
Stellingen 

Behorende bij het proefschrift 

From Computability to Executability 
A process-theoretic view on automata theory 

Paul van Tilburg 

27 October 2011 

1. The Church-Turing thesis states that "every computable function can be computed with a Turing machine." We propose the following executability thesis: "A process describes the behaviour of a computing system if, and only if, it can be simulated by a reactive Turing machine." [Chapter 6] 

2. The research questions that arise when allowing for intermediate termination in specification languages, as introduced by means of the empty process in the dissertation, warrant a study by itself. [Chapters 3-6] 

3. While up to language equivalence many notions coincide, such as different termination conditions and classes of languages, they do not coincide up to (branching) bisimilarity; this makes the process-theoretic perspective more interesting from a research point of view. [Chapters 3-5] 

4. This dissertation rigorously forma lises the memory and the interaction with the memory of the pushdown automaton and the Turing machine. This formalisation, which treats notions that are traditionally left implicit, improves the models, particularly for educational purposes. [Chapters 4-6] 

5. It is sufficient to add the left-merge operator from ACP as an auxiliary operator to obtain a finite sound and complete axiomatisation for CCS with restriction and relabelling but without communication. [AILT08a, AILT08b] 

6. Using the binary operators sequential and parallel composition, respectively, we can concisely specify the data types stack and bag. There is no clean, binary operator that allows us to give the specification of a queue in a similar form. The proposed queue­merge operator comes close but yields a small subclass of the queue languages. [Cui +09] 
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7. The integration of automata and process theory leads to an improved basis for a bachelor 

course. The resulting theory provides better menta l models for the students to think 

about both computation and interaction. 

8. In the field of computer science, regular expressions are used everywhere. However, 

grammars are generally clearer and more expressive. Programming languages - in 

particular the ones that deal with string manipulation - would benefit from incorporating 

them as first-class citizens. 

9. When a proof, definition or construction cannot be expressed elegantly, one is not 

done with the research. The danger with elegant results is ironically that they can be 

underappreciated, as they may seem trivial and easily obtained. 

10. It requires an infinite amount of review and rework iterations to obtain a perfect 

dissertation. 

11 . The world would be a better place if people would pay less attention to the media and 

more to themselves and their environment. 

12. In contrast to current belief, it is possible to do all the Ph.D. research and write a complete 

dissertation without the intake of a single drop of coffee. 
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Glossary 

This section provides an overview of often used symbols and acronyms. Per item we 
give a short description and a reference to the (sub)section of its introduction. 
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Equivalences 

initial state 
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transition relation 
termination predicate (for states) 
transition or step labelled with action a 
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Process Expressions 
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Pref ace 

When I was taught process algebra in my Bachelor curriculum, I was struck by its 
elegance. Process algebra takes something that is very natural to most of us - we 
have all been taught mathematics and algebra in high school - and uses it to deal with 
processes rather than numbers. Regardless of its practical use in software verification, 
it has always provided me with a clear way to model systems in my mind. This goes 
beyond models of computer systems and encompasses any kind of system we might 
encounter in the real and virtual world. 

It was exactly this feeling that drew me to the project "Models of Computation: 
Automata and Processes," which eventually became my Ph.D. research project. Its 
aim is to integrate automata theory - something taught to every computer science 
student around the world - with process theory. It provided me with a chance to 
study the core of process algebra and establish an "improved" theory that included 
the nowadays very important notion of interaction in a clean and systematic manner. 
It turned out that questions from the process-theoretic point of view were the most 
interesting, as automata theory mostly ignores the notion of interaction with the 
environment and focuses on the outcomes rather than the processes or behaviour. 

The desire to establish this "improved" theory has led me to the decision to rework 
all publications written during the course of this project into a monograph. Although 
there are many unanswered questions, many gaps, and many things left to do, I hope 
this thesis provides a suitable overview. 
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Chapter I 

Introduction 

The foundations of computer science were laid in the 1930s, when computability 
theory emerged as the theory that studies which functions are computable. At the core 
of the computability theory is the theory of automata and formal languages, which 
provides models of computing agents and means to reason about them. Here we 
mean by computing the application of a deterministic algorithm that transforms input 
into output. With the advent of the first computer terminal in the 1970s, the uprise 
of inter-computer networks and multi-processor systems, and the recent introduction 
of multi-core processors, the notion of interaction has become increasingly more 
important. Concurrency theory, split off from the classical automata theory a few 
decades ago, provides models of computation similar to the models given by the 
theory of automata and formal languages, but focuses on concurrent, reactive and 
interactive systems. Using this theory we can obtain a notion of executability on top 
of computability by additionally considering interaction. 

In this thesis we will investigate the integration of the two theories - automata 
and concurrency theory - by taking prominent results from the field of automata 
theory and considering them from a process-theoretic perspective. We first discuss 
the background of both theories in this chapter. Then, we will consider the most 
prominent similarities and differences between the two theories and indicate what 
we adopt as leading research questions. Finally, an outline of the contents of the 
thesis is given per chapter. 

1.1 Automata & Formal Language Theory 

Automata theory is the study of abstract "mathematical" machines and the com­
putational problems that can be solved using these machines. The theory has its 
origins in the 1930s, when Turing defined a logical machine to define computable 
numbers in [Tur37]. This and other models of computation, such as Kleene's 
recursive functions [Kle36] and Church's A.-calculus [Chu36], lead to the emergence 
of computability theory, the branch of mathematical logic that studies the theory 
of effectively calculable (partial) functions. Interestingly, all these models turned out 
to be equivalent: every effectively calculable function is computable with a Turing 
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machine, a Kleene recursive function and is ?..-definable. This can be considered as 

evidence for the Church-Turing thesis stating that any function that can be computed 

at all, now and in the future, with any real-world computing device, can be computed 

with a Turing machine. 
Turing's logical machine had a finite number of states, capturing a program, 

and a tape memory used during execution. Later, several definitions of various 

kinds of automata were defined by the mathematicians Von Neumann [Neu56] 

and Kleene [Kle56] to describe neural nets by means of a formal system. These 

results were based on the neurophysiology research pioneered by McCullough and 

Pitts [MP43]. The mathematical definitions of automata resulted in the link with for­

mal language theory: the study of the purely syntactic aspects of (formal) languages. 

The first formal language is considered to have been defined by Frege in [Fre79] over 

one century ago. Chomsky proposed the notion of a formal grammar in [Cho56]. 

While automata provide an operational way to describe computations and languages, 

grammars accommodate a rather more generative approach. Correspondence results 

between different kinds of automata and grammars followed and are described in 

many textbooks on automata and formal language theory, for example see [Sud88, 

Sip97, LinOl, HMU06] . 
In [Cho56], Chomsky discerns three classes of languages, which he later extends 

to four in [Cho59] : regular, context-free, context-sensitive, and recursively enumer­

able. Taking the corresponding automata as central notion, this thesis will follow the 

Chomsky hierarchy and develop a process-theoretic view on each class. We will look 

at process-theoretic analogies of classic results for these classes from automata theory 

and see if they still hold. If not, we explore what extra conditions are needed to make 

them hold. 

1.2 Concurrency Theory 

Concurrency theory is the study of reactive systems, i.e., systems that depend on 

interaction with their environment during their execution. Petri showed in his 

thesis [Pet62] that concurrency and interaction may serve to bridge the gap between 

the theoretically convenient (Turing machine) model of a sequential machine 

with unbounded memory, and the practically more realistic notion of extensible 

architecture of components with bounded memory. Towards the end of the 1970s, 

Milner observed that, for a thorough investigation of concurrency and interaction, it 

is profitable to study these notions in isolation rather than to try and add them to 

any of the existing models of computation. One of his desiderata for the design of his 

algebraic process theories was "that there be only a single combinator for combining 

processes which interact or which coexist" [Mil93]. In particular, the interaction of 

a computing device with its memory is to be modelled using a symmetric notion of 

interaction, considering the memory as a separate process. 

A large part of the research within the field of concurrency theory is devoted 

to process theory. In process theory, interaction between systems is treated as 

a first-class citizen, as it was established by e.g. [Mil80] (see also [BaeOS]). It 
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embodies a powerful compos1t10n operator that is used to compose systems in 
parallel, including their interaction. A system is usually either directly modelled as 
a labelled transition system, or as an expression in a process description language 
with a well-defined operational semantics that associates a labelled transition system 
with each expression. Note that the presence of these central notions expose the 
relationship with automata theory, as finite transition systems and process description 
languages can be considered as the process-theoretic counterparts of finite automata 
and grammars. The process description languages, also called process algebras, 
CCS by Milner [Mil80, Mil89], ACP by Bergstra & Klop [BK84] and CSP by 
Hoare [Hoa85] have been the most prominent for quite some years. Nowadays also 
the rr-calculus, a process algebra devised by Milner [Mil99] that can be seen to some 
extent as the interactive version of the A.-calculus [Chu32], has taken an important 
place amongst the process theories. In this thesis we use the process theory TCPr 
(Theory of Communicating Processes with -r) [BBR09] , which is a generic process 
algebra encompassing key features of ACP, CCS and CSP . 

One of the main contributions of concurrency theory is a richness of behavioural 
equivalences on labelled transition systems that to a more or lesser extent preserve 
the branching structure. In concurrency theory, behaviours are usually considered 
modulo a suitable behavioural equivalence. In this thesis we shall mainly use 
(divergence-preserving) branching bisimilarity [GW96], which is the finest behavioural 
equivalence in Van Glabbeek's spectrum (see [Gla93] for an overview). 

1.3 Integration 

The theory of automata and formal languages was developed to provide models of 
computing systems and to reason about them; it even turned out to provide powerful 
models of computation in general. The theory has been very successful and became 
widespread. It has many applications and appears in every academic curriculum 
of computer science. On the other hand, the theory deals with the computation of 
functions. It can no longer provide a basic model of a computer. 

Nowadays, computers are systems that interact continuously not only with us but 
also with each other; they are non-deterministic, reactive systems. An execution 
performed by a computer is thus not just a series of steps of an algorithm, but it 
also involves interaction. It has inherent non-determinism and cannot be modelled 
as a function. Concurrency theory provides exactly this. We can see an execution 
as a computation plus interaction as modelled in concurrency theory. To illustrate 
the difference between a computation and an execution, we can say that a Turing 
machine cannot fly a plane, but a computer can. An automatic pilot cannot know all 
conditions beforehand, but rather can react to changing conditions real-time. 

The goal of this thesis is to investigate the integration of automata and process 
theory, exposing the differences and similarities between them. Because concurrency 
theory split off from automata theory in the past, some notions are still the same. 
For example, the notion of a finite automaton is the same as a finite -state transition 
system; a linear grammar has only minor syntactic differences with a finite recursive 
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specification over some process algebra. We consider classical definitions and results 

from automata theory in a process-theoretic setting to make the integration explicit. 

The attempt at integration hopefully increases the understanding of both theories. 

There have been results that consider classical results from a process-theoretic 

perspective, see for example [HS91, Gro92, BBK93, CHS95, Mol96, SrbOl, Sti03] . 

However, no attempt has been made at full integration of the two theories as is done 

in this thesis. There have also been other attempts to add a notion of interaction to 

computability theory, see [LWOO, GSAS04, GSW06, BGRR07]. But here, the attempts 

do not take full advantage of the results of concurrency theory. In all formalisations 

of interaction machines we could find, interaction is added as an asymmetric notion. 

The focus remains on the computational aspect, and interaction is included as a 

second-class citizen. In this thesis we want to study a theory of executability that treats 

computation and interaction on an equal footing, because we think that this will lead 

to a more suitable theory of behaviour of contemporary computing systems. Note 

that the full integration also has a practical side: the result can be incorporated into a 

Bachelor course, providing students with an increased understanding of concurrent, 

reactive systems. 
The integration in this thesis includes the reinvestigation of, e.g., the corre­

spondence between finite-state automata, regular languages, regular expressions 

and regular grammars, and the correspondence between pushdown automata and 

context-free languages (see [Sud88, Sip97, LinOl, HMU06] for details of these 

results). We also approach the classes of languages from a different angle and 

consider the class of so-called parallel pushdown systems. Parallel pushdown systems 

are obtained by replacing the sequential composition operator used in context-free 

languages by the typical operator from process theory, the parallel composition. 

1.4 Similarities & Differences 

As we attempt the full integration, we consider the following important differences 

in our approach with respect to both automata theory and process theory. 

A main difference in approach with respect to automata theory is that we 

use the semantics of concurrency theory, labelled transition systems, as a central 

notion. Instead of looking at the classes of languages that are accepted by the 

various kinds of automata, we look at the classes of transition systems associated 

with the automata. This way; we can choose to divide out a suitable behavioural 

equivalence to obtain the desired results. For example, languages can still be obtained 

from the transition systems by dividing out language equivalence. We will see 

that the way the transition systems are associated with each kind of automaton 

provides the operational semantics of the automaton. For pushdown automata and 

parallel pushdown automata we shall consider different termination conditions such 

as termination on final state and termination on empty stack/bag. While the different 

termination conditions yield the same classes of languages, we will see that they yield 

different classes of associated transition systems. 
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A second main difference between automata theory and concurrency theory is 
that concurrency theory considers language equivalence to be too coarse to capture a 
notion of interaction. Looking at an automaton as a language acceptor, acceptance 
of a string represents a particular computation of the automaton, and the language 
is the set of all its computations. But, using language equivalence we abstract 
from moments of choice within the automaton. As a consequence, the language­
theoretic interpretation is only suitable under the assumption that an automaton 
is a stand-alone computational device; it is unsuitable if some form of interaction 
of the automaton with its environment (e.g. a user, other automata running in 
parallel, etc.) may influence its behaviour. Concurrency theory offers other notions of 
behavioural equivalence. We use the most fine-grained equivalence that preserves the 
branching structure that the theory currently offers: divergence-preserving branching 
bisimulation. We will see that when we reconsider classical, quite straight-forward 
results from automata theory, e.g. the correspondence between pushdown automata 
and context-free grammars, may no longer hold modulo this equivalence. In this 
case we shall apply restrictions on languages and automata to remedy the situation. 
Note that in between language equivalence and divergence-preserving branching 
bisimulation equivalence, there are several other equivalence relations (see [Gla93]). 
We shall sometimes drop divergence-preservation when this is necessary. 

A third difference is that a notion of final state is often missing in concurrency 
theory. For finite-state automata we have the notion of intermediate termination. 
This means that termination might occur at the same time that the automaton can 
continue with its computation/ execution. Recall that concurrency theory deals with 
so-called reactive systems, which need not terminate but are always on, reacting 
to stimuli from the environment. As a result, intermediate termination is often 
neglected in concurrency theory. Using the process theory TCPn which includes 
notation for a terminating process [BBR09], we obtain a full correspondence with 
automata theory: a finite-state transition system is exactly a finite automaton. Note 
that we still fully incorporate the reactive systems approach of concurrency theory: 
non-terminating behaviour is also relevant behaviour, which is taken into account by 
allowing for (infinite) recursion. Per kind of automata we will try to find a suitable 
specification language, the process-theoretic counterpart of grammars, and investigate 
the correspondence between the class of transition systems associated with the 
automata and the class of transition system associated with the specifications. 
In [Mol96], Moller presents an overview of the differences in expressive power 
using labelled transition systems associated with notions that we find in this thesis, 
such as finite-state automata, pushdown and parallel pushdown automata, several 
specification languages and Petri nets. We will use and extend results from this 
paper in the following chapters when we investigate the correspondences between 
automata and specification languages. We will see that the presence of a terminating 
process that also allows for continuation of execution makes a process theory too 
powerful in the sense that a specification language can express more than what can 
be executed by an automaton; this occurs in particular in combination with sequential 
composition. 
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A final difference between automata theory and concurrency theory is that 

in automata theory for pushdown automata and Turing machines the interaction 

between the finite-state automaton and its memory is left rather implicit. In 

the upcoming chapters we will model for each kind of automaton the finite-state 

automaton and its memory separately by means of a process description, and 

show that using a parallel operator that allows for communication we obtain a 

correspondence with the original automaton. This way we make the interaction 

explicit, thus fulfilling Milner's aforementioned desideratum that the interaction of 

a computing device with its memory should be modelled using a symmetric notion of 

interaction, modelling the memory as a separate process. 

1.5 Thesis Outline 

Below we give an outline of the contents of the thesis and summarise the main 

definitions and contributions of each chapter. Note that Chapters 3, 4, and 6 

correspond to classes of the Chomsky hierarchy. 

Chapter 2 recapitulates the basic definitions of labelled transitions systems and the 

behavioural equivalences that are relevant. We also introduce the process theory 

TCP, and several subtheories that are used throughout the thesis. 

Chapter 3 discusses finite-state systems. It contains a process-theoretic view on the 

classical correspondence results between the four ways to describe regular languages: 

non-deterministic finite automata, deterministic finite automata, regular grammars 

and regular expressions. A side-goal of this chapter is to recapitulate central notions 

from automata theory, cast in our process-theoretic framework, as they will reappear 

in the subsequent chapters. Automata are defined as finite transition systems; 

regular grammars are defined as finite recursive BSP, -specifications called linear 

specifications. Because regular expressions can be defined as process expressions 

over TSP; , a subtheory of TCPr extended with the Kleene star, no casting in our 

process-theoretic framework is needed. However, since the regular expressions 

are not sufficient to describe all finite automata up to (branching) bisimilarity, we 

propose regular expressions extended with parallel composition, communication, and 

encapsulation as the process-theoretic counterparts of regular expressions. 

The main definitions and theorems of this chapter are listed in the table below. 

Finite-State Systems 

Finite automaton 
Regular language, finite-state process 
Linear specification 
Regular expression 

Correspondence of finite automata and linear specifications 

Correspondence of finite automata and extended regular expressions 
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Chapter 4 treats pushdown systems. We give semantics to pushdown automata by means of transition systems. As in automata theory, we have to consider two different termination conditions: termination on final state and termination on empty stack. We add to these conditions termination on final state and empty stack and find that up to divergence-preserving branching bisimilarity the transition systems associated with pushdown automata fall apart into different classes. We 
introduce sequential specifications as the process-theoretic counterpart of context­free languages and investigate the correspondence with the pushdown automata for 
the different termination conditions. We show that under certain restrictions it is decidable whether two sequential specifications define the same transition system 
up to bisimilarity. Finally, we make the interaction within a pushdown automaton explicit by giving a finite-state process representing the finite control of the pushdown automaton and putting it in parallel with a stack process. 

The main definitions and theorems of this chapter are listed in the table below. 

Pushdown Systems 
Pushdown automaton 
Pushdown transition system 
Pushdown language, pushdown process 
Sequential specification 

Class distinctions for different termination conditions 

Correspondence of pushdown automata and sequential 
specifications 

Explicit interaction for pushdown automata 
Decidability of bisimilarity on sequential specifications 

Definition 4.1 
Definition 4.4 
Definition 4.6 
Definition 4.17 

Theorems 4.9 and 4.14, 
Examples 4.10 and 4.15 

Theorems 4.31 and 4.35 

Theorems 4.42, 4.43, and 4.46 
Theorem 4.40 

Chapter 5 investigates parallel pushdown systems, obtained by analogy from pushdown systems by replacing sequential composition by parallel composition. We define parallel pushdown automata, parallel pushdown transition systems and basic parallel specifications. Following the preceding chapter, we consider the distinct termination conditions for parallel pushdown automata, with termination on empty bag instead of on empty stack, which again lead to different classes of parallel 
pushdown transition systems. We introduce basic parallel specifications as the process-theoretic counterpart of commutative context-free grammars and investigate the relation between parallel pushdown automata and basic parallel specifications. In contrast with the previous chapter, we show that it is decidable whether two basic 
parallel specifications define the same transition system up to bisimilarity, without needing to apply restrictions. Finally, we make the interaction within the parallel pushdown automata explicit by giving a finite-state process representing the finite control and putting it in parallel with a bag process. 

-7-



1. INTRODUCTION 

The main definitions and theorems of this chapter are listed in the following table. 

Parallel Pushdown Systems 

Parallel pushdown automaton 
Parallel pushdown transition system 

Parallel pushdown language, parallel pushdown process 

Basic parallel specification 

Class distinctions for different termination conditions 

Correspondence of parallel pushdown automata and basic 

parallel specifications 
Explicit interaction for parallel pushdown automata 

Decidability of bisimilarity on basic parallel specifications 

Definition 5.1 
Definition 5.4 
Definition 5.5 
Definition 5.16 

Theorem 5.9, Examples 5.10, 
5.13, and 5.14 

Theorems 5.29 and 5.31 

Theorems 5.41, 5.42, 5.43, 
and 5.45 

Theorems 5.36 and 5.38 

Chapter 6 studies computable and executable systems and the relation with effec­

tive and computable transition systems and Turing machines. For this we present the 

reactive Turing machine, a classical Turing machine augmented with capabilities for 

interaction. Classically, Turing machines are associated with recursively enumerable 

languages and unrestricted grammars. We define transition systems that can 

be simulated by a reactive Turing machine as executable transition systems, and 

consider TC Pr as the process-theoretic version of unrestricted grammars. Instead of 

reinvestigating this correspondence we investigate the expressiveness of the notion of 

reactive Turing machines to see if we can still simulate computable transition systems 

and if it is universal with respect to executable transition systems. Again, we make 

the interaction within the reactive Turing machine between finite control and tape 

explicit. 
The main definitions and theorems of this chapter are listed in the table below. 

Computable & Executable Systems 

Reactive Turing machine 
Effective & computable transition system 

Executable process 

Correspondence of effective & computable transition 

systems and reactive Turing machines 

Universality of reactive Turing machines 
Explicit interaction for reactive Turing machines 

Definition 6.1 
Definition 6.4 
Definition 6.6 

Theorems 6.22 and 
Corollary 6.23 

Theorems 6.30 and 6.31 
Theorem 6.38 and 

Corollary 6.39 

Chapter 7 draws several conclusions and outlines future work. 
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Chapter 2 

Preliminaries 

In this chapter, we first briefly recap the basic definitions of labelled trans1t1on 
systems and related notions. Then, we introduce the process theory TCPr (Theory of 
Communicating Processes with -r) and several subtheories used in this thesis. 

2.1 Labelled Transition Systems 

From here onwards we assume the existence of a countably infinite set of action 
symbols (or just: actions) of which A is some finite subset. We also fix an unobservable 
action (also called silent or internal action), denoted by the symbol -r, assuming that 
-r 1:- A; we denote the set Au { -r} as A r. We let a, b,c range over A ,,- . 

DEFINITION 2.1. A labelled transition system T is defined as a four-tuple (S,->, i, t) 
where: 

1. S is a (possibly infinite) set of states, 
2. -> s;:: S x A ,,- x S is an A,,- -labelled transition relation on S, 
3. l E S is the initial state, 
4. l s;:: S is the set of final states. 

If (s,a,t) E ->, we writes~ t. Ifs is a final state, i.e. , s El, we write sl. /:::,. 

Furthermore, we abbreviate the statement 's ~ t or (a = -r and s = t)' with 
s -1f!4 t. We denote the transitive closure of __.!___, by --+ +, and we denote the reflexive­
transitive closure of ~ by - . 

D EFINITION 2.2. Let T be a labelled transition system and lets , t be states in T. We 
define an (input) word w as a sequence of actions, i.e. w = a 1 • ·· an E A *, and let e 
denote the empty word; we writes~ t if there exist states s0 , ... ,sn in T such that 
s =So---»....El...+---»s1 ···-...E.ii....-sn =t. 

Ifs ~ t for some w EA*, then we say that t is reachable from s in T. 

We will use the notation #a ( w) to count the occurrences of some action a in 
word w. Note that always # ,,- (w) = 0. 
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2. PRELIMINARIES 

If we consider transition systems, we can collect all words that lead from the initial 

state to a final state. In automata theory, this collection is called a language. 

DEFINITION 2.3. Let T = (S, ~, i, !) be a transition system. The language L(T) 

accepted by T is defined as 

L(T) = { w EA* \ 3s EL such that l ~ s} 

The transmon systems T1 and T2 are language equivalent (notation: T1 

£(T1) = £(T2 ). 

2.1.1 Behavioural equivalences 

We first define bisimilarity, originally proposed by Park in [Par81], extended with 

conditions for termination. This equivalence relation treats silent transitions as 

ordinary transitions; it is therefore often referred to as strong bisimilarity. 

DEFINITION 2.4. Let T1 = (S1, ~1 , l 1, h) and T2 = (S2, ~2 , lz, Lz) be transition 

systems. A bisimulation between T1 and T2 is a binary relation '.R ~ S1 x S2 such 

that l 1 '.R l 2 and, for all actions a E A -r and states s1 and s2 , s1 '.R s2 implies 

1. if s1 __E.._, s~ then there exists s; such that s2 __E.._, s; and s~ '.R s;, 

2. if s2 __E.._, s; then there exists s'1 such that s 1 __E.._, s~ and s~ '.R s;, 

3. if s 1 L then s2 L and vice versa. 

The transition systems T1 and T2 are bisimilar (notation: T1 +-+ T2 ) if there exists a 

bisimulation between T1 and T2 • 6. 

A result from concurrency theory is that language equivalence is arguably too 

coarse for reactive systems, because it abstracts from all moments of choice (see, 

e.g., [BBR09]). In concurrency theory many alternative behavioural equivalences 

have been proposed; we refer to [Gla93] for a classification. 

The bisimilarity behavioural equivalence might be considered too strong, as it 

does not abstract from silent, internal transitions. Therefore, most results of this 

thesis are modulo branching bisimilarity [GW96], which is the finest behavioural 

equivalence in Van Glabbeek's linear time - branching time spectrum [Gla93]. We 

shall consider both the divergence-insensitive and the divergence-preserving variant. 

By taking divergence into account, most of our results do not depend on fairness 

assumptions; these assumptions are needed if systems contain loops of internal 

transitions. (The divergence-preserving variant is called branching bisimilarity with 

explicit divergence in [Gla93, GW96], but in this thesis we prefer the term divergence­

preserving branching bisimilarity.) 

DEFINITION 2.5. Let T1 = (S 1, ~1 , l 1, L1) and T2 = (S 2, ~2 , lz, Lz) be transition 

systems. A branching bisimulation between T1 and T2 is a binary relation '.R ~ S1 x S2 

such that l 1 '.R l 2 and, for all states s1 and s2' s 1 '.R s2 implies 

1. if s1 _g__, 1 s'l' then there exist s;,5~ E S2 such that 52 _,.2 5~ ~2 5;, 51 '.R s~ and 

s' '.R s' · 
l 2' 

- 10 -



2.1. LABELLED TRANSITION SYSTEMS 

2. if s2 __g__, 2 s;, then there exist s~, s~ E S1 such that s 1 --+> 1 s~ --1f!.l., 1 s~, s~ '.R s2 and 
s~ '.R s;; 

3. if sJ! 1, then there exists s; such that s2 - 2 s;, s1 '.R s; and s; ! 2 ; and 
4. if s2 b then there exists s~ such that si - 1 s~, s~ '.R s2 and s~ ! 1 . 

The transition systems Ti and T2 are branching bisimilar (notation: Ti <->b T2 ) if there 
exists a branching bisimulation between Ti and T2 . 

A branching bisimulation '.R between Ti and T2 is divergence-preserving if, for all 
states s1 and s2 , s1 '.R s2 implies 

5. if there exists an infinite sequence (S1 J "' SUCh that Si =Si O• S1 i......!...., S1 i+ I and ' l E1"1 , , , s1,; '.R s2 for all i E N, then there exists a states; such that s2 --+ + s; and s1,; '.R s; 
for some i E N; and 

6. if there exists an infinite sequence (s2 ,;)iEN such that s2 = s2 ,0 , s2,; ......!...., s2 ,;+1 and 
Si '.R s2,; for all i E N, then there exists a states~ such that si --+ + s~ and s~ '.R s2 ,; 
for some i E N. 

The transition systems Ti and T2 are divergence-preserving branching bisimilar (no­
tation: Ti '=!~ T2 ) if there exists a divergence-preserving branching bisimulation 
between T1 and T2 • 6 

It has been proved that branching bisimilarity is an equivalence relation on 
labelled transition systems [Bas96] ; for divergence-preserving branching bisimilarity 
this has been shown in [GLT09] . 

2.1.2 Branching degree, inertness and norm 
We will need as auxiliary notions the notion of inert '!-transition and the notion of 
branching degree of a state. For a definition we first define (divergence-preserving) 
branching bisimulation on a labelled transition system, and the quotient of a labelled 
transition system by its maximal (divergence-preserving) branching bisimulation. 

Let T = (S,-+, T, ! ) be a labelled transition system. A (divergence-preserving) 
branching bisimulation on T is a binary relation '.R on S that satisfies conditions 1-4 
(conditions 1-6 in the case of divergence-preservation) of Definition 2.5. Let '.R be 
the maximal (divergence-preserving) branching bisimulation on T. Then '.R is an 
equivalence on S; we denote by [sh the equivalence class of s ES with respect to '.R 
and by S/'.R the set of all equivalence classes of S with respect to '.R . On S/'.R we 
can define an A r-labelled transition relation -+:R by [s h __g__, :R [th if, and only if, 
there exist s' E [sh and t' E [th such that s' __g__, t'. Furthermore, we define b = 
[Th and h = {s I :ls' E ! such that s E [s'h }. Now, the quotient of T by '.R is the 
labelled transition system T /'.R = (S/'.R, -+:R , f:R, h). It is straightforward to prove 
that each labelled transition system is (divergence-preserving) branching bisimilar to 
its quotient by its maximal (divergence-preserving) branching bisimulation. 

DEFINITION 2.6. An equivalence class of transition systems with respect to diver­
gence-preserving branching bisimilarity is called a process. /::;. 
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2. PRELIMINARIES 

EXAMPLE 2.7. The two transition systems in Figure 2.1 are divergence-preserving 

branching bisimilar; they are two representatives of the same process of which the 

left-most is the minimal form. 0 

a 
-++tr~-+tJ----4~r~-+tr-~~ --- ~ 

a a a a 

FIGURE 2.1: Two transition systems that belong to the same equivalence class 

with respect to divergence-preserving branching bisimilarity. 

DEFINITION 2.8. Let T be a labelled transition system and let s and t be two states 

in T. A -r-transition s _i_. t is inert ifs and t are related by the maximal branching 

bisimulation on T. 6 

If s and t are distinct states, then an inert -r-transition s _i_. t can be eliminated 

from a labelled transition system by: removing all outgoing transitions of s, changing 

every outgoing transition t ~ u from t to an outgoing transition s ~ u from s, 

changing every incoming transition u ~ t tot to an incoming transition u ~ s to s, 

and removing the state t. This operation yields a labelled transition system that is 

branching bisimilar to the original labelled transition system. 

EXAMPLE 2.9. Consider the labelled transition systems in Figure 2.2. Here, the inert 

-r-transition from state s to t in the transition system on the left is removed by 

removing the transitions __E.__, u and moving all outgoing transitions oft to s, resulting 

in the transition system on the right. This is possible because s and t are branching 

bisimilar. O 

a 

u 

FIGURE 2.2: Removing an inert -r-transition. 

To get a notion of branching degree that is preserved up to branching bisimilarity, 

we define the branching degree of a state as the branching degree of the correspond­

ing equivalence class of states modulo the maximal branching bisimilarity. 

DEFINITION 2.10. Let T be a labelled transition system, and let '.R be its maximal 

branching bisimulation. The branching degree of a state s in T is the cardinality of the 

set {(a, [th) I [sh ~'.R [th } of outgoing edges of the equivalence class of s in the 

quotient T /'.R. 
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2.2. THE PROCESS THEORY TCPr 

We say that T has finite branching if all states of T have a finite branching degree. 
We say that T has bounded branching if there exists a natural number n 2:: 0 such that 
every state has a branching degree of at most n. 6 

Branching bisimulations respect branching degrees in the sense that if '.R is a 
branching bisimulation between T1 and T2 , s1 is a state in T1 and s2 is a state in 
T2 such that s1 '.R s2 , then s1 and s2 have the same branching degree. 

DEFINITION 2.11. Let T be a labelled transition system, and let '.R be its maximal 
branching bisimulation. The norm of a state s is the minimal number of transitions 
needed to reach a state that can terminate. We define it formally as follows: 

norm(s) = inf{ length(w) I w EA* such that s ~ s' /\ s' ! } . 

Note that this means that if there is no path from states to a state that can t.erminate, 
then norm(s) = oo. 6 

2.2 The Process Theory TCP, 

TCP-r is a generic process algebra encompassing key features of CSP [Hoa85], 
CCS [Mil80, Mil89], and ACP [BK84]: it uses prefixing and choice from CCS, par­
allelism from ACP (including its axiomatisation) with a generalised communication 
mechanism suitable to model communication over channels, and extends recursion 
from both CCS and ACP. With respect to the three older algebras, it additionally 
discerns unsuccessful termination, i.e. deadlock, and successful termination. We 
introduce an instance of TCP-r with the specific form of handshaking communication 
from [BCLTlO]. For the full definition, see [BBR09]. 

We use a finite set e of channels and we assume the existence of a countably 
infinite set of data symbols (or data elements) of which 'D is some finite subset; we 
often let c range over e and d, e,f range over 'D. We introduce the set of special 
actions A'= {c?d,c!d,cl'd Id E 'D,c Ee}; it is assumed that A' s; A. Intuitively, the 
actions c?d, c!d, cl'd respectively denote the events that a data element d is received, 
sent, or communicated along channel c. Our instantiated version of TCP-r can be 
seen as generic TCP-r with a fixed, standard handshaking communication function y, 
defined as follows: 

y(c!d,c?d) = cPd for all c E 'D,d E 'D. 

This communication function is used throughout the thesis, unless a different 
communication function is explicitly defined. We assume the existence of a countably 
infinite set of names of which N is some finite subset; we often let N, but also X and 
Y, range over N. In literature, names are also often called variables or non-terminals. 

The set of process expressions '.P(TCP-r ) is generated by the following grammar 
(a E A T, N EN, c Ee): 

p ::= 0 I 1 I a.p I p·p I p+p I PllP I p~p I PIP I ac(p) I 'rc(p) IN. 
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2. PRELIMINARIES 

If a process expression contains no names, we say that the process expression is closed. 

Let us briefly comment on the operators in this syntax. The constant 0 denotes 

deadlock, the unsuccessfully terminated process. The constant 1 denotes skip, the 

successfully terminated process. For each action a E Ar there is a unary operator a. 

denoting action prefix; the process denoted by a.p can perform an a-transition to the 

process denoted by p. The binary operator · denotes sequential composition. The 

binary operator + denotes alternative composition or choice. The binary operator II 
denotes parallel composition; actions of both arguments are interleaved, and in 

addition a communication cPd of a data element d on channel c can take place if one 

argument can do an input action c?d that matches an output action c!d of the other 

component. The left-merge ~ and communication merge I are auxiliary operators 

needed for the axiomatisation that we shall present later on. The unary operator oc(p) 

encapsulates the process p in such a way that all input actions c?d and output actions 

c!d are blocked (for all data) so that communication on channel c is enforced. Finally, 

the unary operator 'r c(p) denotes abstraction from communication over channel c in p 

by renaming all communications cPd to '!"-transitions. We shall abbreviate "cC oc(p )) 

with [p Jc. 
We will sometimes use the notation [ + p Jc to indicate that the optional summand 

with process expression p is only added if condition C holds. 

DEFINITION 2.12. A recursive (f CP"' -)specification E is a set of equations of the form: 

N ~ p, with as left-hand side a name N and as right-hand side a (TCP"' -)process 

expression p. It is required that a recursive specification E contains, for every NE N, 

at most one equation with N as left-hand side; this equation will be referred to as the 

defining equation for Nin N. Furthermore, if some name occurs in the right-hand side 

of some defining equation, then the recursive specification must include a defining 

equation for it. 6 

We use Structural Operational Semantics [Plo04] to associate a transition relation 

with process expressions: let --> be the A"' -labelled transition relation induced 

on the set of process expressions by the operational rules in Table 2.1. Note 

that the operational rules presuppose a recursive specification E and a termination 

predicate_!. 

DEFINITION 2.13. Let Ebe a recursive specification and let p be a process expression. 

We define the labelled transition system 'J,,(p) = (SP ,-->P' TP' !p) associated with p and E 

as follows: 

1. the set of states SP consists of all process expressions reachable from p; 

2. the transition relation -->p is the restriction to sp of the transition relation --> 

defined on all process expressions by the operational rules in Table 2.1 , i.e., 

--.P =--. n (Sp x A "' x Sp ). 

3. the process expression p is the initial state, i.e. T P = p; and 

4. the set of final states consists of all process expressions q ESP such that q !, i.e. , 

!p= ! nSP. 6 
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1! 

p _g__, p' q _g__, q' 

p + q _g__, p' p + q _g__, q' 

2.2. THE PROCESS THEORY TCP, 

a.p _g__, p 

p! 
(p + q)! 

q! 
(p + q)! 

p! q! 
(p. q)! 

p....f.M..+p' q~q' p~p' q....f.M..+q' p! q! 
(p I q)! P I q c!d p' II q' P I q --51!4 p' II q' 

p _g__, p' p _g__, p' q _g__, q' p! q! 
P II q _g__, p' II q P II q _g__, P II q' (p II q)! 

p....f.M..+p' q~q' p~p' q....f.M..+q' 

P II q --51!4 p' II q' P II q --51!4 p' II q' 

p _g__, p' a i= c?d , c!d p! 
oc(p) _g__, oc(p') 

p --51!4 p' p _g__, p' a i= dd p! 
'r c(p) _g__, 'r c(p') 

p ____!!__, p' (N ~ p) EE p! (N~p) EE 
N ____!!__, p I N! 

TABLE 2.1: Operational rules for a recursive recursive TCP~-specification E 
and termination predicate _! (a E A " c E C:, d E 'D) . 

Sometimes it is useful to designate an initial name for a recursive specification. It 
is then possible to associate a transition system with a recursive specification without 
giving the specific process expression. In other words, if I is the initial name of some 
recursive specification E, then its associated transition system is given by 'JE(l). 

In the other direction, if we only have a transition system associated with some 
recursive specification E and process expression p, it is clear we can always define 
a recursive specification E' obtained from E by adding initial name I with defining 

. def equation I = p. 
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2. PRELIMINARIES 

We use the guardedness restriction, taken from [BBP94], on recursive specifica­

tions throughout the thesis. 

DEFINITION 2.14. Let p be a process expression contammg the name N. An 

occurrence of Nin p is -r-guarded if p has a sub-expression a.q, where a E A -r and 

q contains this occurrence of N. 

We call a recursive specification E -r-guarded if for each defining equation N ~ PN 

we can obtain, by substituting PN for N in the specification a finite number of times, 

the situation that PN is -r-guarded. 6 

To guarantee that the specification has a unique solution, we present another 

restriction depending the operational semantics. 

DEFINITION 2.15. A recursive specification Eis -r-founded (or -r-convergent) if there 

does not exist a process expression such that 'JE(p) has an infinite -r-path. 6 

We call a recursive specification guarded if it is both -r-guarded and -r-founded. 

2.2.1 Subtheories 

In the thesis we encounter several subtheories of TCP-r . A subtheory of TCP-r has a 

restricted signature and includes only the operational rules from Table 2.1 relevant 

for this signature to obtain the associated transition systems. 

For the theory BSP-r (Basic Sequential Processes) the set of process expres­

sions '.P(BSP-r ) contains all process expressions without occurrences of sequential 

composition, parallel composition, encapsulation and abstraction; we only have 

deadlock, skip, prefixing and alternative composition. 
For the theory TSP-r (Theory of Sequential Processes) the set of process expres­

sions '.P(TSP-r ) contains all the processes expressions without occurrences of parallel 

composition, encapsulation and abstraction; it can be obtained from '.P(BSP-r ) by 

adding sequential composition. 
Finally, for the theory BCP-r (Basic Communicating Processes) the set of processes 

expressions '.P(BCP-r ) contains all process expressions without occurrences of sequen­

tial composition, encapsulation and abstraction; it can be obtained from '.P( BSP-r ) by 

adding parallel composition. 

2.2.2 Kleene star 

To be able to have regular expressions in our process algebraic framework, we add 

the unary Kleene star operator(_*) for iteration to TCP-r and obtain the theory TCP; . 

The Kleene star was originally defined by Kleene in [Kle56] and introduced in a 

process-theoretic setting by Milner in [Mil84]. (For a discussion of the binary variant 

of the Kleene star, see [BBP94] .) The set of process expressions '.P(TCP; ) is generated 

by the original grammar for '.P(TCP-r ) and the following rule: 

P ::= ... I p* . 
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To associate transition systems with TCP; -process expressions we extend the opera­
tional rules from Table 2.1 with the rules in Table 2.2. 

p _E_, p' 

p* _E_, p' . p* p* l 

TABLE 2.2: Operational rules for the unary Kleene star (a EAT). 

For the subtheory TSP; the set of process expressions '.P(TSP-r) contains all 
the processes expressions mentioned above, again without occurrences of parallel 
composition, encapsulation and abstraction. 

