
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

2022

Executable Denotational Semantics With Interaction Trees Executable Denotational Semantics With Interaction Trees

Li-Yao Xia
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/edissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Xia, Li-Yao, "Executable Denotational Semantics With Interaction Trees" (2022). Publicly Accessible Penn
Dissertations. 5348.
https://repository.upenn.edu/edissertations/5348

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/5348
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F5348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F5348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5348?utm_source=repository.upenn.edu%2Fedissertations%2F5348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/5348
mailto:repository@pobox.upenn.edu

Executable Denotational Semantics With Interaction Trees Executable Denotational Semantics With Interaction Trees

Abstract Abstract
Interaction trees are a representation of effectful and reactive systemsdesigned to be implemented in a
proof assistant such as Coq. They are equipped with a rich algebra of combinators to construct recursive
and effectful computations and to reason about them equationally. Interaction trees are also an
executable structure, notably via extraction, which enables testing and directly developing executable
programs in Coq. To demonstrate the usefulness of interaction trees, two applications are presented.
First, I develop a novel approach to verify a compiler from a simple imperative language to assembly, by
proving a semantic preservation theorem which is termination-sensitive, using an equational proof.
Second, I present a framework of concurrent objects, inheriting the modularity, compositionality, and
executability of interaction trees. Leveraging that framework, I formally prove the correctness of a
transactionally predicated map, using a novel approach to reason about objects combining the notions of
linearizability and strict serializability, two well-known correctness conditions for concurrent objects.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Computer and Information Science

First Advisor First Advisor
Benjamin C. Pierce

Keywords Keywords
coinduction, denotational semantics, formal verification, monads, proof assistants

Subject Categories Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/5348

https://repository.upenn.edu/edissertations/5348

EXECUTABLE DENOTATIONAL SEMANTICS
WITH INTERACTION TREES

Li-yao Xia

A DISSERTATION
in

Computer and Information Science
Presented to the Faculties of the University of Pennsylvania

in
Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy
2022

Supervisor of Dissertation
Benjamin C. Pierce
Professor of Computer and Information Science

Graduate Group Chairperson
Mayur Naik, Professor of Computer and Information Science

Dissertation Commitee
Stephanie Weirich, Professor of Computer and Information Science, Chair
Steve Zdancewic, Professor of Computer and Information Science
Rajeev Alur, Professor of Computer and Information Science
Adam Chlipala, Associate Professor of Computer Science, MIT

EXECUTABLE DENOTATIONAL SEMANTICS WITH INTERACTION TREES

COPYRIGHT

2022

Li-yao Xia

This work is licensed under a Creative Commons Attribution-NonCommercial-Share-
Alike 4.0 International (CC BY-NC-SA 4.0) License

To view a copy of this license, visit

https://creativecommons.org/licenses/by-nc-sa/4.0/

https://creativecommons.org/licenses/by-nc-sa/4.0/

ABSTRACT

EXECUTABLE DENOTATIONAL SEMANTICS WITH INTERACTION TREES
Li-yao Xia

Benjamin C. Pierce

Interaction trees are a representation of effectful and reactive systems designed
to be implemented in a proof assistant such as Coq. They are equipped with a rich
algebra of combinators to construct recursive and effectful computations and to reason
about them equationally. Interaction trees are also an executable structure, notably
via extraction, which enables testing and directly developing executable programs
in Coq. To demonstrate the usefulness of interaction trees, two applications are
presented. First, I develop a novel approach to verify a compiler from a simple
imperative language to assembly, by proving a semantic preservation theorem which
is termination-sensitive, using an equational proof. Second, I present a framework
of concurrent objects, inheriting the modularity, compositionality, and executability
of interaction trees. Leveraging that framework, I formally prove the correctness of
a transactionally predicated map, using a novel approach to reason about objects
combining the notions of linearizability and strict serializability, two well-known
correctness conditions for concurrent objects.

iii

Contents

Title i

Copyright ii

Abstract iii

Contents iv

List of Figures vi

Chapter 1. Introduction 1
1.1. Executable Denotational Semantics 2
1.2. History and Credits 3

Chapter 2. Interaction Trees 4
2.1. Definition 4
2.2. Semantics of Events and Monadic Interpreters 12
2.3. Iteration and Recursion 15
2.4. Extracting ITrees 19

Chapter 3. Application I: Compiling Imp to Asm 21
3.1. A Denotational Semantics for Imp 21
3.2. A Denotational Semantics for Asm 24
3.3. Linking of Control-Flow Subgraphs 26
3.4. Compiler Correctness 28

Chapter 4. Application II: Verified Transactional Objects 31
4.1. Introduction 31
4.2. Overview 37
4.3. Concurrent Objects 41
4.4. Linearizability and Composition 46
4.5. Verification of Linearizability 49
4.6. Transactions 57
4.7. Transactional Predication 63
4.8. Opacity 67
4.9. Conclusion 68

Chapter 5. Related Work 70
5.1. Interaction Trees 70
5.2. Verified Transactional Objects 76

iv

Chapter 6. Future Work and Conclusions 79
6.1. Existing Work using Interaction Trees 79
6.2. Improving the Definition of Interaction Trees 79
6.3. Automating Proofs of Categorical Equations 81
6.4. Higher-Order Semantics with Games 81
6.5. Conclusion 82

Bibliography 83

v

List of Figures

2.1 Simplified presentation of interaction trees 4
2.2 Main abstractions of the ITree library 7
2.3 Monadic bind and ret operators for ITrees 7
2.4 Heterogeneous weak bisimulation for ITrees 9
2.5 Summary of the main ITree relations and their notations 10
2.6 Core equational theory of ITrees 10
2.7 Definition of KTrees and KTree equivalence 10
2.8 KTree composition 11
2.9 KTree operations 11
2.10 Categorical laws for KTrees and handlers 11
2.11 Interpreting events via a handler 13
2.12 Interpreting state events 13
2.13 Event handler operations 14
2.14 Some properties of interp 14
2.15 Summary of recursion combinators 15
2.16 Iteration combinators: iter and loop 16
2.17 Diagrammatic representation of the laws of iterative categories (Lemma 2.3.1) 18
2.18 Mutual recursion via events 19
2.19 OCaml extracted from the echo example (top) and OCaml handler and

“driver” loop (bottom) 20

3.1 Syntax of Imp 22
3.2 Semantics of Imp 23
3.3 Syntax of Asm 24
3.4 Semantics of Asm 25
3.5 High-level control flow in Asm 27
3.6 Simulation relations for the compiler correctness proof 30

4.1 Concurrent history of a shared mutable reference 32
4.2 inc method 37
4.3 Execution of a linearizable counter object 38
4.4 Architecture of transactional predication 40

vi

4.5 Definition of interfaces in Coq 41
4.6 Implementations, sequential specifications, and objects in Coq 42
4.7 Implementation of counter interface using CAS register interface 43
4.8 Examples of sequential specifications 44
4.9 Program transition rules 44
4.10 Operational semantics of concurrent objects 45
4.11 Signatures of main definitions in Section 4.4 47
4.12 inc′ method 50
4.13 Proof principle for concurrent refinement 51
4.14 Proof principle example 52
4.15 Implementations of sequential and concurrent hash-map objects 53
4.16 Implementation of a histogram object on a map object 56
4.17 Abortable transition relation 58
4.18 Program, abortable, and transactional specification transformers 59
4.19 Transaction instrumentation 59
4.20 Implementation of the TML protocol tml-imp 61
4.21 Locator implementation 64
4.22 Core function of transactional predication 64
4.23 Transitions of the opacity specification opacity-spec(spec), with auxiliary

transition relation h−→spec 68

vii

CHAPTER 1

Introduction

Machine-checked proofs are now feasible at scale, for real systems, in a wide
variety of domains, including programming language semantics and compilers [Leroy,
2009, Kumar et al., 2014], operating systems [Klein et al., 2009, Gu et al., 2016],
interactive servers [Koh et al., 2019], databases [Malecha et al., 2010], and distributed
systems [Wilcox et al., 2015, Hawblitzel et al., 2015a], among many others. Common to
all of these is the need to model and reason about interactive, effectful, and potentially
nonterminating computations.

For this, most work to date has relied on operational semantics, represented as
(small- or big-step) transition relations defined on syntax [Igarashi et al., 2001, Leroy
and Blazy, 2008, Leroy, 2009, Milner et al., 1997, Jung, 2020, Wang et al., 2018,
Guth, 2013]. These representations have their advantages: they are expressive, since
nearly any semantic feature can be modeled by transition systems or traces when
combined with appropriate logical predicates; and they fit smoothly with inductive
reasoning principles that are well supported by interactive theorem provers. Although
the underlying ideas are widely applicable, in practice the common approach is still
to reimplement the operational semantics of a new system from scratch.

By contrast, denotational semantics views programs as symbolic representations
of abstract objects [Scott and Strachey, 1971]. An early example is the study of
continuous functions between lattices as a denotational semantics for the lambda
calculus [Scott, 1976], and this formalism was later adopted in the specification
of the Haskell programming language [Jones, 2003, Hudak et al., 2007]. Two key
characteristics of denotational semantics are compositionality and abstraction.

Compositionality is the principle that “the whole is the sum of its parts”. A
compositional semantics defines the meaning of a program by composing the meanings
of its components. Hence, the constructs of a programming language (conditionals,
loops, applications, etc.) define functions which map denotations of their subphrases
to the denotation of the whole, by leveraging operators that make up the algebraic
structure of the underlying semantic domain—lattices, categories, monads, etc.

Abstraction is the act of suppressing irrelevant complexity; a semantics should
expose only the behavior of a program that is relevant to its clients. This contrasts
with the syntactic nature of operational semantics, which includes the code of a
program in the state of its abstract machine. For instance, the purely functional
programming paradigm views programs as denoting mathematical functions, exposing
only relations between input and output while hiding the mechanism by which they are
computed. Purity enables one to prove program properties rigorously via equational
reasoning. It also motivated monads as an effective solution to reintroduce effects
in this paradigm [Wadler, 1992, Jones, 2005]. Purely functional programming is

1

exemplified by Haskell, which paved the way for a family of languages: PureScript,
Idris, Agda, Curry, etc., and inspired new features and design patterns in other
programming languages.

By deemphasizing its internal state, we are led to focus more on the interactions
of the program with its environment. One reasonable approach is to represent the
behavior of the program as a set of traces, each recording a possible sequence of
interactions between program and environment. As a result, observational equivalence
between programs arises as the canonical equivalence between their denotations. To
obtain compositional semantics, it’s often necessary to require additional structure
over plain sets of traces, suggesting alternative representations such as trees and
games [Hyland, 1997, Abramsky and McCusker, 1999, Abramsky et al., 1997]. In this
dissertation, I develop a library for representing the behavior of programs as a tree
datatype, which provides a rich theory of composition, which can be extracted and
interpreted for testing, and which can be formalized in a proof assistant such as Coq,
Agda, or Lean.

1.1. Executable Denotational Semantics

This dissertation presents interaction trees, a framework for representing the behav-
ior of recursive and effectful programs. This framework builds upon strong theoretical
foundations: the core data structure is a free monad, having deep roots in category
theory, and the implementations of the associated operations are largely determined by
their types. Furthermore, interaction trees are an executable representation: a denota-
tional semantics using interaction trees yields a working reference interpreter, with
testing as one possible use case. Hence, I propose to construct executable denotational
semantics formally using interaction trees.

Interaction trees are implemented as a Coq library, named ITree, allowing users to
express denotational semantics for effectful and possibly nonterminating computations
in Gallina, the specification language of Coq [2018], despite Gallina’s strong purity and
termination constraints. Interaction trees work well with Coq’s extraction capabilities,
making them compatible with tools such as QuickChick [Lampropoulos and Pierce,
2018] for testing, and allowing us to easily link the extracted code against non-Coq
components such as external libraries, so that we can directly execute systems modeled
using interaction trees. This combination of features makes interaction trees a practical
foundation for formal verification of interactive systems.

After an overview of the ITree library in Chapter 2, I demonstrate the usefulness
and flexibility of interaction trees by presenting two applications, originally from
published work in Xia et al. [2019] and Lesani et al. [2022]. Chapter 3 describes a
verified compiler from a toy imperative language Imp to a control-flow graph language
Asm. Both the source and target language are given denotational semantics in
interaction trees. A semantic preservation theorem is then proved by equational
reasoning. A key feature of this proof is that it hides coinductive reasoning behind
equations for loop combinators. Thus, such a proof only requires familiarity with
equational reasoning, turning a technical simulation argument into intuitive rewritings
of string diagrams. Furthermore, this equational formulation of semantic preservation
is termination-sensitive.

2

Chapter 4 presents a second application, using interaction trees to implement
concurrent and transactional objects. I formalize the standard notions of lineariz-
ability and strict serializability, and prove those properties on a number of concrete
objects. To define serializability, transactions are represented as interaction trees
that transactional objects may instrument to interpret them atomically. Our main
case study is a proof of correctness of transactional predication, a general technique
for constructing a performant transactional map object by combining a concurrent
map and a transactional memory object. The core of the proof is again phrased in
equational terms, using lemmas from the ITree library to connect the linearizability
and serializability assumptions about the individual components, thus establishing
the serializability of the composed object.

Chapter 5 discusses related work, including other applications of interaction
trees, and a broad literature on modelling effects in type theory that underpins my
contributions. Chapter 6 concludes with possible directions for future work.

1.2. History and Credits

The earliest version of what is now called interaction trees was due to Joachim
Breitner and Dmitri Garbuzov, including the itree type definition and an early
definition of weak bisimulation. I then started working on it with the objective of
specifying a web server [Koh et al., 2019]. I focused on the core library while my
coauthors developed the integration with VST, and a harness for randomized testing.
Following that, as part of Xia et al. [2019] which properly presents the ITree library
(Chapter 2), I worked jointly with Yannick Zakowski and Gregory Malecha on the
compiler case study which constitutes Chapter 3 in this dissertation. The trickiness of
simulation-based proofs motivated me to add the loop combinators and their associated
equations, inspired by arrows [Hughes, 2000, Paterson, 2001]. Chung-Kil Hur suggested
redefining weak bisimulation using Paco, and contributed further improvements such
as unifying the definitions of strong and weak bisimulation. Paul He formalized the
relation between interaction trees and trace semantics in Section 7 of Xia et al. [2019].

The origin of verified transactional objects [Lesani et al., 2022] (Chapter 4) predates
ITree, and the project independently built upon the same coinductive type. The
proof principle for linearizability in Section 4.5 and its applications—including the
verification of the transactional mutex lock in Section 4.6.1—were developed prior to
my involvement. I actively participated in writing the expository sections (Sections 4.2
to 4.4 and 4.6), and I subsequently refactored the implementation to align more closely
with the presentation of concepts in that paper. My main technical contribution is
the transactional predication correctness proof (Section 4.7).

3

CHAPTER 2

Interaction Trees

Interaction trees are a datatype for representing computations that can interact
with an external environment. We think of such computations as producing a se-
quence of visible events—interactions—each of which might carry a response from
the environment back to the computation. The computation may also eventually
halt, yielding a final value, or diverge by continuing to compute internally but never
producing a visible event.

2.1. Definition

Figure 2.1 shows the definition of the type itree E R. The parameter E : Type →
Type is a type of external interactions: it defines the interface by which a computation

interacts with its environment, as we explain below. The type R is the result type of
the computation: if the computation ever halts, it will return a value of type R.
CoInductive itree (E: Type → Type) (R: Type): Type :=
| Ret (r: R) (* Terminate with value r *)
| Tau (t: itree E R) (* Silent transition with child t

*)
| Vis {A: Type} (e : E A) (k : A → itree E R). (* Visible event e, answer in A *)

Figure 2.1. Simplified presentation of interaction trees
ITrees are defined coinductively so that they can represent potentially infinite se-

quences of interactions or divergent behaviors. They are built using three constructors.
Ret r corresponds to the trivial computation that immediately halts and produces r

as its result. Tau t corresponds to a silent step of computation that does something
internal, producing no visible events, and then continues as t. Representing silent steps
explicitly allows ITrees to represent diverging computations without violating Coq’s
guardedness condition [Giménez, 1995, Chlipala, 2017]. It is a syntactic side-condition
on co-recursive definitions which ensures that a finite amount of computation suffices
to expose the next constructor of the coinductive type. Concretely, the results of
co-recursive calls must occur under constructors and cannot be eliminated by pattern
matching.

The final and most interesting way to build an ITree is with the Vis A e k con-
structor (A is often left implicit). Here, e : E A is a visible external event, which
consists of data that the computation emits to an external environment, and A (for
answer) is the type of data that the environment provides in response to the event.
The constructor also specifies a continuation, k : A → itree E T, which produces
the rest of the computation given the response from the environment. The tree-like

4

nature of interaction trees stems from the Vis constructor, since the continuation k

can behave differently for different values of type A. Importantly, the continuation is
represented as a meta-level (i.e., Gallina) function, which means both that we can
embed computation in an ITree and that the resulting datatype is extractable and
contains executable functions.

The definition shown in Figure 2.1 follows Coq’s historical style of using posi-
tive coinductive types, which emphasizes the tree-like structure via its constructors.
This approach is known to break subject reduction [Giménez, 1996]. Our library
therefore uses the recommended negative coinductive form [Coq development team,
2019, Hagino, 1989] where, rather than defining a coinductive type by providing its
constructors, we instead provide its destructors, defining a record. We use “smart
constructors” for Ret, Tau, and Vis, which have the types shown in this figure, so the
distinction is mostly cosmetic (though it does impact the structure of proofs). We
suppress these and similar details throughout this dissertation.

2.1.1. Alternative Definitions. Our definition of interaction trees relies on
higher-order types and coinductive types, two features readily available in Coq. Nev-
ertheless, it may still be possible to adapt much of the ITree library to another
language that does not provide those features.

The type itree is higher-order, as it is parameterized by a function on types
E : Type → Type. Higher-order types are a natural byproduct of dependent types,
so they appear completely benign in Coq, Agda, and Lean. Foster et al. [2021] port
interaction trees to Isabelle/HOL, which is based on higher-order logic rather than
dependent types. Its term language only supports first-order types, so a significant
modification of the definition of itree is necessary. There, the type parameter E

ranges over plain types, rather than type functions. This “flattens” the structure of
events, as events may no longer be statically associated with specific response types,
and Foster et al. [2021] palliate this by enforcing that association dynamically, making
the continuation in the Vis constructor a partial function which fails when events are
answered with the wrong type of response.

While some proof assistants support coinductive types natively [Giménez, 1996,
Blanchette et al., 2014], coinductive types are a feature that are not strictly essential
to the expressiveness of a theorem prover, as they can be encoded using more primitive
concepts [Avigad et al., 2019]. A notable approach is to view a coinductive type as
the final coalgebra νF of some functor F , which can be encoded via an existential
type, νF = ∃A, (A→ FA).

2.1.2. Examples. As a concrete example of external interactions, suppose we
choose E to be the following type IO, which represents simple input/output interactions,
each carrying a natural number. Then we can define an ITree computation echo that
loops forever, echoing each input received to the output:

Inductive IO : Type → Type :=
| Input : IO nat
| Output : nat → IO unit.

CoFixpoint echo : itree IO void :=
Vis Input (fun x ⇒
Vis (Output x) (fun _ ⇒ echo)).

Note that IO is indexed by the expected answer type that will be provided by the
environment in each interaction. Conversely, its constructors are parameterized by the

5

arguments to be sent to the environment. Hence, an Input event takes no parameter
and expects a nat in return, while an Output event takes a nat but expects a non-
informative answer, represented by the unit type. The return type of echo is void, the
empty type, since the computation never terminates.

Similarly, it is easy to define an ITree that silently diverges, producing no visible
outputs and never returning a value:

CoFixpoint spin : itree IO void := Tau spin.

Or one that probes the environment until it receives 9 for an answer, at which point
it terminates (returning tt, the unique value of type unit):

CoFixpoint kill9 : itree IO unit :=
Vis Input (fun x ⇒ if x =? 9 then Ret tt else kill9).

The three basic ITree constructors and explicit CoFixpoint definitions provide
very expressive low-level abstractions, but working with them directly raises several
issues. First, Coq’s syntactic guardedness check is inherently non-compositional, so it
is awkward to construct large, complex systems using it. Second, we need ways of
composing multiple kinds of events. Third, we often want to model the behavior of a
system by interpreting its events as having effects on the environment. For example,
a Write event could update a memory cell that a Read event can later access. Finally,
to reason about ITrees and computations built from them as above, we would have to
use coinduction explicitly. It is easier to work with loop and recursion combinators
that are more structured and satisfy convenient equational reasoning principles that
can be expressed and proven once and for all. The ITrees library provides higher-level
abstractions that address all three of these concerns. Figure 2.2 provides a synopsis of
the library; the details are explained below.

Notation. The library makes extensive use of parametric functions, which have
types of the form ∀ (X:Type), E X → F X. We write E ⇝ F as an abbreviation for
such types.

2.1.3. Composing ITree Computations: ITrees are Monads. The type
itree E is a monad [Moggi, 1989, Wadler, 1992], a conventional structure to sequence
effectful computations in pure functional programming. Figure 2.3 gives the implemen-
tation of the monadic bind and ret operations. As shown there, bind t k replaces each
leaf Ret r in t with the new subtree k r. The function ret is simply the constructor
Ret, and we introduce the usual sequencing notation x ← e ;; k for bind.

We think of the visible events of an ITree as uninterpreted effects. In this sense,
itree E is a free monad (in a suitable category: see Chapter 5) where every event of
type E A corresponds to an effectful (monadic) operation that can be “triggered” to
yield a value of type A:

Definition trigger {E : Type → Type} {A : Type} (e : E A) : itree E A :=
Vis e (fun x ⇒ Ret x).

Using trigger, we can rewrite the echo example with less syntactic clutter:
CoFixpoint echo2 : itree IO void :=
x ← (trigger Input) ;; trigger (Output x) ;; Tau echo2.

6

Interaction tree operations
itree E A : Type
Ret : A → itree E A
Tau : itree E A → itree E A
Vis : E R → (R → itree E A) → itree E A
bind : itree E A → (A → itree E B) → itree E B
trigger : E A → itree E A

Events and subevents
E, F : Type → Type
(e : E R) R is the result type of event e
E +' F disjoint union of events
Class E -< F E is a subevent of F
trigger '{E -< F} : E ⇝ itree F

overloaded trigger

Heterogeneous weak bisimulation
eutt (r : A → B → Prop) :
itree E A → itree E B → Prop

Strong and weak bisimulation
_ ∼= _ : itree E A → itree E A →

Prop
_ ≈ _ := eutt eq.

Parametric functions
E ⇝ F := ∀ (X:Type), E X → F X

Monadic interpretation
{̀Monad M} {̀MonadIter M}
interp : (E ⇝ M) → (itree E ⇝ M)

Standard event types
name events handler type
emptyE none ∀ M, emptyE ⇝ M
stateE S Get Put (stateE S) ⇝ stateT S
mapDfaultE K V d Insert LookupDfault Remove {̀Map K V map} (mapDfaultE K V d) ⇝ (stateT

map)

Figure 2.2. Main abstractions of the ITree library

(* Apply the continuation k to the Ret nodes of the itree t *)
Definition bind {E R S} (t : itree E R) (k : R → itree E S) : itree E S :=

(cofix bind_ u := match u with
| Ret r ⇒ k r
| Tau t ⇒ Tau (bind_ t)
| Vis e k ⇒ Vis e (fun x ⇒ bind_ (k x))
end) t.

Notation "x ← t1 ;; t2" := (bind t1 (fun x ⇒ t2)).
Definition ret x := Ret x.

Figure 2.3. Monadic bind and ret operators for ITrees

2.1.4. ITree Equivalences. Interaction trees admit several useful notions of
equivalence even before we ascribe any semantics to the external events. These
properties are deceptively simple to state, but the weaknesses of coinduction in Coq
make some the proofs quite challenging.

Strong and Weak Bisimulations. The simplest and finest notion of equivalence is
strong bisimulation, written t1 ∼= t2, which relates ITrees t1 and t2 when they have
exactly the same shape.

The monad laws and many structural congruences hold up to strong bisimulation,
but once we introduce loops, recursion, or interpreters, which use Tau to hide internal
steps of computation, we need to work with a coarser equivalence. We want to equate
ITrees that agree on their terminal behaviors (they return the same values) and on
their interactions with the environment through Vis events, but that might differ in

7

the number of Tau’s. This “equivalence up to Tau” is a form of weak bisimulation:
it lets us remove any finite number of Tau’s when considering whether two trees are
the same, while infinite Tau’s must be matched on both sides (i.e., this equivalence is
termination-ensitive). We write t ≈ u when t and u are equivalent up to Tau. A key
equation distinguishing weak bisimulation from strong bisimulation is Tau t ≈ t. It
is crucial for working with general computations modeled as ITrees.

Heterogeneous Bisimulations. Both strong and weak bisimulation can be further
relaxed to relate ITrees that have different return types, which is needed for building
more general simulations, such as the one used in our compiler correctness proof
(Chapter 3). If we have t1 : itree E A and t2 : itree E B and some relation r :

A → B → Prop, we can define eutt r (“equivalence up to Tau modulo r”), which
is the same as ≈ except that two leaves Ret a and Ret b are related iff r a b holds.
Intuitively, two such ITrees produce the same external events and yield results related
by r. Indeed ≈ is defined as eutt eq, where r is instantiated to the Leibniz equality
relation eq. It is straightforward to generalize ∼= in the same way.

Figure 2.4 gives the formal definition of eutt r as a nested inductive–coinductive
structure [Danielsson and Altenkirch, 2009]. The inner inductive euttF relation implic-
itly defines a least fixed point; this results in a relation transformer, parameterized by
sim, and we take its greatest fixed point eutt via the operator nu. The constructors
of euttF can be read as inference rules and corules. The EqRet rule relates two nodes
Ret a and Ret b when r a b holds. The EqVis rule relates two Vis nodes when they
are labeled with identical events e and their continuation subtrees k1 v and k2 v

are related by sim for every value v the environment could return. The rule EqTau

relates Tau t1 and Tau t2 whenever t1 and t2 are related by sim, while EqTauL and
EqTauR allow to strip off asymmetrically one extra Tau on either side. The EqTau

and EqVis appeal to the sim relation: they are corules, relying on coinduction via
the nu operator. In contrast, the EqTauL and EqTauR constructors contain recursive
occurrences of the inductively defined euttF: they are rules. Intuitively, a derivation
may consist of infinitely many corules, with only finitely many rules between two
corules. This nested inductive-coinductive structure provides a flexible way of defining
relations, generalizing inductive relations—which consist only of finite derivations
with rules—and coinductive relations—which consist of potentially infinite derivations
with corules. In this instance, we use the rules EqTauL and EqTauR to peel off any finite
number of Tau’s from one or both trees before we can apply one of the corules EqVis

or EqTau.
It is easy to show that euttF acts monotonically on relations, ensuring that a

greatest fixed point exists, and it can be constructed using the nu operator. This
operator and its associated theory are provided by the paco library [Hur et al., 2013]—
where nu is named paco2, and more generally pacoN for every arity N of relations—which
streamlines working with coinductive proofs in Coq.

Although the definition of heterogeneous weak bisimulation is fairly straightfor-
ward to state, some of its properties—for instance, transitivity and congruence with
respect to bind—are quite challenging to prove. For these, we need an appropriate
strengthening of the coinductive hypothesis that lets us reason about eutt up to
closure under transitivity and bind contexts. Our Coq library actually uses a yet more

8

Context {E : Type → Type} {A B : Type} (r : A → B → Prop).

Inductive euttF (sim : itree E A → itree E B → Prop) : itree E A → itree E B →
Prop :=

(* Non-recursive rule *)
| EqRet a b (REL: r a b) : euttF sim (Ret a) (Ret b)
(* Corules (coinductive): recursion via the sim parameter *)

| EqVis {R} (e : E R) k1 k2 (REL: ∀ v, sim (k1 v) (k2 v)) : euttF sim (Vis e k1) (
Vis e k2)

| EqTau t1 t2 (REL: sim t1 t2) : euttF sim (Tau t1) (Tau t2)
(* Rules: recursion via the inductive type euttF *)

| EqTauL t1 ot2 (REL: euttF sim t1 ot2) : euttF sim (Tau t1) ot2
| EqTauR ot1 t2 (REL: euttF sim ot1 t2) : euttF sim ot1 (Tau t2).

Lemma euttF_monotone t1 t2 sim sim' (IN: euttF sim t1 t2) (LE: sim <2= sim') : euttF
sim' t1 t2.

Definition eutt : itree E A → itree E B → Prop := nu euttF.

Figure 2.4. Heterogeneous weak bisimulation for ITrees

general definition that subsumes both strong and weak bisimulation and builds in
such “up-to” reasoning to make proofs smoother; we omit these details here and refer
the interested reader to the Coq development itself. The upshot is that we can prove
the following:

(1) ∼= is an equivalence relation.
(2) If r is an equivalence relation, then so is eutt r.
(3) ≈ is an equivalence relation (corollary of (2)).
(4) t1 ∼= t2 implies t1 ≈ t2.

Equational reasoning. Fortunately, clients of the ITrees library can treat the
definition of eutt r and its instances as black boxes—they never need to look at
the coinductive machinery beneath this layer of abstraction. Instead, clients should
reason equationally about ITrees. Figure 2.6 summarizes the most frequently used
equations, each of which corresponds to a lemma proved in the library. The monad
laws, structural laws, and congruences let us soundly rearrange an ITree computation—
typically to put it into a form where a semantically interesting computation step, such
as the interpretation of an event, takes place. Much of the functionality provided by
the ITrees library involves lifting this kind of equational reasoning to richer settings,
allowing us to work with combinations of different kinds of events and interpretations
of their effects.

One pragmatic consideration is that Coq’s rewrite and setoid_rewrite tactics,
which let us rewrite using an equivalence (for instance, replacing the term C[t1] with
C[t2] when we know that t1 ≈ t2), only work if the context respects the equivalence.
Coq’s Proper type class registers congruence rules with the rewriting tactics. We prove
such congruence rules for all of the operations in the library—some examples are
shown in Figure 2.6. Some operators such as bind involve functions; they are related

9

Symbol Name Domain
∼= Strong bisumulation itree E A

≈ Weak bisimulation (eutt) itree E A

≈̂ Pointwise weak bisimulation A → itree E B

Figure 2.5. Summary of the main ITree relations and their notations

Monad Laws
(x ← ret v ;; k x) ∼= (k v)
(x ← t ;; ret x) ∼= t

(x ← (y ← s ;; t) ;; u) ∼= (y ← s ;; x ← t ;; u)

Structural Laws
(Tau t) ≈ t

(x ← (Tau t) ;; k) ≈ Tau (x ← t ;; k)
(x ← (Vis e k1) ;; k2) ≈ (Vis e (fun y ⇒ x ← k1 y ;; k2))

Congruences
t1 ∼= t2 → Tau t1 ∼= Tau t2
k1 ≈̂ k2 → Vis e k1 ≈ Vis e k2

t1 ≈ t2 ∧ k1 ≈̂ k2 → bind t1 k1 ≈ bind t2 k2

Figure 2.6. Core equational theory of ITrees

Definition ktree (E : Type → Type) (A B : Type) : Type := A → itree E B.

Definition eq_ktree {E} {A B : Type} : ktree E A B → ktree E A B → Prop
:= fun h1 h2 ⇒ ∀ a, h1 a ≈ h2 a.

Infix "≈̂" := eq_ktree

Figure 2.7. Definition of KTrees and KTree equivalence

by the relation ≈̂, defined in Section 2.1.5 as the pointwise lifting of weak bisimulation.
Even so, definitions written in monadic style make heavy use of anonymous functions,
which tend to thwart the setoid_rewrite tactic’s ability to find the correct Proper

instances. It is therefore useful to further raise the level of abstraction to simplify
rewriting, as we show next.

2.1.5. KTrees: Continuation Trees. To improve equational reasoning prin-
ciples and leverage known categorical structures for recursion, the ITrees library
provides an abstraction for point-free definitions, centered around functions of the
form _ → itree E _. We can think of these as impure functions that may generate
events from E or possibly diverge. As we will show, they enjoy additional structure that
we can exploit to generically derive more ways of composing ITrees computations.

We call types of the form A → itree E B continuation trees, or KTrees for short
(Figure 2.7). Whereas an itree E R directly produces an outcome (Ret, Tau, or Vis), a
KTree k : ktree E A B first expects some input a : A before continuing as an ITree
(k a). Equivalence on KTrees, written ≈̂, is defined by lifting weak bisimulation
pointwise to the function space.

10

Definition cat {E} {A B C : Type}
: ktree E A B → ktree E B C → ktree E A C
:= fun h k ⇒ (fun a ⇒ bind (h a) k).

Infix ">>>" := cat

Figure 2.8. KTree composition

id_ : A → itree E A
cat : (B → itree E C) → (A → itree E B) → (A → itree E C)
case_ : (A → tree E C) → (B → itree E C) → (A + B → itree E C)
inl_ : A → itree E (A + B)
inr_ : B → itree E (A + B)
pure : (A → B) → (A → itree E B)

Figure 2.9. KTree operations

id_ >>> k ≈̂ k
k >>> id_ ≈̂ k

(i >>> j) >>> k ≈̂ i >>> (j >>> k)
pure f >>> pure g ≈̂ pure (f ◦ g)

inl_ >>> case_ h k ≈̂ h
inr_ >>> case_ h k ≈̂ k

(inl_ >>> f) ≈̂ h ∧ (inr_ >>> f) ≈̂ k → f ≈̂ case_ h k

Figure 2.10. Categorical laws for KTrees and handlers

Two KTrees h : ktree E A B and k : ktree E B C can be composed using bind;
the result is written (h >>> k) : ktree E A C (Figure 2.8). KTree composition has a
(left and right) identity, id_ (equal to ret), and is associative; the proof follows from
the monad laws for itree. Together, these facts mean that KTrees are the morphisms
of a category: the Kleisli category [Mac Lane, 2013] of the monad itree E.

This category has more structure that we expose as part of the ITrees library
interface. The pure operator lifts a Coq function trivially into an event-free KTree
computation. We can also easily define an eliminator for the sum type, case_ and
corresponding left inl_ and right inr_ injections (effectful variants of the sum type
constructors inl and inr). The names of those operations are suffixed with an
underscore so as not to conflict with id, inl, and inr from the standard library, as
well as for the visual uniformity of case_ with inl_ and inr_. These operations and
their types are summarized in Figure 2.9. They satisfy the equational theory given in
Figure 2.10.

The laws relating case_, inl_, and inr_ mean that KTree is a cocartesian category.
The Kleisli and cocartesian categorical structures are represented using type classes.
These structures allow us to derive, generically, other useful operations and equivalences.
For example, the following operations bimap and swap are defined from case_, inl_,
and inr_. The KTree bimap f g : ktree E (A + B) (C + D) applies the KTree f :

ktree E A C if its input is an A, or g : ktree E B D if its input is a C; the KTree
swap : ktree E (A + B) (B + A) exchanges the two components of a sum. As we will

11

see below, event handlers also have a cocartesian structure, which lets us re-use the
same generic metatheory for them.

Similarly, the KTree category is just one instance of a Kleisli category, which can
be defined for any monad M. Monadic event interpreters, introduced next, build on
these structures, letting us (generically) lift the equational theory of KTrees to event
interpreters too. This compositionality is important for scaling equational reasoning
to situations involving many kinds of events.

2.2. Semantics of Events and Monadic Interpreters

To add semantics to the events of an ITree, we define an event handler, of type
E ⇝ M for some monad M. Intuitively, it defines the meaning of an event of E as a
monadic operation in M. An interpreter folds such an event handler over an ITree; a
good interpretation of ITrees is one that respects itree E’s monadic structure (i.e., it
commutes with ret and bind).

Events and handlers enjoy a rich mathematical structure, a situation well known
from the literature on algebraic effects (see Chapter 5). Our library exploits this
structure to provide compositional reasoning principles and to lift the base equational
theory of ITrees to their effectful interpretations.

2.2.1. Example: Interpreting State Events. Before delving into the general
facilities provided by the ITrees library, it is useful to see how things play out in a
familiar instance. The code in Figure 2.12 demonstrates how to interpret events into a
state monad. The event type stateE S defines two events: Get, which yields an answer
of state type S, and putE, which takes a new state of type S and yields unit.

In the figure, the state monad transformer operations getT and putT implement the
semantics of reading from and writing to the state in terms of the underlying monad
M, using its ret. The function handle_state is a handler for stateE events: it maps
events of type stateE S R into monadic computations of type stateT S (itree E) R,
i.e., S → itree E (S * R), taking an input state to compute an output state and a
result. Given this handler, we define the interp_state function, which folds the handler
across all of the visible events of an ITree of type itree (stateE S) R to produce a
semantic function of type stateT S (itree E) R. The definition of interp_state is an
instance of interp (see Section 2.2.2 below), specialized to a state monad.

To prove properties about the resulting interpretation, we need to show that
interp_state is a monad morphism, meaning that it respects the ret and bind opera-
tions of the ITree monad.

interp_state (ret x) s ≈ ret (s, x)
interp_state (x ← t ;; k x) s1
≈ '(s2, x) ← interp_state t s1 ;; interp_state (k x) s2

We next prove that handle_state implements the desired behaviors for the get

and put operations, which are shorthands for the trigger of the correponding stateE

events.

interp_state get s ≈ ret (s,s)
interp_state (put s') s ≈ ret (s',tt)

12

Definition interp {E M} {̀MonadIter M} {R : Type} (handler : E ⇝ M)
: itree E R → M R := iter (fun t : itree E R ⇒

match t with
| Ret r ⇒ ret (inr r)
| Tau t ⇒ ret (inl t)
| Vis e k ⇒ bind (handler _ e) (fun a ⇒ ret (inl (k a)))
end).

Figure 2.11. Interpreting events via a handler

(* The type of state events *)
Variant stateE (S : Type) : Type → Type :=
| Get : stateE S S
| Put : S → stateE S unit.

(* State monad transformer *)
Definition stateT (S:Type) (M:Type → Type) (R:Type) : Type := S → M (S * R).
Definition getT (S:Type) : stateT S M S := fun s ⇒ ret (s, s).
Definition putT (S:Type) : S → stateT S M unit := fun s' s ⇒ ret (s', tt).

(* Handler for state events *)
Definition h_state (S:Type) {E} : (stateE S) ⇝ stateT S (itree E) :=
fun _ e ⇒ match e with

| Get ⇒ getT S
| Put s ⇒ putT S s
end.

(* Interpreter for state events *)
Definition interp_state {E S} : itree (stateE S) ⇝ stateT S (itree E) :=
interp h_state.

Figure 2.12. Interpreting state events

These equations allow us to use put and get’s semantics when reasoning about
stateful computations. They are also sufficient to derive useful equations when verifying
program optimizations—for instance, we can remove a redundant get as follows:

interp_state (x ← get ;; y ← get ;; k x y) s
≈ interp_state (x ← get ;; k x x) s

2.2.2. Monadic Interpreters. The interp_state function above is an instance of
a general interp function that is defined for any monad M, provided that M supports an
iteration operator, iter, of type (A → M (A + B)) → A → M B. (The first argument
is a loop body that takes an A and produces either another A to keep looping with
or a final result of type B.) Figure 2.11 shows the definition of interp. It takes a
handler : E ⇝ M and loops over a tree of type itree E R. At every iteration, the
next constructor of the tree is interpreted, using handler for Vis constructors, and
yielding the remaining tree as a new loop state.

13

id_ : E ⇝ itree E (* trigger *)
cat : (F ⇝ itree G) → (E ⇝ itree F) → (E ⇝ itree G) (* interp *)
case_ : (E ⇝ itree G) → (F ⇝ itree G) → (E +' F ⇝ itree G)
inl_ : E ⇝ itree (E +' F)
inr_ : F ⇝ itree (E +' F)

Figure 2.13. Event handler operations

interp h (trigger e) ∼= h _ e

interp h (Ret r) ∼= ret r

interp h (x ← t;; k x) ∼= x ← interp h t;; interp h (k x)

Figure 2.14. Some properties of interp

The core properties of interp, summarized in Figure 2.14, are generalizations of
the laws for interp_state. In particular, interp preserves the monadic structure of
ITrees, and its action on trigger e is to apply the handler to the event e.

It remains to show how to instantiate the MonadIter type class, which provides the
iter combinator used by interp. We defer this discussion to Section 2.3, as it will
benefit from a closer look at events and handlers.

2.2.3. The Algebra of Events and ITree Event Handlers. The handle_state

handler interprets computations with events drawn from the specific type stateE S.
More generally, we often want to combine multiple kinds of events in one computation.
For instance, we might want both stateE S and IO events, or access to two different
types of state at the same time. Fortunately, it is straightforward to define E +' F, the
disjoint union of the events E and F. The definition comes with inclusion operations
inl1 : E ⇝ E +' F and inr1 : F ⇝ E +' F.1 The emptyE event type, with no events,
is the unit of +'.

The corresponding operations on handlers manipulate sums of event types: case_

combines handlers for different event types into a handler on their sum, while inl_

and inr_ are inl1 and inr1 turned into event handlers.
Definition case_ {E F M} : (E ⇝ M) → (F ⇝ M) → (E +' F) ⇝ M

:= fun f g _ e ⇒ match e with
| inl1 e1 ⇒ f _ e1
| inr1 e2 ⇒ g _ e2
end.

Definition inl_ {E F} : E ⇝ itree (E +' F)
Definition inr_ {E F} : F ⇝ itree (E +' F)

Recall that the general type of an event handler is E ⇝ M. When M has the form
itree F, we can think of such a handler as translating the E events into F events. We
call handlers of this type ITree event handlers. Like KTrees, event handlers form

1The 1 in inl1 and inr1 reminds us that E and F live in Type → Type.

14

iter : (A → itree E (A + B)) → (A → itree E B)
loop : (C + A → itree E (C + B)) → A → itree E B
mrec : (E ⇝ itree (E +' F)) → (E ⇝ itree F)

Figure 2.15. Summary of recursion combinators

a cocartesian category where composition of handlers uses interp, and the identity
handler is trigger. The interface is summarized in Figure 2.13.

Definition cat {E F G}
: (E ⇝ itree F) → (F ⇝ itree G) → (E ⇝ itree G)
:= fun f g _ e ⇒ interp g (f _ e).

Definition id_ {E} : E ⇝ itree E := @trigger E.

The equivalence relation for handlers h ≈̂ k is defined below, as pointwise weak
bisimulation. It admits the same equational theory (and derived constructs) as for
KTrees, hence we reuse the same notations for the operations (see Figure 2.10).

h ≈̂ k := ∀ A (e: E A), (h A e) ≈ (g A e)

Subevents. When working with ITrees at scale, it is often necessary to connect
ITrees with fewer effects to ITrees with more effects. For instance, suppose we have an
ITree t : itree IO A and we want to bind it with a continuation k of type A → itree

(X +' IO +' Y) B for some event types X and Y. A priori, this isn’t possible, since the
types of their events don’t match. However, since there is a natural structural inclusion
inc: IO ⇝ X +' IO +' Y (given by inl_ ◦ inr_) we can first interpret t using the
handler fun e ⇒ trigger (inc e) and then bind the result with k.

Since the need for such structural inclusions arises fairly often, the ITrees library
defines a type class, written E -< F, that can automatically synthesize inclusions such
as inc. It generically derives an instance of trigger : E ⇝ itree F whenever there
is a structural subevent inclusion E ⇝ F. We will see in the case study how this
flexibility is useful in practice.

2.3. Iteration and Recursion

While Coq does provide support for coinduction and corecursion, its technique for
establishing soundness relies on syntactic mechanisms that are not compositional. To
make working with ITrees more tractable to clients, our library provides first-class
abstractions to express corecursion as well as reasoning principles for these abstractions
that hide the brittle nature of Coq’s coinduction. From the point of view of a library
user, recursive definitions using these combinators need only to typecheck, even when
they lead to divergent behaviors.

Our library exports two iteration constructs, iter and loop, and a recursion
combinator mrec (Figure 2.15). They are mutually inter-derivable, but they permit
rather distinct styles of recursive definitions.

15

CoFixpoint iter (body : A → itree E (A + B))
: A → itree E B :=
fun a ⇒ ab ← body a ;;

match ab with
| inl a ⇒ Tau (iter body a)
| inr b ⇒ Ret b
end.

Definition loop (body : C + A → itree E (C + B))
: A → itree E B :=

fun a ⇒ iter (fun ca ⇒
cb ← body ca ;;
match cb with
| inl c ⇒ Ret (inl (inl c))
| inr b ⇒ Ret (inr b)
end) (inr a).

Figure 2.16. Iteration combinators: iter and loop

2.3.1. Iteration. The first function is a combinator for iteration, iter, whose
implementation is shown in Figure 2.16. Given body : A → itree E (A + B) and a
starting state a:A, iter body a is a computation that produces either a new state
from which to iterate the body again (after a Tau), or a final value to stop the
computation. This operator makes no assumption on the shape of the loop body, a
marked improvement over the intensional guardedness check required by cofix.

Defining fixpoint combinators as functions allows us to prove their general properties
once and for all. The equations for iter, given in Lemma 2.3.1 and graphically in
Figure 2.17, imply that continuation trees form an iterative category [Bloom and
Ésik, 1993]. The fixed point identity unfolds one iteration of the iter loop; the
parameter identity equates a loop followed by a computation with a loop where that
computation is part of its last iteration; the composition identity equates a loop whose
body sequences two computations f, g with a loop sequencing them in reverse order,
prefixed by a single iteration of f; and the codiagonal identity merges two nested loops
into one.

Lemma 2.3.1 (Iterative category).

iter f ≈̂ f >>> case_ (iter f) id_ (fixed point)
iter f >>> g ≈̂ iter (f >>> bimap id_ g) (parameter)

iter (f >>> case_ g inr_) ≈̂ f >>> case_ (iter (g >>> case_ f inr_)) id_ (comp.)
iter (iter f) ≈̂ iter (f >>> case_ inl_ id_) (codiagonal)

The proofs of these equations makes nontrivial use of coinductive reasoning for weak
bisimulation; carrying them out in a proof assistant is a significant contribution of
this work. Nevertheless, that complexity is entirely hidden from users of the library,
behind the simple interface exposed by these equations, whose expressiveness we’ll
demonstrate in our case study in Chapter 3.

16

The iter implementation shown in Figure 2.16 is specialized to the itree E monad.
However, we can generalize to other monads and characterize the abstraction using
the following type class: 2

Class MonadIter (M : