t)' with
s -1f!4 t. We denote the transitive closure of __.!___, by --+ +, and we denote the reflexive­
transitive closure of ~ by - .

D EFINITION 2.2. Let T be a labelled transition system and lets , t be states in T. We
define an (input) word w as a sequence of actions, i.e. w = a 1 • ·· an E A *, and let e
denote the empty word; we writes~ t if there exist states s0 , ... ,sn in T such that
s =So---»....El...+---»s1 ···-...E.ii....-sn =t.

Ifs ~ t for some w EA*, then we say that t is reachable from s in T.

We will use the notation #a (w) to count the occurrences of some action a in
word w. Note that always # ,,- (w) = 0.

-9-

2. PRELIMINARIES

If we consider transition systems, we can collect all words that lead from the initial

state to a final state. In automata theory, this collection is called a language.

DEFINITION 2.3. Let T = (S, ~, i, !) be a transition system. The language L(T)

accepted by T is defined as

L(T) = { w EA* \ 3s EL such that l ~ s}

The transmon systems T1 and T2 are language equivalent (notation: T1

£(T1) = £(T2).

2.1.1 Behavioural equivalences

We first define bisimilarity, originally proposed by Park in [Par81], extended with

conditions for termination. This equivalence relation treats silent transitions as

ordinary transitions; it is therefore often referred to as strong bisimilarity.

DEFINITION 2.4. Let T1 = (S1, ~1 , l 1, h) and T2 = (S2, ~2 , lz, Lz) be transition

systems. A bisimulation between T1 and T2 is a binary relation '.R ~ S1 x S2 such

that l 1 '.R l 2 and, for all actions a E A -r and states s1 and s2 , s1 '.R s2 implies

1. if s1 __E.._, s~ then there exists s; such that s2 __E.._, s; and s~ '.R s;,

2. if s2 __E.._, s; then there exists s'1 such that s 1 __E.._, s~ and s~ '.R s;,

3. if s 1 L then s2 L and vice versa.

The transition systems T1 and T2 are bisimilar (notation: T1 +-+ T2) if there exists a

bisimulation between T1 and T2 • 6.

A result from concurrency theory is that language equivalence is arguably too

coarse for reactive systems, because it abstracts from all moments of choice (see,

e.g., [BBR09]). In concurrency theory many alternative behavioural equivalences

have been proposed; we refer to [Gla93] for a classification.

The bisimilarity behavioural equivalence might be considered too strong, as it

does not abstract from silent, internal transitions. Therefore, most results of this

thesis are modulo branching bisimilarity [GW96], which is the finest behavioural

equivalence in Van Glabbeek's linear time - branching time spectrum [Gla93]. We

shall consider both the divergence-insensitive and the divergence-preserving variant.

By taking divergence into account, most of our results do not depend on fairness

assumptions; these assumptions are needed if systems contain loops of internal

transitions. (The divergence-preserving variant is called branching bisimilarity with

explicit divergence in [Gla93, GW96], but in this thesis we prefer the term divergence­

preserving branching bisimilarity.)

DEFINITION 2.5. Let T1 = (S 1, ~1 , l 1, L1) and T2 = (S 2, ~2 , lz, Lz) be transition

systems. A branching bisimulation between T1 and T2 is a binary relation '.R ~ S1 x S2

such that l 1 '.R l 2 and, for all states s1 and s2' s 1 '.R s2 implies

1. if s1 _g__, 1 s'l' then there exist s;,5~ E S2 such that 52 _,.2 5~ ~2 5;, 51 '.R s~ and

s' '.R s' ·
l 2'

- 10 -

2.1. LABELLED TRANSITION SYSTEMS

2. if s2 __g__, 2 s;, then there exist s~, s~ E S1 such that s 1 --+> 1 s~ --1f!.l., 1 s~, s~ '.R s2 and
s~ '.R s;;

3. if sJ! 1, then there exists s; such that s2 - 2 s;, s1 '.R s; and s; ! 2 ; and
4. if s2 b then there exists s~ such that si - 1 s~, s~ '.R s2 and s~ ! 1 .

The transition systems Ti and T2 are branching bisimilar (notation: Ti <->b T2) if there
exists a branching bisimulation between Ti and T2 .

A branching bisimulation '.R between Ti and T2 is divergence-preserving if, for all
states s1 and s2 , s1 '.R s2 implies

5. if there exists an infinite sequence (S1 J "' SUCh that Si =Si O• S1 i......!...., S1 i+ I and ' l E1"1 , , , s1,; '.R s2 for all i E N, then there exists a states; such that s2 --+ + s; and s1,; '.R s;
for some i E N; and

6. if there exists an infinite sequence (s2 ,;)iEN such that s2 = s2 ,0 , s2,;!...., s2 ,;+1 and
Si '.R s2,; for all i E N, then there exists a states~ such that si --+ + s~ and s~ '.R s2 ,;
for some i E N.

The transition systems Ti and T2 are divergence-preserving branching bisimilar (no­
tation: Ti '=!~ T2) if there exists a divergence-preserving branching bisimulation
between T1 and T2 • 6

It has been proved that branching bisimilarity is an equivalence relation on
labelled transition systems [Bas96] ; for divergence-preserving branching bisimilarity
this has been shown in [GLT09] .

2.1.2 Branching degree, inertness and norm
We will need as auxiliary notions the notion of inert '!-transition and the notion of
branching degree of a state. For a definition we first define (divergence-preserving)
branching bisimulation on a labelled transition system, and the quotient of a labelled
transition system by its maximal (divergence-preserving) branching bisimulation.

Let T = (S,-+, T, !) be a labelled transition system. A (divergence-preserving)
branching bisimulation on T is a binary relation '.R on S that satisfies conditions 1-4
(conditions 1-6 in the case of divergence-preservation) of Definition 2.5. Let '.R be
the maximal (divergence-preserving) branching bisimulation on T. Then '.R is an
equivalence on S; we denote by [sh the equivalence class of s ES with respect to '.R
and by S/'.R the set of all equivalence classes of S with respect to '.R . On S/'.R we
can define an A r-labelled transition relation -+:R by [s h __g__, :R [th if, and only if,
there exist s' E [sh and t' E [th such that s' __g__, t'. Furthermore, we define b =
[Th and h = {s I :ls' E ! such that s E [s'h }. Now, the quotient of T by '.R is the
labelled transition system T /'.R = (S/'.R, -+:R , f:R, h). It is straightforward to prove
that each labelled transition system is (divergence-preserving) branching bisimilar to
its quotient by its maximal (divergence-preserving) branching bisimulation.

DEFINITION 2.6. An equivalence class of transition systems with respect to diver­
gence-preserving branching bisimilarity is called a process. /::;.

-11 -

2. PRELIMINARIES

EXAMPLE 2.7. The two transition systems in Figure 2.1 are divergence-preserving

branching bisimilar; they are two representatives of the same process of which the

left-most is the minimal form. 0

a
-++tr~-+tJ----4~r~-+tr-~~ --- ~

a a a a

FIGURE 2.1: Two transition systems that belong to the same equivalence class

with respect to divergence-preserving branching bisimilarity.

DEFINITION 2.8. Let T be a labelled transition system and let s and t be two states

in T. A -r-transition s _i_. t is inert ifs and t are related by the maximal branching

bisimulation on T. 6

If s and t are distinct states, then an inert -r-transition s _i_. t can be eliminated

from a labelled transition system by: removing all outgoing transitions of s, changing

every outgoing transition t ~ u from t to an outgoing transition s ~ u from s,

changing every incoming transition u ~ t tot to an incoming transition u ~ s to s,

and removing the state t. This operation yields a labelled transition system that is

branching bisimilar to the original labelled transition system.

EXAMPLE 2.9. Consider the labelled transition systems in Figure 2.2. Here, the inert

-r-transition from state s to t in the transition system on the left is removed by

removing the transitions __E.__, u and moving all outgoing transitions oft to s, resulting

in the transition system on the right. This is possible because s and t are branching

bisimilar. O

a

u

FIGURE 2.2: Removing an inert -r-transition.

To get a notion of branching degree that is preserved up to branching bisimilarity,

we define the branching degree of a state as the branching degree of the correspond­

ing equivalence class of states modulo the maximal branching bisimilarity.

DEFINITION 2.10. Let T be a labelled transition system, and let '.R be its maximal

branching bisimulation. The branching degree of a state s in T is the cardinality of the

set {(a, [th) I [sh ~'.R [th } of outgoing edges of the equivalence class of s in the

quotient T /'.R.

- 12 -

2.2. THE PROCESS THEORY TCPr

We say that T has finite branching if all states of T have a finite branching degree.
We say that T has bounded branching if there exists a natural number n 2:: 0 such that
every state has a branching degree of at most n. 6

Branching bisimulations respect branching degrees in the sense that if '.R is a
branching bisimulation between T1 and T2 , s1 is a state in T1 and s2 is a state in
T2 such that s1 '.R s2 , then s1 and s2 have the same branching degree.

DEFINITION 2.11. Let T be a labelled transition system, and let '.R be its maximal
branching bisimulation. The norm of a state s is the minimal number of transitions
needed to reach a state that can terminate. We define it formally as follows:

norm(s) = inf{ length(w) I w EA* such that s ~ s' /\ s' ! } .

Note that this means that if there is no path from states to a state that can t.erminate,
then norm(s) = oo. 6

2.2 The Process Theory TCP,

TCP-r is a generic process algebra encompassing key features of CSP [Hoa85],
CCS [Mil80, Mil89], and ACP [BK84]: it uses prefixing and choice from CCS, par­
allelism from ACP (including its axiomatisation) with a generalised communication
mechanism suitable to model communication over channels, and extends recursion
from both CCS and ACP. With respect to the three older algebras, it additionally
discerns unsuccessful termination, i.e. deadlock, and successful termination. We
introduce an instance of TCP-r with the specific form of handshaking communication
from [BCLTlO]. For the full definition, see [BBR09].

We use a finite set e of channels and we assume the existence of a countably
infinite set of data symbols (or data elements) of which 'D is some finite subset; we
often let c range over e and d, e,f range over 'D. We introduce the set of special
actions A'= {c?d,c!d,cl'd Id E 'D,c Ee}; it is assumed that A' s; A. Intuitively, the
actions c?d, c!d, cl'd respectively denote the events that a data element d is received,
sent, or communicated along channel c. Our instantiated version of TCP-r can be
seen as generic TCP-r with a fixed, standard handshaking communication function y,
defined as follows:

y(c!d,c?d) = cPd for all c E 'D,d E 'D.

This communication function is used throughout the thesis, unless a different
communication function is explicitly defined. We assume the existence of a countably
infinite set of names of which N is some finite subset; we often let N, but also X and
Y, range over N. In literature, names are also often called variables or non-terminals.

The set of process expressions '.P(TCP-r) is generated by the following grammar
(a E A T, N EN, c Ee):

p ::= 0 I 1 I a.p I p·p I p+p I PllP I p~p I PIP I ac(p) I 'rc(p) IN.

-13-

2. PRELIMINARIES

If a process expression contains no names, we say that the process expression is closed.

Let us briefly comment on the operators in this syntax. The constant 0 denotes

deadlock, the unsuccessfully terminated process. The constant 1 denotes skip, the

successfully terminated process. For each action a E Ar there is a unary operator a.

denoting action prefix; the process denoted by a.p can perform an a-transition to the

process denoted by p. The binary operator · denotes sequential composition. The

binary operator + denotes alternative composition or choice. The binary operator II
denotes parallel composition; actions of both arguments are interleaved, and in

addition a communication cPd of a data element d on channel c can take place if one

argument can do an input action c?d that matches an output action c!d of the other

component. The left-merge ~ and communication merge I are auxiliary operators

needed for the axiomatisation that we shall present later on. The unary operator oc(p)

encapsulates the process p in such a way that all input actions c?d and output actions

c!d are blocked (for all data) so that communication on channel c is enforced. Finally,

the unary operator 'r c(p) denotes abstraction from communication over channel c in p

by renaming all communications cPd to '!"-transitions. We shall abbreviate "cC oc(p))

with [p Jc.
We will sometimes use the notation [+ p Jc to indicate that the optional summand

with process expression p is only added if condition C holds.

DEFINITION 2.12. A recursive (f CP"' -)specification E is a set of equations of the form:

N ~ p, with as left-hand side a name N and as right-hand side a (TCP"' -)process

expression p. It is required that a recursive specification E contains, for every NE N,

at most one equation with N as left-hand side; this equation will be referred to as the

defining equation for Nin N. Furthermore, if some name occurs in the right-hand side

of some defining equation, then the recursive specification must include a defining

equation for it. 6

We use Structural Operational Semantics [Plo04] to associate a transition relation

with process expressions: let --> be the A"' -labelled transition relation induced

on the set of process expressions by the operational rules in Table 2.1. Note

that the operational rules presuppose a recursive specification E and a termination

predicate_!.

DEFINITION 2.13. Let Ebe a recursive specification and let p be a process expression.

We define the labelled transition system 'J,,(p) = (SP ,-->P' TP' !p) associated with p and E

as follows:

1. the set of states SP consists of all process expressions reachable from p;

2. the transition relation -->p is the restriction to sp of the transition relation -->

defined on all process expressions by the operational rules in Table 2.1 , i.e.,

--.P =--. n (Sp x A "' x Sp).

3. the process expression p is the initial state, i.e. T P = p; and

4. the set of final states consists of all process expressions q ESP such that q !, i.e. ,

!p= ! nSP. 6

-14-

1!

p _g__, p' q _g__, q'

p + q _g__, p' p + q _g__, q'

2.2. THE PROCESS THEORY TCP,

a.p _g__, p

p!
(p + q)!

q!
(p + q)!

p! q!
(p. q)!

p....f.M..+p' q~q' p~p' q....f.M..+q' p! q!
(p I q)! P I q c!d p' II q' P I q --51!4 p' II q'

p _g__, p' p _g__, p' q _g__, q' p! q!
P II q _g__, p' II q P II q _g__, P II q' (p II q)!

p....f.M..+p' q~q' p~p' q....f.M..+q'

P II q --51!4 p' II q' P II q --51!4 p' II q'

p _g__, p' a i= c?d , c!d p!
oc(p) _g__, oc(p')

p --51!4 p' p _g__, p' a i= dd p!
'r c(p) _g__, 'r c(p')

p ____!!__, p' (N ~ p) EE p! (N~p) EE
N ____!!__, p I N!

TABLE 2.1: Operational rules for a recursive recursive TCP~-specification E
and termination predicate _! (a E A " c E C:, d E 'D) .

Sometimes it is useful to designate an initial name for a recursive specification. It
is then possible to associate a transition system with a recursive specification without
giving the specific process expression. In other words, if I is the initial name of some
recursive specification E, then its associated transition system is given by 'JE(l).

In the other direction, if we only have a transition system associated with some
recursive specification E and process expression p, it is clear we can always define
a recursive specification E' obtained from E by adding initial name I with defining

. def equation I = p.

-15-

2. PRELIMINARIES

We use the guardedness restriction, taken from [BBP94], on recursive specifica­

tions throughout the thesis.

DEFINITION 2.14. Let p be a process expression contammg the name N. An

occurrence of Nin p is -r-guarded if p has a sub-expression a.q, where a E A -r and

q contains this occurrence of N.

We call a recursive specification E -r-guarded if for each defining equation N ~ PN

we can obtain, by substituting PN for N in the specification a finite number of times,

the situation that PN is -r-guarded. 6

To guarantee that the specification has a unique solution, we present another

restriction depending the operational semantics.

DEFINITION 2.15. A recursive specification Eis -r-founded (or -r-convergent) if there

does not exist a process expression such that 'JE(p) has an infinite -r-path. 6

We call a recursive specification guarded if it is both -r-guarded and -r-founded.

2.2.1 Subtheories

In the thesis we encounter several subtheories of TCP-r . A subtheory of TCP-r has a

restricted signature and includes only the operational rules from Table 2.1 relevant

for this signature to obtain the associated transition systems.

For the theory BSP-r (Basic Sequential Processes) the set of process expres­

sions '.P(BSP-r) contains all process expressions without occurrences of sequential

composition, parallel composition, encapsulation and abstraction; we only have

deadlock, skip, prefixing and alternative composition.
For the theory TSP-r (Theory of Sequential Processes) the set of process expres­

sions '.P(TSP-r) contains all the processes expressions without occurrences of parallel

composition, encapsulation and abstraction; it can be obtained from '.P(BSP-r) by

adding sequential composition.
Finally, for the theory BCP-r (Basic Communicating Processes) the set of processes

expressions '.P(BCP-r) contains all process expressions without occurrences of sequen­

tial composition, encapsulation and abstraction; it can be obtained from '.P(BSP-r) by

adding parallel composition.

2.2.2 Kleene star

To be able to have regular expressions in our process algebraic framework, we add

the unary Kleene star operator(_*) for iteration to TCP-r and obtain the theory TCP; .

The Kleene star was originally defined by Kleene in [Kle56] and introduced in a

process-theoretic setting by Milner in [Mil84]. (For a discussion of the binary variant

of the Kleene star, see [BBP94] .) The set of process expressions '.P(TCP;) is generated

by the original grammar for '.P(TCP-r) and the following rule:

P ::= ... I p* .

-16-

2.2. THE PROCESS THEORY TCP-r

To associate transition systems with TCP; -process expressions we extend the opera­
tional rules from Table 2.1 with the rules in Table 2.2.

p _E_, p'

p* _E_, p' . p* p* l

TABLE 2.2: Operational rules for the unary Kleene star (a EAT).

For the subtheory TSP; the set of process expressions '.P(TSP-r) contains all
the processes expressions mentioned above, again without occurrences of parallel
composition, encapsulation and abstraction.

2.2.3 Axiomatisation

To be able to give concise proofs that certain process expressions are divergence­
preserving branching bisimilar, it is convenient to proceed by equational reasoning.
We shall use the equations in Table 2.3. See [BBR09] for an explanation of the
axioms, and the proof rule RSP, which is based on the assumption that every guarded
recursive specification has a unique solution. (Recall that the guardedness of the
specifications below follows from the fact that they are i--guarded and i--founded, as
defined in [BBP94].)

We should, of course, establish that an equational reasoning based on the axioms
in Table 2.3 is sound, i.e. , that it indeed proves that the equated process expressions
are divergence-preserving branching bisimilar. For this it suffices to prove that the
axioms in Table 2.3 and RSP are sound with respect to some congruence included in
divergence-preserving branching bisimilarity. (Note that, like branching bisimilarity
is not a congruence with respect to +, divergence-preserving branching bisimilarity
is also not a congruence with respect to the operator + .) The way we obtain a
congruence included in divergence-preserving branching bisimilarity is standard: we
define a rooted version:

D EFINITION 2 .16. A divergence-preserving branching bisimulation ~ between T1
and T2 is called rooted if it meets the following root-conditions for all a E A-r:

1. for all states s~ E S1, whenever j 1 _E_, s~, then there exists a state s; such that
i 2 __g_, s; and s~ ~ s;;

2. for all states s; E S2, whenever j 2 _E_, s;, then there exists a state s~ such that
i 1 __g_, s~ and s~ ~ s;;

3. if i 1l 1, then iz!z;
4. ifi2 !z, then iil1·

-17-

2. PRELIMINARIES

Al x+ y =y+x A6 x+O = x
A2 (x +y)+ z =x+(y+ z) A7 O· x = O
A3 x +x = x AS x · 1 = x
A4 (x+ y) ·z= x · z+ y· z A9 1 ·x = x
AS (x · y) · z= x· (y · z) AlO a .x · y = a .(x · y)

M x 11 y = x [y + y [x + x I y B a.(-r.(x + y) + x) = a.(x + y)

LMl O ~ x = O SCl xly=ylx
LM2 1 ~ x = O SC2 x II I =x
LM3 a .x [y = a .(x lly) SC3 Ilx+l = l

LM4 (x +yHz =x ~z +y ~ z SC4 (x 11 y) 11 z = x 11 (y 11 z)
CMl Ol x = O scs (xly)l z= xl(yl z)
CM2 (x + y) I z = x I z + y I z SC6 (x ~ y) ~z= x ~ (yllz)

CM3 1I1 = 1 SC? (xly) ~ z = xl(y ~ z)

CM4 a .x I I = 0 SC8 x ~ O =x · O

CMS c!d .x I c?d.y = cPd .(x 11 y) SC9 X ~'r.y = x [y

CM6 a .x lb.y=O if {a , b} =f. {c!d, c?d} SClO x 1-r .y = 0

01 i:H I) = 1 T1 'rc(l) = 1
02 8c(O) = 0 T2 -r, (O) = 0
03 8, (a.x) = 0 if a = c?d, c!d T3 -r , (a.x) = a .-r, (x) if a =f. c?d, c!d

04 8, (a .x) = a A (x) if a =f. c?d , c!d T4 'rc(a.x) = 'r. 'rc(x) ifa= c?d,c!d
OS 8, (x + y) = 8, (x) + 8, (y) TS -r , (x + y) = -r , (x) + -r, (y)

TABLE 2.3: Axioms of the process theory TCP, (a E A , ,d E 'D).

The transition systems T1 and T2 are rooted divergence-preserving branching bisimilar

(notation: T1 ~ T2) if there exists a divergence-preserving branching bisimulation
between T1 and T2 that meets the above mentioned root-conditions. 6.

In [Tri'.:07), Trcka introduces an equivalence, called silent bisimulation, that
is an extension of branching bisimulation that preserves deadlock, is divergence
sensitive, and incorporates successful termination. As a model he uses doubly
labelled transition systems, in which also states are labelled, namely by a list of data
propositions that are satisfied. He shows that silent bisimulation is not a congruence
with respect to parallel composition in the language K which is an extension of ACP,
with data, scoping, guards and the Kleene star. A new equivalence is introduced
called stateless silent bisimulation, which disregards the labels of the states and
coincides with our definition of divergence-preserving branching bisimilarity. For this
equivalence it can be proved that it is a congruence.

THEOREM 2.17. Divergence-preserving branching bisimilarity is a congruence for all

operators of TCP.,. . O

PROOF. We can reuse the proofs for steps 2, 3, 5, 7, and 8 of [Trc07, Theorem 4.3.7)
by disregarding the state labels. •

- 18-

2.2. THE PROCESS THEORY TCPr

Because divergence-preserving branching bisimilarity is included in rooted diver­
gence-preserving branching bisimilarity, we have the following proposition that we
will use in the proofs that use equational reasoning.

PROPOSITION 2.18. The equational theory given by Table 2.3 is soundfor the model of
transition systems modulo divergence-preserving branching bisimilarity. O

PROOF. First, note that, since divergence-preserving branching bisimilarity is both an
equivalence and a congruence, it suffices to check the individual axioms. Second, it
is well-known that the axioms are sound for branching bisimilarity. So, we only need
to check the divergence-preservation conditions. Because all axioms except for B do
not remove or introduce -r-transitions whatsoever, we only need to check axiom B.
That axiom B is also sound for the divergence conditions (see conditions 5 and 6 of
Definition 2.5) follows easily from inspection of the axiom. •

Note that the KFAR rule [BBK87] is not a part of the axioms because it implies the
removal of -r-loops which would break the divergence-preserving property.

2.2.4 Greibach normal form

In some cases it is useful to have a normal form for process expressions and recursive
specifications. We will use a well-known normal form from automata theory: the
Greibach normal form, introduced by Greibach in [Gre65].

DEFINITION 2.19. A process expression p is in Greibach normal form (GNF) if there
exist a finite index set J such that

p= L:a; .~; (+I) ,
iE::J

where a ; E A r and ~ i is a sequence of names (i E J) . The empty sequence denotes 1,
and the empty summation denotes 0.

A recursive specification is in Greibach normal form if all right-hand sides of its
defining equations are in Greibach normal form.

We call the Greibach normal form restricted if the sequence of names have a length
of at most two. L.

Classically, the GNF is used for context-free grammars, where the sequences are
sequential compositions of non-terminals. In this thesis we use the GNF as a generic
normal form. Based on the type of systems and the process theory that we are
considering, we use a different interpretation for the sequence of names. Chapter 3
uses a GNF where the sequences of names can either be empty or consist of a single
name to obtain the linear normal form. Chapter 4 interprets the sequence as a string,
a sequential composition of names, to get the sequential normal form; Chapter 5
interprets the sequence as a multiset, a parallel composition of names, to obtain the
basic parallel normal form.

-19-

2. PRELIMINARIES

Note that recursive specifications in GNF are automatically -r-guarded. Also note
that there is a strong relation between recursive specifications in GNF and their

associated transition systems. For example, consider the following recursive TSP-r ­
specification in GNF:

def
X = aX·Y+b.1 ,

Y ~ c.1.

Intuitively, when we consider the state associated with the name X in the transition
system associated with the specification, the defining equation of X lists the possible

transitions: an a-transition to a state X · Yanda b-transition to the state 1. Note that
as a result of the GNF, each state in the associated transition system is denoted by a
sequence of names.

-20 -

Chapter 3

Finite-State Systems

If we consider a computer, or, in general, a computing agent that only has a fixed
number of states and no memory except for what can be encoded in the fixed number
of states, we call this a finite-state system.

In automata theory, the most prominent way used to model these systems is by
the notion of the finite automaton. The finite automaton is used to represent the
finite control of some running program or computation, i.e. the part that manipulates
memory, interacts with the environment and can be described in a finite manner. In
the upcoming chapters we shall investigate systems that additionally have some kind
of external memory to achieve more complicated tasks. However, the finite control
will always be present to manipulate the memory.

In this chapter, we present some similarities and differences between automata
and process theory. We define well-known notions from automata theory in our
process-theoretic setting and investigate the classical results, that are shown up to
language equivalence, but now up to (divergence-preserving) branching bisimilarity.

In Section 3.1 we introduce the finite automata. We shall see that, from a
process-theoretic point of view, they are actually (non-deterministic) finite labelled
transition systems. Automata theory considers the classes of non-deterministic and
deterministic finite automata on equal footing, since they can describe the same
languages. We shall see, however, that the class of deterministic finite automata
is, up to (divergence-preserving) branching bisimilarity, a proper subclass of the class
of (non-deterministic) finite automata.

In Section 3.2 we investigate the classical correspondence between finite au­
tomata and regular grammars in a process-theoretic setting. Regular grammars
are given in our framework as finite recursive BSP"-specifications, which we call
linear specifications. These linear specifications, having prefixing in the language,
only cover the right-linear (regular) grammars. Therefore, we also introduce linear
specifications with postfixing to cover left-linear (regular) grammars. We shall
see, however, that, up to (divergence-preserving) branching bisimilarity, the class
of linear specifications is incomparable with the class of linear specifications with
postfixing. We explore the tight correspondence between linear specifications and

-21 -

3. FINITE- STATE SYSTEMS

finite automata for introductory purposes, as the classical correspondence result
between right-linear grammars and finite automata holds even up to isomorphism.

Another prominent correspondence that comes to mind when discussing finite
automata is regular expressions. A few decades ago, Milner showed in [Mil84]
that up to bisimilarity not all finite automata can be given by a regular expression.
In Section 3.3 we extend the language of regular expressions, which we give as
closed TSP; -process expressions, with communication and obtain closed TCP; ­
process expressions. We show that we can give a closed TCP; -process expression that
describes each finite automaton up to (divergence-preserving) branching bisimilarity.

This chapter is mainly based on the following publications:

[BCLTlO] J . C. M. Baeten, P. J. L. Cuijpers, B. Luttik, and P. J. A. van Tilburg. ''A
Process-Theoretic Look at Automata". In: Proceedings of FSEN 2009. Ed.
by F. Arbab and M. Sirjani. LNCS 5961. Springer, 2010, pp. 1-33.

[BLTl la] J . C. M. Baeten, B. Luttik, and P. J. A. van Tilburg. "Computations and
Interaction". In: Proceedings of ICDCIT 2011. Ed. by R. Natarajan and A.
Oja. LNCS 6536. Springer, 2011, pp. 35-54.

Some material has also been adapted from the following lecture notes and publica­
tion:
[Baell]

[BLMTlO]

J. C. M. Baeten. Models of Computation: Automata and Processes.
Lecture notes 2011.
J . C. M. Baeten, B. Luttik, T. Muller, and P. J. A. van Tilburg. "Ex­
pressiveness modulo Bisimilarity of Regular Expressions with Parallel
Composition (extended abstract)". In: Proceedings of EXPRESS 2010.
Ed. by S. B. Froschle and F. D. Valencia. EPTCS 41. Open Publishing
Association, 2011 , pp. 1- 15.

3.1 Finite Automata

In Definition 2.1 (on page 9) we have defined the notion of transition systems, the
central model of process theory. The central notion of automata theory, the finite
automaton, is strongly related to this model. For the finite automaton is just a
transition system with a fixed, finite number of states and a finite transition relation,
or: finite control.

DEFINITION 3.1. A finite automaton Mis defined as a five-tuple (S,A, -+, j , !) where:

1. S is a finite set of states,

2. A is a finite set of actions,

3. -+ <::::; S x A , x S is a finite A ,-labelled transition relation on S,

4. j E S is the initial state,

5. ! <::::; S is the set of final states.

Clearly, from a finite automaton we obtain a transition system by simply omitting
A from the five-tuple and declaring-+ to be an A ,-labelled transition relation. In the

- 22-

3.1. FINITE AUTOMATA

remainder of this paper there is no need to make the formal distinction between a
finite automaton and the transition system associated with it.

EXAMPLE 3.2. Two examples of finite automata are given in Figure 3.1. The lower
automata is a "cleaned up" version (with respect to bisimilarity) of the upper
automata where the unreachable state y and inert '!"-transitions are removed. 9

b

FIGURE 3.1: Two examples of finite automata.

In the theory of automata and formal languages, finite automata are considered
as language acceptors. Recall that a finite automaton is a special kind of transition
system, so Definition 2.3 (on page 10) applies directly to finite automata. The
language of both automata in Figure 3.1 is { ab 2"aa I n 2: 0} u { ab 2

n- l I n 2: 1 }.

DEFINITION 3.3. A language L ~ A * accepted by a finite automaton is called a regular
~~oo~. L

Recall Definition 2.6 (on page 11) that defines processes as divergence-preserving
branching bisimilarity equivalence classes of transition systems. If we consider finite­
state systems, we are only interested in transition systems that are divergence­
preserving branching bisimilar with a finite automaton.

DEFINITION 3.4. A finite-state process is a divergence-preserving branching bisimilar­
ity class of transition systems that contains a finite automaton. L

Deterministic finite automata
In the upper automaton in Figure 3.1 it is not determined in which state the
automaton is after performing an a-transition from the initial state. So, the notion of
finite automaton defined in Definition 3.1 allows for non-determinism; it is actually
the definition of a non-deterministic finite automaton (NFA).

-23-

3. FINITE-STATE SYSTEMS

However, in automata theory the deterministic finite automaton (DFA), a special

case of the NFA, also plays a prominent role, for example for parsing.

DEFINITION 3.5. A finite automaton M = (S,A, -+, i, l) is deterministic if, for all states

s, t1, t2 ES and for all actions a EA, s---» -1!...+t1 and s---» -1!...+t2 implies t1 = t2 • 6.

In the theory of automata and formal languages, it is usually also required in the

definition of the deterministic finite automaton that the transition relation is total in

the sense that for all s E S and for all a E A there exists t E S such that s --1!...+ t. The

extra requirement is clearly only sensible in the language interpretation of automata;

we shall not be concerned with it here.
The upper automaton in Figure 3.1 is non-deterministic and has an unreachable

c-transition. The lower automaton is deterministic and does not have unreachable

transitions; it is not total.
Up to language equivalence deterministic and non-deterministic automata accept

the same languages. See e.g. [HMU06, Theorem 2.12] for a proof of the following

theorem.

THEOREM 3.6. A language L is accepted by some DFA if and only if L is accepted by some

fllFA. D

This theorem does not hold if we want to have the result up to branching

bisimilarity instead of language equivalence, as is illustrated by the following

example.

EXAMPLE 3.7. There exists a finite automaton such that there exists no deterministic

finite automaton that is branching bisimilar with it. See Figure 3.2 for such a finite

automaton. O

FIGURE 3.2: An example NFA that is not branching bisimilar to any DFA.

Therefore, the class of deterministic finite automata is, up to branching bisimi­

larity, a proper subclass of the class of finite automata. Because non-determinism is

relevant and basic in process theory, we shall not particularly consider deterministic

finite automata in our process-theoretic setting from here on.
In automata theory, automata can have silent transitions, usually labelled by f

(in [Sip97, HMU06]) or A. (in [Sud88, LinOl]). We prefer the label -r from

process theory over f and A. to denote silent, unobservable transitions. While many

automata theory textbooks give procedures to remove -r-transitions, up to language

equivalence, and this is clearly not possible up to (divergence-preserving) branching

bisimilarity. Recall that only inert -r -transitions can be removed (see Definition 2.8

and Example 2.9 on page 12).

-24-

3.2. LI NEAR SPECIFICATIONS

3.2 Linear Specifications

In the theory of automata and formal languages, the notion of a grammar is used
as a syntactic mechanism to describe languages. Grammars were first proposed by
Chomsky in [Cho56] . In this chapter, we consider regular grammars, i.e. left- or
right-linear grammars, because we are dealing with finite-state systems and finite
automata.

Recall that linear grammar are grammars where each right-hand side of a
production rule has at most one name. A grammar is right-linear, when this single
name is at the right end, left-linear when it is at the left end. We call a grammar
regular if it is either left- or right-linear.

EXAMPLE 3.8. The following regular grammars generate the language { ab 2
n I n ~ 0 }.

Left-linear:

S-+Sbb I a

Right-linear:

S -+ aT

T-+bbT I€

The corresponding mechanism in concurrency theory is the notion of recursive
specification. For the kind of grammars we are considering, we shall use the process
theory BSPr (Basic Sequential Processes), which is a subtheory of the theory TCP,r
introduced in Section 2.2. The syntax of the process theory BSPT is obtained from
that of TCPT by omitting sequential composition, parallel composition, encapsulation
and abstraction.

DEFINITION 3.9. A linear specification over some finite set of names N is a finite , -r ­
guarded recursive BSPT-specification, i.e. a recursive specification over N in which
only 0, 1, N (N E N), a._ (a E AT) and _ + _ are used to build linear process
expressions . /::;.

It turns out that getting the corresponding linear specification of a right-linear
grammar is actually just a matter of changing notation. (We will consider left-linear
grammars later on.)

EXAMPLE 3.10. The linear specification that corresponds to the right-linear grammar
in Example 3.8 can be given as follows:

S ~ a .T ,

T ~ b.b.T+ 1 .

Production rules have been replaced by defining equations, where the production
symbols -+ have been replaced by the defined-as symbol ~. non-terminals by names,
terminals by prefixing operations a._, multiple rules for a name by summands of an
alternative composition and the empty symbol E by the empty process 1. (>

- 25 -

3. FINITE-STATE SYSTEMS

Additionally, not shown by the example, the absence of a production rule for some

non-terminal X is replaced by the equation X ~ 0.
Due to the tight relation between linear specifications and right-linear grammars,

we can reuse some of the standard procedures, defined for grammars, on recursive
specifications. For example, the procedure for associating a linear specification with

a finite automaton is discussed next.

3.2.1 Correspondence

In automata theory the following result gives a direct correspondence between finite
automata and regular grammars.

THEOREM 3.11. A language Lis regular iff there exists a regular (right-linear) grammar

that generates L. D

The classical proof for this theorem uses in one direction the fact that every regular
language is accepted by some (deterministic) finite automaton and gives an algorithm
to construct a grammar for this automaton (see, e.g., [LinOl, Theorem 3.4]). In
the other direction it can be shown that a finite automaton can be associated with
each right-linear grammar (see, e.g., [LinOl, Theorem 3.3]). The proofs hold up
to isomorphism for both directions. As the correspondence between specification

language and automaton will come up again in subsequent chapters, we repeat the
classical proof for illustration purposes in a more process-theoretic setting.

We use the linear specifications defined above as counterparts of right-linear
grammars and investigate their associated transition systems. Consider the opera­
tional rules in Table 2.1 (on page 15) that are relevant for BSP'l" , for a presupposed
recursive specification E. Note that whenever p is a BSP'l"-process expression and
p__g__,q then q is again a BSP'l" -process expression. Moreover, q is a subterm of p, or q is
a subterm of a right-hand side of the recursive specification E. Thus, it follows that the
set of process expressions reachable from a BSP'l" -process expression consists merely
of BSP'l" -process expressions, and that it is finite. So the transition system 'JE(p)

associated with a BSP'l" -process expression given a recursive BSP'l" -specification Eis a
finite automaton.

Below we shall also establish the converse, that every finite automaton can
be specified, up to isomorphism, by a linear specification. First we illustrate the
construction with an example.

EXAMPLE 3.12. Consider the automaton depicted in Figure 3.3 below.
Note that we have labelled each state of the automaton with a unique name; these

will be the names of a recursive specification E. We will define each of these names
with an equation, in such a way that the transition system 'JE(S) generated by the
operational semantics in Table 2.1 (on page 15) is isomorphic and hence (divergence­
preserving) branching bisimilar with the automaton in Figure 3.3.

-26-

3.2. LINEAR SPECIFICATIONS

a
S >-----

FIGURE 3.3: Another example of a finite automaton.

The recursive specification for the finite automaton in Figure 3.3 is :

S ~ a.T ,
def

T = a.U+b .V ,

U ~ a.T+a.V +1 ,

v ~ o .

The action prefix a.T on the right-hand side of the equation defining S is used to
express that S has an a-transition to T. Alternative composition is used on the
right-hand side of the defining equation for T to combine the two transitions going
out from T. The 1-summand on the right-hand side of the defining equation for U
indicates that U is a final state. The symbol O on the right-hand side of the defining
equation for V expresses that V is a deadlock state. 9

We can now give the following correspondence result between finite automata
and linear specifications.

THEOREM 3.13. For every finite automaton M there exists a linear specification E, with
initial name I, such that 'JE(I)-.: M. D

PROOF. The general procedure is clear from Example 3.12. Let M = (S ,A , ----+ , j , l)
be some finite automaton. We associate with every state s E S a name N5 , and
define a recursive specification E on { N5 I s E S } with initial name Nr. The recursive
specification E consists of equations of the form

N5 ~ L:a.N1 [+ l] 5 l ,
(s ,a ,t)E~

with the convention that the summation denotes 0 if there are no transitions from
state s, and the optional 1-summand is present if, and only if, st . It is easily verified
that the binary relation '.R = { (s ,NJ I s ES } is a (divergence-preserving) branching
bisimulation. •

Incidentally, note that the relation '.R in the proof of the above theorem is an
isomorphism, so the proof actually establishes that for every finite automaton M there

-27-

3. FINIT E-STAT E SYSTEMS

exists a recursive BSPr-specification E and a BSPr-process expression p such that the

transition system associated with p and Eis isomorphic to M.
Linear specifications that are constructed in the way shown in the theorem

above are in the linear normal form. We instantiate the definition of the GNF (see

Definition 2.19 on page 19) and restrict the sequences to a length of at most one.

DEFINITION 3.14. A linear specification E is in linear normal form if each defining

equation of name N E N is of the following form:

In this form, every right-hand side of every defining equation consists of a number of

summands, indexed by a finite set 'JN (the empty sum is O), each of which is 1, or of

the form a;.N; with a; E A -r . 6.

All linear specifications can be brought into linear normal form.

PROPOSITION 3.15. For each linear specification E and linear process expression p there

exists a linear specification in linear normal form E' such that 'JE' (p) <-->f 'JE(p). O

Theorem 3.13 can be viewed as the process-theoretic counterpart of the result

from the theory of automata and formal languages that states that every language

accepted by a finite automaton is generated by a right-linear grammar. There is

no reasonable process-theoretic counterpart of the similar result in the theory of

automata and formal languages that every language accepted by a finite automaton

is generated by a left-linear grammar, as we shall now explain.

Linear Specifications with Postfixing

To obtain the process-theoretic counterpart of a left-linear grammar, we should

replace the action prefixes a._ in BSPT by action postfixes _.a, with the operational

rules in Table 3.1. We call this variant: linear specifications with postfixing.

p!

p .a ___£__, p' .a p.a-.£.... 1

TABLE 3.1: Operational rules for action postfix operators (a , b E A T) .

Analogously with linear specifications, we can define a normal form.

-28-

3.2 . LINEAR SPECIFICATIONS

DEFINITION 3.16. A linear specification with postfixing E is in reversed linear normal
form if each defining equation of name NE N is of the following form:

N ~ LN;.a; (+ 1).
iE'.JN

In this form, every right-hand side of every defining equation consists of a number of
summands, indexed by finite sets 'JN (the empty sum denotes O), each of which is 1,
or of the form N;.a; with a; E A r. 6

Note that, if the specification contains names on the right-hand sides, it is unguarded
by definition.

Analogously with linear specifications, action postfix distributes over alternative
composition and is absorbed by 0. It is easy to see that the following holds.

PROPOSITION 3.17. For each linear specification with postfixing E and process expres­
sion p there exists a linear specification with postfixing in reversed linear normal form E'
such that 'JE' (p) <-->t' 'JE(p). D

Given a specification in reversed linear normal form, let p be a process expression
which will be of the following form:

p = LN;.W; + Ll.wi (+ 1) .
iE'.J jE8

By the operation rules we have that if p ~ p' , then p' <-->b w for some sequence
of postfixes w E A *. (This is because we need to recursively unfold the definition
of each name in order to actually perform a transition.) Note that we immediately
lose the name in the expression after a transition, and therefore also any form of
recursion. Clearly, there exist finite automata that cannot be denoted, up to branching
bisimilarity, by a process expression with this property.

EXAMPLE 3.18 . Consider for example the finite automaton in Figure 3.4. A process
expression denoting it cannot have the above property, for after performing an
a -transition there is still a choice between terminating with a b-transition, or
performing another a -transition.

a

FIGURE 3.4: A finite automaton without a linear specification with postfixing.

We conclude that the automaton in Figure 3.4 cannot be described modulo
branching bisimilarity in BSPr with action postfix instead of action prefix. <>

Conversely, with action postfixes instead of action prefixes in the syntax, it is
possible to specify transition systems that are not branching bisimilar with a finite
automaton.

-29 -

3. FINITE-STATE SYSTEMS

EXAMPLE 3.19. For instance, consider the recursive specification E over {X} consist­
ing of the equation

x ~ l +X.a .

The transition system associated with X by the operational semantics is depicted in
Figure 3.5. Note that in this figure, the initial state is also final.

a a a a
FIGURE 3.5: Infinitely branching transition system associated with an un­
guarded specification.

It can be proved that the infinitely many states of the depicted transition systems
are all distinct modulo branching bisimilarity: each of the states in the bottom in
Figure 3.5 has a different norm. It follows that the transition system associated with E
is not branching bisimilar to a finite automaton. 0

We conclude that the classes of processes defined by linear specifications and
linear specifications with postfixing do not coincide.

3.3 Regular Expressions

In the previous section we have investigated the classical correspondence results
between NFA, DFA and grammars in a process-theoretic setting. In automata theory
there is a fourth way to describe a regular language: the regular expressions. Instead
of the recursion present in regular specifications, regular expressions include the
(unary) Kleene star_* in their syntax, as introduced by Kleene in [Kle56] to capture
repetition in regular behaviours. To obtain regular expressions in our process­
theoretic setting, we use an extension of the process theory TSP,r with the unary
Kleene star called TS P~ . (See Table 2.2 on page 17 for the operational rules for the
unary Kleene star.)

DEFINITION 3.20. We call a closed TSP~ -process expression a regular expression . !:::,.

From an automata and formal language point of view the 0 represents the empty
language, 1 the empty word or string, and the prefix and alternative composition
have their usual meaning.