2.2.3 Axiomatisation 

To be able to give concise proofs that certain process expressions are divergence­
preserving branching bisimilar, it is convenient to proceed by equational reasoning. 
We shall use the equations in Table 2.3. See [BBR09] for an explanation of the 
axioms, and the proof rule RSP, which is based on the assumption that every guarded 
recursive specification has a unique solution. (Recall that the guardedness of the 
specifications below follows from the fact that they are i--guarded and i--founded, as 
defined in [BBP94].) 

We should, of course, establish that an equational reasoning based on the axioms 
in Table 2.3 is sound, i.e. , that it indeed proves that the equated process expressions 
are divergence-preserving branching bisimilar. For this it suffices to prove that the 
axioms in Table 2.3 and RSP are sound with respect to some congruence included in 
divergence-preserving branching bisimilarity. (Note that, like branching bisimilarity 
is not a congruence with respect to +, divergence-preserving branching bisimilarity 
is also not a congruence with respect to the operator + .) The way we obtain a 
congruence included in divergence-preserving branching bisimilarity is standard: we 
define a rooted version: 

D EFINITION 2 .16. A divergence-preserving branching bisimulation ~ between T1 
and T2 is called rooted if it meets the following root-conditions for all a E A-r: 

1. for all states s~ E S1, whenever j 1 _E_, s~, then there exists a state s; such that 
i 2 __g_, s; and s~ ~ s;; 

2. for all states s; E S2, whenever j 2 _E_, s;, then there exists a state s~ such that 
i 1 __g_, s~ and s~ ~ s;; 

3. if i 1l 1, then iz!z; 
4. ifi2 !z, then iil1· 
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Al x+ y =y+x A6 x+O = x 
A2 (x +y)+ z =x+(y+ z ) A7 O· x = O 
A3 x +x = x AS x · 1 = x 
A4 (x+ y) ·z= x · z+ y· z A9 1 ·x = x 
AS (x · y ) · z= x· (y · z ) AlO a .x · y = a .(x · y) 

M x 11 y = x [ y + y [ x + x I y B a.(-r.(x + y) + x) = a.(x + y) 

LMl O ~ x = O SCl xly=ylx 
LM2 1 ~ x = O SC2 x II I =x 
LM3 a .x [y = a .(x lly) SC3 Ilx+l = l 

LM4 (x +yHz =x ~z +y ~ z SC4 (x 11 y) 11 z = x 11 (y 11 z ) 
CMl Ol x = O scs (xly)l z= xl(yl z) 
CM2 (x + y) I z = x I z + y I z SC6 (x ~ y) ~z= x ~ (yllz) 

CM3 1I1 = 1 SC? (xly) ~ z = xl(y ~ z) 

CM4 a .x I I = 0 SC8 x ~ O =x · O 

CMS c!d .x I c?d.y = cPd .(x 11 y) SC9 X ~'r.y = x [ y 

CM6 a .x lb.y=O if {a , b} =f. {c!d, c?d} SClO x 1-r .y = 0 

01 i:H I) = 1 T1 'rc(l) = 1 
02 8c(O) = 0 T2 -r, (O) = 0 
03 8, (a.x) = 0 if a = c?d, c!d T3 -r , (a.x) = a .-r, (x) if a =f. c?d, c!d 

04 8, (a .x) = a A (x) if a =f. c?d , c!d T4 'rc(a.x) = 'r. 'rc(x) ifa= c?d,c!d 
OS 8, (x + y) = 8, (x) + 8, (y) TS -r , (x + y) = -r , (x) + -r, (y) 

TABLE 2.3: Axioms of the process theory TCP, (a E A , ,d E 'D ). 

The transition systems T1 and T2 are rooted divergence-preserving branching bisimilar 

(notation: T1 ~ T2 ) if there exists a divergence-preserving branching bisimulation 
between T1 and T2 that meets the above mentioned root-conditions. 6. 

In [Tri'.:07), Trcka introduces an equivalence, called silent bisimulation, that 
is an extension of branching bisimulation that preserves deadlock, is divergence 
sensitive, and incorporates successful termination. As a model he uses doubly 
labelled transition systems, in which also states are labelled, namely by a list of data 
propositions that are satisfied. He shows that silent bisimulation is not a congruence 
with respect to parallel composition in the language K which is an extension of ACP, 
with data, scoping, guards and the Kleene star. A new equivalence is introduced 
called stateless silent bisimulation, which disregards the labels of the states and 
coincides with our definition of divergence-preserving branching bisimilarity. For this 
equivalence it can be proved that it is a congruence. 

THEOREM 2.17. Divergence-preserving branching bisimilarity is a congruence for all 

operators of TCP.,. . O 

PROOF. We can reuse the proofs for steps 2, 3, 5, 7, and 8 of [Trc07, Theorem 4.3.7) 
by disregarding the state labels. • 
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Because divergence-preserving branching bisimilarity is included in rooted diver­
gence-preserving branching bisimilarity, we have the following proposition that we 
will use in the proofs that use equational reasoning. 

PROPOSITION 2.18. The equational theory given by Table 2.3 is soundfor the model of 
transition systems modulo divergence-preserving branching bisimilarity. O 

PROOF. First, note that, since divergence-preserving branching bisimilarity is both an 
equivalence and a congruence, it suffices to check the individual axioms. Second, it 
is well-known that the axioms are sound for branching bisimilarity. So, we only need 
to check the divergence-preservation conditions. Because all axioms except for B do 
not remove or introduce -r-transitions whatsoever, we only need to check axiom B. 
That axiom B is also sound for the divergence conditions (see conditions 5 and 6 of 
Definition 2.5) follows easily from inspection of the axiom. • 

Note that the KFAR rule [BBK87] is not a part of the axioms because it implies the 
removal of -r-loops which would break the divergence-preserving property. 

2.2.4 Greibach normal form 

In some cases it is useful to have a normal form for process expressions and recursive 
specifications. We will use a well-known normal form from automata theory: the 
Greibach normal form, introduced by Greibach in [Gre65]. 

DEFINITION 2.19. A process expression p is in Greibach normal form (GNF) if there 
exist a finite index set J such that 

p= L:a; .~; (+I) , 
iE::J 

where a ; E A r and ~ i is a sequence of names (i E J) . The empty sequence denotes 1, 
and the empty summation denotes 0. 

A recursive specification is in Greibach normal form if all right-hand sides of its 
defining equations are in Greibach normal form. 

We call the Greibach normal form restricted if the sequence of names have a length 
of at most two. L. 

Classically, the GNF is used for context-free grammars, where the sequences are 
sequential compositions of non-terminals. In this thesis we use the GNF as a generic 
normal form. Based on the type of systems and the process theory that we are 
considering, we use a different interpretation for the sequence of names. Chapter 3 
uses a GNF where the sequences of names can either be empty or consist of a single 
name to obtain the linear normal form. Chapter 4 interprets the sequence as a string, 
a sequential composition of names, to get the sequential normal form; Chapter 5 
interprets the sequence as a multiset, a parallel composition of names, to obtain the 
basic parallel normal form. 
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2. PRELIMINARIES 

Note that recursive specifications in GNF are automatically -r-guarded. Also note 
that there is a strong relation between recursive specifications in GNF and their 

associated transition systems. For example, consider the following recursive TSP-r ­
specification in GNF: 

def 
X = aX·Y+b.1 , 

Y ~ c.1. 

Intuitively, when we consider the state associated with the name X in the transition 
system associated with the specification, the defining equation of X lists the possible 

transitions: an a-transition to a state X · Yanda b-transition to the state 1. Note that 
as a result of the GNF, each state in the associated transition system is denoted by a 
sequence of names. 
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Chapter 3 

Finite-State Systems 

If we consider a computer, or, in general, a computing agent that only has a fixed 
number of states and no memory except for what can be encoded in the fixed number 
of states, we call this a finite-state system. 

In automata theory, the most prominent way used to model these systems is by 
the notion of the finite automaton. The finite automaton is used to represent the 
finite control of some running program or computation, i.e. the part that manipulates 
memory, interacts with the environment and can be described in a finite manner. In 
the upcoming chapters we shall investigate systems that additionally have some kind 
of external memory to achieve more complicated tasks. However, the finite control 
will always be present to manipulate the memory. 

In this chapter, we present some similarities and differences between automata 
and process theory. We define well-known notions from automata theory in our 
process-theoretic setting and investigate the classical results, that are shown up to 
language equivalence, but now up to (divergence-preserving) branching bisimilarity. 

In Section 3.1 we introduce the finite automata. We shall see that, from a 
process-theoretic point of view, they are actually (non-deterministic) finite labelled 
transition systems. Automata theory considers the classes of non-deterministic and 
deterministic finite automata on equal footing, since they can describe the same 
languages. We shall see, however, that the class of deterministic finite automata 
is, up to (divergence-preserving) branching bisimilarity, a proper subclass of the class 
of (non-deterministic) finite automata. 

In Section 3.2 we investigate the classical correspondence between finite au­
tomata and regular grammars in a process-theoretic setting. Regular grammars 
are given in our framework as finite recursive BSP"-specifications, which we call 
linear specifications. These linear specifications, having prefixing in the language, 
only cover the right-linear (regular) grammars. Therefore, we also introduce linear 
specifications with postfixing to cover left-linear (regular) grammars. We shall 
see, however, that, up to (divergence-preserving) branching bisimilarity, the class 
of linear specifications is incomparable with the class of linear specifications with 
postfixing. We explore the tight correspondence between linear specifications and 
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finite automata for introductory purposes, as the classical correspondence result 
between right-linear grammars and finite automata holds even up to isomorphism. 

Another prominent correspondence that comes to mind when discussing finite 
automata is regular expressions. A few decades ago, Milner showed in [Mil84] 
that up to bisimilarity not all finite automata can be given by a regular expression. 
In Section 3.3 we extend the language of regular expressions, which we give as 
closed TSP; -process expressions, with communication and obtain closed TCP; ­
process expressions. We show that we can give a closed TCP; -process expression that 
describes each finite automaton up to (divergence-preserving) branching bisimilarity. 

This chapter is mainly based on the following publications: 

[BCLTlO] J . C. M. Baeten, P. J. L. Cuijpers, B. Luttik, and P. J. A. van Tilburg. ''A 
Process-Theoretic Look at Automata". In: Proceedings of FSEN 2009. Ed. 
by F. Arbab and M. Sirjani. LNCS 5961. Springer, 2010, pp. 1-33. 

[BLTl la] J . C. M. Baeten, B. Luttik, and P. J. A. van Tilburg. "Computations and 
Interaction". In: Proceedings of ICDCIT 2011. Ed. by R. Natarajan and A. 
Oja. LNCS 6536. Springer, 2011, pp. 35-54. 

Some material has also been adapted from the following lecture notes and publica­
tion: 
[Baell] 

[BLMTlO] 

J. C. M. Baeten. Models of Computation: Automata and Processes. 
Lecture notes 2011. 
J . C. M. Baeten, B. Luttik, T. Muller, and P. J. A. van Tilburg. "Ex­
pressiveness modulo Bisimilarity of Regular Expressions with Parallel 
Composition (extended abstract)". In: Proceedings of EXPRESS 2010. 
Ed. by S. B. Froschle and F. D. Valencia. EPTCS 41. Open Publishing 
Association, 2011 , pp. 1- 15. 

3.1 Finite Automata 

In Definition 2.1 (on page 9) we have defined the notion of transition systems, the 
central model of process theory. The central notion of automata theory, the finite 
automaton, is strongly related to this model. For the finite automaton is just a 
transition system with a fixed, finite number of states and a finite transition relation, 
or: finite control. 

DEFINITION 3.1. A finite automaton Mis defined as a five-tuple (S,A, -+, j , !) where: 

1. S is a finite set of states, 

2. A is a finite set of actions, 

3. -+ <::::; S x A , x S is a finite A ,-labelled transition relation on S, 

4. j E S is the initial state, 

5. ! <::::; S is the set of final states. 

Clearly, from a finite automaton we obtain a transition system by simply omitting 
A from the five-tuple and declaring-+ to be an A ,-labelled transition relation. In the 
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remainder of this paper there is no need to make the formal distinction between a 
finite automaton and the transition system associated with it. 

EXAMPLE 3.2. Two examples of finite automata are given in Figure 3.1. The lower 
automata is a "cleaned up" version (with respect to bisimilarity) of the upper 
automata where the unreachable state y and inert '!"-transitions are removed. 9 

b 

FIGURE 3.1: Two examples of finite automata. 

In the theory of automata and formal languages, finite automata are considered 
as language acceptors. Recall that a finite automaton is a special kind of transition 
system, so Definition 2.3 (on page 10) applies directly to finite automata. The 
language of both automata in Figure 3.1 is { ab 2"aa I n 2: 0} u { ab 2

n- l I n 2: 1 }. 

DEFINITION 3.3. A language L ~ A * accepted by a finite automaton is called a regular 
~~oo~. L 

Recall Definition 2.6 (on page 11) that defines processes as divergence-preserving 
branching bisimilarity equivalence classes of transition systems. If we consider finite­
state systems, we are only interested in transition systems that are divergence­
preserving branching bisimilar with a finite automaton. 

DEFINITION 3.4. A finite-state process is a divergence-preserving branching bisimilar­
ity class of transition systems that contains a finite automaton. L 

Deterministic finite automata 
In the upper automaton in Figure 3.1 it is not determined in which state the 
automaton is after performing an a-transition from the initial state. So, the notion of 
finite automaton defined in Definition 3.1 allows for non-determinism; it is actually 
the definition of a non-deterministic finite automaton (NFA). 

-23-
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However, in automata theory the deterministic finite automaton (DFA), a special 

case of the NFA, also plays a prominent role, for example for parsing. 

DEFINITION 3.5. A finite automaton M = (S,A, -+, i, l) is deterministic if, for all states 

s, t1, t2 ES and for all actions a EA, s---» -1!...+t1 and s---» -1!...+t2 implies t1 = t2 • 6. 

In the theory of automata and formal languages, it is usually also required in the 

definition of the deterministic finite automaton that the transition relation is total in 

the sense that for all s E S and for all a E A there exists t E S such that s --1!...+ t. The 

extra requirement is clearly only sensible in the language interpretation of automata; 

we shall not be concerned with it here. 
The upper automaton in Figure 3.1 is non-deterministic and has an unreachable 

c-transition. The lower automaton is deterministic and does not have unreachable 

transitions; it is not total. 
Up to language equivalence deterministic and non-deterministic automata accept 

the same languages. See e.g. [HMU06, Theorem 2.12] for a proof of the following 

theorem. 

THEOREM 3.6. A language L is accepted by some DFA if and only if L is accepted by some 

fllFA. D 

This theorem does not hold if we want to have the result up to branching 

bisimilarity instead of language equivalence, as is illustrated by the following 

example. 

EXAMPLE 3.7. There exists a finite automaton such that there exists no deterministic 

finite automaton that is branching bisimilar with it. See Figure 3.2 for such a finite 

automaton. O 

FIGURE 3.2: An example NFA that is not branching bisimilar to any DFA. 

Therefore, the class of deterministic finite automata is, up to branching bisimi­

larity, a proper subclass of the class of finite automata. Because non-determinism is 

relevant and basic in process theory, we shall not particularly consider deterministic 

finite automata in our process-theoretic setting from here on. 
In automata theory, automata can have silent transitions, usually labelled by f 

(in [Sip97, HMU06]) or A. (in [Sud88, LinOl]). We prefer the label -r from 

process theory over f and A. to denote silent, unobservable transitions. While many 

automata theory textbooks give procedures to remove -r-transitions, up to language 

equivalence, and this is clearly not possible up to (divergence-preserving) branching 

bisimilarity. Recall that only inert -r -transitions can be removed (see Definition 2.8 

and Example 2.9 on page 12). 
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3.2 Linear Specifications 

In the theory of automata and formal languages, the notion of a grammar is used 
as a syntactic mechanism to describe languages. Grammars were first proposed by 
Chomsky in [Cho56] . In this chapter, we consider regular grammars, i.e. left- or 
right-linear grammars, because we are dealing with finite-state systems and finite 
automata. 

Recall that linear grammar are grammars where each right-hand side of a 
production rule has at most one name. A grammar is right-linear, when this single 
name is at the right end, left-linear when it is at the left end. We call a grammar 
regular if it is either left- or right-linear. 

EXAMPLE 3.8. The following regular grammars generate the language { ab 2
n I n ~ 0 }. 

Left-linear: 

S-+Sbb I a 

Right-linear: 

S -+ aT 

T-+bbT I€ 

The corresponding mechanism in concurrency theory is the notion of recursive 
specification. For the kind of grammars we are considering, we shall use the process 
theory BSPr (Basic Sequential Processes), which is a subtheory of the theory TCP,r 
introduced in Section 2.2. The syntax of the process theory BSPT is obtained from 
that of TCPT by omitting sequential composition, parallel composition, encapsulation 
and abstraction. 

DEFINITION 3.9. A linear specification over some finite set of names N is a finite , -r ­
guarded recursive BSPT-specification, i.e. a recursive specification over N in which 
only 0, 1, N (N E N ), a._ (a E AT) and _ + _ are used to build linear process 
expressions . /::;. 

It turns out that getting the corresponding linear specification of a right-linear 
grammar is actually just a matter of changing notation. (We will consider left-linear 
grammars later on.) 

EXAMPLE 3.10. The linear specification that corresponds to the right-linear grammar 
in Example 3.8 can be given as follows: 

S ~ a .T , 

T ~ b.b.T+ 1 . 

Production rules have been replaced by defining equations, where the production 
symbols -+ have been replaced by the defined-as symbol ~. non-terminals by names, 
terminals by prefixing operations a._, multiple rules for a name by summands of an 
alternative composition and the empty symbol E by the empty process 1. (> 
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Additionally, not shown by the example, the absence of a production rule for some 

non-terminal X is replaced by the equation X ~ 0. 
Due to the tight relation between linear specifications and right-linear grammars, 

we can reuse some of the standard procedures, defined for grammars, on recursive 
specifications. For example, the procedure for associating a linear specification with 

a finite automaton is discussed next. 

3.2.1 Correspondence 

In automata theory the following result gives a direct correspondence between finite 
automata and regular grammars. 

THEOREM 3.11. A language Lis regular iff there exists a regular (right-linear) grammar 

that generates L. D 

The classical proof for this theorem uses in one direction the fact that every regular 
language is accepted by some (deterministic) finite automaton and gives an algorithm 
to construct a grammar for this automaton (see, e.g., [LinOl, Theorem 3.4]). In 
the other direction it can be shown that a finite automaton can be associated with 
each right-linear grammar (see, e.g., [LinOl, Theorem 3.3]). The proofs hold up 
to isomorphism for both directions. As the correspondence between specification 

language and automaton will come up again in subsequent chapters, we repeat the 
classical proof for illustration purposes in a more process-theoretic setting. 

We use the linear specifications defined above as counterparts of right-linear 
grammars and investigate their associated transition systems. Consider the opera­
tional rules in Table 2.1 (on page 15) that are relevant for BSP'l" , for a presupposed 
recursive specification E. Note that whenever p is a BSP'l"-process expression and 
p__g__,q then q is again a BSP'l" -process expression. Moreover, q is a subterm of p, or q is 
a subterm of a right-hand side of the recursive specification E. Thus, it follows that the 
set of process expressions reachable from a BSP'l" -process expression consists merely 
of BSP'l" -process expressions, and that it is finite. So the transition system 'JE(p) 

associated with a BSP'l" -process expression given a recursive BSP'l" -specification Eis a 
finite automaton. 

Below we shall also establish the converse, that every finite automaton can 
be specified, up to isomorphism, by a linear specification. First we illustrate the 
construction with an example. 

EXAMPLE 3.12. Consider the automaton depicted in Figure 3.3 below. 
Note that we have labelled each state of the automaton with a unique name; these 

will be the names of a recursive specification E. We will define each of these names 
with an equation, in such a way that the transition system 'JE(S) generated by the 
operational semantics in Table 2.1 (on page 15) is isomorphic and hence (divergence­
preserving) branching bisimilar with the automaton in Figure 3.3. 
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a 
S >-----

FIGURE 3.3: Another example of a finite automaton. 

The recursive specification for the finite automaton in Figure 3.3 is : 

S ~ a.T , 
def 

T = a.U+b .V , 

U ~ a.T+a.V +1 , 

v ~ o . 

The action prefix a.T on the right-hand side of the equation defining S is used to 
express that S has an a-transition to T. Alternative composition is used on the 
right-hand side of the defining equation for T to combine the two transitions going 
out from T. The 1-summand on the right-hand side of the defining equation for U 
indicates that U is a final state. The symbol O on the right-hand side of the defining 
equation for V expresses that V is a deadlock state. 9 

We can now give the following correspondence result between finite automata 
and linear specifications. 

THEOREM 3.13. For every finite automaton M there exists a linear specification E, with 
initial name I, such that 'JE(I) ....-.: M. D 

PROOF. The general procedure is clear from Example 3.12. Let M = (S ,A , ----+ , j , l) 
be some finite automaton. We associate with every state s E S a name N5 , and 
define a recursive specification E on { N5 I s E S } with initial name Nr. The recursive 
specification E consists of equations of the form 

N5 ~ L:a.N1 [ + l] 5 l , 
(s ,a ,t)E~ 

with the convention that the summation denotes 0 if there are no transitions from 
state s, and the optional 1-summand is present if, and only if, st . It is easily verified 
that the binary relation '.R = { (s ,NJ I s ES } is a (divergence-preserving) branching 
bisimulation. • 

Incidentally, note that the relation '.R in the proof of the above theorem is an 
isomorphism, so the proof actually establishes that for every finite automaton M there 
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exists a recursive BSPr-specification E and a BSPr-process expression p such that the 

transition system associated with p and Eis isomorphic to M. 
Linear specifications that are constructed in the way shown in the theorem 

above are in the linear normal form. We instantiate the definition of the GNF (see 

Definition 2.19 on page 19) and restrict the sequences to a length of at most one. 

DEFINITION 3.14. A linear specification E is in linear normal form if each defining 

equation of name N E N is of the following form: 

In this form, every right-hand side of every defining equation consists of a number of 

summands, indexed by a finite set 'JN (the empty sum is O), each of which is 1, or of 

the form a;.N; with a; E A -r . 6. 

All linear specifications can be brought into linear normal form. 

PROPOSITION 3.15. For each linear specification E and linear process expression p there 

exists a linear specification in linear normal form E' such that 'JE' (p) <-->f 'JE(p ). O 

Theorem 3.13 can be viewed as the process-theoretic counterpart of the result 

from the theory of automata and formal languages that states that every language 

accepted by a finite automaton is generated by a right-linear grammar. There is 

no reasonable process-theoretic counterpart of the similar result in the theory of 

automata and formal languages that every language accepted by a finite automaton 

is generated by a left-linear grammar, as we shall now explain. 

Linear Specifications with Postfixing 

To obtain the process-theoretic counterpart of a left-linear grammar, we should 

replace the action prefixes a._ in BSPT by action postfixes _.a, with the operational 

rules in Table 3.1. We call this variant: linear specifications with postfixing. 

p! 

p .a ___£__, p' .a p.a-.£.... 1 

TABLE 3.1: Operational rules for action postfix operators (a , b E A T) . 

Analogously with linear specifications, we can define a normal form. 
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DEFINITION 3.16. A linear specification with postfixing E is in reversed linear normal 
form if each defining equation of name NE N is of the following form: 

N ~ LN;.a; (+ 1). 
iE'.JN 

In this form, every right-hand side of every defining equation consists of a number of 
summands, indexed by finite sets 'JN (the empty sum denotes O), each of which is 1, 
or of the form N;.a; with a; E A r. 6 

Note that, if the specification contains names on the right-hand sides, it is unguarded 
by definition. 

Analogously with linear specifications, action postfix distributes over alternative 
composition and is absorbed by 0. It is easy to see that the following holds. 

PROPOSITION 3.17. For each linear specification with postfixing E and process expres­
sion p there exists a linear specification with postfixing in reversed linear normal form E' 
such that 'JE' (p) <-->t' 'JE(p ). D 

Given a specification in reversed linear normal form, let p be a process expression 
which will be of the following form: 

p = LN;.W; + Ll.wi (+ 1) . 
iE'.J jE8 

By the operation rules we have that if p ~ p' , then p' <-->b w for some sequence 
of postfixes w E A *. (This is because we need to recursively unfold the definition 
of each name in order to actually perform a transition.) Note that we immediately 
lose the name in the expression after a transition, and therefore also any form of 
recursion. Clearly, there exist finite automata that cannot be denoted, up to branching 
bisimilarity, by a process expression with this property. 

EXAMPLE 3.18 . Consider for example the finite automaton in Figure 3.4. A process 
expression denoting it cannot have the above property, for after performing an 
a -transition there is still a choice between terminating with a b-transition, or 
performing another a -transition. 

a 

FIGURE 3.4: A finite automaton without a linear specification with postfixing. 

We conclude that the automaton in Figure 3.4 cannot be described modulo 
branching bisimilarity in BSPr with action postfix instead of action prefix. <> 

Conversely, with action postfixes instead of action prefixes in the syntax, it is 
possible to specify transition systems that are not branching bisimilar with a finite 
automaton. 
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EXAMPLE 3.19. For instance, consider the recursive specification E over {X} consist­
ing of the equation 

x ~ l +X.a . 

The transition system associated with X by the operational semantics is depicted in 
Figure 3.5. Note that in this figure, the initial state is also final. 

a a a a 
FIGURE 3.5: Infinitely branching transition system associated with an un­
guarded specification. 

It can be proved that the infinitely many states of the depicted transition systems 
are all distinct modulo branching bisimilarity: each of the states in the bottom in 
Figure 3.5 has a different norm. It follows that the transition system associated with E 
is not branching bisimilar to a finite automaton. 0 

We conclude that the classes of processes defined by linear specifications and 
linear specifications with postfixing do not coincide. 

3.3 Regular Expressions 

In the previous section we have investigated the classical correspondence results 
between NFA, DFA and grammars in a process-theoretic setting. In automata theory 
there is a fourth way to describe a regular language: the regular expressions. Instead 
of the recursion present in regular specifications, regular expressions include the 
(unary) Kleene star_* in their syntax, as introduced by Kleene in [Kle56] to capture 
repetition in regular behaviours. To obtain regular expressions in our process­
theoretic setting, we use an extension of the process theory TSP,r with the unary 
Kleene star called TS P~ . (See Table 2.2 on page 17 for the operational rules for the 
unary Kleene star.) 

DEFINITION 3.20. We call a closed TSP~ -process expression a regular expression . !:::,. 

From an automata and formal language point of view the 0 represents the empty 
language, 1 the empty word or string, and the prefix and alternative composition 
have their usual meaning. 

EXAMPLE 3.21. The regular expression a.(b.b.l)* ·(a .a. I+ b.1) has an associated 
transition system that is divergence-preserving branching bisimilar with the finite 
automata in Figure 3.1. O 
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Kleene established in [Kle56] a correspondence between the languages denoted 
by regular expressions and the languages accepted by finite automata. 

THEOREM 3.22. For every DFA M, there exists a regular expression R such that £(R) = 
£(M), and for every regular expression R there exists an NFA M such that £(M) = £(R). D 

For the proof in one direction it is assumed that there is some DFA that accepts 
the language L and then a construction is given that generates a regular expression 
from the DFA. In the other direction, an NFA is associated with a regular expression. 
This NFA accepts, by definition, a regular language. 

Milner, in [Mil84], showed how regular expressions can be used to describe 
behaviour by directly associating finite automata with them. He then observed that 
the process-theoretic counterpart of Kleene's theorem fails: there exist finite automata 
whose behaviours cannot faithfully, i.e., up to bisimilarity, be described by regular 
expressions. We show a simple example in Figure 3.6 of a finite transition system 
that is not bisimilar to any transition system that can be associated with a regular 
expression. 

K=>r b 

FIGURE 3.6: A finite automaton that has no regular expression up to 
bisimilarity. 

Baeten, Corradini and Grabmayer present in [BCG07] a structural property on 
finite automata and shown that for the subclass adhering to this property, the so­
called well-behaved finite automata, it is possible to find a corresponding regular 
expression up to bisimilarity. 

3.3.1 Correspondence 

If we want a full correspondence with the class of finite automata, a different 
approach is required. We present a solution originally published in [BLMTlO] where 
we extend the regular expressions with well-known operators from process theory, 
parallel composition with communication and encapsulation, and obtain the desired 
correspondence result between finite automata and closed TCP~ -process expressions. 
We shall refer to these expressions as extended regular expressions 

Before we give the actual correspondence result, we show the construction by 
means of an example. The extended regular expression that we shall associate with 
the finite automaton will have one parallel component per state of the automaton, 
representing the behaviour of that state (i.e., which outgoing transitions it has to 
which other states and whether it is terminating). At any time, one of the parallel 
components corresponding with the "current state" has control. An a-transition 
from that current state to a next state corresponds with a communication between 
the two components yielding the actual a -action. Instead of using the predefined 
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communication function that we have defined in Section 2.2 we shall use a different, 
specific communication function for the purposes of this section. 

EXAMPLE 3.23. Consider the finite automaton in Figure 3. 7 below. 

b 

FIGURE 3. 7: A finite automaton. 

We associate with every state si an expression Pi as follows: 

Po = ( enter0 .1 · (leave0 ,1 .1 + leaveb ,l · 1)) * , 

p1 = ( enter1 .1·(b.1)* ·leavec,2 .1)* , 

p2 = ( enter2 .1 · (leave0 ,0 .1+leaveb,3.1+1) )*, 
p3 = (enter3.l · o) * . 

By executing an enter;-transition a parallel component Pi can gain control, and 

by executing a leaveartransition it may then release control to Pj with action a (a E 

{a,b,c}) as result. Note that loops in the automaton (such as the loop on state s1) 

require special treatment as they should not release control to some other state while 
executing the loop. 

We define the communication function in such a way that an enteri action 
communicates with a leavea,i action, resulting in the action a . In the case of the 
example, y is defined as follows: 

y(enter0 , leave0 ,0 ) = y(leave0 ,0 , enter0 ) =a, 

y(enter1 ,leave0 ,1 ) = y(leave0 ,1 ,enter1 ) =a, 

y(enter1 , leaveb,I) = y(leaveb ,I • enter1) = b , 

y(enter2 ,leavec,2 ) = y (leavec,2 , enter2 ) = c , 

y(enter3,leaveb,3) = y(leaveb ,3,enter3) = b , 

and it is left undefined otherwise. 
Now, let p~ be the resulting expression after executing the enter0 -transition from p0 

(thus gaining control as "current state"), i.e., 

p~ = 1 · (leave0,1 .1 + leavel,1.1) ·Po . 

We define the extended regular expression that simulates the finite automaton in 

Figure 3.7 as the parallel composition of p~, p 1, P2> and p3, encapsulating the control 
actions enteri and leavek,i• i.e., 
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Note that the process expressions that are associated with each state are even 
TSP; -process expressions, i.e. common regular expressions. We have just added 
parallelism with communication and encapsulation to obtain the correspondence. 

We now present the technique illustrated in the preceding example in full 
generality. Let M = (S ,A, -+ ,s0 , i) be a finite automaton, let S = {s0 , .. . ,sn }, and let 
A = { a0 , . . . , am} be the set of actions occurring on transitions in M. We shall associate 
with M an extended regular expression PM that has one parallel component Pi for 
every state si in S. To allow a parallel component to gain and release control, we use 
a collection of control actions A c assumed to be disjoint from A, that is defined as 

Ac = { enteri I 0 :'S i :'S n} u { leavek,i I 0 :'S i :'S n, 0 :'S k :'S m } . 

Gaining and releasing control is modelled by the communication function y on AuAc 
satisfying: 

{
ak y(enteri,leavekJ ) = y(leavekJ• enterJ = fi 
unde ned 

if i = j; and 
otherwise. 

For the specification of the extended regular expressions P; we need one more 
definition: for 0 :'S i, j :'S n we denote by X;,j the set of indices of actions occurring as 
the label on a transition from s; to si, i.e., 

xi,j = { k I S; ...E.k..+ sj } . 

Now we can specify the extended regular expressions Pi (O :'S i :'S n) by 

P; = 1-(enteri. l · ( L:>k·l) · ( L LleavekJ· l [ + 1Js;1 ) ) • . 
k EX;,; l :'S j :'S n kEX;,i 

j ii 

By [ + lJs,l we mean that the summand + 1 is conditional; it is only included if si !. 
The empty summation denotes 0. (We let P; start with 1 to yield a finite automaton 
associated with PM which is isomorphic and not just bisimilar with M.) 

Note that the parallel component with process expression Pi has a unique 
transition to gain control, i.e. Pi enter;, p;, where P'. denotes: 

P'. =1 · ( L:ak.1)* ·( L LleavekJ ·l [+1]5,i ) ·Pi· 
k EX;,; O:'S j :'S n k EX;,j 

#i 

Assuming that s0 is the initial state, we now define PM by 

Clearly, the construction of PM works for every finite automaton M. The bijection 
defined by S; ....... aAc(pO II·· · llPi- l llP'. llPi+l II ··· llPn) is an isomorphism between M 
and the automaton associated with PM by the operational semantics (see Table 2.1 on 
page 15) . We shall refer to PM as the extended regular expression describing M. 

-33 -



3. FINITE-STATE SYSTEMS 

THEOREM 3.24. For every finite automaton M there exists a handshaking communi­

cation function y and extended regular expression PM such that the transition system 

associated with PM is isomorphic with M. D 

PROOF. The bijection defined by si >-+ oAc(p0 11 ··· iiPi-J lip; liPi+J 11 · · · iiPn) for all 
1 :'.S i :'.S ISI is an isomorphism from M to the automaton associated with PM by the 
operational semantics in TCP; . • 

3.4 Conclusions 

In this chapter we have investigated the classical correspondence results between the 
four ways to describe regular languages: NFAs, DFAs, regular grammars and regular 
expressions. These results can be found in any automata and formal language theory 
book [Sud88, Sip97, HMU06]; most results are up to isomorphism, but some are up 

to language equivalence. See Figure 3.8 for a schematic overview. 

NFAs regular 
Thm. 3.11 grammars 

I Thm.1 
3.6 

~ : 
: I 

I ~ 

DFAs regular 
Thm. 3.22 expressions 

FIGURE 3.8: Classical correspondence results from automata theory. 

When we considered these results from a process-theoretic perspective, we have 
seen that a finite automaton is a finite transition system. Up to bisimilarity the class 

of deterministic finite automata is smaller than the class of non-deterministic finite 
automata. 

We have seen how regular grammars can be given as linear specifications. This, 
however, only covers the definition of the right-linear grammars. We can define left­
linear grammars as linear specifications with postfixing if we replace the prefixing 
operations by postfix operations. However, we then get a different class up to 
branching bisimilarity. As it turns out, there is a full correspondence between finite 
automata and linear specifications up to branching bisimilarity. 

Regular expressions are closed TS P; -process expressions. However, only the 
(proper) subclass of well-behaved finite automata can be expressed by regular 
expressions up to branching bisimilarity. We have extended the syntax of the 
regular expressions with operators from process theory (parallel composition and 
encapsulation) to obtain extended regular expressions and we have shown that there 
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is a full correspondence with finite automata. Interestingly, the construction only 
needs communication on top of usual regular expressions to work. 

Figure 3.9 presents a schematic overview of the correspondence results from 
a process-theoretic point of view. Note that the correspondence between linear 
specifications and extended regular expressions is obtained indirectly via the finite 
automata. 

NFAs Thm. 3.13 linear 
specifications 

SOS -- -----

1+ 
: with I I 

I I 
~- .ing __ I I EJ I I ....... W I 

:. well-behaved ) Thm. 3.24 extended 
regular 

postfix-

---\\- SOS expressions 

~G07] regular 
SOS ----== expressions 

FIGURE 3.9: Correspondence results from a process-theoretic perspective. 

In the following chapters we often will see that the classical correspondence 
results cannot be obtained up to branching bisimilarity or that notions such as 
context-free or unrestricted grammars do not have a direct process-theoretic version. 
Instead of loosening restrictions on the syntax or relinquish our strong equivalences 
to try to reobtain (parts of) the results, we shall extend the syntax with operators 
that are typically from process theory, such as parallel composition, communication, 
encapsulation and abstraction. 
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Chapter 4 

Pushdown Systems 

In automata and formal language theory it is common practise to characterise 
languages by means of a finite-state automaton, representing some finite control, 
which is often augmented by some kind of memory. See for example [Sud88, Sip97, 
HMU06]. If this memory is absent, the finite-state automata describe the class of 
regular languages. In case we have a tape as memory, which in fact provides random 
access to its data, we obtain all recursively enumerable languages. In this chapter we 
consider finite-state automata augmented with a limited type of memory: a stack. The 
combination of a finite-state automaton and a stack is called a pushdown automaton. 

A classical result in automata and formal language theory is that for every context­
free grammar there is a pushdown automaton that describes the same language 
and vice versa. However, by using this equivalence the language-theoretic approach 
abstracts from moments of choice and is unsuitable if some form of interaction with 
the automaton may influence its behaviour. In this chapter we use a process-theoretic 
approach and give semantics to the pushdown automata by means of associated 
transition systems. Using the more fine-grained divergence-preserving branching 
bisimulation equivalence we shall revisit some results from automata theory, amongst 
which the classical result mentioned previously. 

In Section 4.1 we define the pushdown automaton and its associated pushdown 
transition system. We shall see that up to (divergence-preserving) branching bisim­
ilarity it matters how these notions are defined. The definition of the associated 
pushdown transition system is given for different termination conditions: termination 
on final state, on empty stack, and on both final state and empty stack. While these 
alternative definitions lead to pushdown transition systems that describe the same 
languages, this is not the case up to (divergence-preserving) branching bisimilarity. 
We shall compare the different classes of pushdown automata and show that, up 
to divergence-preserving branching bisimilarity, the class of pushdown transition 
systems with termination on both final state and empty stack is a proper subclass 
of the class with termination on final state, and that the class with termination on 
empty stack is in turn a proper subclass of the class with termination on both final 
state and empty stack. For the pushdown automata that have an initial state that 
is also final, the class with termination on empty stack coincides, up to divergence-
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branching bisimilarity, with the class with termination on both final state and empty 

stack. 
In Section 4.2 we investigate the classical correspondence result between push­

down automata and context-free grammars in a process-theoretic setting. Context­

free grammars are given as finite recursive TSPr-specifications, which we call 

sequential specifications. The choice of TSPr as an extension of BSPT is a natural one 

within our framework, as it adds sequential composition to our linear specifications. 

However, we will see in this chapter that having both sequential composition and the 

empty process in the specification language causes problems. We will show that only 

the class of pushdown automata with termination on (final state and) empty stack 

allows us to obtain a process-theoretic version of the classical correspondence result 

between pushdown automata and sequential specifications. 
It turns out that transition systems associated with sequential specifications can 

have an unbounded branching degree. We conjecture that in this case there is no 

correspondence, up to branching bisimilarity, with (associated transition systems of) 

pushdown automata. We shall therefore propose a restriction on the sequential spec­

ifications to get a correspondence with the pushdown automata. As a result, we will 

discover that these restricted sequential specifications have a correspondence with 

just a subclass of the pushdown automata, the so-called pop choice-free automata. 

We will henceforth show that for this subclass there is also a correspondence in the 

other direction, i.e. with the restricted sequential specifications. 

Next, we will investigate the decidability of bisimilarity on processes defined 

by sequential specifications. We obtain our result by extending earlier results for 

recursive BPA- and BPA0 -specifications, which are specifications in subtheories of 

TSPT. It is well-known that it is undecidable whether two context-free grammars 

generate the same language up to language equivalence. We prove that bisimilarity 

is decidable on the subclass of transition systems definable by the earlier mentioned 

restricted sequential specifications, a class that properly includes the BPA0 -definable 

transition systems. 
In Section 4.3 we define the pushdown automata terminating on (final state and) 

empty stack by giving a finite recursive TCPT-specification consisting of a linear 

specification representing the finite control and a specification of a stack process. 

The stack itself is defined by a (restricted) sequential specification and may therefore 

be considered as the canonical process for this class of specifications. We show 

that, when these specifications are put in parallel, the associated transition system 

is divergence-preserving branching bisimilar with the transition system associated 

with the pushdown automaton. This way we make the communication between the 

finite control and the stack within a pushdown automaton explicit. 

We cannot obtain the same result for pushdown automata terminating on final 

state using the solution above. We will show that the stack process mentioned 

previously cannot be reused in this setting if we want to have the result up to 

(divergence-preserving) branching bisimilarity. So, for this to work, we would need 

a stack process that can terminate regardless of its contents. We will therefore 

introduce a new stack process: the always-terminating stack. When we put this new 

stack process in parallel with the earlier specification of finite control, we can show 
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that the associated transition system is divergence-preserving branching bisimilar 
with the transition system associated with the pushdown automaton terminating on 
final state. 

This chapter is mainly based on the following publications: 
[BCLTlO] J. C. M. Baeten, P. J. L. Cuijpers, B. Luttik, and P. J. A. van Tilburg. "A 

Process-Theoretic Look at Automata". In: Proceedings of FSEN 2009. Ed. 
by F. Arbab and M. Sirjani. LNCS 5961. Springer, 2010, pp. 1-33. 

[BLTl la] J. C. M. Baeten, B. Luttik, and P. J. A. van Tilburg. "Computations and 
Interaction". In: Proceedings of ICDCIT 2011. Ed. by R. Natarajan and A. 
Ojo. LNCS 6536. Springer, 2011, pp. 35-54. 

Some material is also inspired on or adapted from the following lecture notes and 
publication: 
[Baell] J.C. M. Baeten. Models of Computation: Automata and Processes. Lecture 

notes 2011. 
[BCT08] J . C. M. Baeten, P. J . L. Cuijpers, and P. J. A. van Tilburg. "A Context-Free 

Process as a Pushdown Automaton". In: Proceedings of CONCUR 2008. 
Ed. by F. van Breugel and M. Chechik. LNCS 5201. Springer, 2008, 
pp. 98-113. 

4.1 Pushdown Automata 

As an intermediate notion between finite automata and Turing machines, the theory 
of automata and formal languages treats pushdown automata, which are finite 
automata extended with a stack as memory. Several definitions of the notion appear 
in the literature [Sud88, Sip97, HMU06], which are all equivalent in the sense that 
different kinds of pushdown automata still accept the same (class of) languages. 

Recall the definition of a finite set of actions A and a finite set of data elements 'D. 
We add to 'D the special symbol 1- to indicate that a stack is empty, assuming that 
1- <f. 'D ; we denote the set 'D u { 1-} of stack symbols by 'D_1_ . We denote sequences 
of data symbols (or strings) by 'D* and sequences of stack symbols by 'Dl ; we often 
use o and ( to range over 'D* or 'Dl and e to denote the empty string. 

DEFINITION 4.1. A pushdown automaton (PDA) M is defined as a six-tuple 
(S,A, 'D, ->, i, D where: 

1. S is a finite set of states; 
2. A a finite set of actions; 

3. 'D a finite set of data; 
4. -> ~ S x Ar x 'D .l x 'D* x S is an A r x 'D _1_ x 'D* -labelled transition relation on S, 
5. i ES is the initial state, and 
6. l ~ S is the set of final states. /:::,. 

If (s, a , d,o, t) E -> , we write s a[d/o J, t. The intuitive meaning of such a transition 
is that if the pushdown automaton M is in state s and data element d is on the top 
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of the stack, then it can pop d while performing the action a, pushing the string of 

data elements o on top of the stack and moving to state t. In the case that d = l_, the 

meaning of the transitions a[1-/oJ , t is an empty-test such that when the pushdown 

automaton M is in state s and the stack is empty, the action a can be performed, 

the string of data elements o is pushed onto the stack and the automaton moves to 

state t. Transitions of the form s -r[d/oJ, t and s -r[1-JoJ , s are silent/unobservable 

transitions of the pushdown automaton that just modify the stack contents. 

When considering a pushdown automaton as a language acceptor, it is generally 

assumed that it starts in its initial state with an empty stack. (Actually, the definition 

of a PDA in [HMU06, Section 6.1.2] starts in the initial state with a fresh special 

stack empty symbol Z0 on the stack which must be removed before terminating. As 

this removal action will always introduce a choice, by definition of this PDA it is not 

allowed to put the symbol Z0 back, it is undesirable from a process-theoretic point of 

view. Hence, we have deemed it necessary to introduce the empty-test transition.) A 

computation consists of repeatedly consuming input symbols (or just modifying stack 

contents without consuming input symbols). When it comes to determining whether 

or not to accept an input word there are two approaches: "acceptance by final state" 

(FS) and "acceptance by empty stack" (ES). The first approach accepts a word if the 

pushdown automaton can move to a configuration with a final state by consuming the 

word, ignoring the contents of the stack in this configuration. The second approach 

accepts the word if the pushdown automaton can move to a configuration with an 

empty stack, ignoring whether the state of this configuration is final or not. Both 

approaches are equally powerful from a language-theoretic point of view, but not 

from a process-theoretic point of view, as we shall see below. We shall also consider a 

third approach in which a configuration is terminating if it consists of a terminating 

state and an empty stack (FSES). We will see in Section 4.1.1 that, from a process­

theoretic point of view, the FS, FSES and ES approaches all lead to different notions 

of transition systems up to (divergence-preserving) branching bisimilarity. 

EXAMPLE 4.2. Assume that A= {a, b } and 'D = { 1 } . The state-transition diagram in 

Figure 4.1 specifies a pushdown automaton that first can perform a series of a-actions 

while stacking the data element 1 for each a-action in the states. Then, it can switch 

to state t by performing a b-action and removing a data element 1 from the stack 

followed by performing as many b-actions as there are data elements 1 on the stack. 

a[1- / l ] 
a[l/11] b[ l /e] 

0 hr1h1 0 
~ 

FIGURE 4.1: An example of a pushdown automaton. 

Depending on the adopted acceptance condition, the pushdown automaton in 

Figure 4.1 accepts either the language { anbm I n ~ m ~ O} (FS) or the language 

{anbn In~ O} (FSES or ES). 0 
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To formalise the intuitive behaviour of pushdown automata, we associate with 
every PDA M a transition system 'J(M). For the states of this associated transition 
system we use configurations defined as follows. 

DEFINITION 4.3. A configuration of a pushdown automaton M is a pair (s, o) 
consisting of a state s E 8, and stack contents o E 'D*. The left-most data element 
of o represents the top of the stack. tJ. 

The associated transition system semantics of PDAs defines an AT-labelled 
transition relation on configurations such that a PDA-transition s a [d/ 8 l, t corresponds 
with an a-labelled transition from a configuration consisting of the PDA-state s and 
stack contents d(. The transition leads to a configuration consisting of the PDA-state t 
and the stack contents o (, i.e. the original stack contents with the top element d 
replaced by o. A PDA-transition s a [1-/5J, t corresponds with an a-labelled transition 
from a configuration consisting of the PDA-state s and an empty stack, leading to a 
configuration of the PDA-state t and the stack contents o. 
DEFINITION 4.4. Let M = (8,A, 'D, ->, i, l) be a pushdown automaton. The transition 
system 'J(M) associated with M is defined as follows: 

1. the set of states of 'J(M) is the set of configurations 8 x 'D*; 
2. the transition relation of 'J(M) satisfies 

a) (s , dO ~ (t,oO iff s a [d/ 81, t for all s,t E 8, a EAT, d E 'D, o,( E 'D*, 
and 

b) (s, e) ~ (t, o) iff s a [1-/5J, t; 
3. the initial state of 'J(M) is (i, e ); and 
4. for the set of final states ! we consider three alternative termination condition: 

a) (s, O! in 'J(M) iff s ! (the FS interpretation), 
b) (s , O! in 'J(M) iff ( = e (the ES interpretation), and 
c) (s,O! in 'J(M) iff s! and ( = e (the FSES interpretation). 

A transition system is a pushdown transition system (according to the FS/ES/FSES 
interpretation) if it is associated with a PDA. 6 

EXAMPLE 4.5. Recall the example PDA in Figure 4.1. The transition system as­
sociated with this PDA (according to the ES or FSES interpretation) is shown in 
Figure 4.2. 0 

a 
- - -- - · 

b 

FIGURE 4.2: The transition system associated with the example PDA according 
to the (FS)ES interpretation. 
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This definition now gives us the notions of pushdown language and pushdown 

process (according to the FS/ FSES/ ES interpretation). 

DEFINITION 4.6. A language accepted by a pushdown transition system is called a 

pushdown language. 
A pushdown process (according to the FS/FSES/ES interpretation) is a divergence­

preserving branching bisimilarity class of labelled transition systems containing a 

pushdown transition system (according to the same interpretation). 6. 

Note that the pushdown languages coincide, up to language equivalence, with the 

context-free languages. 
It is technically convenient to assume that the transitions of a pushdown 

automaton are composed of two types that perform only a single operation on the 

stack: either a push or a pop. 

DEFINITION 4.7. Lets, t ES of some pushdown automaton M. A push transition is 

a transition of the form s a [_l/dJ, t or s a [d /edJ, t (d, e E '.D); a pop transition is a 

transition of the forms a[_l /eJ, t (the empty-test) ors~ t (d E '.D). 6. 

THEOREM 4.8. For every PDA M there exists a PDA M' that uses only push and pop 

transitions such that 'J(M) <-->~ 'J(M'). O 

PROOF. It is easy to see that only allowing push and pop transitions in the definition 

of pushdown automaton yields the same notion of pushdown transition system up to 

divergence-preserving branching bisimilarity: 

1. Eliminate a transition of the form s a[ _l/5 l, t, with o = dn · · · d1 (n ~ 2), by 

adding fresh states s2 , ... ,sn and replacing the transitions a [_l/5 l , t by transitions 

2. Eliminate a transition of the form s a[d/51, t, with o = dn · · · d1 (n ~ 1), by 

adding fresh states s1, .•• ,sn and replacing the transitions a[d / 5 l, t by transitions 

s ~ s1, s1 T[_l/diJ, s2 and s1 T[e/d, eJ , s2 for all e E '.D, and transitions 

Observe that we only get a finite number of additional inert -r-transitions in the 

associated transition system. • 

Curiously, the stack that is used by the pushdown automaton can be shown to be 

defined by a pushdown automaton itself. Given a finite set of data '.D, the stack has 

an input channel i over which it can receive elements of '.D and an output channel o 

over which it can send elements of '.D. If the stack is empty, the stack can send the 

data element J_ over channel o for the purpose of an empty-test. 

The stack is defined by a pushdown automaton with one state j (which is both 
initial and final) and transitions j o!_l[_l/eJ , j, j i?d[_l/ d], j, j i?d[e/deJ , j, and 
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, ' 
' \ \ 

I ,JA / '' + 
FIGURE 4.3: Stack over 'D = { 0, 1 }. 

j o!d [d/eJ , j for all d, e E 1J. The associated transition system according to the (FS)ES 
interpretation of the stack over 1J = { 0, 1} is presented in Figure 4.3. 

If we want to model the stack that always terminates, i.e. that terminates 
regardless of its contents, we can use the PDA specified above but then consider 
the associated transition system according to the FS interpretation. This transition 
system is isomorphic with the transition system in Figure 4.3 but each state is final. 

4.1.1 Termination Conditions 

In the introduction we have already mentioned that from a language-theoretic point 
of view the different approaches to termination of pushdown automata (FS, ES, FSES) 
are all equivalent, but not from a process-theoretic point of view. 

ES and FSES 

First, we argue that the pushdown transition systems according to the ES interpreta­
tion form a proper subclass, up to divergence-preserving branching bisimulation, of 
the pushdown transition systems according to the FSES interpretation. 

THEOREM 4.9. For each pushdown transition system according to the ES interpretation 
there is, up to divergence-preserving branching bisimilarity, a pushdown transition 
system according to the FSES interpretation. D 

PROOF. Let T be the transition system associated with a pushdown automaton M 
according to the ES interpretation. Let M' be the pushdown automaton obtained 
from M by declaring all states to be final. Then T is also the transition system 
associated with M' according to the FSES interpretation. • 

When a PDA has an initial state that is also final, we call it initially terminating. 
From a language-theoretic point of view this means that the PDA accepts the empty 
word (e-); it is said to have the empty word property. All pushdown transition 
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systems according to the ES interpretation can terminate in the initial state, since the 

pushdown automaton has an empty stack in the initial state by definition. Therefore, 

they are all initially terminating. This is not the case for pushdown transition 

systems according to the FSES interpretation, hence, this constitutes a bigger class 

of transition systems. 

EXAMPLE 4.10. Consider the pushdown automaton M in Figure 4.4, which is a 

modified version of the PDA in Figure 4.1 without an initial state that is also 

final. The initial state of the associated transition system 'J(M) according the FSES 

interpretation (see Figure 4.5) is not final. 

a [_l_/l] 
a[l/11] b[l /e] 

0 i,r1 1~1 0 
~ 

FIGURE 4.4: A pushdown automaton that is not initially terminating. 

a a 
----- · 

b 

FIGURE 4.5: The transition system associated with the PDA that is not initially 

terminating according to the FSES interpretation. 

The initial state of every pushdown transition system associated with a PDA 

according to the ES interpretation is always also a final state, because the stack of 

a PDA is empty in the initial state by definition. Therefore, there can be no pushdown 

transition system according to the ES interpretation that is branching bisimilar with 

the pushdown transition system in Figure 4.5. O 

For pushdown automata that are initially terminating, the class of pushdown 

transition systems according to the FSES interpretation is the same, up to divergence­

preserving branching bisimilarity, as the class according to the ES interpretation. 

Examples of such pushdown automata are the example PDA in Figure 4.1 and the 

stack PDA defined before. 
We can modify the initially-terminating pushdown automata in such a way that 

the associated transition system according to the FSES interpretation is branching 

bisimilar with the transition system associated with the modified PDA according to 

the ES interpretation. Intuitively; if we go from FSES to ES, the termination condition 

gets more liberal as we drop the final state requirement. Therefore, we have to ensure 

that termination on empty stack is still only possible in states that are branching 

bisimilar to the states originally marked as final. A way to do this is by controlling 

where the stack becomes empty. 
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EXAMPLE 4.11. Let us consider the example PDA in Figure 4.6 below and the 
modified PDA in Figure 4. 7. 

a [.l/ l] 
a[l / 11] b[l /e] b[l /e) 

FIGURE 4.6: An example of an initially-terminating pushdown automaton. 

By adding the fresh state i and transition i -r[.l/0 J, s we put an extra, fresh data 
element 0 on the stack, before the original initial states, so that the stack can only 
become empty when we want it to. We replace all transitions performing an empty 
test by transitions that perform a test on whether the top data element is 0, e.g. 
s a [0/ l 0 J, s. Finally, we add for final states s and u in the original PDA the fresh 
states s _J_ , u _j_ and four transitions: s -r[0 /eJ , s _j_ and u -r [0 /eJ, u _j_ to remove this marker 
when in the FSES case termination could occur, and SJ. -r[_l/0 J , sand u_j_ -r(_l/0 J , u to 
put the end-of-stack marker back. 

a[0/10 ] 
a[l / 11 ] b [l /e ) b (1 I" J 

-r [.l /0 ] 

FIGURE 4. 7: Modified pushdown automaton for FSES to ES. 

The associated transition systems with the original PDA and the modified PDA 
above are branching bisimilar. However, this modification introduces divergence, as 
it is possible to infinitely often push and pop the end-of-stack marker. A slightly more 
complicated modification that preserves divergence is shown in Figure 4.8. 

a [ l .i/ll J.l 
a[l / 11) b[ l /e) b [ l /e ) 

FIGURE 4.8: Modified pushdown automaton for FSES to ES preserving 
divergence. 
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For each original state we add a fresh state that encodes that the stack is empty 

(states sl. , tl. and ul. ). For each data element d we add a fresh data element dl. ; 

we use these fresh data elements to keep track of when the stack is about to become 

empty by ensuring that the last data element on the stack is marked. Now, we replace 

a push transition that performs an empty test by a transition that puts a marked data 

element on the stack. For example, we replace s a [J./l J , s by s l. a [J./l , J , s. For the 

other push transitions we add transitions that ensure the last data element on the 

stack stays marked. For example, for the transitions a[ l /l l], s we adds a[l , /l l , J , s. 

For each pop transition we add a transition that moves to "empty stack" counterpart 

of the destination state if a marked data element is popped. In the example these 

are the four transitions: s c[l,/0 J, tJ. , t b(l i/0 J, tJ. , t ~~ UJ., and u b[l, /<J, ul. . 

Note that the transitions that move to tl. put the dummy data element 0 on the stack, 

rather than letting it become empty. This is necessary because t is not a final state in 

the original PDA; only pop transitions to "stack empty" counterpart states for states 

that are final in the original PDA will let the stack really become empty. <) 

Not shown in the example above is that all newly introduced push transitions from 

a state sl. such that s ¥- l should remove the dummy data element 0. 

We now show that this modification works universally up to divergence-preserving 

branching bisimilarity for all PDAs that are initially terminating. 

THEOREM 4.12. For each pushdown transition system according to the FSES interpre­

tation associated with a PDA that is initially terminating there is, up to divergence­

preserving branching bisimilarity, a pushdown transition system according to the ES 

interpretation. O 

PROOF. Let M = (S,A, 'D, -+, j, l) be some pushdown automaton that is initially 

terminating. By Theorem 4.8, we can assume that M only has push and pop 

transitions. We shall modify M such that the transition system associated with the 

modified pushdown automaton according to the ES interpretation is divergence­

preserving branching bisimilar with the transition system associated with M according 

to the FSES interpretation. We define the modified pushdown automaton M ' = 

(S1,A,'D1
, -+

1
, i,0) as follows: 

1. S' is obtained from S by adding a "stack empty" state sl. for every states ES; 

2. 'D' is obtained from 'D by adding a marked data element d l. for each d E 'D and 

a fresh dummy data element 0; 

3. -+
1 is obtained from-+ by 

a) replacing all push transitions (s,a,..L,d,t) E-+ by either (s l. ,a,..L,dl., t) E 

-+
1 if s E !, or (sJ. ,a,0,d.t, t) E -+

1 ifs¥-!, 

b) adding for each push transition (s, a, d, ed, t) E -+ a push transition 

(s,a,dl. ,edl. ,t) E -+
1

, 
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c) replacing all pop transitions (s,a , 1- , £, t) E-+ by 

{

(s,a,0,0, t)E-:' ~fs\t!,t<f.!, 
(s , a , 0,e,t)E-+ 1fs<f.!,tE!, 
(s , a , 1-,0,t)E-+' ifsE!,t\t!, 

leaving the remaining pop transitions ifs E !, t E .J. untouched, 
d) adding for each pop transition (s,a,d, e,t) E-+ a pop transition either 

(s, a,dJ_ , £, t) E -+' if t E .J. or (s,a , dJ. ,0, t) E -+ ' if t <f. ,J.. 
We leave it to the reader to verify that the relation 

'.R = { ((s, e), (sJ. , E')) Is E .J.} u { ((s, e), (s_i , 0)) Is ES\ .J.} u 
{ ((s, 5d), (s , 5d_j_ )) Is E S, d E 'D, 5 E 'D* } 

is a divergence-preserving branching bisimulation between the transition associated 
system with M according to the FSES interpretation and the transition system 
associated with M' according to the ES interpretation. • 

If we combine the result above with the result of Theorem 4.9 we obtain as 
a corollary that for pushdown automata that are initially terminating, the class of 
pushdown transitions systems according to the FSES interpretation is the same, up 
to divergence-preserving branching bisimilarity, as the class according to the ES 
interpretation. 

FSES and FS 

We proceed to argue that the class of pushdown transition systems according to 
the FSES interpretation is a proper subclass, up to divergence-preserving branching 
bisimilarity, of the class of pushdown transition systems according to the FS 
interpretation. The classical proof (see, e.g., [HMU06, Theorems 6.9 and 6.11]) 
that a pushdown language according to the "acceptance by final state" approach is 
also a pushdown language according to the "acceptance by empty stack" approach 
employs -r-transitions in a way that is valid up to language equivalence, but not up 
to branching bisimilarity. For instance, the construction that modifies a pushdown 
automaton M into another pushdown automaton M' such that the language accepted 
by M by final state is accepted by M' by empty stack adds -r -transitions from every 
final state of M to a fresh state in M' in which the stack is emptied. The -r -transitions 
introduce, in M', a choice between the original outgoing transitions of the final state 
in Mand termination by going to the fresh state; this choice is not necessarily present 
in M, and therefore the transition systems associated with M and M' may not be 
branching bisimilar. 

If we want to go from FSES to FS, we drop the empty stack requirement. To 
still get the same behaviour, intuitively, we would have to add new final states that 
can only be entered from the original final states by using the empty test. This 
construction modifies the PDA in a similar way to the construction presented in 
Example 4.11. 
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EXAMPLE 4.13. Let us consider the example PDA in Figure 4.6 and the modified PDA 

in Figure 4.9. We add for each final state in the original PDA the fresh states SJ. , ul. 

and four empty-test transitions s -rfl./<l, SJ. and u -r[J./el , ul. to detect when in the 

FSES case termination could occur, and s l. -rfJ./eJ, s and u J. -r[J./<l , u to be able to 

return. 

a[ ..L/ l] 
a[l / 11 ] b[l /e] b[l /e] 

FIGURE 4.9: Modified pushdown automaton for FSES to FS. 

This idea leads to a transformation that is correct up to branching bisimilarity, but 

does not preserve divergence, as it is possible to infinitely often perform empty-test 

transitions. We present a different approach that preserves divergence in Figure 4.10. 

This modification is inspired on the modification in Example 4.11 in the sense that it 

keeps track of when the stack is empty using extra states and marked data elements. 

a[ l _1_/ ll _1_ ] 
a[l / 11] b[l /e] b[l /e] 

FIGURE 4.10: Modified pushdown automaton for FSES to FS preserving 

divergence. 

The modification is almost the same as from FSES to ES, except that we do not 

use the dummy data element 0 (cf. Figure 4.8) . Instead, we only mark the "stack 

empty'' counterpart states final if they correspond to final states in the original PDA. 

In this example these are s l. and u J.. 0 

We now show that this modification works universally for all PDAs up to 

divergence-preserving branching bisimilarity. 

THEOREM 4.14. For each pushdown transition system according to the FSES interpreta­

tion there is, up to divergence-preserving branching bisimilarity, a pushdown transition 

system according to the FS interpretation. O 
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PROOF. Let M = (S,A, '.D, ---+, i, l) be some pushdown automaton. By Theorem 4.8 
we can assume that M only has push and pop transitions. We shall modify M 
such that the transition system associated with the modified pushdown automaton 
according to the FS interpretation is divergence-preserving branching bisimilar to the 
transition system associated with M according to the FSES interpretation. We define 
the modified pushdown automaton M' = (S' ,A, '.D', -+ 1

, l , ! ' )as follows : 
1. S' is obtained from S by adding a fresh state s_j_ for every states E S; 
2. '.D' is obtained from '.D by adding a marked data element d _j_ for each d E '.D ; 
3. -+

1 is obtained from---+ by 

a) replacing all push transitions (s ,a,.1,d,t) E-+ by (s_J_ , a , .1, d_J_ ,t) E ---+ ', 
b) adding for each push transition (s, a, d, ed , t) E ---+ a push transition 

(s ,a,d_J_ ,ed_J_ ,t) E ---+ ' , 
c) adding for each pop transition (s, a,d, e, t) E ---+ a pop transition 

(s,a,d _J_ , £,t_J_ ) E -+
1

; 

4. ! ' is the set {s_j_ Is E ! } of all the newly added states that are counterparts of 
final states in M. 

We leave it to the reader to verify that the relation 

'.R = { ((s , £ ) , (s J_ , £ )) Is ES } u {((s , o d) , (s , o d l_ )) Is E S, d E 'D, o E 'D* } 

is a divergence-preserving branching bisimulation between the transition system 
associated with M according to the FSES interpretation and the transition system 
associated with M' according to the FS interpretation. • 

Consequently, the class of pushdown transition systems according to the FSES 
interpretation is at least, up to divergence-preserving branching bisimilarity, a 
subclass of the class according to the FS interpretation. We can show that it is even a 
proper subclass. 

EXAMPLE 4.15. Consider the pushdown automaton shown in Figure 4.11. 

a [J./ l ] 
a [l / 11 ] 

% 
b[ l /c] 

FIGURE 4.11: The counter pushdown automaton. 

The trans1t10n system associated with it according to the FS interpretation is 
depicted in Figure 4.12; it has infinitely many terminating configurations. Moreover, 
no pair of these configurations is branching bisimilar, which we can see by noting that 
the nth state from the left can perform at most n - 1 times a b-transition before it has 
to perform an a-transition again. 
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a a a a 
... - ---- ..... 

b 

FIGURE 4.12: The transition system associated with PDA of Figure 4.11 

according to the FS interpretation. 

In contrast with this, note that the transition system associated with the pushdown 
automaton according to the FSES interpretation, as shown in Figure 4.13, necessarily 
has finitely many terminating configurations, for the pushdown automaton has only 

finitely many states and the stack is required to be empty. 

a a a a 
... --- - - ..... 

b b b b 

FIGURE 4.13: The transition system associated with automaton of Figure 4.11 

according to the FSES interpretation. 

This is a property of all pushdown transition systems according to the FSES 
interpretation. Therefore, there can be no pushdown transition system according to 
the FSES interpretation that is branching bisimilar to the pushdown transition system 

in Figure 4.12. O 

The following mutual relations between the different classes of pushdown 
transition systems up to divergence-preserving branching bisimilarity have been 
established. (See also Figure 4.14 for a schematic overview. Note that in the diagram 
FSESit stands for the class of transition systems according to the FSES interpretation 
associated with initially-terminating PDAs.) 

FS 

FSES 

I ~= FSESil) I 
1-=-b, 1 -=-~ 

FSES ~ FS 
FS ~ FSES 

ES ~ FSES 
FSES ~ES 

FSESi' ~ES 

Theorem 4.14 
Example 4.15 

Theorem 4.9 
Example 4.10 

Theorem 4.12 

FIGURE 4.14: Overview of the different classes of pushdown transition 

systems. 

COROLLARY 4.16. The class of pushdown transitwn systems according to the ES 

interpretation is a proper subclass, up to divergence-preserving branching bisimilarity, 

of the class of pushdown transition systems according to the FSES interpretation. 
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The class of pushdown transition systems according to the FSES interpretation is 
a proper subclass, up to divergence-preserving branching bisimilarity, of the class of 
pushdown transition systems according to the FS interpretation. D 

Because the difference between the pushdown transition systems according to the 
ES and FSES interpretations is only based on whether the associated PDA is initially 
terminating or not, we will only consider the latter class from here on. 

4 .2 Sequential Specifications 

In the previous chapter we have investigated the link between linear specifications 
and finite automata. In this section we will introduce the sequential specifications 
as the process-theoretic counter part of context-free grammars. We then consider a 
process-theoretic version of the standard result in the theory of automata and formal 
languages [Sud88, Sip97, HMU06] stating that the class of languages accepted by 
pushdown automata coincides with the class of languages generated by context­
free grammars. This is done by comparing the pushdown transitions systems with 
the transition systems associated with sequential specifications up to (divergence­
preserving) branching bisimilarity. We will first show that it is impossible to obtain 
this correspondence with the class of pushdown transition systems according to 
the FS interpretation. Then, we will consider the correspondence for pushdown 
transition systems according to the FSES interpretation and see that we still have to 
apply restrictions to both the pushdown automata and sequential specifications if we 
want to obtain the correspondence. Finally, we look into the decidability of whether 
two sequential specifications are equal. It is well-known from automata and formal 
language theory that it is undecidable whether two context-free grammars generate 
the same language. We will extend earlier work [BBK93, Bos97, SrbOl] by showing 
that it is decidable whether two restricted sequential specifications are bisimilar. 

Context-free Grammars 

As the process-theoretic counterparts of context-free grammars we shall consider 
recursive specifications in the subtheory TSP.,. (Theory of Sequential Processes) of 
TCP,., which is obtained from BSP.,. by adding sequential composition_· _. Note that 
TSP.,. can also be seen as the process theory BPA extended with prefixing, 0 and 1 
which also allows for -r-transitions. Processes definable in BPA are often referred 
to as "context-free processes." The motivation in the literature for this terminology 
seems to be twofold. On the one hand, it is easy to see that the language associated 
with a process definable in normed BPA is context-free. On the other hand, context­
free grammars in Greibach normal form can be regarded as a BPA-specification by 

1. regarding non-terminals as recursion names, 

2. regarding a right-hand side a' of a production N----+ a' as the sequential 
composition of the action a and the sequence of non-terminals ', and 
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3. combining the right-hand sides of all productions N------> a 1 ~ 1 I · · · I an~n for a 
non-terminal N with non-deterministic choice to constitute a single right-hand 
side a 1 ~ 1 + · · · + an~ n defining the recursion name N. 

The resulting recursive specification is guarded and generates a labelled transition 
system with the same language as the original context-free grammar. 

It is well-known from the theory of automata and formal languages (see, e.g. , 
[Sud88, Theorem 5.6.3]) that a context-free grammar can be transformed into 
Greibach normal form, provided that the grammar does not include so-called 
useless non-terminals (i.e. , non-terminals for which there is no production) and A.­

productions (or €-productions) . The first restriction is harmless from a language­
theoretic point, for there is a language-preserving transformation that eliminates 
useless non-terminals from a context-free grammar. It is, however, unfortunate from 
a process-theoretic point of view, for, intuitively, a non-terminal without productions 
corresponds with a deadlocked process. The second restriction is inconvenient even 
from a language-theoretic point of view, for it excludes all languages with the empty 
word property. 

A thorough investigation of the process theory TSPT reinforces the connection 
between the theory of automata and formal languages on the one hand, and process 
theory on the other hand. Firstly, it allows a translation of all context-free grammars 
directly into a finite recursive TSPT-specification: if there is a A.-production (or €­

production) for N, then the right-hand side of the defining equation for N gets 
a summand 1, and if the non-terminal N is useless, then it is defined by the 

recursion equation N ~ 0. Secondly, is possible to define, up to (divergence­
preserving) branching bisimilarity, every non-deterministic finite automaton with a 
finite (guarded) recursive TSPT-specification, while it is not possible to define non­
deterministic finite automata with intermediate accepting states with a BPA- or 
BPA0 -specification. 

DEFINITION 4.17. A sequential specification over some finite set of names N is a finite, 
-r-guarded recursive TSPT-specification, i.e. a recursive specification over Nin which 
only the constructions 0, 1, N (NE N), a ._ (a EAT),_·_ and_+_ are used to build 
sequential process expressions /'J. 

EXAMPLE 4.18. The process expression N defined by the sequential specification 

N ~ l+a.N·b.1 

specifies the pushdown transition system according to the FSES interpretation in 
Figure 4.13, that is associated with the pushdown automaton in Figure 4.11. O 

Similarly to context-free grammars, our sequential specifications can be brought 
into Greibach normal form as well. We can define a normal form for sequential 
specifications if we instantiate Definition 2.19 (on page 19) with the sequence of 
names interpreted as a sequential composition of names. 
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DEFINITION 4.19. A sequential specification E is in sequential normal form if each 
defining equation of a name NE N is of the following form: 

def ~ ( N = L.J a;.~ ; + 1) . 
iEJN 

In this form, every right-hand side of every defining equation consists of a number 
of summands, indexed by a finite set 'JN (the empty sum is O) , each of which is 1, or 
of the form a;.~; with a; E Ar and ~; a sequential composition of names; the empty 
sequential composition is denoted by 1. !::::,. 

It is well-known that all sequential specifications can be brought in sequential 
normal form. 

PROPOSITION 4.20. For each sequential specification E and sequential process expres­
sion p there exists a sequential specification in sequential normal form E' such that 
'JE' (p) +-+~ 'JE(p ). D 

If the sequences have a length of at most two, we say that the sequential 
specification is in restricted normal form. A proof of the following proposition follows 
the same lines of the proof of [BBK93, Proposition 4.3]. 

PROPOSITION 4.21. For each sequential specification E and sequential process expres­
sion p there exists a restricted sequential specification in sequential normal form E' such 
that 'JE, (p) +-+~ 'JE(p ). D 

We can associate transition systems with sequential specifications according to the 
operational rules in Table 2.1 (on page 15). This also gives us the notion of sequential 
process. 

DEFINITION 4.22. A sequential process is a divergence-preserving branching bisimi­
larity class of labelled transition systems containing a transition system associated 
with a sequential specification and sequential process expression. !::::,. 

4.2.1 Correspondence 

Now that we have defined sequential specifications as our process-theoretic coun­
terparts of context-free grammars, we can investigate their relation with pushdown 
automata. That the notion of sequential specification still naturally corresponds with 
the notion of context-free grammar is confirmed by the following theorem that states 
the correspondence up to language equivalence. For the proof we refer to [HMU06, 
Section 6.3]. 

THEOREM 4.23. For every pushdown automaton M there exists a sequential specifica­
tion E, with initial name I, such that 'J(M) R;; 'JE(I) according to the FS, ES or FSES 
interpretation, and, vice versa, for every sequential specification E, with initial name I, 
there exists a pushdown automaton M such that 'JE(I) R;; 'J(M) according to the FS, ES 
or FSES interpretation. D 
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We will now investigate the same result up to divergence-preserving branching 
bisimilarity. That is, we will compare pushdown transitions systems, according 
to the FS and FSES interpretations, with transition systems associated with the 
sequential specifications, given by the SOS rules in Table 2.1 (on page 15). After 
some definitions we will investigate the correspondence in both directions, first for 
the FS interpretation and then the FSES interpretation. 

Let E be a sequential specification and I be its initial name. We say that E is 
simulated by some PDA M (according to the FS/ FSES interpretation), if we have that 

'J(M) <-->~ 'JE(I). Vice versa, a PDA M (according to the FS/ FSES interpretation) is said 
to be defined by a sequential specification E, with initial name I , if 'JE(I) <-->~ 'J(M). 

If we know that there is such a sequential specification for PDA M we say that M is 
definable by a sequential specification. 

Let us first consider a prominent PDA or pushdown transition system that can 
be defined by a sequential specification. Recall the pushdown transition system 
according to the (FS)ES interpretation of a stack shown in Figure 4.3. 

The following infinite recursive specification E;' specifies the behaviour of the 

process Sc; , modelling a stack with as contents the sequence of data elements E; 

that receives input over channel i, i.e. when data is pushed, and sends output over 
channel o, i.e. when data is popped. For the empty stack, we have: 

Se~ 1 + oLLSe + L i?d .Sd, 
d E'D 

and for every non-empty string dE; (d E 'D, E; E 'D*): 

S ~ Id 5 "" .? 5 d l; - O · • <; + L..J l. e · ed<; • 
eE'D 

However, we would like our stack to be defined by a finite version of this specification 
to obtain a sequential specification. 

DEFINITION 4.24. The following sequential specification defines a stack: 

S ~ 1 + oLLS + L i?d.S,r · o!d.S, 
d E'D 

S,r ~ 1 + L i?d.S,r · o!d.S,r ; 
dE'D 

we refer to this specification of a stack over 'D as Es . Note that the associated 
transition system is, up to isomorphism, the same as the pushdown transition system 
shown in Figure 4.3. /::::,. 

Note that only the stack PDA according to the FSES interpretation is defined by 
the sequential specification above. If we take the FS interpretation, we get the stack 
that can always terminate. We shall see later that in this case the stack PDA is not 
definable by a sequential specification. 
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A state of the stack can be characterised by a sequential composition, for example: 
S1- · o!dn-Sl- · ... · o!d1 .S. An obvious modification to make Es always terminating would 
be to ensure that every component of the sequential composition has a 1-summand 
so that termination is always possible. 

DEFINITION 4.25. The sequential specification Es1 of the forgetful stack over 'D is 
defined as follows: 

sf~ 1 + oLLsf + L i?d .s{. (o!d.1+1). sf, 
dE'D 

Sf ~ 1 ""' "?d Sf · ( Id 1 1) ·Sf . )'_ - + 6 l. . )'_ 0 . . + )'_ ' 
dE'D 

see Figure 4.15 for the, rather contrived, associated transition system. Every node 
depicted has infinitely many incoming arrows. The dotted arrows only denote some 
of the outgoing arrows from nodes of level 4. !:::. 
Although every state is a final state, we have introduced unwanted behaviour by 
adding the 1-summands. We can "forget" items that are on the stack by popping 
items that are not the top element. Also the empty-test has lost its meaning as it is 
always enabled. 
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FIGURE 4.15: Forgetful stack over 'D = { 0, 1 }. 
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Pushdown transition systems according to the FS interpretation 
We will now show that, in general, pushdown transition systems according to the 
FS interpretation cannot be defined by sequential specifications up to (divergence­
preserving) branching bisimilarity. 

THEOREM 4.26. There exists a pushdown transition system according to the FS interpre­
tation such that there is no sequential specification with an associated transition system 
that is (divergence-preserving) branching bisimilar to it. 0 
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PROOF. We prove by contradiction that the counter pushdown automaton (see 

Figure 4.11) according to the FS interpretation (see Figure 4.12) is not definable 

by a sequential specification. Let us first assume that there exists such a sequential 
specification E. Then, by Proposition 4.20, we can assume that E is in sequential 
normal form. From the definition of GNF (see Definition 2.19 on page 19) it 

follows that every state of the transition system associated with E is denoted by a 
sequential composition of its names. Since the associated transition system should be 
(divergence-preserving) branching bisimilar with the transition system in Figure 4.12, 
we now know two things about the names in E: 

1. without loss of generality we can assume that all reachable names have a 1-

summand in their defining equation, and 

2. each name has a bounded b-norm, i.e. a maximal number of b-transitions that 
can be performed from the state associated with the name without performing 
any a-transitions. 

Let n be the maximal b-norm of all names in E. Now, let s be a state that 

has a b-norm that is larger than n and let .; be the sequential composition of 
names that belongs to the (divergence-preserving) branching bisimilar state in the 

associated transition system of E. Because the b-norm is larger than n, the sequence.; 
must contain at least two names that can perform a b-transition, for example 
X ,Y in .;oX.;1y.;2 . However, because all names have a 1-summand, we have that 

.;oX.;1 Y.;2 ___l_, .;1Y.;2 and .;oX.;1¥.;2 ___l_, .;2 , thus leading to two non-bisimilar states. 
This is not possible in the transition system of the counter PDA. Hence, a sequential 

specification does not exist. • 

For the remainder of this section, we shall focus on the FSES interpretation. In 
Section 4.3 we will come back to the FS interpretation. 

Pushdown transition systems according to the FSES interpretation 

We shall see below that the classical correspondence result with language equivalence 
replaced by branching bisimilarity still does not hold if we restrict ourselves to 
the FSES interpretation. In fact, we shall see that there are pushdown transition 
systems that are not (divergence-preserving) branching bisimilar with the transition 
system associated with a sequential specification, and that there are also sequential 
specifications that are not (divergence-preserving) branching bisimilar to a pushdown 
transition system. We shall first present a restriction on sequential specifications and 
relate them with a subclass of the pushdown automata and then given this restricted 
class of pushdown automata achieve the desired equivalence: we shall prove that 

the transparency-restricted sequential specifications correspond with the so-called pop 

choice-free pushdown automata. 
On the side of sequential specifications, restricting to the sequential normal form is 

not sufficient to get the desired correspondence between transition systems associated 

with sequential specifications and pushdown transition systems. 
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EXAMPLE 4.27. Consider the following sequential specification, which is in sequen­
tial normal form: 

X ~ aX · Y+b . I , 

Y ~ l+c.l. 

The transition system associated with X, which is depicted in Figure 4.16, has 
unbounded branching. 0 

c 

a --- · 

FIGURE 4.16: A transition system with unbounded branching. 

Note that if i-::/= j , then y i and y j are not bisimilar, since each state yi admits up 
to i consecutive c-transitions. Hence, there does not exist a bound on the branching 
degree of process expressions reachable from X: each yi (i E N) is reachable and has 
a branching degree of i . Note how, intuitively, execution of the c-transition from y i 
to y i "skips" the behaviour of all intermediate y k (j < k < i) . 

A name N in a recursive specification is called transparent if its defining 
equation has a 1-summand; otherwise it is called opaque. Recall that we had a 
similar unbounded branching problem with the specification of the forgetful stack 
(see Definition 4.25) where also all elements of the sequential specification are 
transparent. 

In [BCLTlO], we have conjectured that a pushdown transition system cannot have 
unbounded branching. If we desire a correspondence between sequential specifica­
tions and pushdown automata, we shall have to exclude sequential specifications 
with associated transition systems that have unbounded branching. One way to 
achieve this is to require that transparent names may only occur as the last element 
of reachable sequential compositions of names. 

DEFINITION 4.28. Let E be a sequential specification in sequential normal form. 
We call such a specification transparency-restricted if for all (generalised) sequential 
compositions of names ,;- reachable from a name in E it holds that all but the last 
name in ,;- is opaque. !:::,. 

While transparency-restrictedness might seem quite a severe restriction on se­
quential specifications, note that it still allows us to specify useful processes such as 
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the stack over 'D defined in Definition 4.24. While not yet transparency-restricted, 

it can be defined with a transparency-restricted recursive specification by bringing it 

in sequential normal form: it suffices to add, for all d E 'D, a name Td to replace 

51- · o!d.l. 

DEFINITION 4.29. Thus we redefine the the stack over 'D by the following trans­

parency-restricted sequential specification: 

S ~ I+ o!LS + L i?d.Td · S , 
dE'D 

T ~ Id 1 + '°' ·7 T · T d- 0. · L.,il.e . e d · 

eE'D 

It can easily be seen that the trans1t1on system associated with a name in a 

transparency-restricted specification has bounded branching: the branching degree 

of a state denoted by a reachable sequential composition of names is equal to the 

branching degree of its first name, and the branching degree of a name is bounded 

by the number of summands of the right-hand side of its defining equation. 

We are now in a position to establish a process-theoretic counterpart of the 

correspondence between pushdown automata and context-free grammars. First, we 

consider the direction from transparency-restricted sequential specification to push­

down automaton. For each specification we can construct a pushdown automaton 

that simulates it. 

EXAMPLE 4.30. Let E be the following sequential specification: 

X~aX·Y+b.Y+c. 1 , 

Y ~ d.l. 

This specification is in restricted sequential normal form and transparency-restricted 

as both X and Y are opaque. Figure 4.17 depicts a pushdown automaton with only 

push and pop transitions that simulates E if we take X as its initial name. 

a [1- / Y] 
a[Y/YY] 

FIGURE 4.17: A pushdown automaton simulating sequential specification E. 

We have a state for each name in the specification and two extra states: 1 to go to 

when the stack is empty, and Int as an intermediate state to ensure that we only have 
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push- and pop transitions. (The reason for this will become apparent later.) For each 
summand of a name in the specification we have a corresponding PDA transition from 
the state corresponding to the name. Therefore, if we are in a state corresponding 
with a name, we are simulating the behaviour of that name. For example, for X we 
have the summands aX · Y, b.Y, and c. l. For the summand aX · Y we add transitions 
X a [l_/YJ , X and X a [Y / YYJ , X, because if we perform an a-transition from X, we end up 
in X again with an extra Y on the stack. For the summand b. Y we add the transitions 
X b[l_/YJ, Int, X b[Y/ YYJ, Int, and Int ~ Y. Since the b-transition requires no stack 
manipulation, we actually just need to go to Y, and this would result in neither a push­
or pop transition, we go through an intermediate state. Finally, for the summand c .1 
we add the transitions X ~ 1 and X ~ Y. If the c-transition is executed, we 
are done with simulating X. We pop from the stack to see what is next and move to 
the corresponding state. If the stack is empty, we are done and we move to state 1, 
where we can terminate. <> 

In the example we used the knowledge that only the name Y will ever be stacked. 
For clarity, all transitions that dealt with the possibility that the name X could be 
popped from the stack have been omitted. We can generalise the example above to a 
more formal construction and obtain the following result. 

THEOREM 4.31. For every transparency-restricted sequential specification E, with initial 
name I, there exists a pushdown automaton M such that 'J(M) ~: 'Ie(I). D 

PROOF. Let E be a transparency-restricted sequential specification over a finite set 
of names N, and let I be an initial name of E. We define a pushdown automaton 
M = (S,A, 'D, ->, j, !) as follows: 

1. S consists of all names in N, the symbol 1, and an extra intermediate state Int; 
2. A consists of all the actions occurring in E; 

3. 'D consists of the names occurring in E; 

4. -> is defined as follows: for all a EA 
a) if the right-hand side of the defining equation for a name N has a summand 

a.1, then-> has transitions N a [l_/eJ, 1 and N -E~ N' (N' EN), 
b) if the right-hand side of the defining equation for a name N has a summand 

a.N', then there are transitions N a[d /N' dJ, lnt (d E 'D), N a[ l_/N' J, lnt and 
Int-~N', 

c) if the right-hand side of the defining equation for a name N has a summand 
a.N' ·N", then there are transitions N a [d /N" dJ, N' (d E 'D); 

5. j is the initial name I; 
6. ! consists of 1 and all names with a 1-summand . 
Note that the transitions in Mare either a pop or a push transition, and that the -r­

transitions introduced in the transition system associated with M are inert. We leave 
it to the reader to verify that the relation 

'.R = { (NE;,(N,E;)),(NE;,(Int,NE;)) IN E N,E; EN*} U { (1,(1,t:))} 
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is a divergence-preserving branching bisimulation between the transition system 

associated with the sequential specification E for the initial name I and the transition 

system associated with M according to the FSES interpretation. • 

Note that in the construction in the example and proof above we have that, 

when some name N is popped, the PDA always ends up in the state labelled N. A 

more general version of this property turns out to be vital if we want to obtain a 

correspondence in the other direction. 

a(_l_ / l] 

a[l/11] c[1-/e] 

~ 
b[l /e] b[l /e] 

FIGURE 4.18: A pushdown automaton that is not pop choice-free. 

Consider the pushdown automaton in Figure 4.18; the associated transltlon 

system is shown in Figure 4.19. In [Mol96], Moller proved that this transition system 

cannot be defined with a recursive BPA-specification. His proof can be modified to 

show that the transition system is not definable with a sequential specification either. 

a a a a 

b b b b 

c 

b b b b 

FIGURE 4.19: The transition system associated with the PDA of Figure 4.18. 

Note that a push of a data element 1 in the initial state of the pushdown 

automaton in Figure 4.18 can be popped again in the initial state or in the final state: 

the choice of where the pop will take place cannot be made at the time of the push. In 

other words, in the pushdown automaton in Figure 4.18 pop transitions may induce 

a choice in the associated transition system; we refer to such choice through a pop 

transition as a pop choice. We shall prove below that by disallowing pop choices we 

define a class of pushdown processes that are definable with sequential specifications. 

DEFINITION 4.32. Let M be a pushdown automaton that uses only push and pop 

transitions. Ad-pop transition is a transitions~ t, which pops a data element d. 

We say M is pop choice-free iff whenever there are two d-pop transitions s ~ t 

and s' ~ t', then t = t '. A pushdown transition system is pop choice-free if is 

associated with a pop choice-free pushdown automaton. !:::,, 

We have not been able to establish that our result is optimal, i.e. that pop choice­

freeness is a necessary condition to be able to define it by a sequential specification. 
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CONJECTURE 4.33. For each pushdown automaton M there exists a transparency­
restricted sequential specification E, with initial name I, such that TE(!) +->~ T(M) if, 
and only if, M is pop choice-free. D 

All pushdown automata that can be constructed to simulate a sequential specifica­
tion according to the proof of Theorem 4.35 are pop choice-free. Now, if we maintain 
the pop choice-free restriction for the other direction, we get the full correspondence. 

EXAMPLE 4.34. Let us consider the example pushdown automaton shown in Fig­
ure 4.1 (on page 40). This pushdown automaton is pop choice-free, for both 1-pop 
transitions lead to the same state t. 

Now, consider the following sequential specification that defines the PDA: 

def 
Ns11 = b.l + a.Nsu · Ne1e , 

def 
Nw = b.l ; 

the initial name of this specification is Nw The associated transition system has been 
depicted in Figure 4.20. 

a a a a N, lt NIE N, Jc Nll, N,, N, 1t Nc 1tNt1 ,N,, ----- · 

b 

b b b 
N, ltNt! ,N" -------

FIGURE 4.20: The transition system associated with sequential specification 
defining the PDA from Figure 4.1. 

The names NSE and Ne , are introduced to encode that we are in state s and t 
respectively and that the stack is empty. Both names have a 1-summand because 
both states are also final states. 

Since we know that the PDA is pop choice-free, we can determine for each data 
element d E '.D the state we are going to end up in if we pop that data element. 
In this case there is only the data element 1; after a 1-pop transition we end up in 
state t. So, we also introduce the names N5Jt and Nelt as both states s and t have a 
1-pop transition tot. Intuitively, the names encode in which state we are, that a data 
element 1 is stacked and what state we end up in once it is popped. 

We have added summands to the defining equations for each name, given that 
the PDA only has push and pop transitions. For name NSf this is the empty-test 
(push) transition s a [J./ l J , t for which we have added the summand a .N51 e ·Ne,. This 
summand ensures that after an a-transition we are still in state s, stack the data 
element 1 and once this is popped we end up in t (and by then the stack is empty) . 
For name N511 we add a similar summand for the pop transitions a [l / l lJ, s. Finally, 
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we add the summand b.l to the defining equation of the names N5 11 and N1 Jt because 

we have the following push transitions: s ___tl!Ld_. t and s ___tl!Ld_. t . After a b-transition, 

which happens when data element 1 is popped, we are done with the name and we 
move to the next name in the sequential composition. 

Note that only the names Nse and N16 have 1-summands and that they only occur 

at the end of the sequential composition. Hence, our sequential specification is 

transparency-restricted. 
We can reduce this specification by removing occurrences of N16 (for the right­

hand side of the defining equation of this name is just 1) and substituting occurrences 

of Nw by b .1. We get 

def 
Nse = 1 + a.N5 1t , 

def 
N5 1t = b . 1 + a .N5 1t · b .1 

Now, we see that N5 1t = (1 + a.N5 11 ) ·b. l = Nse ·b. l and therefore we have that 

N56 = 1 + a .N56 ·b. l which is, up to renaming, equal to the specification we gave 

~~- 0 

We can generalise this example to a more formal construction and obtain the 

following result. 

THEOREM 4.35. For each pop choice-free pushdown automaton M there exists a trans­

parency-restricted sequential specification E, with initial name I, such that 'JE(I) +---+~ 

'J(M). D 

PROO F. This proof is an adaptation of the classical proof (see for example [HMU06, 

Theorem 6.14]) that associates a context-free grammar with a given pushdown 

automaton. Let M = (S,A, '.D, --+, j, !) be a pop choice-free pushdown automaton. 
By Theorem 4.8 we can ensure that M only has push and pop transitions. We define a 

transparency-restricted specification E with for every states ES a name Nse with the 
following defining equation: 

Nse ~ La.Ntdw· Nwe [+l] s! • 
(s,a ,1-,d , t)E~ 

d-pop tow 

and for every states a name Nsdt • if M has transitions that pop data element d leading 

to the state t, with the following defining equation: 

def "'"""' "'"""' Nsdt = L.Ja.Nuew ·Nwdt + L...Ja.l. 
(s,a ,d ,e d ,u)E~ (s,a ,d , e,t)E~ 

e-pop to w 

Recall that the state w is each time uniquely given because the PDA M is pop choice­

free. It is easy to see that the resulting specification is transparency-restricted. 
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Assuming that that each d;-pop leads to states; (1 ::; i ::; n), we leave it to the reader 
to verify that the relation 

'.R = { ((s,c),N" ) Is ES} u 

{ ((s, di . .. dn),Nsd, s, · ... · Ns._,dnsn · N5• 8 ) IS, ES, di,. .. , dn E 'D} 

is a divergence-preserving branching bisimulation and hence 'JE(Nr 8 )+->~ 'J(M). • 

Thus, we have established a correspondence between a pop choice-free pushdown 
automaton on the one hand, and transparency-restricted sequential specification on 
the other hand. We thereby cast the classical result of the equivalence of pushdown 
automata and context-free grammars in terms of transition systems and bisimulation. 

COROLLARY 4.36. For every pop choice-free pushdown automata M there exists a 
guarded transparency-restricted sequential specification E, with initial name I , such that 
'J(M) +--->~ 'JE(I), and vice versa. D 

PROOF. The result follows from Theorems 4.35 and 4.31. • 
The results presented above only hold for transparency-restricted sequential spec­

ifications. In [BCT08] we have established that we can have the correspondence for 
all sequential specifications, if we step down to a weaker equivalence than branching 
bisimilarity called contrasimilarity [Gla93, VMOl] . In this paper the correspondence 
was formulated between sequential specifications and a finite-state process put in 
parallel with a forgetful stack process, thus simulating, up to contrasimilarity, the 
specifications using a special kind of pushdown automaton. We conjecture that the 
proof in [BCT08] can be adapted to show that all sequential specifications can be 
simulated, up to contrasimilarity, using our standard definition of the pushdown 
automaton (according to the FSES interpretation). For this, we have to move the 
handling of transparency from the stack to the finite control. This can be done by 
replacing forgetful popping by non-deterministic popping using -r-transitions. 

CONJECTURE 4.37. For every sequential specification E, with initial name I, there exists 
a pushdown automaton M such that 'J(M) is contrasimilar with 'JE(I). D 

4.2.2 Decidability 

It is well-known that it is undecidable whether two context-free grammars generate 
the same language up to language equivalence. Baeten, Bergstra and Klop have 
shown in [BBK93] that it is decidable for normed processes defined by guarded 
recursive BPA-specifications, which they consider to be the process-theoretic coun­
terparts of context-free grammars in Greibach normal form, using the finer-grained 
equivalence of strong bisimilarity. First, several simplified proofs of the result 
in [BBK93] were presented (see [Cau86, HS91, Gro92]), and then the result was 
extended by Christensen, Hiittel and Stirling in [CHS95] to the class of all processes 
definable by recursive BPA-specifications. Later it has been proved independently 
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by Bosscher, in [Bos97], and Srba, in [SrbOl], that the problem of deciding whether 

two BPA0 -definable processes are strongly bisimilar can be reduced to the problem 

of deciding whether two BPA-definable processes are strongly bisimilar. Both proofs 

consist of reducing the problem of deciding whether BPA0 -definable processes are 

strongly bisimilar to the problem of deciding whether BPA-definable processes are 

strongly bisimilar. It follows that strong bisimilarity remains decidable if 0 is added 

to BPA . 
In this section we will consider the decidability of strong bisimilarity on TSPn 

which is an extension of BPA0 with prefixing and, more importantly, the constant 1. 

While we would like to have a decidability result for branching bisimilarity (prefer­

ably divergence-preserving), we still leave it as an open problem. However, since 

the decidability of bisimilarity is still an interesting question, we extend earlier work 

and consider the obtained result as a stepping stone. We reduce the decidability 

problem to the problem of deciding whether BPA0 -definable transition systems are 

bisimilar. This reduction is not trivial because the constant 1 is responsible for a 

considerable increase of the expressiveness. We refer to [BLMTlO] for a study of 

the increased expressiveness when the constant 1 is added to some well-known 

process algebras. Recall the sequential specification from Example 4.27 which has 

an associated transition system (see Figure 4.16) that has unbounded branching due 

to the presence of the constant 1. 

First, we argue that the proof of [CHS95] for BPA is not, in general, robust 

for the extension with 1. Then, we prove that bisimilarity is decidable on the 

subclass of transition systems definable by the earlier mentioned restricted sequential 

specification, a class that properly includes the BPA0 -definable transition systems. 

The proof by Christensen, Hiittel and Stirling 

We argue that the decidability proof by Christensen, Hiittel and Stirling for BPA 

in [CHS95] cannot easily be extended to TSPr. An important notion in their proof 

is the notion of bisimulation base. Roughly, a bisimulation base is a binary relation '.R 

on processes/ transition systems such that its congruence closure with respect to 

sequential composition (i.e., the least equivalence on processes that contains '.R and 

is compatible with sequential composition) is a bisimilarity. The crucial insight of 

the proof is that for every finite recursive BPA-specification there exists a finite 

bisimulation base, which consists of two parts: 

1. The first part consists of all pairs (X, O with a name X and a sequences ~ of 

names bisimilar to it. In a BPA-specification, all names have a positive norm, 

so there can only be finitely many sequences of names~; with the same norm 

asX. 

2. The second part consists of all so-called indecomposable pairs, i.e., pairs ( ~, x) of 

bisimilar sequences of names that cannot be (non-trivially) split up into smaller 

pairs ( ~ 1 , X 1 ), . .. , ( ~ n, X n) such that ~ = ~ 1 · · · ~ n and X = X 1 · · · X n-

Clearly, the congruence with respect to sequential composition that is generated 

by the set of all such indecomposable pairs by definition contains all decompos-
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able pairs of bisimilar sequences of names. The argument that the collection of 
indecomposable pairs is actually finite, is highly nontrivial. 

In the original proof every name X has a positive norm, but now it can also have 
norm 0. Consider for example the defining equation X ~ a X + I. We have that X <---+ 
X k for any k, so the number of pairs is no longer finite. 

Due to the presence of I, the indecomposable pair (1 · X~, (a . I + I)X~) where 
X ~ aX +I and~ can be any sequence, we have an infinite number of indecompos­
able pairs. Hence, the bisimulation base becomes infinite. 

In [SrbOl], Srba uses a different approach that reduces the decidability of BPA0 -
definable processes to BPA-definable processes. Srba gives a reduction that replaces 
the deadlocked process 0 in some specification by the name D with the defining 
equation D ~ d · D and provides a relation between the original and translated process. 
Using this bisimulation preserving translation relation between BPA0 and BPA and 
reusing the previously mentioned result by Christian, Hi.ittel and Stirling for BPA, he 
shows the decidability of bisimilarity for BPA0 . 

In our setting, a straightforward reduction from TSPr-definable processes to 
BPA0 -definable processes does not seem possible due to the extra expressive power 
added by 1-summands. Note that replacing prefixing by sequential composition, and 
replacing a 1-summand by a y'-summand for some fresh atomic action v' (the explicit 
termination action) does not work in general because it may result in intermediate 
y'-actions in a BPA0 -defined process that are impossible to relate to intermediate 
termination in the original TSP'r -defined process. 

EXAMPLE 4.38. Consider the following sequential specification: 

X ~ a.l+l , 

Y ~ b . l. 

Now, let X' ~ a + ,,/ and Y' ~ b be the translated versions for BPA0 . If we have that 
some Z <---+ XY = a.b.l + b.l, then it should hold for our translation that Z' <---+ X'Y' 
where Z' ~ a · b +b . However, X'Y' = a · b + ,,/ · b and here it is possible to execute 
the /-action while Z' cannot. Obviously, they are not bisimilar. Also, the /-action is 
meant to signal termination, but X'Y' can still execute the b-action after it. O 

So, these intermediate y'-actions that pop up due to this kind of translation form 
a problem. To ensure that these intermediate / -actions do not occur, we have 
to consider a restricted set of sequential specifications. An obvious choice is the 
transparency-restricted sequential specifications introduced in Definition 4.28 as they 
will not have intermediate termination behaviour. 

We divide the set of names N for some sequential specification into disjoint subsets 
called the finitely normed names N fin = {X E N I X is normed} and the infinitely 
normed names N 00 = N - N fin· We can further partition the set of finitely normed 
names Nfin into the transparent finitely normed names Nfi~ and the opaque finitely 
normed names Nfi~. 
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A useful property of the class of sequential specifications is that if a name has an 
infinite norm then by definition we have to end up with another name that has infinite 
norm after an action has been executed. As a result everything after an infinitely 
normed name can be removed preserving bisimilarity: 

if XE NOO. 

Both this property and the above mentioned transparency-restrictedness leads us 

to the fact that we can restrict ourselves from here on to states where the labels, 

which are sequences of names, are elements of the set (Nfi~)*N00 u (Nfi~)*Nfi~ u (Nfi~) * 
or using a more compact notation: { 1} u (Nfi~)*N. Recall that the empty sequence for 

a sequential composition is denoted by 1. 

Deciding strong bisimilarity 

As mentioned before, the result by Srba in [SrbOl] involves a reduction from BPA0 

to BPA . In this section we give a reduction from TSPr to BPA0 that preserves and 
reflects bisimilarity defined by a transparency-restricted sequential specification E. 

We recall the syntax of BPA0 and give the set of BPA0 -process expressions '.P(BPA0 ) 

by the following abstract syntax: 

P ::= o I a I N I P + P I P · P , 

where a ranges over the set of atomic actions A, and N ranges over the set of names N. 

So, with respect to TSPr we have no constant 1 and prefixing. Note that Srba actually 
uses the symbol o instead of 0 to denote the deadlocked process. 

Because BPA0 has no explicit termination and prefixing, it has different opera­

tional rules. The structural operational semantics of BPA0 are given in Table 4.1 
below. 

p~p' 

a ~ .,/ p · q ~p' · q 

p~p' q~q' 

p+q ~ p' p+q ~ q' p+q~.,/ 

(N ~ p) EE (N~ p) EE 

N~p' N __E___, .,/ 

TABLE 4.1: Operational rules for a recursive BPA0-specification E (a E A T) . 
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We assume that the specification E is transparency-restricted and in sequential 
normal form. Now, we reduce the decision problem to the problem of decidability of 
bisimilarity in BPA0 as shown in [SrbOl] . 

For the following proofs we fix a fresh action J such that J it- A. We define 
A 1 =Au { J} and the translation function f : '.P(TSP,. )-> '.P( BPA0 ) as follows: 

f(O) = O, 

f(p +q) = f(p) + f(q) ' 

f(X) =X, 

f(l)=J, 

f(p · q)=f(p) ·f(q) , 

f(ap)={a ifp=l , 
· a · f (p) otherwise . 

Thus, f simply replaces the 1-summands of each transparent name with a J­
summand and changes prefixes into sequential compositions. 

If we apply f to the terms of the specification Ewe get the translated specification 
E' = {X; ~ f(p ;) IX; ~ P; EE}. It can be easily seen that the translated guarded 
recursive specification has the following GNF: 

x~ L:a; · c;; (+ J) for allX E N. 
iEJx 

We introduce the variant of (strong) bisimilarity often used in conjunction with 
BPA0 that does not take termination into account: let us write c; +-+r x iff ( c;, x) is in 
a binary relation '.R satisfying, for all a E A 1 , conditions 1 and 2 of Definition 2.4 (on 
page 10). 

Recall that the structural operational semantics given in Tables 2.1 and 4.1 are 
actually parametrized by a specification E. For clarity we shall write --->£ for the 
transitive relation and h for the termination predicate associated with E and --->£' 
for the transitive relation associated with E' . 

LEMMA 4.39. Given the specification E and the translated version E' the following holds 
for every c;: 

1. c; -E......E c;' iff c; ~E' c;' with a i- J, 
2. c;h iff c; ~E' J. 0 

PROOF . We prove both statements separately, first from left to right, then from right 
to left. 

1. => If c; -E......E c;' then there exist p, T/ and some name X that has the defining 
equation with a summand a.c;; for some i E '.lx such that c; = pXTJ , X -E...... c;; 
and c;' = /;;T/· Note that by transparency-restrictedness, p = 1 and thus c; =XTJ. Then, also in the translated specification X has a summand a· c;; 
and hence I; = XTJ -E......E' /;;T/ = c;; . 

{== If c; -E......E' c;' with a¥- J then, as in the previous case, c; =XTJ, where T/ may 
be empty, but now X has a summand a· c;; for some i E '.lx . So !;' = /;;TJ , 
and similarly we have the summand a.c;; in the original defining equation 
and hence c; = X T/ -E...... E c; T/ = c;'. 
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2. =::> Ifs !e, then due to transparency-restrictedness s consists of one transpar­

ent name X. This means that the defining equation of X has a 1-summand 

and consequently the translated version has has a J-summand. Therefore 

c; ~E' V· 
~ If s ~£' J, then s = X for some name X. This means that the defining 

equation of X has a J-summand and consequently the original version has 

a 1-summand in E. Therefore, s !e- • 

Using the properties proved in the lemma above, we can establish the decidability 

result. 

THEOREM 4.40. Let E be a transparency-restricted sequential specification and c;, x be 

sequences of names reachable from some initial name of E. Then it is decidable whether 

s<---->x . D 

PROOF. Let E' be the translated recursive specification f (E). Because of [SrbOl] it is 

decidable whether c; +-+1 x in E' . To be able to decide whether s +-+ x it suffices to 

show that c; +-+ x in E iff c; +::!1 x in E' . 

=> Suppose c; +-+ x. To establish that s +-+1 x it suffices to prove that the 

relation +::!1 satisfies conditions 1 and 2 of Definition 2.4 (on page 10) for all 

a E A .; and all s, x E N* . We will first show that condition 1 holds; the proof of 

the satisfaction of condition 2 then follows symmetrically. For condition 1 we 

distinguish two cases: 

(a) Suppose a E A. If s ~£' .;-' and a f:- J then by Lemma 4.39(1) we have 

s ~E c;' . Since s +-+ x in E, we also have x ~Ex' and c;' +-+ x' in E. So, 
by Lemma 4.39(1) we also have X ~E' x' and s' +::::! x' in E. 

(b) Suppose a = J . If c; ~E' J then by Lemma 4.39(2) we have c; k Since 

s +-+ x in E also x !e and by Lemma 4.39(2) we have x ~E' J. 

We have shown for all s, x in E that if the pair ( s, x) is in the relation +-+, then 
conditions 1 and 2 of Definition 2.4 hold and hence c; +-+1 x in E'. 

~ Suppose s +-+1 x. To establish that s +::::! x it suffices to prove that the 

relation +-+1 is a bisimulation meeting all conditions of Definition 2.4 for all 

a E A and c;, x E N*. We distinguish three cases based on the conditions of 

Definition 2.4: 

1. If s ~E c;' then by Lemma 4.39(1) we have c; ~E' c;' with a f:- J. 
Since c; +-+1 X in E', we also have X ~E' x' and c;' +-+1 x' in E' . So, by 

Lemma 4.39(1) we also have X ~E x ' and s ' <-->1 x' in E' . 

2. By an analogous argument as in the previous case. 

3. If c; !£ then by Lemma 4.39(2) we have s ~E' J. Since c; +::!1 x in E' also 

x ~E' J and by Lemma 4.39(2) we have x !E· 

We have shown for any s, x in E that if the pair ( s, x) is in the relation +--+/> 

then all conditions of Definition 2.4 hold and hence s +--+ x. • 
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COROLLARY 4.41. Bisimilarity is decidable on transparency-restricted sequential speci­
fications. D 

In future work, this decidability result could be extended to the decidability 
of divergence-preserving branching bisimilarity. Preferably we will also find an 
extension to decidability for the full class of sequential specifications. 

4.3 Explicit Interaction 

If we consider the definition of the pushdown automaton, we can discern two 
components: the finite control and the stack memory. The latter of these two 
components, the stack memory, seems to have a rather informal definition. In the 
previous section we have seen that the stack, first given as a pushdown automaton 
and pushdown transition system, can also be defined by a sequential specification. If 
we put this specification in parallel with a specification representing the finite control, 
we can make the interaction with the stack within a pushdown automaton more 
explicit. 

We first consider pushdown automata according to the FSES interpretation. We 
show that we can translate the finite control of a PDA to a linear specification. 
Once put in parallel with the sequential specification of the stack, we can define 
all pushdown transition systems according to the FSES interpretation. Thereafter, we 
shall consider the other direction. 

Recall that transparency-restricted sequential specifications are simulated by 
pushdown automata. Because we can subsequently give specifications for these 
pushdown automata, consisting of a linear specification in parallel with the sequential 
specification of a stack, we can say that every transparency-restricted sequential 
specification can be defined by a linear specification in parallel with a stack. 
See also [BCT08] for earlier work that investigated the correspondence between 
sequential specifications and specifications of finite control in parallel with a stack. 
The paper shows under what circumstances we can extend the set of pushdown 
transition systems to incorporate transition systems with unbounded branching. A 
(partially) forgetful stack is used to deal with transparent names on the stack. Note 
also that the paper does not require the recursive specifications to be transparency­
restricted, but at the cost of using a weaker equivalence (namely contrasimulation) 
in some cases. 

We also cannot obtain the same correspondence result for pushdown automata 
according to the FS interpretation. Following the reasoning as given in the proof 
of Theorem 4.26 there exists no sequential specification for the always-terminating 
stack. This is something that is required if we want to put finite control in parallel 
with this specification and allow for termination whenever the finite control can do so. 
(Clearly, the FS interpretation only puts termination conditions on the finite control, 
in contrast with the FSES and ES interpretation that also put conditions on the stack.) 
We will use a different approach and use a recursive TCPr-specification for the stack 
that can always terminate. This, of course, comes at the cost of losing the link with 
sequential specifications that we did have for the FSES interpretation. 
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4.3.1 According to the FSES Interpretation 

We will show that, up to divergence-preserving branching bisimilarity, every push­

down automaton can be specified using the process theory TCPr. We do this by 

showing, for any given PDA, the construction of a finite recursive TCPr-specification 

that defines its behaviour. Our specification will consist of a linear specification of a 

process that is a translated version of the finite control of the PDA, and a sequential 

specification of stack memory. We shall prove that the parallel composition of these 

specifications specifies a transition system that is divergence-preserving branching 

bisimilar with the transition system associated with the PDA. We remark that we 

actually only use TCP-r to arrange the communication between the linear finite 

control process and the sequential stack process. 
Below we will give a translation of the finite control of a PDA into a linear 

specification Efc and then show that, combined with the sequential specification of 

the stack process Es, the correspondence with the original PDA M holds. But first, 

recall the sequential specification Es of the stack over '.D : 

S ~ 1 + o!.1.S + L i?d.S)'. · o!d.S, 
dE'D 

s)'. ~ 1 + L i?d.S)'. · o!d .S)'. . 
dE'D 

Let M = (S,A,'.D,-+, l,!) be a pushdown automaton. By Theorem 4.8 we can 

assume that M only has push and pop transitions. We can now define the linear 

specification E10 capturing the finite control, i.e. the transition relation, of M. For 

each s E S and d E '.D 1- we add the name Cs d . Each name Cs 1- has the following 
defining equation: ' · 

def "'\' 

cs,l_ = L..ia .ct ,d [ + lJsi, 
(s ,a, 1- ,d , t)E~ 

which corresponds to the empty-test (push) transition and termination when the PDA 

is in states and the stack is empty. Each name cs,d (d E '.D) has the following defining 

equation: 

cs,d ~ .L:a.i!d.Ct,e + L a. L o?e.Ct ,e , 
(s,a,d ,e d , t)E~ (s,a,d ,£, t)E~ eE'D.i 

which corresponds, respectively, to the push and pop transitions when the PDA is in 

state s and data element d is on top of the stack. 

Note that the top of the stack is not on the stack but retained by the finite control 

process. 

THEOREM 4.42. For every pushdown automaton M according to the FSES interpretation 

there exists a recursive TCP-r-specification EM and process expression p defined by a linear 

specification such that 'J(M) +-+~ 'JEM ( [p II S] ;,0
). D 
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PROOF. We choose M = Efc U E5 , where Efc is constructed for M as described above. 
We present some observations from which it is fairly straightforward to establish that 
'J(M) <:::;~ 'JEuEs ( [Cu_ II S J ;)· In our proof we abbreviate the process expression 
S·i!dn.S· ·· i!d1 .S by Sd"· --d,, with, in particular, S, = S. (Recall the infinite specification 
of the stack given on page 54.) 

First, note that whenever 'J(M) has a transition (s, d) ____'!__, (t, E), then 

a; ,o(Cs ,d II S, ) ~ ai ,o CC L o?e.Ct,e ) II S, ) oH a; ,o (Ct ,l. II S, ) . 
eE1>_t 

The abstraction operator -r; ,0 (_) will rename the transition labelled oU into a -r­
transition. So, 

This -r-trans1t10n is inert in the sense that it does not preclude any observable 
behaviour that was possible before the -r-transition. Such inert -r-transitions can be 
omitted while preserving branching bisimilarity. 

Second, note that whenever 'J(M) has a transition (s , d0 ~ (t, O with ( 
nonempty, say (=et;', then 

a; ,o(cs,d II S( ) ~ ~a;,o CCr ,e II Sc ) , 

and, since the second transition is the only step possible after the first a-transition, 
the -r-transition resulting from applying -r;,0 (_) is again inert. 

Third, note that whenever 'J(M) has a transition (s, dO ~ (t, ed(), then 

a; ,o(cs,d II s( ) ~ __i!i_.a;,oCcr ,e II sd( ) , 

and again the -r-transition resulting from applying 'r;,0 (_) is inert. 
Finally, note that whenever 'J(M) has a transition (s, E) ____'!__, (t, e), then 

ai,oCCs,l. II S) ~ ai,oCCt ,e II S, ) . 

Only, single inert -r-steps are removed, no -r-loops are introduce nor removed. 
Therefore, we have that divergence is preserved. • 

Now, for the other direction. We can show that if we have a process defined by a 
linear specification that communicates with a stack, we can find a PDA that simulates 
the behaviour of the two specifications put in parallel. 

THEOREM 4.43. For every linear specification E and linear process expression p there 
exists a pushdown automaton M according to the FSES interpretation such that 
'JEUEs ( [p II s] i,o) '::::~ 'J(M). 0 

PROOF. Let Ebe a linear specification and let p be a linear process expression. We 
define a pushdown automaton M as follows: 
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- The set of states, the action alphabet, and the initial and final states are the 

same as those of the transition system 'JE(p) (which is a finite automaton). 

- The data alphabet is the set of data elements 'D of the presupposed recursive 

specification of a stack. 

- Whenever s__E_,t in 'JE(p), and a-:/= i!d,o?d (d E 'D), thens~t and s~ 

t for all d E 'D; 

- whenever s ~ t for some d E 'D in 'JE(p ), then s -r[1-/dJ , t and s -r[e/deJ , t for 

all e E 'D ; 

- whenever s ~ t for some d E 'D in 'JE(p ), then s ~ t. 

We omit the proof that every transition of 'J£u£/ [p II S];) can be matched by a 

transition in 'J(M) in the sense required by the definition of divergence-preserving 

branching bisimilarity. • 

We have seen in Section 4.2.1 that (transparency-restricted) sequential specifica­

tions can be simulated by a PDA. We have also seen above that each PDA can be 

defined by a linear specification for the finite control of the PDA and a sequential 

specification of stack memory, combined in a single specification that allows for 

communication between both components. Indirectly, we have established that 

each (transparency-restricted) sequential specification can be written as a linear 

specification communicating with a stack. Therefore, we can consider the stack, with 

its sequential specification, as the canonical sequential process. 

COROLLARY 4.44. For every transparency-restricted sequential specification E and se­

quential expression p there exists a linear specification Efc and linear process expression q 

such that 'JE(p) <-->t' 'JE1,uEs ( [ q II S] i,0 ). D 

PROOF. The result follows from Theorems 4.35 and 4.42. • 
The same result was obtained directly for opaque sequential specifications 

and also for all sequential specifications but for a weaker equivalence, namely 

contrasimulation, in [BCT08]. 

4.3.2 According to the FS Interpretation 

If we want to make the interaction explicit in a pushdown automaton according to 

the FS interpretation, we need a stack that can always terminate. As was mentioned 

before, there is no sequential specification for such a stack. Instead, we present a 

new stack process that can terminate regardless of its contents. This finite recursive 

TCP-r -specification is inspired by the specification of a queue proposed by Baeten and 

Bergstra in [BB88], which has in turn its origins in the CSP book by Hoare [Hoa85]. 

It is similar to the tape process that we will see later on in Chapter 6; the stack can 

be seen as a one-sided tape of which we may only inspect and/or replace the top 

element. 
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DEFINITION 4.45. The recursive TCP-r -specification Esl of the always-terminating 
stack over 'D, with initial name s;·0 , is defined as follows: j,p 

s i,o ~ 1 + o!.l.si,o + "'"""" i?d . [ri,o d 11 s j·p] , j,p j,p L....J j,p 1,0 
1
. p 

dE'.D ' 

T;'0d ~ 1 + o!d."'"""" p?f.T;'°F + "'""""i?e.j!d .T
1
;'P

0e ~ L....J ~ L....J • 
fE'.Dl. eE'.D 

y i,o_j_ ~ 1 + o!.l.Ti,o_j_ + "'""""i?d .Ti,od' 
hP hP L....J J~ 

d E'.D 

Tj,pd~ l+o!d . "'"""" p?f.Tj,pr + "i?e.j!d .Tj,pe 
1,0 L....J l,a' L....J 1,0 

f E'.Dl. eE'.D 

Tj,p_j_ ~ 1 + o!_l.Tj,p_j_ + "'""""i?d .Tj,pd. 
l ,O l ,O L....J 1,0 

dE'.D 

(d E 'D), 

(d E 'D), 

Because this stack needs to be a drop-in replacement for our earlier defined 
stack, it has the same interface: it also receives data elements that are pushed over 
channel i, sends data elements that are popped over channel o, and can signal over 
channel o if the stack is empty. 

The first time the stack receives a data element, it splits into a top element 
retaining the data element in parallel with the empty stack. From this moment on, 
every time a data element is received, a new top element is split off "to the right" to 
retain the data element that is being replaced by the newly received data element. 
See Figure 4.21 for a diagram of the always-terminating stack process; depicted is 
the state when a data element 1 has been pushed. 

I . I j 1--------

I r;·~1 S i,o 

L _ ' __ I p I_ - - - l:!:_ - - - -

FIGURE 4.21: Diagram of the always-terminating stack specification. 

If a data element is popped from the left-most top element, all data elements 
move one position to the left as well. See for example the following trace where data 
elements 1 and 0 are pushed and then popped: 

s i,o ~ [r;·00 11 s ;·0 J __!_?..!_.. [r;·01 II [rj·Po II s j·p ] . J j,p j,p j,p j,p j,p 1,0 1,0 1,0 j,p 

~ [r;·00 11 [rj,p_j_ II s1·PJ. J --2.!.Q.. [r;·0_J_ 11 [ri·P_J_ II si·PJ . ] j,p 1,0 1,0 1,0 j,p j,p 1,0 1,0 1,0 j,p 

At the end, we are left with two empty cells. However, it can easily be shown that 

[Ti,o_j_ II Sj,p ] <-+b"'- 5;'0 • Thus, the empty cells can be collapsed and removed. j,p 1,0 j,p j,p 
We now reconsider the correspondence results we had for the FSES interpretation, 

for the FS interpretation. If we go from FSES to ES, we drop the empty stack 
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requirement; termination needs to happen if the finite control can terminate. We can 

obtain our results by just replacing the terminating-on-empty stack by the always­

terminating stack defined above. 

THEOREM 4.46. For every pushdown automaton M according to the FS interpretation 

there exists a recursive TCPT-specification EM and process expression p such that 

'J(M) +-+b 'JEM ( [P II 5! J ;,) D 

PROOF. We choose M = E1c u £5 1, where Etc is constructed for M as described in 
Section 4.3.1. The result follows from Theorem 4.42 and the fact that we use E51 

instead of E5 . • 

Now, for the other direction. 

THEOREM 4.47. For every linear specification E and linear process expression p there 

exists a pushdown automaton M according to the FS interpretation such that 

'JEuEsl ( [p II s] i,o ) +-+t 'J(M). D 

PROOF. The result follows from Theorem 4.43 and the fact that we use E51 instead 

of £5 • • 

4.4 Conclusions 

In this chapter we have investigated the classical correspondence result between 

pushdown automata and context-free grammars. To be able to treat this result 

in a process-theoretic setting, we have associated pushdown transition systems 

with pushdown automata. In the literature [Sud88, Sip97, HMU06] two distinct 

termination conditions for pushdown automata are considered: termination on 
empty stack (ES) and on final state (FS). We have additionally considered termination 

on both final state and empty stack (FSES). It is well-known that up to language 
equivalence it does not matter which termination condition is used as they all yield 
the same class. We can obtain the pushdown languages if we take the pushdown 

transition systems up to language equivalence. Figure 4.22 gives a schematic 

overview of the classical correspondence results. 

1------ -- ----- --
PDA I 

I 
context-free 

I Thm. 4.23 grammars 
I 

I 
I 

I p ushdown 
, transition systems 
I FS/ FSES/ ES 
'- --- -----------

FIGURE 4.22: Classical correspondence results from automata theory. 

If we reconsider all results up to (divergence-preserving) branching bisimilarity, 

we get a much more contrived picture. First, we get different classes of pushdown 
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transition systems if we take different termination conditions. The class according to 
the ES interpretation is, up to divergence-preserving branching-bisimilarity, a proper 
subclass of the class according to the FSES interpretation. Only if consider pushdown 
automata that are initially terminating, then the class of pushdown transition 
systems according to the ES interpretation coincides with the class according to the 
FSES interpretation. The class according to the FSES interpretation is, also up to 
divergence-preserving branching bisimilarity, a proper subclass of the class according 
to the FS interpretation. Because of the class differences, we have considered the 
correspondence results for the FSES and FS classes separately. 

We have seen that in our process-theoretic setting context-free grammars can be 
defined as finite recursive TSP-r-specifications, which we call sequential specifica­
tions. To obtain the correspondence between pushdown automata and sequential 
specifications we have applied two restrictions. First, we only consider transparency­
restricted sequential specifications as a way to prevent unbounded branching. 
Secondly, we ensure that the pushdown automata are pop choice-free, because it can 
be shown that there exist non-pop choice-free pushdown automata for which there 
is no sequential specification. If these two restrictions are applied, we can obtain a 
correspondence. 

Because transparency-restricted sequential specifications play an important role in 
this chapter, we can wonder if we can decide if two sequential specifications have the 
same associated transition system up to divergence-preserving branching bisimilarity. 
We have shown that this is the case for (strong) bisimilarity, extending earlier work 
for BPA- and BPA0 -specifications, which are specifications in subtheories of TSP-r . 

We have chosen to translate A.-productions (or e-productions) in context-free 
grammars by 1-summands in sequential specifications. This is mainly done to stay 
in line with the previous chapter and allow for intermediate termination. However, a 
different choice could have been to use -r -summands instead. In this case the resulting 
specification language would always generate opaque sequential specifications and 
thus have a full correspondence with pushdown automata according to the (FS)ES 
interpretation. 

From a process-theoretic perspective it makes sense to make the interaction in a 
PDA explicit. We can do this by giving a linear specification representing the finite 
control of the PDA and put it in parallel with a specification of a stack, allowing 
communication over an input and output channel for pushing and popping. We have 
first established this correspondence for pushdown automata according to the FSES 
interpretation. 

Figure 4.23 presents a schematic overview of the correspondence results for the 
FSES interpretation from a process-theoretic point of view. Note that there is an in­
direct correspondence between transparency-restricted sequential specifications and 
the explicit interaction. Because the stack can be defined by a transparency-restricted 
sequential specification, and all transparency-restricted sequential specifications can 
be given as a finite -state process communicating with this stack, the stack can be 
considered as the canonical sequential process. 

For the FS interpretation we have seen that there exist pushdown transition 
systems that have no sequential specification. Hence, we lack a correspondence 
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result in this case. Note that if we have a PDA that has a pushdown transition 

system according the FS interpretation that can also be given according to the FSES 

interpretation, we of course do have a correspondence as described above. The 

pushdown transition system for the stack according to the FS interpretation also has 

no sequential specification. Therefore, we resort to a TCPr-specification of the stack 

to make the interaction explicit. 
See Figure 4.24 for a schematic overview of the correspondence results according 

to the FS interpretation. Note that, clearly, we also lack the indirect correspondence 

result between sequential specifications and the explicit interaction. 

4.4.1 Future Work 

First of all, transparency-restrictedness is too strict. There are finite sequential 

specifications that are not transparency-restricted but do not have unbounded 

branching. It should be possible to find a syntactic requirement on sequential 

specifications such that just a finite sequence of transparent names can be stacked. 

On the side of the pushdown automata it is unknown if one can generate push­

down transition systems, up to branching bisimilarity, with or without divergence­

preservation, that have unbounded but finite branching. Additionally, we have also 

not been able to establish that our result is optimal in the sense that a pushdown 

process is definable by a sequential specification only if it is pop choice-free, although 

we conjecture that this is the case. 
In the previous chapter we have seen that the class of deterministic finite automata 

accepts the same languages as the class of non-deterministic finite automata, but 

forms a subclass with respect to branching bisimilarity. It is known that for pushdown 

automata the languages accepted by deterministic PDAs is a subclass of the languages 

accepted by non-deterministic PDAs. Intuitively, this is probably also be the case up to 

branching bisimilarity. However, it would be worthwhile to define deterministic PDAs 

in our framework and investigate this result using pushdown transition systems. 

In [BCT08] we have shown that sequential specifications with unbounded 

branching can have a correspondence, up to contrasimulation, with a finite-state 

process communicating with a (partially) forgetful stack. These results could be split 

up as follows: first a correspondence between sequential specifications and PDAs 

with a special kind of termination, namely on final state and when the stack contains 

zero-or-more transparent data elements, and then a correspondence between these 

PDAs with a special kind of termination and a finite control put in parallel with the 

(partially) forgetful stack. 
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PDA sequential 
specifications i pop choice- ~: +----_,__T_h_m_._4_._3_5 __ ~---i.:--t-iaiispa~e-ricy------

: __ ~~~- - -- -------. ~ -~~~~~~~~~~- __ :_ -- ---Thm. 4.31 

Thm. 4.42 Thm. 4.43 

push down 
transition systems 1 

FSES 

T 

explicit 
interaction 
[p II Sh,;,·--------

.· 

FIGURE 4.23: Correspondence results for the FSES interpretation. 
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FIGURE 4.24: Correspondence results for the FS interpretation. 
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Chapter 5 

Parallel Pushdown Systems 

In this chapter we discuss systems that are a variation on the pushdown systems 
described in the preceding chapter. Pushdown systems are based on the notion of a 
pushdown automaton, consisting of finite control and a stack memory. On the stack 
memory data elements are stored in a sequence and one can only inspect, retrieve, 
or stack on the top element. In this chapter, we will modify the memory to enable 
the retrieval of a specific element regardless of its place in the sequence: we let go 
of the ordered structure and view the sequence of data elements as commutative, 
i.e. all elements are stored "in parallel"; the memory effectively becomes a bag. We 
call a pushdown automaton where the stack memory is replaced by a bag memory a 
parallel pushdown automaton. This notion was originally defined by [Mol96] for the 
class of parallel labelled rewrite systems, i.e. rewrite systems modulo commutativity 
of concatenation. It has also been called "bag automaton" and "multiset automaton", 
but we prefer the original name, as it emphasises the relation to pushdown automata, 
its parallel nature, and not the type of memory that has been used to define or to 
implement it. 

In Section 5.1 we define the parallel pushdown automaton and its associated 
transition systems. In the definition of the parallel pushdown automaton, the stack 
memory is replaced by the bag memory. We shall discuss the consequences of 
this adaptation. Then, similarly as in the previous chapter, we shall investigate 
different termination conditions: termination on empty bag (EB), on final state 
(FS), and on both final state and empty bag (FSEB) . We will see that the class of 
pushdown transition systems with termination on empty bag is, up to divergence­
preserving branching bisimilarity, a proper subclass of the class with termination on 
both final state and empty bag. Furthermore, the class with termination on both 
final state and empty bag is incomparable to the class with termination on final state, 
again up to divergence-preserving branching bisimilarity. Note that these results are 
different from what we have seen for pushdown automata in Section 4.1.1 (see also 
Figure 4.14 on page SO for the overview). 

In Section 5.2 we revisit the correspondence between pushdown automata and 
context-free grammars, but now in our parallel/bag-oriented setting. We define our 
commutative context-free grammars as finite recursive BCP-r -specifications, which 
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we call basic parallel specifications. Here, the adjective "basic" refers to the fact that 

we do not allow for communication between parallel components. We will show 

that opaque and transparent basic parallel specifications can be simulated by parallel 

pushdown automata, according to the FSEB and FS interpretation respectively. In the 

case of a specification that is not completely opaque nor transparent we will introduce 

a new termination condition to the parallel pushdown automaton: termination on 

both final state and transparent bag (FSTB). The bag is considered to be transparent 

if it only contains data elements that are marked as transparent. We show that for 

this termination condition we can simulate any basic parallel specification with a 

parallel pushdown automaton. For the other direction it was shown by Christensen 

in [Chr93] that only single-state parallel pushdown automata can be given, up to 

language equivalence, by a basic parallel specification. We will restrict ourselves to 

this small subclass of automata and show how they can be defined by basic parallel 

specifications. 
We also investigate the decidability of strong bisimilarity on processes defined 

by basic parallel specifications. We obtain our results by extending earlier results 

for recursive specifications over BPP, which is a subtheory of BC Pr. Christensen, 

Hirshfeld and Moller proved in [CHM93] that bisimilarity is decidable on processes 

definable in BPP . The bulk of their proof consists of defining a sound and complete 

tableau proof system for proving whether two BPP-definable processes are bisimilar. 

In this section we adapt their tableau proof system with the constant 1 to prove 

decidability of bisimilarity on processes definable by a basic parallel specification. 

We find that the adaptation requires a careful treatment of the distinction between 

successful and unsuccessful termination, but it does not result in the kind of diffi­

culties we encountered in the case of sequential specifications. In Section 4.2.2 we 

only obtained a decidability result for a subclass of the sequential specifications: the 

transparency-restricted sequential specifications. We shall prove that our extension 

of the original decidability result for recursive BPP-specifications holds for all basic 

parallel specifications. 
In Section 5.3 we make the communication between the finite control and the bag 

in a parallel pushdown automaton explicit. We show that every parallel pushdown 

automaton can be defined by a finite recursive TCPr-specification consisting of a 

linear specification representing the finite control and a specification of a bag process. 

Depending on the chosen termination condition we use a variant of the bag process 

defined by a basic parallel specification. The bag may therefore be considered as the 

canonical process for this class of specifications. 
Some material in this chapter is inspired by the following publication: 

[BCT09] J . C. M. Baeten, P. J . L. Cuijpers, and P. J. A. van Tilburg. "A Basic Parallel 

Process as a Parallel Pushdown Automaton". In: Proceedings of EXPRESS 

2008. Ed. by D. Gorla and T. Hildebrandt. ENTCS 242. Elsevier, 2009, 

pp. 35-48. 
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5.1 Parallel Pushdown Automata 

Before we start with the definition of the parallel pushdown automaton, we recap the 
notion of multisets and introduce the notation used in this chapter. 

A multiset over some set of elements X, denoted by M(X), is a function from X 
to the natural numbers N. For a multiset µwe write µ(a)= n when the element a 
occurs n times inµ. For two multisets µ, v we writeµ l±J v to denote union of multisets 
such that(µ l±J v)(a) =µ(a)+ v(a). We denote the difference of multisets µ - v such 
that(µ - v)(a) =µ(a) - v(a) under the assumption that µ(a) 2: v(a). Furthermore, 
we use a E µ to denote the statement that µ(a) 2: 1, and µ ~ v to denote that 
µ(a) :S v(a) for all a. The multiset 0 is the empty multiset, i.e. 0(a) = 0 for all a. If the 
elements of a multiset are enumerated, they are written in between double brackets, 
e.g. [a, c, a, b], analogous to set element enumeration. The singleton multiset is 
denoted by [a] . 

In the literature, a multiset is also often referred to as a bag. To avoid confusion, 
we use the term "multiset" to refer to the mathematical object described above and 
the term "bag" to refer to the type of memory that stores a multiset. 

We use a definition of the parallel pushdown automaton that is very similar to 
the definition of the pushdown automaton (Definition 4.1 on page 39). The main 
difference is the implicit replacement of the stack memory by the bag memory and 
subsequently the usage of multisets of symbols instead of strings. 

Interestingly, there is more to the replacement of the stack memory by the bag 
memory. First of all, in the case of the pushdown automaton, transitions can be 
taken based on the current state and top element of the stack. Since there is no 
fixed order in the bag memory, it does not have a top element; it is possible to 
remove any element. (Note that, in the case of the bag, we talk about inserting and 
removing, rather than pushing and popping.) So, transitions in a parallel pushdown 
automaton are taken based on the current state and whether some data element 
d E 'D is available in the bag. Secondly, when the stack is empty a pop of the top 
element is not possible. Due to its sequential structure, stack memory can been easily 
equipped with an empty-test: it returns a special symbol (.1) if it is empty when 
popped. We choose not to equip the bag memory with an empty-test. We will later 
see that if if we want to be able to define the bag by means of the parallel operator, 
it has no sequential structure; it cannot tell by itself if it is empty. The only way 
to check that it is empty would be to try to remove each type of data element and 
count. Thirdly, recall that pushdown transitions traditionally consist of an action, a 
removal and an insertion. However, since in case of parallel pushdown transitions 
removals are impossible when the bag is empty, which we cannot determine, we 
should allow for pushdown transitions without removal. Therefore, we augment the 
set of data elements 'D with the special symbol * to signify that we do not remove a 
data element from the bag, assuming that * fj. 'D; we denote the set 'Du { * } of bag 
symbols by 'D* . 

Taking these considerations into account, we define the parallel pushdown 
automaton - inspired by Mailer's definition in [Mol96] - as follows. 
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DEFINITION 5.1. A parallel pushdown automaton (PPDA) M is defined as a six-tuple 

(S,A, 'D, -+, i, !) where 

1. S is a finite set of states; 

2. A a finite set of actions; 

3. 'D a finite set of data; 

4. -+ ~ S x A r x 'D. x M('D) x Sis an A r x 'D. x M('D)-labelled transition relation 
on S, 

5. i ES is the initial state, and 

6. ! ~ S is the set of final states. 

Similarly to Definition 4.1 (on page 39), if (s,a ,d,µ , t) E -+,we write s a [d /µJ, t. 

But now the intuitive meaning of this transition is that if the parallel pushdown 
automaton M is in state s and can remove a data element d from (anywhere in) 

the bag, then it may do so while performing the action a, replacing datum d by the 
multiset of dataµ and moving to state t . In the case that d = *, we have a transition 
of the forms~ t, which means that if Mis in states, it can insert the multiset 
of data µ into the contents of the bag while performing the action a and moving to 
state t without inspecting or taking anything from the bag. 

In the previous chapter we discussed different termination conditions of the 
pushdown automata in Section 4.1.1 and compared the mutual relation of the classes 
of pushdown transition systems, up to (divergence-preserving) branching bisimilarity, 
according to the ES, FSES and FS interpretation. In this chapter we have the 
analogous notions for PPDAs with termination on empty bag (EB) , final state and 
empty bag (FSEB), and termination on final state (FS). 

EXAMPLE 5.2. Assume that A = {a, b, c } and 'D = { 1 } . The state-transition diagram 
in Figure 5.1 specifies a parallel pushdown automaton that can perform a-actions 
while inserting a data element 1 in the bag for each a-action. When a data element 1 
is available in the bag, the parallel pushdown automaton can, in both states, perform 
a b-action while removing this data element. Only after the c-action is performed, 
the interleaving of inserting and removing of the data element 1 stops and only the 
choice to remove and execute the b-action remains. For clarity, the set of data is 
confined to only one element. 

a[•/ [l]) 

~ 
b [l / 0] b [l / 0] 

FIGURE 5 .1: An example of a parallel pushdown automaton. 

Observe that this parallel pushdown automaton is nearly the same as the example 
of a pushdown automaton in Figure 4.18 (on page 60) that is not pop choice-free. 
The only minor difference is that the transitions s a[ _l_/ [i]J , sands a [l / [ll]J, s, of 
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which the first uses the empty-test of the stack which is unavailable for the bag, are 
replaced by the transitions a[•/[I] J, s, an insert transition that does not inspect nor 
take anything from the bag. 

If we disregard these minor difference, we can see that if 'D consists of one data 
element, more specifically if only one type of data element is inserted, then the class 
of pushdown automata coincides with the class of parallel pushdown automata. This 
is because a multiset over a set of one element is equal in use to a set or sequence. 

Depending on the adopted acceptance condition, the parallel pushdown automa­
ton in Figure 5.1 accepts the language { wcw' I w E {a,b}*, w' E {b}* /\ # 0 (w) + 1 2::: 
#b (w) + #b(w')} (FS), or the language { wcw' I w E {a,b }*, w' E {b }* /\ # 0 (w) + 1 = 
#b(w) + #b(w')} (FSEB), and for EB we get the same language as for FSEB but it 
additionally accepts the empty word. O 

To formalise the intuitive behaviour of pushdown automata, we associate with 
every PPDA M a transition system 'J(M). For the states of this associated transition 
system we use configurations as defined as follows. 

DEFINITION 5.3. A configuration of a parallel pushdown automaton M is a pair (s , µ) 
consisting of a states ES, and bag contents (multiset) µ E M('D). £::,. 

The associated transition system semantics of PPDAs defines an Ar-labelled tran­
sition relation on configurations such that a PPDA-transition s a [d/µJ , t corresponds 
with an a-labelled transition from a configuration consisting of the PPDA-state s and 
bag contents [d] l±J v, to a configuration consisting of the PPDA-state t and the bag 
contentsµ l±J v, i.e. the original bag contents with the data element d replaced by the 
multiset µ . 

DEFINITION 5.4. Let M = (S,A, 'D,-+, i, D be a parallel pushdown automaton. The 
transition system 'J(M) associated with M is defined as follows: 

1. the set of states of 'J(M) is the set of configurations S x M('D); 
2. the transition relation of 'J(M) satisfies 

a) (s, [d] l±J v) ~ (t,µ l±J v) iff s a[d/µJ , t for all s,t E S, a EA"" d E 'D, 
µ , v E M('D), and 

b) (s,v)~(t,µi±Jv)iffs~t; 
3. the initial state of 'J(M) is CT, 0); and 
4. for the set of final states ! we consider three alternative termination conditions : 

a) (s,v)! in 'J(M) iffs! (the FS interpretation), 
b) (s, v)! in 'J(M) iff v = 0 (the EB interpretation), and 
c) (s ,v)! in 'J(M) iff s! and v = 0 (the FSEB interpretation). 

A transition system is a parallel pushdown transition system (according to the 
FS/ EB/FSEB interpretation) if it is associated with a PPDA (according to the same 
interpretation) . £::,. 

This definition now gives us the notions of parallel pushdown language and 
parallel pushdown process. 
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DEFINITION 5.5. A language accepted by a parallel pushdown transition system is 

called a parallel pushdown language. 
A parallel pushdown process (according to the FS/ FSEB/ EB interpretation) is a 

divergence-preserving branching bisimilarity class of transition systems containing 

a parallel pushdown transition system. 6. 

EXAMPLE 5.6. Recall the example PPDA in Figure 5.1. The trans1t1on system 

associated with this PPDA (according to the FSEB interpretation) is shown in 

Figure 4.19 (on page 60). O 

Due to the presence of the special symbol * in PPDA transitions, the notion 

of insert and remove transitions differs slightly from the notions of push and pop 

transitions for a PDA. 

DEFINITION 5. 7. Let s, t E S be states of some parallel pushdown automaton M. An 

insert transition is a transition of the form s a(•/[d]J , t (d , e E '.D ); a remove transition 

is a transition of the forms~ t (d E '.D ). 6. 

THEOREM 5.8. For every PPDA M there exists a PPDA M ' that uses only insert and 

remove transitions such that 'J(M) .......... ~ 'J(M'). D 

PROOF. It is easy to see that limiting the set of transitions to insert and remove 

transitions only in the definition of a parallel pushdown automaton yields the 

same notion of a parallel pushdown transition system up to divergence-preserving 

branching bisimilarity: 

1. Eliminate a transition of the form s ~ t by adding a fresh state s' , replacing 
the transition by two transitions s a [•/ [d]J , s' T[[d]/0J , t (with d some arbitrary 

element in '.D , assuming that '.D -:j:. 0). 

2. Eliminate a transition of the form s ~ t , where µ = [d1] l±J • • • l±J [dn] 

(n > 1) for some randomly picked order of data elements, by adding new states 

s2 , . .. ,sn and replacing the transitions~ t by the sequence of transitions 

3. Eliminate a transition of the forms a[d /µ J , t, where µ = [d1] l±J • • • l±J [dn] 

(n 2: 1) for some randomly picked order of data elements, by adding new states 

s 1 , • •• , sn and replacing the transition s a [d /µ J , t by transitions s ~ s 1 and 

the sequence of transitions 

Observe that we only get a finite number of additional inert '!'-transitions in the 

associated transition system. • 

Analogously with the stack of a PDA, the bag of a PPDA can also be defined by a 

parallel pushdown automaton. Given the finite set of data '.D, the bag has an input 
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channel i over which it can receive elements of '.D and an output channel o over which 
it can send elements of '.D. 

The bag is defined by a parallel pushdown automaton with one state i (which is 
both initial and final) and the transitions i i?d[•/ [d]J, i and i o!d[d/01, i for all d E '.D. 
The associated transition system according to the (FS)EB interpretation of the bag 
over '.D = { 0, 1} is shown in Figure 5.2. Put in contrast with the pushdown transition 
system with the stack (see Figure 4.3 on page 43), note the absence of the empty test 
and that we have a grid rather than a tree. 

, 
' , , 

........... .:._, ~' ...... " 

, 
' , , 

........ .... .:_, ~' ... ,,,.,; 

FIGURE 5.2: Bag over '.D = { 0 , 1 }. 

If we want to model the bag that always terminates, i.e. that terminates regardless 
of its contents, we can use the PPDA specified above but then consider the associated 
transition system according to the FS interpretation. This transition system will be 
isomorphic with the transition system in Figure 5.2 but each state is final. 

5.1.1 Termination Conditions 

Recall the results of the differences between classes of pushdown transitions systems 
according to the FS, FSES and ES interpretations shown in the previous chapter. (See 
Figure 4.14 on page 50 for the overview.) We shall now investigate the relation 
between the different classes of parallel pushdown transition systems according to 
the FS, FSEB and EB interpretations. 

FS and FSEB 

In the case of the classes of FSEB and EB we can obtain similar results as we have for 
FSES and ES. 

THEOREM 5.9. For each parallel pushdown transition system according to the EB 
interpretation there is, up to divergence-preserving bisimilarity, a parallel pushdown 
transition system according to the FSEB interpretation. D 

PROOF. Let T be the parallel pushdown transition system associated with some 
PPDA M according to the EB interpretation. Let M' be the PPDA obtained from M 
by declaring all its states final. Then T is isomorphic with the transition system 
associated with M' according to the FSEB interpretation. • 
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In the other direction we have a result similar as in Example 4.10 (on page 44): 

transition systems associated with parallel pushdown automata that are not initially 

terminating cannot be divergence-preserving branching bisimilar with any pushdown 

transition system according to the EB interpretation. 

EXAMPLE 5.10. There exists a pushdown transition system according to the FSEB 

interpretation such that there is no pushdown transition system according to the EB 

interpretation that is branching bisimilar with it. 
Consider the parallel pushdown automaton M in Figure 5.3. Observe that the 

initial state of this PPDA is not a final state. 

a [*/1] b[l / 0] 

0 hr1 1~1 0 
~ 

FIGURE 5.3: A parallel pushdown automaton that is not initially terminating. 

The associated transition system 'J(M) according the FSEB interpretation (see 

Figure 5.4 below) does not have a initial state which is also final. 

a a a 
(s, [1 , 1, 1]) - ---+-(s, [l]) r-----..(s, [l , l]) 

b b 

b b b 
14------<(t, [l])----< (t, [1 , 1]) 

FIGURE 5.4: The transition system associated with the PPDA that is not 

initially terminating according to the FSEB interpretation. 

Because the bag of a PPDA is empty in the initial state by definition, every 

transition system associated with a PPDA according to the EB interpretation has 

an initial state which is also a final state. Therefore, there cannot exist a parallel 

pushdown transition system according to the EB interpretation that is branching 

bisimilar to the parallel pushdown transition system in Figure 5.4. o 

For parallel pushdown automata that are initially terminating, we have the same 

result as for pushdown automata in Example 4.11 (on page 45). The construction 

described in the proof of that theorem uses a dummy symbol 0 to control the moment 

the stack becomes empty. This way it is only allowed to go from a final state where the 

stack would have been empty to a branching bisimilar, but not divergence-preserving 

branching bisimilar, state where it really becomes empty. We use a similar technique 

for parallel pushdown automata, with two differences: we do not have to take the 

empty-test into account, and we cannot ensure that the bag is really empty because 

we can reach and remove the dummy symbol at any time. This leads to a slightly 

simpler construction. 
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THEOREM 5.11. For each parallel pushdown transition system according to the FSEB 
interpretation associated with a PPDA that is initially terminating, there is, up to 
branching bisimilarity, a parallel pushdown transition system according to the EB 
interpretation. D 

PROOF. Let M = (S,A, 'D,---+, j, l) be some parallel pushdown automaton that is 
initially terminating. We shall modify M such that the transition system associated 
with the modified parallel pushdown automaton according to the EB interpretation 
is branching bisimilar to the transition system associated with M according to the 
FSEB interpretation. We define the modified parallel pushdown automaton M' = 
(S',A, 'D 1

,---+
1

, i', 0) as follows: 
1. S' is obtained from S by adding a fresh initial state i', and also a fresh states! 

for every final state s E l; 
2. 'D' is obtained from 'D by adding a fresh dummy symbol 0, 
3. ---+

1 is obtained from ---+ by 

a) adding a transition (i', -r, *, [0], i), 
b) adding transitions (s,-r,0,0,s!) and (s!,-r,*, [0],s) for every s El. 

Note that the modification of M only introduces inert -r-transitions in the transition 
system associated with M'. We leave it to the reader to verify that the relation 

'.R = { ((i,0),(i',0))} u { ((s,µ),(s,µ l±J [0])) Is ES,µ E M('D)} u 

{ ((s,µ),(s !, µ)) Is El,µ E M('D)} 

is a branching bisimulation between the transition system associated with M accord­
ing to the FSEB interpretation and the transition system associated with M' according 
to the EB interpretation. • 

This modification introduces divergence, as it is possible to infinitely often remove 
and reinsert the dummy symbol. For PDAs we were able to modify the construction 
using the empty-test to obtain a result that also preserved divergence, as shown 
in Theorem 4.12 (on page 46). As we do not have the empty-test in PPDAs, we 
conjecture that the analogous result for PPDAs does not hold. 

CONJECTURE 5.12. There exists no parallel pushdown transition system according to 
the EB interpretation that is divergence-preserving branching bisimilar with the parallel 
pushdown transition system according to the FSEB interpretation associated with the 
PPDA in Figure 5.3. D 

FSEB and FS 

For classes of parallel pushdown transition systems according to the FS and FSEB 
interpretation we have a slightly different result than for the classes of pushdown 
transitions systems according to the FS and FSES interpretation: FS and FSEB are 
incomparable even up to branching bisimilarity. 
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EXAMPLE 5.13. As an example consider the parallel pushdown automaton shown 

in Figure S.S. (This example is the parallel pushdown version of the pushdown 

automaton in Figure 4.11 on page 49.) 

a[*/l] 

% 
b[l / 0] 

FIGURE 5.5: The counter parallel pushdown automaton. 

Let us now assume that there exists a parallel pushdown automaton M that has 

an associated transition system according the FS interpretation that is branching 

bisimilar with the associated transition system according to the FSEB interpretation 

shown in Figure S.6 below. Let the b-norm of a configuration be the number of 

b-transitions that can be performed, without performing intermediate a-transitions, 

until termination can occur. 
a a a a 

... -- -- - ..... 

b b b b 

FIGURE 5.6: The transition system associated with the automaton of Fig-

ure 5.5 according to the FSEB interpretation. 

Because the transition system associated with M is infinite, we can say, without 

loss of generality, that there exists a state s of M that is infinitely often revisited when 

performing a-transitions without intermediate b-transitions. Now, let us consider 

this infinite sequence of configurations with states. Dickson's Lemma (see [Dic13]) 

implies that for every infinite sequences of vectors of natural numbers, we have that 

there exist indices i and j such that x; ~ xj in a point-wise fashion. Because we 

can consider multisets as vectors of natural numbers, it follows that there are two 

configurations (s,µ) and (s,v) in 'J(M) such thatµ ~ v. (E.g. let v beµ l±J K.) Let 

the b-norm of the configuration (s, µ) be n and let m be the number of a-transitions 

necessary get from (s , µ) to (s,v). 

1----.;(s, µ l±J K) 

FIGURE 5. 7: Schematic overview of an attempted counter PPDA using the FS 

interpretation. 

However, the b-norm of the configuration (s , v) is also n, because the automaton 

can go to some terminating state t from state s using only bag contents µ. This 
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should be m + n if it was branching bisimilar with the associated transition system in 
Figure S.6. See Figure S. 7 for a schematic overview of what happens if we try to use 
the FS interpretation to count. 

Hence, there exists no PPDA that has an associated transition system according 
to the FS interpretation that is branching bisimilar with the associated transition in 
Figure S.6. 0 

In the other direction we have a result similar as in Example 4.lS (on page 49). 

EXAMPLE 5.14. Reconsider the counter PPDA depicted in Figure S.S. The associated 
transition system according to the FS interpretation is the same as for the pushdown 
version (see Figure 4.12 on page SO). The reason that there is no parallel pushdown 
transition system according to the FSEB interpretation follows the same argument 
as in Example 4.15: a parallel pushdown transition system according to the FSEB 
interpretation has finitely many terminating states, for the PPDA has only finitely 
many states and the bag needs to be empty, while a parallel pushdown transition 
system according to the FS interpretation can have infinitely many. O 

The following mutual relations between the classes up to (divergence-preserving) 
branching bisimilarity have been established. (See Figure 5.8 for a schematic 
overview. Note that in the diagram FSEBit stands for the class of transition systems 
according to the FSEB interpretation associated with initially-terminating PPDAs. 
Also note that, because the PPDA in Example 5.13 is initially terminating, the example 
also implicitly shows that EB i FS and therefore the arrow is drawn from EB.) 

FSEB 

EB 

z 
~ 

FS 
I'=!~, I '=!b 

FSEB % EB 
EB ~ FSEB 

FSEBi' ~ EB 

(FS)EB % FS 
FS % FSEB 

Example 5.10 
Theorem 5.9 

Theorem 5.11 (up to '=!b only) 

Example 5.13 
Example 5.14 

FIGURE 5 .8 : Overview of the different classes of parallel pushdown transition 
systems. 

COROLLARY 5.15. The class of parallel pushdown transition systems according to the EB 
interpretation is a proper subclass, up to divergence-preserving branching bisimilarity, of 
the class of parallel pushdown transition systems according to the FSEB interpretation. 

The class of parallel pushdown transition systems according to the FSEB interpreta­
tion is incomparable with, up to (divergence-preserving) branching bisimilarity, the class 
of parallel pushdown transition systems according to the FS interpretation. D 
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Not depicted in Figure 5.8 is the fact that for pushdown transitions that are 

initially terminating, the class according to the FSEB interpretation is the same, up to 

branching bisimilarity, as the class according to the EB interpretation. 

Note that, had we equipped the bag memory with an empty-test, we would have 

gotten the same picture as Figure 4.14 on page SO. A similar construction as in the 

proof of Theorem 4.14 could then show that the class of parallel pushdown transition 

systems according to the FSEB interpretation is, up to divergence-preserving branch­

ing bisimilarity, a proper subclass of the class according to the FS interpretation. 

Also a similar construction as the proof of Theorem 4.12 could then show that the 

class of parallel pushdown transition systems according to the FSEB interpretation 

associated with initially-terminating PPDAs is, up to divergence-preserving branching 

bisimilarity, equal to the class according to the EB interpretation. 

5.2 Basic Parallel Specifications 

In Section 4.2 we have seen the sequential process expressions and specifications, 

which were expressions and finite recursive specifications over TSP,. . If we replace 

the sequential composition in TSP,. by parallel composition we get the subtheory 

BCP,,. (Basic Communicating Processes) of TCP,,. . We can look upon this specification 

language as the process-theoretic counterpart of a commutative version of the 

context-free grammars. We assume that the communication function y is everywhere 

undefined. This class of specifications is an extension of BPP (Basic Parallel 

Processes), introduced by Bergstra and Klop in [BK85] and more thoroughly studied 

by Christensen in [Chr93]. In [SrbOl], Srba extended BPP with deadlock. Here, we 

will extend it further with the constant 1. 

DEFINITION 5.16. A basic parallel specification over some finite set of names N 

is a finite recursive BCP,,. -specification, i.e. a recursive specification over N in 

which only the constructions 0, 1, N (N E N), a._ (a E A ,,. ), _ II_ (with an 

undefined communication function) and _ + _ are used to build basic parallel process 

expressions. 6. 

EXAMPLE 5.17. The process expression N defined in the basic parallel specification 

N~a.(Nllb.l)+c.l 

specifies the parallel pushdown transition system according to the FSEB interpreta­

tion in Figure 4.19 (on page 60), which is associated with the parallel pushdown 

automaton in Figure 5.1. <) 

Our basic parallel specifications can be brought into Greibach normal form. 

We can define a normal form for basic parallel specifications if we instantiate 

Definition 2.19 (on page 19) with the sequence of names interpreted as a parallel 

composition of names. 
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DEFINITION 5.18. A basic parallel specification E is in basic parallel normal form if 
each defining equation of name NE N is of the following form: 

N~ :L>i · ~i (+ 1) . 
iE~N 

In this form, every right-hand side of every defining equation consists of a number of 
summands, indexed by a finite set 'JN (the empty sum is O) , each of which is either 1, 
or of the form a;.~; with a; EA,. and ~; a parallel composition of names; the empty 
parallel composition is denoted by 1. !:::. 

All basic parallel specifications can be brought in basic parallel normal form. For if 
we disregard the commutative nature of the parallel composition, we essentially have 
a sequential specification, i.e. a context-free grammar, for which it is well-known that 
they can be brought in sequential normal form. 

PROPOSITION 5.19. For each basic parallel specification E and basic parallel process 
expression p there exists a basic parallel specification in basic parallel normal form E' 
such that 'JE' (p) <:::!t° 'JE(p ). D 

We can associate transition systems with basic parallel specifications according to 
the operational rules in Table 2.1 (on page 15). This gives us also the notion of basic 
parallel process. 

DEFINITION 5.20. A basic parallel process is a divergence-preserving branching bisim­
ilarity class of labelled transition systems containing a transition system associated 
with a basic parallel specification and basic parallel process expression. !:::. 

Basic parallel processes were originally defined by Christensen in [Chr93] as the 
class of processes over a signature including the terminated process, action prefixing, 
choice and parallel composition. In this thesis we also allow intermediate termination 
and deadlock. 

5.2.1 Correspondence 

Example 5.17 already suggests a correspondence between the transition systems 
associated with basic parallel specifications and parallel pushdown transition systems. 
We shall investigate the exact nature of this relation in the rest of this section. 

Let us first consider a prominent PPDA or parallel pushdown transition system 
that can be defined by a basic parallel specification. Recall the parallel pushdown 
transition system according to the (FS)ES interpretation of a bag shown in Figure 5.2. 

The following infinite recursive specification Er:;' specifies, for the multiset µ, the 
behaviour of the process Bµ modelling a bag with as contents the multiset of data 
elements µ that receives input over channel i, i.e. when data is inserted, and sends 
output over channel o, i.e. when data is removed. For the empty bag, we have: 

B0 ~ 1 + L: i?d.B [d] , 
d E'D 
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and for every non-empty multiset µ E M('.D): 

B ~~ 'dB ~ ·7 B 
µ- L.Jo . · µ -[d] + L.J i.e. µ W[ e] · 

dEµ eE '.D 

However, we would like our bag to have a finite version of this specification to 

obtain a basic parallel specification. 

DEFINITION 5.21. The following basic parallel specification defines a bag that can 

terminate when it is empty: 

Bi,o ~ 1 + L i?d.(Bi,o II o!d.1) ' 
d E'.D 

which has the same associated transition system, up to isomorphism, as the one 

shown in Figure 5.2; we refer to this specification of a bag over '.D as Ea. !:::,. 

It can be shown by RSP that the infinite and finite specification yield the same 

bag process. For the proof we refer to [BW90, Theorem 3.5.3]. Note that the proof is 

without 1-summands, but it can easily be extended. 

LEMMA 5.22. We have that B0 <::::ff' Bi,o· D 

Note that only the bag PPDA according to the FSEB interpretation is given by 

the basic parallel specification above. If we consider the bag PPDA according to the 

FS interpretation, we get the bag that can always terminate, i.e. it can terminate 

regardless of its contents. The state of the bag when it contains data elements 

d1, . . . ,dn be characterised by a parallel composition, for example: B;,0 II o!d1.l II ... II 
o!d""l An obvious modification to make Ea always terminating would be to ensure 

that each parallel component has a 1-summand so that termination is always possible. 

To obtain a specification for the always terminating bag, all we have to do is add 

1-summands to each defining equation of £':' to obtain a recursive specification E'; of 

a transparent bag. 

DEFINITION 5.23. The finite version of this specification, Ea' can be defined as 

follows: 

Bt ~ 1 + ~ i?d.(B t II (o!d.1+1)). 
l ,O L.J l,O 

dE '.D 

The transition system associated with the specification of the transparent bag above 

is, up to strong bisimilarity, equal to the transition system associated with the bag 

PPDA according to the FS specification (see Figure 5.2 and consider it with all 

states marked final) . This is unlike the specification of the forgetful stack (see 

Definition 4.25 on page 55), that had an associated transition system (see Figure 4.3 

on page 43) that was up to branching bisimilarity not equal at all to the transition 

system associated with the bag PDA according to the FS interpretation. 
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Note that the specifications of the bag and transparent bag can be easily brought 
in basic parallel normal form. We just have to replace, for all d E '.D, the parallel 
components, o!d.l and o!d.l + 1 respectively, by some name Ed with the component 
itself as the process term of the defining equation. 

Now, for the correspondence between parallel pushdown automata and basic 
parallel specifications, let us first consider the direction from basic parallel specifi­
cations to parallel pushdown automata. We will do this in three steps and show 
up to branching bisimilarity that: opaque specifications can be simulated by parallel 
pushdown automata according to the FSEB interpretation, transparent specifications 
by parallel pushdown according to the FS interpretation, and mixed specifications 
according to the FSTB interpretation introduced below. 

Recall that for a recursive specification over a finite set of names Na name is called 
transparent if its defining equation has a 1-summand; it is called opaque otherwise. 
Thus we can partition N into the transparent names N+1 and the opaque names N-1

• 

A recursive specification is transparent if all its names are transparent; it is opaque if 
all its names are opaque. 

Opaque specifications 

We can give a construction in a similar way as for the simulation of transparency­
restricted specifications by pushdown automata shown in the proof of Theorem 4.35 
(on page 62). Let us consider an example first. 

EXAMPLE 5.24. Let E be the following basic parallel specification: 

X ~ a.(X II Y) + b.Y +c.1, 

Y~d.1. 

This specification is in basic parallel normal form and opaque. Figure 5.9 depicts a 
parallel pushdown automaton that simulates E up to divergence-preserving branching 
bisimilarity if we take X as its initial name and use the FSEB interpretation. 

a[X/ [X,Y]] 
b[X/ [Y]] 

c[X/ 0] 
d[Y/ 0] 

FIGURE 5.9: A parallel pushdown automaton simulating basic parallel specifi­
cation E. 

We have an initial state that puts the initial name in the bag when moving to 
the state Ctl that handles the control based on the contents of the bag. For each 
summand of a name in the specification we have a corresponding PPDA transition, 
labelled with the action of the prefix, that removes the name and inserts all names 
that are in parallel after the summand of the prefix. For example, for the summand 
a.(X II Y) of the defining equation of X, we add the transition Ctl a[x/ [X,Y]J, Ctl. O 

The following theorem establishes a complete version of the construction. 
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THEOREM 5.25. For each opaque basic parallel specification E, with initial name I, there 

exists a parallel pushdown automaton M according to the FSEB interpretation such that 

'J(M) <---->b 'JE(I). D 

PROOF. Let E be a basic parallel specification over a finite set of names N, and let I 

be an initial name of E. By Proposition 5.19 we can assume that E is in basic parallel 

normal form and that all states in the associated transition system are denoted with 

multisets of names. We define a parallel pushdown automaton M = (S,A, 'D,-+, i, !) 

as follows: 

1. S consists of state i and Ctl. 

2. A consists of all the actions occurring in E. 

3. 'D consists of the names occurring in E. 

4. -+ is defined as follows: 

a) for the initial name I EN, -+ has the transition i Tf*/ [I]J, Ctl 

b) for each summand a . .;, where .; E M(N) is a parallel composition of 

names, in the right-hand side of the defining equation for a name N, -+ 

has the transition Ctl a [Ng] , Ctl. 

5. i is the initial state, 

6. l consists of the state Ctl. 

Note that the only the only T-trans1t10n introduced in the trans1t10n system 

associated with M is inert. We leave it to the reader to verify that the relation 

'.R = { (I,(i,0))} u { c.;,(ctl, .;)) 1.; E M(N)} 

is a divergence branching bisimulation between the transition system associated with 

the basic parallel specification E for the initial name I and the transition system 

associated with M according to the FSEB interpretation. • 

Transparent specifications 

Now, if we have a transparent specification, each defining equation of a name has a 

1-summand. This means that termination is possible in every state of the transition 

system associated with a transparent specification. If we use a PPDA to simulate this 

specification, in a similar way as we have shown above, a multiset of names is stored 

in the bag. However, since all these names are transparent, we should be able to 

terminate at any moment during the simulation. Hence, by just choosing termination 

on final state instead of on both final state and empty bag we can obtain the desired 

result. Note that it should also be possible to always reach a final state. This is the 

case for our simulator PPDA, as one can always move to the state Ctl by means of an 

inert silent step. 

THEOREM 5.26. For each transparent basic parallel specification E, with initial name I, 

there exists a parallel pushdown automaton M according to the FS interpretation such 

that 'J(M) ~b 'JE(I). D 
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PROOF. The proof follows the lines of the proof of Theorem 5.25. Only now '.R is 
a branching bisimulation between the transition system associated with the basic 
parallel specification E for the initial name I and the transition system associated 
with M according to the FS interpretation. • 

Mixed opaque/transparent specifications 

We have just seen that for opaque specifications we require for the simulation that 
the bag is empty before termination can occur. For the transparent specifications 
we drop the empty bag requirement as we know that during simulation the bag 
always contains transparent names, i.e. names that may be skipped. However, if 
we have mixed opaque/transparent specifications, the bag may contain both opaque 
and transparent names during simulation. So, we would like that the PPDA only 
terminates if it is in a final state and the bag only contains transparent names. 

We add the termination condition on final state and transparent bag to the 
definition of transition systems associated with a PPDA. 

DEFINITION 5.27. Let 'J) - 1 ~ 'D be the data elements that are considered to be 
opaque, and 1)+1 = 'D \ 'J) - 1 the data elements that are transparent. 

If M is a parallel pushdown automaton and 'J(M) its associated transition system, 
then (s,v)l in 'J(M) iff sl and v(d) = 0 for all d E 'J)- 1 (the FSTB interpretation). 6. 

Note that if we define 'J) - 1 to be empty (and thus 1)+1 = 'D), we obtain 
termination on final state; the stack can only contain transparent data elements and 
the requirement v(d) = 0 (d E 'J) - 1

) is always met. Ifwe define 'J)- 1 to be equal to 'D, 
we obtain termination on both final state and empty stack; the stack can only contain 
opaque data elements and the requirement v(d) = 0 (d E 'J) - 1

) is only met if v = 0. 
However, if 'J) - 1 nor '1)+1 is empty, we conjecture the following. 

CONJECTURE 5.28. There exists a pushdown transition system according to the FSTB 
interpretation such that there is no pushdown transition system according to the FS nor 
to the FSEB interpretation that is branching bisimilar with it. D 

The class of pushdown transition systems according to the FSTB interpretation is 
incomparable to the class according to the FS and FSEB interpretation, as a result. 

To simulate a mixed opaque/transparent specification we can again reuse the 
construction described in the proof of Theorem 5.25. 

THEOREM 5.29. For each basic parallel specification E, with initial name I, there exists 
a parallel pushdown automaton M according to the FSTB interpretation such that 
'J(M) +--+b 'Ie(I). D 

PROOF. The proof follows the lines of the proof of Theorem 5.25. We not only define 
that 'D = N, but also that 1)+1 = N +1 and thus 'J) - 1 = N - 1

• 

Again, '.R is a branching bisimulation between the transition system associated 
with the basic parallel specification E for the initial name I and the transition system 
associated with M, but this time according to the FSTB interpretation. • 
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Note that this result includes the previous two results for opaque and transparent 

specifications. Indeed, we can take either 1)+1 or 'D- 1 to be empty and use the 

preceding correspondence result. 
The results for all three classes of specifications hold to up to branching 

bisimilarity. We think that it should be possible to obtain the result up to divergence­

preserving branching bisimilarity by storing additional information in the bag. We 

leave this to future work. 
Now, for the other direction, we have to determine how an arbitrary PPDA can be 

defined by a basic parallel specification. However, Christensen has shown in [Chr93] 

that this cannot be done for a simple PPDA such as the one shown in Example 5.10. 

This is due to the fact that a PPDA with a single state cannot be found for the 

language accepted by the PPDA in Figure 5.3, i.e. {anbn In 2:: 1 }. So, we proceed 

with the restriction that a PPDA must have a single state and obtain a rather weak 

correspondence between PPDAs and basic parallel specifications. Note, however, that 

the constructed PPDA in Example 5.24 is almost single-state, were it not that we have 

to put the initial variable in the bag. 

EXAMPLE 5.30. Consider the counter parallel pushdown automaton in Figure 5.5 

that has a single state. 
Now, consider the following basic parallel specification that defines this PPDA: 

der II N* = 1 + a.N. N1 , 

N1 ~ b.1; 

the initial name of this specification is N • . The associated transition system has been 

depicted in Figure 5.10. 

a a a 

b b b 

FIGURE 5.10: The transition system associated with the basic parallel 

specification defining the counter PPDA. 

The associated transition system above is isomorphic with the associated tran­

sition system of the counter PPDA according to the FSEB interpretation (see also 

Figure 5.6). If we want the same correspondence for the FS interpretation we have 

to add an extra 1-summand to the defining equation of N1 • O 

We can generalise this example to a more formal construction and obtain the 

following result. 

THEOREM 5.31. For every single-state parallel pushdown automaton M there exists a 

basic parallel specification E, with initial name I, such that 'JE(I) <-->t 'J(M). D 

- 96-



5.2. BASIC PARALLEL SPECIFICATIONS 

PROOF. Let M = ( { j } , A, '.D, --+ , j , i) be a single-state parallel pushdown automaton. 
We define a basic parallel specification E with a name N. with the following defining 
equation: 

N. ~ 1 + ~ a .N. II Nd II ... II Nd , L...J I n 
(T,a ,•, [d1 , •.. ,d,,], i) 

and for every data element d E '.D a name Nd with the following equation: 

Nd~ ~a.Nd II ... II Nd , L...J I n 
(T,a,d,[d, , ... ,dn],j) 

Note that for transitions that insert nothing, the resulting (empty) parallel compo­
sition Nd II ... II Nd is denoted by 1. We choose N. as the initial name. In case we I n 

interpret M according to the FS interpretation, we add a 1-summand to each defining 
equation. We leave it to the reader to verify that the relation 

is a divergence-preserving branching bisimulation and hence 'Je(N. ) '::::!~ 'J(M). • 

5.2.2 Decidability 

In [CHM93] a tableau decision method is presented to show the decidability of 
bisimulation equivalence on processes defined by BPP , a subtheory of BC Pr. In this 
section, we extend this tableau decision method so that it can also deal with the empty 
process and the deadlocked process. Similarly as for sequential specifications, we only 
consider the decidability of strong bisimilarity in this part; we leave the extension 
to branching bisimilarity (preferably divergence-preserving) to future work. We 
will briefly discuss the methods, lemmas and theorems involved with using the 
tableau decision method to decide bisimilarity and mainly focus on the parts where 
adaptations are needed due to the presence of the constants O and 1. 

The main difference is that the constant 0 in the paper of Christensen, Hirshfeld 
and Moller is the identity element for both alternative and parallel composition, while 
in our setting 0 is the identity element for the alternative composition and 1 is the 
identity element for parallel composition. This subtle difference gives rise to some 
adjustments of the decision method and related proofs: 

- In our setting, 0 is not the identity element for parallel composition. For 
example consider the process expression p = a.1. It is clear that p II 0 '::::! a.O, 
which is not bisimilar to p; the deadlocked process cannot be removed from a 
parallel composition. We have to ensure that the proof system treats deadlock 
as a non-removable term. 

- Conversely, 1 is not an identity element for the alternative composition. To 
determine if p + 1 is bisimilar to q, we have to check that q has a termination 
option, and thus a 1-summand, too. 
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- Finally, we have a form of synchronised termination in the case of parallel 

composition. That is, a parallel composition can terminate if all of its 

components can terminate. 

Besides its role as the identity element for parallel compos1t10n, the empty 

process 1 allows us to have transparent names in a recursive specification. In the 

previous chapter we have seen that having transparent names can lead to unbounded 

branching in the transition system that can be associated with this specification. A 

requirement for the proof below is that the transition systems associated with the 

basic parallel specifications have bounded branching. The example below illustrates 

why this is the case; we refer to [BCT09, Corollary 4.5] for a formal argument. 

EXAMPLE 5.32. Let us reconsider Example 4.27 (on page 56), but we replace 

sequential composition by parallel composition: 

X~a .(XJJ Y)+b.1, 

Y~c.1+1. 

(For convenience, we use in this chapter xn to denote an n-fold parallel 

composition of X, e.g. X3 = XlJXIJX.) Also in this case the process yi can terminate and 

can perform a c-transition which leads to yi- 1 • However, it is not possible to "skip" a 

name by executing a c-transition from y i with 0 Si and go to y j with 0 S j < i - LO 

Deciding strong bisimilarity 

The tableau decision method is a goal-directed proof system. The method uses 

inference rules of the form 

rule name 

where p and q are process expressions and C an optional side-condition. The premise 

p = q is the goal to be achieved whereas the consequents p1 = q1, ••• ,pn = qn are the 

subgoals to be established. A tableau is a maximal proof tree using a specified set of 

rules. The rules we use here are shown in Table 5.1. These rules are the ones given 

in [CHM93] supplemented with the rule SumT to handle the case that there are 1-

summands along with the summation. When building a tableau and applying the 

rules, we refer to each premise and/ or goal as a node. For an example of a tableau, 

see Example 5.34 later on. 
The rule Ree takes care of applying the recursive definition of the name while 

at the same time unfolding a parallel composition. Let lj ~ L;EJy aj,i ·~j,i ( + 1) for 

1 S j Sn. We define the function unfi. used in the rule Ree to represent the unfolding 

of~ = Y1 II ... II Yn , as follows : 

n 

unf1CO = L L aj,i ·(Y1 JI . .. IJ lJ- 1 JI ~j,i II l}+1 JI. · . JI Yn) [ + 1).;E(N+1y · 

j=l iEJyj 
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Ree 

Sum 

SumT 

Prefix 

Subl 

SubR 

5.2. BASIC PARALLEL SPECIFICATIONS 

~=x 

L~= l a; .~; = L~1 bj ·Xj 
~~~~~~~~~~~~~~~~~~(*) 

{a;.~; = bf(i) ·Xf( i) }7=1 { bj ·Xj = ag(j) ·~g(j) }j"=1 
(*) where f : { 1, ... , n} ,_. { 1, ... , m} 

g : { 1, . . . , m} ,_. { 1, ... , n} 

L~= l a; .~ ; + 1 = 2:7=1 bj· Xj +1 
~~~~~~~~~~~~~~~~~~ (**) 
{a;.~; = b1co ·Xf(i) }7=1 { bj ·Xj = ag(j) ·~g(j) }}=1 

~II ri = P 

x II ri = P 

P =~II ri 

P = x II ri 

(**) where f : { 1, ... , n} ,_. { 1, ... , m} 
g : { 1, . .. , m} ,_. { 1, .. . , n} 

a.~ =a.x 

~=x 

if x c ~ and there is a dominated 
node labelled ~ = x or x = ~ 

if x c ~ and there is a dominated 
node labelled ~ = x or x = ~ 

TABLE 5 .1: The extended tableau rules. 

After applying the Ree rule, one can match summands using the Sum or SumT 
rule and remove matching prefixes using the Prefix rule. Before applying the Ree 
rule again, we need to perform a substitution using the Subl and SubR rules on the 
current node if they can be applied. This is possible if there is a node upward in 
the tree, called a dominated node, with ~ = x or x = ~ such that x c ~ for some 
well-founded ordering c that is defined in Definition 5.33 below. 

We denote constructed tableaux by T( ~ = x) where ~ = x is the label of the root; 
we denote paths by n and nodes by n, possibly with a subscript. If a node is labelled 
~ = x we write n : ~ = x. 

Rules may only be applied to nodes that are not terminal. A node is terminal if 
it is either a successful or unsuccessful terminal node. A successful terminal node is 
one labelled either ~ = ~ where ~ may be 1 (we assume that the empty multiset 

-99-



5 . PARALLEL PUSHDOWN SYSTEMS 

denotes 1) or 0 = 0. We have an unsuccessful terminal node if no rule can be applied. 

The Prefix rule cannot be applied if there is a prefix mismatch, i.e. a.~ = b.x and 

a =f. b. It can also be that the Sum rule cannot be applied, for example when a.~ = O 

or 0 = b.x or that the SumT cannot be applied because one side has a 1-summand but 

the other side does not. The rules Subl or SubR cannot be applied if the dominated 

nodes needed for substitution are missing. 
To check whether ~ .......... x holds, we try to find a tableau with ~ = x as the root 

node. If the tableau only has successful terminal nodes, we call it a successful tableau 

and we have shown that ~ and x are bisimilar. They are not bisimilar if none of the 

possible tableaux is successful. 
We have to show that the application of rules in a tableau always eventually stops. 

To show that each tableau is finite, and that there are finitely many tableaux we 

require a well-founded ordering on the multisets of names. The ordering is used in 

the side-conditions of the Subl and SubR rules. 
In the definition of this ordering we assume that there is some fixed total order 

on the names: N = {N1, ... ,Nn }. 

DEFINITION 5.33. We define a well-founded (lexicographical) ordering on all multi­

sets of parallel compositions of names N as follows : 

N~ ' 11 . .. llN~" c~' 11 .. . llN~" 

iff there exists j such that kj < lj and for all i < j we have k; = l;. 

EXAMPLE 5.34. Let us consider the following recursive specification: 

N 1 ~ a .(N2 llN3)+b.1+1 , 

N2 ~ a.(N2 II N4) + c.l , 

def 
N4 =a.N5 + b.1+1, 

N5 ~ a .(N4 II N5) + c.N6, 

N6~ 0. 

We fix the total ordering on the names as N6 < N5 < · · · < N1. If we now check 

whether N1 <=: N4 holds, we can construct the following successful tableau: 

N1 =N4 
-------------- Ree 

a.(N2 llN3) +b.1+1 = a.N5 +b.l+1 
------------------- SumT 

a.(N2 II N3) = a.Ns P f. 
re 1x 

_b_.l_=_b_._l Prefix 

N2 llN3 =Ns 
---------------- Ree 

1 = 1 

a.(N2 II N4 II N3) + c.N3 = a.(N4 II Ns) + c.N6 
------------------ Sum 

a .(N2 II N4 II N3) = a .(N4 II Ns ) Prefi x c.N3 = c.N6 Prefix 

N2 II N4 II N3 = N4 II N5 Subl N3 = N6 Ree 

N4 II Ns = N4 II Ns 0 = 0 
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In this tableau the Subl rule can be applied because using the well-founded ordering 
on the parallel compositions we have that N5 c N2 II N3 . ~ 

For this tableau decision method to work, we need to show that it is both sound 
and complete. First, we need to know that tableaux are finite and that there are 
hence only finitely many tableaux for each pair of process expressions. A proof for 
the following lemma is already provided by Christensen, Hirshfeld and Moller (as 
Lemma 3.2 in [CHM93]). We will not repeat the proof here as we did not adapt 
anything that might affect its validity. 

LEMMA 5.35. Every tableau for ~ = x is finite. Furthermore, there is only a finite 
number of tableaux for ~ = x. D 

The proof of the following completeness and soundness theorems are also mainly 
due to Christensen, Hirshfeld and Moller [CHM93] . 

THEOREM 5.36 (Completeness). If~::::! x then there exists a successful tableau with 
root labelled~ = X· D 

PROOF. It is easy to see that the added rule Sum T is forward sound, i.e. if the premise 
as well as all nodes above relate bisimilar processes then it is possible to find a set 
of goals relating bisimilar processes. Because the property holds for the added rule 
and the unfolding function unf1 preserves bisimilarity, the proof for this theorem is 
the same as the proof in [CHM93, Theorem 3.3). • 

The soundness proof relies on an alternative characterisation of bisimulation 
taken from [CHM93] and extended with termination conditions. 

DEFINITION 5.37. The sequence of bisimulation approximations {:::!n} ::"=o is defined 
as follows: 

- p +-+ 0 q for all process expression p and q; 

- p :::!n+l q iff for all a E An 

• if p--.£.... p' then there exists q' such that q ~ q' and p' +-+n q', 
• if q--.£.... q' then there exists p' such that p ~ p' and p' +-+n q', 
• if p l then q l and vice versa. D. 

Using bisimulation approximation sequences we can prove soundness of the 
tableau method. 

THEOREM 5.38 (Soundness). If there is a successful tableau labelled with root labelled 
~ = x then ~ +-+ x. D 

PROOF. Suppose T( ~ = x) is a tableau for ~ = x, and that ~ +j:: x. We shall construct 
a maximal path n = { ni : p = q } through this tableau starting at the root ~ = x in 
which Pi -:/=qi for each i. Hence the terminal node of this path cannot be successful, 
so T( ~ = x) is not successful. 
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While constructing n, we shall at the same time construct the sequence of natural 

numbers {mi : Pi +t!m; qi I Pi +---+j q; for all j < mi }. We shall also prove along the way 

that this sequence is non-increasing, and strictly decreasing through applications of 

the rule Prefix. Given ni: Pi= qi and mi, we get ni+I : Pi+l = qi+J and mi+l according 
to the following cases: 

- If Ree is applied to ni , then the consequent is ni+i and mi+l =mi. 

- If Sum is applied to ni> then there must be some consequent ni+I : Pi+J = qi+J 

with Pi+J +t!m; qi+J and Pi+J '=?j qi+! for all j < mi, so mi+l =mi. 

- If SumT is applied to ni> then there must be some consequent ni+I : Pi+J = qi+J 

with Pi+J +t!m, qi+ I and Pi+ I +---+j qi+ I for all j < mi, so mi+l = m;. 

- If Prefix is applied to ni, then the consequent is ni+l and mi+ I = mi - 1. 

- If Subl is applied to ni> then Pi = qi must be of the form ,;- II TJ = p with 

dominated node ,;- = x Cx c:: ,;-). Since between nj and ni there must have 

been an intervening application of the rule Prefix, we must have that mi < m j . 

We take the node ni+l : x II TJ = p , and show that we have some valid mi+I :::; mi, 

that is, that x II TJ +j! p . But this follows from ,;- .......... m, x and i;- 11 TJ +t!m, p. 

- The arguments for the application of the SubR are identical. 

That the above conditions hold of the resulting path is now clear. • 
With the modified tableau decision method for which we have shown that it still 

generates finitely many finite tableaux and the rules are still sound and complete, we 

have the desired result. 

COROLLARY 5.39. Bisimilarity is decidable on basic parallel specifications. 0 

5.3 Explicit Interaction 

In the previous chapter we have made the interaction within the pushdown automa­

ton explicit: a linear specification of the finite control of the pushdown automaton 

was put in parallel with a sequential specification of the stack. We have seen that 

this yielded an associated transition system that is divergence-preserving branching 

bisimilar with the original pushdown transition system. The result was obtained in 

two steps: first for pushdown automata with termination on both final state and 

empty stack, and then with termination on final state only. For the latter case we 

introduced an alternative definition of the stack, as there is no sequential specification 

of an always terminating stack. 
In this section we will do the same for the parallel pushdown automaton and 

see that the result becomes more clear-cut. However, we obtain results only up to 

branching bisimilarity due to the fact that removing data elements from a bag is not 

deterministic. For the parallel pushdown automata with termination on final state 

and termination on both final state and empty bag, we are able to use the same 

finite control, and just use a different specification of the bag. These specifications 

are the basic parallel specifications of the bag and the transparent bag that we have 
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seen before in Section 5.2.1. Since we are also interested in the relation between 
basic parallel specifications and the explicit interaction, we also investigate pushdown 
automata with termination on both final state and transparent bag. For this we shall 
present the partially transparent bag process, which is a concept in between the bag 
and the transparent bag. 

First, we consider parallel pushdown automata according to the FSEB inter­
pretation. Let M = (S,A, '.D, -> , l, !) be some parallel pushdown automaton. By 
Theorem 5.8 we can assume that M only has insert and remove transitions. We 
can now define the linear specification E10 capturing the finite control of M. For every 
state s E S we add to E1c a name Cs with the following defining equation (s, t E S, 
a E Ar> d E '.D): 

Cs ~ :L:a .i!d.Ct + L o?d .Cs,d [ + 1Js1, 
(s ,a ,•,d,t )E- dE'D 

and for every state s E S and data element d E '.D we add to Efc a name Cs,d with the 
following defining equation (s, t E S, a E A", d E '.D): 

La.et. 
(s,a,d ,0,t)E-

The names Cs (s E S) handle the insert transitions for state s and the detection 
whether some data element d can be found in the bag. The names Cs,d (s E S, d E '.D) 
handle the remove transitions for state s given that we know that data element d has 
been found in the bag. Note that these names also have a summand i!d.Cs to put the 
data element back in the bag to prevent that the removal of d becomes an irreversible 
choice. We will see later that this is necessary to prevent the creation of non-inert 
silent transition once abstraction has been applied over the communication between 
finite control and bag. 

EXAMPLE 5.40. Let us reconsider the parallel pushdown automaton in Figure 5.1 
(on page 82) . When applying the construction described above we get the following 
linear specification for the finite control: 

C ~ ·11 c ·11 c 71 c s -a.i. · s +c .i. · t +o. · s,1' 

Cs, l ~ i !l.Cs + b.Cs , 

Ct ~ o?l.Ct,l + 1 , 

Ct,l ~ i!l.Ct + b.Ct. 

Now, if we put the finite control in parallel with the bag, we can obtain the 
following result for pushdown automaton with termination on both final state and 
empty bag. 

THEOREM 5.41. For every parallel pushdown automaton M according to the FSEB 
interpretation there exists a linear specification E1c and linear process expression p, such 
that 'J(M) +-+b 'JE

1
,uE

8 
( [p II Bl ,0 ) . D 
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PROOF. The specification Efc is constructed for M as described above. We present 

some observations from which it is fairly straightforward to establish that 'J(M) '='b 
'JE1,uE

8
([p llB];,0 ). In our proof we abbreviate the process expression B II i!d1. l II·· · II 

i!dwl by B[d,, ... ,d"]' with, in particular, B0 =B. (Recall the infinite specification of the 

bag given on page 92.) 
First, note that the control process for some state s is not allowed to choose which 

data element to pick until the corresponding action is performed. Therefore, given 

that the multiset µ is not empty, we have for each d E µ that 

ai,oCCs II Bµ) oM ai ,o CCs,d II Bµ-[d]) ~ ai ,o CCs II Bµ) 

When the abstraction "i.0 (_) is applied, we get two inert '!"-transitions and obtain the 

following (intermediate) result: 

[Cs llBµJ . <--4b ~ [cs,d llBµ-[d]J . · 
l,O L..J l,O 

dEµ 

Hence, when a data element is removed from the bag, the control process has not 

made a choice yet as it can always reinsert it. This is different from the interaction 

between the control process and the stack in the proof of Theorem 4.42 (on page 70), 

since a pop from the stack is deterministic, i.e. one always receives the top element. 

Second, whenever 'J(M) has an insert transition (s,µ) ~ (t,µ l±I [d]), then 

and the '!" -transition resulting from applying '!" i,0 (_) is inert. 
Finally, whenever 'J(M) has remove transition (s,µ l±I [d]) ~ (t,µ), we first use 

the fact that [cs II Bµ l!J[d] J . <--4b [cs,d II Bµ] . , non-deterministically removing data 
l ,O l ,O 

element d, and then finish with 

• 
Now, for the other direction. We can show that if we have a process defined 

by a linear specification that communicates with the bag, we can find a PPDA that 

simulates the behaviour of the two specifications put in parallel. 

THEOREM 5.42. For every linear specification E and linear process expression p there 

exists a parallel pushdown automaton M according to the FSEB interpretation such that 

'JEuE
8 

( [p II B J;,0 ) <--4b 'J(M). D 

PROOF. Let E be a linear specification and let p be a linear process expression. We 

define a parallel pushdown automaton Mas follows: 

- The set of states, the action alphabet, and the initial and final states are the 

same as those of the transition system 'JE(p) (which is a finite automaton). 

- The set of data symbols is the set of data 'D of the presupposed recursive 

specification of the bag. 
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- Whenever s ~tin 'JE(p ), and a=/= i!d, o?d (d E 'D), then s ~ t; 
- whenever s ~ t for some d E '.D in 'JE(p ), then s -r[ •/ [ d]J, t; 

- whenever s ~ t for some d E '.D in 'JE(p ), then s ~ t. 
We omit the proof that every transition of 'J EUE" ( [p 11 B ];) can be matched by a 
transition in 'J(M) in the sense required by the definition of divergence-preserving 
branching bisimilarity. • 

To obtain the same results for parallel pushdown automata according to the 
FS interpretation, we only have to replace the bag by the transparent bag (see 
Definition 5.23) . If we apply the same constructions explained above, termination 
will occur when the final control is in a final state, because the transparent bag can 
always terminate. We get the following results, but shall omit the proofs. 

THEOREM 5.43. For every parallel pushdown automaton M according to the FS 
interpretation there exists a linear specification Efc and linear process expression p, such 
that 'J(M) ~b 'JE uE, ( [P II B1

] . ), and vice versa. D fc B l ,O 

To also have the same results for parallel pushdown automata according to the 
FSTB interpretation, we have to replace the bag again. 

DEFINITION 5.44. Let '.D - 1 <; '.D be the data elements that are considered to be 
opaque, and 1)+1 = '.D \ '.D- 1 the data elements that are transparent. 

We define the partially transparent bag, a mix of the specification of the bag and 
the transparent bag, by the following basic parallel specification: 

BP1 ~1 + "" i?d.(BP1 II o!d.l) + "" i?d.(BP 1 II (o!d.l + 1)) . l ,O L...J, l,O L...J, 1,0 

dE'D- 1 dE'D+ 1 

We refer to this specification as EBP'. 

Now, if we apply the same constructions explained above, termination will occur 
when the final control is in a final state and the partially transparent bag contains no 
opaque data elements. 

THEOREM 5.45. For every parallel pushdown automaton M according to the FSTB 
interpretation there exists a linear specification Efc and linear process expression p, such 
that 'J(M) +->b 'JE uE , ( [P II BP1

] . ), and vice versa. D fc BP l ,O 

We have seen in Section 5.2.1 that basic parallel specifications can be simulated 
by a PPDA (according to the FSTB interpretation). We have also seen in the theorem 
above that each PPDA according to the FSTB interpretation can be defined by a linear 
specification for the finite control of the PPDA and a basic parallel specification of the 
partially transparent bag memory, combined in a single specification that allows for 
communication between both components. Indirectly; we have established that each 
basic parallel specification can be written as a linear specification communicating 
with a partially transparent bag. Therefore, we can consider the partially transparent 
bag, with its basic parallel specification, as the canonical basic parallel process. 
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COROLLARY 5.46. For every basic parallel specification E and basic parallel expression p 

there exists a linear specification Efc and linear process expression q such that 

D 

PROOF. The result follows from Theorems 5.29 and 5.45. • 
Note that the same result was obtained directly for basic parallel specifications 

in [BCT09]. 

5.4 Conclusions 

In this chapter we have followed the lead of the previous chapter and investigated 

a parallel, commutative version of pushdown automata and context-free languages. 

We have seen the definition of the parallel pushdown automaton, which is basically 

a pushdown automaton equipped with a bag memory instead of a stack memory. 

The replacement of the type of memory leads to subtle differences in semantics with 

respect to the regular pushdown automata, such as the removal of a data element 

from the memory not being deterministic and not being able to test whether the 

memory is empty. 
We have investigated the differences in classes of parallel pushdown transition 

systems if we use different termination conditions: termination on empty bag (EB) , 

on final state (FS) , and on both final state and empty bag (FSEB). We have shown that 

the class according to the EB interpretation is, up to divergence-preserving branching 

bisimilarity, a proper subclass of the class according to the FSEB interpretation. If 

we drop divergence-preservation and consider parallel pushdown automata that are 

initially terminating, then the class of parallel pushdown transition systems according 

to the EB interpretation coincides with the class according to the FSEB interpretation. 

The class according to the FSEB interpretation turns out to be incomparable, up to 

branching bisimilarity, with the class according to the FS interpretation. Unlike for 

pushdown transition systems, this is also the case without divergence-preservation. 

Therefore, we have considered the correspondence results both the FSEB and FS 

class. 
We proposed basic parallel specifications as the specification language for the 

class of parallel pushdown systems. A basic parallel specification is a finite recursive 

BCP,r-specification (assuming an empty communication function). This specification 

language extends a traditional language for similar kinds of systems, called BPP, 

with 0, 1 and prefixing. It also is the parallel counterpart of the sequential 

specifications of the previous chapter where sequential composition is replaced by 

parallel composition. We have seen that we can find parallel pushdown automata 

that simulate, up to branching bisimilarity, opaque and transparent basic parallel 

specifications, respectively by using the FSEB and FS interpretations. To be able 

to simulate mixed opaque/ transparent basic parallel specifications we added the 

termination condition on both final state and transparent bag (FSTB) . This means 
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that the bag can terminate if it only contains data elements from a designated 
"transparent" subset of data elements. In the other direction we have seen that 
only single-state PPDAs can be defined by a basic parallel specification. Hence, the 
correspondence between PPDAs and basic parallel specifications is rather weak. 

As basic parallel specifications play an important role in this chapter, we have 
shown that it is possible to decide if two basic parallel specifications have the same 
associated transition system up to (strong) bisimilarity, extending earlier work for 
BP P -specifications. 

From a process-theoretic perspective it makes sense to make the interaction 
with the bag in a PPDA explicit. We can do this by giving a linear specification 
representing the finite control of the PPDA and put it in parallel with a specification 
of a bag, allowing communication over an input and output channel for inserting 
and removing data elements. We have established this correspondence for parallel 
pushdown automata according to the FSEB, FS and FSTB interpretations by using the 
same linear specification of the finite control and respectively the bag, the transparent 
bag and the partially transparent bag. 

Figure 5.11 presents a schematic overview of the correspondence results for 
all three interpretations from a process-theoretic point of view. Note that there 
is an indirect correspondence between basic parallel specifications and the explicit 
interaction. Because the (partially transparent) bag can be defined by a basic parallel 
specification, and all basic parallel specifications can be given as a finite-state process 
communicating with this bag, the (partially transparent) bag can be considered as 
the canonical basic parallel process . 

.. - - - - - - - - - - - -, 
PPDAs 

Thm. S.25/ Thm. 5.26/Thr°"1. 5.29 basic parallel 
specifications 

: single-state r-: --+---.c---------'---+< 
1Theorem 5.31 opaque/ trans./mixed 

,-----------------. 
' ' 
' ' 

Thm. 5.41 , Thm. 5.42/ 
Thm. 5.43/ 
Thm. 5.45 

I 

I 

parallel pushdown ; 
transition systems ; 
FSEB/ FS/ FSTB 

,_ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ... 

Explicit 
interaction 
[p II BJ--1------------ ---------------
[P II B'f;1----- -- --- ---------------------_-_-_-________ ____ __ _ 
[P II BPt ~----- --- --- --------------------

: 

--

FIGURE 5.11: Correspondence results for the FSEB/FS/FSTB interpretations. 
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5.4.1 Future Work 

The decidability result discussed in Section 5.2.2 should be extended to branching 
bisimilarity (preferably divergence-preserving). However, this has been an open 
problem for a long time. 

We have seen that only single-state PPDAs can be defined by a basic parallel 
specification. A more suitable candidate could be Petri nets instead of basic parallel 
specifications, as was shown by Moller in [Mol96] . However, Hirshfeld and Moller 
have shown later in [HMOl] that there are Petri nets that cannot be simulated by 
a PPDA. Thus, it is necessary to find a appropriate restriction on Petri nets for the 

correspondence with PPDAs. 
Recall that we use a technique to avoid making a choice when removing 

something from the bag in the definition of the linear specifications of the finite 
control of a PPDA. Namely, when some data element is picked from the bag, it can 

always be put back in the bag. While this makes the initial -r-transition to remove 
the data element inert up to branching bisimilarity, it does introduce divergence. The 
question remains whether this can be done without introducing divergence and thus 
lifting the correspondence results to divergence-preserving branching bisimilarity. 

Another question is whether the introduction of the FSTB interpretation is really 
necessary. In the previous chapter we remarked that it might be possible to simulate 
mixed opaque/ transparent sequential specifications by a PDA with termination on 
both final state and empty stack. This would be, however, at the cost of switching 
to the weaker contrasimulation equivalence. It would be worth investigating if such 
an approach would work here as well as an alternative solution to using the FSTB 
interpretation. 

Finally, in the conclusions of the previous chapter we have suggested to define and 
investigate deterministic pushdown automata (see page 76) . Similarly, it would be 
interesting to define deterministic parallel pushdown automata and investigate the 

expressivity of this class using parallel pushdown transition systems. 
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Chapter 6 

Computable & Executable Systems 

The Turing machine [Tur37] is widely accepted as a computational model suitable for 
exploring the theoretical boundaries of computing. It is used in computability theory 
to formally characterise the notion of effectively calculable function. An effectively 
calculable function is a function for which there exists an algorithm that can calculate 
its values. It was later shown that the Turing machine characterises the same notion 
of effectively calculable function as the separately proposed notions of recursive 
functions by Kleene in [Kle36] and A-calculus by Church in [Chu36]. 

Motivated by the existence of universal Turing machines, many textbooks on the 
theory of computation (e.g., [Sud88, Sip97, HMU06]) present the Turing machine 
not just as a theoretical model to explain which functions are computable, but, in 
fact, as an accurate conceptual model of the computer. For instance, Sipser writes 
in [Sip97] that "[a] Turing machine can do everything a real computer can do." This 
statement is sometimes referred to as the strong Church-Turing thesis, as opposed 
to the normal Church-Turing thesis according to which every effectively calculable 
function is computable by a Turing machine. 

There is, however, a limitation to viewing the Turing machine as a conceptual 
model of a computer. A Turing machine operates from the assumptions that: (1) 
all the input it needs for the computation is available on the tape from the very 
beginning; (2) it performs a terminating computation; and (3) it leaves the output 
on the tape at the very end. That is, a Turing machine computes a function, and thus 
it abstracts from two key ingredients of computing: interaction and non-termination. 
Nowadays, most computing systems are so-called reactive systems [HP89], systems 
that are generally not meant to terminate and that consist of a number of computing 
devices that interact with each other and with their environment. A reactive system 
often unremittingly depends on input, and unremittingly produces output. 

Towards the end of the 1970s, Milner observed that, for a thorough investigation 
of interaction and concurrency, it is profitable to study these notions in isolation 
rather than to try and add them to any of the existing models of computation. One 
of his desiderata for the design of CCS was "that there be only a single combinator 
for combining processes which interact or which coexist" [Mil93]. In particular, also 
the interaction of a computing device with its memory should be modelled using 
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a symmetric notion of interaction, considering the memory as a separate process. 
Concurrency theory has provided us with a fundamental understanding of interaction 

and non-termination. 
In Section 6.1 we propose a notion of reactive Turing machine (RTM), extending 

the classical notion of Turing machines with interaction in the style of concurrency 
theory. The extension consists of a facility to declare every transition to be either 
observable, by labelling it with an action symbol, or unobservable, by labelling it 
with -r . Typically, a transition labelled with an action symbol models an interaction of 
the RTM with its environment (or some other RTM), while a transition labelled with -r 
refers to an internal computation step. Thus, a conventional Turing machine can be 
regarded as a special kind of RTM in which all transitions are declared unobservable 

by labelling them with -r . 
The semantic object associated with a conventional Turing machine is either the 

function that it computes, or the formal language that it accepts. The semantic 

object associated with an RTM is a behaviour, formally represented by a transition 
system, as we have also done in the previous chapters. A function is said to be 
effectively computable if it can be computed by a Turing machine. By analogy, we 
say that a behaviour is effectively executable if it can be exhibited by a reactive Turing 
machine. In concurrency theory, behaviours are usually considered modulo a suitable 
behavioural equivalence. Also in this chapter we shall mainly use (divergence­

preserving) branching bisimilarity. 
In Section 6.2 we set out to investigate the expressiveness of RTMs up to 

divergence-preserving branching bisimilarity. We shall present an example of a 
behaviour that is not effectively executable up to branching bisimilarity. Then, we 
establish that every computable transition system with a bounded branching degree 
can be simulated, up to divergence-preserving branching bisimilarity, by an RTM. If 
the divergence-preservation requirement is dropped, even every effective transition 
system can be simulated. These results will then allow us to conclude that the 
behaviour of a parallel composition of RTMs can be simulated on a single RTM. 

In Section 6.2.4 we define a suitable notion of universality for RTMs and 
investigate the existence of universal RTMs. We shall find that, since bisimilarity is 

sensitive to branching, there are some subtleties pertaining to the branching degree 
bound associated with each RTM. Up to divergence-preserving branching bisimilarity, 
an RTM can at best simulate other RTMs with the same or a lower bound on their 

branching degree. If divergence-preservation is not required, however, then universal 

RTMs do exist. 
In Section 6.3, we consider the correspondence between RTMs and the process 

theory TCPr. We establish that every executable transition system is, again up to 
divergence-preserving branching bisimilarity, definable by a finite recursive TCPr­
specification. As we have seen in previous chapters, recursive specifications are the 
process-theoretic counterparts of grammars in the theory of formal languages. Thus, 
the result in Section 6.3 may be considered as the process-theoretic version of the 
correspondence between Turing machines and unrestricted grammars. Furthermore, 

the finite recursive TC Pr-specification actually consists of a specification of the finite 
control of the RTM that interacts with a specification modelling a tape. Thus, as an 
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interesting corollary, we obtain a specification that makes the conceptual interaction 
within a reactive Turing machine between its finite control and its tape memory 
explicit; similar results have also been obtained for pushdown automata and parallel 
pushdown automata in the previous chapters. 

Several extensions of Turing machines with some form of interaction have been 
proposed in the literature, already by Turing in [Tur39] , and more recently, when 
there was renewed interest in the matter, in [LWOO, GSAS04, GSW06, BGRR07, 
WL08]. The goal in these works is mainly to investigate to what extent interaction 
may have a beneficial effect on the power of sequential computation. Interaction is, 
e.g. , added by allowing an algorithm to query its environment, or by assuming that 
the environment periodically writes a write-only input tape and reads a read-only 
output tape of a Turing machine. Thereby, the focus remains on the computational 
aspect, and interaction is not treated as a first-class citizen. Our goal, instead, is to 
achieve integration of automata and concurrency theory that treats computation and 
interactivity on equal footing. 

The material in this chapter is based on the following publication: 
[BLTllb] J . C. M. Baeten, B. Luttik, and P. J. A. van Tilburg. "Reactive Turing 

Machines". In: Proceedings of FCT 2011 . Ed. by 0. Owe, M. Steffen, and 
J. Telle. LNCS 6914. Springer, 2011 , pp. 348-359. 

This is an abstract of the following full version technical report: 
[BLTllc] J. C. M. Baeten, B. Luttik, and P. J. A. van Tilburg. Reactive Turing Ma­

chines. Tech. rep. arXiv:1104.1738v3. Cornell University Library, 2011. 

6.1 Reactive Turing Machines 

For an RTM we add to the finite set of data symbols 1J a special symbol o to denote 
a blank tape cell, assuming that D <f. 'IJ ; we denote the set 1J u { o} of tape symbols 
by 1J0 . In our definition, following the original definition of the Turing machine, we 
allow head movements to the left (L) and right (R); we use M to range over { L,R }. 

DEFINITION 6.1. A reactive Turing machine (RTM) Jv( is a six-tuple (S,A,'IJ,-+, i,!) 
where 

1. S is a finite set of states; 

2. A a finite set of actions; 

3. 1J a finite set of data; 

4. -+ s; S x 1J0 x A r x 1J0 x { L,R} x S is a (1J0 x A r x1J0 x { L ,R })-labelled relation 
on S, 

5. i E S is the initial state, and 
6. ! s; S is the set of final states. 
An RTM is deterministic if (s , d ,a, e1, M1, t1 ) E-+ and (s , d,a, e2 , M2 , t2 ) E-+ implies 

that e1 = e2 , t1 = t2 and M1 = M2 for all s ,t1't2 E S, d,e1,e2 E 1J0 , a E A n M1, M2 E 
{ L,R}, and, moreover, (s, d , -r, e1,M1, t 1 ) E -+ implies that there do not exist a f:. -r, 
e2 , M2 , t2 such that (s, d, a, e2 , M2 , t2 ) E -+. !:!. 
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If (s,d,a,e,M,t) E ---->, we writes a[d /e JM, t. The intuitive meaning of such a 

transition is that whenever M is in state s and d is the symbol currently read by the 
tape head, then it may execute the action a, write symbol e on the tape (replacing d), 
move the read/write head one position to the left or one position to the right on 
the tape (depending on whether M = L or M = R), and then end up in state t. 

RTMs extend conventional Turing machines by associating with every transition an 

element a E A-r. The symbols in A are thought of as denoting observable activities; 
a transition labelled with an action symbol in A will semantically be treated as 
observable. Observable transitions are used to model interactions of an RTM with 
its environment or some other RTM, as will be explained more in detail below when 
we introduce a notion of parallel composition for RTMs. The symbol -r is used to 

declare that a transition is unobservable. A conventional Turing machine is an RTM 

in which all transitions are declared unobservable. 

EXAMPLE 6.2. Assume thatA = {c!d,c?d I c E {i,o},d E '.D0 }. Intuitively, i and o are 
the input/ output communication channels through which the RTM can interact with 
its environment. The action symbol c!d (c E { i, o}) then denotes the event that a data 
element d is sent by the RTM along channel c, and the action symbol c? d ( c E { i, o } ) 
denotes the event that a data element d is received by the RTM along channel c. 

i?l [O/ l]R -r[l/l]L 

T[O/O]R 
T[l/l]R 

T[ l /l]R 

T[l/O] L 

o!l[ l / O]L 

FIGURE 6.1: An example of a reactive Turing machine. 

The state-transition diagram in Figure 6.1 concisely specifies an RTM that first 
inputs a string, consisting of an arbitrary number of ls followed by the symbol #, 

stores the string on the tape, and returns to the beginning of the string. Then, it 
performs a computation to determine if the number of ls is odd or even. In the first 
case, it simply removes the string from the tape and returns to the initial state. In the 
second case, it outputs the entire string, removes it from the tape, and returns to the 

initial state. O 

The semantics of a conventional Turing machine is either the function on natural 
numbers that it computes, or the formal language that it accepts. The function 
or the formal language associated with a Turing machine is determined by its 
set of computations, i.e., sequences of configurations leading from some initial 

configuration to a final configuration. A computation is, by definition, terminating 
and abstracts from the moments of choice. For RTMs to serve as models of reactive 
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systems, it is important not to discard their infinite behaviours. Furthermore, we are 
going to model interaction by allowing the environment or other RTMs to influence 
choices during the operations of an RTM. 

With every RTM M we are going to associate a transition system 'J(M). The states 
of 'J(M) are the configurations of the RTM, consisting of a state of the RTM, its tape 
contents, and the position of the read/ write head on the tape. We represent the tape 
contents by an eleme~t of '.D~, replacing precisely one occurrence of a tape symbol d 
by a marked symbol d, indicating that the read/ write head is on this symbol. We 
denote by D0 = { d Id E '.D0 } the set of marked tape symbols; a tape instance is a 

v * v string 8 E ('.D0 u 'D0 ) such that 8 contains exactly one element of 'D0 . Note that we 
do not use 8 exclusively for tape instances; we also use 8 for sequences over 'D. A 
tape instance thus is a finite sequence of symbols that represents the contents of a 
two-way infinite tape. Henceforth, we shall not distinguish between tape instances 
that are equal modulo the addition or removal of extra occurrences of the symbol D 
at the left or right extremes of the string. That is, we shall not distinguish tape 
instances 81 and 82 if o w81Dw = o w82Dw. Note that a marked blank symbol Dis 
considered as a non-blank symbol with respect to adding or removing blanks, e.g. 
8DDD=8DO. 

DEFINITION 6.3. A configuration of an RTM M = (S,A, 'D,-+, j, !) is a pair (s , 8) 
consisting of a state s E S, and a tape instance 8. !::,. 

Our transition system semantics defines an A-r-labelled transition relation on 
configurations such that an RTM-transition s a[d /e JM, t corresponds with a-labelled 
transitions from configurations consisting of the RTM-state s and a tape instance 
in which some occurrence of d is marked. The transitions lead to configurations 
consisting of t and a tape instance in which the marked symbol d is replaced by e, 
and either the symbol to the left or to right of this occurrence of e is replaced by its 
marked version, according to whether M = L or M = R. If e happens to be the first 
symbol and M = L, or the last symbol and M = R, then an additional blank symbol 
is appended at the left or right end of the tape instance, respectively, to model the 
movement of the head. 

It is convenient to introduce some notation to be able to concisely denote the 
new placement of the tape head marker. Let 8 be an element of '.D~. Then by o< we 

v * denote the element of ('.D0 u '.D0 ) obtained by placing the tape head marker on the 
right-most symbol of 8 if it exists, and o otherwise, i.e., 

8
< = {(d if 8 = (d (d E '.D0 ,( E '.D~ ) , and 

o if8=e. 

Similarly, by >o we denote the element of ('.D0 u D0 )* obtained by placing the tape 
head marker on the left-most symbol of 8 if it exists, and o otherwise, i.e., 

>8 = {d( if 8 = d( 
o if8=e . 

(d E 'D0 , ( E 'D~), and 
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We use this notation under the assumption that from D extra occurrences of the 
symbol O at the left and right extremes have been removed. 

DEFINITION 6.4. Let M = (S,A, 'D, ->, j, l) be an RTM. The transition system 'J(M) 

associated with Mis defined as follows: 

1. its set of states is the set of all configurations of M; 

2. its transition relation -> is the least relation satisfying, for all a E Ar> d, e E 'D0 

and DL, DR E 'D~ : 

a) (s, DLdDR) __!!_, (t, DL<eDR) iff s a[d/e]L, t, and 

b) (s, DLdDR) __!!_, (t, Dle >DR) iff s a[d/e]R , t; 

3. its initial state is the configuration (i, D); and 

4. its set of final states is the set of terminating configurations { (s, D) Is!} . /::;. 

Turing introduced his machines to define the notion of effectively computable 

function. By analogy, our notion of RTM can be used to define a notion of effectively 

executable behaviour. 

DEFINITION 6.5. A transition system is executable if it is associated with an RTM. 6. 

This definition automatically gives us the notion of an executable process. 

DEFINITION 6.6. An executable process is a divergence-preserving branching bisim­

ilarity class of labelled transition systems containing an executable transition sys­

ren 6. 

Parallel composition 

To illustrate how RTMs are suitable to model a form of interaction, we shall now 
define on RTMs a notion of parallel composition, equipped with a simple form of 

communication. (We are not trying to define the most general or most suitable 

notion of parallel composition for RTMs here; the purpose of the notion of parallel 

composition defined here is just to illustrate how RTMs may run in parallel and 

interact.) Let e be a finite set of channels for the communication of data symbols 
between one RTM and another, and let A'= { c!d, c?d I c Ee, d E 'D0 } ; it is assumed 

that A' s; A. 
First, we define a notion of parallel composition on transition systems. 

DEFINITION 6.7. Let T1 = (S1,->1, j 1,! 1) and T2 = (S2,->2, iz,!z) be trans1t10n 
systems, and let e' S:; e. The parallel composition of T1 and T2 is the transition system 

[T1 II T2 ] e' = (S,-> , i, !), with S, ->, j and! defined by 

1. S = S1 x S2 ; 

2. (s 1 ,s2 ) _E_, (s~,s;) iff a E A -r - { c!d, c?d I c Ee', d E 'D0 } and either 

a) s1 _E_, s~ and s2 = s;, or s1 = s~ and s2 _E_, s;, or 

b) a = -r and either s1 ~ s~ and s2 ~ s;, or s1 ~ s~ and s2 ~ s; for 
some c Ee' and d E 'D0 ; 
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3. i =Cl l• ii); and 

4. ! = {(s 1,s2) I s1 E ! 1 /\ s2 E !i }. 

Then, we can define a similar notion of parallel composition on the associated 
transition systems with RTMs. 

DEFINITION 6.8. Let M1 = (S1, -+1, i l• !1) and M2 = (S2, -+2, h !i) be RTMs, and 
let e' ~ e; by [M1 II M2] C' we denote the parallel composition of M1 and M2. 
The transition system 'J( [M 1 II M 2 ] C' ) associated with the parallel composition 
[M1 II c M2] c' of M 1 and M 2 is the parallel composition of the transition systems 
associated with M1 and M2' i.e., 'J( [M1 II M 2] c' ) = ['J(M1) II 'J(M2) J c' . 6 

EXAMPLE 6.9. Let JY( denote the RTM in Figure 6.1. Let A be as in Example 6.2 and 
let c denote the RTM in Figure 6.2 below. Then, the parallel composition [M II c]; ex­
hibits the behaviour of outputting, along channel o, the string 11#1111# · · · #1 n# ... 
(n 2: 2, n even) . O 

T[O/ l]R 
T[l/l]L 

i! #[O/ l]R 
i!l[l/l]R 

FIGURE 6.2: An RTM that enumerates and sends the string 1#11#111# . ... 

An unobservable transition of an RTM, i.e., a transition labelled with -r, may 
be thought of as an internal computation step. Divergence-preserving branching 
bisimilarity allows us to abstract from internal computations as long as they do 
not discard the option to execute a certain behaviour. The following notion will 
be technically convenient in the remainder of this chapter. 

DEFINITION 6.10. Given some transition system T, an internal computation from 
state s to s' is a sequence of states s 1, ••• , sn in T such that s = s 1 --1...+ •.. --1...+ sn = s'. 
An internal computation is called.fully deterministic iff, for every states; (1 :'.S i < n), 
s; ___E__, s;' implies a = -r and s;' = s;+i · We shall write s --» s' if there exists a fully 
deterministic computation from s to s'. 6 

It is easy to see that the following property holds for fully deterministic computa­
tions, as there is no branching. 

LEMMA 6.11. Let T be a transition system and lets and t be two states in T. Ifs --» s', 
then s and s' are related by the maximal divergence-preserving branching bisimulation 
ooT D 
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6.2 Expressiveness of RTMs 

To confirm the expressiveness of RTMs, we shall establish in this section that every 
effective transition system can be simulated by an RTM up to branching bisimilarity, 
and that every boundedly branching computable transition system can be simulated 
by an RTM up to divergence-preserving branching bisimilarity. We use this as an 
auxiliary result to establish that a parallel composition of RTMs can be simulated by 
a single RTM, and we derive from it the existence of universal RTMs. 

6.2.1 Effective & Computable Transition Systems 

Let T = (S, -+, T, 1) be a transition system; the mapping out: S -+ 2ATxs associates 
with every state its set of outgoing transitions, i.e., for alls ES, 

out(s) = { (a,t) Is ___g__, t} , 

and fin(_) denotes the characteristic function of ! . 

DEFINITION 6.12. Let T = (S, -+, i, !) be an AT-labelled transition system. We say 
that T is effective if -+ and ! are recursively enumerable. We say that T is computable 
if both the functions out(_) and.fin(_) are recursive. 6. 

The notion of effective transition system originates with Boudol [Bou85]. For the 
notion of computable transition system we adopt the definition from [BBK87]. 

We shall not go into the details of explaining more carefully what are suitable 
codings into natural numbers of A T and S, and how they should be extended 
to codings of -+, !, out(_) and fin(_) so that the formal theory of recursiveness 
makes sense for arbitrary (countable) transition systems. (The reader may want 
to consult [Rog67, §1.10] for more explanations.) If -+ and ! are recursively 
enumerable, then this, intuitively, means that there exist algorithms that enumerate 
the transitions in -+ and the states in ! . If the functions out(_) and fin(_) are 
recursive, then there exists an algorithm that, given a state s, yields the list of 
outgoing transitions of s and determines whether s E ! . Note that for an RTM the 
functions are given by definition. 

PROPOSITION 6.13. The transition system associated with an RTM is computable. D 

Hence, unsurprisingly, if a transition system is not computable, then it is not 
executable either. It is easy to define transition systems that are not computable 
(see the following example), so there exist behaviours that are not executable. The 
following example takes this a little further and illustrates that there exist behaviours 
that are not even executable up to branching bisimilarity. 

EXAMPLE 6.14. (In this and later examples, we denote by <px the partial recursive 
function with index x E N in some exhaustive enumeration of partial recursive 
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functions, see, e.g., [Rog67].) Assume that A= {a, b, c} and consider the A-labelled 
transition system T0 = (S0 , ->0 , i 0 , ! 0 ) with S0 , ->0 , i 0 and ! 0 defined by 

S0 ={ s,t, u, v, w}u{sx lxE N } , 

->0 = { (s , a , t) , (t , a , t) , (t , b, v ), (s, a, u), (u, a , u), (u , c, w)} 

U (s ,a ,s0 )} U { (sx,a,Sx+l) Ix E N } 

U { (sx , a , t), (sx , a , u) I <fJx is a total function} 

The transition system is depicted in Figure 6.3. 
a 

a 

FIGURE 6.3: The transition system T0 • 

To argue that T0 is not executable up to branching bisimilarity, we prove by 
contradiction. Suppose that T0 is executable up to branching bisimilarity. Then T0 is 
branching bisimilar to a computable transition system T~. Then, in T~ , the set of states 
reachable by a path that contains exactly x a-transitions (x E N) and from which both 
a b- and a c-transition are still reachable, is recursively enumerable. It follows that 
the set of states in T~ branching bisimilar to sx (x E N) is recursively enumerable. But 
then, since the problem of deciding whether from some state in T~ there is a path 
containing exactly one a-transition and one b-transition such that the a-transition 
precedes the b-transition, is also recursively enumerable, it follows that the problem 
of deciding whether <p x is a total function must be recursively enumerable too, 
which it is not. We conclude that T0 is not executable up to branching bisimilarity. 
Incidentally, note that the language associated with T0 is { a nb, anc I n?: 1}, which is 
recursively enumerable (it is even context-free). o 

Phillips associates, in [Phi93], with every effective transition system a branching 
bisimilar computable transition system of which, moreover, every state has a 
branching degree of at most 2. (Phillips actually establishes weak bisimilarity, but 
it is easy to see that branching bisimilarity holds.) 

DEFINITION 6.15. Let T = (S, ->, T, !) be a transition system, and let B be a natural 
number. We say that T has a branching degree bounded by B if, for every state s E S, 
lout(s)I :S B. We say that T is boundedly branching if there exists BE N such that the 
branching degree of T is bounded by B. 6 

PROPOSITION 6.16 (Phillips). For every effective transition system T there exists a 
boundedly branching computable transition system T' such that T+--+b T '. D 
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A crucial insight in Phillips' proof is that a divergence (i.e. , an infinite sequence 
of -r -transitions) can be exploited to simulate a state of which the set of outgoing 

transitions is recursively enumerable, but not recursive. The following example, 
inspired by [Dar89], shows that introducing divergence is unavoidable. 

EXAMPLE 6.17. Assume that A = {a, b}, and consider the transition system T1 

(S1 , ->1, Ti , ! 1) with S1, ->1, i 1 and li defined by 

S1 ={ 51 ,x, t l ,x lxE N } , 

->1 = { ( 5 1,x , a , 5 1,x+ l) Ix E N } U { ( 5 1,x , b , t 1,x ) I x E N } , 

i 1 = 5 1 ,0 , and 

!1 = { t1,x I (//x(x) converges} . 

The transition system is depicted in Figure 6.4. 

a 
- - - _., 

' ' 
FIGURE 6.4: The transition system T1 • 

Now suppose that T2 is a transition system such that T1 .......... ~ T2 , as witnessed by 
some divergence-preserving branching bisimulation relation ~; we argue that T2 is 
not computable by deriving a contradiction from the assumption that it is. 

Clearly, since T1 does not admit infinite sequences of -r-transitions, if ~ is 
divergence-preserving, then T2 does not admit infinite sequences of -r -transitions 
either. Let 5 1 be some state in T1 and 52 in T2 . It follows that if 5 1 ~ 52 , then there 

· , . T hth / m 1 d 1
" M · T exists a state 52 m 2 sue at 52 -..2 52 , 5 1 .A 52 , an 52 ---"-+> • oreover, smce 2 

is computable and does not admit infinite sequences of consecutive -r -transitions, a 
state 5; satisfying the aforementioned properties is produced by the algorithm that, 
given a state of T2 , selects an enabled -r -transition and recurses on the target of the 
transition until it reaches a state in which no -r -transitions are enabled. But then we 

also have an algorithm that determines if (/l x(x) converges: 

1. it starts from the initial state i 2 of T2 ; 

2. it runs the algorithm to find a state without outgoing -r-transitions, and then it 
repeats the following steps x times: 

a) execute the a-transition enabled in the reached state; 

b) run the algorithm to find a state without outgoing -r-transitions again; 

since i 1 ~ i 2 , this yields a state 52 ,x in T2 such that 5 1,x ~ 52 ,x ; 

3. it executes the b-transition that must be enabled in 52,x, followed, again, by the 
algorithm to find a state without outgoing -r -transitions; this yields a state t2 ,x, 

without any outgoing transitions, such that t 1,x ~ t2 ,x · 
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From t1,x '.R t2 ,x it follows that t2 ,x E !z iff <px (x) converges, so the problem of 
deciding whether <px(x) converges has been reduced to the problem of deciding 
whether t2 ,x E !z. Since it is undecidable if <px(x) converges, it follows that !z is 
not recursive, which contradicts our assumption that T2 is computable. <> 

6.2.2 Simulating Boundedly Branching Computable Transition Systems 

By Proposition 6.16, in order to prove that every effective transition system can be 
simulated up to branching bisimilarity by an RTM, it suffices to prove that every 
boundedly branching computable transition system can be simulated by an RTM. 

Let T = (Sr, ->r, T r' lr) be a boundedly branching computable transition system, 
say with branching degree bounded by B. We shall construct an RTM M = 

(SM, ->M, TM• hd, called the simulator for T, such that 'J(M) <-->~ T. 

Tape contents 

Let us assume encodings of the functions r _.., : out(_) -> N, r _.., : fin(_) -> N, and 
the sets r _.., : A "" -> { 1, ... , IA""I } and r _.., : Sr -> N; the simulator RTM M stores 
these functions, actions, states and transitions on its tape as natural numbers. The 
existence of the encodings of the functions out(_) and fin(_) is due to the fact that 
they are recursive. 

The way in which natural numbers are represented as sequences over some finite 
alphabet of tape symbols is largely irrelevant, but in our construction below it is 
sometimes convenient to have an explicit representation. In such cases, we assume 
that numbers are stored in unary notation using the symbol 1. That is, a natural 
number n is represented on the tape as the string 1n+1 of n + 1 occurrences of the 
symbol 1. In addition to the symbol 1, we use the symbols [ and ] to enclose the 
(static) codes of the two functions that steer the simulation of T on the tape, I to 
separate the elements of a tuple of natural numbers, and # to separate tuples. The 
RTM M constructed below will incorporate the operation of some auxiliary Turing 
machines that may use some extra encoding and symbols; let 'D' be the collection of 
all these extra symbols. Then the tape alphabet 'D of M is 

'D = { 1, [ , ] , I,# } u 'D' . 

We shall define M as the union of three fragments : an initialisation fragment, 
a state fragment, and a step fragment. The initialisation fragment prepares M for 
simulation, the state fragment calculates the possible transitions that can be taken 
from the current state and the step fragment actually simulates the step to the next 
state. See also the overview diagram in Figure 6.6 later on. 

Instead of directly using (conventional) Turing machines computing out(_) and 
fin(_) we store their codes on the tape and use a Turing machine to interpret these 
codes. This is slightly more generic than necessary; the advantage of proceeding 
in this way is that we can easily adapt the simulator to obtain a universal RTM (in 
Section 6.2.4). 

-119-



6. COMPUTABLE & EXECUTABLE SYSTEMS 

Initialisation fragment 

The initialisation fragment I nit prepares the tape for simulation of T by first writing 
the symbol [ on the tape, followed by (the codes of) the functions out(_) and fin(_) 

belonging to T which are separated by the symbol I. Then it writes the symbol ] 
on the tape followed by the code of the initial state of T . Thereafter, it returns the 
tape head to the symbol ] . Let M; be a (conventional) Turing machine that achieves 
precisely this; when started with an empty tape (D) , it halts with the tape instance 
[rout""Yfi.n']rh '. 

The set of states of In it is defined as 

its initial state is defined as 

i1nit = i M; ; and 

its set of transitions is defined as 

-+!nit= {(in, d, -r, e, M, in' ) I (in, d, e, M, in') E -+M , in' E S M \ LM } 
' ' ' 

U {(in, d, T, e, M, istate ) I (in, d, e, M, in' ) E -+M; ' in' ELM; } 

LEMMA 6.18. The fragment lnit has a fully deterministic internal computation from 

Ci1nit,D) to Cistate • [rout'lrfi.n']rh '). D 

State fragment 

The state fragment State replaces the code of the current state on the tape by a 
sequence of codes that represents the behaviour of Tin the current state. It is assumed 

that it starts with a tape instance of the form [r out'lrfi.n '] r s' with s E Sr . 
Recall that the functions out(_) andfi.n(_) are both recursive. Hence, by [Rog67] 

there exists a (conventional) deterministic Turing machine M 5 that, when it is started 

with a tape instance [rout'lrfi.n']rs' terminates with the tape instance 

[rout'lrfi.n']r(s E !r)?'lral 'I .. · lrak ' # rsl 'I·.· lrsk ' # ' 

where out(s) = {(a;,sJ I 1 :s i :s k} and rcs E !r)?' is a special code denoting 
fin(s), i.e. rtrue' or rfalse' . Note that, since the branching degree of T is bounded 

by B, we have that k :S B. We assume without loss of generality that the Turing 
machine Ms first copies the codes of out(_) and fin(_) to the right of the symbol] and 

thereafter never crosses this boundary symbol again for its computation. We refer to 
the sequence (s E !r )?,a1 ,. .. , ak that is generated and stored on the tape by Ms as the 
menu ins. 

The set of states of State is defined as 
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its initial state is defined as 

istate = i M, ; and 

its set of transitions is defined as 

-+state= {(st, d,T, e, M,st') I (st,d,e,M,st') E -+M" st' E Sstate \ ! M, } 

U { (st, d, T, e, M, istep) I (st, d, e, M,st') E -+M" st' E ! M, } . 

(Note how we associate with Jv(5 (a fragment of) an RTM by adding T-labels to its 
transitions.) 

LEMMA 6.19. The fragment State has afully deterministic internal computationfrom 
configuration (i State, [r out-Y fin•] r s ')for each s E Sr to 

(i Step, [r out'lr.fin •] rcs E !r )?'lr al 'I·. · lr ak '#r S1 'I·.· lr sk '#) , 

where the part at the right of the symbol ] on the tape represents the menu generated 
by applying the functions out(_) and.fin(_) to s. D 

Step fragment 

The purpose of the step fragment Step is to select an action a; from the set of enabled 
actions in the current state, execute that action, and remove r(s E !r )?'and all (codes 
of) actions and states from the tape, except the code of the target state of the a;­

transition. 
The state s in the simulated transition system T embodies a choice between its k 

outgoing transitions s ...EL. s1 , ••. , s ...Ek.... ski and is terminating if, and only if, s E !r- In 
order to get a branching bisimulation between T and the transition system associated 
with M, the latter will necessarily have to include a configuration offering the same 
choice of outgoing transitions and the same termination behaviour. It is important 
to note that branching bisimilarity does not, e.g., allow the choice for one of the 
outgoing transitions to be made by a computation (resulting in a sequence of T­
transitions) that eliminates options one by one. The fragment Step will therefore 
have to include a special state SP(sE!r)?,a, , ... ,ak' for every potential menu. (Note that, 

since k::::; B, there will be at most N = L~=o 2 · IArlk different menus in T.) 
The functionality of the step fragment is split up in two parts: before and after the 

simulation of an a;-transition. The first part uses the RTM Mpd to decode the menu 
on the tape ending up in the state sp(sE!r)?,a,,. . .,ak from which termination, if enabled, 
or an a;-transition can occur. In case the transition is performed, the second part finds 
the target states; of the a;-transition. The RTM Jv(pm will move the code rs;' to the 
right of the symbol ] and the RTM Mpc will empty the remaining part of the tape. 

The fragment Step starts from a tape instance of the form 

[rout'lr.fin•]r(s E !r)?'lra1 'I··· lrak '#rs1 'I··· lrsk '# 
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and then progresses to the state sp(sEh)?,a,, ... h ' while removing from the tape the 

symbols rcs E h )?""Ya1 'I · .· lr ak ' ; this is a matter of decoding the information on 
the tape. For this decoding part we assume that Mpd is an RTM that halts with 

the tape instance [rout'lr.fin']O ·· ·o# rs1'l·· · lrsk ' # . Among the states of Mpd 

we have the previously mentioned special states sp(sEh)?,a ,, ... ,ak for all (s E h ?) E 

{ true,false }, a 1 , • • • , ak E A ,,., k S B . A state SP(sEh )?,a, , ... ,ak is declared final if, and only 
if, s E h, and it has an outgoing a;-transitions to the states ne; (1 Si S k). 

After the decoding part, the action a; can be performed (while removing the 
symbol # ) and the fragment ends up in the state ne;. The goal of the states ne; 
down to ne1 is to find the code r s; ' , replacing the symbols preceding r s;.., by 0, and 
to yield the tape instance [r out'lr.fin '] 0 · · · 0 "'s;'I ... lrsk ' # . 

Let Mpm be an RTM that, when started with above tape instance, moves the 
found state code r s;' to the right of the symbol ] and halts with the tape instance 

[r out'lr.fin '] r S; 'O ... olrsi+J 'I ... 1rsk ' # . 
Then, let Mpc be an RTM that, when started with the above tape instance, empties 

the remaining part of the tape, moves the tape head back to the symbol ] and halts 
with the tape instance [rout'lr.fin']rs; '· 

The set of states of Step is defined as 

Sstep = (SM U{ne1, . .. , nea }U SM USM )\(!M U ! M U!M ) 
pd pm pc pd pm pc 

its initial state is defined as 

i Step = i M pd ; and 

its set of transitions is defined as 

-+step= { (sp , d, -r, e, M,sp' ) I (sp , d, -r, e, M,sp' ) E -+M } 
pd 

U { (SP(sEh),a, , ... ,ak' #, a;, 0 ,R, ne;) 

I ( s E Sy)? E { true ,false }, a 1 , • • • , ak E A -r, k S B, 1 S i S k } 

U { (nek> 1, -r, 0,R, nek ), (nek> I, 'r, O,R, nek_1) I 1 < k S B} 

U {(ne1, d ,-r,e ,M,sp')l(i M , d, -r , e, M,sp' )E-+M } 
pm pm 

U{(sp , d,-r,e, M,sp' )l(sp, d,-r, e,M,sp' )E-+M , sp' E SM \!M } 
pm pm pm 

u{(sp , d , -r ,e, M, i M )l(sp , d,-r,e, M,sp ' )E-+M ,sp' E!M } 
pc pm pm 

u{(sp , d, -r, e, M,sp') l(sp , d,-r,e, M,sp' ) E -+M ,sp'ESM \ ! M } 
pc pc pc 

U{(sp,d,-r,e ,M, istate)l(sp,d,-r,e, M,sp' )E-+M ,sp'E!M } . 
pc pc 

See Figure 6.5 for a schematic overview of the fragment Step. Note that in 
this figure - for clarity reasons - only one of possibly many states sp(sEiJ?,a, , ... ,ak and 
transitions thereto is drawn. 

As mentioned before we can split the fragment up in two parts; we obtain the 
following two lemmas. First, a lemma for the internal computation up until the 
action a ; can be performed. 
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Mpd I- ----- 5P (sE!)?,a 1 , ... ,ak 

T[l/D]R 

T[d/O]R 
(d E 'D) 

T[l/D]R ... 

T[d/D]R T[d/D]R 
(dE'D) (dE'D) 

FIGURE 6.5: Diagram of the step fragment. 

LEMMA 6.20. The fragment Step (using the auxiliary RTM Mpd) has a fully determin­
istic internal computation from 

CTstep• [rout"Yfin']r(s E !r)?'lra1 'I··· lrak '#rsi '1 · · · lrsk '#) 

to 

(sp .,ak' [r out'lrfin ']D ... o#rs] 'I·.· lr sk'#). (sEh)?,a 1,. D 

Second, a lemma for the internal computation after an action a; is performed. 

LEMMA 6.21. The fragment Step (using the auxiliary RTMs Mpm and MpcJ has afully 
deterministic internal computation from (ne;, [r out'lr.fin'] D · · · D ~s1 'I··· lr sk '#) to 

CT State• [r out'I r fin'] r S; '). D 

Simulator 

The simulator RTM M = (SM,-+M, j M• ! M) is defined as the combination of the 
fragments lnit, State and Step defined above. The set of states of M is defined as 
the union of the sets of states of all fragments : 

SM = S1nit U Sstate U Sstep ; 

the transition relation of M is the union of the transition relations of all fragments: 

SM = -+lnit U -+state U -+step ; 

the initial state of M is the initial state of I nit: 

i M = i1nit ; and 

the set of final states of M consists of the states of Step sp(s Elr )?,a, , ... ,ak where s is a final 
state in T 

!M = {sp(sElr)?,a 1, ... ,ak IS E !r} · 

Figure 6.6 schematically illustrates how the fragments are combined to constitute 
the simulator M. 
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-o ---G 
' Qi ~ 

[rout'lrfn']rs• • ~ --

1 st!te f ------------- · [r out'lr.fin •] rcs El )?'lr a:1 'I -- -lr a k '#r S1 'I· -- lrsk '# 

FIGURE 6.6: Diagram of the deterministic computable transition system 
simulator. 

THEOREM 6.22. For every boundedly branching computable transition system T there 

exists a reactive Turing machine M such that 'J(M) <-->f T. D 

PROOF. Consider the RTM M of which the definition is sketched above. Using 
Lemma 6.18 we define the following relation: 

'.Rr={ (h,t) It E { CT1nit,D), ... ,Cistate' [roufYJin']rh ')}} 

Using Lemmas 6.19, 6.20 and 6.21, we define the following relation for each s E Sr: 

'.R5 = { (s, t) I t E { (ne;, [r out'lrfin '] D · --D >rs1 'I -.. lrsk '#),. . ., 

(sp(sEfr)?,a, , ... ,ak ' [rout'rfin']D ... 0ifrs1 'I·.· lrsk '#)}} 

We can now define the relation 

The relation '.R is a divergence-preserving branching bisimulation between 'J(M) 

and T. • 

Combining the above theorem with Proposition 6.16 we can conclude that 
reactive Turing machines can simulate effective transition systems up to branching 
bisimilarity, but, in view of Example 6.17, not in a divergence-preserving manner. 

COROLLARY 6.23. For every effective transition system T there exists a reactive Turing 
machine M such that 'J(M) <-->b T. D 

Note that all computations involved in the simulation of T are deterministic (see 
Lemmas 6.18-6.21). Therefore, if Mis non-deterministic, then this is due to a state 
sp(sE!)?,a,, .. .,ak of which the menu includes some action a more than once. It follows 
that a deterministic computable transition system can be simulated up to divergence­
preserving branching bisimilarity by a deterministic reactive Turing machine. 

DEFINITION 6.24. A transition system T = (S,--+, j, D is deterministic if, for every 
states ES and for every a E Ar> s ~ s1 and s ~ s2 implies s1 = s2 • 6 
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Clearly, if T is deterministic, then, for every states in T, lout(s)I :S IArl· So a 
deterministic transition system is boundedly branching, and therefore we get the 
following corollary to Theorem 6.22. 

COROLLARY 6.25. For every deterministic computable transition system T there exists a 
deterministic reactive Turing machine M such that 'J(M) +->(}' T. D 

6.2.3 Parallel Composition 

Using Theorem 6.22 we can now also establish that a parallel composition of RTMs 
can be simulated, up to divergence-preserving branching bisimilarity, by a single 
RTM. To this end, note that the transition systems associated with RTMs are 
boundedly branching and computable. Further note that the parallel composition 
of boundedly branching computable transition systems is again computable. It 
follows that the transition system associated with a parallel composition of RTMs 
is boundedly branching and computable, and hence, by Theorem 6.22, there exists 
an RTM that simulates this transition system up to divergence-preserving branching 
bisimilarity. Thus we get the following corollary. 

COROLLARY 6.26. For every pair of reactive Turing machines M 1 and M 2 and for 
every set of communication channels e there exists an RTM M such that 'J(M) +->(}' 
'J( [M1 II M2] (J• D 

6.2.4 Universality 

A classical and central notion in the theory of computation is the universal Turing 
machine: a Turing machine that can simulate any arbitrary Turing machine on 
arbitrary input. Here, the (encoded) description of a Turing machine and the input 
are present on the tape beforehand. In this subsection we propose a notion of 
universal RTM and investigate to what extent such universal RTMs exist. Naturally, 
our notion of universal RTM should reflect our desiderata for introducing RTMs. 

Firstly, since our main aim is to formalise communication explicitly, we want a 
universal RTM to first receive input via communication rather than finding it on its 
tape at the beginning of its operation (recall our assumption that the tape of our RTM 
is initially empty). To this end, we associate with the encoding rM' of some RTM M 
(see [Rog67]) an RTM M that sends rM' along channel u, not used by M itself, and 
then terminates. This RTM M will be put in parallel with the universal RTM to be 
defined, abstracting from communication over the channel u. 

Secondly, the simulation of other Turing machines by a universal Turing machine 
is in the classical theory up to language equivalence. For example, Hopcroft, Motwani 
and Ullman define in [HMU06, Section 9.2.3] the universal Turing machine for the 
so-called universal language. Language equivalence is, however, too coarse if one 
is interested in the behaviour of an RTM rather than only the function it computes. 
Our notion of universal RTM should simulate every RTM up to divergence-preserving 
branching bisimulation instead of language equivalence. 
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An RTM U is universal (given some coding of RTMs) if for every RTM M it holds 

that 'J(M) <:::!t [ M II U Ju. However, we will show now that such a universal RTM U 

does not exist. 

PROPOSITION 6.27. There does not exist an RTM U such that for all RTM M it holds 

that [MllU]u -~'J(M). D 

PROOF. Assume the existence of a universal RTM U. Since U is an RTM, it has an 
associated transition system that has a branching degree bounded by, say, B. Now, 
assume an RTM M such that 'J(M) has no divergence and has a branching degree 

bounded by B + 1. In particular, 'J(M) has a states that realises the branching degree 

bound by having transitions a1, .. • , a8+1 to B + 1 pairwise non-bisimilar target states. 
If U were to simulate M up to divergence-preserving branching bisimulation, then 

there is a state s' in [ M II U Ju related to s that cannot do any (inert) -r-transitions, 

but still has to simulate all transitions of s. This means that s' must have a branching 

degree of B + 1. This is a contradiction. • 

If we insist on simulation up to divergence-preserving branching bisimilarity, then 
we need to relax the notion of universality. 

DEFINITION 6.28. An RTM U8 is universal up to branching degree B if for every 
RTM M with 'J(M) bounded by branching degree B it holds that 'J(M) <:::!t 
[MllU8 Ju. 6 

We now present the construction of a collection of RTMs U8 for all branching 

degree bounds B. For the remainder of this section let M = (SM,AM, 'DM, ---+M, i M> lM) 

be an RTM such that the branching degree of 'J(M) is bounded by B. From our 
Definition 6.12, Proposition 6.13, the explanations in [Phi93], and by applying 
some standard recursion-theoretic techniques such as the enumeration theorem 
(see [Rog67]), it can be shown that the codes of the functions out(_) and fin(_) 

belonging to 'J(M) are recursively computable from rM'. Therefore, we can reuse the 
simulator RTM defined in Section 6.2.2; it suffices to adapt its initialisation fragment. 

Instead of writing the codes of the functions out(_) and fin(_) and the initial state 
directly on the tape, the initialisation fragment lnitU receives the code rM' of an 
arbitrary M along some dedicated channel u, yielding the tape instance rM'. Let M,; 

be an RTM that handles the receiving and storing of the code rM-, over channel u 

when started from an empty tape. 
Then, it recursively computes, from rM', the codes of the functions out(_) 

and fin(_), and the initial state i M of 'J(M) and stores these on the tape. As 
mentioned before, these functions can be computed recursively, and let Mei be the 
deterministic Turing machine that, when started from the tape instance rM' halts 

With the tape instance [r out'lrfin '] rj M '. 

The set of states of lnitU is defined as 
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its initial state is defined as 

l1nitU = l M,; ; and 

its set of transitions is defined as 

~lnitU = {(in , d, -r, e, M, in') I (in, d, -r, e, M, in') E ~M,; ' in' E SM,; \ ! M,; } 

u { (in , d,-r,e , M, l M ) I (in,d ,-r,e, M, in') E ~M , in' E ! M . } 
Cl rl fl 

U { (in,d,-r,e,M,in') I (in , d ,e, M, in') E ~M , in' E SM . \ ! M . } 
Cl Cl Cl 

U { (in,d,-r,e,M, lstate) I (in,d,e , M,in' ) E ~M , in' E ! M . } 
Cl Cl 

Note that Lemma 6.18 holds for this fragment lnitU as well, albeit that the path 
constitutes of a different set of configurations. 

LEMMA 6.29. The fragment lnitU has a fully deterministic internal computation from 
Cl1nitu,D) to Cl state• [rouf-YJin•]rlM '). D 

Now, when the universal initialisation fragment sets up the simulation, the 
state and step fragments (that have already been defined in the previous sec­
tion) can perform the simulation as before. We define the universal RTM U8 = 
(Su

8
,Au

8
, U'B , ~u., l u

8
, ! u. ) for each branching degree B as the combination of 

the fragments lnitU, State and Step defined above. Recall that the fragment Step 
contains states for every possible menu but that these menus have a branching 
degree that is bounded by B. Because of this we can reuse the step fragment; the 
definition of fragment is independent of the transition function it is simulating and 
only parametrized by the branching degree bound B. 

The set of states of each particular U8 is defined as the union of the sets of states 
of the fragments: 

Su. = S1nitU U Sstate U Sstep 

the transition relation of U8 is the union of the transition relations of all fragments: 

the initial state ofU8 is the initial state of lnitU: 

l U 8 = l1nitU ; and 

the s~t of final states of U8 consists of the states of Step sp(sE!r)?,a, , ... ,a. where s is a 
final configuration in 'J(M) 

! u. = { SP(sEh )?,a1 , ••. ,a. I S E h} 

THEOREM 6.30. For every B there exists an RTM U8 such that, for all RTMs M with a 
branching degree bounded by B, it holds that 'J(M) <-->:- [ JY( II UB Ju" D 
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If we drop the requirement that the simulation has to be divergence-preserving, 

we can find a single universal RTM. We replace the Turing machine M ei in the 

fragment lnitU by an adapted version that besides calculating out(_) and fin(_) 

also modifies out(_) to reduce the branching degree to at most 2 [BBK87]. This is, 

necessarily, at the cost of introducing divergence. The resulting universal RTM 11 is 

universal up to branching bisimulation. 

THEOREM 6.31. There exists an RTM 11 such that, for all RTMs M, it holds that 

'J(M) +-+b [ M 1111 L D 

6.3 Explicit Interaction 

In this section we show that, up to divergence-preserving branching bisimilarity, every 

executable transition system can be specified using the process theory TCPr [BBR09]. 

We do this by showing, for any given RTM, the construction of a finite recursive 

specification over TCP'"" that simulates its behaviour. Our specification will consist of 

a finite specification of a process that is a translated version of the finite control of 

the RTM, and a finite specification of tape memory. We shall prove that the parallel 

composition of these specifications specifies a transition system that is divergence­

preserving branching bisimilar with the transition associated with the RTM. Further 

note that our specification deals explicitly with the interaction between the finite 

control and the tape of an RTM. 
It follows from results obtained by Vaandrager in [Vaa92] that every TCP'"' ­

specification induces an effective transition system. Hence, by Corollary 6.23, we 

also get the converse: every transition system definable in TCP'"" is executable up to 

branching bisimilarity. 
Since we will see that transition systems associated with TCP'"' -specifications can 

be simulated, up to branching bisimulation, by a finite control interacting with a 

queue (we will later see that we can obtain the tape process by supplementing a 

queue with some finite control), we can look upon the queue as the canonical TCP'"' ­

process. 
We could argue that TCP'"' -specifications can be considered as the process­

theoretic counterparts of unrestricted grammars. In automata and formal language 

theory a hierarchy of classes of languages with different expressivity is obtained by 

adding/dropping restrictions on the left-hand and right-hand side of grammars. In 

process theory, the stricter recursive specification format is used, and different classes 

of expressivity are obtained by allowing more/ less operators (notably the parallel 

composition) in the right-hand sides. This we have also shown for regular expressions 

in [BLMTlO]. For another study into the expressiveness of TCP'"" and the relation to 

different types of transition systems, we refer also to [Gla94]. 
We prove that for every reactive Turing machine M there exists a finite recursive 

TCP'"' -specification EM and process expression p such that 'J(M) +--+~ 'JEM (p ). For 

clarity, we will present EM in two steps. First, we will consider a finite recursive 

specification of the tape process ET and show its correspondence with an infinite 

specification of the tape process. Then, we will present a fair translation of the finite 

-128-



6.3. EXPLICIT INTERACTION 

control of an RTM into a finite recursive specification Efc We conclude by showing 
that the correspondence of the combined finite specification EM with the original 
RTM M holds. 

The tape 

The following infinite recursive specification E:;' specifies the desired behaviour and 
interface of a tape process T8ldo" for every possible tape instance (d E '.D0 , oL, oR E 
'.D~ ). Each name has an equation that expresses that the data element d under 
the head can be sent over channel r (read), a data element e can be received over 
channel w (write) to replace the data element under the head, and commands can be 
received over channel m (move) to move the head one position to the left (onto oL) 
or right (onto oR); each name has the following defining equation: 

def 2: T0 d· o = 1 + r!d.T0 d· o + w?e.T8 eo + m?L.T0 <do + m?R.T0 d >o • LR LR LR LR LR 
eE'D0 

Note that this specification allows reading and writing and moving independently, as 
it was also originally defined by Turing in [Tur37]. 

The specification of the tape process above is clearly infinite, since we have a name 
for each possible tape instance. Our aim is, however, to have a finite specification. 
In earlier work by Baeten, Bergstra and Klop in [BBK87] a finite specification of 
a Turing machine is given in ACP-r to simulate computable transition systems up 
to bisimilarity; the conventional Turing machine is simulated using finite control 
in parallel with two stacks. Their approach to model a tape as two stacks cannot 
be reused in our setting, which allows for states that can be terminating and have 
outgoing transitions at the same time. Their specification of the stack does not allow 
for intermediate termination, and it is not clear how to adapt it so that it does. 
Instead, we model the tape using a (first-in first-out) queue, which does allow for 
intermediate termination. 

The following infinite linear recursive specification E'(j specifies the behaviour of 
the process Q6 modelling a queue with contents o that receives input over channel i 
and sends output over channel o (for every d E '.D0 , o E '.D~ ): 

QE ~ 1 + L i?d.Qd ' 
d E'D 

Q ~ 1 + Id Q + ~ "? Q lid - O. · Ii L....J t.e . elid· 

eE'D 

Since we want the queue process to have a finite specification too, we use as a 
basis for the finite version the recursive specification originally given by Bergstra and 
Klop in [BK86], which uses six names, parallel composition, communication over an 
input channel i, output channel o and auxiliary channel e, and abstraction. Bezem 
and Ponse have shown in [BP97] that this finite recursive specification is branching 
bisimilar (without the termination conditions 3 and 4 of Definition 2.5) with the 
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infinite recursive specification given above. In their proof, they also show that the 
finite recursive specification does not have infinite -r -paths, so in effect they show 
divergence-preserving branching bisimilarity. 

An alternative finite recursive specification for the queue that we could have used 
is the one presented by Van Glabbeek and Vaandrager in [GV93]. Although this 
specification would be more in line with our specification of the stack and bag, it 
uses the renaming operator which is not in our specification language. 

The following specification EQ is an adaptation of the finite specification of 
Bergstra and Klop defining a version of the queue that always has the option to 
terminate. 

Q~k ~ 1 + L j?d. [et,/ II (1 + k!d.Qf'k ) J for all {j, k,p} = { i , o,f} . 
dE'D

0 
p 

Each name represents the process that receives data elements that are inserted 
over channel j, sends data elements that are removed over channel k, and uses the 
channel p internally. When we choose Qt as the initial name of this specification, it 
the same interface as the infinite queue specification E'(j . 

The first time the queue receives a data element, it splits into a two parallel 
components such that the first component is ready to receive new data elements 
and the second component retains the just received data element. From this moment 
on, every time a data element is received, a new parallel component is split off "to the 
right" to retain the received data element. See Figure 6. 7 for a diagram of the queue 
process; depicted is the state when a data elements O and 1 have been inserted. 

---- , ------, 
I · o I t 
I Q'e'o ~ I+e!l .Qo, I 

I I I 
L--- - L _____ _ 

I I 
1 + o!O.Q~ '0 1 

( - - - - - _I 

0 

FIGURE 6. 7: Diagram of the queue specification. 

When a data element is removed, the parallel component becomes "empty'' and 
the remaining data elements can be moved to the right by means of (encapsulated) 
communication over the internal channels, again resulting in splitting of the parallel 
components. See for example the following trace where data elements 0 and 1 are 
inserted and then removed: 

Qi 0 
__QQ,. [ Q~f II (1 + o!O.Q1'0 ) J f ~ [ [ Qi

0 II (1 + en.Q~,f) L II (1 + o!O.Q1'0 ) t 
~ [ [Qi,o II Qo,f ] II [Qf,i II (1 + o!l.Qi,o)] .] 

f l 0 0 f 'f 

~ [ [ Qi
0 II Q~.e L II [ Q~·i II Qt lJe 

At the end, we are left with many empty cells. However, it can easily be shown that 

[di/ II o!J'k J P -~ Q!pk. Thus, the empty cells can be collapsed and removed. 

The adaptation with respect to Bergstra and Klop's specification consists of the 
addition of a 1-summand to the defining equation of every name and to the right-most 
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component of the therein contained parallel composition. As a result, termination 
can occur in every state of the queue, and no other change in behaviour is incurred. 
Thus, similarly to [BP97] it can be proved that our infinite recursive specification is 
divergence-preserving branching bisimilar - this time with the termination conditions 
- with the finite recursive specification given above. 

LEMMA 6.32. We have that Qe <-->~ Q~0 • 0 

This lemma also allows us to use the more concise notation of the infinite specifi­
cation, Q15 for some 8 E '.D~ , for a state of the queue process defined by the finite 
specification in the proofs below. 

We can now define the finite recursive specification of the tape process ET as the 
finite recursive specification of the queue EQ and the following equations (d E '.D0 ) 

Hd ~ 1 + r!d.Hd + L w?e.He + m?L.H~ + m?R.H:, 
eE'D0 

H~ ~ i!d . ( L o?e.He + o? l_.i!$.i!l_ .Back) , 
eE'D0 

Back ~ L o?d .i!d.Back + o?$.H0 , 

d E'D0 

H: ~ i!$.i!d.( L o?e.Fwde +o?l_.Fwd.L ) , 
eE'D0 

Fwdd ~ L o?e.i!d.Fwde + o? l_.i!d.Fwd.L + o?$.Hd , 
eE'D0 

F d ~ ~? ·1l_p d ?$ "1l_H w .L - L.J o .e.l. . w e +o . . l. . 0 . 

eE'D0 

Unlike the stack, the queue allows us to reach any arbitrary data element 
contained within in a non-destructive way. We can repeatedly remove a data element 
from the queue over channel o and then insert it over channel i; we call this shifting. 
Doing this once is called a shift operation. Although shifting suggests the usage of a 
queue in a circular fashion, we have to map the (infinite and linear) data structure 
of the tape onto the queue. We use the queue to store only the part of the tape to 
the left of the head 8 L and to the right of the head 8 R and we keep the data element 
under the head d in a separate head process Hd. Additionally we use the marker l_ as 
special queue data element to separate the left from the right part and also to indicate 
that the tape can be extended on the left or on the right, when needed, by inserting 
elements between l_ and oL or between oR and _l_ respectively. Figure 6.8 illustrates 
the mapping of the tape instance oLdoR and a shift operation. 

In the recursive specification ET above the main process Hd models the situation 
that the data element d is at the position of the head. This process Hd is put in 
parallel with the queue process Q15R.L/5L and provides the interface to the tape. Read 
and write operations for the tape are dealt with by the head process without accessing 
the queue; shifting only occurs when a move is requested. This is another reason to 
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FIGURE 6.8: Diagram of the tape process. 

have a separate head process that directly handles a read and write operation without 

touching the queue: if the data element at the position of the head would be on the 

queue as well, every read or write operation for the tape would cause shifting and 

require additional operations to get the queue in the right state again. 

As mentioned above, moving the head to the left - handled by H~ - requires 

just one shift operation. However, we have to make sure not to remove the special 

marker 1- after inserting data element d in the case that the string to the left of the 

head (oL) is empty. If this happens, we insert a search marker$ followed by 1- and 

cycle through the queue completely until $ reappears. We get the following lemma 

that establishes that a move to the left behaves as expected using a fixed number of 

internal transitions. 

LEMMA 6.33. For every d E 'D0 , o L, o R E 'D0 * we have that 

D 

PROOF. We prove the validity of the equation by means of an equational reasoning 

using the axioms of Table 2.3 (on page 18) and RSP. Then, the lemma follows by 

Proposition 2.18 (on page 2.18). We distinguish two cases for oL in [HdL II Q0 u J. : 
R L 1,0 

1. If oL = (LdL, then H~ moves the tape head to the left by performing one shift 

operation. So, first the data element under the head d is prefixed to the string 

to right of the head (on), then the right-most date element (dL) of the string to 
the left of the head (oL) is removed and put it under the head (see Figure 6.8). 

[H~ II Q5 _i( d ] . = ·r. ·r. [Hd II Qdo _l( ] . = -r. [Hd II Qd o _l( ] . . 
R L L l ,O L R L l ,O L R L l ,O 

2. If oL = £, then H~ initially removes the special symbol 1- from the queue, inserts 

the special search marker $, reinserts 1- and then switches to Back. This will 

shift through the queue contents until $ is reached. At this point the queue is 

consistent again, so it removes the search marker and the blank symbol is put 

under the head. 
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[H~ 11 Q8 J_ J . = 'r. ·r. 'r. 'r. [Back 11 Qud 0 J . 
R l ,O H l ,O 

= 'L 'r. 'r. 'r.-r21dc5"1 . [Back II Qdo u ] . 
R 1,0 

- 2ldc5RI [H II Q J - 'r .'r.'r.'r .'r .'r. 0 dc5 J_ . 
R l,O 

= -r. [Ho II ~o J_ J . . 
R l ,O 

We can observe that there is a fixed upper bound of 2ldoRI + 5 to the number of 
-r-transitions (in the second case). Hence, there is no divergence. • 

Because shifting through the queue contents only goes in one direction, we have 
to use a different approach for moving the head to the right, which is handled by H:. 
This time we need to have the left-most data element of the string to the right of the 
queue (oR) and we will have to shift through the entire queue contents to reach it. 
We do this by inserting a search marker $ into the queue and shifting through it using 
a lookahead that remembers the data element that was previously removed from the 
queue. Once we encounter the search marker, we put this previously encountered 
data element under the head. 

LEMMA 6.34. For every d E '.D0 , oL, oR E '.D0 * we have that 

D 

PROOF. We prove the validity of the equation by means of an equational reasoning 
using the axioms of Table 2.3 and RSP. Then, the lemma follows by Proposition 2 .18. 

[H: II Qs u ] . = -r.-r.-r218L1+
1
. [Fwd_]_ II Qs d$o J. 

R L l,O L R l ,O 

{

'r .'r. 'r2lc5Ll+l .'r2ldRc5Rl. 'r. [Hd II Qc5 _l_c5 d] . if OR = dR(R 
_ R R L l ,O 

- -r. -r.-r21si1+1.'r.'r . [Ho II Qu d] . if OR= e 
l 1,0 

= 'r . { [ H dR II Qc5R_l_c5Ld ] i,o if OR = dR(R 

[Ho llQud ] . ifoR=e. 
L l,O 

We can observe that there is a fixed upper bound of 2loLdRoRI + 4 to the number 
of -r-transitions. Hence, there is no divergence. • 
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Putting everything together, we get the following result that shows that be­

havioural specification of the tape E';' is divergence-preserving branching bisimilar 

with the finite specification Er. 

LEMMA 6.35. For each tape instance oLdoR (oL,oR E 'D~,d E 'DoJ we have that 

T8id8R <->:- [Hd II Q8R.l8L J. . D 
l ,O 

PROOF. We prove the validity of the equation by means of an equational reasoning 
using the axioms of Table 2.3 and RSP. Then, the lemma follows by Proposition 2.18. 

T8id8R = [Hd II Q5RJ_8L J. 
l,O 

Now, expand the expression using axiom Mand move the initial actions of Hd outside: 

= 1 + r!d. [Hd II Q5 .t8 J. + ~ w?e. [He II Q5 .l8 J. 
R L l O ~ R L lO 

' eE'D0 ' 

+ m?L. [H~ II Q5 .l8 J. + m?R. [H: II Q5 .L8 ] . 
R L l,O R L 1,0 

By applying Lemma 6.33 and 6.34 and axiom B we get: 

= 1 + r!d.T8 d-8 + ~ w?e.T8 e8 + m?L.T8 <d8 + m?R.T8 d >8 . 
L R ~ LR LR LR 

eE'D0 

We can observe that there are no T-loops introduced by the specification. When 
moving left or right either one shift operation happens or we shift until the search 
marker is found, both yield a finite number of '!"-transitions. Hence, no divergence is 

introduced. • 

Finite control 

Let M = (S,A, 'D, -+, T, l) be some RTM. We can write its associated trans1t10n 

system 'J(M) as a linear specification E~, which is infinite if 'J(M) is infinite. 
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This recursive ~pecification E~ contains a name s s,o,doR for each reachable 
configuration (s , oldoR) (s E S, d E 'Do, ol , OR E 'Do*) from the initial configuration 
(j , 0). Each name S

5 0 iF is defined by the following equation: 
• L UR 

Ss,o,(J.OR ~ L:a.St ,o,<eoR + L:a .St,o,e >oR [ + lJs! . 
(s,d,a ,e,L,t)E-+ (s,d,a,e,R,t)E-+ 

Here, [ + I], ! indicates that the 1-summand is only present ifs is a final state. By 
construction the transition system 'J ~ (Sr 0 ) is isomorphic with 'J(M). 

M ' 

PROPOSITION 6.36. The transition system 'J(M) is divergence-preserving branching 
bisimilar with 'J ~ (Sr 0 ). D M ' 

Now that we have captured the behaviour of an RTM with an infinite recursive 
specification, it remains to construct a finite recursive specification and show that 
it is divergence-preserving branching bisimilar. We now present a finite recursive 
specification Efc for the finite control of M. For every state s E S and data element 
d E 'D0 we add the name Cs,d to Efc with the following equation (s,t ES, a EA."' 
d,e E 'D0 , ME {L,R }): 

cs,d ~ L (a.w!e.m!M. L r?f.Ct ,f ) [ + lJs!. 
(s,d,a,e,M,t)E-+ fE'D0 

In Efc each name c s,d represents the part of the finite control of the RTM execution 
process where a transition can be chosen based on the current state and data element 
under the head. Once some action a is non-deterministically chosen, the tape - as 
explained above - is instructed over channel w to write data element e on the place 
under the head, then it is instructed over channel m to move the head to the left or 
right and finally over channel r to read the data element f under the new position of 
the head. 

Now, if we put the finite control in parallel with the tape, we can obtain the 
following lemma. 

LEMMA 6.37. For each configuration (s , oLdoR) of a reactive Turing machine M we have 
that Ss 0 do .......... ~ [cs d II T0 do J . D ' L R ' L R r,w,m 

PROOF. In this proof we want to relate each reachable configuration, represented 
by the name s s,o,do , from the initial configuration of some RTM M to a name Cs,d 
in the finite contro1 specification Efc put in parallel with a tape process with the 
corresponding contents, while encapsulating and abstracting from communication 
between the finite control and tape process. For example, if we have an RTM that has 
the configuration (s , o L do R) and has the transitions a [d/eJL , t in its transition relation, 
then the desired relation between a step in (a part of) the transition system associated 
with the RTM and the transitions in the specification are shown in Figure 6.9. 
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a a 

[ w! e.m!L.2:/E"'- r?f.C,.f II T5 J5 ] 
.L..«LJ l R r,w,m 

FIGURE 6.9: Relation between an RTM transition and specification transitions. 

We now proceed to show that ~ is branching bisimilar with Efc u Er;;' by means 

of equational reasoning using the axioms of Table 2.3 and RSP. Then, the lemma 

follows by Proposition 2.18. 

s · - (c II T • ] s,li,dliR - s,d li,dliR r,w,m 

Unfold [cs d II T5 d.o J and, per transition, move the action outside (by applying 
' L R r w m 

almost all of the axio~s) . 

L a. [w!e.m!M. L r?f.Ct ,f II T 5,a5Rl [ + lJs i 
(s ,d,a,e,M,t)E- fE'D0 r,w,m 

Three communications with the tape follow by axiom CMS and are moved outside by 
Dl-DS and Tll-TIS. 

L:a. 'r. [m!M. L r?f.Ct J II T 0LeliR ] [ + lJsi 
(s ,d,a,e,M,t)E- fE'D0 r,w,m 

L:a. 'r. 'r. [ L r?f.Ct ,f II T 5L<eliR ] + 
(s,d,a,e, L,t)E- fE'D0 r,w,m 

L:a.'r. 'r. [ L r?f.Ct,f II T liLe >liR ] [ + l]s! 
(s,d,a,e,R,t)E- fE'D0 r,w,m 

~a . 'r.T. 'r.[cr g llTo < eli ] + ,L..J ' L R rw m 
(s,d,a,e,L,t)E- ' ' 

~ a.T.T.T. [er g' II T 0 e >li J [ + lJs! ,L..J ' L R rwm 
(s,d,a,e,R,t)E- ' ' 
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We can remove the three -r-transitions by axiom B. 

""a. [et g II T5 <eo ] + L.J ' L R rw m 
(s,d ,a,e,L ,t)E- ' ' 

"'a.[ccg' llToe >o J [+1Js1 L.J ' L R rw m 
(s,d,a,e,R ,t)E- ' ' 

L a.St,o,<eo• + L a.St,o,e >5• [ + lJs1 · 
(s,d,a,e,L,t)E- (s,d ,a ,e,R,t)E-

We can observe that no -r-loops or infinite -r-paths are introduced by the specification, 
nor by the queue as is shown in Lemma 6.33 and 6.34. Hence, there is no 
~~~. . 

We have now established a finite version of the specifications for all three 
components of an RTM. This brings us to the following main result. 

THEOREM 6.38. For every reactive Turing machine M there exists a finite recursive 
TC PT-specification EM. and TC PT-process expression p such that 'J(M) --~ 'JEM (p ). D 

PROOF. Choose EM. = Efc u Ey and p = [ Cr,o II [Ho II Ql_ l ,o] r,w,m· Then the theorem 
follows from Property 6.36 and Lemmas 6.32, 6.35, and 6.37. • 

As a corollary we find that every executable transition system is definable, up 
to divergence-preserving branching bisimilarity, by a recursive TCPT-specification. 
Since there exist recursive specifications with an unboundedly branching associated 
transition system (see, e.g., [BCLTIO], for the converse of the aforementioned 
theorem), we have to give up divergence-preservation. Since the transition system 
associated with a finite recursive specification is clearly effective, we do get, by 
Corollary 6.23, the following result. 

COROLLARY 6.39. For every finite recursive TCPT-specification E and TCPT-process 
expression p, there exists an RTM M such that 'JE(p) _.b 'J(M). D 

If we combine the above theorem with Theorem 6.22, Corollary 6.23 and 
Corollary 6.25 we get the following results. 

COROLLARY 6.40. Every boundedly branching computable transition system and every 
deterministic computable transition system is definable, up to to divergence-preserving 
branching bisimilarity, by afinite TCPT-specification. D 

COROLLARY 6.41. Every effective transition system is definable, up to branching 
bisimilarity, by a finite TCP T-specification. D 
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6.4 Conclusions 

We have proposed a notion of reactive Turing machine and discussed its expres­

siveness in bisimulation semantics. Although it is not the aim of this work to 

contribute to the debate as to whether interactive computation is more powerful 

than traditional computation, our notion of RTM may nevertheless turn out to be a 

useful concept in the discussion. For instance, our result that the parallel composition 

of RTMs can be simulated by an RTM seems to contradict the conjecture implied 

in [GSAS04, Section 11] that concurrent interactive computation is more expressive 

than sequential interactive computation. 
To be sure, however, we would need to firmly establish the robustness of our 

notion by showing that variations on its definition (e.g., multiple tracks or multiple 

tapes), and by showing that it can simulate the other proposals (persistent Turing 

machines [GSAS04], interactive Turing machines [LWOO, WL08]). We also intend to 

consider interactive versions of other computational models. The A-calculus would 

be an interesting candidate to consider, because of the well-known result that it is 

inherently sequential. This suggests that an interactive version of A-calculus will 

be less expressive than RTMs. In particular, we conjecture that the evaluation of 

parallel-or or McCarthy's amb can be simulated with RTMs. 

RTMs may also prove to be a useful tool in establishing the expressiveness of 

process theories. For instance, the transition system associated with a n-calculus 

expression is effective, so it can be simulated by an RTM, at least up to branching 

bisimilarity. The n-calculus can to some extent be seen as the interactive version of 

the A-calculus. We conjecture that the converse - every executable transition system 

can be specified by a n-calculus expression - is also true, but leave the details for 

future work. 
Petri showed already in his thesis [Pet62] that concurrency and interaction 

may serve to bridge the gap between the theoretically convenient Turing machine 

model of a sequential machine with unbounded memory, and the practically more 

realistic notion of extensible architecture of components with bounded memory. The 

specification we present in the proof of Theorem 6.38 is another illustration of this 

idea: the unbounded tape is modelled as an unbounded parallel composition. It 

would be interesting to further study the inherent trade-off between unbounded 

parallel composition and unbounded memory in the context of RTMs, considering 

unbounded parallel compositions of RTMs with bounded memory. 

In this chapter we have established that the simulation of other RTMs by a 

universal RTM is not possible up to divergence-preserving branching bisimilarity. 

An RTM can at best simulate other RTMs with the same or a lower bound on 

their branching degree. But we have also shown that if we drop the divergence­

preservation requirement, then universal RTMs do exist. 
Finally, we have considered the correspondence between RTMs and the process 

theory TCPr. We have seen that every executable transition system is, up to 

divergence-preserving branching bisimilarity, definable by a finite recursive TCP't"­

specification. Interestingly, sequential composition is not used at all in the specifica­

tions. This means that BCP't" is already sufficient and it can also be done with CCS. 
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Figure 6.10 presents a schematic overview of the main correspondence results of 
this chapter. If we consider these results, we can conclude that that bisimilarity gives 
a much finer perspective on the behaviour of Turing machines. 

RTMs 

' effective 

: tra!1~i!i~~ _s~~t=~s 
I I I 

Thm. 6.22 : ' b. branching ' - ------,-----0: computable : 
I I 

~---,--,----~ 'transition 
I I 

- - - - - - - - - - - - - - , ' systems ' 
________________ : Prop.~.16 

: Co~ 6.39 Thm. 6.38 

,-------------, 
: executable transi- : 
: tion systems , 
I _____________ \ I 

1_ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - " 

L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _I 

explicit 
interaction 
[p II T]; 0 

[Vaa92] 

FIGURE 6.10: Correspondence results. 

finite recursive 
TC PT-specifications 

~ 
' 

Note that there are a few indirect correspondences in the overview. Finite 
recursive TCPr-specifications induce effective transition systems, which can be 
reduced to executable transition systems at the cost of losing divergence-preservation. 
Hence, there exists an RTM that simulates these specifications up to branching 
bisimilarity. Because subsequently this RTM can be defined by a finite recursive TC P-r ­
specification consisting of a finite-state process communicating with the queue, the 
queue can be considered as the canonical TCP-r -process. Note also that because RTMs 
can be defined by these finite recursive TCP-r - specifications that make the interaction 
explicit, we obtain an indirect correspondence between RTMs and finite recursive 
TCP-r -specifications in general. 
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Chapter 7 

Conclusions 

Following the Chomsky hierarchy, we have discussed several kinds of systems in 
the main chapters of this thesis (Chapters 3-6). For each class of systems we have 
first investigated the automata augmented with memory as a central notion, except 
for finite-state systems, which are memoryless. Then we have looked at a suitable 
specification language and investigated the correspondence of that language with the 
notion of automaton at hand. Finally, for each class of systems we have made the 
interaction within the automaton, between finite control and memory, explicit. 

7 .1 Automata 

We have started with finite automata that can be used to represent memoryless, finite 
control. We have seen that finite transition systems are essentially finite automata 
and that, up to (divergence-preserving) branching bisimilarity, deterministic finite 
automata form a subclass of the (non-deterministic) finite automata. 

When we augment finite automata with memory, we can associate with an 
automaton transition systems with a possibly infinite number of states. Based on 
the chosen memory and semantics, we get different classes of associated transition 
systems. If we augment finite automata with stack memory, we get pushdown 
automata; if we augment them with bag memory, we get parallel pushdown 
automata; and if we augment them with tape memory, we get reactive Turing 
machines. The different classes of automata yield different classes of transition 
systems. We have also seen that for (i) termination on final state, (ii) termination 
when the memory is empty, and (iii) termination on both final state and when the 
memory is empty, we get different classes of transition systems. In our definitions 
the stack of a PDA has an empty-test, while the bag of the PPDA does not include it. 
It would be interesting to see what transition system classes can be obtained if the 
situation is reversed. For RTMs we have investigated termination on final state only. 
In the future, other termination conditions could be considered. 

The aforementioned differences in classes appear if we consider them up to 
(divergence-preserving) branching bisimilarity. If we consider the classes up to 
language equivalence, then all class differences collapse. Thus, we have seen that 
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from a process-theoretic point of view it matters how the definition of the automaton 

- of the memory and its interaction in particular - is chosen. 

7 .2 Specifications 

We have seen that for each class of systems there exists a suitable specification 

language. For finite-state systems we have proposed the linear specifications, 

for pushdown systems the sequential specifications, and for parallel pushdown 

systems the basic parallel specifications. For computable and executable systems we 

have reused finite recursive TCP"-specifications. We have explored the correspon­

dence between these specification languages and the automata that belong to the 

respective class. 
For finite -state systems, the correspondence between finite automata and linear 

specifications holds up to isomorphism. 
For pushdown systems the correspondence is deficient. We have seen that pop 

choice-free pushdown automata can be given, up to divergence-preserving branching 

bisimilarity; by a sequential specification. It is clear that not every non-pop choice-free 

pushdown automaton can be given by a sequential specification. However, it would 

be worth investigating whether the pop choice-freeness restriction is optimal. In the 

other direction, we have seen that due to the presence of the empty process in the 

specification language, we can get unbounded branching in the associated transition 

systems. We conjecture that a pushdown transition system cannot have unbounded 

branching. We applied the transparency-restrictedness restriction on sequential 

specifications and showed that they can be simulated, up to divergence-preserving 

branching bisimilarity; by a (pop choice-free) pushdown automaton. It is clear that 

the transparency-restricted requirement is too strict. There are non-transparency­

restricted sequential specifications that do not have unbounded branching in their 

associated transition systems. 
For parallel pushdown systems the correspondence results are different, but 

still deficient. We have shown that fully opaque, fully transparent, and mixed 

opaque/ transparent recursive specifications can be simulated, up to divergence­

preserving branching bisimilarity; by a parallel pushdown automaton. It is just a 

matter of choosing the right termination condition. For the mixed specification we 

have introduced an extra termination condition to obtain the correspondence result: 

termination on final state and transparent bag, i.e. a bag that only contains data 

elements which are designated as transparent. In the other direction, only single-state 

parallel pushdown automata can be given, up to divergence-preserving bisimilarity; 

by basic parallel specifications. 
For computable and executable systems we have investigated the expressiveness 

of RTMs rather than the correspondence of RTMs with finite recursive TCP-r ­

specifications. It follows from results in the literature that transition systems associ­

ated with finite recursive TCP-r -specifications are effective transition systems, which 

can be reduced to executable transition systems at the cost of losing divergence­

preservation. We have shown that executable transition systems can be simulated, 
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up to divergence-preserving branching bisimilarity, by an RTM, thus obtaining the 
correspondence from specifications to RTMs indirectly. In the other direction, we 
also obtain the result indirectly: by making the interaction in an RTM explicit, we 
obtain a finite recursive TCPr-specification. 

7 .3 Explicit Interaction 

In the case of finite-state systems, we have discussed regular expressions rather than 
explicit interaction; we presented the correspondence between finite automata and 
extended regular expressions, i.e. regular expressions extended with communication 
and encapsulation. We could interpret this as making the interaction within a finite 
automaton explicit. Indeed, each state has a parallel component and control is 
handed over via communication. 

The way the interaction within a pushdown automaton is made explicit depends 
on the termination condition. For termination on (final state and) empty stack 
we have shown that we can find a linear specification of the finite control of the 
pushdown automaton, put it in parallel with the sequential specification of the stack 
and obtain the correspondence up to divergence-preserving branching bisimilarity. 
For termination on final state we need an always-terminating stack. We have shown 
that there exists no such sequential specification. Putting the linear specification 
mentioned above in parallel with a finite recursive TCPr-specification of an always­
terminating stack, we are able to obtain the correspondence. 

For basic parallel pushdown automata we considered termination on final state 
and on (final state and) empty bag. We also considered termination on final state 
and transparent bag. It turned out we could find a single linear specification of the 
finite control of the parallel pushdown automaton. When we put it in parallel with 
different basic parallel specifications of the bag, we could obtain the correspondence 
results, up to branching bisimilarity, for parallel pushdown automata with respective 
termination conditions: the bag for termination on (final state and) empty bag, the 
transparent bag for termination on final state and the partially transparent bag for 
termination on final state and transparent bag. It remains an open question whether 
divergence-preservation can be included as well . 

In the case of computable and executable systems we have made the interaction 
within the RTM explicit. We could find a linear specification for the finite control of 
the RTM. To obtain a tape we add some linear specification and put it in parallel with 
a finite recursive TC Pr-specification of a queue. When the tape is put in parallel with 
the linear specification of the finite control, we obtained the correspondence, up to 
divergence-preserving branching bisimilarity, with the RTM. 

7.4 Future Directions 

In this thesis we have been mainly concerned with classical results from automata 
and formal language theory. We have chosen our definitions as close as possible 
to automata theory to get the tightest correspondences. In the future, variations of 
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definitions of the PDA, PPDA and RTM could be explored. For example, the afore­

mentioned different termination conditions for the RTM or the absence/ presence of 

the empty-test in the PDA and PPDA. 
We have seen that the correspondence, up to (divergence-preserving) branching 

bisimilarity, between specification languages and automata with memory are not 

complete. In future work we could explore up until which equivalences the 

correspondences do hold. A step in this direction was already made in [BCT08] 

by giving the correspondence between the full class of sequential specifications and 

pushdown automata by stepping down to contrasimulation. 
We have omitted in this thesis the Petri nets and context-sensitive languages. It 

would be interesting to study how these notions fit in the framework that we have 

presented in this thesis. From the specification language side, this also holds for the 

specifications language that is the combination of the sequential and basic parallel 

specifications. 
In general, it would be worthwhile to compare the models of computation (or 

execution) to other notions with interaction found in literature. For example, the 

comparison of RTMs with persistent Turing machines. The n-calculus can to some 

extent be seen as the interactive version of the A.-calculus. The investigation of the 

n-calculus and our RTM could prove to be interesting. 
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system 
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A-transition, 24 
language, 10 
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acceptance by empty stack, 40 
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context-free, 42 
context-sensitive, 144 
parallel pushdown, 84 
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NORM 

language acceptor, 23, see also accepted 
language 

language equivalence, 10 
left-linear grammar, 25 
left-merge, 14 
linear grammar, 25 
linear normal form, 28 

reversed, 29 
linear process expression, 25 
linear specification, 25 

with postfixing, 28 

M 

M(), see multiset 
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multiset, 81 

difference, 81 
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notation, 81 
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union, 81 

N, see name 
name, 13 

N 
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non-terminal, see name 
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Greibach normal form, 19 
linear, 28 

reversed, 29 
sequential, 53 

restricted, 53 

0 

occurrence count, 9 
opaque, 57 

p 

'.P(), see process expression 
parallel composition, 14 

of reactive Turing machines, 115 
of transition systems, 114 

parallel pushdown automaton, 81-82 
associated transition system, 83 
empty-test, 90 
example, 82 

parallel pushdown language, 84 
parallel pushdown process, 84 
parallel pushdown transition system, 83 
partially transparent bag, 105 
PDA, see pushdown automaton 
Petri net, 108, 144 
re-calculus, 3, 138 
pop choice, 60 
pop choice-free, 60 
pop transition, 42 
PPDA, see parallel pushdown automaton 
process, 11 

basic parallel, 91 
executable, 114 
finite-state, 23 
parallel pushdown, 84 
pushdown, 42 
sequential, 53 

process algebra, 3 
process expression, 13 

basic parallel, 90 
BPA0 -, 66 
closed, 14 
linear, 25 

RECURSIVE SPECIFICATION 

sequential, 52 
TCP; -, 31 
TSP; -, 33 

process theory, 2 
push transition, 42 
pushdown automaton, 39 

associated transition system, 41 
empty-test, 42 
example, 40 
initially terminating, 43 
pop choice-free, 60 

pushdown language, 42 
pushdown process, 42 
pushdown transition system, 41 

pop choice-free, 60 

Q 

queue, 129 
recursive specification, 129-131 

quotient, 11 

R 

reachable state, 9 
reactive system, 5, 109 
reactive Turing machine, 111 

associated transition system, 114 
example, 112 
simulator, 123 
universal, 126 

receive action, 13 
recursive function, 1 
recursive specification, 14 

associated transition system, 14 
BCP-r -, 90 
BPA-, 51 
BPA0 -, 63 
BPP-, 106 
BSP-r -, 25 
guarded, 16 
opaque, 57 
-r-founded, 16 
-r-guarded, 16 
TCP-r-, 14 
transparent, 5 7 
TSP-r-, 52 
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regular expression, 30 
extended, 31 

regular grammar, 25 
regular language, 23 
remove transition, 84 
reversed linear normal form, 29 
right-linear grammar, 25 
rooted divergence-preserving branching 

bisimilarity, 17-18 
RTM, see reactive Turing machine 

S, see state 
send action, 13 
sequential 

s 

restricted, 53 
sequential composition, 14 
sequential normal form, 53 
sequential process, 53 
sequential process expression, 52 
sequential specification, 52 

transparency restricted, 57 
silent action, see unobservable action 
silent bisimulation, 18 
silent transition, 24 
simulator RTM, 123 
singleton multiset, 81 
skip, see empty process 
specification, see also recursive specifica­

tion 
basic parallel, 90 
linear, 25 

with postfixing, 28 
sequential, 52 

specification language, 5 
stack, 42 

always terminating, 73 
forgetful, 55 
pushdown automaton, 43 
pushdown transition system, 43 
recursive specification, 54 

stack empty symbol, 39 
stack symbol, 39 
state, 9 

final, 9 

initial, 9 
reachable, 9 

TERMINATION 

stateless silent bisimulation, 18 
string, see data symbol sequence 
strong bisimilarity, 10 

without termination, 6 7 
structural operational semantics, 14 
successful tableau, 100 
successful terminal node, 99 
symbol 

bag symbol, 81 
marked tape symbol, 113 
stack symbol, 39 
tape symbol, 111 

T 

'J(), see associated transition system 
tableau, 98 

node,98 
rule, 98 
successful, 100 

tableau decision method, 98 
completeness of, 101 
soundness of, 101 

tape 
recursive specification, 129, 131-

134 
tape blank symbol, 111 
tape instance, 113 
tape symbol, 111 
", see unobservable action 
'!"-convergent, see '!"-founded 
'!"-founded, 16 
'!"-guarded, 16 
TCP,., 13 

congruence for, 18 
process expression, 13 
recursive specification, 14 
soundness of, 19 

TCP; , 16 
process expression, 31 

terminal node, 99 
termination 

on empty bag, 83 
on empty stack, 41 
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TERMINATION CONDITION 

on final state, 41, 83 
on final state and empty bag, 83 
on final state and empty stack, 41 
on final state and transparent 

bag, 95 
termination condition, 41 
termination predicate, see final state 
transition 

inert transition, 12 
insert transition, 84 
pop transition, 42 
push transition, 42 
remove transition, 84 

transition relation, 9 
transition system, 9 

associated with PDA, 41 
associated with PPDA, 83 
associated with RTM, 114 
associated with specification, 14 

transparency-restricted, 57 
transparent, 57 
transparent bag, 92 

recursive specification, 92-93 
TSP,., 16 

recursive specification, 52 
TSP~ , 17 

process expression, 33 
Turing machine, 1, 109 

u 
unbounded branching, 57 
unfolding, 98 
universal RTM, 126, 128 

up to bounded branching, 126 
universal Turing machine, 125 
unobservable action, 9 
unrestricted grammar, 110 
unsuccessful terminal node, 100 

v 
variable, see name 

w 
well-behaved finite automaton, 31 
word, see action sequence 

WORD 
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Summary 

From Computability to Executability 
A process-theoretic view on automata theory 

The theory of automata and formal languages was devised in the 1930s to provide 
models for and to reason about computation. Here we mean by computation a 
procedure that transforms input into output, which was the sole mode of operation 
of computers at the time. Nowadays, computers are systems that interact with us 
and also with each other; they are non-deterministic, reactive systems. Concurrency 
theory, split off from classical automata theory in the seventies, provides a model 
of computation similar to the model given by the theory of automata and formal 
languages, but focuses on concurrent, reactive and interactive systems. 

This thesis investigates the integration of the two theories, exposing the differ­
ences and similarities between them. Where automata and formal language theory 
focuses on computations and languages, concurrency theory focuses on behaviour. 
To achieve integration, we look for process-theoretic analogies of classic results from 
automata theory. The most prominent difference is that we use an interpretation 
of automata as labelled transition systems modulo (divergence-preserving) branching 
bisimilarity instead of treating automata as language acceptors. We also consider 
similarities such as grammars as recursive specifications and finite automata as 
labelled finite transition systems. We investigate whether the classical results still 
hold and, if not, what extra conditions are sufficient to make them hold. 

We especially look into three levels of Chomsky's hierarchy: we study the notions 
of finite-state systems, pushdown systems, and computable systems. Additionally we 
investigate the notion of parallel pushdown systems. For each class we define the 
central notion of automaton and its behaviour by associating a transition system with 
the automaton. Then we introduce a suitable specification language and investigate 
the correspondence with the respective automaton (via its associated transition 
system) . Because we not only want to study interaction with the environment, but 
also the interaction within the automaton, we make the interaction explicit by means 
of communicating parallel components, with one component representing the finite 
control of the automaton and one component representing the memory. 
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SUMMARY 

First, we study finite-state systems by reinvestigating the relation between finite­
state automata, left- and right-linear grammars, and regular expressions, but now up 
to (divergence-preserving) branching bisimilarity. 

For pushdown systems we augment the finite-state systems with stack memory to 
obtain the pushdown automata and consider different termination styles: termination 
on empty stack, on final state, and on final state and empty stack. Unlike for language 
equivalence, up to (divergence-preserving) branching bisimilarity the associated 
transition systems for the different termination styles fall into different classes. We 
obtain (under some restrictions) the correspondence between context-free grammars 
and pushdown automata for termination on final state and empty stack. Finally, we 
make the interaction within a pushdown automaton explicit, but in a different way 

depending on the termination style. 
By analogy with pushdown systems we investigate the parallel pushdown sys­

tems, obtained by augmenting finite -state systems with bag memory, and consider 
analogous termination styles. We investigate the correspondence between context­

free grammars that use parallel composition instead of sequential composition and 
parallel pushdown automata. While the correspondence itself is rather tight, it 
unfortunately only covers a small subset of the parallel pushdown automata, i.e. 
the single-state parallel pushdown automata. When making the interaction within 
parallel pushdown automata explicit, we obtain a rather uniform result for all 
termination styles. 

Finally, we study computable systems and the relation with effective and com­
putable transition systems and Turing machines. For this we present the reactive 
Turing machine, a classical Turing machine augmented with capabilities for interac­
tion. Again, we make the interaction in the reactive Turing machine between its finite 
control and the tape memory explicit. 
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Samenvatting 

Van berekenbaarheid naar uitvoerbaarheid 
Een procestheoreti.sche kijk op de automatentheorie 

De theorie van automaten en formele talen heeft zijn oorsprong in de jaren dertig. 
In die tijd werden er modellen opgesteld, zoals bijvoorbeeld de Turingmachine, 
om te kunnen beredeneren wat berekenbaar is en wat niet. Met een 'berekening' 
bedoelen we hier de transformatie van invoer naar uitvoer. Destijds was het 
herhaaldelijk uitvoeren van de bijbehorende operatie het enige wat computers 
konden. Tegenwoordig zijn computers echter systemen die interactief zijn; ze 
wisselen continu informatie uit, niet alleen met de gebruiker maar ook met elkaar. 
De procestheorie, afgesplitst van de automatentheorie in de jaren zeventig, gebruikt 
berekeningsmodellen die erg lijken op die van de theorie van automaten en formele 
talen, maar meer zijn gericht op parallelle, reactieve en interactieve systemen. 

Dit proefschrift onderzoekt de integratie van deze twee theorieen met als doel 
de verschillen en overeenkomsten bloot te leggen. Waar de theorie van automaten 
en formele talen de nadruk legt op berekeningen en talen, legt de procestheorie de 
nadruk op gedrag. Orn tot integratie te komen, zoeken we naar procestheoretische 
analogieen van klassieke resultaten uit de automatentheorie. Het prominentste 
verschil is dat we hierbij automaten interpreteren als gelabelde transitiesystemen 
modulo vertakkende bisimulatie, in plaats van automaten te beschouwen als accep­
tanten van een taal. (Wanneer mogelijk, proberen we te zorgen dat de vertakkende 
bisimulatierelatie ook divergentiebehoudend is.) We bekijken daarnaast klassieke 
overeenkomsten zoals die tussen grammatica's en recursieve specificaties en tussen 
eindige automaten en transitiesystemen. 

We volgen in dit proefschrift drie niveaus van Chomsky's hierarchie, die de vol­
gende klassen van systemen omschrijven: eindige systemen, pushdownsystemen en 
berekenbare systemen. Daarnaast verkennen we de notie van parallelle pushdown­
systemen. Voor iedere klasse definieren we een bijbehorende automaat en leggen we 
het gedrag vast door er een transitiesysteem mee te associeren. Vervolgens introdu­
ceren we een geschikte specificatietaal en onderzoeken we de overeenstemming met 
de respectievelijke automaat, via het geassocieerde transitiesysteem. Omdat we niet 
alleen de interactie van het systeem met de omgeving willen bestuderen, maar oak de 
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interactie die plaatsvindt binnen de automaat, maken we deze laatste expliciet door 
de introductie van communicerende parallelle componenten: een component die de 
eindige besturing van de automaat representeert en een component die het geheugen 
representeert. 

Eerst bestuderen we eindige systemen (zonder geheugen) door de relaties tussen 
eindige automaten, links- en rechtslineaire grammatica's, en reguliere expressies 
opnieuw te bekijken, maar nu met behulp van (divergentiebehoudende) vertakkende 
bisimulatie. 

Voor pushdownsystemen verkrijgen we pushdownautomaten door eindige syste­
men uit te breiden met stackgeheugen. We beschouwen verschillende terminatiestij­
len: terminatie bij lege stack; in een eindtoestand; bij lege stack en in een eindtoe­

stand. Voor vertakkende bisimulatie vallen de geassocieerde transitiesystemen voor 
de verschillende terminatiestijlen uiteen in verschillende klassen, wat niet het geval is 
voor taalgelijkheid. We verkrijgen, onder enkele restricties, de overeenkomst tussen 
contextvrije grammatica's en pushdownautomaten voor terminatie bij lege stack en 
in een eindtoestand. Ten slotte maken we interactie binnen de pushdownautomaat 
expliciet. De manier waarop dit gebeurt, wordt echter bepaald door de terminatiestijl. 

Op vergelijkbare wijze als met pushdownsystemen onderzoeken we de paral­

lelle pushdownsystemen, verkregen door eindige systemen uit te breiden met een 
baggeheugen. We beschouwen wederom de verschillende terminatiestijlen zoals 
eerder genoemd. We onderzoeken de overeenkomst tussen commutatieve context­
vrije grammatica's, die parallelle compositie gebruiken in plaats van sequentiele 
compositie, en parallelle pushdownautomaten. Hoewel de overeenkomst relatief 
sterk is, dekt de relatie maar een kleine deel van alle parallelle pushdownautomaten 
af, namelijke die met slechts een toestand. Door het expliciet maken van de interactie 
binnen de parallelle pushdownautomaat krijgen we echter wel een mooi en uniform 

resultaat voor alle terminatiestijlen. 
Ten slotte bestuderen we berekenbare systemen en de relatie met effectieve en 

berekenbare transitiesystemen en Turingmachines. Hiertoe introduceren we de 
reactieve Turingmachine: een klassieke Turingmachine uitgerust met mogelijkheden 
om interactie aan te gaan met zijn omgeving. Wederom maken we ook de interactie 
binnen de reactieve Turingmachine expliciet, dat wil zeggen tussen de eindige 

besturing en tapegeheugen. 
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