EXAMPLE 3.21. The regular expression a.(b.b.l)* ·(a .a. I+ b.1) has an associated
transition system that is divergence-preserving branching bisimilar with the finite
automata in Figure 3.1. O

-30-

3.3. REGULAR EXPRESSIONS

Kleene established in [Kle56] a correspondence between the languages denoted
by regular expressions and the languages accepted by finite automata.

THEOREM 3.22. For every DFA M, there exists a regular expression R such that £(R) =
£(M), and for every regular expression R there exists an NFA M such that £(M) = £(R). D

For the proof in one direction it is assumed that there is some DFA that accepts
the language L and then a construction is given that generates a regular expression
from the DFA. In the other direction, an NFA is associated with a regular expression.
This NFA accepts, by definition, a regular language.

Milner, in [Mil84], showed how regular expressions can be used to describe
behaviour by directly associating finite automata with them. He then observed that
the process-theoretic counterpart of Kleene's theorem fails: there exist finite automata
whose behaviours cannot faithfully, i.e., up to bisimilarity, be described by regular
expressions. We show a simple example in Figure 3.6 of a finite transition system
that is not bisimilar to any transition system that can be associated with a regular
expression.

K=>r b

FIGURE 3.6: A finite automaton that has no regular expression up to
bisimilarity.

Baeten, Corradini and Grabmayer present in [BCG07] a structural property on
finite automata and shown that for the subclass adhering to this property, the so­
called well-behaved finite automata, it is possible to find a corresponding regular
expression up to bisimilarity.

3.3.1 Correspondence

If we want a full correspondence with the class of finite automata, a different
approach is required. We present a solution originally published in [BLMTlO] where
we extend the regular expressions with well-known operators from process theory,
parallel composition with communication and encapsulation, and obtain the desired
correspondence result between finite automata and closed TCP~ -process expressions.
We shall refer to these expressions as extended regular expressions

Before we give the actual correspondence result, we show the construction by
means of an example. The extended regular expression that we shall associate with
the finite automaton will have one parallel component per state of the automaton,
representing the behaviour of that state (i.e., which outgoing transitions it has to
which other states and whether it is terminating). At any time, one of the parallel
components corresponding with the "current state" has control. An a-transition
from that current state to a next state corresponds with a communication between
the two components yielding the actual a -action. Instead of using the predefined

-31 -

3. FINITE-STATE SYSTEMS

communication function that we have defined in Section 2.2 we shall use a different,
specific communication function for the purposes of this section.

EXAMPLE 3.23. Consider the finite automaton in Figure 3. 7 below.

b

FIGURE 3. 7: A finite automaton.

We associate with every state si an expression Pi as follows:

Po = (enter0 .1 · (leave0 ,1 .1 + leaveb ,l · 1)) * ,

p1 = (enter1 .1·(b.1)* ·leavec,2 .1)* ,

p2 = (enter2 .1 · (leave0 ,0 .1+leaveb,3.1+1))*,
p3 = (enter3.l · o) * .

By executing an enter;-transition a parallel component Pi can gain control, and

by executing a leaveartransition it may then release control to Pj with action a (a E

{a,b,c}) as result. Note that loops in the automaton (such as the loop on state s1)

require special treatment as they should not release control to some other state while
executing the loop.

We define the communication function in such a way that an enteri action
communicates with a leavea,i action, resulting in the action a . In the case of the
example, y is defined as follows:

y(enter0 , leave0 ,0) = y(leave0 ,0 , enter0) =a,

y(enter1 ,leave0 ,1) = y(leave0 ,1 ,enter1) =a,

y(enter1 , leaveb,I) = y(leaveb ,I • enter1) = b ,

y(enter2 ,leavec,2) = y (leavec,2 , enter2) = c ,

y(enter3,leaveb,3) = y(leaveb ,3,enter3) = b ,

and it is left undefined otherwise.
Now, let p~ be the resulting expression after executing the enter0 -transition from p0

(thus gaining control as "current state"), i.e.,

p~ = 1 · (leave0,1 .1 + leavel,1.1) ·Po .

We define the extended regular expression that simulates the finite automaton in

Figure 3.7 as the parallel composition of p~, p 1, P2> and p3, encapsulating the control
actions enteri and leavek,i• i.e.,

-32-

3.3. REGULAR EXPRESSIONS

Note that the process expressions that are associated with each state are even
TSP; -process expressions, i.e. common regular expressions. We have just added
parallelism with communication and encapsulation to obtain the correspondence.

We now present the technique illustrated in the preceding example in full
generality. Let M = (S ,A, -+ ,s0 , i) be a finite automaton, let S = {s0 , .. . ,sn }, and let
A = { a0 , . . . , am} be the set of actions occurring on transitions in M. We shall associate
with M an extended regular expression PM that has one parallel component Pi for
every state si in S. To allow a parallel component to gain and release control, we use
a collection of control actions A c assumed to be disjoint from A, that is defined as

Ac = { enteri I 0 :'S i :'S n} u { leavek,i I 0 :'S i :'S n, 0 :'S k :'S m } .

Gaining and releasing control is modelled by the communication function y on AuAc
satisfying:

{
ak y(enteri,leavekJ) = y(leavekJ• enterJ = fi
unde ned

if i = j; and
otherwise.

For the specification of the extended regular expressions P; we need one more
definition: for 0 :'S i, j :'S n we denote by X;,j the set of indices of actions occurring as
the label on a transition from s; to si, i.e.,

xi,j = { k I S; ...E.k..+ sj } .

Now we can specify the extended regular expressions Pi (O :'S i :'S n) by

P; = 1-(enteri. l · (L:>k·l) · (L LleavekJ· l [+ 1Js;1)) • .
k EX;,; l :'S j :'S n kEX;,i

j ii

By [+ lJs,l we mean that the summand + 1 is conditional; it is only included if si !.
The empty summation denotes 0. (We let P; start with 1 to yield a finite automaton
associated with PM which is isomorphic and not just bisimilar with M.)

Note that the parallel component with process expression Pi has a unique
transition to gain control, i.e. Pi enter;, p;, where P'. denotes:

P'. =1 · (L:ak.1)* ·(L LleavekJ ·l [+1]5,i) ·Pi·
k EX;,; O:'S j :'S n k EX;,j

#i

Assuming that s0 is the initial state, we now define PM by

Clearly, the construction of PM works for every finite automaton M. The bijection
defined by S; aAc(pO II·· · llPi- l llP'. llPi+l II ··· llPn) is an isomorphism between M
and the automaton associated with PM by the operational semantics (see Table 2.1 on
page 15) . We shall refer to PM as the extended regular expression describing M.

-33 -

3. FINITE-STATE SYSTEMS

THEOREM 3.24. For every finite automaton M there exists a handshaking communi­

cation function y and extended regular expression PM such that the transition system

associated with PM is isomorphic with M. D

PROOF. The bijection defined by si >-+ oAc(p0 11 ··· iiPi-J lip; liPi+J 11 · · · iiPn) for all
1 :'.S i :'.S ISI is an isomorphism from M to the automaton associated with PM by the
operational semantics in TCP; . •

3.4 Conclusions

In this chapter we have investigated the classical correspondence results between the
four ways to describe regular languages: NFAs, DFAs, regular grammars and regular
expressions. These results can be found in any automata and formal language theory
book [Sud88, Sip97, HMU06]; most results are up to isomorphism, but some are up

to language equivalence. See Figure 3.8 for a schematic overview.

NFAs regular
Thm. 3.11 grammars

I Thm.1
3.6

~ :
: I

I ~

DFAs regular
Thm. 3.22 expressions

FIGURE 3.8: Classical correspondence results from automata theory.

When we considered these results from a process-theoretic perspective, we have
seen that a finite automaton is a finite transition system. Up to bisimilarity the class

of deterministic finite automata is smaller than the class of non-deterministic finite
automata.

We have seen how regular grammars can be given as linear specifications. This,
however, only covers the definition of the right-linear grammars. We can define left­
linear grammars as linear specifications with postfixing if we replace the prefixing
operations by postfix operations. However, we then get a different class up to
branching bisimilarity. As it turns out, there is a full correspondence between finite
automata and linear specifications up to branching bisimilarity.

Regular expressions are closed TS P; -process expressions. However, only the
(proper) subclass of well-behaved finite automata can be expressed by regular
expressions up to branching bisimilarity. We have extended the syntax of the
regular expressions with operators from process theory (parallel composition and
encapsulation) to obtain extended regular expressions and we have shown that there

-34-

3.4. CONCLUSIONS

is a full correspondence with finite automata. Interestingly, the construction only
needs communication on top of usual regular expressions to work.

Figure 3.9 presents a schematic overview of the correspondence results from
a process-theoretic point of view. Note that the correspondence between linear
specifications and extended regular expressions is obtained indirectly via the finite
automata.

NFAs Thm. 3.13 linear
specifications

SOS -- -----

1+
: with I I

I I
~- .ing __ I I EJ I I W I

:. well-behaved) Thm. 3.24 extended
regular

postfix-

---\\- SOS expressions

~G07] regular
SOS ----== expressions

FIGURE 3.9: Correspondence results from a process-theoretic perspective.

In the following chapters we often will see that the classical correspondence
results cannot be obtained up to branching bisimilarity or that notions such as
context-free or unrestricted grammars do not have a direct process-theoretic version.
Instead of loosening restrictions on the syntax or relinquish our strong equivalences
to try to reobtain (parts of) the results, we shall extend the syntax with operators
that are typically from process theory, such as parallel composition, communication,
encapsulation and abstraction.

-35-

Chapter 4

Pushdown Systems

In automata and formal language theory it is common practise to characterise
languages by means of a finite-state automaton, representing some finite control,
which is often augmented by some kind of memory. See for example [Sud88, Sip97,
HMU06]. If this memory is absent, the finite-state automata describe the class of
regular languages. In case we have a tape as memory, which in fact provides random
access to its data, we obtain all recursively enumerable languages. In this chapter we
consider finite-state automata augmented with a limited type of memory: a stack. The
combination of a finite-state automaton and a stack is called a pushdown automaton.

A classical result in automata and formal language theory is that for every context­
free grammar there is a pushdown automaton that describes the same language
and vice versa. However, by using this equivalence the language-theoretic approach
abstracts from moments of choice and is unsuitable if some form of interaction with
the automaton may influence its behaviour. In this chapter we use a process-theoretic
approach and give semantics to the pushdown automata by means of associated
transition systems. Using the more fine-grained divergence-preserving branching
bisimulation equivalence we shall revisit some results from automata theory, amongst
which the classical result mentioned previously.

In Section 4.1 we define the pushdown automaton and its associated pushdown
transition system. We shall see that up to (divergence-preserving) branching bisim­
ilarity it matters how these notions are defined. The definition of the associated
pushdown transition system is given for different termination conditions: termination
on final state, on empty stack, and on both final state and empty stack. While these
alternative definitions lead to pushdown transition systems that describe the same
languages, this is not the case up to (divergence-preserving) branching bisimilarity.
We shall compare the different classes of pushdown automata and show that, up
to divergence-preserving branching bisimilarity, the class of pushdown transition
systems with termination on both final state and empty stack is a proper subclass
of the class with termination on final state, and that the class with termination on
empty stack is in turn a proper subclass of the class with termination on both final
state and empty stack. For the pushdown automata that have an initial state that
is also final, the class with termination on empty stack coincides, up to divergence-

- 37-

4 . PUSHDOWN SYSTEMS

branching bisimilarity, with the class with termination on both final state and empty

stack.
In Section 4.2 we investigate the classical correspondence result between push­

down automata and context-free grammars in a process-theoretic setting. Context­

free grammars are given as finite recursive TSPr-specifications, which we call

sequential specifications. The choice of TSPr as an extension of BSPT is a natural one

within our framework, as it adds sequential composition to our linear specifications.

However, we will see in this chapter that having both sequential composition and the

empty process in the specification language causes problems. We will show that only

the class of pushdown automata with termination on (final state and) empty stack

allows us to obtain a process-theoretic version of the classical correspondence result

between pushdown automata and sequential specifications.
It turns out that transition systems associated with sequential specifications can

have an unbounded branching degree. We conjecture that in this case there is no

correspondence, up to branching bisimilarity, with (associated transition systems of)

pushdown automata. We shall therefore propose a restriction on the sequential spec­

ifications to get a correspondence with the pushdown automata. As a result, we will

discover that these restricted sequential specifications have a correspondence with

just a subclass of the pushdown automata, the so-called pop choice-free automata.

We will henceforth show that for this subclass there is also a correspondence in the

other direction, i.e. with the restricted sequential specifications.

Next, we will investigate the decidability of bisimilarity on processes defined

by sequential specifications. We obtain our result by extending earlier results for

recursive BPA- and BPA0 -specifications, which are specifications in subtheories of

TSPT. It is well-known that it is undecidable whether two context-free grammars

generate the same language up to language equivalence. We prove that bisimilarity

is decidable on the subclass of transition systems definable by the earlier mentioned

restricted sequential specifications, a class that properly includes the BPA0 -definable

transition systems.
In Section 4.3 we define the pushdown automata terminating on (final state and)

empty stack by giving a finite recursive TCPT-specification consisting of a linear

specification representing the finite control and a specification of a stack process.

The stack itself is defined by a (restricted) sequential specification and may therefore

be considered as the canonical process for this class of specifications. We show

that, when these specifications are put in parallel, the associated transition system

is divergence-preserving branching bisimilar with the transition system associated

with the pushdown automaton. This way we make the communication between the

finite control and the stack within a pushdown automaton explicit.

We cannot obtain the same result for pushdown automata terminating on final

state using the solution above. We will show that the stack process mentioned

previously cannot be reused in this setting if we want to have the result up to

(divergence-preserving) branching bisimilarity. So, for this to work, we would need

a stack process that can terminate regardless of its contents. We will therefore

introduce a new stack process: the always-terminating stack. When we put this new

stack process in parallel with the earlier specification of finite control, we can show

-38-

4.1 . PUSHDOWN AUTOMATA

that the associated transition system is divergence-preserving branching bisimilar
with the transition system associated with the pushdown automaton terminating on
final state.

This chapter is mainly based on the following publications:
[BCLTlO] J. C. M. Baeten, P. J. L. Cuijpers, B. Luttik, and P. J. A. van Tilburg. "A

Process-Theoretic Look at Automata". In: Proceedings of FSEN 2009. Ed.
by F. Arbab and M. Sirjani. LNCS 5961. Springer, 2010, pp. 1-33.

[BLTl la] J. C. M. Baeten, B. Luttik, and P. J. A. van Tilburg. "Computations and
Interaction". In: Proceedings of ICDCIT 2011. Ed. by R. Natarajan and A.
Ojo. LNCS 6536. Springer, 2011, pp. 35-54.

Some material is also inspired on or adapted from the following lecture notes and
publication:
[Baell] J.C. M. Baeten. Models of Computation: Automata and Processes. Lecture

notes 2011.
[BCT08] J . C. M. Baeten, P. J . L. Cuijpers, and P. J. A. van Tilburg. "A Context-Free

Process as a Pushdown Automaton". In: Proceedings of CONCUR 2008.
Ed. by F. van Breugel and M. Chechik. LNCS 5201. Springer, 2008,
pp. 98-113.

4.1 Pushdown Automata

As an intermediate notion between finite automata and Turing machines, the theory
of automata and formal languages treats pushdown automata, which are finite
automata extended with a stack as memory. Several definitions of the notion appear
in the literature [Sud88, Sip97, HMU06], which are all equivalent in the sense that
different kinds of pushdown automata still accept the same (class of) languages.

Recall the definition of a finite set of actions A and a finite set of data elements 'D.
We add to 'D the special symbol 1- to indicate that a stack is empty, assuming that
1- <f. 'D ; we denote the set 'D u { 1-} of stack symbols by 'D_1_ . We denote sequences
of data symbols (or strings) by 'D* and sequences of stack symbols by 'Dl ; we often
use o and (to range over 'D* or 'Dl and e to denote the empty string.

DEFINITION 4.1. A pushdown automaton (PDA) M is defined as a six-tuple
(S,A, 'D, ->, i, D where:

1. S is a finite set of states;
2. A a finite set of actions;

3. 'D a finite set of data;
4. -> ~ S x Ar x 'D .l x 'D* x S is an A r x 'D _1_ x 'D* -labelled transition relation on S,
5. i ES is the initial state, and
6. l ~ S is the set of final states. /:::,.

If (s, a , d,o, t) E -> , we write s a[d/o J, t. The intuitive meaning of such a transition
is that if the pushdown automaton M is in state s and data element d is on the top

- 39-

4. PUSHDOWN SYSTEMS

of the stack, then it can pop d while performing the action a, pushing the string of

data elements o on top of the stack and moving to state t. In the case that d = l_, the

meaning of the transitions a[1-/oJ , t is an empty-test such that when the pushdown

automaton M is in state s and the stack is empty, the action a can be performed,

the string of data elements o is pushed onto the stack and the automaton moves to

state t. Transitions of the form s -r[d/oJ, t and s -r[1-JoJ , s are silent/unobservable

transitions of the pushdown automaton that just modify the stack contents.

When considering a pushdown automaton as a language acceptor, it is generally

assumed that it starts in its initial state with an empty stack. (Actually, the definition

of a PDA in [HMU06, Section 6.1.2] starts in the initial state with a fresh special

stack empty symbol Z0 on the stack which must be removed before terminating. As

this removal action will always introduce a choice, by definition of this PDA it is not

allowed to put the symbol Z0 back, it is undesirable from a process-theoretic point of

view. Hence, we have deemed it necessary to introduce the empty-test transition.) A

computation consists of repeatedly consuming input symbols (or just modifying stack

contents without consuming input symbols). When it comes to determining whether

or not to accept an input word there are two approaches: "acceptance by final state"

(FS) and "acceptance by empty stack" (ES). The first approach accepts a word if the

pushdown automaton can move to a configuration with a final state by consuming the

word, ignoring the contents of the stack in this configuration. The second approach

accepts the word if the pushdown automaton can move to a configuration with an

empty stack, ignoring whether the state of this configuration is final or not. Both

approaches are equally powerful from a language-theoretic point of view, but not

from a process-theoretic point of view, as we shall see below. We shall also consider a

third approach in which a configuration is terminating if it consists of a terminating

state and an empty stack (FSES). We will see in Section 4.1.1 that, from a process­

theoretic point of view, the FS, FSES and ES approaches all lead to different notions

of transition systems up to (divergence-preserving) branching bisimilarity.

EXAMPLE 4.2. Assume that A= {a, b } and 'D = { 1 } . The state-transition diagram in

Figure 4.1 specifies a pushdown automaton that first can perform a series of a-actions

while stacking the data element 1 for each a-action in the states. Then, it can switch

to state t by performing a b-action and removing a data element 1 from the stack

followed by performing as many b-actions as there are data elements 1 on the stack.

a[1- / l]
a[l/11] b[l /e]

0 hr1h1 0
~

FIGURE 4.1: An example of a pushdown automaton.

Depending on the adopted acceptance condition, the pushdown automaton in

Figure 4.1 accepts either the language { anbm I n ~ m ~ O} (FS) or the language

{anbn In~ O} (FSES or ES). 0

-40-

4.1. PUSHDOWN AUTOMATA

To formalise the intuitive behaviour of pushdown automata, we associate with
every PDA M a transition system 'J(M). For the states of this associated transition
system we use configurations defined as follows.

DEFINITION 4.3. A configuration of a pushdown automaton M is a pair (s, o)
consisting of a state s E 8, and stack contents o E 'D*. The left-most data element
of o represents the top of the stack. tJ.

The associated transition system semantics of PDAs defines an AT-labelled
transition relation on configurations such that a PDA-transition s a [d/ 8 l, t corresponds
with an a-labelled transition from a configuration consisting of the PDA-state s and
stack contents d(. The transition leads to a configuration consisting of the PDA-state t
and the stack contents o (, i.e. the original stack contents with the top element d
replaced by o. A PDA-transition s a [1-/5J, t corresponds with an a-labelled transition
from a configuration consisting of the PDA-state s and an empty stack, leading to a
configuration of the PDA-state t and the stack contents o.
DEFINITION 4.4. Let M = (8,A, 'D, ->, i, l) be a pushdown automaton. The transition
system 'J(M) associated with M is defined as follows:

1. the set of states of 'J(M) is the set of configurations 8 x 'D*;
2. the transition relation of 'J(M) satisfies

a) (s , dO ~ (t,oO iff s a [d/ 81, t for all s,t E 8, a EAT, d E 'D, o,(E 'D*,
and

b) (s, e) ~ (t, o) iff s a [1-/5J, t;
3. the initial state of 'J(M) is (i, e); and
4. for the set of final states ! we consider three alternative termination condition:

a) (s, O! in 'J(M) iff s ! (the FS interpretation),
b) (s , O! in 'J(M) iff (= e (the ES interpretation), and
c) (s,O! in 'J(M) iff s! and (= e (the FSES interpretation).

A transition system is a pushdown transition system (according to the FS/ES/FSES
interpretation) if it is associated with a PDA. 6

EXAMPLE 4.5. Recall the example PDA in Figure 4.1. The transition system as­
sociated with this PDA (according to the ES or FSES interpretation) is shown in
Figure 4.2. 0

a
- - -- - ·

b

FIGURE 4.2: The transition system associated with the example PDA according
to the (FS)ES interpretation.

-41 -

4 . PUSHDOWN SYSTEMS

This definition now gives us the notions of pushdown language and pushdown

process (according to the FS/ FSES/ ES interpretation).

DEFINITION 4.6. A language accepted by a pushdown transition system is called a

pushdown language.
A pushdown process (according to the FS/FSES/ES interpretation) is a divergence­

preserving branching bisimilarity class of labelled transition systems containing a

pushdown transition system (according to the same interpretation). 6.

Note that the pushdown languages coincide, up to language equivalence, with the

context-free languages.
It is technically convenient to assume that the transitions of a pushdown

automaton are composed of two types that perform only a single operation on the

stack: either a push or a pop.

DEFINITION 4.7. Lets, t ES of some pushdown automaton M. A push transition is

a transition of the form s a [_l/dJ, t or s a [d /edJ, t (d, e E '.D); a pop transition is a

transition of the forms a[_l /eJ, t (the empty-test) ors~ t (d E '.D). 6.

THEOREM 4.8. For every PDA M there exists a PDA M' that uses only push and pop

transitions such that 'J(M) <-->~ 'J(M'). O

PROOF. It is easy to see that only allowing push and pop transitions in the definition

of pushdown automaton yields the same notion of pushdown transition system up to

divergence-preserving branching bisimilarity:

1. Eliminate a transition of the form s a[_l/5 l, t, with o = dn · · · d1 (n ~ 2), by

adding fresh states s2 , ... ,sn and replacing the transitions a [_l/5 l , t by transitions

2. Eliminate a transition of the form s a[d/51, t, with o = dn · · · d1 (n ~ 1), by

adding fresh states s1, .•• ,sn and replacing the transitions a[d / 5 l, t by transitions

s ~ s1, s1 T[_l/diJ, s2 and s1 T[e/d, eJ , s2 for all e E '.D, and transitions

Observe that we only get a finite number of additional inert -r-transitions in the

associated transition system. •

Curiously, the stack that is used by the pushdown automaton can be shown to be

defined by a pushdown automaton itself. Given a finite set of data '.D, the stack has

an input channel i over which it can receive elements of '.D and an output channel o

over which it can send elements of '.D. If the stack is empty, the stack can send the

data element J_ over channel o for the purpose of an empty-test.

The stack is defined by a pushdown automaton with one state j (which is both
initial and final) and transitions j o!_l[_l/eJ , j, j i?d[_l/ d], j, j i?d[e/deJ , j, and

-42-

4.1. PUSHDOWN AUTOMATA

, '
' \ \

I ,JA / '' +
FIGURE 4.3: Stack over 'D = { 0, 1 }.

j o!d [d/eJ , j for all d, e E 1J. The associated transition system according to the (FS)ES
interpretation of the stack over 1J = { 0, 1} is presented in Figure 4.3.

If we want to model the stack that always terminates, i.e. that terminates
regardless of its contents, we can use the PDA specified above but then consider
the associated transition system according to the FS interpretation. This transition
system is isomorphic with the transition system in Figure 4.3 but each state is final.

4.1.1 Termination Conditions

In the introduction we have already mentioned that from a language-theoretic point
of view the different approaches to termination of pushdown automata (FS, ES, FSES)
are all equivalent, but not from a process-theoretic point of view.

ES and FSES

First, we argue that the pushdown transition systems according to the ES interpreta­
tion form a proper subclass, up to divergence-preserving branching bisimulation, of
the pushdown transition systems according to the FSES interpretation.

THEOREM 4.9. For each pushdown transition system according to the ES interpretation
there is, up to divergence-preserving branching bisimilarity, a pushdown transition
system according to the FSES interpretation. D

PROOF. Let T be the transition system associated with a pushdown automaton M
according to the ES interpretation. Let M' be the pushdown automaton obtained
from M by declaring all states to be final. Then T is also the transition system
associated with M' according to the FSES interpretation. •

When a PDA has an initial state that is also final, we call it initially terminating.
From a language-theoretic point of view this means that the PDA accepts the empty
word (e-); it is said to have the empty word property. All pushdown transition

-43-

4. PUSHDOWN SYSTEMS

systems according to the ES interpretation can terminate in the initial state, since the

pushdown automaton has an empty stack in the initial state by definition. Therefore,

they are all initially terminating. This is not the case for pushdown transition

systems according to the FSES interpretation, hence, this constitutes a bigger class

of transition systems.

EXAMPLE 4.10. Consider the pushdown automaton M in Figure 4.4, which is a

modified version of the PDA in Figure 4.1 without an initial state that is also

final. The initial state of the associated transition system 'J(M) according the FSES

interpretation (see Figure 4.5) is not final.

a [_l_/l]
a[l/11] b[l /e]

0 i,r1 1~1 0
~

FIGURE 4.4: A pushdown automaton that is not initially terminating.

a a
----- ·

b

FIGURE 4.5: The transition system associated with the PDA that is not initially

terminating according to the FSES interpretation.

The initial state of every pushdown transition system associated with a PDA

according to the ES interpretation is always also a final state, because the stack of

a PDA is empty in the initial state by definition. Therefore, there can be no pushdown

transition system according to the ES interpretation that is branching bisimilar with

the pushdown transition system in Figure 4.5. O

For pushdown automata that are initially terminating, the class of pushdown

transition systems according to the FSES interpretation is the same, up to divergence­

preserving branching bisimilarity, as the class according to the ES interpretation.

Examples of such pushdown automata are the example PDA in Figure 4.1 and the

stack PDA defined before.
We can modify the initially-terminating pushdown automata in such a way that

the associated transition system according to the FSES interpretation is branching

bisimilar with the transition system associated with the modified PDA according to

the ES interpretation. Intuitively; if we go from FSES to ES, the termination condition

gets more liberal as we drop the final state requirement. Therefore, we have to ensure

that termination on empty stack is still only possible in states that are branching

bisimilar to the states originally marked as final. A way to do this is by controlling

where the stack becomes empty.

-44-

4 .1. PUSHDOWN AUTOMATA

EXAMPLE 4.11. Let us consider the example PDA in Figure 4.6 below and the
modified PDA in Figure 4. 7.

a [.l/ l]
a[l / 11] b[l /e] b[l /e)

FIGURE 4.6: An example of an initially-terminating pushdown automaton.

By adding the fresh state i and transition i -r[.l/0 J, s we put an extra, fresh data
element 0 on the stack, before the original initial states, so that the stack can only
become empty when we want it to. We replace all transitions performing an empty
test by transitions that perform a test on whether the top data element is 0, e.g.
s a [0/ l 0 J, s. Finally, we add for final states s and u in the original PDA the fresh
states s _J_ , u _j_ and four transitions: s -r[0 /eJ , s _j_ and u -r [0 /eJ, u _j_ to remove this marker
when in the FSES case termination could occur, and SJ. -r[_l/0 J , sand u_j_ -r(_l/0 J , u to
put the end-of-stack marker back.

a[0/10]
a[l / 11] b [l /e) b (1 I" J

-r [.l /0]

FIGURE 4. 7: Modified pushdown automaton for FSES to ES.

The associated transition systems with the original PDA and the modified PDA
above are branching bisimilar. However, this modification introduces divergence, as
it is possible to infinitely often push and pop the end-of-stack marker. A slightly more
complicated modification that preserves divergence is shown in Figure 4.8.

a [l .i/ll J.l
a[l / 11) b[l /e) b [l /e)

FIGURE 4.8: Modified pushdown automaton for FSES to ES preserving
divergence.

-45-

4. PUSHDOWN SYSTEMS

For each original state we add a fresh state that encodes that the stack is empty

(states sl. , tl. and ul.). For each data element d we add a fresh data element dl. ;

we use these fresh data elements to keep track of when the stack is about to become

empty by ensuring that the last data element on the stack is marked. Now, we replace

a push transition that performs an empty test by a transition that puts a marked data

element on the stack. For example, we replace s a [J./l J , s by s l. a [J./l , J , s. For the

other push transitions we add transitions that ensure the last data element on the

stack stays marked. For example, for the transitions a[l /l l], s we adds a[l , /l l , J , s.

For each pop transition we add a transition that moves to "empty stack" counterpart

of the destination state if a marked data element is popped. In the example these

are the four transitions: s c[l,/0 J, tJ. , t b(l i/0 J, tJ. , t ~~ UJ., and u b[l, /<J, ul. .

Note that the transitions that move to tl. put the dummy data element 0 on the stack,

rather than letting it become empty. This is necessary because t is not a final state in

the original PDA; only pop transitions to "stack empty" counterpart states for states

that are final in the original PDA will let the stack really become empty. <)

Not shown in the example above is that all newly introduced push transitions from

a state sl. such that s ¥- l should remove the dummy data element 0.

We now show that this modification works universally up to divergence-preserving

branching bisimilarity for all PDAs that are initially terminating.

THEOREM 4.12. For each pushdown transition system according to the FSES interpre­

tation associated with a PDA that is initially terminating there is, up to divergence­

preserving branching bisimilarity, a pushdown transition system according to the ES

interpretation. O

PROOF. Let M = (S,A, 'D, -+, j, l) be some pushdown automaton that is initially

terminating. By Theorem 4.8, we can assume that M only has push and pop

transitions. We shall modify M such that the transition system associated with the

modified pushdown automaton according to the ES interpretation is divergence­

preserving branching bisimilar with the transition system associated with M according

to the FSES interpretation. We define the modified pushdown automaton M ' =

(S1,A,'D1
, -+

1
, i,0) as follows:

1. S' is obtained from S by adding a "stack empty" state sl. for every states ES;

2. 'D' is obtained from 'D by adding a marked data element d l. for each d E 'D and

a fresh dummy data element 0;

3. -+
1 is obtained from-+ by

a) replacing all push transitions (s,a,..L,d,t) E-+ by either (s l. ,a,..L,dl., t) E

-+
1 if s E !, or (sJ. ,a,0,d.t, t) E -+

1 ifs¥-!,

b) adding for each push transition (s, a, d, ed, t) E -+ a push transition

(s,a,dl. ,edl. ,t) E -+
1

,

-46-

4.1 . PUSHDOWN AUTOMATA

c) replacing all pop transitions (s,a , 1- , £, t) E-+ by

{

(s,a,0,0, t)E-:' ~fs\t!,t<f.!,
(s , a , 0,e,t)E-+ 1fs<f.!,tE!,
(s , a , 1-,0,t)E-+' ifsE!,t\t!,

leaving the remaining pop transitions ifs E !, t E .J. untouched,
d) adding for each pop transition (s,a,d, e,t) E-+ a pop transition either

(s, a,dJ_ , £, t) E -+' if t E .J. or (s,a , dJ. ,0, t) E -+ ' if t <f. ,J..
We leave it to the reader to verify that the relation

'.R = { ((s, e), (sJ. , E')) Is E .J.} u { ((s, e), (s_i , 0)) Is ES\ .J.} u
{ ((s, 5d), (s , 5d_j_)) Is E S, d E 'D, 5 E 'D* }

is a divergence-preserving branching bisimulation between the transition associated
system with M according to the FSES interpretation and the transition system
associated with M' according to the ES interpretation. •

If we combine the result above with the result of Theorem 4.9 we obtain as
a corollary that for pushdown automata that are initially terminating, the class of
pushdown transitions systems according to the FSES interpretation is the same, up
to divergence-preserving branching bisimilarity, as the class according to the ES
interpretation.

FSES and FS

We proceed to argue that the class of pushdown transition systems according to
the FSES interpretation is a proper subclass, up to divergence-preserving branching
bisimilarity, of the class of pushdown transition systems according to the FS
interpretation. The classical proof (see, e.g., [HMU06, Theorems 6.9 and 6.11])
that a pushdown language according to the "acceptance by final state" approach is
also a pushdown language according to the "acceptance by empty stack" approach
employs -r-transitions in a way that is valid up to language equivalence, but not up
to branching bisimilarity. For instance, the construction that modifies a pushdown
automaton M into another pushdown automaton M' such that the language accepted
by M by final state is accepted by M' by empty stack adds -r -transitions from every
final state of M to a fresh state in M' in which the stack is emptied. The -r -transitions
introduce, in M', a choice between the original outgoing transitions of the final state
in Mand termination by going to the fresh state; this choice is not necessarily present
in M, and therefore the transition systems associated with M and M' may not be
branching bisimilar.

If we want to go from FSES to FS, we drop the empty stack requirement. To
still get the same behaviour, intuitively, we would have to add new final states that
can only be entered from the original final states by using the empty test. This
construction modifies the PDA in a similar way to the construction presented in
Example 4.11.

-47-

4. PUSHDOWN SYSTEMS

EXAMPLE 4.13. Let us consider the example PDA in Figure 4.6 and the modified PDA

in Figure 4.9. We add for each final state in the original PDA the fresh states SJ. , ul.

and four empty-test transitions s -rfl./<l, SJ. and u -r[J./el , ul. to detect when in the

FSES case termination could occur, and s l. -rfJ./eJ, s and u J. -r[J./<l , u to be able to

return.

a[..L/ l]
a[l / 11] b[l /e] b[l /e]

FIGURE 4.9: Modified pushdown automaton for FSES to FS.

This idea leads to a transformation that is correct up to branching bisimilarity, but

does not preserve divergence, as it is possible to infinitely often perform empty-test

transitions. We present a different approach that preserves divergence in Figure 4.10.

This modification is inspired on the modification in Example 4.11 in the sense that it

keeps track of when the stack is empty using extra states and marked data elements.

a[l _1_/ ll _1_]
a[l / 11] b[l /e] b[l /e]

FIGURE 4.10: Modified pushdown automaton for FSES to FS preserving

divergence.

The modification is almost the same as from FSES to ES, except that we do not

use the dummy data element 0 (cf. Figure 4.8) . Instead, we only mark the "stack

empty'' counterpart states final if they correspond to final states in the original PDA.

In this example these are s l. and u J.. 0

We now show that this modification works universally for all PDAs up to

divergence-preserving branching bisimilarity.

THEOREM 4.14. For each pushdown transition system according to the FSES interpreta­

tion there is, up to divergence-preserving branching bisimilarity, a pushdown transition

system according to the FS interpretation. O

-48-

4.1 . PUSHDOWN AUTOMATA

PROOF. Let M = (S,A, '.D, ---+, i, l) be some pushdown automaton. By Theorem 4.8
we can assume that M only has push and pop transitions. We shall modify M
such that the transition system associated with the modified pushdown automaton
according to the FS interpretation is divergence-preserving branching bisimilar to the
transition system associated with M according to the FSES interpretation. We define
the modified pushdown automaton M' = (S' ,A, '.D', -+ 1

, l , ! ')as follows :
1. S' is obtained from S by adding a fresh state s_j_ for every states E S;
2. '.D' is obtained from '.D by adding a marked data element d _j_ for each d E '.D ;
3. -+

1 is obtained from---+ by

a) replacing all push transitions (s ,a,.1,d,t) E-+ by (s_J_ , a , .1, d_J_ ,t) E ---+ ',
b) adding for each push transition (s, a, d, ed , t) E ---+ a push transition

(s ,a,d_J_ ,ed_J_ ,t) E ---+ ' ,
c) adding for each pop transition (s, a,d, e, t) E ---+ a pop transition

(s,a,d _J_ , £,t_J_) E -+
1

;

4. ! ' is the set {s_j_ Is E ! } of all the newly added states that are counterparts of
final states in M.

We leave it to the reader to verify that the relation

'.R = { ((s , £) , (s J_ , £)) Is ES } u {((s , o d) , (s , o d l_)) Is E S, d E 'D, o E 'D* }

is a divergence-preserving branching bisimulation between the transition system
associated with M according to the FSES interpretation and the transition system
associated with M' according to the FS interpretation. •

Consequently, the class of pushdown transition systems according to the FSES
interpretation is at least, up to divergence-preserving branching bisimilarity, a
subclass of the class according to the FS interpretation. We can show that it is even a
proper subclass.

EXAMPLE 4.15. Consider the pushdown automaton shown in Figure 4.11.

a [J./ l]
a [l / 11]

%
b[l /c]

FIGURE 4.11: The counter pushdown automaton.

The trans1t10n system associated with it according to the FS interpretation is
depicted in Figure 4.12; it has infinitely many terminating configurations. Moreover,
no pair of these configurations is branching bisimilar, which we can see by noting that
the nth state from the left can perform at most n - 1 times a b-transition before it has
to perform an a-transition again.

-49-

4. PUSHDOWN SYSTEMS

a a a a
... - ----

b

FIGURE 4.12: The transition system associated with PDA of Figure 4.11

according to the FS interpretation.

In contrast with this, note that the transition system associated with the pushdown
automaton according to the FSES interpretation, as shown in Figure 4.13, necessarily
has finitely many terminating configurations, for the pushdown automaton has only

finitely many states and the stack is required to be empty.

a a a a
... --- - -

b b b b

FIGURE 4.13: The transition system associated with automaton of Figure 4.11

according to the FSES interpretation.

This is a property of all pushdown transition systems according to the FSES
interpretation. Therefore, there can be no pushdown transition system according to
the FSES interpretation that is branching bisimilar to the pushdown transition system

in Figure 4.12. O

The following mutual relations between the different classes of pushdown
transition systems up to divergence-preserving branching bisimilarity have been
established. (See also Figure 4.14 for a schematic overview. Note that in the diagram
FSESit stands for the class of transition systems according to the FSES interpretation
associated with initially-terminating PDAs.)

FS

FSES

I ~= FSESil) I
1-=-b, 1 -=-~

FSES ~ FS
FS ~ FSES

ES ~ FSES
FSES ~ES

FSESi' ~ES

Theorem 4.14
Example 4.15

Theorem 4.9
Example 4.10

Theorem 4.12

FIGURE 4.14: Overview of the different classes of pushdown transition

systems.

COROLLARY 4.16. The class of pushdown transitwn systems according to the ES

interpretation is a proper subclass, up to divergence-preserving branching bisimilarity,

of the class of pushdown transition systems according to the FSES interpretation.

-50 -

4.2. SEQUENTIAL SPECIFICATIONS

The class of pushdown transition systems according to the FSES interpretation is
a proper subclass, up to divergence-preserving branching bisimilarity, of the class of
pushdown transition systems according to the FS interpretation. D

Because the difference between the pushdown transition systems according to the
ES and FSES interpretations is only based on whether the associated PDA is initially
terminating or not, we will only consider the latter class from here on.

4 .2 Sequential Specifications

In the previous chapter we have investigated the link between linear specifications
and finite automata. In this section we will introduce the sequential specifications
as the process-theoretic counter part of context-free grammars. We then consider a
process-theoretic version of the standard result in the theory of automata and formal
languages [Sud88, Sip97, HMU06] stating that the class of languages accepted by
pushdown automata coincides with the class of languages generated by context­
free grammars. This is done by comparing the pushdown transitions systems with
the transition systems associated with sequential specifications up to (divergence­
preserving) branching bisimilarity. We will first show that it is impossible to obtain
this correspondence with the class of pushdown transition systems according to
the FS interpretation. Then, we will consider the correspondence for pushdown
transition systems according to the FSES interpretation and see that we still have to
apply restrictions to both the pushdown automata and sequential specifications if we
want to obtain the correspondence. Finally, we look into the decidability of whether
two sequential specifications are equal. It is well-known from automata and formal
language theory that it is undecidable whether two context-free grammars generate
the same language. We will extend earlier work [BBK93, Bos97, SrbOl] by showing
that it is decidable whether two restricted sequential specifications are bisimilar.

Context-free Grammars

As the process-theoretic counterparts of context-free grammars we shall consider
recursive specifications in the subtheory TSP.,. (Theory of Sequential Processes) of
TCP,., which is obtained from BSP.,. by adding sequential composition_· _. Note that
TSP.,. can also be seen as the process theory BPA extended with prefixing, 0 and 1
which also allows for -r-transitions. Processes definable in BPA are often referred
to as "context-free processes." The motivation in the literature for this terminology
seems to be twofold. On the one hand, it is easy to see that the language associated
with a process definable in normed BPA is context-free. On the other hand, context­
free grammars in Greibach normal form can be regarded as a BPA-specification by

1. regarding non-terminals as recursion names,

2. regarding a right-hand side a' of a production N----+ a' as the sequential
composition of the action a and the sequence of non-terminals ', and

-51 -

4. PUSHDOWN SYSTEMS

3. combining the right-hand sides of all productions N------> a 1 ~ 1 I · · · I an~n for a
non-terminal N with non-deterministic choice to constitute a single right-hand
side a 1 ~ 1 + · · · + an~ n defining the recursion name N.

The resulting recursive specification is guarded and generates a labelled transition
system with the same language as the original context-free grammar.

It is well-known from the theory of automata and formal languages (see, e.g. ,
[Sud88, Theorem 5.6.3]) that a context-free grammar can be transformed into
Greibach normal form, provided that the grammar does not include so-called
useless non-terminals (i.e. , non-terminals for which there is no production) and A.­

productions (or €-productions) . The first restriction is harmless from a language­
theoretic point, for there is a language-preserving transformation that eliminates
useless non-terminals from a context-free grammar. It is, however, unfortunate from
a process-theoretic point of view, for, intuitively, a non-terminal without productions
corresponds with a deadlocked process. The second restriction is inconvenient even
from a language-theoretic point of view, for it excludes all languages with the empty
word property.

A thorough investigation of the process theory TSPT reinforces the connection
between the theory of automata and formal languages on the one hand, and process
theory on the other hand. Firstly, it allows a translation of all context-free grammars
directly into a finite recursive TSPT-specification: if there is a A.-production (or €­

production) for N, then the right-hand side of the defining equation for N gets
a summand 1, and if the non-terminal N is useless, then it is defined by the

recursion equation N ~ 0. Secondly, is possible to define, up to (divergence­
preserving) branching bisimilarity, every non-deterministic finite automaton with a
finite (guarded) recursive TSPT-specification, while it is not possible to define non­
deterministic finite automata with intermediate accepting states with a BPA- or
BPA0 -specification.

DEFINITION 4.17. A sequential specification over some finite set of names N is a finite,
-r-guarded recursive TSPT-specification, i.e. a recursive specification over Nin which
only the constructions 0, 1, N (NE N), a ._ (a EAT),_·_ and_+_ are used to build
sequential process expressions /'J.

EXAMPLE 4.18. The process expression N defined by the sequential specification

N ~ l+a.N·b.1

specifies the pushdown transition system according to the FSES interpretation in
Figure 4.13, that is associated with the pushdown automaton in Figure 4.11. O

Similarly to context-free grammars, our sequential specifications can be brought
into Greibach normal form as well. We can define a normal form for sequential
specifications if we instantiate Definition 2.19 (on page 19) with the sequence of
names interpreted as a sequential composition of names.

-52-

4.2. SEQUENTIAL SPECIFICATIONS

DEFINITION 4.19. A sequential specification E is in sequential normal form if each
defining equation of a name NE N is of the following form:

def ~ (N = L.J a;.~ ; + 1) .
iEJN

In this form, every right-hand side of every defining equation consists of a number
of summands, indexed by a finite set 'JN (the empty sum is O) , each of which is 1, or
of the form a;.~; with a; E Ar and ~; a sequential composition of names; the empty
sequential composition is denoted by 1. !::::,.

It is well-known that all sequential specifications can be brought in sequential
normal form.

PROPOSITION 4.20. For each sequential specification E and sequential process expres­
sion p there exists a sequential specification in sequential normal form E' such that
'JE' (p) +-+~ 'JE(p). D

If the sequences have a length of at most two, we say that the sequential
specification is in restricted normal form. A proof of the following proposition follows
the same lines of the proof of [BBK93, Proposition 4.3].

PROPOSITION 4.21. For each sequential specification E and sequential process expres­
sion p there exists a restricted sequential specification in sequential normal form E' such
that 'JE, (p) +-+~ 'JE(p). D

We can associate transition systems with sequential specifications according to the
operational rules in Table 2.1 (on page 15). This also gives us the notion of sequential
process.

DEFINITION 4.22. A sequential process is a divergence-preserving branching bisimi­
larity class of labelled transition systems containing a transition system associated
with a sequential specification and sequential process expression. !::::,.

4.2.1 Correspondence

Now that we have defined sequential specifications as our process-theoretic coun­
terparts of context-free grammars, we can investigate their relation with pushdown
automata. That the notion of sequential specification still naturally corresponds with
the notion of context-free grammar is confirmed by the following theorem that states
the correspondence up to language equivalence. For the proof we refer to [HMU06,
Section 6.3].

THEOREM 4.23. For every pushdown automaton M there exists a sequential specifica­
tion E, with initial name I, such that 'J(M) R;; 'JE(I) according to the FS, ES or FSES
interpretation, and, vice versa, for every sequential specification E, with initial name I,
there exists a pushdown automaton M such that 'JE(I) R;; 'J(M) according to the FS, ES
or FSES interpretation. D

-53-

4 . PUSHDOWN SYSTEMS

We will now investigate the same result up to divergence-preserving branching
bisimilarity. That is, we will compare pushdown transitions systems, according
to the FS and FSES interpretations, with transition systems associated with the
sequential specifications, given by the SOS rules in Table 2.1 (on page 15). After
some definitions we will investigate the correspondence in both directions, first for
the FS interpretation and then the FSES interpretation.

Let E be a sequential specification and I be its initial name. We say that E is
simulated by some PDA M (according to the FS/ FSES interpretation), if we have that

'J(M) <-->~ 'JE(I). Vice versa, a PDA M (according to the FS/ FSES interpretation) is said
to be defined by a sequential specification E, with initial name I , if 'JE(I) <-->~ 'J(M).

If we know that there is such a sequential specification for PDA M we say that M is
definable by a sequential specification.

Let us first consider a prominent PDA or pushdown transition system that can
be defined by a sequential specification. Recall the pushdown transition system
according to the (FS)ES interpretation of a stack shown in Figure 4.3.

The following infinite recursive specification E;' specifies the behaviour of the

process Sc; , modelling a stack with as contents the sequence of data elements E;

that receives input over channel i, i.e. when data is pushed, and sends output over
channel o, i.e. when data is popped. For the empty stack, we have:

Se~ 1 + oLLSe + L i?d .Sd,
d E'D

and for every non-empty string dE; (d E 'D, E; E 'D*):

S ~ Id 5 "" .? 5 d l; - O · • <; + L..J l. e · ed<; •
eE'D

However, we would like our stack to be defined by a finite version of this specification
to obtain a sequential specification.

DEFINITION 4.24. The following sequential specification defines a stack:

S ~ 1 + oLLS + L i?d.S,r · o!d.S,
d E'D

S,r ~ 1 + L i?d.S,r · o!d.S,r ;
dE'D

we refer to this specification of a stack over 'D as Es . Note that the associated
transition system is, up to isomorphism, the same as the pushdown transition system
shown in Figure 4.3. /::::,.

Note that only the stack PDA according to the FSES interpretation is defined by
the sequential specification above. If we take the FS interpretation, we get the stack
that can always terminate. We shall see later that in this case the stack PDA is not
definable by a sequential specification.

- 54 -

4 .2. SEQUENTIAL SPECIFICATIONS

A state of the stack can be characterised by a sequential composition, for example:
S1- · o!dn-Sl- · ... · o!d1 .S. An obvious modification to make Es always terminating would
be to ensure that every component of the sequential composition has a 1-summand
so that termination is always possible.

DEFINITION 4.25. The sequential specification Es1 of the forgetful stack over 'D is
defined as follows:

sf~ 1 + oLLsf + L i?d .s{. (o!d.1+1). sf,
dE'D

Sf ~ 1 ""' "?d Sf · (Id 1 1) ·Sf .)'_ - + 6 l. .)'_ 0 . . +)'_ '
dE'D

see Figure 4.15 for the, rather contrived, associated transition system. Every node
depicted has infinitely many incoming arrows. The dotted arrows only denote some
of the outgoing arrows from nodes of level 4. !:::.
Although every state is a final state, we have introduced unwanted behaviour by
adding the 1-summands. We can "forget" items that are on the stack by popping
items that are not the top element. Also the empty-test has lost its meaning as it is
always enabled.

I

I

I

,
I

I

I , ,

J' ,,
I I

I I
I I

I I

I I
I I

\ ~ ' ' I
\\I / \\ II

'! /,1;. ' \, t/

------ -- -- ----
~~--=-_,,,.()!!:==~~-

,,
" " \ , ' '\ ,

\ ,' /' 1,' " /.. ', t'.l'

,,
\\
\\
t /,,. f '\ I

\ I I I I

'~/,1;. ' \, +/

FIGURE 4.15: Forgetful stack over 'D = { 0, 1 }.

' \

\

\

'
' I
'\ 1,
I\
I I

I I
I I
I I
I I

I I

\\ I I } '\ : ,'

\: /,1;. ' \, '/-'

Pushdown transition systems according to the FS interpretation
We will now show that, in general, pushdown transition systems according to the
FS interpretation cannot be defined by sequential specifications up to (divergence­
preserving) branching bisimilarity.

THEOREM 4.26. There exists a pushdown transition system according to the FS interpre­
tation such that there is no sequential specification with an associated transition system
that is (divergence-preserving) branching bisimilar to it. 0

-55-

4. PUSHDOWN SYSTEMS

PROOF. We prove by contradiction that the counter pushdown automaton (see

Figure 4.11) according to the FS interpretation (see Figure 4.12) is not definable

by a sequential specification. Let us first assume that there exists such a sequential
specification E. Then, by Proposition 4.20, we can assume that E is in sequential
normal form. From the definition of GNF (see Definition 2.19 on page 19) it

follows that every state of the transition system associated with E is denoted by a
sequential composition of its names. Since the associated transition system should be
(divergence-preserving) branching bisimilar with the transition system in Figure 4.12,
we now know two things about the names in E:

1. without loss of generality we can assume that all reachable names have a 1-

summand in their defining equation, and

2. each name has a bounded b-norm, i.e. a maximal number of b-transitions that
can be performed from the state associated with the name without performing
any a-transitions.

Let n be the maximal b-norm of all names in E. Now, let s be a state that

has a b-norm that is larger than n and let .; be the sequential composition of
names that belongs to the (divergence-preserving) branching bisimilar state in the

associated transition system of E. Because the b-norm is larger than n, the sequence.;
must contain at least two names that can perform a b-transition, for example
X ,Y in .;oX.;1y.;2 . However, because all names have a 1-summand, we have that

.;oX.;1 Y.;2 ___l_, .;1Y.;2 and .;oX.;1¥.;2 ___l_, .;2 , thus leading to two non-bisimilar states.
This is not possible in the transition system of the counter PDA. Hence, a sequential

specification does not exist. •

For the remainder of this section, we shall focus on the FSES interpretation. In
Section 4.3 we will come back to the FS interpretation.

Pushdown transition systems according to the FSES interpretation

We shall see below that the classical correspondence result with language equivalence
replaced by branching bisimilarity still does not hold if we restrict ourselves to
the FSES interpretation. In fact, we shall see that there are pushdown transition
systems that are not (divergence-preserving) branching bisimilar with the transition
system associated with a sequential specification, and that there are also sequential
specifications that are not (divergence-preserving) branching bisimilar to a pushdown
transition system. We shall first present a restriction on sequential specifications and
relate them with a subclass of the pushdown automata and then given this restricted
class of pushdown automata achieve the desired equivalence: we shall prove that

the transparency-restricted sequential specifications correspond with the so-called pop

choice-free pushdown automata.
On the side of sequential specifications, restricting to the sequential normal form is

not sufficient to get the desired correspondence between transition systems associated

with sequential specifications and pushdown transition systems.

-56 -

4.2 . SEQUENTIAL SPECIFICATIONS

EXAMPLE 4.27. Consider the following sequential specification, which is in sequen­
tial normal form:

X ~ aX · Y+b . I ,

Y ~ l+c.l.

The transition system associated with X, which is depicted in Figure 4.16, has
unbounded branching. 0

c

a --- ·

FIGURE 4.16: A transition system with unbounded branching.

Note that if i-::/= j , then y i and y j are not bisimilar, since each state yi admits up
to i consecutive c-transitions. Hence, there does not exist a bound on the branching
degree of process expressions reachable from X: each yi (i E N) is reachable and has
a branching degree of i . Note how, intuitively, execution of the c-transition from y i
to y i "skips" the behaviour of all intermediate y k (j < k < i) .

A name N in a recursive specification is called transparent if its defining
equation has a 1-summand; otherwise it is called opaque. Recall that we had a
similar unbounded branching problem with the specification of the forgetful stack
(see Definition 4.25) where also all elements of the sequential specification are
transparent.

In [BCLTlO], we have conjectured that a pushdown transition system cannot have
unbounded branching. If we desire a correspondence between sequential specifica­
tions and pushdown automata, we shall have to exclude sequential specifications
with associated transition systems that have unbounded branching. One way to
achieve this is to require that transparent names may only occur as the last element
of reachable sequential compositions of names.

DEFINITION 4.28. Let E be a sequential specification in sequential normal form.
We call such a specification transparency-restricted if for all (generalised) sequential
compositions of names ,;- reachable from a name in E it holds that all but the last
name in ,;- is opaque. !:::,.

While transparency-restrictedness might seem quite a severe restriction on se­
quential specifications, note that it still allows us to specify useful processes such as

- 57 -

4. PUSHDOWN SYSTEMS

the stack over 'D defined in Definition 4.24. While not yet transparency-restricted,

it can be defined with a transparency-restricted recursive specification by bringing it

in sequential normal form: it suffices to add, for all d E 'D, a name Td to replace

51- · o!d.l.

DEFINITION 4.29. Thus we redefine the the stack over 'D by the following trans­

parency-restricted sequential specification:

S ~ I+ o!LS + L i?d.Td · S ,
dE'D

T ~ Id 1 + '°' ·7 T · T d- 0. · L.,il.e . e d ·

eE'D

It can easily be seen that the trans1t1on system associated with a name in a

transparency-restricted specification has bounded branching: the branching degree

of a state denoted by a reachable sequential composition of names is equal to the

branching degree of its first name, and the branching degree of a name is bounded

by the number of summands of the right-hand side of its defining equation.

We are now in a position to establish a process-theoretic counterpart of the

correspondence between pushdown automata and context-free grammars. First, we

consider the direction from transparency-restricted sequential specification to push­

down automaton. For each specification we can construct a pushdown automaton

that simulates it.

EXAMPLE 4.30. Let E be the following sequential specification:

X~aX·Y+b.Y+c. 1 ,

Y ~ d.l.

This specification is in restricted sequential normal form and transparency-restricted

as both X and Y are opaque. Figure 4.17 depicts a pushdown automaton with only

push and pop transitions that simulates E if we take X as its initial name.

a [1- / Y]
a[Y/YY]

FIGURE 4.17: A pushdown automaton simulating sequential specification E.

We have a state for each name in the specification and two extra states: 1 to go to

when the stack is empty, and Int as an intermediate state to ensure that we only have

-58-

4.2. SEQUENTIAL SPECIFICATIONS

push- and pop transitions. (The reason for this will become apparent later.) For each
summand of a name in the specification we have a corresponding PDA transition from
the state corresponding to the name. Therefore, if we are in a state corresponding
with a name, we are simulating the behaviour of that name. For example, for X we
have the summands aX · Y, b.Y, and c. l. For the summand aX · Y we add transitions
X a [l_/YJ , X and X a [Y / YYJ , X, because if we perform an a-transition from X, we end up
in X again with an extra Y on the stack. For the summand b. Y we add the transitions
X b[l_/YJ, Int, X b[Y/ YYJ, Int, and Int ~ Y. Since the b-transition requires no stack
manipulation, we actually just need to go to Y, and this would result in neither a push­
or pop transition, we go through an intermediate state. Finally, for the summand c .1
we add the transitions X ~ 1 and X ~ Y. If the c-transition is executed, we
are done with simulating X. We pop from the stack to see what is next and move to
the corresponding state. If the stack is empty, we are done and we move to state 1,
where we can terminate. <>

In the example we used the knowledge that only the name Y will ever be stacked.
For clarity, all transitions that dealt with the possibility that the name X could be
popped from the stack have been omitted. We can generalise the example above to a
more formal construction and obtain the following result.

THEOREM 4.31. For every transparency-restricted sequential specification E, with initial
name I, there exists a pushdown automaton M such that 'J(M) ~: 'Ie(I). D

PROOF. Let E be a transparency-restricted sequential specification over a finite set
of names N, and let I be an initial name of E. We define a pushdown automaton
M = (S,A, 'D, ->, j, !) as follows:

1. S consists of all names in N, the symbol 1, and an extra intermediate state Int;
2. A consists of all the actions occurring in E;

3. 'D consists of the names occurring in E;

4. -> is defined as follows: for all a EA
a) if the right-hand side of the defining equation for a name N has a summand

a.1, then-> has transitions N a [l_/eJ, 1 and N -E~ N' (N' EN),
b) if the right-hand side of the defining equation for a name N has a summand

a.N', then there are transitions N a[d /N' dJ, lnt (d E 'D), N a[l_/N' J, lnt and
Int-~N',

c) if the right-hand side of the defining equation for a name N has a summand
a.N' ·N", then there are transitions N a [d /N" dJ, N' (d E 'D);

5. j is the initial name I;
6. ! consists of 1 and all names with a 1-summand .
Note that the transitions in Mare either a pop or a push transition, and that the -r­

transitions introduced in the transition system associated with M are inert. We leave
it to the reader to verify that the relation

'.R = { (NE;,(N,E;)),(NE;,(Int,NE;)) IN E N,E; EN*} U { (1,(1,t:))}

-59-

4 . PUSHDOWN SYSTEMS

is a divergence-preserving branching bisimulation between the transition system

associated with the sequential specification E for the initial name I and the transition

system associated with M according to the FSES interpretation. •

Note that in the construction in the example and proof above we have that,

when some name N is popped, the PDA always ends up in the state labelled N. A

more general version of this property turns out to be vital if we want to obtain a

correspondence in the other direction.

a(_l_ / l]

a[l/11] c[1-/e]

~
b[l /e] b[l /e]

FIGURE 4.18: A pushdown automaton that is not pop choice-free.

Consider the pushdown automaton in Figure 4.18; the associated transltlon

system is shown in Figure 4.19. In [Mol96], Moller proved that this transition system

cannot be defined with a recursive BPA-specification. His proof can be modified to

show that the transition system is not definable with a sequential specification either.

a a a a

b b b b

c

b b b b

FIGURE 4.19: The transition system associated with the PDA of Figure 4.18.

Note that a push of a data element 1 in the initial state of the pushdown

automaton in Figure 4.18 can be popped again in the initial state or in the final state:

the choice of where the pop will take place cannot be made at the time of the push. In

other words, in the pushdown automaton in Figure 4.18 pop transitions may induce

a choice in the associated transition system; we refer to such choice through a pop

transition as a pop choice. We shall prove below that by disallowing pop choices we

define a class of pushdown processes that are definable with sequential specifications.

DEFINITION 4.32. Let M be a pushdown automaton that uses only push and pop

transitions. Ad-pop transition is a transitions~ t, which pops a data element d.

We say M is pop choice-free iff whenever there are two d-pop transitions s ~ t

and s' ~ t', then t = t '. A pushdown transition system is pop choice-free if is

associated with a pop choice-free pushdown automaton. !:::,,

We have not been able to establish that our result is optimal, i.e. that pop choice­

freeness is a necessary condition to be able to define it by a sequential specification.

-60-

4.2. SEQUENTIAL SPECIFICATIONS

CONJECTURE 4.33. For each pushdown automaton M there exists a transparency­
restricted sequential specification E, with initial name I, such that TE(!) +->~ T(M) if,
and only if, M is pop choice-free. D

All pushdown automata that can be constructed to simulate a sequential specifica­
tion according to the proof of Theorem 4.35 are pop choice-free. Now, if we maintain
the pop choice-free restriction for the other direction, we get the full correspondence.

EXAMPLE 4.34. Let us consider the example pushdown automaton shown in Fig­
ure 4.1 (on page 40). This pushdown automaton is pop choice-free, for both 1-pop
transitions lead to the same state t.

Now, consider the following sequential specification that defines the PDA:

def
Ns11 = b.l + a.Nsu · Ne1e ,

def
Nw = b.l ;

the initial name of this specification is Nw The associated transition system has been
depicted in Figure 4.20.

a a a a N, lt NIE N, Jc Nll, N,, N, 1t Nc 1tNt1 ,N,, ----- ·

b

b b b
N, ltNt! ,N" -------

FIGURE 4.20: The transition system associated with sequential specification
defining the PDA from Figure 4.1.

The names NSE and Ne , are introduced to encode that we are in state s and t
respectively and that the stack is empty. Both names have a 1-summand because
both states are also final states.

Since we know that the PDA is pop choice-free, we can determine for each data
element d E '.D the state we are going to end up in if we pop that data element.
In this case there is only the data element 1; after a 1-pop transition we end up in
state t. So, we also introduce the names N5Jt and Nelt as both states s and t have a
1-pop transition tot. Intuitively, the names encode in which state we are, that a data
element 1 is stacked and what state we end up in once it is popped.

We have added summands to the defining equations for each name, given that
the PDA only has push and pop transitions. For name NSf this is the empty-test
(push) transition s a [J./ l J , t for which we have added the summand a .N51 e ·Ne,. This
summand ensures that after an a-transition we are still in state s, stack the data
element 1 and once this is popped we end up in t (and by then the stack is empty) .
For name N511 we add a similar summand for the pop transitions a [l / l lJ, s. Finally,

- 61-

4. PUSHDOWN SYSTEMS

we add the summand b.l to the defining equation of the names N5 11 and N1 Jt because

we have the following push transitions: s ___tl!Ld_. t and s ___tl!Ld_. t . After a b-transition,

which happens when data element 1 is popped, we are done with the name and we
move to the next name in the sequential composition.

Note that only the names Nse and N16 have 1-summands and that they only occur

at the end of the sequential composition. Hence, our sequential specification is

transparency-restricted.
We can reduce this specification by removing occurrences of N16 (for the right­

hand side of the defining equation of this name is just 1) and substituting occurrences

of Nw by b .1. We get

def
Nse = 1 + a.N5 1t ,

def
N5 1t = b . 1 + a .N5 1t · b .1

Now, we see that N5 1t = (1 + a.N5 11) ·b. l = Nse ·b. l and therefore we have that

N56 = 1 + a .N56 ·b. l which is, up to renaming, equal to the specification we gave

~~- 0

We can generalise this example to a more formal construction and obtain the

following result.

THEOREM 4.35. For each pop choice-free pushdown automaton M there exists a trans­

parency-restricted sequential specification E, with initial name I, such that 'JE(I) +---+~

'J(M). D

PROO F. This proof is an adaptation of the classical proof (see for example [HMU06,

Theorem 6.14]) that associates a context-free grammar with a given pushdown

automaton. Let M = (S,A, '.D, --+, j, !) be a pop choice-free pushdown automaton.
By Theorem 4.8 we can ensure that M only has push and pop transitions. We define a

transparency-restricted specification E with for every states ES a name Nse with the
following defining equation:

Nse ~ La.Ntdw· Nwe [+l] s! •
(s,a ,1-,d , t)E~

d-pop tow

and for every states a name Nsdt • if M has transitions that pop data element d leading

to the state t, with the following defining equation:

def "'"""' "'"""' Nsdt = L.Ja.Nuew ·Nwdt + L...Ja.l.
(s,a ,d ,e d ,u)E~ (s,a ,d , e,t)E~

e-pop to w

Recall that the state w is each time uniquely given because the PDA M is pop choice­

free. It is easy to see that the resulting specification is transparency-restricted.

-62-

4. 2 . SEQUENTIAL SPECIFICATIONS

Assuming that that each d;-pop leads to states; (1 ::; i ::; n), we leave it to the reader
to verify that the relation

'.R = { ((s,c),N") Is ES} u

{ ((s, di . .. dn),Nsd, s, · ... · Ns._,dnsn · N5• 8) IS, ES, di,. .. , dn E 'D}

is a divergence-preserving branching bisimulation and hence 'JE(Nr 8)+->~ 'J(M). •

Thus, we have established a correspondence between a pop choice-free pushdown
automaton on the one hand, and transparency-restricted sequential specification on
the other hand. We thereby cast the classical result of the equivalence of pushdown
automata and context-free grammars in terms of transition systems and bisimulation.

COROLLARY 4.36. For every pop choice-free pushdown automata M there exists a
guarded transparency-restricted sequential specification E, with initial name I , such that
'J(M) +--->~ 'JE(I), and vice versa. D

PROOF. The result follows from Theorems 4.35 and 4.31. •
The results presented above only hold for transparency-restricted sequential spec­

ifications. In [BCT08] we have established that we can have the correspondence for
all sequential specifications, if we step down to a weaker equivalence than branching
bisimilarity called contrasimilarity [Gla93, VMOl] . In this paper the correspondence
was formulated between sequential specifications and a finite-state process put in
parallel with a forgetful stack process, thus simulating, up to contrasimilarity, the
specifications using a special kind of pushdown automaton. We conjecture that the
proof in [BCT08] can be adapted to show that all sequential specifications can be
simulated, up to contrasimilarity, using our standard definition of the pushdown
automaton (according to the FSES interpretation). For this, we have to move the
handling of transparency from the stack to the finite control. This can be done by
replacing forgetful popping by non-deterministic popping using -r-transitions.

CONJECTURE 4.37. For every sequential specification E, with initial name I, there exists
a pushdown automaton M such that 'J(M) is contrasimilar with 'JE(I). D

4.2.2 Decidability

It is well-known that it is undecidable whether two context-free grammars generate
the same language up to language equivalence. Baeten, Bergstra and Klop have
shown in [BBK93] that it is decidable for normed processes defined by guarded
recursive BPA-specifications, which they consider to be the process-theoretic coun­
terparts of context-free grammars in Greibach normal form, using the finer-grained
equivalence of strong bisimilarity. First, several simplified proofs of the result
in [BBK93] were presented (see [Cau86, HS91, Gro92]), and then the result was
extended by Christensen, Hiittel and Stirling in [CHS95] to the class of all processes
definable by recursive BPA-specifications. Later it has been proved independently

-63-

4. PUSHDOWN SYSTEMS

by Bosscher, in [Bos97], and Srba, in [SrbOl], that the problem of deciding whether

two BPA0 -definable processes are strongly bisimilar can be reduced to the problem

of deciding whether two BPA-definable processes are strongly bisimilar. Both proofs

consist of reducing the problem of deciding whether BPA0 -definable processes are

strongly bisimilar to the problem of deciding whether BPA-definable processes are

strongly bisimilar. It follows that strong bisimilarity remains decidable if 0 is added

to BPA .
In this section we will consider the decidability of strong bisimilarity on TSPn

which is an extension of BPA0 with prefixing and, more importantly, the constant 1.

While we would like to have a decidability result for branching bisimilarity (prefer­

ably divergence-preserving), we still leave it as an open problem. However, since

the decidability of bisimilarity is still an interesting question, we extend earlier work

and consider the obtained result as a stepping stone. We reduce the decidability

problem to the problem of deciding whether BPA0 -definable transition systems are

bisimilar. This reduction is not trivial because the constant 1 is responsible for a

considerable increase of the expressiveness. We refer to [BLMTlO] for a study of

the increased expressiveness when the constant 1 is added to some well-known

process algebras. Recall the sequential specification from Example 4.27 which has

an associated transition system (see Figure 4.16) that has unbounded branching due

to the presence of the constant 1.

First, we argue that the proof of [CHS95] for BPA is not, in general, robust

for the extension with 1. Then, we prove that bisimilarity is decidable on the

subclass of transition systems definable by the earlier mentioned restricted sequential

specification, a class that properly includes the BPA0 -definable transition systems.

The proof by Christensen, Hiittel and Stirling

We argue that the decidability proof by Christensen, Hiittel and Stirling for BPA

in [CHS95] cannot easily be extended to TSPr. An important notion in their proof

is the notion of bisimulation base. Roughly, a bisimulation base is a binary relation '.R

on processes/ transition systems such that its congruence closure with respect to

sequential composition (i.e., the least equivalence on processes that contains '.R and

is compatible with sequential composition) is a bisimilarity. The crucial insight of

the proof is that for every finite recursive BPA-specification there exists a finite

bisimulation base, which consists of two parts:

1. The first part consists of all pairs (X, O with a name X and a sequences ~ of

names bisimilar to it. In a BPA-specification, all names have a positive norm,

so there can only be finitely many sequences of names~; with the same norm

asX.

2. The second part consists of all so-called indecomposable pairs, i.e., pairs (~, x) of

bisimilar sequences of names that cannot be (non-trivially) split up into smaller

pairs (~ 1 , X 1), . .. , (~ n, X n) such that ~ = ~ 1 · · · ~ n and X = X 1 · · · X n-

Clearly, the congruence with respect to sequential composition that is generated

by the set of all such indecomposable pairs by definition contains all decompos-

- 64 -

4.2. SEQUENTIAL SPECIFICATIONS

able pairs of bisimilar sequences of names. The argument that the collection of
indecomposable pairs is actually finite, is highly nontrivial.

In the original proof every name X has a positive norm, but now it can also have
norm 0. Consider for example the defining equation X ~ a X + I. We have that X <---+
X k for any k, so the number of pairs is no longer finite.

Due to the presence of I, the indecomposable pair (1 · X~, (a . I + I)X~) where
X ~ aX +I and~ can be any sequence, we have an infinite number of indecompos­
able pairs. Hence, the bisimulation base becomes infinite.

In [SrbOl], Srba uses a different approach that reduces the decidability of BPA0 -
definable processes to BPA-definable processes. Srba gives a reduction that replaces
the deadlocked process 0 in some specification by the name D with the defining
equation D ~ d · D and provides a relation between the original and translated process.
Using this bisimulation preserving translation relation between BPA0 and BPA and
reusing the previously mentioned result by Christian, Hi.ittel and Stirling for BPA, he
shows the decidability of bisimilarity for BPA0 .

In our setting, a straightforward reduction from TSPr-definable processes to
BPA0 -definable processes does not seem possible due to the extra expressive power
added by 1-summands. Note that replacing prefixing by sequential composition, and
replacing a 1-summand by a y'-summand for some fresh atomic action v' (the explicit
termination action) does not work in general because it may result in intermediate
y'-actions in a BPA0 -defined process that are impossible to relate to intermediate
termination in the original TSP'r -defined process.

EXAMPLE 4.38. Consider the following sequential specification:

X ~ a.l+l ,

Y ~ b . l.

Now, let X' ~ a + ,,/ and Y' ~ b be the translated versions for BPA0 . If we have that
some Z <---+ XY = a.b.l + b.l, then it should hold for our translation that Z' <---+ X'Y'
where Z' ~ a · b +b . However, X'Y' = a · b + ,,/ · b and here it is possible to execute
the /-action while Z' cannot. Obviously, they are not bisimilar. Also, the /-action is
meant to signal termination, but X'Y' can still execute the b-action after it. O

So, these intermediate y'-actions that pop up due to this kind of translation form
a problem. To ensure that these intermediate / -actions do not occur, we have
to consider a restricted set of sequential specifications. An obvious choice is the
transparency-restricted sequential specifications introduced in Definition 4.28 as they
will not have intermediate termination behaviour.

We divide the set of names N for some sequential specification into disjoint subsets
called the finitely normed names N fin = {X E N I X is normed} and the infinitely
normed names N 00 = N - N fin· We can further partition the set of finitely normed
names Nfin into the transparent finitely normed names Nfi~ and the opaque finitely
normed names Nfi~.

-65-

4. PUSHDOWN SYSTEMS

A useful property of the class of sequential specifications is that if a name has an
infinite norm then by definition we have to end up with another name that has infinite
norm after an action has been executed. As a result everything after an infinitely
normed name can be removed preserving bisimilarity:

if XE NOO.

Both this property and the above mentioned transparency-restrictedness leads us

to the fact that we can restrict ourselves from here on to states where the labels,

which are sequences of names, are elements of the set (Nfi~)*N00 u (Nfi~)*Nfi~ u (Nfi~) *
or using a more compact notation: { 1} u (Nfi~)*N. Recall that the empty sequence for

a sequential composition is denoted by 1.

Deciding strong bisimilarity

As mentioned before, the result by Srba in [SrbOl] involves a reduction from BPA0

to BPA . In this section we give a reduction from TSPr to BPA0 that preserves and
reflects bisimilarity defined by a transparency-restricted sequential specification E.

We recall the syntax of BPA0 and give the set of BPA0 -process expressions '.P(BPA0)

by the following abstract syntax:

P ::= o I a I N I P + P I P · P ,

where a ranges over the set of atomic actions A, and N ranges over the set of names N.

So, with respect to TSPr we have no constant 1 and prefixing. Note that Srba actually
uses the symbol o instead of 0 to denote the deadlocked process.

Because BPA0 has no explicit termination and prefixing, it has different opera­

tional rules. The structural operational semantics of BPA0 are given in Table 4.1
below.

p~p'

a ~ .,/ p · q ~p' · q

p~p' q~q'

p+q ~ p' p+q ~ q' p+q~.,/

(N ~ p) EE (N~ p) EE

N~p' N __E___, .,/

TABLE 4.1: Operational rules for a recursive BPA0-specification E (a E A T) .

-66-

4.2. SEQUENTIAL SPECIFICATIONS

We assume that the specification E is transparency-restricted and in sequential
normal form. Now, we reduce the decision problem to the problem of decidability of
bisimilarity in BPA0 as shown in [SrbOl] .

For the following proofs we fix a fresh action J such that J it- A. We define
A 1 =Au { J} and the translation function f : '.P(TSP,.)-> '.P(BPA0) as follows:

f(O) = O,

f(p +q) = f(p) + f(q) '

f(X) =X,

f(l)=J,

f(p · q)=f(p) ·f(q) ,

f(ap)={a ifp=l ,
· a · f (p) otherwise .

Thus, f simply replaces the 1-summands of each transparent name with a J­
summand and changes prefixes into sequential compositions.

If we apply f to the terms of the specification Ewe get the translated specification
E' = {X; ~ f(p ;) IX; ~ P; EE}. It can be easily seen that the translated guarded
recursive specification has the following GNF:

x~ L:a; · c;; (+ J) for allX E N.
iEJx

We introduce the variant of (strong) bisimilarity often used in conjunction with
BPA0 that does not take termination into account: let us write c; +-+r x iff (c;, x) is in
a binary relation '.R satisfying, for all a E A 1 , conditions 1 and 2 of Definition 2.4 (on
page 10).

Recall that the structural operational semantics given in Tables 2.1 and 4.1 are
actually parametrized by a specification E. For clarity we shall write --->£ for the
transitive relation and h for the termination predicate associated with E and --->£'
for the transitive relation associated with E' .

LEMMA 4.39. Given the specification E and the translated version E' the following holds
for every c;:

1. c; -E......E c;' iff c; ~E' c;' with a i- J,
2. c;h iff c; ~E' J. 0

PROOF . We prove both statements separately, first from left to right, then from right
to left.

1. => If c; -E......E c;' then there exist p, T/ and some name X that has the defining
equation with a summand a.c;; for some i E '.lx such that c; = pXTJ , X -E...... c;;
and c;' = /;;T/· Note that by transparency-restrictedness, p = 1 and thus c; =XTJ. Then, also in the translated specification X has a summand a· c;;
and hence I; = XTJ -E......E' /;;T/ = c;; .

{== If c; -E......E' c;' with a¥- J then, as in the previous case, c; =XTJ, where T/ may
be empty, but now X has a summand a· c;; for some i E '.lx . So !;' = /;;TJ ,
and similarly we have the summand a.c;; in the original defining equation
and hence c; = X T/ -E...... E c; T/ = c;'.

- 67 -

4. PUSHDOWN SYSTEMS

2. =::> Ifs !e, then due to transparency-restrictedness s consists of one transpar­

ent name X. This means that the defining equation of X has a 1-summand

and consequently the translated version has has a J-summand. Therefore

c; ~E' V·
~ If s ~£' J, then s = X for some name X. This means that the defining

equation of X has a J-summand and consequently the original version has

a 1-summand in E. Therefore, s !e- •

Using the properties proved in the lemma above, we can establish the decidability

result.

THEOREM 4.40. Let E be a transparency-restricted sequential specification and c;, x be

sequences of names reachable from some initial name of E. Then it is decidable whether

s<---->x . D

PROOF. Let E' be the translated recursive specification f (E). Because of [SrbOl] it is

decidable whether c; +-+1 x in E' . To be able to decide whether s +-+ x it suffices to

show that c; +-+ x in E iff c; +::!1 x in E' .

=> Suppose c; +-+ x. To establish that s +-+1 x it suffices to prove that the

relation +::!1 satisfies conditions 1 and 2 of Definition 2.4 (on page 10) for all

a E A .; and all s, x E N* . We will first show that condition 1 holds; the proof of

the satisfaction of condition 2 then follows symmetrically. For condition 1 we

distinguish two cases:

(a) Suppose a E A. If s ~£' .;-' and a f:- J then by Lemma 4.39(1) we have

s ~E c;' . Since s +-+ x in E, we also have x ~Ex' and c;' +-+ x' in E. So,
by Lemma 4.39(1) we also have X ~E' x' and s' +::::! x' in E.

(b) Suppose a = J . If c; ~E' J then by Lemma 4.39(2) we have c; k Since

s +-+ x in E also x !e and by Lemma 4.39(2) we have x ~E' J.

We have shown for all s, x in E that if the pair (s, x) is in the relation +-+, then
conditions 1 and 2 of Definition 2.4 hold and hence c; +-+1 x in E'.

~ Suppose s +-+1 x. To establish that s +::::! x it suffices to prove that the

relation +-+1 is a bisimulation meeting all conditions of Definition 2.4 for all

a E A and c;, x E N*. We distinguish three cases based on the conditions of

Definition 2.4:

1. If s ~E c;' then by Lemma 4.39(1) we have c; ~E' c;' with a f:- J.
Since c; +-+1 X in E', we also have X ~E' x' and c;' +-+1 x' in E' . So, by

Lemma 4.39(1) we also have X ~E x ' and s ' <-->1 x' in E' .

2. By an analogous argument as in the previous case.

3. If c; !£ then by Lemma 4.39(2) we have s ~E' J. Since c; +::!1 x in E' also

x ~E' J and by Lemma 4.39(2) we have x !E·

We have shown for any s, x in E that if the pair (s, x) is in the relation +--+/>

then all conditions of Definition 2.4 hold and hence s +--+ x. •

-68-

4.3. EXPLICIT INTERACTION

COROLLARY 4.41. Bisimilarity is decidable on transparency-restricted sequential speci­
fications. D

In future work, this decidability result could be extended to the decidability
of divergence-preserving branching bisimilarity. Preferably we will also find an
extension to decidability for the full class of sequential specifications.

4.3 Explicit Interaction

If we consider the definition of the pushdown automaton, we can discern two
components: the finite control and the stack memory. The latter of these two
components, the stack memory, seems to have a rather informal definition. In the
previous section we have seen that the stack, first given as a pushdown automaton
and pushdown transition system, can also be defined by a sequential specification. If
we put this specification in parallel with a specification representing the finite control,
we can make the interaction with the stack within a pushdown automaton more
explicit.

We first consider pushdown automata according to the FSES interpretation. We
show that we can translate the finite control of a PDA to a linear specification.
Once put in parallel with the sequential specification of the stack, we can define
all pushdown transition systems according to the FSES interpretation. Thereafter, we
shall consider the other direction.

Recall that transparency-restricted sequential specifications are simulated by
pushdown automata. Because we can subsequently give specifications for these
pushdown automata, consisting of a linear specification in parallel with the sequential
specification of a stack, we can say that every transparency-restricted sequential
specification can be defined by a linear specification in parallel with a stack.
See also [BCT08] for earlier work that investigated the correspondence between
sequential specifications and specifications of finite control in parallel with a stack.
The paper shows under what circumstances we can extend the set of pushdown
transition systems to incorporate transition systems with unbounded branching. A
(partially) forgetful stack is used to deal with transparent names on the stack. Note
also that the paper does not require the recursive specifications to be transparency­
restricted, but at the cost of using a weaker equivalence (namely contrasimulation)
in some cases.

We also cannot obtain the same correspondence result for pushdown automata
according to the FS interpretation. Following the reasoning as given in the proof
of Theorem 4.26 there exists no sequential specification for the always-terminating
stack. This is something that is required if we want to put finite control in parallel
with this specification and allow for termination whenever the finite control can do so.
(Clearly, the FS interpretation only puts termination conditions on the finite control,
in contrast with the FSES and ES interpretation that also put conditions on the stack.)
We will use a different approach and use a recursive TCPr-specification for the stack
that can always terminate. This, of course, comes at the cost of losing the link with
sequential specifications that we did have for the FSES interpretation.

-69-

4. PUSHDOWN SYSTEMS

4.3.1 According to the FSES Interpretation

We will show that, up to divergence-preserving branching bisimilarity, every push­

down automaton can be specified using the process theory TCPr. We do this by

showing, for any given PDA, the construction of a finite recursive TCPr-specification

that defines its behaviour. Our specification will consist of a linear specification of a

process that is a translated version of the finite control of the PDA, and a sequential

specification of stack memory. We shall prove that the parallel composition of these

specifications specifies a transition system that is divergence-preserving branching

bisimilar with the transition system associated with the PDA. We remark that we

actually only use TCP-r to arrange the communication between the linear finite

control process and the sequential stack process.
Below we will give a translation of the finite control of a PDA into a linear

specification Efc and then show that, combined with the sequential specification of

the stack process Es, the correspondence with the original PDA M holds. But first,

recall the sequential specification Es of the stack over '.D :

S ~ 1 + o!.1.S + L i?d.S)'. · o!d.S,
dE'D

s)'. ~ 1 + L i?d.S)'. · o!d .S)'. .
dE'D

Let M = (S,A,'.D,-+, l,!) be a pushdown automaton. By Theorem 4.8 we can

assume that M only has push and pop transitions. We can now define the linear

specification E10 capturing the finite control, i.e. the transition relation, of M. For

each s E S and d E '.D 1- we add the name Cs d . Each name Cs 1- has the following
defining equation: ' ·

def "'\'

cs,l_ = L..ia .ct ,d [+ lJsi,
(s ,a, 1- ,d , t)E~

which corresponds to the empty-test (push) transition and termination when the PDA

is in states and the stack is empty. Each name cs,d (d E '.D) has the following defining

equation:

cs,d ~ .L:a.i!d.Ct,e + L a. L o?e.Ct ,e ,
(s,a,d ,e d , t)E~ (s,a,d ,£, t)E~ eE'D.i

which corresponds, respectively, to the push and pop transitions when the PDA is in

state s and data element d is on top of the stack.

Note that the top of the stack is not on the stack but retained by the finite control

process.

THEOREM 4.42. For every pushdown automaton M according to the FSES interpretation

there exists a recursive TCP-r-specification EM and process expression p defined by a linear

specification such that 'J(M) +-+~ 'JEM ([p II S] ;,0
). D

-70 -

4.3. EXPLICIT INTERACTION

PROOF. We choose M = Efc U E5 , where Efc is constructed for M as described above.
We present some observations from which it is fairly straightforward to establish that
'J(M) <:::;~ 'JEuEs ([Cu_ II S J ;)· In our proof we abbreviate the process expression
S·i!dn.S· ·· i!d1 .S by Sd"· --d,, with, in particular, S, = S. (Recall the infinite specification
of the stack given on page 54.)

First, note that whenever 'J(M) has a transition (s, d) ____'!__, (t, E), then

a; ,o(Cs ,d II S,) ~ ai ,o CC L o?e.Ct,e) II S,) oH a; ,o (Ct ,l. II S,) .
eE1>_t

The abstraction operator -r; ,0 (_) will rename the transition labelled oU into a -r­
transition. So,

This -r-trans1t10n is inert in the sense that it does not preclude any observable
behaviour that was possible before the -r-transition. Such inert -r-transitions can be
omitted while preserving branching bisimilarity.

Second, note that whenever 'J(M) has a transition (s , d0 ~ (t, O with (
nonempty, say (=et;', then

a; ,o(cs,d II S() ~ ~a;,o CCr ,e II Sc) ,

and, since the second transition is the only step possible after the first a-transition,
the -r-transition resulting from applying -r;,0 (_) is again inert.

Third, note that whenever 'J(M) has a transition (s, dO ~ (t, ed(), then

a; ,o(cs,d II s() ~ __i!i_.a;,oCcr ,e II sd() ,

and again the -r-transition resulting from applying 'r;,0 (_) is inert.
Finally, note that whenever 'J(M) has a transition (s, E) ____'!__, (t, e), then

ai,oCCs,l. II S) ~ ai,oCCt ,e II S,) .

Only, single inert -r-steps are removed, no -r-loops are introduce nor removed.
Therefore, we have that divergence is preserved. •

Now, for the other direction. We can show that if we have a process defined by a
linear specification that communicates with a stack, we can find a PDA that simulates
the behaviour of the two specifications put in parallel.

THEOREM 4.43. For every linear specification E and linear process expression p there
exists a pushdown automaton M according to the FSES interpretation such that
'JEUEs ([p II s] i,o) '::::~ 'J(M). 0

PROOF. Let Ebe a linear specification and let p be a linear process expression. We
define a pushdown automaton M as follows:

- 71-

4. PUSHDOWN SYSTEMS

- The set of states, the action alphabet, and the initial and final states are the

same as those of the transition system 'JE(p) (which is a finite automaton).

- The data alphabet is the set of data elements 'D of the presupposed recursive

specification of a stack.

- Whenever s__E_,t in 'JE(p), and a-:/= i!d,o?d (d E 'D), thens~t and s~

t for all d E 'D;

- whenever s ~ t for some d E 'D in 'JE(p), then s -r[1-/dJ , t and s -r[e/deJ , t for

all e E 'D ;

- whenever s ~ t for some d E 'D in 'JE(p), then s ~ t.

We omit the proof that every transition of 'J£u£/ [p II S];) can be matched by a

transition in 'J(M) in the sense required by the definition of divergence-preserving

branching bisimilarity. •

We have seen in Section 4.2.1 that (transparency-restricted) sequential specifica­

tions can be simulated by a PDA. We have also seen above that each PDA can be

defined by a linear specification for the finite control of the PDA and a sequential

specification of stack memory, combined in a single specification that allows for

communication between both components. Indirectly, we have established that

each (transparency-restricted) sequential specification can be written as a linear

specification communicating with a stack. Therefore, we can consider the stack, with

its sequential specification, as the canonical sequential process.

COROLLARY 4.44. For every transparency-restricted sequential specification E and se­

quential expression p there exists a linear specification Efc and linear process expression q

such that 'JE(p) <-->t' 'JE1,uEs ([q II S] i,0). D

PROOF. The result follows from Theorems 4.35 and 4.42. •
The same result was obtained directly for opaque sequential specifications

and also for all sequential specifications but for a weaker equivalence, namely

contrasimulation, in [BCT08].

4.3.2 According to the FS Interpretation

If we want to make the interaction explicit in a pushdown automaton according to

the FS interpretation, we need a stack that can always terminate. As was mentioned

before, there is no sequential specification for such a stack. Instead, we present a

new stack process that can terminate regardless of its contents. This finite recursive

TCP-r -specification is inspired by the specification of a queue proposed by Baeten and

Bergstra in [BB88], which has in turn its origins in the CSP book by Hoare [Hoa85].

It is similar to the tape process that we will see later on in Chapter 6; the stack can

be seen as a one-sided tape of which we may only inspect and/or replace the top

element.

- 72-

4.3. EXPLICIT INTERACTION

DEFINITION 4.45. The recursive TCP-r -specification Esl of the always-terminating
stack over 'D, with initial name s;·0 , is defined as follows: j,p

s i,o ~ 1 + o!.l.si,o + "'"""" i?d . [ri,o d 11 s j·p] , j,p j,p L....J j,p 1,0
1
. p

dE'.D '

T;'0d ~ 1 + o!d."'"""" p?f.T;'°F + "'""""i?e.j!d .T
1
;'P

0e ~ L....J ~ L....J •
fE'.Dl. eE'.D

y i,o_j_ ~ 1 + o!.l.Ti,o_j_ + "'""""i?d .Ti,od'
hP hP L....J J~

d E'.D

Tj,pd~ l+o!d . "'"""" p?f.Tj,pr + "i?e.j!d .Tj,pe
1,0 L....J l,a' L....J 1,0

f E'.Dl. eE'.D

Tj,p_j_ ~ 1 + o!_l.Tj,p_j_ + "'""""i?d .Tj,pd.
l ,O l ,O L....J 1,0

dE'.D

(d E 'D),

(d E 'D),

Because this stack needs to be a drop-in replacement for our earlier defined
stack, it has the same interface: it also receives data elements that are pushed over
channel i, sends data elements that are popped over channel o, and can signal over
channel o if the stack is empty.

The first time the stack receives a data element, it splits into a top element
retaining the data element in parallel with the empty stack. From this moment on,
every time a data element is received, a new top element is split off "to the right" to
retain the data element that is being replaced by the newly received data element.
See Figure 4.21 for a diagram of the always-terminating stack process; depicted is
the state when a data element 1 has been pushed.

I . I j 1--------

I r;·~1 S i,o

L _ ' __ I p I_ - - - l:!:_ - - - -

FIGURE 4.21: Diagram of the always-terminating stack specification.

If a data element is popped from the left-most top element, all data elements
move one position to the left as well. See for example the following trace where data
elements 1 and 0 are pushed and then popped:

s i,o ~ [r;·00 11 s ;·0 J __!_?..!_.. [r;·01 II [rj·Po II s j·p] . J j,p j,p j,p j,p j,p 1,0 1,0 1,0 j,p

~ [r;·00 11 [rj,p_j_ II s1·PJ. J --2.!.Q.. [r;·0_J_ 11 [ri·P_J_ II si·PJ .] j,p 1,0 1,0 1,0 j,p j,p 1,0 1,0 1,0 j,p

At the end, we are left with two empty cells. However, it can easily be shown that

[Ti,o_j_ II Sj,p] <-+b"'- 5;'0 • Thus, the empty cells can be collapsed and removed. j,p 1,0 j,p j,p
We now reconsider the correspondence results we had for the FSES interpretation,

for the FS interpretation. If we go from FSES to ES, we drop the empty stack

-73 -

4. PUSHDOWN SYSTEMS

requirement; termination needs to happen if the finite control can terminate. We can

obtain our results by just replacing the terminating-on-empty stack by the always­

terminating stack defined above.

THEOREM 4.46. For every pushdown automaton M according to the FS interpretation

there exists a recursive TCPT-specification EM and process expression p such that

'J(M) +-+b 'JEM ([P II 5! J ;,) D

PROOF. We choose M = E1c u £5 1, where Etc is constructed for M as described in
Section 4.3.1. The result follows from Theorem 4.42 and the fact that we use E51

instead of E5 . •

Now, for the other direction.

THEOREM 4.47. For every linear specification E and linear process expression p there

exists a pushdown automaton M according to the FS interpretation such that

'JEuEsl ([p II s] i,o) +-+t 'J(M). D

PROOF. The result follows from Theorem 4.43 and the fact that we use E51 instead

of £5 • •

4.4 Conclusions

In this chapter we have investigated the classical correspondence result between

pushdown automata and context-free grammars. To be able to treat this result

in a process-theoretic setting, we have associated pushdown transition systems

with pushdown automata. In the literature [Sud88, Sip97, HMU06] two distinct

termination conditions for pushdown automata are considered: termination on
empty stack (ES) and on final state (FS). We have additionally considered termination

on both final state and empty stack (FSES). It is well-known that up to language
equivalence it does not matter which termination condition is used as they all yield
the same class. We can obtain the pushdown languages if we take the pushdown

transition systems up to language equivalence. Figure 4.22 gives a schematic

overview of the classical correspondence results.

1------ -- ----- --
PDA I

I
context-free

I Thm. 4.23 grammars
I

I
I

I p ushdown
, transition systems
I FS/ FSES/ ES
'- --- -----------

FIGURE 4.22: Classical correspondence results from automata theory.

If we reconsider all results up to (divergence-preserving) branching bisimilarity,

we get a much more contrived picture. First, we get different classes of pushdown

- 74-

4.4. CONCLUSIONS

transition systems if we take different termination conditions. The class according to
the ES interpretation is, up to divergence-preserving branching-bisimilarity, a proper
subclass of the class according to the FSES interpretation. Only if consider pushdown
automata that are initially terminating, then the class of pushdown transition
systems according to the ES interpretation coincides with the class according to the
FSES interpretation. The class according to the FSES interpretation is, also up to
divergence-preserving branching bisimilarity, a proper subclass of the class according
to the FS interpretation. Because of the class differences, we have considered the
correspondence results for the FSES and FS classes separately.

We have seen that in our process-theoretic setting context-free grammars can be
defined as finite recursive TSP-r-specifications, which we call sequential specifica­
tions. To obtain the correspondence between pushdown automata and sequential
specifications we have applied two restrictions. First, we only consider transparency­
restricted sequential specifications as a way to prevent unbounded branching.
Secondly, we ensure that the pushdown automata are pop choice-free, because it can
be shown that there exist non-pop choice-free pushdown automata for which there
is no sequential specification. If these two restrictions are applied, we can obtain a
correspondence.

Because transparency-restricted sequential specifications play an important role in
this chapter, we can wonder if we can decide if two sequential specifications have the
same associated transition system up to divergence-preserving branching bisimilarity.
We have shown that this is the case for (strong) bisimilarity, extending earlier work
for BPA- and BPA0 -specifications, which are specifications in subtheories of TSP-r .

We have chosen to translate A.-productions (or e-productions) in context-free
grammars by 1-summands in sequential specifications. This is mainly done to stay
in line with the previous chapter and allow for intermediate termination. However, a
different choice could have been to use -r -summands instead. In this case the resulting
specification language would always generate opaque sequential specifications and
thus have a full correspondence with pushdown automata according to the (FS)ES
interpretation.

From a process-theoretic perspective it makes sense to make the interaction in a
PDA explicit. We can do this by giving a linear specification representing the finite
control of the PDA and put it in parallel with a specification of a stack, allowing
communication over an input and output channel for pushing and popping. We have
first established this correspondence for pushdown automata according to the FSES
interpretation.

Figure 4.23 presents a schematic overview of the correspondence results for the
FSES interpretation from a process-theoretic point of view. Note that there is an in­
direct correspondence between transparency-restricted sequential specifications and
the explicit interaction. Because the stack can be defined by a transparency-restricted
sequential specification, and all transparency-restricted sequential specifications can
be given as a finite -state process communicating with this stack, the stack can be
considered as the canonical sequential process.

For the FS interpretation we have seen that there exist pushdown transition
systems that have no sequential specification. Hence, we lack a correspondence

- 75-

4. PUSHDOWN SYSTEMS

result in this case. Note that if we have a PDA that has a pushdown transition

system according the FS interpretation that can also be given according to the FSES

interpretation, we of course do have a correspondence as described above. The

pushdown transition system for the stack according to the FS interpretation also has

no sequential specification. Therefore, we resort to a TCPr-specification of the stack

to make the interaction explicit.
See Figure 4.24 for a schematic overview of the correspondence results according

to the FS interpretation. Note that, clearly, we also lack the indirect correspondence

result between sequential specifications and the explicit interaction.

4.4.1 Future Work

First of all, transparency-restrictedness is too strict. There are finite sequential

specifications that are not transparency-restricted but do not have unbounded

branching. It should be possible to find a syntactic requirement on sequential

specifications such that just a finite sequence of transparent names can be stacked.

On the side of the pushdown automata it is unknown if one can generate push­

down transition systems, up to branching bisimilarity, with or without divergence­

preservation, that have unbounded but finite branching. Additionally, we have also

not been able to establish that our result is optimal in the sense that a pushdown

process is definable by a sequential specification only if it is pop choice-free, although

we conjecture that this is the case.
In the previous chapter we have seen that the class of deterministic finite automata

accepts the same languages as the class of non-deterministic finite automata, but

forms a subclass with respect to branching bisimilarity. It is known that for pushdown

automata the languages accepted by deterministic PDAs is a subclass of the languages

accepted by non-deterministic PDAs. Intuitively, this is probably also be the case up to

branching bisimilarity. However, it would be worthwhile to define deterministic PDAs

in our framework and investigate this result using pushdown transition systems.

In [BCT08] we have shown that sequential specifications with unbounded

branching can have a correspondence, up to contrasimulation, with a finite-state

process communicating with a (partially) forgetful stack. These results could be split

up as follows: first a correspondence between sequential specifications and PDAs

with a special kind of termination, namely on final state and when the stack contains

zero-or-more transparent data elements, and then a correspondence between these

PDAs with a special kind of termination and a finite control put in parallel with the

(partially) forgetful stack.

- 76-

4.4. CONCLUSIONS

PDA sequential
specifications i pop choice- ~: +----_,__T_h_m_._4_._3_5 __ ~---i.:--t-iaiispa~e-ricy------

: __ ~~~- - -- -------. ~ -~~~~~~~~~~- __ :_ -- ---Thm. 4.31

Thm. 4.42 Thm. 4.43

push down
transition systems 1

FSES

T

explicit
interaction
[p II Sh,;,·--------

.·

FIGURE 4.23: Correspondence results for the FSES interpretation.

------------, I

PDAs I Thm. 4.26 I sequential I

I I specifications
I I

I I
I I
I I
I I
I I
I I
I I

' ... ------
____________ ..

I I

pushdown I I
I

hm. 4.46 Thm. 4.47 transition systems I

I I

FS I I
I I - - - - -

__________________________ ..

explicit
interaction
[P II s1

] ;,0

FIGURE 4.24: Correspondence results for the FS interpretation.

- 77-

Chapter 5

Parallel Pushdown Systems

In this chapter we discuss systems that are a variation on the pushdown systems
described in the preceding chapter. Pushdown systems are based on the notion of a
pushdown automaton, consisting of finite control and a stack memory. On the stack
memory data elements are stored in a sequence and one can only inspect, retrieve,
or stack on the top element. In this chapter, we will modify the memory to enable
the retrieval of a specific element regardless of its place in the sequence: we let go
of the ordered structure and view the sequence of data elements as commutative,
i.e. all elements are stored "in parallel"; the memory effectively becomes a bag. We
call a pushdown automaton where the stack memory is replaced by a bag memory a
parallel pushdown automaton. This notion was originally defined by [Mol96] for the
class of parallel labelled rewrite systems, i.e. rewrite systems modulo commutativity
of concatenation. It has also been called "bag automaton" and "multiset automaton",
but we prefer the original name, as it emphasises the relation to pushdown automata,
its parallel nature, and not the type of memory that has been used to define or to
implement it.

In Section 5.1 we define the parallel pushdown automaton and its associated
transition systems. In the definition of the parallel pushdown automaton, the stack
memory is replaced by the bag memory. We shall discuss the consequences of
this adaptation. Then, similarly as in the previous chapter, we shall investigate
different termination conditions: termination on empty bag (EB), on final state
(FS), and on both final state and empty bag (FSEB) . We will see that the class of
pushdown transition systems with termination on empty bag is, up to divergence­
preserving branching bisimilarity, a proper subclass of the class with termination on
both final state and empty bag. Furthermore, the class with termination on both
final state and empty bag is incomparable to the class with termination on final state,
again up to divergence-preserving branching bisimilarity. Note that these results are
different from what we have seen for pushdown automata in Section 4.1.1 (see also
Figure 4.14 on page SO for the overview).

In Section 5.2 we revisit the correspondence between pushdown automata and
context-free grammars, but now in our parallel/bag-oriented setting. We define our
commutative context-free grammars as finite recursive BCP-r -specifications, which

- 79-

5. PARALLEL PUSHDOWN SYSTEMS

we call basic parallel specifications. Here, the adjective "basic" refers to the fact that

we do not allow for communication between parallel components. We will show

that opaque and transparent basic parallel specifications can be simulated by parallel

pushdown automata, according to the FSEB and FS interpretation respectively. In the

case of a specification that is not completely opaque nor transparent we will introduce

a new termination condition to the parallel pushdown automaton: termination on

both final state and transparent bag (FSTB). The bag is considered to be transparent

if it only contains data elements that are marked as transparent. We show that for

this termination condition we can simulate any basic parallel specification with a

parallel pushdown automaton. For the other direction it was shown by Christensen

in [Chr93] that only single-state parallel pushdown automata can be given, up to

language equivalence, by a basic parallel specification. We will restrict ourselves to

this small subclass of automata and show how they can be defined by basic parallel

specifications.
We also investigate the decidability of strong bisimilarity on processes defined

by basic parallel specifications. We obtain our results by extending earlier results

for recursive specifications over BPP, which is a subtheory of BC Pr. Christensen,

Hirshfeld and Moller proved in [CHM93] that bisimilarity is decidable on processes

definable in BPP . The bulk of their proof consists of defining a sound and complete

tableau proof system for proving whether two BPP-definable processes are bisimilar.

In this section we adapt their tableau proof system with the constant 1 to prove

decidability of bisimilarity on processes definable by a basic parallel specification.

We find that the adaptation requires a careful treatment of the distinction between

successful and unsuccessful termination, but it does not result in the kind of diffi­

culties we encountered in the case of sequential specifications. In Section 4.2.2 we

only obtained a decidability result for a subclass of the sequential specifications: the

transparency-restricted sequential specifications. We shall prove that our extension

of the original decidability result for recursive BPP-specifications holds for all basic

parallel specifications.
In Section 5.3 we make the communication between the finite control and the bag

in a parallel pushdown automaton explicit. We show that every parallel pushdown

automaton can be defined by a finite recursive TCPr-specification consisting of a

linear specification representing the finite control and a specification of a bag process.

Depending on the chosen termination condition we use a variant of the bag process

defined by a basic parallel specification. The bag may therefore be considered as the

canonical process for this class of specifications.
Some material in this chapter is inspired by the following publication:

[BCT09] J . C. M. Baeten, P. J . L. Cuijpers, and P. J. A. van Tilburg. "A Basic Parallel

Process as a Parallel Pushdown Automaton". In: Proceedings of EXPRESS

2008. Ed. by D. Gorla and T. Hildebrandt. ENTCS 242. Elsevier, 2009,

pp. 35-48.

-80-

5.1. PARALLEL PUSHDOWN AUTOMATA

5.1 Parallel Pushdown Automata

Before we start with the definition of the parallel pushdown automaton, we recap the
notion of multisets and introduce the notation used in this chapter.

A multiset over some set of elements X, denoted by M(X), is a function from X
to the natural numbers N. For a multiset µwe write µ(a)= n when the element a
occurs n times inµ. For two multisets µ, v we writeµ l±J v to denote union of multisets
such that(µ l±J v)(a) =µ(a)+ v(a). We denote the difference of multisets µ - v such
that(µ - v)(a) =µ(a) - v(a) under the assumption that µ(a) 2: v(a). Furthermore,
we use a E µ to denote the statement that µ(a) 2: 1, and µ ~ v to denote that
µ(a) :S v(a) for all a. The multiset 0 is the empty multiset, i.e. 0(a) = 0 for all a. If the
elements of a multiset are enumerated, they are written in between double brackets,
e.g. [a, c, a, b], analogous to set element enumeration. The singleton multiset is
denoted by [a] .

In the literature, a multiset is also often referred to as a bag. To avoid confusion,
we use the term "multiset" to refer to the mathematical object described above and
the term "bag" to refer to the type of memory that stores a multiset.

We use a definition of the parallel pushdown automaton that is very similar to
the definition of the pushdown automaton (Definition 4.1 on page 39). The main
difference is the implicit replacement of the stack memory by the bag memory and
subsequently the usage of multisets of symbols instead of strings.

Interestingly, there is more to the replacement of the stack memory by the bag
memory. First of all, in the case of the pushdown automaton, transitions can be
taken based on the current state and top element of the stack. Since there is no
fixed order in the bag memory, it does not have a top element; it is possible to
remove any element. (Note that, in the case of the bag, we talk about inserting and
removing, rather than pushing and popping.) So, transitions in a parallel pushdown
automaton are taken based on the current state and whether some data element
d E 'D is available in the bag. Secondly, when the stack is empty a pop of the top
element is not possible. Due to its sequential structure, stack memory can been easily
equipped with an empty-test: it returns a special symbol (.1) if it is empty when
popped. We choose not to equip the bag memory with an empty-test. We will later
see that if if we want to be able to define the bag by means of the parallel operator,
it has no sequential structure; it cannot tell by itself if it is empty. The only way
to check that it is empty would be to try to remove each type of data element and
count. Thirdly, recall that pushdown transitions traditionally consist of an action, a
removal and an insertion. However, since in case of parallel pushdown transitions
removals are impossible when the bag is empty, which we cannot determine, we
should allow for pushdown transitions without removal. Therefore, we augment the
set of data elements 'D with the special symbol * to signify that we do not remove a
data element from the bag, assuming that * fj. 'D; we denote the set 'Du { * } of bag
symbols by 'D* .

Taking these considerations into account, we define the parallel pushdown
automaton - inspired by Mailer's definition in [Mol96] - as follows.

-81 -

5. PARALL EL PUSHDOWN SYSTEMS

DEFINITION 5.1. A parallel pushdown automaton (PPDA) M is defined as a six-tuple

(S,A, 'D, -+, i, !) where

1. S is a finite set of states;

2. A a finite set of actions;

3. 'D a finite set of data;

4. -+ ~ S x A r x 'D. x M('D) x Sis an A r x 'D. x M('D)-labelled transition relation
on S,

5. i ES is the initial state, and

6. ! ~ S is the set of final states.

Similarly to Definition 4.1 (on page 39), if (s,a ,d,µ , t) E -+,we write s a [d /µJ, t.

But now the intuitive meaning of this transition is that if the parallel pushdown
automaton M is in state s and can remove a data element d from (anywhere in)

the bag, then it may do so while performing the action a, replacing datum d by the
multiset of dataµ and moving to state t . In the case that d = *, we have a transition
of the forms~ t, which means that if Mis in states, it can insert the multiset
of data µ into the contents of the bag while performing the action a and moving to
state t without inspecting or taking anything from the bag.

In the previous chapter we discussed different termination conditions of the
pushdown automata in Section 4.1.1 and compared the mutual relation of the classes
of pushdown transition systems, up to (divergence-preserving) branching bisimilarity,
according to the ES, FSES and FS interpretation. In this chapter we have the
analogous notions for PPDAs with termination on empty bag (EB) , final state and
empty bag (FSEB), and termination on final state (FS).

EXAMPLE 5.2. Assume that A = {a, b, c } and 'D = { 1 } . The state-transition diagram
in Figure 5.1 specifies a parallel pushdown automaton that can perform a-actions
while inserting a data element 1 in the bag for each a-action. When a data element 1
is available in the bag, the parallel pushdown automaton can, in both states, perform
a b-action while removing this data element. Only after the c-action is performed,
the interleaving of inserting and removing of the data element 1 stops and only the
choice to remove and execute the b-action remains. For clarity, the set of data is
confined to only one element.

a[•/ [l])

~
b [l / 0] b [l / 0]

FIGURE 5 .1: An example of a parallel pushdown automaton.

Observe that this parallel pushdown automaton is nearly the same as the example
of a pushdown automaton in Figure 4.18 (on page 60) that is not pop choice-free.
The only minor difference is that the transitions s a[_l_/ [i]J , sands a [l / [ll]J, s, of

-82-

5.1. PARALLEL PUSHDOWN AUTOMATA

which the first uses the empty-test of the stack which is unavailable for the bag, are
replaced by the transitions a[•/[I] J, s, an insert transition that does not inspect nor
take anything from the bag.

If we disregard these minor difference, we can see that if 'D consists of one data
element, more specifically if only one type of data element is inserted, then the class
of pushdown automata coincides with the class of parallel pushdown automata. This
is because a multiset over a set of one element is equal in use to a set or sequence.

Depending on the adopted acceptance condition, the parallel pushdown automa­
ton in Figure 5.1 accepts the language { wcw' I w E {a,b}*, w' E {b}* /\ # 0 (w) + 1 2:::
#b (w) + #b(w')} (FS), or the language { wcw' I w E {a,b }*, w' E {b }* /\ # 0 (w) + 1 =
#b(w) + #b(w')} (FSEB), and for EB we get the same language as for FSEB but it
additionally accepts the empty word. O

To formalise the intuitive behaviour of pushdown automata, we associate with
every PPDA M a transition system 'J(M). For the states of this associated transition
system we use configurations as defined as follows.

DEFINITION 5.3. A configuration of a parallel pushdown automaton M is a pair (s , µ)
consisting of a states ES, and bag contents (multiset) µ E M('D). £::,.

The associated transition system semantics of PPDAs defines an Ar-labelled tran­
sition relation on configurations such that a PPDA-transition s a [d/µJ , t corresponds
with an a-labelled transition from a configuration consisting of the PPDA-state s and
bag contents [d] l±J v, to a configuration consisting of the PPDA-state t and the bag
contentsµ l±J v, i.e. the original bag contents with the data element d replaced by the
multiset µ .

DEFINITION 5.4. Let M = (S,A, 'D,-+, i, D be a parallel pushdown automaton. The
transition system 'J(M) associated with M is defined as follows:

1. the set of states of 'J(M) is the set of configurations S x M('D);
2. the transition relation of 'J(M) satisfies

a) (s, [d] l±J v) ~ (t,µ l±J v) iff s a[d/µJ , t for all s,t E S, a EA"" d E 'D,
µ , v E M('D), and

b) (s,v)~(t,µi±Jv)iffs~t;
3. the initial state of 'J(M) is CT, 0); and
4. for the set of final states ! we consider three alternative termination conditions :

a) (s,v)! in 'J(M) iffs! (the FS interpretation),
b) (s, v)! in 'J(M) iff v = 0 (the EB interpretation), and
c) (s ,v)! in 'J(M) iff s! and v = 0 (the FSEB interpretation).

A transition system is a parallel pushdown transition system (according to the
FS/ EB/FSEB interpretation) if it is associated with a PPDA (according to the same
interpretation) . £::,.

This definition now gives us the notions of parallel pushdown language and
parallel pushdown process.

- 83 -

5 . PARALLEL PUSHDOWN SYSTEMS

DEFINITION 5.5. A language accepted by a parallel pushdown transition system is

called a parallel pushdown language.
A parallel pushdown process (according to the FS/ FSEB/ EB interpretation) is a

divergence-preserving branching bisimilarity class of transition systems containing

a parallel pushdown transition system. 6.

EXAMPLE 5.6. Recall the example PPDA in Figure 5.1. The trans1t1on system

associated with this PPDA (according to the FSEB interpretation) is shown in

Figure 4.19 (on page 60). O

Due to the presence of the special symbol * in PPDA transitions, the notion

of insert and remove transitions differs slightly from the notions of push and pop

transitions for a PDA.

DEFINITION 5. 7. Let s, t E S be states of some parallel pushdown automaton M. An

insert transition is a transition of the form s a(•/[d]J , t (d , e E '.D); a remove transition

is a transition of the forms~ t (d E '.D). 6.

THEOREM 5.8. For every PPDA M there exists a PPDA M ' that uses only insert and

remove transitions such that 'J(M) ~ 'J(M'). D

PROOF. It is easy to see that limiting the set of transitions to insert and remove

transitions only in the definition of a parallel pushdown automaton yields the

same notion of a parallel pushdown transition system up to divergence-preserving

branching bisimilarity:

1. Eliminate a transition of the form s ~ t by adding a fresh state s' , replacing
the transition by two transitions s a [•/ [d]J , s' T[[d]/0J , t (with d some arbitrary

element in '.D , assuming that '.D -:j:. 0).

2. Eliminate a transition of the form s ~ t , where µ = [d1] l±J • • • l±J [dn]

(n > 1) for some randomly picked order of data elements, by adding new states

s2 , . .. ,sn and replacing the transitions~ t by the sequence of transitions

3. Eliminate a transition of the forms a[d /µ J , t, where µ = [d1] l±J • • • l±J [dn]

(n 2: 1) for some randomly picked order of data elements, by adding new states

s 1 , • •• , sn and replacing the transition s a [d /µ J , t by transitions s ~ s 1 and

the sequence of transitions

Observe that we only get a finite number of additional inert '!'-transitions in the

associated transition system. •

Analogously with the stack of a PDA, the bag of a PPDA can also be defined by a

parallel pushdown automaton. Given the finite set of data '.D, the bag has an input

- 84 -

5 .1. PARALLEL PUSHDOWN AUTOMATA

channel i over which it can receive elements of '.D and an output channel o over which
it can send elements of '.D.

The bag is defined by a parallel pushdown automaton with one state i (which is
both initial and final) and the transitions i i?d[•/ [d]J, i and i o!d[d/01, i for all d E '.D.
The associated transition system according to the (FS)EB interpretation of the bag
over '.D = { 0, 1} is shown in Figure 5.2. Put in contrast with the pushdown transition
system with the stack (see Figure 4.3 on page 43), note the absence of the empty test
and that we have a grid rather than a tree.

,
' , ,

........... .:._, ~' "

,
' , ,

........:_, ~' ... ,,,.,;

FIGURE 5.2: Bag over '.D = { 0 , 1 }.

If we want to model the bag that always terminates, i.e. that terminates regardless
of its contents, we can use the PPDA specified above but then consider the associated
transition system according to the FS interpretation. This transition system will be
isomorphic with the transition system in Figure 5.2 but each state is final.

5.1.1 Termination Conditions

Recall the results of the differences between classes of pushdown transitions systems
according to the FS, FSES and ES interpretations shown in the previous chapter. (See
Figure 4.14 on page 50 for the overview.) We shall now investigate the relation
between the different classes of parallel pushdown transition systems according to
the FS, FSEB and EB interpretations.

FS and FSEB

In the case of the classes of FSEB and EB we can obtain similar results as we have for
FSES and ES.

THEOREM 5.9. For each parallel pushdown transition system according to the EB
interpretation there is, up to divergence-preserving bisimilarity, a parallel pushdown
transition system according to the FSEB interpretation. D

PROOF. Let T be the parallel pushdown transition system associated with some
PPDA M according to the EB interpretation. Let M' be the PPDA obtained from M
by declaring all its states final. Then T is isomorphic with the transition system
associated with M' according to the FSEB interpretation. •

-85-

5. PARALLEL PUSHDOWN SYSTEMS

In the other direction we have a result similar as in Example 4.10 (on page 44):

transition systems associated with parallel pushdown automata that are not initially

terminating cannot be divergence-preserving branching bisimilar with any pushdown

transition system according to the EB interpretation.

EXAMPLE 5.10. There exists a pushdown transition system according to the FSEB

interpretation such that there is no pushdown transition system according to the EB

interpretation that is branching bisimilar with it.
Consider the parallel pushdown automaton M in Figure 5.3. Observe that the

initial state of this PPDA is not a final state.

a [*/1] b[l / 0]

0 hr1 1~1 0
~

FIGURE 5.3: A parallel pushdown automaton that is not initially terminating.

The associated transition system 'J(M) according the FSEB interpretation (see

Figure 5.4 below) does not have a initial state which is also final.

a a a
(s, [1 , 1, 1]) - ---+-(s, [l]) r-----..(s, [l , l])

b b

b b b
14------<(t, [l])----< (t, [1 , 1])

FIGURE 5.4: The transition system associated with the PPDA that is not

initially terminating according to the FSEB interpretation.

Because the bag of a PPDA is empty in the initial state by definition, every

transition system associated with a PPDA according to the EB interpretation has

an initial state which is also a final state. Therefore, there cannot exist a parallel

pushdown transition system according to the EB interpretation that is branching

bisimilar to the parallel pushdown transition system in Figure 5.4. o

For parallel pushdown automata that are initially terminating, we have the same

result as for pushdown automata in Example 4.11 (on page 45). The construction

described in the proof of that theorem uses a dummy symbol 0 to control the moment

the stack becomes empty. This way it is only allowed to go from a final state where the

stack would have been empty to a branching bisimilar, but not divergence-preserving

branching bisimilar, state where it really becomes empty. We use a similar technique

for parallel pushdown automata, with two differences: we do not have to take the

empty-test into account, and we cannot ensure that the bag is really empty because

we can reach and remove the dummy symbol at any time. This leads to a slightly

simpler construction.

-86-

5.1. PARALLEL PUSHDOWN AUTOMATA

THEOREM 5.11. For each parallel pushdown transition system according to the FSEB
interpretation associated with a PPDA that is initially terminating, there is, up to
branching bisimilarity, a parallel pushdown transition system according to the EB
interpretation. D

PROOF. Let M = (S,A, 'D,---+, j, l) be some parallel pushdown automaton that is
initially terminating. We shall modify M such that the transition system associated
with the modified parallel pushdown automaton according to the EB interpretation
is branching bisimilar to the transition system associated with M according to the
FSEB interpretation. We define the modified parallel pushdown automaton M' =
(S',A, 'D 1

,---+
1

, i', 0) as follows:
1. S' is obtained from S by adding a fresh initial state i', and also a fresh states!

for every final state s E l;
2. 'D' is obtained from 'D by adding a fresh dummy symbol 0,
3. ---+

1 is obtained from ---+ by

a) adding a transition (i', -r, *, [0], i),
b) adding transitions (s,-r,0,0,s!) and (s!,-r,*, [0],s) for every s El.

Note that the modification of M only introduces inert -r-transitions in the transition
system associated with M'. We leave it to the reader to verify that the relation

'.R = { ((i,0),(i',0))} u { ((s,µ),(s,µ l±J [0])) Is ES,µ E M('D)} u

{ ((s,µ),(s !, µ)) Is El,µ E M('D)}

is a branching bisimulation between the transition system associated with M accord­
ing to the FSEB interpretation and the transition system associated with M' according
to the EB interpretation. •

This modification introduces divergence, as it is possible to infinitely often remove
and reinsert the dummy symbol. For PDAs we were able to modify the construction
using the empty-test to obtain a result that also preserved divergence, as shown
in Theorem 4.12 (on page 46). As we do not have the empty-test in PPDAs, we
conjecture that the analogous result for PPDAs does not hold.

CONJECTURE 5.12. There exists no parallel pushdown transition system according to
the EB interpretation that is divergence-preserving branching bisimilar with the parallel
pushdown transition system according to the FSEB interpretation associated with the
PPDA in Figure 5.3. D

FSEB and FS

For classes of parallel pushdown transition systems according to the FS and FSEB
interpretation we have a slightly different result than for the classes of pushdown
transitions systems according to the FS and FSES interpretation: FS and FSEB are
incomparable even up to branching bisimilarity.

-87-

S. PARALLEL PUSHDOWN SYSTEMS

EXAMPLE 5.13. As an example consider the parallel pushdown automaton shown

in Figure S.S. (This example is the parallel pushdown version of the pushdown

automaton in Figure 4.11 on page 49.)

a[*/l]

%
b[l / 0]

FIGURE 5.5: The counter parallel pushdown automaton.

Let us now assume that there exists a parallel pushdown automaton M that has

an associated transition system according the FS interpretation that is branching

bisimilar with the associated transition system according to the FSEB interpretation

shown in Figure S.6 below. Let the b-norm of a configuration be the number of

b-transitions that can be performed, without performing intermediate a-transitions,

until termination can occur.
a a a a

... -- -- -

b b b b

FIGURE 5.6: The transition system associated with the automaton of Fig-

ure 5.5 according to the FSEB interpretation.

Because the transition system associated with M is infinite, we can say, without

loss of generality, that there exists a state s of M that is infinitely often revisited when

performing a-transitions without intermediate b-transitions. Now, let us consider

this infinite sequence of configurations with states. Dickson's Lemma (see [Dic13])

implies that for every infinite sequences of vectors of natural numbers, we have that

there exist indices i and j such that x; ~ xj in a point-wise fashion. Because we

can consider multisets as vectors of natural numbers, it follows that there are two

configurations (s,µ) and (s,v) in 'J(M) such thatµ ~ v. (E.g. let v beµ l±J K.) Let

the b-norm of the configuration (s, µ) be n and let m be the number of a-transitions

necessary get from (s , µ) to (s,v).

1----.;(s, µ l±J K)

FIGURE 5. 7: Schematic overview of an attempted counter PPDA using the FS

interpretation.

However, the b-norm of the configuration (s , v) is also n, because the automaton

can go to some terminating state t from state s using only bag contents µ. This

-88-

S.1. PARALLEL PUSHDOWN AUTOMATA

should be m + n if it was branching bisimilar with the associated transition system in
Figure S.6. See Figure S. 7 for a schematic overview of what happens if we try to use
the FS interpretation to count.

Hence, there exists no PPDA that has an associated transition system according
to the FS interpretation that is branching bisimilar with the associated transition in
Figure S.6. 0

In the other direction we have a result similar as in Example 4.lS (on page 49).

EXAMPLE 5.14. Reconsider the counter PPDA depicted in Figure S.S. The associated
transition system according to the FS interpretation is the same as for the pushdown
version (see Figure 4.12 on page SO). The reason that there is no parallel pushdown
transition system according to the FSEB interpretation follows the same argument
as in Example 4.15: a parallel pushdown transition system according to the FSEB
interpretation has finitely many terminating states, for the PPDA has only finitely
many states and the bag needs to be empty, while a parallel pushdown transition
system according to the FS interpretation can have infinitely many. O

The following mutual relations between the classes up to (divergence-preserving)
branching bisimilarity have been established. (See Figure 5.8 for a schematic
overview. Note that in the diagram FSEBit stands for the class of transition systems
according to the FSEB interpretation associated with initially-terminating PPDAs.
Also note that, because the PPDA in Example 5.13 is initially terminating, the example
also implicitly shows that EB i FS and therefore the arrow is drawn from EB.)

FSEB

EB

z
~

FS
I'=!~, I '=!b

FSEB % EB
EB ~ FSEB

FSEBi' ~ EB

(FS)EB % FS
FS % FSEB

Example 5.10
Theorem 5.9

Theorem 5.11 (up to '=!b only)

Example 5.13
Example 5.14

FIGURE 5 .8 : Overview of the different classes of parallel pushdown transition
systems.

COROLLARY 5.15. The class of parallel pushdown transition systems according to the EB
interpretation is a proper subclass, up to divergence-preserving branching bisimilarity, of
the class of parallel pushdown transition systems according to the FSEB interpretation.

The class of parallel pushdown transition systems according to the FSEB interpreta­
tion is incomparable with, up to (divergence-preserving) branching bisimilarity, the class
of parallel pushdown transition systems according to the FS interpretation. D

-89-

5. PARALLEL PUSH DOWN SYSTEMS

Not depicted in Figure 5.8 is the fact that for pushdown transitions that are

initially terminating, the class according to the FSEB interpretation is the same, up to

branching bisimilarity, as the class according to the EB interpretation.

Note that, had we equipped the bag memory with an empty-test, we would have

gotten the same picture as Figure 4.14 on page SO. A similar construction as in the

proof of Theorem 4.14 could then show that the class of parallel pushdown transition

systems according to the FSEB interpretation is, up to divergence-preserving branch­

ing bisimilarity, a proper subclass of the class according to the FS interpretation.

Also a similar construction as the proof of Theorem 4.12 could then show that the

class of parallel pushdown transition systems according to the FSEB interpretation

associated with initially-terminating PPDAs is, up to divergence-preserving branching

bisimilarity, equal to the class according to the EB interpretation.

5.2 Basic Parallel Specifications

In Section 4.2 we have seen the sequential process expressions and specifications,

which were expressions and finite recursive specifications over TSP,. . If we replace

the sequential composition in TSP,. by parallel composition we get the subtheory

BCP,,. (Basic Communicating Processes) of TCP,,. . We can look upon this specification

language as the process-theoretic counterpart of a commutative version of the

context-free grammars. We assume that the communication function y is everywhere

undefined. This class of specifications is an extension of BPP (Basic Parallel

Processes), introduced by Bergstra and Klop in [BK85] and more thoroughly studied

by Christensen in [Chr93]. In [SrbOl], Srba extended BPP with deadlock. Here, we

will extend it further with the constant 1.

DEFINITION 5.16. A basic parallel specification over some finite set of names N

is a finite recursive BCP,,. -specification, i.e. a recursive specification over N in

which only the constructions 0, 1, N (N E N), a._ (a E A ,,.), _ II_ (with an

undefined communication function) and _ + _ are used to build basic parallel process

expressions. 6.

EXAMPLE 5.17. The process expression N defined in the basic parallel specification

N~a.(Nllb.l)+c.l

specifies the parallel pushdown transition system according to the FSEB interpreta­

tion in Figure 4.19 (on page 60), which is associated with the parallel pushdown

automaton in Figure 5.1. <)

Our basic parallel specifications can be brought into Greibach normal form.

We can define a normal form for basic parallel specifications if we instantiate

Definition 2.19 (on page 19) with the sequence of names interpreted as a parallel

composition of names.

-90-

5.2. BASIC PARALLEL SPECIFICATIONS

DEFINITION 5.18. A basic parallel specification E is in basic parallel normal form if
each defining equation of name NE N is of the following form:

N~ :L>i · ~i (+ 1) .
iE~N

In this form, every right-hand side of every defining equation consists of a number of
summands, indexed by a finite set 'JN (the empty sum is O) , each of which is either 1,
or of the form a;.~; with a; EA,. and ~; a parallel composition of names; the empty
parallel composition is denoted by 1. !:::.

All basic parallel specifications can be brought in basic parallel normal form. For if
we disregard the commutative nature of the parallel composition, we essentially have
a sequential specification, i.e. a context-free grammar, for which it is well-known that
they can be brought in sequential normal form.

PROPOSITION 5.19. For each basic parallel specification E and basic parallel process
expression p there exists a basic parallel specification in basic parallel normal form E'
such that 'JE' (p) <:::!t° 'JE(p). D

We can associate transition systems with basic parallel specifications according to
the operational rules in Table 2.1 (on page 15). This gives us also the notion of basic
parallel process.

DEFINITION 5.20. A basic parallel process is a divergence-preserving branching bisim­
ilarity class of labelled transition systems containing a transition system associated
with a basic parallel specification and basic parallel process expression. !:::.

Basic parallel processes were originally defined by Christensen in [Chr93] as the
class of processes over a signature including the terminated process, action prefixing,
choice and parallel composition. In this thesis we also allow intermediate termination
and deadlock.

5.2.1 Correspondence

Example 5.17 already suggests a correspondence between the transition systems
associated with basic parallel specifications and parallel pushdown transition systems.
We shall investigate the exact nature of this relation in the rest of this section.

Let us first consider a prominent PPDA or parallel pushdown transition system
that can be defined by a basic parallel specification. Recall the parallel pushdown
transition system according to the (FS)ES interpretation of a bag shown in Figure 5.2.

The following infinite recursive specification Er:;' specifies, for the multiset µ, the
behaviour of the process Bµ modelling a bag with as contents the multiset of data
elements µ that receives input over channel i, i.e. when data is inserted, and sends
output over channel o, i.e. when data is removed. For the empty bag, we have:

B0 ~ 1 + L: i?d.B [d] ,
d E'D

- 91-

5. PARALLEL PUSHDOWN SYSTEMS

and for every non-empty multiset µ E M('.D):

B ~~ 'dB ~ ·7 B
µ- L.Jo . · µ -[d] + L.J i.e. µ W[e] ·

dEµ eE '.D

However, we would like our bag to have a finite version of this specification to

obtain a basic parallel specification.

DEFINITION 5.21. The following basic parallel specification defines a bag that can

terminate when it is empty:

Bi,o ~ 1 + L i?d.(Bi,o II o!d.1) '
d E'.D

which has the same associated transition system, up to isomorphism, as the one

shown in Figure 5.2; we refer to this specification of a bag over '.D as Ea. !:::,.

It can be shown by RSP that the infinite and finite specification yield the same

bag process. For the proof we refer to [BW90, Theorem 3.5.3]. Note that the proof is

without 1-summands, but it can easily be extended.

LEMMA 5.22. We have that B0 <::::ff' Bi,o· D

Note that only the bag PPDA according to the FSEB interpretation is given by

the basic parallel specification above. If we consider the bag PPDA according to the

FS interpretation, we get the bag that can always terminate, i.e. it can terminate

regardless of its contents. The state of the bag when it contains data elements

d1, . . . ,dn be characterised by a parallel composition, for example: B;,0 II o!d1.l II ... II
o!d""l An obvious modification to make Ea always terminating would be to ensure

that each parallel component has a 1-summand so that termination is always possible.

To obtain a specification for the always terminating bag, all we have to do is add

1-summands to each defining equation of £':' to obtain a recursive specification E'; of

a transparent bag.

DEFINITION 5.23. The finite version of this specification, Ea' can be defined as

follows:

Bt ~ 1 + ~ i?d.(B t II (o!d.1+1)).
l ,O L.J l,O

dE '.D

The transition system associated with the specification of the transparent bag above

is, up to strong bisimilarity, equal to the transition system associated with the bag

PPDA according to the FS specification (see Figure 5.2 and consider it with all

states marked final) . This is unlike the specification of the forgetful stack (see

Definition 4.25 on page 55), that had an associated transition system (see Figure 4.3

on page 43) that was up to branching bisimilarity not equal at all to the transition

system associated with the bag PDA according to the FS interpretation.

- 92-

5.2 . BASIC PARALLEL SPECIFICATIONS

Note that the specifications of the bag and transparent bag can be easily brought
in basic parallel normal form. We just have to replace, for all d E '.D, the parallel
components, o!d.l and o!d.l + 1 respectively, by some name Ed with the component
itself as the process term of the defining equation.

Now, for the correspondence between parallel pushdown automata and basic
parallel specifications, let us first consider the direction from basic parallel specifi­
cations to parallel pushdown automata. We will do this in three steps and show
up to branching bisimilarity that: opaque specifications can be simulated by parallel
pushdown automata according to the FSEB interpretation, transparent specifications
by parallel pushdown according to the FS interpretation, and mixed specifications
according to the FSTB interpretation introduced below.

Recall that for a recursive specification over a finite set of names Na name is called
transparent if its defining equation has a 1-summand; it is called opaque otherwise.
Thus we can partition N into the transparent names N+1 and the opaque names N-1

•

A recursive specification is transparent if all its names are transparent; it is opaque if
all its names are opaque.

Opaque specifications

We can give a construction in a similar way as for the simulation of transparency­
restricted specifications by pushdown automata shown in the proof of Theorem 4.35
(on page 62). Let us consider an example first.

EXAMPLE 5.24. Let E be the following basic parallel specification:

X ~ a.(X II Y) + b.Y +c.1,

Y~d.1.

This specification is in basic parallel normal form and opaque. Figure 5.9 depicts a
parallel pushdown automaton that simulates E up to divergence-preserving branching
bisimilarity if we take X as its initial name and use the FSEB interpretation.

a[X/ [X,Y]]
b[X/ [Y]]

c[X/ 0]
d[Y/ 0]

FIGURE 5.9: A parallel pushdown automaton simulating basic parallel specifi­
cation E.

We have an initial state that puts the initial name in the bag when moving to
the state Ctl that handles the control based on the contents of the bag. For each
summand of a name in the specification we have a corresponding PPDA transition,
labelled with the action of the prefix, that removes the name and inserts all names
that are in parallel after the summand of the prefix. For example, for the summand
a.(X II Y) of the defining equation of X, we add the transition Ctl a[x/ [X,Y]J, Ctl. O

The following theorem establishes a complete version of the construction.

-93-

5. PARALLEL PUSHDOWN SYSTEMS

THEOREM 5.25. For each opaque basic parallel specification E, with initial name I, there

exists a parallel pushdown automaton M according to the FSEB interpretation such that

'J(M) <---->b 'JE(I). D

PROOF. Let E be a basic parallel specification over a finite set of names N, and let I

be an initial name of E. By Proposition 5.19 we can assume that E is in basic parallel

normal form and that all states in the associated transition system are denoted with

multisets of names. We define a parallel pushdown automaton M = (S,A, 'D,-+, i, !)

as follows:

1. S consists of state i and Ctl.

2. A consists of all the actions occurring in E.

3. 'D consists of the names occurring in E.

4. -+ is defined as follows:

a) for the initial name I EN, -+ has the transition i Tf*/ [I]J, Ctl

b) for each summand a . .;, where .; E M(N) is a parallel composition of

names, in the right-hand side of the defining equation for a name N, -+

has the transition Ctl a [Ng] , Ctl.

5. i is the initial state,

6. l consists of the state Ctl.

Note that the only the only T-trans1t10n introduced in the trans1t10n system

associated with M is inert. We leave it to the reader to verify that the relation

'.R = { (I,(i,0))} u { c.;,(ctl, .;)) 1.; E M(N)}

is a divergence branching bisimulation between the transition system associated with

the basic parallel specification E for the initial name I and the transition system

associated with M according to the FSEB interpretation. •

Transparent specifications

Now, if we have a transparent specification, each defining equation of a name has a

1-summand. This means that termination is possible in every state of the transition

system associated with a transparent specification. If we use a PPDA to simulate this

specification, in a similar way as we have shown above, a multiset of names is stored

in the bag. However, since all these names are transparent, we should be able to

terminate at any moment during the simulation. Hence, by just choosing termination

on final state instead of on both final state and empty bag we can obtain the desired

result. Note that it should also be possible to always reach a final state. This is the

case for our simulator PPDA, as one can always move to the state Ctl by means of an

inert silent step.

THEOREM 5.26. For each transparent basic parallel specification E, with initial name I,

there exists a parallel pushdown automaton M according to the FS interpretation such

that 'J(M) ~b 'JE(I). D

-94-

5.2. BASIC PARALLEL SPECIFICATIONS

PROOF. The proof follows the lines of the proof of Theorem 5.25. Only now '.R is
a branching bisimulation between the transition system associated with the basic
parallel specification E for the initial name I and the transition system associated
with M according to the FS interpretation. •

Mixed opaque/transparent specifications

We have just seen that for opaque specifications we require for the simulation that
the bag is empty before termination can occur. For the transparent specifications
we drop the empty bag requirement as we know that during simulation the bag
always contains transparent names, i.e. names that may be skipped. However, if
we have mixed opaque/transparent specifications, the bag may contain both opaque
and transparent names during simulation. So, we would like that the PPDA only
terminates if it is in a final state and the bag only contains transparent names.

We add the termination condition on final state and transparent bag to the
definition of transition systems associated with a PPDA.

DEFINITION 5.27. Let 'J) - 1 ~ 'D be the data elements that are considered to be
opaque, and 1)+1 = 'D \ 'J) - 1 the data elements that are transparent.

If M is a parallel pushdown automaton and 'J(M) its associated transition system,
then (s,v)l in 'J(M) iff sl and v(d) = 0 for all d E 'J)- 1 (the FSTB interpretation). 6.

Note that if we define 'J) - 1 to be empty (and thus 1)+1 = 'D), we obtain
termination on final state; the stack can only contain transparent data elements and
the requirement v(d) = 0 (d E 'J) - 1

) is always met. Ifwe define 'J)- 1 to be equal to 'D,
we obtain termination on both final state and empty stack; the stack can only contain
opaque data elements and the requirement v(d) = 0 (d E 'J) - 1

) is only met if v = 0.
However, if 'J) - 1 nor '1)+1 is empty, we conjecture the following.

CONJECTURE 5.28. There exists a pushdown transition system according to the FSTB
interpretation such that there is no pushdown transition system according to the FS nor
to the FSEB interpretation that is branching bisimilar with it. D

The class of pushdown transition systems according to the FSTB interpretation is
incomparable to the class according to the FS and FSEB interpretation, as a result.

To simulate a mixed opaque/transparent specification we can again reuse the
construction described in the proof of Theorem 5.25.

THEOREM 5.29. For each basic parallel specification E, with initial name I, there exists
a parallel pushdown automaton M according to the FSTB interpretation such that
'J(M) +--+b 'Ie(I). D

PROOF. The proof follows the lines of the proof of Theorem 5.25. We not only define
that 'D = N, but also that 1)+1 = N +1 and thus 'J) - 1 = N - 1

•

Again, '.R is a branching bisimulation between the transition system associated
with the basic parallel specification E for the initial name I and the transition system
associated with M, but this time according to the FSTB interpretation. •

-95-

5. PARALLEL PUSHDOWN SYSTEMS

Note that this result includes the previous two results for opaque and transparent

specifications. Indeed, we can take either 1)+1 or 'D- 1 to be empty and use the

preceding correspondence result.
The results for all three classes of specifications hold to up to branching

bisimilarity. We think that it should be possible to obtain the result up to divergence­

preserving branching bisimilarity by storing additional information in the bag. We

leave this to future work.
Now, for the other direction, we have to determine how an arbitrary PPDA can be

defined by a basic parallel specification. However, Christensen has shown in [Chr93]

that this cannot be done for a simple PPDA such as the one shown in Example 5.10.

This is due to the fact that a PPDA with a single state cannot be found for the

language accepted by the PPDA in Figure 5.3, i.e. {anbn In 2:: 1 }. So, we proceed

with the restriction that a PPDA must have a single state and obtain a rather weak

correspondence between PPDAs and basic parallel specifications. Note, however, that

the constructed PPDA in Example 5.24 is almost single-state, were it not that we have

to put the initial variable in the bag.

EXAMPLE 5.30. Consider the counter parallel pushdown automaton in Figure 5.5

that has a single state.
Now, consider the following basic parallel specification that defines this PPDA:

der II N* = 1 + a.N. N1 ,

N1 ~ b.1;

the initial name of this specification is N • . The associated transition system has been

depicted in Figure 5.10.

a a a

b b b

FIGURE 5.10: The transition system associated with the basic parallel

specification defining the counter PPDA.

The associated transition system above is isomorphic with the associated tran­

sition system of the counter PPDA according to the FSEB interpretation (see also

Figure 5.6). If we want the same correspondence for the FS interpretation we have

to add an extra 1-summand to the defining equation of N1 • O

We can generalise this example to a more formal construction and obtain the

following result.

THEOREM 5.31. For every single-state parallel pushdown automaton M there exists a

basic parallel specification E, with initial name I, such that 'JE(I) <-->t 'J(M). D

- 96-

5.2. BASIC PARALLEL SPECIFICATIONS

PROOF. Let M = ({ j } , A, '.D, --+ , j , i) be a single-state parallel pushdown automaton.
We define a basic parallel specification E with a name N. with the following defining
equation:

N. ~ 1 + ~ a .N. II Nd II ... II Nd , L...J I n
(T,a ,•, [d1 , •.. ,d,,], i)

and for every data element d E '.D a name Nd with the following equation:

Nd~ ~a.Nd II ... II Nd , L...J I n
(T,a,d,[d, , ... ,dn],j)

Note that for transitions that insert nothing, the resulting (empty) parallel compo­
sition Nd II ... II Nd is denoted by 1. We choose N. as the initial name. In case we I n

interpret M according to the FS interpretation, we add a 1-summand to each defining
equation. We leave it to the reader to verify that the relation

is a divergence-preserving branching bisimulation and hence 'Je(N.) '::::!~ 'J(M). •

5.2.2 Decidability

In [CHM93] a tableau decision method is presented to show the decidability of
bisimulation equivalence on processes defined by BPP , a subtheory of BC Pr. In this
section, we extend this tableau decision method so that it can also deal with the empty
process and the deadlocked process. Similarly as for sequential specifications, we only
consider the decidability of strong bisimilarity in this part; we leave the extension
to branching bisimilarity (preferably divergence-preserving) to future work. We
will briefly discuss the methods, lemmas and theorems involved with using the
tableau decision method to decide bisimilarity and mainly focus on the parts where
adaptations are needed due to the presence of the constants O and 1.

The main difference is that the constant 0 in the paper of Christensen, Hirshfeld
and Moller is the identity element for both alternative and parallel composition, while
in our setting 0 is the identity element for the alternative composition and 1 is the
identity element for parallel composition. This subtle difference gives rise to some
adjustments of the decision method and related proofs:

- In our setting, 0 is not the identity element for parallel composition. For
example consider the process expression p = a.1. It is clear that p II 0 '::::! a.O,
which is not bisimilar to p; the deadlocked process cannot be removed from a
parallel composition. We have to ensure that the proof system treats deadlock
as a non-removable term.

- Conversely, 1 is not an identity element for the alternative composition. To
determine if p + 1 is bisimilar to q, we have to check that q has a termination
option, and thus a 1-summand, too.

-97-

5. PARALLEL PUSHDOWN SYSTEMS

- Finally, we have a form of synchronised termination in the case of parallel

composition. That is, a parallel composition can terminate if all of its

components can terminate.

Besides its role as the identity element for parallel compos1t10n, the empty

process 1 allows us to have transparent names in a recursive specification. In the

previous chapter we have seen that having transparent names can lead to unbounded

branching in the transition system that can be associated with this specification. A

requirement for the proof below is that the transition systems associated with the

basic parallel specifications have bounded branching. The example below illustrates

why this is the case; we refer to [BCT09, Corollary 4.5] for a formal argument.

EXAMPLE 5.32. Let us reconsider Example 4.27 (on page 56), but we replace

sequential composition by parallel composition:

X~a .(XJJ Y)+b.1,

Y~c.1+1.

(For convenience, we use in this chapter xn to denote an n-fold parallel

composition of X, e.g. X3 = XlJXIJX.) Also in this case the process yi can terminate and

can perform a c-transition which leads to yi- 1 • However, it is not possible to "skip" a

name by executing a c-transition from y i with 0 Si and go to y j with 0 S j < i - LO

Deciding strong bisimilarity

The tableau decision method is a goal-directed proof system. The method uses

inference rules of the form

rule name

where p and q are process expressions and C an optional side-condition. The premise

p = q is the goal to be achieved whereas the consequents p1 = q1, ••• ,pn = qn are the

subgoals to be established. A tableau is a maximal proof tree using a specified set of

rules. The rules we use here are shown in Table 5.1. These rules are the ones given

in [CHM93] supplemented with the rule SumT to handle the case that there are 1-

summands along with the summation. When building a tableau and applying the

rules, we refer to each premise and/ or goal as a node. For an example of a tableau,

see Example 5.34 later on.
The rule Ree takes care of applying the recursive definition of the name while

at the same time unfolding a parallel composition. Let lj ~ L;EJy aj,i ·~j,i (+ 1) for

1 S j Sn. We define the function unfi. used in the rule Ree to represent the unfolding

of~ = Y1 II ... II Yn , as follows :

n

unf1CO = L L aj,i ·(Y1 JI . .. IJ lJ- 1 JI ~j,i II l}+1 JI. · . JI Yn) [+ 1).;E(N+1y ·

j=l iEJyj

-98-

Ree

Sum

SumT

Prefix

Subl

SubR

5.2. BASIC PARALLEL SPECIFICATIONS

~=x

L~= l a; .~; = L~1 bj ·Xj
~~~~~~~~~~~~~~~~~~(*) 

{a;.~; = bf(i) ·Xf( i) }7=1 { bj ·Xj = ag(j) ·~g(j) }j"=1 
(*) where f : { 1, ... , n} ,_. { 1, ... , m} 

g : { 1, . . . , m} ,_. { 1, ... , n} 

L~= l a; .~ ; + 1 = 2:7=1 bj· Xj +1 
~~~~~~~~~~~~~~~~~~ (**) 
{a;.~; = b1co ·Xf(i) }7=1 { bj ·Xj = ag(j) ·~g(j) }}=1

~II ri = P

x II ri = P

P =~II ri

P = x II ri

(**) where f : { 1, ... , n} ,_. { 1, ... , m}
g : { 1, . .. , m} ,_. { 1, .. . , n}

a.~ =a.x

~=x

if x c ~ and there is a dominated
node labelled ~ = x or x = ~

if x c ~ and there is a dominated
node labelled ~ = x or x = ~

TABLE 5 .1: The extended tableau rules.

After applying the Ree rule, one can match summands using the Sum or SumT
rule and remove matching prefixes using the Prefix rule. Before applying the Ree
rule again, we need to perform a substitution using the Subl and SubR rules on the
current node if they can be applied. This is possible if there is a node upward in
the tree, called a dominated node, with ~ = x or x = ~ such that x c ~ for some
well-founded ordering c that is defined in Definition 5.33 below.

We denote constructed tableaux by T(~ = x) where ~ = x is the label of the root;
we denote paths by n and nodes by n, possibly with a subscript. If a node is labelled
~ = x we write n : ~ = x.

Rules may only be applied to nodes that are not terminal. A node is terminal if
it is either a successful or unsuccessful terminal node. A successful terminal node is
one labelled either ~ = ~ where ~ may be 1 (we assume that the empty multiset

-99-

5 . PARALLEL PUSHDOWN SYSTEMS

denotes 1) or 0 = 0. We have an unsuccessful terminal node if no rule can be applied.

The Prefix rule cannot be applied if there is a prefix mismatch, i.e. a.~ = b.x and

a =f. b. It can also be that the Sum rule cannot be applied, for example when a.~ = O

or 0 = b.x or that the SumT cannot be applied because one side has a 1-summand but

the other side does not. The rules Subl or SubR cannot be applied if the dominated

nodes needed for substitution are missing.
To check whether ~ x holds, we try to find a tableau with ~ = x as the root

node. If the tableau only has successful terminal nodes, we call it a successful tableau

and we have shown that ~ and x are bisimilar. They are not bisimilar if none of the

possible tableaux is successful.
We have to show that the application of rules in a tableau always eventually stops.

To show that each tableau is finite, and that there are finitely many tableaux we

require a well-founded ordering on the multisets of names. The ordering is used in

the side-conditions of the Subl and SubR rules.
In the definition of this ordering we assume that there is some fixed total order

on the names: N = {N1, ... ,Nn }.

DEFINITION 5.33. We define a well-founded (lexicographical) ordering on all multi­

sets of parallel compositions of names N as follows :

N~ ' 11 . .. llN~" c~' 11 .. . llN~"

iff there exists j such that kj < lj and for all i < j we have k; = l;.

EXAMPLE 5.34. Let us consider the following recursive specification:

N 1 ~ a .(N2 llN3)+b.1+1 ,

N2 ~ a.(N2 II N4) + c.l ,

def
N4 =a.N5 + b.1+1,

N5 ~ a .(N4 II N5) + c.N6,

N6~ 0.

We fix the total ordering on the names as N6 < N5 < · · · < N1. If we now check

whether N1 <=: N4 holds, we can construct the following successful tableau:

N1 =N4
-------------- Ree

a.(N2 llN3) +b.1+1 = a.N5 +b.l+1
------------------- SumT

a.(N2 II N3) = a.Ns P f.
re 1x

b.l_=_b_._l Prefix

N2 llN3 =Ns
---------------- Ree

1 = 1

a.(N2 II N4 II N3) + c.N3 = a.(N4 II Ns) + c.N6
------------------ Sum

a .(N2 II N4 II N3) = a .(N4 II Ns) Prefi x c.N3 = c.N6 Prefix

N2 II N4 II N3 = N4 II N5 Subl N3 = N6 Ree

N4 II Ns = N4 II Ns 0 = 0

-100-

5.2. BASIC PARALLEL SPECIFICATIONS

In this tableau the Subl rule can be applied because using the well-founded ordering
on the parallel compositions we have that N5 c N2 II N3 . ~

For this tableau decision method to work, we need to show that it is both sound
and complete. First, we need to know that tableaux are finite and that there are
hence only finitely many tableaux for each pair of process expressions. A proof for
the following lemma is already provided by Christensen, Hirshfeld and Moller (as
Lemma 3.2 in [CHM93]). We will not repeat the proof here as we did not adapt
anything that might affect its validity.

LEMMA 5.35. Every tableau for ~ = x is finite. Furthermore, there is only a finite
number of tableaux for ~ = x. D

The proof of the following completeness and soundness theorems are also mainly
due to Christensen, Hirshfeld and Moller [CHM93] .

THEOREM 5.36 (Completeness). If~::::! x then there exists a successful tableau with
root labelled~ = X· D

PROOF. It is easy to see that the added rule Sum T is forward sound, i.e. if the premise
as well as all nodes above relate bisimilar processes then it is possible to find a set
of goals relating bisimilar processes. Because the property holds for the added rule
and the unfolding function unf1 preserves bisimilarity, the proof for this theorem is
the same as the proof in [CHM93, Theorem 3.3). •

The soundness proof relies on an alternative characterisation of bisimulation
taken from [CHM93] and extended with termination conditions.

DEFINITION 5.37. The sequence of bisimulation approximations {:::!n} ::"=o is defined
as follows:

- p +-+ 0 q for all process expression p and q;

- p :::!n+l q iff for all a E An

• if p--.£.... p' then there exists q' such that q ~ q' and p' +-+n q',
• if q--.£.... q' then there exists p' such that p ~ p' and p' +-+n q',
• if p l then q l and vice versa. D.

Using bisimulation approximation sequences we can prove soundness of the
tableau method.

THEOREM 5.38 (Soundness). If there is a successful tableau labelled with root labelled
~ = x then ~ +-+ x. D

PROOF. Suppose T(~ = x) is a tableau for ~ = x, and that ~ +j:: x. We shall construct
a maximal path n = { ni : p = q } through this tableau starting at the root ~ = x in
which Pi -:/=qi for each i. Hence the terminal node of this path cannot be successful,
so T(~ = x) is not successful.

-101 -

5. PARALLEL PUSHDOWN SYSTEMS

While constructing n, we shall at the same time construct the sequence of natural

numbers {mi : Pi +t!m; qi I Pi +---+j q; for all j < mi }. We shall also prove along the way

that this sequence is non-increasing, and strictly decreasing through applications of

the rule Prefix. Given ni: Pi= qi and mi, we get ni+I : Pi+l = qi+J and mi+l according
to the following cases:

- If Ree is applied to ni , then the consequent is ni+i and mi+l =mi.

- If Sum is applied to ni> then there must be some consequent ni+I : Pi+J = qi+J

with Pi+J +t!m; qi+J and Pi+J '=?j qi+! for all j < mi, so mi+l =mi.

- If SumT is applied to ni> then there must be some consequent ni+I : Pi+J = qi+J

with Pi+J +t!m, qi+ I and Pi+ I +---+j qi+ I for all j < mi, so mi+l = m;.

- If Prefix is applied to ni, then the consequent is ni+l and mi+ I = mi - 1.

- If Subl is applied to ni> then Pi = qi must be of the form ,;- II TJ = p with

dominated node ,;- = x Cx c:: ,;-). Since between nj and ni there must have

been an intervening application of the rule Prefix, we must have that mi < m j .

We take the node ni+l : x II TJ = p , and show that we have some valid mi+I :::; mi,

that is, that x II TJ +j! p . But this follows from ,;- m, x and i;- 11 TJ +t!m, p.

- The arguments for the application of the SubR are identical.

That the above conditions hold of the resulting path is now clear. •
With the modified tableau decision method for which we have shown that it still

generates finitely many finite tableaux and the rules are still sound and complete, we

have the desired result.

COROLLARY 5.39. Bisimilarity is decidable on basic parallel specifications. 0

5.3 Explicit Interaction

In the previous chapter we have made the interaction within the pushdown automa­

ton explicit: a linear specification of the finite control of the pushdown automaton

was put in parallel with a sequential specification of the stack. We have seen that

this yielded an associated transition system that is divergence-preserving branching

bisimilar with the original pushdown transition system. The result was obtained in

two steps: first for pushdown automata with termination on both final state and

empty stack, and then with termination on final state only. For the latter case we

introduced an alternative definition of the stack, as there is no sequential specification

of an always terminating stack.
In this section we will do the same for the parallel pushdown automaton and

see that the result becomes more clear-cut. However, we obtain results only up to

branching bisimilarity due to the fact that removing data elements from a bag is not

deterministic. For the parallel pushdown automata with termination on final state

and termination on both final state and empty bag, we are able to use the same

finite control, and just use a different specification of the bag. These specifications

are the basic parallel specifications of the bag and the transparent bag that we have

-102-

5.3. EXPLICIT INTERACTION

seen before in Section 5.2.1. Since we are also interested in the relation between
basic parallel specifications and the explicit interaction, we also investigate pushdown
automata with termination on both final state and transparent bag. For this we shall
present the partially transparent bag process, which is a concept in between the bag
and the transparent bag.

First, we consider parallel pushdown automata according to the FSEB inter­
pretation. Let M = (S,A, '.D, -> , l, !) be some parallel pushdown automaton. By
Theorem 5.8 we can assume that M only has insert and remove transitions. We
can now define the linear specification E10 capturing the finite control of M. For every
state s E S we add to E1c a name Cs with the following defining equation (s, t E S,
a E Ar> d E '.D):

Cs ~ :L:a .i!d.Ct + L o?d .Cs,d [+ 1Js1,
(s ,a ,•,d,t)E- dE'D

and for every state s E S and data element d E '.D we add to Efc a name Cs,d with the
following defining equation (s, t E S, a E A", d E '.D):

La.et.
(s,a,d ,0,t)E-

The names Cs (s E S) handle the insert transitions for state s and the detection
whether some data element d can be found in the bag. The names Cs,d (s E S, d E '.D)
handle the remove transitions for state s given that we know that data element d has
been found in the bag. Note that these names also have a summand i!d.Cs to put the
data element back in the bag to prevent that the removal of d becomes an irreversible
choice. We will see later that this is necessary to prevent the creation of non-inert
silent transition once abstraction has been applied over the communication between
finite control and bag.

EXAMPLE 5.40. Let us reconsider the parallel pushdown automaton in Figure 5.1
(on page 82) . When applying the construction described above we get the following
linear specification for the finite control:

C ~ ·11 c ·11 c 71 c s -a.i. · s +c .i. · t +o. · s,1'

Cs, l ~ i !l.Cs + b.Cs ,

Ct ~ o?l.Ct,l + 1 ,

Ct,l ~ i!l.Ct + b.Ct.

Now, if we put the finite control in parallel with the bag, we can obtain the
following result for pushdown automaton with termination on both final state and
empty bag.

THEOREM 5.41. For every parallel pushdown automaton M according to the FSEB
interpretation there exists a linear specification E1c and linear process expression p, such
that 'J(M) +-+b 'JE

1
,uE

8
([p II Bl ,0) . D

-103 -

5. PARALLEL PUSHDOWN SYSTEMS

PROOF. The specification Efc is constructed for M as described above. We present

some observations from which it is fairly straightforward to establish that 'J(M) '='b
'JE1,uE

8
([p llB];,0). In our proof we abbreviate the process expression B II i!d1. l II·· · II

i!dwl by B[d,, ... ,d"]' with, in particular, B0 =B. (Recall the infinite specification of the

bag given on page 92.)
First, note that the control process for some state s is not allowed to choose which

data element to pick until the corresponding action is performed. Therefore, given

that the multiset µ is not empty, we have for each d E µ that

ai,oCCs II Bµ) oM ai ,o CCs,d II Bµ-[d]) ~ ai ,o CCs II Bµ)

When the abstraction "i.0 (_) is applied, we get two inert '!"-transitions and obtain the

following (intermediate) result:

[Cs llBµJ . <--4b ~ [cs,d llBµ-[d]J . ·
l,O L..J l,O

dEµ

Hence, when a data element is removed from the bag, the control process has not

made a choice yet as it can always reinsert it. This is different from the interaction

between the control process and the stack in the proof of Theorem 4.42 (on page 70),

since a pop from the stack is deterministic, i.e. one always receives the top element.

Second, whenever 'J(M) has an insert transition (s,µ) ~ (t,µ l±I [d]), then

and the '!" -transition resulting from applying '!" i,0 (_) is inert.
Finally, whenever 'J(M) has remove transition (s,µ l±I [d]) ~ (t,µ), we first use

the fact that [cs II Bµ l!J[d] J . <--4b [cs,d II Bµ] . , non-deterministically removing data
l ,O l ,O

element d, and then finish with

•
Now, for the other direction. We can show that if we have a process defined

by a linear specification that communicates with the bag, we can find a PPDA that

simulates the behaviour of the two specifications put in parallel.

THEOREM 5.42. For every linear specification E and linear process expression p there

exists a parallel pushdown automaton M according to the FSEB interpretation such that

'JEuE
8

([p II B J;,0) <--4b 'J(M). D

PROOF. Let E be a linear specification and let p be a linear process expression. We

define a parallel pushdown automaton Mas follows:

- The set of states, the action alphabet, and the initial and final states are the

same as those of the transition system 'JE(p) (which is a finite automaton).

- The set of data symbols is the set of data 'D of the presupposed recursive

specification of the bag.

-104-

5.3. EXPLICIT INTERACTION

- Whenever s ~tin 'JE(p), and a=/= i!d, o?d (d E 'D), then s ~ t;
- whenever s ~ t for some d E '.D in 'JE(p), then s -r[•/ [d]J, t;

- whenever s ~ t for some d E '.D in 'JE(p), then s ~ t.
We omit the proof that every transition of 'J EUE" ([p 11 B];) can be matched by a
transition in 'J(M) in the sense required by the definition of divergence-preserving
branching bisimilarity. •

To obtain the same results for parallel pushdown automata according to the
FS interpretation, we only have to replace the bag by the transparent bag (see
Definition 5.23) . If we apply the same constructions explained above, termination
will occur when the final control is in a final state, because the transparent bag can
always terminate. We get the following results, but shall omit the proofs.

THEOREM 5.43. For every parallel pushdown automaton M according to the FS
interpretation there exists a linear specification Efc and linear process expression p, such
that 'J(M) ~b 'JE uE, ([P II B1

] .), and vice versa. D fc B l ,O

To also have the same results for parallel pushdown automata according to the
FSTB interpretation, we have to replace the bag again.

DEFINITION 5.44. Let '.D - 1 <; '.D be the data elements that are considered to be
opaque, and 1)+1 = '.D \ '.D- 1 the data elements that are transparent.

We define the partially transparent bag, a mix of the specification of the bag and
the transparent bag, by the following basic parallel specification:

BP1 ~1 + "" i?d.(BP1 II o!d.l) + "" i?d.(BP 1 II (o!d.l + 1)) . l ,O L...J, l,O L...J, 1,0

dE'D- 1 dE'D+ 1

We refer to this specification as EBP'.

Now, if we apply the same constructions explained above, termination will occur
when the final control is in a final state and the partially transparent bag contains no
opaque data elements.

THEOREM 5.45. For every parallel pushdown automaton M according to the FSTB
interpretation there exists a linear specification Efc and linear process expression p, such
that 'J(M) +->b 'JE uE , ([P II BP1

] .), and vice versa. D fc BP l ,O

We have seen in Section 5.2.1 that basic parallel specifications can be simulated
by a PPDA (according to the FSTB interpretation). We have also seen in the theorem
above that each PPDA according to the FSTB interpretation can be defined by a linear
specification for the finite control of the PPDA and a basic parallel specification of the
partially transparent bag memory, combined in a single specification that allows for
communication between both components. Indirectly; we have established that each
basic parallel specification can be written as a linear specification communicating
with a partially transparent bag. Therefore, we can consider the partially transparent
bag, with its basic parallel specification, as the canonical basic parallel process.

-105 -

5. PARALLEL PUSHDOWN SYSTEMS

COROLLARY 5.46. For every basic parallel specification E and basic parallel expression p

there exists a linear specification Efc and linear process expression q such that

D

PROOF. The result follows from Theorems 5.29 and 5.45. •
Note that the same result was obtained directly for basic parallel specifications

in [BCT09].

5.4 Conclusions

In this chapter we have followed the lead of the previous chapter and investigated

a parallel, commutative version of pushdown automata and context-free languages.

We have seen the definition of the parallel pushdown automaton, which is basically

a pushdown automaton equipped with a bag memory instead of a stack memory.

The replacement of the type of memory leads to subtle differences in semantics with

respect to the regular pushdown automata, such as the removal of a data element

from the memory not being deterministic and not being able to test whether the

memory is empty.
We have investigated the differences in classes of parallel pushdown transition

systems if we use different termination conditions: termination on empty bag (EB) ,

on final state (FS) , and on both final state and empty bag (FSEB). We have shown that

the class according to the EB interpretation is, up to divergence-preserving branching

bisimilarity, a proper subclass of the class according to the FSEB interpretation. If

we drop divergence-preservation and consider parallel pushdown automata that are

initially terminating, then the class of parallel pushdown transition systems according

to the EB interpretation coincides with the class according to the FSEB interpretation.

The class according to the FSEB interpretation turns out to be incomparable, up to

branching bisimilarity, with the class according to the FS interpretation. Unlike for

pushdown transition systems, this is also the case without divergence-preservation.

Therefore, we have considered the correspondence results both the FSEB and FS

class.
We proposed basic parallel specifications as the specification language for the

class of parallel pushdown systems. A basic parallel specification is a finite recursive

BCP,r-specification (assuming an empty communication function). This specification

language extends a traditional language for similar kinds of systems, called BPP,

with 0, 1 and prefixing. It also is the parallel counterpart of the sequential

specifications of the previous chapter where sequential composition is replaced by

parallel composition. We have seen that we can find parallel pushdown automata

that simulate, up to branching bisimilarity, opaque and transparent basic parallel

specifications, respectively by using the FSEB and FS interpretations. To be able

to simulate mixed opaque/ transparent basic parallel specifications we added the

termination condition on both final state and transparent bag (FSTB) . This means

- 106 -

5.4. CONCLUSIONS

that the bag can terminate if it only contains data elements from a designated
"transparent" subset of data elements. In the other direction we have seen that
only single-state PPDAs can be defined by a basic parallel specification. Hence, the
correspondence between PPDAs and basic parallel specifications is rather weak.

As basic parallel specifications play an important role in this chapter, we have
shown that it is possible to decide if two basic parallel specifications have the same
associated transition system up to (strong) bisimilarity, extending earlier work for
BP P -specifications.

From a process-theoretic perspective it makes sense to make the interaction
with the bag in a PPDA explicit. We can do this by giving a linear specification
representing the finite control of the PPDA and put it in parallel with a specification
of a bag, allowing communication over an input and output channel for inserting
and removing data elements. We have established this correspondence for parallel
pushdown automata according to the FSEB, FS and FSTB interpretations by using the
same linear specification of the finite control and respectively the bag, the transparent
bag and the partially transparent bag.

Figure 5.11 presents a schematic overview of the correspondence results for
all three interpretations from a process-theoretic point of view. Note that there
is an indirect correspondence between basic parallel specifications and the explicit
interaction. Because the (partially transparent) bag can be defined by a basic parallel
specification, and all basic parallel specifications can be given as a finite-state process
communicating with this bag, the (partially transparent) bag can be considered as
the canonical basic parallel process .

.. - - - - - - - - - - - -,
PPDAs

Thm. S.25/ Thm. 5.26/Thr°"1. 5.29 basic parallel
specifications

: single-state r-: --+---.c---------'---+<
1Theorem 5.31 opaque/ trans./mixed

,-----------------.
' '
' '

Thm. 5.41 , Thm. 5.42/
Thm. 5.43/
Thm. 5.45

I

I

parallel pushdown ;
transition systems ;
FSEB/ FS/ FSTB

,_ - ...

Explicit
interaction
[p II BJ--1------------ ---------------
[P II B'f;1----- -- --- ---------------------_-_-_-________ ____ __ _
[P II BPt ~----- --- --- --------------------

:

--

FIGURE 5.11: Correspondence results for the FSEB/FS/FSTB interpretations.

-107-

5. PARALLEL PUSHDOWN SYSTEMS

5.4.1 Future Work

The decidability result discussed in Section 5.2.2 should be extended to branching
bisimilarity (preferably divergence-preserving). However, this has been an open
problem for a long time.

We have seen that only single-state PPDAs can be defined by a basic parallel
specification. A more suitable candidate could be Petri nets instead of basic parallel
specifications, as was shown by Moller in [Mol96] . However, Hirshfeld and Moller
have shown later in [HMOl] that there are Petri nets that cannot be simulated by
a PPDA. Thus, it is necessary to find a appropriate restriction on Petri nets for the

correspondence with PPDAs.
Recall that we use a technique to avoid making a choice when removing

something from the bag in the definition of the linear specifications of the finite
control of a PPDA. Namely, when some data element is picked from the bag, it can

always be put back in the bag. While this makes the initial -r-transition to remove
the data element inert up to branching bisimilarity, it does introduce divergence. The
question remains whether this can be done without introducing divergence and thus
lifting the correspondence results to divergence-preserving branching bisimilarity.

Another question is whether the introduction of the FSTB interpretation is really
necessary. In the previous chapter we remarked that it might be possible to simulate
mixed opaque/ transparent sequential specifications by a PDA with termination on
both final state and empty stack. This would be, however, at the cost of switching
to the weaker contrasimulation equivalence. It would be worth investigating if such
an approach would work here as well as an alternative solution to using the FSTB
interpretation.

Finally, in the conclusions of the previous chapter we have suggested to define and
investigate deterministic pushdown automata (see page 76) . Similarly, it would be
interesting to define deterministic parallel pushdown automata and investigate the

expressivity of this class using parallel pushdown transition systems.

-108 -

Chapter 6

Computable & Executable Systems

The Turing machine [Tur37] is widely accepted as a computational model suitable for
exploring the theoretical boundaries of computing. It is used in computability theory
to formally characterise the notion of effectively calculable function. An effectively
calculable function is a function for which there exists an algorithm that can calculate
its values. It was later shown that the Turing machine characterises the same notion
of effectively calculable function as the separately proposed notions of recursive
functions by Kleene in [Kle36] and A-calculus by Church in [Chu36].

Motivated by the existence of universal Turing machines, many textbooks on the
theory of computation (e.g., [Sud88, Sip97, HMU06]) present the Turing machine
not just as a theoretical model to explain which functions are computable, but, in
fact, as an accurate conceptual model of the computer. For instance, Sipser writes
in [Sip97] that "[a] Turing machine can do everything a real computer can do." This
statement is sometimes referred to as the strong Church-Turing thesis, as opposed
to the normal Church-Turing thesis according to which every effectively calculable
function is computable by a Turing machine.

There is, however, a limitation to viewing the Turing machine as a conceptual
model of a computer. A Turing machine operates from the assumptions that: (1)
all the input it needs for the computation is available on the tape from the very
beginning; (2) it performs a terminating computation; and (3) it leaves the output
on the tape at the very end. That is, a Turing machine computes a function, and thus
it abstracts from two key ingredients of computing: interaction and non-termination.
Nowadays, most computing systems are so-called reactive systems [HP89], systems
that are generally not meant to terminate and that consist of a number of computing
devices that interact with each other and with their environment. A reactive system
often unremittingly depends on input, and unremittingly produces output.

Towards the end of the 1970s, Milner observed that, for a thorough investigation
of interaction and concurrency, it is profitable to study these notions in isolation
rather than to try and add them to any of the existing models of computation. One
of his desiderata for the design of CCS was "that there be only a single combinator
for combining processes which interact or which coexist" [Mil93]. In particular, also
the interaction of a computing device with its memory should be modelled using

- 109-

6. COMPUTABLE & EXECUTABLE SYSTEMS

a symmetric notion of interaction, considering the memory as a separate process.
Concurrency theory has provided us with a fundamental understanding of interaction

and non-termination.
In Section 6.1 we propose a notion of reactive Turing machine (RTM), extending

the classical notion of Turing machines with interaction in the style of concurrency
theory. The extension consists of a facility to declare every transition to be either
observable, by labelling it with an action symbol, or unobservable, by labelling it
with -r . Typically, a transition labelled with an action symbol models an interaction of
the RTM with its environment (or some other RTM), while a transition labelled with -r
refers to an internal computation step. Thus, a conventional Turing machine can be
regarded as a special kind of RTM in which all transitions are declared unobservable

by labelling them with -r .
The semantic object associated with a conventional Turing machine is either the

function that it computes, or the formal language that it accepts. The semantic

object associated with an RTM is a behaviour, formally represented by a transition
system, as we have also done in the previous chapters. A function is said to be
effectively computable if it can be computed by a Turing machine. By analogy, we
say that a behaviour is effectively executable if it can be exhibited by a reactive Turing
machine. In concurrency theory, behaviours are usually considered modulo a suitable
behavioural equivalence. Also in this chapter we shall mainly use (divergence­

preserving) branching bisimilarity.
In Section 6.2 we set out to investigate the expressiveness of RTMs up to

divergence-preserving branching bisimilarity. We shall present an example of a
behaviour that is not effectively executable up to branching bisimilarity. Then, we
establish that every computable transition system with a bounded branching degree
can be simulated, up to divergence-preserving branching bisimilarity, by an RTM. If
the divergence-preservation requirement is dropped, even every effective transition
system can be simulated. These results will then allow us to conclude that the
behaviour of a parallel composition of RTMs can be simulated on a single RTM.

In Section 6.2.4 we define a suitable notion of universality for RTMs and
investigate the existence of universal RTMs. We shall find that, since bisimilarity is

sensitive to branching, there are some subtleties pertaining to the branching degree
bound associated with each RTM. Up to divergence-preserving branching bisimilarity,
an RTM can at best simulate other RTMs with the same or a lower bound on their

branching degree. If divergence-preservation is not required, however, then universal

RTMs do exist.
In Section 6.3, we consider the correspondence between RTMs and the process

theory TCPr. We establish that every executable transition system is, again up to
divergence-preserving branching bisimilarity, definable by a finite recursive TCPr­
specification. As we have seen in previous chapters, recursive specifications are the
process-theoretic counterparts of grammars in the theory of formal languages. Thus,
the result in Section 6.3 may be considered as the process-theoretic version of the
correspondence between Turing machines and unrestricted grammars. Furthermore,

the finite recursive TC Pr-specification actually consists of a specification of the finite
control of the RTM that interacts with a specification modelling a tape. Thus, as an

-110 -

6.1. REACTIVE TURING MACHINES

interesting corollary, we obtain a specification that makes the conceptual interaction
within a reactive Turing machine between its finite control and its tape memory
explicit; similar results have also been obtained for pushdown automata and parallel
pushdown automata in the previous chapters.

Several extensions of Turing machines with some form of interaction have been
proposed in the literature, already by Turing in [Tur39] , and more recently, when
there was renewed interest in the matter, in [LWOO, GSAS04, GSW06, BGRR07,
WL08]. The goal in these works is mainly to investigate to what extent interaction
may have a beneficial effect on the power of sequential computation. Interaction is,
e.g. , added by allowing an algorithm to query its environment, or by assuming that
the environment periodically writes a write-only input tape and reads a read-only
output tape of a Turing machine. Thereby, the focus remains on the computational
aspect, and interaction is not treated as a first-class citizen. Our goal, instead, is to
achieve integration of automata and concurrency theory that treats computation and
interactivity on equal footing.

The material in this chapter is based on the following publication:
[BLTllb] J . C. M. Baeten, B. Luttik, and P. J. A. van Tilburg. "Reactive Turing

Machines". In: Proceedings of FCT 2011 . Ed. by 0. Owe, M. Steffen, and
J. Telle. LNCS 6914. Springer, 2011 , pp. 348-359.

This is an abstract of the following full version technical report:
[BLTllc] J. C. M. Baeten, B. Luttik, and P. J. A. van Tilburg. Reactive Turing Ma­

chines. Tech. rep. arXiv:1104.1738v3. Cornell University Library, 2011.

6.1 Reactive Turing Machines

For an RTM we add to the finite set of data symbols 1J a special symbol o to denote
a blank tape cell, assuming that D <f. 'IJ ; we denote the set 1J u { o} of tape symbols
by 1J0 . In our definition, following the original definition of the Turing machine, we
allow head movements to the left (L) and right (R); we use M to range over { L,R }.

DEFINITION 6.1. A reactive Turing machine (RTM) Jv(is a six-tuple (S,A,'IJ,-+, i,!)
where

1. S is a finite set of states;

2. A a finite set of actions;

3. 1J a finite set of data;

4. -+ s; S x 1J0 x A r x 1J0 x { L,R} x S is a (1J0 x A r x1J0 x { L ,R })-labelled relation
on S,

5. i E S is the initial state, and
6. ! s; S is the set of final states.
An RTM is deterministic if (s , d ,a, e1, M1, t1) E-+ and (s , d,a, e2 , M2 , t2) E-+ implies

that e1 = e2 , t1 = t2 and M1 = M2 for all s ,t1't2 E S, d,e1,e2 E 1J0 , a E A n M1, M2 E
{ L,R}, and, moreover, (s, d , -r, e1,M1, t 1) E -+ implies that there do not exist a f:. -r,
e2 , M2 , t2 such that (s, d, a, e2 , M2 , t2) E -+. !:!.

- 111 -

6. COMPUTABLE & EXECUTABLE SYSTEMS

If (s,d,a,e,M,t) E ---->, we writes a[d /e JM, t. The intuitive meaning of such a

transition is that whenever M is in state s and d is the symbol currently read by the
tape head, then it may execute the action a, write symbol e on the tape (replacing d),
move the read/write head one position to the left or one position to the right on
the tape (depending on whether M = L or M = R), and then end up in state t.

RTMs extend conventional Turing machines by associating with every transition an

element a E A-r. The symbols in A are thought of as denoting observable activities;
a transition labelled with an action symbol in A will semantically be treated as
observable. Observable transitions are used to model interactions of an RTM with
its environment or some other RTM, as will be explained more in detail below when
we introduce a notion of parallel composition for RTMs. The symbol -r is used to

declare that a transition is unobservable. A conventional Turing machine is an RTM

in which all transitions are declared unobservable.

EXAMPLE 6.2. Assume thatA = {c!d,c?d I c E {i,o},d E '.D0 }. Intuitively, i and o are
the input/ output communication channels through which the RTM can interact with
its environment. The action symbol c!d (c E { i, o}) then denotes the event that a data
element d is sent by the RTM along channel c, and the action symbol c? d (c E { i, o })
denotes the event that a data element d is received by the RTM along channel c.

i?l [O/ l]R -r[l/l]L

T[O/O]R
T[l/l]R

T[l /l]R

T[l/O] L

o!l[l / O]L

FIGURE 6.1: An example of a reactive Turing machine.

The state-transition diagram in Figure 6.1 concisely specifies an RTM that first
inputs a string, consisting of an arbitrary number of ls followed by the symbol #,

stores the string on the tape, and returns to the beginning of the string. Then, it
performs a computation to determine if the number of ls is odd or even. In the first
case, it simply removes the string from the tape and returns to the initial state. In the
second case, it outputs the entire string, removes it from the tape, and returns to the

initial state. O

The semantics of a conventional Turing machine is either the function on natural
numbers that it computes, or the formal language that it accepts. The function
or the formal language associated with a Turing machine is determined by its
set of computations, i.e., sequences of configurations leading from some initial

configuration to a final configuration. A computation is, by definition, terminating
and abstracts from the moments of choice. For RTMs to serve as models of reactive

-112-

6.1. REACTIVE TURING MACHINES

systems, it is important not to discard their infinite behaviours. Furthermore, we are
going to model interaction by allowing the environment or other RTMs to influence
choices during the operations of an RTM.

With every RTM M we are going to associate a transition system 'J(M). The states
of 'J(M) are the configurations of the RTM, consisting of a state of the RTM, its tape
contents, and the position of the read/ write head on the tape. We represent the tape
contents by an eleme~t of '.D~, replacing precisely one occurrence of a tape symbol d
by a marked symbol d, indicating that the read/ write head is on this symbol. We
denote by D0 = { d Id E '.D0 } the set of marked tape symbols; a tape instance is a

v * v string 8 E ('.D0 u 'D0) such that 8 contains exactly one element of 'D0 . Note that we
do not use 8 exclusively for tape instances; we also use 8 for sequences over 'D. A
tape instance thus is a finite sequence of symbols that represents the contents of a
two-way infinite tape. Henceforth, we shall not distinguish between tape instances
that are equal modulo the addition or removal of extra occurrences of the symbol D
at the left or right extremes of the string. That is, we shall not distinguish tape
instances 81 and 82 if o w81Dw = o w82Dw. Note that a marked blank symbol Dis
considered as a non-blank symbol with respect to adding or removing blanks, e.g.
8DDD=8DO.

DEFINITION 6.3. A configuration of an RTM M = (S,A, 'D,-+, j, !) is a pair (s , 8)
consisting of a state s E S, and a tape instance 8. !::,.

Our transition system semantics defines an A-r-labelled transition relation on
configurations such that an RTM-transition s a[d /e JM, t corresponds with a-labelled
transitions from configurations consisting of the RTM-state s and a tape instance
in which some occurrence of d is marked. The transitions lead to configurations
consisting of t and a tape instance in which the marked symbol d is replaced by e,
and either the symbol to the left or to right of this occurrence of e is replaced by its
marked version, according to whether M = L or M = R. If e happens to be the first
symbol and M = L, or the last symbol and M = R, then an additional blank symbol
is appended at the left or right end of the tape instance, respectively, to model the
movement of the head.

It is convenient to introduce some notation to be able to concisely denote the
new placement of the tape head marker. Let 8 be an element of '.D~. Then by o< we

v * denote the element of ('.D0 u '.D0) obtained by placing the tape head marker on the
right-most symbol of 8 if it exists, and o otherwise, i.e.,

8
< = {(d if 8 = (d (d E '.D0 ,(E '.D~) , and

o if8=e.

Similarly, by >o we denote the element of ('.D0 u D0)* obtained by placing the tape
head marker on the left-most symbol of 8 if it exists, and o otherwise, i.e.,

>8 = {d(if 8 = d(
o if8=e .

(d E 'D0 , (E 'D~), and

-113-

6. COMPUTABLE & EXECUTABLE SYSTEMS

We use this notation under the assumption that from D extra occurrences of the
symbol O at the left and right extremes have been removed.

DEFINITION 6.4. Let M = (S,A, 'D, ->, j, l) be an RTM. The transition system 'J(M)

associated with Mis defined as follows:

1. its set of states is the set of all configurations of M;

2. its transition relation -> is the least relation satisfying, for all a E Ar> d, e E 'D0

and DL, DR E 'D~ :

a) (s, DLdDR) __!!_, (t, DL<eDR) iff s a[d/e]L, t, and

b) (s, DLdDR) __!!_, (t, Dle >DR) iff s a[d/e]R , t;

3. its initial state is the configuration (i, D); and

4. its set of final states is the set of terminating configurations { (s, D) Is!} . /::;.

Turing introduced his machines to define the notion of effectively computable

function. By analogy, our notion of RTM can be used to define a notion of effectively

executable behaviour.

DEFINITION 6.5. A transition system is executable if it is associated with an RTM. 6.

This definition automatically gives us the notion of an executable process.

DEFINITION 6.6. An executable process is a divergence-preserving branching bisim­

ilarity class of labelled transition systems containing an executable transition sys­

ren 6.

Parallel composition

To illustrate how RTMs are suitable to model a form of interaction, we shall now
define on RTMs a notion of parallel composition, equipped with a simple form of

communication. (We are not trying to define the most general or most suitable

notion of parallel composition for RTMs here; the purpose of the notion of parallel

composition defined here is just to illustrate how RTMs may run in parallel and

interact.) Let e be a finite set of channels for the communication of data symbols
between one RTM and another, and let A'= { c!d, c?d I c Ee, d E 'D0 } ; it is assumed

that A' s; A.
First, we define a notion of parallel composition on transition systems.

DEFINITION 6.7. Let T1 = (S1,->1, j 1,! 1) and T2 = (S2,->2, iz,!z) be trans1t10n
systems, and let e' S:; e. The parallel composition of T1 and T2 is the transition system

[T1 II T2] e' = (S,-> , i, !), with S, ->, j and! defined by

1. S = S1 x S2 ;

2. (s 1 ,s2) _E_, (s~,s;) iff a E A -r - { c!d, c?d I c Ee', d E 'D0 } and either

a) s1 _E_, s~ and s2 = s;, or s1 = s~ and s2 _E_, s;, or

b) a = -r and either s1 ~ s~ and s2 ~ s;, or s1 ~ s~ and s2 ~ s; for
some c Ee' and d E 'D0 ;

-114-

6.1. REACTIVE TURING MACHINES

3. i =Cl l• ii); and

4. ! = {(s 1,s2) I s1 E ! 1 /\ s2 E !i }.

Then, we can define a similar notion of parallel composition on the associated
transition systems with RTMs.

DEFINITION 6.8. Let M1 = (S1, -+1, i l• !1) and M2 = (S2, -+2, h !i) be RTMs, and
let e' ~ e; by [M1 II M2] C' we denote the parallel composition of M1 and M2.
The transition system 'J([M 1 II M 2] C') associated with the parallel composition
[M1 II c M2] c' of M 1 and M 2 is the parallel composition of the transition systems
associated with M1 and M2' i.e., 'J([M1 II M 2] c') = ['J(M1) II 'J(M2) J c' . 6

EXAMPLE 6.9. Let JY(denote the RTM in Figure 6.1. Let A be as in Example 6.2 and
let c denote the RTM in Figure 6.2 below. Then, the parallel composition [M II c]; ex­
hibits the behaviour of outputting, along channel o, the string 11#1111# · · · #1 n# ...
(n 2: 2, n even) . O

T[O/ l]R
T[l/l]L

i! #[O/ l]R
i!l[l/l]R

FIGURE 6.2: An RTM that enumerates and sends the string 1#11#111#

An unobservable transition of an RTM, i.e., a transition labelled with -r, may
be thought of as an internal computation step. Divergence-preserving branching
bisimilarity allows us to abstract from internal computations as long as they do
not discard the option to execute a certain behaviour. The following notion will
be technically convenient in the remainder of this chapter.

DEFINITION 6.10. Given some transition system T, an internal computation from
state s to s' is a sequence of states s 1, ••• , sn in T such that s = s 1 --1...+ •.. --1...+ sn = s'.
An internal computation is called.fully deterministic iff, for every states; (1 :'.S i < n),
s; ___E__, s;' implies a = -r and s;' = s;+i · We shall write s --» s' if there exists a fully
deterministic computation from s to s'. 6

It is easy to see that the following property holds for fully deterministic computa­
tions, as there is no branching.

LEMMA 6.11. Let T be a transition system and lets and t be two states in T. Ifs --» s',
then s and s' are related by the maximal divergence-preserving branching bisimulation
ooT D

-115 -

6. COMPUTABLE & EXECUTABLE SYSTEMS

6.2 Expressiveness of RTMs

To confirm the expressiveness of RTMs, we shall establish in this section that every
effective transition system can be simulated by an RTM up to branching bisimilarity,
and that every boundedly branching computable transition system can be simulated
by an RTM up to divergence-preserving branching bisimilarity. We use this as an
auxiliary result to establish that a parallel composition of RTMs can be simulated by
a single RTM, and we derive from it the existence of universal RTMs.

6.2.1 Effective & Computable Transition Systems

Let T = (S, -+, T, 1) be a transition system; the mapping out: S -+ 2ATxs associates
with every state its set of outgoing transitions, i.e., for alls ES,

out(s) = { (a,t) Is ___g__, t} ,

and fin(_) denotes the characteristic function of ! .

DEFINITION 6.12. Let T = (S, -+, i, !) be an AT-labelled transition system. We say
that T is effective if -+ and ! are recursively enumerable. We say that T is computable
if both the functions out(_) and.fin(_) are recursive. 6.

The notion of effective transition system originates with Boudol [Bou85]. For the
notion of computable transition system we adopt the definition from [BBK87].

We shall not go into the details of explaining more carefully what are suitable
codings into natural numbers of A T and S, and how they should be extended
to codings of -+, !, out(_) and fin(_) so that the formal theory of recursiveness
makes sense for arbitrary (countable) transition systems. (The reader may want
to consult [Rog67, §1.10] for more explanations.) If -+ and ! are recursively
enumerable, then this, intuitively, means that there exist algorithms that enumerate
the transitions in -+ and the states in ! . If the functions out(_) and fin(_) are
recursive, then there exists an algorithm that, given a state s, yields the list of
outgoing transitions of s and determines whether s E ! . Note that for an RTM the
functions are given by definition.

PROPOSITION 6.13. The transition system associated with an RTM is computable. D

Hence, unsurprisingly, if a transition system is not computable, then it is not
executable either. It is easy to define transition systems that are not computable
(see the following example), so there exist behaviours that are not executable. The
following example takes this a little further and illustrates that there exist behaviours
that are not even executable up to branching bisimilarity.

EXAMPLE 6.14. (In this and later examples, we denote by <px the partial recursive
function with index x E N in some exhaustive enumeration of partial recursive

-116-

6.2. EXPRESSIVENESS OF RTMS

functions, see, e.g., [Rog67].) Assume that A= {a, b, c} and consider the A-labelled
transition system T0 = (S0 , ->0 , i 0 , ! 0) with S0 , ->0 , i 0 and ! 0 defined by

S0 ={ s,t, u, v, w}u{sx lxE N } ,

->0 = { (s , a , t) , (t , a , t) , (t , b, v), (s, a, u), (u, a , u), (u , c, w)}

U (s ,a ,s0)} U { (sx,a,Sx+l) Ix E N }

U { (sx , a , t), (sx , a , u) I <fJx is a total function}

The transition system is depicted in Figure 6.3.
a

a

FIGURE 6.3: The transition system T0 •

To argue that T0 is not executable up to branching bisimilarity, we prove by
contradiction. Suppose that T0 is executable up to branching bisimilarity. Then T0 is
branching bisimilar to a computable transition system T~. Then, in T~ , the set of states
reachable by a path that contains exactly x a-transitions (x E N) and from which both
a b- and a c-transition are still reachable, is recursively enumerable. It follows that
the set of states in T~ branching bisimilar to sx (x E N) is recursively enumerable. But
then, since the problem of deciding whether from some state in T~ there is a path
containing exactly one a-transition and one b-transition such that the a-transition
precedes the b-transition, is also recursively enumerable, it follows that the problem
of deciding whether <p x is a total function must be recursively enumerable too,
which it is not. We conclude that T0 is not executable up to branching bisimilarity.
Incidentally, note that the language associated with T0 is { a nb, anc I n?: 1}, which is
recursively enumerable (it is even context-free). o

Phillips associates, in [Phi93], with every effective transition system a branching
bisimilar computable transition system of which, moreover, every state has a
branching degree of at most 2. (Phillips actually establishes weak bisimilarity, but
it is easy to see that branching bisimilarity holds.)

DEFINITION 6.15. Let T = (S, ->, T, !) be a transition system, and let B be a natural
number. We say that T has a branching degree bounded by B if, for every state s E S,
lout(s)I :S B. We say that T is boundedly branching if there exists BE N such that the
branching degree of T is bounded by B. 6

PROPOSITION 6.16 (Phillips). For every effective transition system T there exists a
boundedly branching computable transition system T' such that T+--+b T '. D

-11 7 -

6. COMPUTABLE & EXECUTABLE SYSTEMS

A crucial insight in Phillips' proof is that a divergence (i.e. , an infinite sequence
of -r -transitions) can be exploited to simulate a state of which the set of outgoing

transitions is recursively enumerable, but not recursive. The following example,
inspired by [Dar89], shows that introducing divergence is unavoidable.

EXAMPLE 6.17. Assume that A = {a, b}, and consider the transition system T1

(S1 , ->1, Ti , ! 1) with S1, ->1, i 1 and li defined by

S1 ={ 51 ,x, t l ,x lxE N } ,

->1 = { (5 1,x , a , 5 1,x+ l) Ix E N } U { (5 1,x , b , t 1,x) I x E N } ,

i 1 = 5 1 ,0 , and

!1 = { t1,x I (//x(x) converges} .

The transition system is depicted in Figure 6.4.

a
- - - _.,

' '
FIGURE 6.4: The transition system T1 •

Now suppose that T2 is a transition system such that T1 ~ T2 , as witnessed by
some divergence-preserving branching bisimulation relation ~; we argue that T2 is
not computable by deriving a contradiction from the assumption that it is.

Clearly, since T1 does not admit infinite sequences of -r-transitions, if ~ is
divergence-preserving, then T2 does not admit infinite sequences of -r -transitions
either. Let 5 1 be some state in T1 and 52 in T2 . It follows that if 5 1 ~ 52 , then there

· , . T hth / m 1 d 1
" M · T exists a state 52 m 2 sue at 52 -..2 52 , 5 1 .A 52 , an 52 ---"-+> • oreover, smce 2

is computable and does not admit infinite sequences of consecutive -r -transitions, a
state 5; satisfying the aforementioned properties is produced by the algorithm that,
given a state of T2 , selects an enabled -r -transition and recurses on the target of the
transition until it reaches a state in which no -r -transitions are enabled. But then we

also have an algorithm that determines if (/l x(x) converges:

1. it starts from the initial state i 2 of T2 ;

2. it runs the algorithm to find a state without outgoing -r-transitions, and then it
repeats the following steps x times:

a) execute the a-transition enabled in the reached state;

b) run the algorithm to find a state without outgoing -r-transitions again;

since i 1 ~ i 2 , this yields a state 52 ,x in T2 such that 5 1,x ~ 52 ,x ;

3. it executes the b-transition that must be enabled in 52,x, followed, again, by the
algorithm to find a state without outgoing -r -transitions; this yields a state t2 ,x,

without any outgoing transitions, such that t 1,x ~ t2 ,x ·

-118-

6.2. EXPRESSIVENESS OF RTMS

From t1,x '.R t2 ,x it follows that t2 ,x E !z iff <px (x) converges, so the problem of
deciding whether <px(x) converges has been reduced to the problem of deciding
whether t2 ,x E !z. Since it is undecidable if <px(x) converges, it follows that !z is
not recursive, which contradicts our assumption that T2 is computable. <>

6.2.2 Simulating Boundedly Branching Computable Transition Systems

By Proposition 6.16, in order to prove that every effective transition system can be
simulated up to branching bisimilarity by an RTM, it suffices to prove that every
boundedly branching computable transition system can be simulated by an RTM.

Let T = (Sr, ->r, T r' lr) be a boundedly branching computable transition system,
say with branching degree bounded by B. We shall construct an RTM M =

(SM, ->M, TM• hd, called the simulator for T, such that 'J(M) <-->~ T.

Tape contents

Let us assume encodings of the functions r _.., : out(_) -> N, r _.., : fin(_) -> N, and
the sets r _.., : A "" -> { 1, ... , IA""I } and r _.., : Sr -> N; the simulator RTM M stores
these functions, actions, states and transitions on its tape as natural numbers. The
existence of the encodings of the functions out(_) and fin(_) is due to the fact that
they are recursive.

The way in which natural numbers are represented as sequences over some finite
alphabet of tape symbols is largely irrelevant, but in our construction below it is
sometimes convenient to have an explicit representation. In such cases, we assume
that numbers are stored in unary notation using the symbol 1. That is, a natural
number n is represented on the tape as the string 1n+1 of n + 1 occurrences of the
symbol 1. In addition to the symbol 1, we use the symbols [and] to enclose the
(static) codes of the two functions that steer the simulation of T on the tape, I to
separate the elements of a tuple of natural numbers, and # to separate tuples. The
RTM M constructed below will incorporate the operation of some auxiliary Turing
machines that may use some extra encoding and symbols; let 'D' be the collection of
all these extra symbols. Then the tape alphabet 'D of M is

'D = { 1, [,] , I,# } u 'D' .

We shall define M as the union of three fragments : an initialisation fragment,
a state fragment, and a step fragment. The initialisation fragment prepares M for
simulation, the state fragment calculates the possible transitions that can be taken
from the current state and the step fragment actually simulates the step to the next
state. See also the overview diagram in Figure 6.6 later on.

Instead of directly using (conventional) Turing machines computing out(_) and
fin(_) we store their codes on the tape and use a Turing machine to interpret these
codes. This is slightly more generic than necessary; the advantage of proceeding
in this way is that we can easily adapt the simulator to obtain a universal RTM (in
Section 6.2.4).

-119-

6. COMPUTABLE & EXECUTABLE SYSTEMS

Initialisation fragment

The initialisation fragment I nit prepares the tape for simulation of T by first writing
the symbol [on the tape, followed by (the codes of) the functions out(_) and fin(_)

belonging to T which are separated by the symbol I. Then it writes the symbol]
on the tape followed by the code of the initial state of T . Thereafter, it returns the
tape head to the symbol] . Let M; be a (conventional) Turing machine that achieves
precisely this; when started with an empty tape (D) , it halts with the tape instance
[rout""Yfi.n']rh '.

The set of states of In it is defined as

its initial state is defined as

i1nit = i M; ; and

its set of transitions is defined as

-+!nit= {(in, d, -r, e, M, in') I (in, d, e, M, in') E -+M , in' E S M \ LM }
' ' '

U {(in, d, T, e, M, istate) I (in, d, e, M, in') E -+M; ' in' ELM; }

LEMMA 6.18. The fragment lnit has a fully deterministic internal computation from

Ci1nit,D) to Cistate • [rout'lrfi.n']rh '). D

State fragment

The state fragment State replaces the code of the current state on the tape by a
sequence of codes that represents the behaviour of Tin the current state. It is assumed

that it starts with a tape instance of the form [r out'lrfi.n '] r s' with s E Sr .
Recall that the functions out(_) andfi.n(_) are both recursive. Hence, by [Rog67]

there exists a (conventional) deterministic Turing machine M 5 that, when it is started

with a tape instance [rout'lrfi.n']rs' terminates with the tape instance

[rout'lrfi.n']r(s E !r)?'lral 'I .. · lrak ' # rsl 'I·.· lrsk ' # '

where out(s) = {(a;,sJ I 1 :s i :s k} and rcs E !r)?' is a special code denoting
fin(s), i.e. rtrue' or rfalse' . Note that, since the branching degree of T is bounded

by B, we have that k :S B. We assume without loss of generality that the Turing
machine Ms first copies the codes of out(_) and fin(_) to the right of the symbol] and

thereafter never crosses this boundary symbol again for its computation. We refer to
the sequence (s E !r)?,a1 ,. .. , ak that is generated and stored on the tape by Ms as the
menu ins.

The set of states of State is defined as

-120-

6.2. EXPRESSIVENESS OF RTMS

its initial state is defined as

istate = i M, ; and

its set of transitions is defined as

-+state= {(st, d,T, e, M,st') I (st,d,e,M,st') E -+M" st' E Sstate \ ! M, }

U { (st, d, T, e, M, istep) I (st, d, e, M,st') E -+M" st' E ! M, } .

(Note how we associate with Jv(5 (a fragment of) an RTM by adding T-labels to its
transitions.)

LEMMA 6.19. The fragment State has afully deterministic internal computationfrom
configuration (i State, [r out-Y fin•] r s ')for each s E Sr to

(i Step, [r out'lr.fin •] rcs E !r)?'lr al 'I·. · lr ak '#r S1 'I·.· lr sk '#) ,

where the part at the right of the symbol] on the tape represents the menu generated
by applying the functions out(_) and.fin(_) to s. D

Step fragment

The purpose of the step fragment Step is to select an action a; from the set of enabled
actions in the current state, execute that action, and remove r(s E !r)?'and all (codes
of) actions and states from the tape, except the code of the target state of the a;­

transition.
The state s in the simulated transition system T embodies a choice between its k

outgoing transitions s ...EL. s1 , ••. , s ...Ek.... ski and is terminating if, and only if, s E !r- In
order to get a branching bisimulation between T and the transition system associated
with M, the latter will necessarily have to include a configuration offering the same
choice of outgoing transitions and the same termination behaviour. It is important
to note that branching bisimilarity does not, e.g., allow the choice for one of the
outgoing transitions to be made by a computation (resulting in a sequence of T­
transitions) that eliminates options one by one. The fragment Step will therefore
have to include a special state SP(sE!r)?,a, , ... ,ak' for every potential menu. (Note that,

since k::::; B, there will be at most N = L~=o 2 · IArlk different menus in T.)
The functionality of the step fragment is split up in two parts: before and after the

simulation of an a;-transition. The first part uses the RTM Mpd to decode the menu
on the tape ending up in the state sp(sE!r)?,a,,. . .,ak from which termination, if enabled,
or an a;-transition can occur. In case the transition is performed, the second part finds
the target states; of the a;-transition. The RTM Jv(pm will move the code rs;' to the
right of the symbol] and the RTM Mpc will empty the remaining part of the tape.

The fragment Step starts from a tape instance of the form

[rout'lr.fin•]r(s E !r)?'lra1 'I··· lrak '#rs1 'I··· lrsk '#

-121 -

6. COMPUTABLE & EXECUTABLE SYSTEMS

and then progresses to the state sp(sEh)?,a,, ... h ' while removing from the tape the

symbols rcs E h)?""Ya1 'I · .· lr ak ' ; this is a matter of decoding the information on
the tape. For this decoding part we assume that Mpd is an RTM that halts with

the tape instance [rout'lr.fin']O ·· ·o# rs1'l·· · lrsk ' # . Among the states of Mpd

we have the previously mentioned special states sp(sEh)?,a ,, ... ,ak for all (s E h ?) E

{ true,false }, a 1 , • • • , ak E A ,,., k S B . A state SP(sEh)?,a, , ... ,ak is declared final if, and only
if, s E h, and it has an outgoing a;-transitions to the states ne; (1 Si S k).

After the decoding part, the action a; can be performed (while removing the
symbol #) and the fragment ends up in the state ne;. The goal of the states ne;
down to ne1 is to find the code r s; ' , replacing the symbols preceding r s;.., by 0, and
to yield the tape instance [r out'lr.fin '] 0 · · · 0 "'s;'I ... lrsk ' # .

Let Mpm be an RTM that, when started with above tape instance, moves the
found state code r s;' to the right of the symbol] and halts with the tape instance

[r out'lr.fin '] r S; 'O ... olrsi+J 'I ... 1rsk ' # .
Then, let Mpc be an RTM that, when started with the above tape instance, empties

the remaining part of the tape, moves the tape head back to the symbol] and halts
with the tape instance [rout'lr.fin']rs; '·

The set of states of Step is defined as

Sstep = (SM U{ne1, . .. , nea }U SM USM)\(!M U ! M U!M)
pd pm pc pd pm pc

its initial state is defined as

i Step = i M pd ; and

its set of transitions is defined as

-+step= { (sp , d, -r, e, M,sp') I (sp , d, -r, e, M,sp') E -+M }
pd

U { (SP(sEh),a, , ... ,ak' #, a;, 0 ,R, ne;)

I (s E Sy)? E { true ,false }, a 1 , • • • , ak E A -r, k S B, 1 S i S k }

U { (nek> 1, -r, 0,R, nek), (nek> I, 'r, O,R, nek_1) I 1 < k S B}

U {(ne1, d ,-r,e ,M,sp')l(i M , d, -r , e, M,sp')E-+M }
pm pm

U{(sp , d,-r,e, M,sp')l(sp, d,-r, e,M,sp')E-+M , sp' E SM \!M }
pm pm pm

u{(sp , d , -r ,e, M, i M)l(sp , d,-r,e, M,sp ')E-+M ,sp' E!M }
pc pm pm

u{(sp , d, -r, e, M,sp') l(sp , d,-r,e, M,sp') E -+M ,sp'ESM \ ! M }
pc pc pc

U{(sp,d,-r,e ,M, istate)l(sp,d,-r,e, M,sp')E-+M ,sp'E!M } .
pc pc

See Figure 6.5 for a schematic overview of the fragment Step. Note that in
this figure - for clarity reasons - only one of possibly many states sp(sEiJ?,a, , ... ,ak and
transitions thereto is drawn.

As mentioned before we can split the fragment up in two parts; we obtain the
following two lemmas. First, a lemma for the internal computation up until the
action a ; can be performed.

- 122-

6.2 . EXPRESSIVENESS OF RTMS

Mpd I- ----- 5P (sE!)?,a 1 , ... ,ak

T[l/D]R

T[d/O]R
(d E 'D)

T[l/D]R ...

T[d/D]R T[d/D]R
(dE'D) (dE'D)

FIGURE 6.5: Diagram of the step fragment.

LEMMA 6.20. The fragment Step (using the auxiliary RTM Mpd) has a fully determin­
istic internal computation from

CTstep• [rout"Yfin']r(s E !r)?'lra1 'I··· lrak '#rsi '1 · · · lrsk '#)

to

(sp .,ak' [r out'lrfin ']D ... o#rs] 'I·.· lr sk'#). (sEh)?,a 1,. D

Second, a lemma for the internal computation after an action a; is performed.

LEMMA 6.21. The fragment Step (using the auxiliary RTMs Mpm and MpcJ has afully
deterministic internal computation from (ne;, [r out'lr.fin'] D · · · D ~s1 'I··· lr sk '#) to

CT State• [r out'I r fin'] r S; '). D

Simulator

The simulator RTM M = (SM,-+M, j M• ! M) is defined as the combination of the
fragments lnit, State and Step defined above. The set of states of M is defined as
the union of the sets of states of all fragments :

SM = S1nit U Sstate U Sstep ;

the transition relation of M is the union of the transition relations of all fragments:

SM = -+lnit U -+state U -+step ;

the initial state of M is the initial state of I nit:

i M = i1nit ; and

the set of final states of M consists of the states of Step sp(s Elr)?,a, , ... ,ak where s is a final
state in T

!M = {sp(sElr)?,a 1, ... ,ak IS E !r} ·

Figure 6.6 schematically illustrates how the fragments are combined to constitute
the simulator M.

-123-

6. COMPUTABLE & EXECUTABLE SYSTEMS

-o ---G
' Qi ~

[rout'lrfn']rs• • ~ --

1 st!te f ------------- · [r out'lr.fin •] rcs El)?'lr a:1 'I -- -lr a k '#r S1 'I· -- lrsk '#

FIGURE 6.6: Diagram of the deterministic computable transition system
simulator.

THEOREM 6.22. For every boundedly branching computable transition system T there

exists a reactive Turing machine M such that 'J(M) <-->f T. D

PROOF. Consider the RTM M of which the definition is sketched above. Using
Lemma 6.18 we define the following relation:

'.Rr={ (h,t) It E { CT1nit,D), ... ,Cistate' [roufYJin']rh ')}}

Using Lemmas 6.19, 6.20 and 6.21, we define the following relation for each s E Sr:

'.R5 = { (s, t) I t E { (ne;, [r out'lrfin '] D · --D >rs1 'I -.. lrsk '#),. . .,

(sp(sEfr)?,a, , ... ,ak ' [rout'rfin']D ... 0ifrs1 'I·.· lrsk '#)}}

We can now define the relation

The relation '.R is a divergence-preserving branching bisimulation between 'J(M)

and T. •

Combining the above theorem with Proposition 6.16 we can conclude that
reactive Turing machines can simulate effective transition systems up to branching
bisimilarity, but, in view of Example 6.17, not in a divergence-preserving manner.

COROLLARY 6.23. For every effective transition system T there exists a reactive Turing
machine M such that 'J(M) <-->b T. D

Note that all computations involved in the simulation of T are deterministic (see
Lemmas 6.18-6.21). Therefore, if Mis non-deterministic, then this is due to a state
sp(sE!)?,a,, .. .,ak of which the menu includes some action a more than once. It follows
that a deterministic computable transition system can be simulated up to divergence­
preserving branching bisimilarity by a deterministic reactive Turing machine.

DEFINITION 6.24. A transition system T = (S,--+, j, D is deterministic if, for every
states ES and for every a E Ar> s ~ s1 and s ~ s2 implies s1 = s2 • 6

-124-

6.2 . EXPRESSIVENESS OF RTMS

Clearly, if T is deterministic, then, for every states in T, lout(s)I :S IArl· So a
deterministic transition system is boundedly branching, and therefore we get the
following corollary to Theorem 6.22.

COROLLARY 6.25. For every deterministic computable transition system T there exists a
deterministic reactive Turing machine M such that 'J(M) +->(}' T. D

6.2.3 Parallel Composition

Using Theorem 6.22 we can now also establish that a parallel composition of RTMs
can be simulated, up to divergence-preserving branching bisimilarity, by a single
RTM. To this end, note that the transition systems associated with RTMs are
boundedly branching and computable. Further note that the parallel composition
of boundedly branching computable transition systems is again computable. It
follows that the transition system associated with a parallel composition of RTMs
is boundedly branching and computable, and hence, by Theorem 6.22, there exists
an RTM that simulates this transition system up to divergence-preserving branching
bisimilarity. Thus we get the following corollary.

COROLLARY 6.26. For every pair of reactive Turing machines M 1 and M 2 and for
every set of communication channels e there exists an RTM M such that 'J(M) +->(}'
'J([M1 II M2] (J• D

6.2.4 Universality

A classical and central notion in the theory of computation is the universal Turing
machine: a Turing machine that can simulate any arbitrary Turing machine on
arbitrary input. Here, the (encoded) description of a Turing machine and the input
are present on the tape beforehand. In this subsection we propose a notion of
universal RTM and investigate to what extent such universal RTMs exist. Naturally,
our notion of universal RTM should reflect our desiderata for introducing RTMs.

Firstly, since our main aim is to formalise communication explicitly, we want a
universal RTM to first receive input via communication rather than finding it on its
tape at the beginning of its operation (recall our assumption that the tape of our RTM
is initially empty). To this end, we associate with the encoding rM' of some RTM M
(see [Rog67]) an RTM M that sends rM' along channel u, not used by M itself, and
then terminates. This RTM M will be put in parallel with the universal RTM to be
defined, abstracting from communication over the channel u.

Secondly, the simulation of other Turing machines by a universal Turing machine
is in the classical theory up to language equivalence. For example, Hopcroft, Motwani
and Ullman define in [HMU06, Section 9.2.3] the universal Turing machine for the
so-called universal language. Language equivalence is, however, too coarse if one
is interested in the behaviour of an RTM rather than only the function it computes.
Our notion of universal RTM should simulate every RTM up to divergence-preserving
branching bisimulation instead of language equivalence.

-125-

6. COMPUTABLE & EXECUTABLE SYSTEMS

An RTM U is universal (given some coding of RTMs) if for every RTM M it holds

that 'J(M) <:::!t [M II U Ju. However, we will show now that such a universal RTM U

does not exist.

PROPOSITION 6.27. There does not exist an RTM U such that for all RTM M it holds

that [MllU]u -~'J(M). D

PROOF. Assume the existence of a universal RTM U. Since U is an RTM, it has an
associated transition system that has a branching degree bounded by, say, B. Now,
assume an RTM M such that 'J(M) has no divergence and has a branching degree

bounded by B + 1. In particular, 'J(M) has a states that realises the branching degree

bound by having transitions a1, .. • , a8+1 to B + 1 pairwise non-bisimilar target states.
If U were to simulate M up to divergence-preserving branching bisimulation, then

there is a state s' in [M II U Ju related to s that cannot do any (inert) -r-transitions,

but still has to simulate all transitions of s. This means that s' must have a branching

degree of B + 1. This is a contradiction. •

If we insist on simulation up to divergence-preserving branching bisimilarity, then
we need to relax the notion of universality.

DEFINITION 6.28. An RTM U8 is universal up to branching degree B if for every
RTM M with 'J(M) bounded by branching degree B it holds that 'J(M) <:::!t
[MllU8 Ju. 6

We now present the construction of a collection of RTMs U8 for all branching

degree bounds B. For the remainder of this section let M = (SM,AM, 'DM, ---+M, i M> lM)

be an RTM such that the branching degree of 'J(M) is bounded by B. From our
Definition 6.12, Proposition 6.13, the explanations in [Phi93], and by applying
some standard recursion-theoretic techniques such as the enumeration theorem
(see [Rog67]), it can be shown that the codes of the functions out(_) and fin(_)

belonging to 'J(M) are recursively computable from rM'. Therefore, we can reuse the
simulator RTM defined in Section 6.2.2; it suffices to adapt its initialisation fragment.

Instead of writing the codes of the functions out(_) and fin(_) and the initial state
directly on the tape, the initialisation fragment lnitU receives the code rM' of an
arbitrary M along some dedicated channel u, yielding the tape instance rM'. Let M,;

be an RTM that handles the receiving and storing of the code rM-, over channel u

when started from an empty tape.
Then, it recursively computes, from rM', the codes of the functions out(_)

and fin(_), and the initial state i M of 'J(M) and stores these on the tape. As
mentioned before, these functions can be computed recursively, and let Mei be the
deterministic Turing machine that, when started from the tape instance rM' halts

With the tape instance [r out'lrfin '] rj M '.

The set of states of lnitU is defined as

-126-

6.2. EXPRESSIVENESS OF RTMS

its initial state is defined as

l1nitU = l M,; ; and

its set of transitions is defined as

~lnitU = {(in , d, -r, e, M, in') I (in, d, -r, e, M, in') E ~M,; ' in' E SM,; \ ! M,; }

u { (in , d,-r,e , M, l M) I (in,d ,-r,e, M, in') E ~M , in' E ! M . }
Cl rl fl

U { (in,d,-r,e,M,in') I (in , d ,e, M, in') E ~M , in' E SM . \ ! M . }
Cl Cl Cl

U { (in,d,-r,e,M, lstate) I (in,d,e , M,in') E ~M , in' E ! M . }
Cl Cl

Note that Lemma 6.18 holds for this fragment lnitU as well, albeit that the path
constitutes of a different set of configurations.

LEMMA 6.29. The fragment lnitU has a fully deterministic internal computation from
Cl1nitu,D) to Cl state• [rouf-YJin•]rlM '). D

Now, when the universal initialisation fragment sets up the simulation, the
state and step fragments (that have already been defined in the previous sec­
tion) can perform the simulation as before. We define the universal RTM U8 =
(Su

8
,Au

8
, U'B , ~u., l u

8
, ! u.) for each branching degree B as the combination of

the fragments lnitU, State and Step defined above. Recall that the fragment Step
contains states for every possible menu but that these menus have a branching
degree that is bounded by B. Because of this we can reuse the step fragment; the
definition of fragment is independent of the transition function it is simulating and
only parametrized by the branching degree bound B.

The set of states of each particular U8 is defined as the union of the sets of states
of the fragments:

Su. = S1nitU U Sstate U Sstep

the transition relation of U8 is the union of the transition relations of all fragments:

the initial state ofU8 is the initial state of lnitU:

l U 8 = l1nitU ; and

the s~t of final states of U8 consists of the states of Step sp(sE!r)?,a, , ... ,a. where s is a
final configuration in 'J(M)

! u. = { SP(sEh)?,a1 , ••. ,a. I S E h}

THEOREM 6.30. For every B there exists an RTM U8 such that, for all RTMs M with a
branching degree bounded by B, it holds that 'J(M) <-->:- [JY(II UB Ju" D

-127-

6. COMPUTABLE & EXECUTABLE SYSTEMS

If we drop the requirement that the simulation has to be divergence-preserving,

we can find a single universal RTM. We replace the Turing machine M ei in the

fragment lnitU by an adapted version that besides calculating out(_) and fin(_)

also modifies out(_) to reduce the branching degree to at most 2 [BBK87]. This is,

necessarily, at the cost of introducing divergence. The resulting universal RTM 11 is

universal up to branching bisimulation.

THEOREM 6.31. There exists an RTM 11 such that, for all RTMs M, it holds that

'J(M) +-+b [M 1111 L D

6.3 Explicit Interaction

In this section we show that, up to divergence-preserving branching bisimilarity, every

executable transition system can be specified using the process theory TCPr [BBR09].

We do this by showing, for any given RTM, the construction of a finite recursive

specification over TCP'"" that simulates its behaviour. Our specification will consist of

a finite specification of a process that is a translated version of the finite control of

the RTM, and a finite specification of tape memory. We shall prove that the parallel

composition of these specifications specifies a transition system that is divergence­

preserving branching bisimilar with the transition associated with the RTM. Further

note that our specification deals explicitly with the interaction between the finite

control and the tape of an RTM.
It follows from results obtained by Vaandrager in [Vaa92] that every TCP'"' ­

specification induces an effective transition system. Hence, by Corollary 6.23, we

also get the converse: every transition system definable in TCP'"" is executable up to

branching bisimilarity.
Since we will see that transition systems associated with TCP'"' -specifications can

be simulated, up to branching bisimulation, by a finite control interacting with a

queue (we will later see that we can obtain the tape process by supplementing a

queue with some finite control), we can look upon the queue as the canonical TCP'"' ­

process.
We could argue that TCP'"' -specifications can be considered as the process­

theoretic counterparts of unrestricted grammars. In automata and formal language

theory a hierarchy of classes of languages with different expressivity is obtained by

adding/dropping restrictions on the left-hand and right-hand side of grammars. In

process theory, the stricter recursive specification format is used, and different classes

of expressivity are obtained by allowing more/ less operators (notably the parallel

composition) in the right-hand sides. This we have also shown for regular expressions

in [BLMTlO]. For another study into the expressiveness of TCP'"" and the relation to

different types of transition systems, we refer also to [Gla94].
We prove that for every reactive Turing machine M there exists a finite recursive

TCP'"' -specification EM and process expression p such that 'J(M) +--+~ 'JEM (p). For

clarity, we will present EM in two steps. First, we will consider a finite recursive

specification of the tape process ET and show its correspondence with an infinite

specification of the tape process. Then, we will present a fair translation of the finite

-128-

6.3. EXPLICIT INTERACTION

control of an RTM into a finite recursive specification Efc We conclude by showing
that the correspondence of the combined finite specification EM with the original
RTM M holds.

The tape

The following infinite recursive specification E:;' specifies the desired behaviour and
interface of a tape process T8ldo" for every possible tape instance (d E '.D0 , oL, oR E
'.D~). Each name has an equation that expresses that the data element d under
the head can be sent over channel r (read), a data element e can be received over
channel w (write) to replace the data element under the head, and commands can be
received over channel m (move) to move the head one position to the left (onto oL)
or right (onto oR); each name has the following defining equation:

def 2: T0 d· o = 1 + r!d.T0 d· o + w?e.T8 eo + m?L.T0 <do + m?R.T0 d >o • LR LR LR LR LR
eE'D0

Note that this specification allows reading and writing and moving independently, as
it was also originally defined by Turing in [Tur37].

The specification of the tape process above is clearly infinite, since we have a name
for each possible tape instance. Our aim is, however, to have a finite specification.
In earlier work by Baeten, Bergstra and Klop in [BBK87] a finite specification of
a Turing machine is given in ACP-r to simulate computable transition systems up
to bisimilarity; the conventional Turing machine is simulated using finite control
in parallel with two stacks. Their approach to model a tape as two stacks cannot
be reused in our setting, which allows for states that can be terminating and have
outgoing transitions at the same time. Their specification of the stack does not allow
for intermediate termination, and it is not clear how to adapt it so that it does.
Instead, we model the tape using a (first-in first-out) queue, which does allow for
intermediate termination.

The following infinite linear recursive specification E'(j specifies the behaviour of
the process Q6 modelling a queue with contents o that receives input over channel i
and sends output over channel o (for every d E '.D0 , o E '.D~):

QE ~ 1 + L i?d.Qd '
d E'D

Q ~ 1 + Id Q + ~ "? Q lid - O. · Ii L....J t.e . elid·

eE'D

Since we want the queue process to have a finite specification too, we use as a
basis for the finite version the recursive specification originally given by Bergstra and
Klop in [BK86], which uses six names, parallel composition, communication over an
input channel i, output channel o and auxiliary channel e, and abstraction. Bezem
and Ponse have shown in [BP97] that this finite recursive specification is branching
bisimilar (without the termination conditions 3 and 4 of Definition 2.5) with the

-129-

6. COMPUTABLE & EXECUTABLE SYSTEMS

infinite recursive specification given above. In their proof, they also show that the
finite recursive specification does not have infinite -r -paths, so in effect they show
divergence-preserving branching bisimilarity.

An alternative finite recursive specification for the queue that we could have used
is the one presented by Van Glabbeek and Vaandrager in [GV93]. Although this
specification would be more in line with our specification of the stack and bag, it
uses the renaming operator which is not in our specification language.

The following specification EQ is an adaptation of the finite specification of
Bergstra and Klop defining a version of the queue that always has the option to
terminate.

Q~k ~ 1 + L j?d. [et,/ II (1 + k!d.Qf'k) J for all {j, k,p} = { i , o,f} .
dE'D

0
p

Each name represents the process that receives data elements that are inserted
over channel j, sends data elements that are removed over channel k, and uses the
channel p internally. When we choose Qt as the initial name of this specification, it
the same interface as the infinite queue specification E'(j .

The first time the queue receives a data element, it splits into a two parallel
components such that the first component is ready to receive new data elements
and the second component retains the just received data element. From this moment
on, every time a data element is received, a new parallel component is split off "to the
right" to retain the received data element. See Figure 6. 7 for a diagram of the queue
process; depicted is the state when a data elements O and 1 have been inserted.

---- , ------,
I · o I t
I Q'e'o ~ I+e!l .Qo, I

I I I
L--- - L _____ _

I I
1 + o!O.Q~ '0 1

(- - - - - _I

0

FIGURE 6. 7: Diagram of the queue specification.

When a data element is removed, the parallel component becomes "empty'' and
the remaining data elements can be moved to the right by means of (encapsulated)
communication over the internal channels, again resulting in splitting of the parallel
components. See for example the following trace where data elements 0 and 1 are
inserted and then removed:

Qi 0
__QQ,. [Q~f II (1 + o!O.Q1'0) J f ~ [[Qi

0 II (1 + en.Q~,f) L II (1 + o!O.Q1'0) t
~ [[Qi,o II Qo,f] II [Qf,i II (1 + o!l.Qi,o)] .]

f l 0 0 f 'f

~ [[Qi
0 II Q~.e L II [Q~·i II Qt lJe

At the end, we are left with many empty cells. However, it can easily be shown that

[di/ II o!J'k J P -~ Q!pk. Thus, the empty cells can be collapsed and removed.

The adaptation with respect to Bergstra and Klop's specification consists of the
addition of a 1-summand to the defining equation of every name and to the right-most

-130-

6.3 . EXPLICIT INTERACTION

component of the therein contained parallel composition. As a result, termination
can occur in every state of the queue, and no other change in behaviour is incurred.
Thus, similarly to [BP97] it can be proved that our infinite recursive specification is
divergence-preserving branching bisimilar - this time with the termination conditions
- with the finite recursive specification given above.

LEMMA 6.32. We have that Qe <-->~ Q~0 • 0

This lemma also allows us to use the more concise notation of the infinite specifi­
cation, Q15 for some 8 E '.D~ , for a state of the queue process defined by the finite
specification in the proofs below.

We can now define the finite recursive specification of the tape process ET as the
finite recursive specification of the queue EQ and the following equations (d E '.D0)

Hd ~ 1 + r!d.Hd + L w?e.He + m?L.H~ + m?R.H:,
eE'D0

H~ ~ i!d . (L o?e.He + o? l_.i!$.i!l_ .Back) ,
eE'D0

Back ~ L o?d .i!d.Back + o?$.H0 ,

d E'D0

H: ~ i!$.i!d.(L o?e.Fwde +o?l_.Fwd.L) ,
eE'D0

Fwdd ~ L o?e.i!d.Fwde + o? l_.i!d.Fwd.L + o?$.Hd ,
eE'D0

F d ~ ~? ·1l_p d ?$ "1l_H w .L - L.J o .e.l. . w e +o . . l. . 0 .

eE'D0

Unlike the stack, the queue allows us to reach any arbitrary data element
contained within in a non-destructive way. We can repeatedly remove a data element
from the queue over channel o and then insert it over channel i; we call this shifting.
Doing this once is called a shift operation. Although shifting suggests the usage of a
queue in a circular fashion, we have to map the (infinite and linear) data structure
of the tape onto the queue. We use the queue to store only the part of the tape to
the left of the head 8 L and to the right of the head 8 R and we keep the data element
under the head d in a separate head process Hd. Additionally we use the marker l_ as
special queue data element to separate the left from the right part and also to indicate
that the tape can be extended on the left or on the right, when needed, by inserting
elements between l_ and oL or between oR and _l_ respectively. Figure 6.8 illustrates
the mapping of the tape instance oLdoR and a shift operation.

In the recursive specification ET above the main process Hd models the situation
that the data element d is at the position of the head. This process Hd is put in
parallel with the queue process Q15R.L/5L and provides the interface to the tape. Read
and write operations for the tape are dealt with by the head process without accessing
the queue; shifting only occurs when a move is requested. This is another reason to

- 131 -

6. COMPUTABLE & EXECUTABLE SYSTEMS

FIGURE 6.8: Diagram of the tape process.

have a separate head process that directly handles a read and write operation without

touching the queue: if the data element at the position of the head would be on the

queue as well, every read or write operation for the tape would cause shifting and

require additional operations to get the queue in the right state again.

As mentioned above, moving the head to the left - handled by H~ - requires

just one shift operation. However, we have to make sure not to remove the special

marker 1- after inserting data element d in the case that the string to the left of the

head (oL) is empty. If this happens, we insert a search marker$ followed by 1- and

cycle through the queue completely until $ reappears. We get the following lemma

that establishes that a move to the left behaves as expected using a fixed number of

internal transitions.

LEMMA 6.33. For every d E 'D0 , o L, o R E 'D0 * we have that

D

PROOF. We prove the validity of the equation by means of an equational reasoning

using the axioms of Table 2.3 (on page 18) and RSP. Then, the lemma follows by

Proposition 2.18 (on page 2.18). We distinguish two cases for oL in [HdL II Q0 u J. :
R L 1,0

1. If oL = (LdL, then H~ moves the tape head to the left by performing one shift

operation. So, first the data element under the head d is prefixed to the string

to right of the head (on), then the right-most date element (dL) of the string to
the left of the head (oL) is removed and put it under the head (see Figure 6.8).

[H~ II Q5 _i(d] . = ·r. ·r. [Hd II Qdo _l(] . = -r. [Hd II Qd o _l(] . .
R L L l ,O L R L l ,O L R L l ,O

2. If oL = £, then H~ initially removes the special symbol 1- from the queue, inserts

the special search marker $, reinserts 1- and then switches to Back. This will

shift through the queue contents until $ is reached. At this point the queue is

consistent again, so it removes the search marker and the blank symbol is put

under the head.

-132-

6.3 . EXPLICIT INTERACTION

[H~ 11 Q8 J_ J . = 'r. ·r. 'r. 'r. [Back 11 Qud 0 J .
R l ,O H l ,O

= 'L 'r. 'r. 'r.-r21dc5"1 . [Back II Qdo u] .
R 1,0

- 2ldc5RI [H II Q J - 'r .'r.'r.'r .'r .'r. 0 dc5 J_ .
R l,O

= -r. [Ho II ~o J_ J . .
R l ,O

We can observe that there is a fixed upper bound of 2ldoRI + 5 to the number of
-r-transitions (in the second case). Hence, there is no divergence. •

Because shifting through the queue contents only goes in one direction, we have
to use a different approach for moving the head to the right, which is handled by H:.
This time we need to have the left-most data element of the string to the right of the
queue (oR) and we will have to shift through the entire queue contents to reach it.
We do this by inserting a search marker $ into the queue and shifting through it using
a lookahead that remembers the data element that was previously removed from the
queue. Once we encounter the search marker, we put this previously encountered
data element under the head.

LEMMA 6.34. For every d E '.D0 , oL, oR E '.D0 * we have that

D

PROOF. We prove the validity of the equation by means of an equational reasoning
using the axioms of Table 2.3 and RSP. Then, the lemma follows by Proposition 2 .18.

[H: II Qs u] . = -r.-r.-r218L1+
1
. [Fwd_]_ II Qs d$o J.

R L l,O L R l ,O

{

'r .'r. 'r2lc5Ll+l .'r2ldRc5Rl. 'r. [Hd II Qc5 _l_c5 d] . if OR = dR(R
_ R R L l ,O

- -r. -r.-r21si1+1.'r.'r . [Ho II Qu d] . if OR= e
l 1,0

= 'r . { [H dR II Qc5R_l_c5Ld] i,o if OR = dR(R

[Ho llQud] . ifoR=e.
L l,O

We can observe that there is a fixed upper bound of 2loLdRoRI + 4 to the number
of -r-transitions. Hence, there is no divergence. •

-133-

6. COMPUTABLE & EXECUTABLE SYSTEMS

Putting everything together, we get the following result that shows that be­

havioural specification of the tape E';' is divergence-preserving branching bisimilar

with the finite specification Er.

LEMMA 6.35. For each tape instance oLdoR (oL,oR E 'D~,d E 'DoJ we have that

T8id8R <->:- [Hd II Q8R.l8L J. . D
l ,O

PROOF. We prove the validity of the equation by means of an equational reasoning
using the axioms of Table 2.3 and RSP. Then, the lemma follows by Proposition 2.18.

T8id8R = [Hd II Q5RJ_8L J.
l,O

Now, expand the expression using axiom Mand move the initial actions of Hd outside:

= 1 + r!d. [Hd II Q5 .t8 J. + ~ w?e. [He II Q5 .l8 J.
R L l O ~ R L lO

' eE'D0 '

+ m?L. [H~ II Q5 .l8 J. + m?R. [H: II Q5 .L8] .
R L l,O R L 1,0

By applying Lemma 6.33 and 6.34 and axiom B we get:

= 1 + r!d.T8 d-8 + ~ w?e.T8 e8 + m?L.T8 <d8 + m?R.T8 d >8 .
L R ~ LR LR LR

eE'D0

We can observe that there are no T-loops introduced by the specification. When
moving left or right either one shift operation happens or we shift until the search
marker is found, both yield a finite number of '!"-transitions. Hence, no divergence is

introduced. •

Finite control

Let M = (S,A, 'D, -+, T, l) be some RTM. We can write its associated trans1t10n

system 'J(M) as a linear specification E~, which is infinite if 'J(M) is infinite.

-134-

6.3. EXPLICIT INTERACTION

This recursive ~pecification E~ contains a name s s,o,doR for each reachable
configuration (s , oldoR) (s E S, d E 'Do, ol , OR E 'Do*) from the initial configuration
(j , 0). Each name S

5 0 iF is defined by the following equation:
• L UR

Ss,o,(J.OR ~ L:a.St ,o,<eoR + L:a .St,o,e >oR [+ lJs! .
(s,d,a ,e,L,t)E-+ (s,d,a,e,R,t)E-+

Here, [+ I], ! indicates that the 1-summand is only present ifs is a final state. By
construction the transition system 'J ~ (Sr 0) is isomorphic with 'J(M).

M '

PROPOSITION 6.36. The transition system 'J(M) is divergence-preserving branching
bisimilar with 'J ~ (Sr 0). D M '

Now that we have captured the behaviour of an RTM with an infinite recursive
specification, it remains to construct a finite recursive specification and show that
it is divergence-preserving branching bisimilar. We now present a finite recursive
specification Efc for the finite control of M. For every state s E S and data element
d E 'D0 we add the name Cs,d to Efc with the following equation (s,t ES, a EA."'
d,e E 'D0 , ME {L,R }):

cs,d ~ L (a.w!e.m!M. L r?f.Ct ,f) [+ lJs!.
(s,d,a,e,M,t)E-+ fE'D0

In Efc each name c s,d represents the part of the finite control of the RTM execution
process where a transition can be chosen based on the current state and data element
under the head. Once some action a is non-deterministically chosen, the tape - as
explained above - is instructed over channel w to write data element e on the place
under the head, then it is instructed over channel m to move the head to the left or
right and finally over channel r to read the data element f under the new position of
the head.

Now, if we put the finite control in parallel with the tape, we can obtain the
following lemma.

LEMMA 6.37. For each configuration (s , oLdoR) of a reactive Turing machine M we have
that Ss 0 do ~ [cs d II T0 do J . D ' L R ' L R r,w,m

PROOF. In this proof we want to relate each reachable configuration, represented
by the name s s,o,do , from the initial configuration of some RTM M to a name Cs,d
in the finite contro1 specification Efc put in parallel with a tape process with the
corresponding contents, while encapsulating and abstracting from communication
between the finite control and tape process. For example, if we have an RTM that has
the configuration (s , o L do R) and has the transitions a [d/eJL , t in its transition relation,
then the desired relation between a step in (a part of) the transition system associated
with the RTM and the transitions in the specification are shown in Figure 6.9.

-135-

6. COMPUTABLE & EXECUTABLE SYSTEMS

a a

[w! e.m!L.2:/E"'- r?f.C,.f II T5 J5]
.L..«LJ l R r,w,m

FIGURE 6.9: Relation between an RTM transition and specification transitions.

We now proceed to show that ~ is branching bisimilar with Efc u Er;;' by means

of equational reasoning using the axioms of Table 2.3 and RSP. Then, the lemma

follows by Proposition 2.18.

s · - (c II T •] s,li,dliR - s,d li,dliR r,w,m

Unfold [cs d II T5 d.o J and, per transition, move the action outside (by applying
' L R r w m

almost all of the axio~s) .

L a. [w!e.m!M. L r?f.Ct ,f II T 5,a5Rl [+ lJs i
(s ,d,a,e,M,t)E- fE'D0 r,w,m

Three communications with the tape follow by axiom CMS and are moved outside by
Dl-DS and Tll-TIS.

L:a. 'r. [m!M. L r?f.Ct J II T 0LeliR] [+ lJsi
(s ,d,a,e,M,t)E- fE'D0 r,w,m

L:a. 'r. 'r. [L r?f.Ct ,f II T 5L<eliR] +
(s,d,a,e, L,t)E- fE'D0 r,w,m

L:a.'r. 'r. [L r?f.Ct,f II T liLe >liR] [+ l]s!
(s,d,a,e,R,t)E- fE'D0 r,w,m

~a . 'r.T. 'r.[cr g llTo < eli] + ,L..J ' L R rw m
(s,d,a,e,L,t)E- ' '

~ a.T.T.T. [er g' II T 0 e >li J [+ lJs! ,L..J ' L R rwm
(s,d,a,e,R,t)E- ' '

-136-

6.3. EXPLICIT INTERACTION

We can remove the three -r-transitions by axiom B.

""a. [et g II T5 <eo] + L.J ' L R rw m
(s,d ,a,e,L ,t)E- ' '

"'a.[ccg' llToe >o J [+1Js1 L.J ' L R rw m
(s,d,a,e,R ,t)E- ' '

L a.St,o,<eo• + L a.St,o,e >5• [+ lJs1 ·
(s,d,a,e,L,t)E- (s,d ,a ,e,R,t)E-

We can observe that no -r-loops or infinite -r-paths are introduced by the specification,
nor by the queue as is shown in Lemma 6.33 and 6.34. Hence, there is no
~~~. . 

We have now established a finite version of the specifications for all three 
components of an RTM. This brings us to the following main result. 

THEOREM 6.38. For every reactive Turing machine M there exists a finite recursive 
TC PT-specification EM. and TC PT-process expression p such that 'J(M) --~ 'JEM (p ). D 

PROOF. Choose EM. = Efc u Ey and p = [ Cr,o II [Ho II Ql_ l ,o] r,w,m· Then the theorem 
follows from Property 6.36 and Lemmas 6.32, 6.35, and 6.37. • 

As a corollary we find that every executable transition system is definable, up 
to divergence-preserving branching bisimilarity, by a recursive TCPT-specification. 
Since there exist recursive specifications with an unboundedly branching associated 
transition system (see, e.g., [BCLTIO], for the converse of the aforementioned 
theorem), we have to give up divergence-preservation. Since the transition system 
associated with a finite recursive specification is clearly effective, we do get, by 
Corollary 6.23, the following result. 

COROLLARY 6.39. For every finite recursive TCPT-specification E and TCPT-process 
expression p, there exists an RTM M such that 'JE(p) _.b 'J(M). D 

If we combine the above theorem with Theorem 6.22, Corollary 6.23 and 
Corollary 6.25 we get the following results. 

COROLLARY 6.40. Every boundedly branching computable transition system and every 
deterministic computable transition system is definable, up to to divergence-preserving 
branching bisimilarity, by afinite TCPT-specification. D 

COROLLARY 6.41. Every effective transition system is definable, up to branching 
bisimilarity, by a finite TCP T-specification. D 

-137-



6. COMPUTABLE & EXECUTABLE SYSTEMS 

6.4 Conclusions 

We have proposed a notion of reactive Turing machine and discussed its expres­

siveness in bisimulation semantics. Although it is not the aim of this work to 

contribute to the debate as to whether interactive computation is more powerful 

than traditional computation, our notion of RTM may nevertheless turn out to be a 

useful concept in the discussion. For instance, our result that the parallel composition 

of RTMs can be simulated by an RTM seems to contradict the conjecture implied 

in [GSAS04, Section 11] that concurrent interactive computation is more expressive 

than sequential interactive computation. 
To be sure, however, we would need to firmly establish the robustness of our 

notion by showing that variations on its definition (e.g., multiple tracks or multiple 

tapes), and by showing that it can simulate the other proposals (persistent Turing 

machines [GSAS04], interactive Turing machines [LWOO, WL08]). We also intend to 

consider interactive versions of other computational models. The A-calculus would 

be an interesting candidate to consider, because of the well-known result that it is 

inherently sequential. This suggests that an interactive version of A-calculus will 

be less expressive than RTMs. In particular, we conjecture that the evaluation of 

parallel-or or McCarthy's amb can be simulated with RTMs. 

RTMs may also prove to be a useful tool in establishing the expressiveness of 

process theories. For instance, the transition system associated with a n-calculus 

expression is effective, so it can be simulated by an RTM, at least up to branching 

bisimilarity. The n-calculus can to some extent be seen as the interactive version of 

the A-calculus. We conjecture that the converse - every executable transition system 

can be specified by a n-calculus expression - is also true, but leave the details for 

future work. 
Petri showed already in his thesis [Pet62] that concurrency and interaction 

may serve to bridge the gap between the theoretically convenient Turing machine 

model of a sequential machine with unbounded memory, and the practically more 

realistic notion of extensible architecture of components with bounded memory. The 

specification we present in the proof of Theorem 6.38 is another illustration of this 

idea: the unbounded tape is modelled as an unbounded parallel composition. It 

would be interesting to further study the inherent trade-off between unbounded 

parallel composition and unbounded memory in the context of RTMs, considering 

unbounded parallel compositions of RTMs with bounded memory. 

In this chapter we have established that the simulation of other RTMs by a 

universal RTM is not possible up to divergence-preserving branching bisimilarity. 

An RTM can at best simulate other RTMs with the same or a lower bound on 

their branching degree. But we have also shown that if we drop the divergence­

preservation requirement, then universal RTMs do exist. 
Finally, we have considered the correspondence between RTMs and the process 

theory TCPr. We have seen that every executable transition system is, up to 

divergence-preserving branching bisimilarity, definable by a finite recursive TCP't"­

specification. Interestingly, sequential composition is not used at all in the specifica­

tions. This means that BCP't" is already sufficient and it can also be done with CCS. 

-138-



6.4. CONCLUSIONS 

Figure 6.10 presents a schematic overview of the main correspondence results of 
this chapter. If we consider these results, we can conclude that that bisimilarity gives 
a much finer perspective on the behaviour of Turing machines. 

RTMs 

' effective 

: tra!1~i!i~~ _s~~t=~s 
I I I 

Thm. 6.22 : ' b. branching ' - ------,-----0: computable : 
I I 

~---,--,----~ 'transition 
I I 

- - - - - - - - - - - - - - , ' systems ' 
________________ : Prop.~.16 

: Co~ 6.39 Thm. 6.38 

,-------------, 
: executable transi- : 
: tion systems , 
I _____________ \ I 

1_ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - " 

L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _I 

explicit 
interaction 
[p II T]; 0 

[Vaa92] 

FIGURE 6.10: Correspondence results. 

finite recursive 
TC PT-specifications 

~ 
' 

Note that there are a few indirect correspondences in the overview. Finite 
recursive TCPr-specifications induce effective transition systems, which can be 
reduced to executable transition systems at the cost of losing divergence-preservation. 
Hence, there exists an RTM that simulates these specifications up to branching 
bisimilarity. Because subsequently this RTM can be defined by a finite recursive TC P-r ­
specification consisting of a finite-state process communicating with the queue, the 
queue can be considered as the canonical TCP-r -process. Note also that because RTMs 
can be defined by these finite recursive TCP-r - specifications that make the interaction 
explicit, we obtain an indirect correspondence between RTMs and finite recursive 
TCP-r -specifications in general. 

-139-





Chapter 7 

Conclusions 

Following the Chomsky hierarchy, we have discussed several kinds of systems in 
the main chapters of this thesis (Chapters 3-6). For each class of systems we have 
first investigated the automata augmented with memory as a central notion, except 
for finite-state systems, which are memoryless. Then we have looked at a suitable 
specification language and investigated the correspondence of that language with the 
notion of automaton at hand. Finally, for each class of systems we have made the 
interaction within the automaton, between finite control and memory, explicit. 

7 .1 Automata 

We have started with finite automata that can be used to represent memoryless, finite 
control. We have seen that finite transition systems are essentially finite automata 
and that, up to (divergence-preserving) branching bisimilarity, deterministic finite 
automata form a subclass of the (non-deterministic) finite automata. 

When we augment finite automata with memory, we can associate with an 
automaton transition systems with a possibly infinite number of states. Based on 
the chosen memory and semantics, we get different classes of associated transition 
systems. If we augment finite automata with stack memory, we get pushdown 
automata; if we augment them with bag memory, we get parallel pushdown 
automata; and if we augment them with tape memory, we get reactive Turing 
machines. The different classes of automata yield different classes of transition 
systems. We have also seen that for (i) termination on final state, (ii) termination 
when the memory is empty, and (iii) termination on both final state and when the 
memory is empty, we get different classes of transition systems. In our definitions 
the stack of a PDA has an empty-test, while the bag of the PPDA does not include it. 
It would be interesting to see what transition system classes can be obtained if the 
situation is reversed. For RTMs we have investigated termination on final state only. 
In the future, other termination conditions could be considered. 

The aforementioned differences in classes appear if we consider them up to 
(divergence-preserving) branching bisimilarity. If we consider the classes up to 
language equivalence, then all class differences collapse. Thus, we have seen that 

- 141 -



7. CONCLUSIONS 

from a process-theoretic point of view it matters how the definition of the automaton 

- of the memory and its interaction in particular - is chosen. 

7 .2 Specifications 

We have seen that for each class of systems there exists a suitable specification 

language. For finite-state systems we have proposed the linear specifications, 

for pushdown systems the sequential specifications, and for parallel pushdown 

systems the basic parallel specifications. For computable and executable systems we 

have reused finite recursive TCP"-specifications. We have explored the correspon­

dence between these specification languages and the automata that belong to the 

respective class. 
For finite -state systems, the correspondence between finite automata and linear 

specifications holds up to isomorphism. 
For pushdown systems the correspondence is deficient. We have seen that pop 

choice-free pushdown automata can be given, up to divergence-preserving branching 

bisimilarity; by a sequential specification. It is clear that not every non-pop choice-free 

pushdown automaton can be given by a sequential specification. However, it would 

be worth investigating whether the pop choice-freeness restriction is optimal. In the 

other direction, we have seen that due to the presence of the empty process in the 

specification language, we can get unbounded branching in the associated transition 

systems. We conjecture that a pushdown transition system cannot have unbounded 

branching. We applied the transparency-restrictedness restriction on sequential 

specifications and showed that they can be simulated, up to divergence-preserving 

branching bisimilarity; by a (pop choice-free) pushdown automaton. It is clear that 

the transparency-restricted requirement is too strict. There are non-transparency­

restricted sequential specifications that do not have unbounded branching in their 

associated transition systems. 
For parallel pushdown systems the correspondence results are different, but 

still deficient. We have shown that fully opaque, fully transparent, and mixed 

opaque/ transparent recursive specifications can be simulated, up to divergence­

preserving branching bisimilarity; by a parallel pushdown automaton. It is just a 

matter of choosing the right termination condition. For the mixed specification we 

have introduced an extra termination condition to obtain the correspondence result: 

termination on final state and transparent bag, i.e. a bag that only contains data 

elements which are designated as transparent. In the other direction, only single-state 

parallel pushdown automata can be given, up to divergence-preserving bisimilarity; 

by basic parallel specifications. 
For computable and executable systems we have investigated the expressiveness 

of RTMs rather than the correspondence of RTMs with finite recursive TCP-r ­

specifications. It follows from results in the literature that transition systems associ­

ated with finite recursive TCP-r -specifications are effective transition systems, which 

can be reduced to executable transition systems at the cost of losing divergence­

preservation. We have shown that executable transition systems can be simulated, 

-142-



7.3. EXPLICIT INTERACTION 

up to divergence-preserving branching bisimilarity, by an RTM, thus obtaining the 
correspondence from specifications to RTMs indirectly. In the other direction, we 
also obtain the result indirectly: by making the interaction in an RTM explicit, we 
obtain a finite recursive TCPr-specification. 

7 .3 Explicit Interaction 

In the case of finite-state systems, we have discussed regular expressions rather than 
explicit interaction; we presented the correspondence between finite automata and 
extended regular expressions, i.e. regular expressions extended with communication 
and encapsulation. We could interpret this as making the interaction within a finite 
automaton explicit. Indeed, each state has a parallel component and control is 
handed over via communication. 

The way the interaction within a pushdown automaton is made explicit depends 
on the termination condition. For termination on (final state and) empty stack 
we have shown that we can find a linear specification of the finite control of the 
pushdown automaton, put it in parallel with the sequential specification of the stack 
and obtain the correspondence up to divergence-preserving branching bisimilarity. 
For termination on final state we need an always-terminating stack. We have shown 
that there exists no such sequential specification. Putting the linear specification 
mentioned above in parallel with a finite recursive TCPr-specification of an always­
terminating stack, we are able to obtain the correspondence. 

For basic parallel pushdown automata we considered termination on final state 
and on (final state and) empty bag. We also considered termination on final state 
and transparent bag. It turned out we could find a single linear specification of the 
finite control of the parallel pushdown automaton. When we put it in parallel with 
different basic parallel specifications of the bag, we could obtain the correspondence 
results, up to branching bisimilarity, for parallel pushdown automata with respective 
termination conditions: the bag for termination on (final state and) empty bag, the 
transparent bag for termination on final state and the partially transparent bag for 
termination on final state and transparent bag. It remains an open question whether 
divergence-preservation can be included as well . 

In the case of computable and executable systems we have made the interaction 
within the RTM explicit. We could find a linear specification for the finite control of 
the RTM. To obtain a tape we add some linear specification and put it in parallel with 
a finite recursive TC Pr-specification of a queue. When the tape is put in parallel with 
the linear specification of the finite control, we obtained the correspondence, up to 
divergence-preserving branching bisimilarity, with the RTM. 

7.4 Future Directions 

In this thesis we have been mainly concerned with classical results from automata 
and formal language theory. We have chosen our definitions as close as possible 
to automata theory to get the tightest correspondences. In the future, variations of 

- 143 -



7. CONCLUSIONS 

definitions of the PDA, PPDA and RTM could be explored. For example, the afore­

mentioned different termination conditions for the RTM or the absence/ presence of 

the empty-test in the PDA and PPDA. 
We have seen that the correspondence, up to (divergence-preserving) branching 

bisimilarity, between specification languages and automata with memory are not 

complete. In future work we could explore up until which equivalences the 

correspondences do hold. A step in this direction was already made in [BCT08] 

by giving the correspondence between the full class of sequential specifications and 

pushdown automata by stepping down to contrasimulation. 
We have omitted in this thesis the Petri nets and context-sensitive languages. It 

would be interesting to study how these notions fit in the framework that we have 

presented in this thesis. From the specification language side, this also holds for the 

specifications language that is the combination of the sequential and basic parallel 

specifications. 
In general, it would be worthwhile to compare the models of computation (or 

execution) to other notions with interaction found in literature. For example, the 

comparison of RTMs with persistent Turing machines. The n-calculus can to some 

extent be seen as the interactive version of the A.-calculus. The investigation of the 

n-calculus and our RTM could prove to be interesting. 

- 144 -



Bibliography 

[BaeOS] J. C. M. Baeten. ,,A brief history of process algebra". In: Theoretical 
Computer Science 335.2-3 (2005), pp. 131-146 (cit. on p. 2). 

[Baell] J.C. M. Baeten. Models of Computation: Automata and Processes. Lecture 
notes, available at http: //se. wtb. tue. nl/sewiki/2it15/. 2011 
(cit. on pp. 22, 39). 

[BBR09] J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra -
Equational Theories of Communicating Processes. Cambridge Tracts in 
Theoretical Computer Science 50. Cambridge University Press, 2009 (cit. 
on pp. xiii, 3, 5, 10, 13, 17, 128) . 

[BB88] J . C. M. Baeten and J. A. Bergstra. ,,Global Renaming Operators in Con­
crete Process Algebras". In: Information and Computation 78.3 (1988), 
pp. 205-245 (cit. on p. 72). 

[BBK87] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. ,,On the Consistency of 
Koo men's Fair Abstraction Rule". In: Theoretical Computer Science 51.1-2 
(1987), pp. 129-176 (cit. on pp. 19, 116, 128, 129). 

[BBK93] J . C. M. Baeten, J. A. Bergstra, and J. W. Klop. ,,Decidability of Bisimula­
tion Equivalence for Processes Generating Context-Free Languages". In: 
Journal of the ACM 40.3 (1993), pp. 653-682 (cit. on pp. 4, 51, 53, 63). 

[BCG07] J. C. M. Baeten, F. Corradini, and C. A. Grabmayer. ,,A Characterization 
of Regular Expressions under Bisimulation". In: Journal of the ACM 54.2 
(2007), (6)1-28 (cit. on pp. 31, 35). 

[BCLTlO] J. C. M. Baeten, P. J. L. Cuijpers, B. Luttik, and P. J. A. van Tilburg. ,,A 
Process-Theoretic Look at Automata". In: Proceedings of FSEN 2009. Ed. 
by F. Arbab and M. Sirjani. Lecture Notes in Computer Science 5961. 
Springer, 2010, pp. 1-33 (cit. on pp. 13, 22, 39, 57, 137). 

[BCT08] J. C. M. Baeten, P. J. L. Cuijpers, and P. J. A. van Tilburg. ,,A Context­
Free Process as a Pushdown Automaton". In: Proceedings of CONCUR 
2008. Ed. by F. van Breugel and M. Chechik. Lecture Notes in Computer 
Science 5201. Springer, 2008, pp. 98-113 (cit. on pp. 39, 63, 69, 72, 76, 
144). 

-145-



BIBLIOGRAPHY 

[BCT09] J.C. M. Baeten, P. J. L. Cuijpers, and P. J. A. van Tilburg. ,,A Basic Parallel 

Process as a Parallel Pushdown Automaton". In: Proceedings of EXPRESS 

2008. Ed. by D. Gorla and T. Hildebrandt. Electronic Notes in Theoretical 

Computer Science 242.1. Elsevier, 2009, pp. 35-48 (cit. on pp. 80, 98, 
106). 

[BLMTlO] J . C. M. Baeten, B. Luttik, T. Muller, and P. J. A. van Tilburg. ,,Ex­

pressiveness modulo Bisimilarity of Regular Expressions with Parallel 

Composition (Extended Abstract)". In: Proceedings of EXPRESS 2010. Ed. 

by S. B. Froschle and F. D. Valencia. Electronic Proceedings in Theoretical 

Computer Science 41. Open Publishing Association, 2010, pp. 1-15 (cit. 

on pp. 22, 31, 64, 128). 

[BLTl la] J. C. M. Baeten, B. Luttik, and P. J. A. van Tilburg. ,,Computations and 

Interaction". In: Proceedings of ICDCIT 2011. Ed. by R. Natarajan and A. 

Ojo. Lecture Notes in Computer Science 6536. Springer, 2011, pp. 35-54 

(cit. on pp. 22, 39) . 

[BLTllb] J. C. M. Baeten, B. Luttik, and P. J. A. van Tilburg. ,,Reactive Turing 

Machines". In: Proceedings of FCT 2011 . Ed. by 0. Owe, M. Steffen, and J. 

Telle. Lecture Notes in Computer Science 6914. Springer, 2011, pp. 348-
359 (cit. on p. 111). 

[BLTllc] J. C. M. Baeten, B. Luttik, and P. J. A. van Tilburg. Reactive Turing 

Machines. Tech. rep. arXiv:1104.1738v3. Cornell University Library, 
2011 (cit. on p. 111). 

[BW90] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge Tracts 

in Theoretical Computer Science 18. Cambridge University Press, 1990 
(cit. on p. 92). 

[Bas96] T. Basten. ,,Branching bisimilarity is an equivalence indeed!" In: Infor­

mation Processing Letters 58.3 (1996), pp. 141-147 (cit. on p. 11). 

[BBP94] J . A. Bergstra, I. Bethke, and A. Ponse. ,,Process Algebra with Iteration 

and Nesting". In: The Computer Journal 37.4 (1994), pp. 243-258 (cit. 

on pp. 16, 17). 

[BK84] J. A. Bergstra and J. W. Klop. ,,Process Algebra for Synchronous Com­

munication". In: Information and Control 60.1-3 (1984), pp. 109-137 
(cit. on pp. xiii, 3, 13). 

[BK85] J . A. Bergstra and J. W. Klop. ,,Algebra of Communicating Processes with 

Abstraction". In: Theoretical Computer Science 37 (1985), pp. 77-121 
(cit. on p. 90). 

[BK86] J. A. Bergstra and J . W. Klop. ,,Process Algebra: Specification and 

Verification in Bisimulation Semantics". In: Mathematics and Computer 

Science II. Ed. by M. Hazewinkel, J. K. Lenstra, and L. G. L. T. Meertens. 

CWI Monographs 4. North-Holland, 1986, pp. 61-94 (cit. on p. 129) . 

-146-



BIBLIOGRAPHY 

[BP97] M. Bezem and A Ponse. ,,Two finite specifications of a queue". In: 
Theoretical Computer Science 177.2 (1997), pp. 487-507 (cit. on pp. 129, 
131). 

[BGRR07] A. Blass, Y. Gurevich, D. Rosenzweig, and B. Rossman. ,,Interactive 
Small-Step Algorithms I: Axiomatization". In: Logical Methods in Com­
puter Science 3.4 (2007) (cit. on pp. 4, 111). 

[Bos97] D. Bosscher. ,,Grammars Modulo Bisimulation". PhD thesis. Centrum 
Wiskunde & Informatica, University of Amsterdam, 1997 (cit. on pp. 51, 
64). 

[Bou85] G. Boudol. ,,Notes on algebraic calculi of processes". In: Logics and Models 
of Concurrent Systems . Ed. by K. R. Apt. NATO-AS! Series F13. Springer­
Verlag, 1985, pp. 261-303 (cit. on p. 116). 

[Cau86] D. Caucal. ,,Decidabilite de l'egalite des langages algebriques infinitaires 
simples". In: Proceedings of STACS 1986. Ed. by B. Monien and G. Vidal­
Naquet. Lecture Notes in Computer Science 210. Springer, 1986, pp. 37-
48 (cit. on p. 63). 

[Cho56] N. Chomsky. ,,Three models for the description of language". In: IRE 
Transactions on Information Theory 2.3 (1956), pp. 113-124 (cit. on 
pp. 2, 25). 

[Cho59] N. Chomsky. ,,On certain formal properties of grammars*". In: Informa­
tion and control 2.2 (1959), pp. 137-167 (cit. on p. 2). 

[Chr93] S. Christensen. ,,Decidability and Decomposition in Process Algebras". 
PhD thesis . University of Edinburgh, 1993 (cit. on pp. xiii, 80, 90, 91, 
96). 

[CHM93] S. Christensen, Y. Hirshfeld, and F. Moller. ,,Bisimulation Equivalence is 
Decidable for Basic Parallel Processes". In: Proceedings of CONCUR 1993. 
Ed. by E. Best. Lecture Notes in Computer Science 715. Springer, 1993, 
pp. 143-157 (cit. on pp. 80, 97, 98, 101). 

[CHS95] S. Christensen, H. Hi.ittel, and C. Stirling. ,,Bisimulation Equivalence is 
Decidable for all Context-Free Processes". In: Information and Computa­
tion 121.2 (1995), pp. 143-148 (cit. on pp. 4, 63, 64). 

[Chu32] A. Church. ,,A Set of Postulates for the Foundation of Logic". In: The 
Annals of Mathematics 33.2 (1932), pp. 346-366 (cit. on p. 3). 

[Chu36] A. Church. ,,An Unsolvable Problem of Elementary Number Theory". 
In: American Journal of Mathematics 58.2 (1936), pp. 345-363 (cit. on 
pp. 1, 109). 

[Dar89] P. Darondeau. ,,Bisimulation and Effectiveness". In: Information Process­
ing Letters 30.1 (1989), pp. 19-20 (cit. on p. 118). 

[Dic13] L. E. Dickson. ,,Finiteness of the Odd Perfect and Primitive Abundant 
Numbers with n Distinct Prime Factors". In: American Journal of Mathe­
matics 35.4 (1913), pp. 413-422 (cit. on p. 88). 

-147-



BIBLIOGRAPHY 

[Fre79] F. L. G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formel­

sprache des reinen Denkens. L. Nebert, 1879 (cit. on p. 2). 

[Gla93] R. J. van Glabbeek. ,,The Linear Time - Branching Time Spectrum II". In: 

Proceedings of CONCUR 1993. Ed. by E. Best. Lecture Notes in Computer 

Science 715. Springer, 1993, pp. 66-81 (cit. on pp. 3, 5, 10, 63) . 

[Gla94] R. J. van Glabbeek. ,,On the Expressiveness of ACP (extended abstract)". 
In: Proceedings of ACP 1994. Ed. by A. Ponse, C. Verhoef, and S. F. M. van 

Vlijmen. Workshops in Computing. Springer, 1994, pp. 188-217 (cit. on 

p. 128). 

[GLT09] R. J. van Glabbeek, B. Luttik, and N. Trcka. ,,Branching Bisimilarity with 

Explicit Divergence". In: Fundamenta Informaticae 93.4 (2009), pp. 371-

392 (cit. on p. 11). 

[GV93] R. J. van Glabbeek and F. W. Vaandrager. ,,Modular Specifications 

of Process Algebras". In: Theoretical Computer Science 113.2 (1993), 

pp. 293-348 (cit. on p. 130). 

[GW96] R. J. van Glabbeek and W. P. Weijland. ,,Branching Time and Abstraction 

in Bisimulation Semantics". In: Journal of the ACM 43.3 (1996), pp. 555-

600 (cit. on pp. 3, 10) . 

[GSAS04] D. Q. Goldin, S. A. Smolka, P. C. Attie, and E. L. Sonderegger. ,,Turing 
machines, transition systems, and interaction". In: Information and 

Computation 194.2 (2004), pp. 101-128 (cit. on pp. 4, 111, 138). 

[GSW06] D. Q. Goldin, S. A. Smolka, and P. Wegner, eds. Interactive computation: 
The new paradigm. Springer, 2006 (cit. on pp. 4, 111). 

[Gre65] S. A. Greibach. ,,A New Normal Form Theorem for Context-Free Phrase 
Structure Grammars". In: Journal of the ACM 12.1 (1965), pp. 42-54 

(cit. on p. 19). 

[Gro92] J. F. Groote. ,,A Short Proof of the Decidability of Bisimulation for 

Normed BPA-Processes". In: Information Processing Letters 42.3 (1992), 

pp. 167-171 (cit. on pp. 4, 63) . 

[HP89] D. Harel and A. Pnueli. ,,On the Development of Reactive Systems". In: 

Logics and Models of Concurrent Systems. Ed. by K. R. Apt. NATO-ASI 

Series Fl3. Springer-Verlag, 1989, pp. 477-498 (cit. on p. 109). 

[HMOl] Y. Hirshfeld and F. Moller. ,,Pushdown automata, multiset automata, and 

Petri nets". In: Theoretical Computer Science 256.1-2 (2001), pp. 3-21 

(cit. on p. 108). 

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985 
(cit. on pp. xiii, 3, 13, 72). 

[HMU06] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata 

Theory, Languages, and Computation. 3rd ed. Pearson, 2006 (cit. on 

pp.2,4,24,34,37, 39,40,47,51,53,62, 74, 109, 125). 

-148-



[HS91] 

[Kle36] 

[Kle56] 

[LWOO] 

[LinOl] 

[MP43] 

[Mil80] 

[Mil84] 

[Mil89] 

[Mil93] 

[Mil99] 

[Mol96] 

[Neu56] 

[Par81] 

BIBLIOGRAPHY 

H. Hiittel and C. Stirling. ,,Actions Speak Louder than Words: Proving 
Bisimilarity for Context-Free Processes". In: Proceedings of LICS 1991. 
Ed. by G. Kahn. IEEE Computer Society Press, 1991, pp. 376-386 (cit. 
on pp. 4, 63) . 

S. C. Kleene. ,,General recursive functions of natural numbers". In: 
Mathematische Annalen 112.1 (1936), pp. 727-742 (cit. on pp. 1, 109) . 

S. C. Kleene. ,,Representation of Events in Nerve Nets and Finite 
Automata". In: Automata Studies. Ed. by C. E. Shannon and J. McCarthy. 
Annals of Mathematical Studies 34. Princeton University Press, 1956, 
pp. 3-42 (cit. on pp. 2, 16, 30, 31). 

J. van Leeuwen and J. Wiedermann. ,,On Algorithms and Interaction". 
In: Proceedings of MFCS 2000. Ed. by M. Nielsen and B. Rovan. Lecture 
Notes in Computer Science 1893. Springer, 2000, pp. 99-113 (cit. on 
pp. 4, 111, 138). 

P. Linz. An Introduction to Formal Languages and Automata. 3rd ed. Jones 
and Bartlett Publishers, 2001 (cit. on pp. 2, 4, 24, 26). 

W. S. McCullough and W. Pitts. ,,A logical calculus of ideas immanent 
in nervous activity''. In: Bulletin of Mathematical Biophysics 5.4 (1943), 
pp. 115-133 (cit. on p. 2). 

R. Milner. A Calculus of Communicating Systems. Lecture Notes in 
Computer Science 92. Springer-Verlag, 1980 (cit. on pp. xiii, 2, 3, 13) . 

R. Milner. ,,A Complete Inference System for a Class of Regular Be­
haviours". In: Journal of Computer and System Sciences 28.3 (1984), 
pp. 439-466 (cit. on pp. 16, 22, 31). 

R. Milner. Communication and Concurrency. Prentice Hall, 1989 (cit. on 
pp. 3, 13) . 

R. Milner. ,,Elements of Interaction - Turing Award Lecture". In: Commu­
nications of the ACM 36.1 (1993), pp. 78-89 (cit. on pp. 2, 109). 

R. Milner. Communicating and mobile systems: then-calculus. Cambridge 
University Press, 1999 (cit. on p. 3). 

F. Moller. ,,Infinite results". In: Proceedings CONCUR 1996. Ed. by U. 
Montanari and V. Sassone. Lecture Notes in Computer Science 1119. 
Springer, 1996, pp. 195-216 (cit. on pp. 4, 5, 60, 79, 81, 108). 

J. von Neumann. ,,Probabilistic Logics and the Synthesis of Reliable 
Organisms from Unreliable Components". In: Automata Studies. Ed. by 
C. E. Shannon and J. McCarthy. Annals of Mathematical Studies 34. 
Princeton University Press, 1956, pp. 43-98 (cit. on p. 2). 

D. M. R. Park. ,,Concurrency and automata on infinite sequences". In: 
Proceedings of TCS 1981. Ed. by P. Deussen. Lecture Notes in Computer 
Science 104. Springer, 1981, pp. 167-183 (cit. on p. 10). 

-149-



BIBLIOGRAPHY 

[Pet62] 

[Phi93] 

[Plo04] 

[Rog67] 

[Sip97] 

[SrbOl] 

[Sti03] 

[Sud88] 

[Trc07] 

[Tur37] 

[Tur39] 

[Vaa92] 

[VMOl] 

[WL08] 

C. A. Petri. ,,Kommunikation mit Automaten." Schriften des IIM Nr. 2. 
PhD thesis. Bonn: Institut fur Instrumentelle Mathematik, 1962 (cit. on 
pp. 2, 138). 

I. C. C. Phillips. ,,A Note on Expressiveness of Process Algebra". In: Pro­

ceedings of the First Imperial College Department of Computing Workshop 

on Theory and Formal Methods. Ed. by G. L. Burn, S. Gay, and M. D. Ryan. 
Workshops in Computing. Springer-Verlag, 1993, pp. 260-264 (cit. on 
pp. 117, 126). 

G. D. Plotkin. ,,A structural approach to operational semantics". In: 
Journal of Logic and Algebraic Programming 60-61 (2004) , pp. 17-139 
(cit. on p. 14). 

H. Rogers. Theory of Recursive Functions and Effective Computability. 

McGraw-Hill Book Company, 1967 (cit. on pp. 116, 117, 120, 125, 126) . 

M. Sipser. Introduction to the Theory of Computation. PWS Publishing 
Company, 1997 (cit. on pp. 2, 4, 24, 34, 37, 39, 51, 74, 109). 

J. Srba. ,,Basic Process Algebra with Deadlocking States". In: Theoretical 

Computer Science 266.1- 2 (2001), pp. 605-630 (cit. on pp. 4, 51, 64-68, 
90). 

C. Stirling. ,,Bisimulation and Language Equivalence". In: Logic for 

Concurrency and Synchronisation 15 (2003), pp. 269-284 (cit. on p. 4) . 

T. A. Sudkamp. Languages and Machines. 2nd ed. Addison-Wesley 
Publishing Company, 1988 (cit. on pp. 2, 4, 24, 34, 37, 39, 51, 52, 74, 
109). 

N. Trcka. ,,Silent Steps in Transition Systems and Markov Chains". PhD 
thesis. Eindhoven University of Technology, 2007 (cit. on p. 18). 

A. M. Turing. ,,On Computable Numbers, With an Application to the 
Entscheidungsproblem". In: Proceedings of the London Mathematical 

Society s2-42.l (1937), pp. 230-265 (cit. on pp. 1, 109, 129). 

A. M. Turing. ,,Systems of Logic Based on Ordinals". In: Proceedings of 

the London Mathematical Society s2-45.l (1939), pp. 161- 228 (cit. on 
p. 111). 

F. W. Vaandrager. ,,Expressiveness Results for Process Algebras". In: 
Proceedings of the REX Workshop 1992. Ed. by J. W. de Bakker, W. P. 
de Roever, and G. Rozenberg. Lecture Notes in Computer Science 666. 
Springer, 1992, pp. 609-638 (cit. on pp. 128, 139) . 

M. Voorhoeve and S. Mauw. ,,Impossible Futures and Determinism". In: 
Information Processing Letters 80.1 (2001) , pp. 51-58 (cit. on p. 63) . 

J. Wiedermann and J. van Leeuwen. ,,How We Think of Computing 
Today". In: Proceeding of CiE 2008. Ed. by A. Beckmann, C. Dimi­
tracopoulos, and B. Lowe. Lecture Notes in Computer Science 5028. 
Springer, 2008, pp. 579-593 (cit. on pp. 111, 138) . 

-150-



Index 

For a complete overview of the symbols and acronyms used in this thesis, please refer to 
the Glossary on page xi. 

A 

A, see action symbol 
A•, see action sequence 
A c, see control action 
A -r , see action, unobservable action 
abstraction, 14 
accepted language, 10 

by finite automaton, 23 
byPDA, 42 
by PPDA, 84 

action, see action symbol 
action postfix, 28 
action prefix, 14 
action sequence, 9 
action symbol, 9 
alternative composition, 14 
always-terminating stack, 73 

recursive specification, 72-73 
associated transition system, 4 

parallel pushdown automaton, 83 
pushdown automaton, 41 
reactive Turing machine, 114 
recursive specification, 14 

automata theory, 1 
automaton, see finite automaton, 

pushdown automaton, 
parallel pushdown automaton, 
reactive Turing machine 

axiomatisation, 17 

B 
bag, 81 

parallel pushdown automaton, 85 
parallel pushdown transition 

system, 85 
recursive specification, 91-92 

bag symbol, 81 
basic parallel normal form, 91 
basic parallel process, 91 
basic parallel process expression, 90 
basic parallel specification, 90 
BCP", 16 

recursive specification, 90 
behavioural equivalence, 5 
bisimilarity, see strong bisimilarity 
bisimulation, see strong bisimilarity 
bisimulation approximation, 101 
bisimulation base, 64 
bounded branching, 13 
BPA, 51 

recursive specification, 51 
BPA0 

process expression, 66 
recursive specification, 63 

BPP, 90 
recursive specification, 106 

branching bisimilarity, 10-11 
branching degree, 12 

bounded, 13 
finite, 13 

-151 -



BSPr, 16 
recursive specification, 25 

e, see channel 
channel, 13 

c 

choice, see alternative composition 
Chomsky hierarchy, 2 
Church-Turing thesis, 2 

strong version, 109 
communication action, 13 
communication function, 13, 32, 90 
communication merge, 14 
computability theory, 1 
computable transition system, 116 
computation, 112 
computing, 1 
concurrency theory, 2 
configuration 

parallel pushdown automaton, 83 
pushdown automaton, 41 
reactive Turing machine, 113 

context-free grammar, 51 
commutative version, 90 

context-free language, 42 
context-sensitive language, 144 
contrasimilarity, 63 
control action, 33 

D 

'D, see data symbol 
'D*, see data symbol sequence 
'D0 , see tape symbol 
'D _j_, see stack symbol 
'D. , see bag symbol 
data element, see data symbol 
data symbol, 13 
data symbol sequence, 39 
deadlock, see deadlocked process 
deadlocked process, 14 
defining equation, 14 
deterministic 

finite automaton, 24 
reactive Turing machine, 111 
transition system, 124 

FORMAL LANGUAGE THEORY 

DFA, see deterministic finite automaton 
divergence-preserving branching 

bisimilarity, 11 

E 

E, see recursive specification 
effective transition system, 116 
effectively computable function, 110 
effectively executable behaviour, 110, 114 
empty multiset, 81 
empty process, 14 
empty string, 39 
empty word, 9 
empty word property, 43 
empty-test, 42, 90 
encapsulation, 14 
c, see empty string, empty word 
e-production, 52 
e-transition, 24 
equivalence class, 11 
executability, 1, 4 
executable process, 114 
executable transition system, 114 
explicit termination action, 65 
extended regular expression, 31 

F 

fairness assumption, 10 
final state, 9 
finite automaton, 22 

deterministic, 24 
non-deterministic, 23 
well-behaved, 31 

finite branching, 13 
finite control, 21 

recursive specification 
of PDA, 70 
of PPDA, 103 
ofRTM, 134-135 

finite-state process, 23 
finite-state system, 21 
finitely normed name, 65 
forgetful stack, 55 

recursive specification, 54-55 
formal language theory, 2 

-152-



GNF 

G 

GNF, see Greibach normal form 
grammar, 25 

context-free, 51 
formal, 2 
left-linear, 25 
linear, 25 
regular, 25 
right-linear, 25 
unrestricted, 110 

Greibach normal form, 19 
restricted, 19 

guarded, see -r-founded, -r-guarded 
guarded recursive specification, 16 

I 

I, see initial name 
inert, see inert transition 
inert transition, 12 
infinitely normed name, 65 
initial name, 15 
initial state, 9 
initially terminating, 43 
insert transition, 84 
integration, 3 
intermediate termination, 5 
internal action, see unobservable action 
internal computation, 115 

fully deterministic, 115 
isomorphism, 26 

K 

Kleene star, 16, 30 

L 

£(),see language 
labelled transition system, see transition 

system 
A-calculus, 1, 138 
A-production, 52 
A-transition, 24 
language, 10 

acceptance, 1 O 
acceptance by empty stack, 40 

acceptance by final state, 40 
classes, 2 
context-free, 42 
context-sensitive, 144 
parallel pushdown, 84 
pushdown, 42 
regular, 23 

NORM 

language acceptor, 23, see also accepted 
language 

language equivalence, 10 
left-linear grammar, 25 
left-merge, 14 
linear grammar, 25 
linear normal form, 28 

reversed, 29 
linear process expression, 25 
linear specification, 25 

with postfixing, 28 

M 

M(), see multiset 
marked tape symbol, 113 
multiset, 81 

difference, 81 
empty, 81 
notation, 81 
singleton, 81 
subset, 81 
union, 81 

N, see name 
name, 13 

N 

finitely normed, 65 
infinitely normed, 65 

NFA, see non-deterministic finite automa­
ton 

no-removal symbol, 81 
node,98 

terminal, 99 
successful, 99 
unsuccessful, 100 

non-deterministic finite automaton, 23 
non-terminal, see name 
norm, 13 

-153-



NORMAL FORM 

normal form 
basic parallel, 91 
Greibach normal form, 19 
linear, 28 

reversed, 29 
sequential, 53 

restricted, 53 

0 

occurrence count, 9 
opaque, 57 

p 

'.P(), see process expression 
parallel composition, 14 

of reactive Turing machines, 115 
of transition systems, 114 

parallel pushdown automaton, 81-82 
associated transition system, 83 
empty-test, 90 
example, 82 

parallel pushdown language, 84 
parallel pushdown process, 84 
parallel pushdown transition system, 83 
partially transparent bag, 105 
PDA, see pushdown automaton 
Petri net, 108, 144 
re-calculus, 3, 138 
pop choice, 60 
pop choice-free, 60 
pop transition, 42 
PPDA, see parallel pushdown automaton 
process, 11 

basic parallel, 91 
executable, 114 
finite-state, 23 
parallel pushdown, 84 
pushdown, 42 
sequential, 53 

process algebra, 3 
process expression, 13 

basic parallel, 90 
BPA0 -, 66 
closed, 14 
linear, 25 

RECURSIVE SPECIFICATION 

sequential, 52 
TCP; -, 31 
TSP; -, 33 

process theory, 2 
push transition, 42 
pushdown automaton, 39 

associated transition system, 41 
empty-test, 42 
example, 40 
initially terminating, 43 
pop choice-free, 60 

pushdown language, 42 
pushdown process, 42 
pushdown transition system, 41 

pop choice-free, 60 

Q 

queue, 129 
recursive specification, 129-131 

quotient, 11 

R 

reachable state, 9 
reactive system, 5, 109 
reactive Turing machine, 111 

associated transition system, 114 
example, 112 
simulator, 123 
universal, 126 

receive action, 13 
recursive function, 1 
recursive specification, 14 

associated transition system, 14 
BCP-r -, 90 
BPA-, 51 
BPA0 -, 63 
BPP-, 106 
BSP-r -, 25 
guarded, 16 
opaque, 57 
-r-founded, 16 
-r-guarded, 16 
TCP-r-, 14 
transparent, 5 7 
TSP-r-, 52 

-154-



REGULAR EXPRESSION 

regular expression, 30 
extended, 31 

regular grammar, 25 
regular language, 23 
remove transition, 84 
reversed linear normal form, 29 
right-linear grammar, 25 
rooted divergence-preserving branching 

bisimilarity, 17-18 
RTM, see reactive Turing machine 

S, see state 
send action, 13 
sequential 

s 

restricted, 53 
sequential composition, 14 
sequential normal form, 53 
sequential process, 53 
sequential process expression, 52 
sequential specification, 52 

transparency restricted, 57 
silent action, see unobservable action 
silent bisimulation, 18 
silent transition, 24 
simulator RTM, 123 
singleton multiset, 81 
skip, see empty process 
specification, see also recursive specifica­

tion 
basic parallel, 90 
linear, 25 

with postfixing, 28 
sequential, 52 

specification language, 5 
stack, 42 

always terminating, 73 
forgetful, 55 
pushdown automaton, 43 
pushdown transition system, 43 
recursive specification, 54 

stack empty symbol, 39 
stack symbol, 39 
state, 9 

final, 9 

initial, 9 
reachable, 9 

TERMINATION 

stateless silent bisimulation, 18 
string, see data symbol sequence 
strong bisimilarity, 10 

without termination, 6 7 
structural operational semantics, 14 
successful tableau, 100 
successful terminal node, 99 
symbol 

bag symbol, 81 
marked tape symbol, 113 
stack symbol, 39 
tape symbol, 111 

T 

'J(), see associated transition system 
tableau, 98 

node,98 
rule, 98 
successful, 100 

tableau decision method, 98 
completeness of, 101 
soundness of, 101 

tape 
recursive specification, 129, 131-

134 
tape blank symbol, 111 
tape instance, 113 
tape symbol, 111 
", see unobservable action 
'!"-convergent, see '!"-founded 
'!"-founded, 16 
'!"-guarded, 16 
TCP,., 13 

congruence for, 18 
process expression, 13 
recursive specification, 14 
soundness of, 19 

TCP; , 16 
process expression, 31 

terminal node, 99 
termination 

on empty bag, 83 
on empty stack, 41 

-155-



TERMINATION CONDITION 

on final state, 41, 83 
on final state and empty bag, 83 
on final state and empty stack, 41 
on final state and transparent 

bag, 95 
termination condition, 41 
termination predicate, see final state 
transition 

inert transition, 12 
insert transition, 84 
pop transition, 42 
push transition, 42 
remove transition, 84 

transition relation, 9 
transition system, 9 

associated with PDA, 41 
associated with PPDA, 83 
associated with RTM, 114 
associated with specification, 14 

transparency-restricted, 57 
transparent, 57 
transparent bag, 92 

recursive specification, 92-93 
TSP,., 16 

recursive specification, 52 
TSP~ , 17 

process expression, 33 
Turing machine, 1, 109 

u 
unbounded branching, 57 
unfolding, 98 
universal RTM, 126, 128 

up to bounded branching, 126 
universal Turing machine, 125 
unobservable action, 9 
unrestricted grammar, 110 
unsuccessful terminal node, 100 

v 
variable, see name 

w 
well-behaved finite automaton, 31 
word, see action sequence 

WORD 

-156-



Summary 

From Computability to Executability 
A process-theoretic view on automata theory 

The theory of automata and formal languages was devised in the 1930s to provide 
models for and to reason about computation. Here we mean by computation a 
procedure that transforms input into output, which was the sole mode of operation 
of computers at the time. Nowadays, computers are systems that interact with us 
and also with each other; they are non-deterministic, reactive systems. Concurrency 
theory, split off from classical automata theory in the seventies, provides a model 
of computation similar to the model given by the theory of automata and formal 
languages, but focuses on concurrent, reactive and interactive systems. 

This thesis investigates the integration of the two theories, exposing the differ­
ences and similarities between them. Where automata and formal language theory 
focuses on computations and languages, concurrency theory focuses on behaviour. 
To achieve integration, we look for process-theoretic analogies of classic results from 
automata theory. The most prominent difference is that we use an interpretation 
of automata as labelled transition systems modulo (divergence-preserving) branching 
bisimilarity instead of treating automata as language acceptors. We also consider 
similarities such as grammars as recursive specifications and finite automata as 
labelled finite transition systems. We investigate whether the classical results still 
hold and, if not, what extra conditions are sufficient to make them hold. 

We especially look into three levels of Chomsky's hierarchy: we study the notions 
of finite-state systems, pushdown systems, and computable systems. Additionally we 
investigate the notion of parallel pushdown systems. For each class we define the 
central notion of automaton and its behaviour by associating a transition system with 
the automaton. Then we introduce a suitable specification language and investigate 
the correspondence with the respective automaton (via its associated transition 
system) . Because we not only want to study interaction with the environment, but 
also the interaction within the automaton, we make the interaction explicit by means 
of communicating parallel components, with one component representing the finite 
control of the automaton and one component representing the memory. 

-157 -



SUMMARY 

First, we study finite-state systems by reinvestigating the relation between finite­
state automata, left- and right-linear grammars, and regular expressions, but now up 
to (divergence-preserving) branching bisimilarity. 

For pushdown systems we augment the finite-state systems with stack memory to 
obtain the pushdown automata and consider different termination styles: termination 
on empty stack, on final state, and on final state and empty stack. Unlike for language 
equivalence, up to (divergence-preserving) branching bisimilarity the associated 
transition systems for the different termination styles fall into different classes. We 
obtain (under some restrictions) the correspondence between context-free grammars 
and pushdown automata for termination on final state and empty stack. Finally, we 
make the interaction within a pushdown automaton explicit, but in a different way 

depending on the termination style. 
By analogy with pushdown systems we investigate the parallel pushdown sys­

tems, obtained by augmenting finite -state systems with bag memory, and consider 
analogous termination styles. We investigate the correspondence between context­

free grammars that use parallel composition instead of sequential composition and 
parallel pushdown automata. While the correspondence itself is rather tight, it 
unfortunately only covers a small subset of the parallel pushdown automata, i.e. 
the single-state parallel pushdown automata. When making the interaction within 
parallel pushdown automata explicit, we obtain a rather uniform result for all 
termination styles. 

Finally, we study computable systems and the relation with effective and com­
putable transition systems and Turing machines. For this we present the reactive 
Turing machine, a classical Turing machine augmented with capabilities for interac­
tion. Again, we make the interaction in the reactive Turing machine between its finite 
control and the tape memory explicit. 

-158 -



Samenvatting 

Van berekenbaarheid naar uitvoerbaarheid 
Een procestheoreti.sche kijk op de automatentheorie 

De theorie van automaten en formele talen heeft zijn oorsprong in de jaren dertig. 
In die tijd werden er modellen opgesteld, zoals bijvoorbeeld de Turingmachine, 
om te kunnen beredeneren wat berekenbaar is en wat niet. Met een 'berekening' 
bedoelen we hier de transformatie van invoer naar uitvoer. Destijds was het 
herhaaldelijk uitvoeren van de bijbehorende operatie het enige wat computers 
konden. Tegenwoordig zijn computers echter systemen die interactief zijn; ze 
wisselen continu informatie uit, niet alleen met de gebruiker maar ook met elkaar. 
De procestheorie, afgesplitst van de automatentheorie in de jaren zeventig, gebruikt 
berekeningsmodellen die erg lijken op die van de theorie van automaten en formele 
talen, maar meer zijn gericht op parallelle, reactieve en interactieve systemen. 

Dit proefschrift onderzoekt de integratie van deze twee theorieen met als doel 
de verschillen en overeenkomsten bloot te leggen. Waar de theorie van automaten 
en formele talen de nadruk legt op berekeningen en talen, legt de procestheorie de 
nadruk op gedrag. Orn tot integratie te komen, zoeken we naar procestheoretische 
analogieen van klassieke resultaten uit de automatentheorie. Het prominentste 
verschil is dat we hierbij automaten interpreteren als gelabelde transitiesystemen 
modulo vertakkende bisimulatie, in plaats van automaten te beschouwen als accep­
tanten van een taal. (Wanneer mogelijk, proberen we te zorgen dat de vertakkende 
bisimulatierelatie ook divergentiebehoudend is.) We bekijken daarnaast klassieke 
overeenkomsten zoals die tussen grammatica's en recursieve specificaties en tussen 
eindige automaten en transitiesystemen. 

We volgen in dit proefschrift drie niveaus van Chomsky's hierarchie, die de vol­
gende klassen van systemen omschrijven: eindige systemen, pushdownsystemen en 
berekenbare systemen. Daarnaast verkennen we de notie van parallelle pushdown­
systemen. Voor iedere klasse definieren we een bijbehorende automaat en leggen we 
het gedrag vast door er een transitiesysteem mee te associeren. Vervolgens introdu­
ceren we een geschikte specificatietaal en onderzoeken we de overeenstemming met 
de respectievelijke automaat, via het geassocieerde transitiesysteem. Omdat we niet 
alleen de interactie van het systeem met de omgeving willen bestuderen, maar oak de 

-159-



SAMENVATTING 

interactie die plaatsvindt binnen de automaat, maken we deze laatste expliciet door 
de introductie van communicerende parallelle componenten: een component die de 
eindige besturing van de automaat representeert en een component die het geheugen 
representeert. 

Eerst bestuderen we eindige systemen (zonder geheugen) door de relaties tussen 
eindige automaten, links- en rechtslineaire grammatica's, en reguliere expressies 
opnieuw te bekijken, maar nu met behulp van (divergentiebehoudende) vertakkende 
bisimulatie. 

Voor pushdownsystemen verkrijgen we pushdownautomaten door eindige syste­
men uit te breiden met stackgeheugen. We beschouwen verschillende terminatiestij­
len: terminatie bij lege stack; in een eindtoestand; bij lege stack en in een eindtoe­

stand. Voor vertakkende bisimulatie vallen de geassocieerde transitiesystemen voor 
de verschillende terminatiestijlen uiteen in verschillende klassen, wat niet het geval is 
voor taalgelijkheid. We verkrijgen, onder enkele restricties, de overeenkomst tussen 
contextvrije grammatica's en pushdownautomaten voor terminatie bij lege stack en 
in een eindtoestand. Ten slotte maken we interactie binnen de pushdownautomaat 
expliciet. De manier waarop dit gebeurt, wordt echter bepaald door de terminatiestijl. 

Op vergelijkbare wijze als met pushdownsystemen onderzoeken we de paral­

lelle pushdownsystemen, verkregen door eindige systemen uit te breiden met een 
baggeheugen. We beschouwen wederom de verschillende terminatiestijlen zoals 
eerder genoemd. We onderzoeken de overeenkomst tussen commutatieve context­
vrije grammatica's, die parallelle compositie gebruiken in plaats van sequentiele 
compositie, en parallelle pushdownautomaten. Hoewel de overeenkomst relatief 
sterk is, dekt de relatie maar een kleine deel van alle parallelle pushdownautomaten 
af, namelijke die met slechts een toestand. Door het expliciet maken van de interactie 
binnen de parallelle pushdownautomaat krijgen we echter wel een mooi en uniform 

resultaat voor alle terminatiestijlen. 
Ten slotte bestuderen we berekenbare systemen en de relatie met effectieve en 

berekenbare transitiesystemen en Turingmachines. Hiertoe introduceren we de 
reactieve Turingmachine: een klassieke Turingmachine uitgerust met mogelijkheden 
om interactie aan te gaan met zijn omgeving. Wederom maken we ook de interactie 
binnen de reactieve Turingmachine expliciet, dat wil zeggen tussen de eindige 

besturing en tapegeheugen. 

-160-



Curriculum Vitae 

Paulus Johannes Adrianus (Paul) van Tilburg was born on 17 April 1980 in Breda, The 
Netherlands. After finishing his high school education VWO (pre-academic secondary 
education) cum laude in 1998 at the Onze Lieve Vrouwe Lyceum in Breda, The 
Netherlands, he first studied Electrical Engineering from 1998 until 2001 and then 
Computer Science at the Eindhoven University of Technology. In 2006, he obtained 
his Bachelor of Science degree in Computer Science, followed in 2007 by graduating 
cum laude as Master of Science in Computer Science & Engineering within the group 
of Formal Methods on the axiomatisability of the process algebra CCS. From August 
2007 until September 2011 he worked as a Ph.D. student on the project "Models of 
Computation: Automata and Processes", funded by the NWO (Dutch Organisation for 
Scientific Research), at the Eindhoven University of Technology of which the results 
are presented in this dissertation. 

- 161 -





Titles in the IPA Dissertation Series since 2005 

E. Abraham. An Assertional Proof Sys­
tem for Multithreaded Java -Theory and 
Tool Support- . Faculty of Mathematics 
and Natural Sciences, UL. 2005-01 

R. Ruimerman. Modeling and Remodel­
ing in Bone Tissue. Faculty of Biomedical 
Engineering, TU/e. 2005-02 

C.N. Chong. Experiments in Rights 
Control - Expression and Enforcement. 
Faculty of Electrical Engineering, 
Mathematics & Computer Science, 
UT. 2005-03 

H. Gao. Design and Verification of 
Lock-free Parallel Algorithms. Faculty of 
Mathematics and Computing Sciences, 
RUG. 2005-04 

H.M.A. van Beek. Specification and 
Analysis of Internet Applications. Faculty 
of Mathematics and Computer Science, 
TU/e. 2005-05 

M.T. Ionita. Scenario-Based System Ar­
chitecting - A Systematic Approach to 
Developing Future-Proof System Architec­
tures. Faculty of Mathematics and Com­
puting Sciences, TU/e. 2005-06 

G. Lenzini. Integration of Analy­
sis Techniques in Security and Fault­
Tolerance. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2005-07 

I. Kurtev. Adaptability of Model Trans­
formations . Faculty of Electrical Engi­
neering, Mathematics & Computer Sci­
ence, UT. 2005-08 

T. Wolle. Computational Aspects of 
Treewidth - Lower Bounds and Net­
work Reliability. Faculty of Science, 
uu. 2005-09 

0. Tveretina. Decision Procedures for 
Equality Logic with Uninterpreted Func­
tions. Faculty of Mathematics and Com­
puter Science, TU/e. 2005-10 

A.M.L. Liekens. Evolution of Fi­
nite Populations in Dynamic Environ­
ments. Faculty of Biomedical Engineer­
ing, TU/e. 2005-11 

J. Eggermont. Data Mining us­
ing Genetic Programming: Classifica­
tion and Symbolic Regression. Faculty 
of Mathematics and Natural Sciences, 
UL. 2005-12 

B.J. Heeren. Top Quality Type Error Mes­
sages. Faculty of Science, UU. 2005-13 

G.F. Frehse. Compositional Verification 
of Hybrid Systems using Simulation Rela­
tions. Faculty of Science, Mathematics 
and Computer Science, RU. 2005-14 

M.R. Mousavi. Structuring Struc­
tural Operational Semantics. Faculty 
of Mathematics and Computer Science, 
TU/e. 2005-15 

A. Sokolova. Coalgebraic Analysis 
of Probabilistic Systems. Faculty of 
Mathematics and Computer Science, 
TU/e. 2005-16 

T. Gelsema. Effective Models for the 
Structure of pi-Calculus Processes with 
Replication. Faculty of Mathematics and 
Natural Sciences, UL. 2005-17 

P. Zoeteweij . Composing Constraint 
Solvers. Faculty of Natural Sciences, 
Mathematics, and Computer Science, 
UvA. 2005-18 

J.J. Vinju. Analysis and Transforma­
tion of Source Code by Parsing and 
Rewriting. Faculty of Natural Sciences, 
Mathematics, and Computer Science, 
UvA. 2005-19 



M.Valero Espada. Modal Abstrac­
tion and Replication of Processes with 
Data. Faculty of Sciences, Division 
of Mathematics and Computer Science, 
VUA. 2005-20 

A. Dijkstra. Stepping through Haskell. 
Faculty of Science, UU. 2005-21 

Y.W. Law. Key management and link­
layer security of wireless sensor net­
works: energy-efficient attack and de­
fense . Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2005-22 

E. Dolstra. The Purely Functional Soft­
ware Deployment Model. Faculty of Sci­
ence, UU. 2006-01 

R.J. Corin. Analysis Models for Security 
Protocols. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2006-02 

P.R.A. Verbaan. The Computational 
Complexity of Evolving Systems. Faculty 
of Science, UU. 2006-03 

K.L. Man and R.R.H. Schiffelers. For­
mal Specification and Analysis of Hybrid 
Systems. Faculty of Mathematics and 
Computer Science and Faculty of Me­
chanical Engineering, TU/ e. 2006-04 

M. Kyas. Verifying OCL Specifications of 
UML Models: Tool Support and Compo­
sitionality. Faculty of Mathematics and 
Natural Sciences, UL. 2006-05 

M. Hendriks. Model Checking Timed 
Automata - Techniques and Applications. 
Faculty of Science, Mathematics and 
Computer Science, RU. 2006-06 

J. Ketema. Bohm-Like Trees for Rewrit­
ing. Faculty of Sciences, VUA. 2006-07 

C.-B. Breunesse. On JML: topics in tool­
assisted verification of JML programs. 

Faculty of Science, Mathematics and 
Computer Science, RU. 2006-08 

B. Markvoort. Towards Hybrid Molecu­
lar Simulations. Faculty of Biomedical 
Engineering, TU/ e. 2006-09 

S.G.R. Nijssen. Mining Structured Data. 
Faculty of Mathematics and Natural Sci­
ences, UL. 2006-10 

G. Russello. Separation and Adaptation 
of Concerns in a Shared Data Space. 
Faculty of Mathematics and Computer 
Science, TU/ e. 2006-11 

L. Cheung. Reconciling Nondetermin­
istic and Probabilistic Choices. Faculty 
of Science, Mathematics and Computer 
Science, RU. 2006-12 

B. Badban. Verification techniques for 
Extensions of Equality Logic. Faculty of 
Sciences, Division of Mathematics and 
Computer Science, VUA. 2006-13 

A.J. Mooij . Constructive formal methods 
and protocol standardization. Faculty 
of Mathematics and Computer Science, 
TU/ e. 2006-14 

T. Krilavicius. Hybrid Techniques for 
Hybrid Systems. Faculty of Electrical 
Engineering, Mathematics & Computer 
Science, UT. 2006-15 

M.E. Warnier. Language Based Secu­
rity for Java and JML. Faculty of Sc~­
ence, Mathematics and Computer Sci­
ence, RU. 2006-16 

V. Sundramoorthy. At Home In Service 
Discovery. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2006-17 

B. Gebremichael. Expressivity of Timed 
Automata Models . Faculty of Science, 
Mathematics and Computer Science, 
RU. 2006-18 



L.C.M. van Gool. Formalising Interface 
Specifications. Faculty of Mathematics 
and Computer Science, TU/ e. 2006-19 

C.J.F. Cremers. Scyther - Semantics and 
Verification of Security Protocols. Faculty 
of Mathematics and Computer Science, 
TU/ e. 2006-20 

J.V. Guillen Scholten. Mobile Chan­
nels for Exogenous Coordination of Dis­
tributed Systems: Semantics, Imple­
mentation and Composition. Faculty 
of Mathematics and Natural Sciences, 
UL. 2006-21 

H.A. de Jong. Flexible Heterogeneous 
Software Systems. Faculty of Natural 
Sciences, Mathematics, and Computer 
Science, UvA. 2007-01 

N.K. Kavaldjiev. A run-time recon­
figurable Network-on-Chip for streaming 
DSP applications. Faculty of Electrical 
Engineering, Mathematics & Computer 
Science, UT. 2007-02 

M. van Veelen. Considerations on Mod­
eling for Early Detection of Abnormal­
ities in Locally Autonomous Distributed 
Systems. Faculty of Mathematics and 
Computing Sciences, RUG. 2007-03 

T.D. Vu. Semantics and Applications of 
Process and Program Algebra. Faculty 
of Natural Sciences, Mathematics, and 
Computer Science, UvA. 2007-04 

L. Brandan Briones. Theories for 
Model-based Testing: Real-time and Cov­
erage. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2007-05 

I. Loeb. Natural Deduction: Shar­
ing by Presentation. Faculty of Sci­
ence, Mathematics and Computer Sci­
ence, RU. 2007-06 

M. W.A. Streppel. Multifunctional Ge­
ometric Data Structures. Faculty of 
Mathematics and Computer Science, 
TU/ e. 2007-07 

N. Trcka. Silent Steps in Transition 
Systems and Markov Chains. Faculty 
of Mathematics and Computer Science, 
TU/ e. 2007-08 

R. Brinkman. Searching in encrypted 
data. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2007-09 

A. van Weelden. Putting types to good 
use. Faculty of Science, Mathematics 
and Computer Science, RU. 2007-10 

J.A.R. Noppen. Imperfect Information in 
Software Development Processes. Faculty 
of Electrical Engineering, Mathematics 
& Computer Science, UT. 2007-11 

R. Boumen. Integration and Test 
plans for Complex Manufacturing Sys­
tems. Faculty of Mechanical Engineer­
ing, TU/ e. 2007-12 

A.J. Wijs. What to do Next?: Analysing 
and Optimising System Behaviour in 
Time. Faculty of Sciences, Division 
of Mathematics and Computer Science, 
VUA. 2007-13 

C.F.J. Lange. Assessing and Improving 
the Quality of Modeling: A Series of 
Empirical Studies about the UML. Faculty 
of Mathematics and Computer Science, 
TU/ e. 2007-14 

T. van der Storm. Component­
based Configuration, Integration and 
Delivery. Faculty of Natural Sci­
ences, Mathematics, and Computer Sci­
ence, UvA. 2007-15 

B.S. Graaf. Model-Driven Evolution of 
Software Architectures. Faculty of Elec­
trical Engineering, Mathematics, and 
Computer Science, TUD. 2007-16 



A.H.J. Mathijssen. Logical Calculi for 
Reasoning with Binding. Faculty of 
Mathematics and Computer Science, 
TU/ e. 2007-17 

D. Jarnikov. QoS framework for Video 
Streaming in Home Networks. Faculty 
of Mathematics and Computer Science, 
TU/ e. 2007-18 

M. A. Abam. New Data Structures and 
Algorithms for Mobile Data. Faculty 
of Mathematics and Computer Science, 
TU/ e. 2007-19 

W. Pieters. La Volante Machinale: Un­
derstanding the Electronic Voting Contro­
versy. Faculty of Science, Mathematics 
and Computer Science, RU. 2008-01 

A.L. de Groot. Practical Automa­
ton Proofs in PVS. Faculty of Science, 
Mathematics and Computer Science, 
RU. 2008-02 

M. Bruntink. Renovation of Idiomatic 
Crosscutting Concerns in Embedded Sys­
tems . Faculty of Electrical Engineering, 
Mathematics, and Computer Science, 
TUD. 2008-03 

A.M. Marin. An Integrated System to 
Manage Crosscutting Concerns in Source 
Code. Faculty of Electrical Engineering, 
Mathematics, and Computer Science, 
TUD. 2008-04 

N.C.W.M. Braspenning. Model-based 
Integration and Testing of High-tech 
Multi-disciplinary Systems. Faculty of 
Mechanical Engineering, TU/ e. 2008-05 

M. Bravenboer. Exercises in Free Syn­
tax: Syntax Definition, Parsing, and As­
similation of Language Conglomerates. 
Faculty of Science, UU. 2008-06 

M. Torabi Dashti. Keeping Fair­
ness Alive: Design and Formal Verifi­
cation of Optimistic Fair Exchange Pro­
tocols. Faculty of Sciences, Division 

of Mathematics and Computer Science, 
VUA. 2008-07 

I.S.M. de Jong. Integration and Test 
Strategies for Complex Manufacturing 
Machines. Faculty of Mechanical Engi­
neering, TU/ e. 2008-08 

I. Hasuo. Tracing Anonymity with Coal­
gebras. Faculty of Science, Mathematics 
and Computer Science, RU. 2008-09 

L.G.W.A. Cleophas. Tree Algorithms: 
Two Taxonomies and a Toolkit. Faculty 
of Mathematics and Computer Science, 
TU/ e. 2008-10 

I.S. Zapreev. Model Checking Markov 
Chains: Techniques and Tools. Faculty 
of Electrical Engineering, Mathematics 
& Computer Science, UT. 2008-11 

M. Farshi. A Theoretical and Experimen­
tal Study of Geometric Networks. Faculty 
of Mathematics and Computer Science, 
TU/ e. 2008-12 

G. Gulesir. Evolvable Behavior Spec­
ifications Using Context-Sensitive Wild­
cards. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2008-13 

F.D. Garcia. Formal and Computa­
tional Cryptography: Protocols, Hashes 
and Commitments. Faculty of Science, 
Mathematics and Computer Science, 
RU. 2008-14 

P. E. A. Diirr. Resource-based Veri­
fication for Robust Composition of As­
pects . Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2008-15 

E.M. Bartnik. Formal Methods in Sup­
port of SMC Design. Faculty of Mechani­
cal Engineering, TU/ e. 2008-16 



R.H. Mak. Design and Performance Anal­
ysis of Data-Independent Stream Process­
ing Systems. Faculty of Mathematics and 
Computer Science, TU/ e. 2008-17 

M. van der Horst. Scalable Block 
Processing Algorithms. Faculty of 
Mathematics and Computer Science, 
TU/ e. 2008-18 

C.M. Gray. Algorithms for Fat Objects: 
Decompositions and Applications. Faculty 
of Mathematics and Computer Science, 
TU/ e. 2008-19 

J.R. Calame. Testing Reactive Systems 
with Data - Enumerative Methods and 
Constraint Solving. Faculty of Electrical 
Engineering, Mathematics & Computer 
Science, UT. 2008-20 

E. Mumford. Drawing Graphs for 
Cartographic Applications. Faculty of 
Mathematics and Computer Science, 
TU/ e. 2008-21 

E.H. de Graaf. Mining Semi-structured 
Data, Theoretical and Experimental As­
pects of Pattern Evaluation. Faculty 
of Mathematics and Natural Sciences, 
UL. 2008-22 

R. Brijder. Models of Natural Compu­
tation: Gene Assembly and Membrane 
Systems. Faculty of Mathematics and 
Natural Sciences, UL. 2008-23 

A. Koprowski. Termination of Rewrit­
ing and Its Certification. Faculty of 
Mathematics and Computer Science, 
TU/ e. 2008-24 

U. Khadim. Process Algebras for Hybrid 
Systems: Comparison and Development. 
Faculty of Mathematics and Computer 
Science, TU/ e. 2008-25 

J. Markovski. Real and Stochastic Time 
in Process Algebras for Performance Eval­
uation. Faculty of Mathematics and 
Computer Science, TU/ e. 2008-26 

H. Kastenberg. Graph-Based Software 
Specification and Verification . Faculty of 
Electrical Engineering, Mathematics & 
Computer Science, UT. 2008-27 

l.R. Buhan. Cryptographic Keys from 
Noisy Data Theory and Applications. 
Faculty of Electrical Engineering, 
Mathematics & Computer Science, 
UT. 2008-28 

R.S. Marin-Perianu. Wireless Sensor 
Networks in Motion: Clustering Algo­
rithms for Service Discovery and Provi­
sioning. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2008-29 

M.H.G. Verhoef. Modeling and Vali­
dating Distributed Embedded Real-Time 
Control Systems. Faculty of Science, 
Mathematics and Computer Science, 
RU. 2009-01 

M. de Mol. Reasoning about Functional 
Programs: Sparkle, a proof assistant for 
Clean. Faculty of Science, Mathematics 
and Computer Science, RU. 2009-02 

M. Lormans. Managing Requirements 
Evolution. Faculty of Electrical Engi­
neering, Mathematics, and Computer 
Science, TUD. 2009-03 

M.P.W.J. van Osch. Automated Model­
based Testing of Hybrid Systems. Faculty 
of Mathematics and Computer Science, 
TU/ e. 2009-04 

H. Sozer. Architecting Fault-Tolerant 
Software Systems. Faculty of Electrical 
Engineering, Mathematics & Computer 
Science, UT. 2009-05 

M.J. van Weerdenburg. Efficient 
Rewriting Techniques. Faculty of 
Mathematics and Computer Science, 
TU/ e. 2009-06 



H.H. Hansen. Coalgebraic Modelling: 
Applications in Automata Theory and 
Modal Logic. Faculty of Sciences, Di­
vision of Mathematics and Computer 
Science, VUA. 2009-07 

A. Mesbah. Analysis and Testing 
of Ajax-based Single-page Web Applica­
tions. Faculty of Electrical Engineering, 
Mathematics, and Computer Science, 
TUD. 2009-08 

A.L. Rodriguez Yakushev. Towards 
Getting Generic Programming Ready for 
Prime Time. Faculty of Science, 
UU. 2009-9 

K.R. Olmos Joffre. Strategies for Con­
text Sensitive Program Transformation . 
Faculty of Science, UU. 2009-10 

J.A.G.M. van den Berg. Reasoning 
about Java programs in PVS using JML. 
Faculty of Science, Mathematics and 
Computer Science, RU. 2009-11 

M.G. Khatib. MEMS-Based Storage De­
vices. Integration in Energy-Constrained 
Mobile Systems. Faculty of Electrical 
Engineering, Mathematics & Computer 
Science, UT. 2009-12 

S.G.M. Cornelissen. Evaluating Dy­
namic Analysis Techniques for Program 
Comprehension. Faculty of Electrical En­
gineering, Mathematics, and Computer 
Science, TUD. 2009-13 

D. Bolzoni. Revisiting Anomaly­
based Network Intrusion Detection Sys­
tems. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2009-14 

H.L. Jonker. Security Matters: Privacy in 
Voting and Fairness in Digital Exchange. 
Faculty of Mathematics and Computer 
Science, TU/ e. 2009-15 

M.R. Czenko. TuLiP - Reshaping Trust 
Management. Faculty of Electrical Engi­
neering, Mathematics & Computer Sci­
ence, UT. 2009-16 

T. Chen. Clocks, Dice and Pro­
cesses. Faculty of Sciences, Division 
of Mathematics and Computer Science, 
VUA. 2009-17 

C. Kaliszyk. Correctness and Availabil­
ity: Building Computer Algebra on top 
of Proof Assistants and making Proof As­
sistants available over the Web . Faculty 
of Science, Mathematics and Computer 
Science, RU. 2009-18 

R.S.S. O'Connor. Incompleteness & 

Completeness: Formalizing Logic and 
Analysis in Type Theory. Faculty of Sci­
ence, Mathematics and Computer Sci­
ence, RU. 2009-19 

B. Ploeger. Improved Verification Meth­
ods for Concurrent Systems. Faculty 
of Mathematics and Computer Science, 
TU/ e. 2009-20 

T. Han. Diagnosis, Synthesis and Anal­
ysis of Probabilistic Models. Faculty of 
Electrical Engineering, Mathematics & 

Computer Science, UT. 2009-21 

R. Li. Mixed-Integer Evolution Strategies 
for Parameter Optimization and Their 
Applications to Medical Image Analysis. 
Faculty of Mathematics and Natural Sci­
ences, UL. 2009-22 

J.H.P. Kwisthout. The Computational 
Complexity of Probabilistic Networks. 
Faculty of Science, UU. 2009-23 

T.K. Cocx. Algorithmic Tools for Data­
Oriented Law Enforcement. Faculty 
of Mathematics and Natural Sciences, 
UL. 2009-24 

A.I. Baars. Embedded Compilers. Faculty 
of Science, UU. 2009-25 



M.A.C. Dekker. Flexible Access Con­
trol for Dynamic Collaborative Environ­
ments. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2009-26 

J.F.J. Laros. Metrics and Visualisation 
for Crime Analysis and Genomics. Faculty 
of Mathematics and Natural Sciences, 
UL. 2009-27 

C.J. Boogerd. Focusing Automatic Code 
Inspections. Faculty of Electrical En­
gineering, Mathematics, and Computer 
Science, TUD. 2010-01 

M.R. NeuhauBer. Model Checking Non­
deterministic and Randomly Timed Sys­
tems. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2010-02 

J. Endrullis. Termination and Produc­
tivity. Faculty of Sciences, Division 
of Mathematics and Computer Science, 
VUA. 2010-03 

T. Staijen. Graph-Based Specification 
and Verification for Aspect-Oriented Lan­
guages. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2010-04 

Y. Wang. Epistemic Modelling and Pro­
tocol Dynamics. Faculty of Science, 
UvA. 2010-05 

J.K. Berendsen. Abstraction, Prices and 
Probability in Model Checking Timed Au­
tomata. Faculty of Science, Mathematics 
and Computer Science, RU. 2010-06 

A. Nugroho. The Effects of UML Model­
ing on the Quality of Software. Faculty 
of Mathematics and Natural Sciences, 
UL. 2010-07 

A. Silva. Kleene Coalgebra. Faculty 
of Science, Mathematics and Computer 
Science, RU. 2010-08 

J.S. de Bruin. Service-Oriented Discov­
ery of Knowledge - Foundations, Imple­
mentations and Applications. Faculty 
of Mathematics and Natural Sciences, 
UL. 2010-09 

D. Costa. Formal Models for Component 
Connectors. Faculty of Sciences, Division 
of Mathematics and Computer Science, 
VUA. 2010-10 

M.M. Jaghoori. Time at Your Ser­
vice: Schedulability Analysis of Real­
Time and Distributed Services. Faculty 
of Mathematics and Natural Sciences, 
UL. 2010-11 

R. Bakhshi. Gossiping Models: Formal 
Analysis of Epidemic Protocols. Faculty 
of Sciences, Department of Computer 
Science, VUA. 2011-01 

B.J. Arnoldus. An Illumination of 
the Template Enigma: Software Code 
Generation with Templates. Faculty 
of Mathematics and Computer Science, 
TU/ e. 2011-02 

E. Zambon. Towards Optimal IT 
Availability Planning: Methods and 
Tools. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2011-03 

L. Astefanoaei. An Executable Theory of 
Multi-Agent Systems Refinement. Faculty 
of Mathematics and Natural Sciences, 
UL. 2011-04 

J. Proen~a. Synchronous coordina­
tion of distributed components. Faculty 
of Mathematics and Natural Sciences, 
UL. 2011-05 

A. Morah. IT Architecture-Based Con­
fidentiality Risk Assessment in Networks 
of Organizations. Faculty of Electrical 
Engineering, Mathematics & Computer 
Science, UT. 2011-06 



M. van der Bijl. On changing models in 
Model-Based Testing. Faculty of Electrical 
Engineering, Mathematics & Computer 
Science, UT. 2011-07 

C. Krause. Reconfigurable Component 
Connectors. Faculty of Mathematics and 
Natural Sciences, UL. 2011-08 

M.E. Andres. Quantitative Analysis of 
Information Leakage in Probabilistic and 
Nondeterministic Systems. Faculty of Sci-

ence, Mathematics and Computer Sci­
ence, RU. 2011-09 

M. Arif. Formal Modeling and Verifi­
cation of Distributed Failure Detectors. 
Faculty of Mathematics and Computer 
Science, TU/ e. 2011-10 

P.J.A. van Tilburg. From Computabil­
ity to Executability - A process-theoretic 
view on automata theory. Faculty of 
Mathematics and Computer Science, 
TU/ e. 2011-11 


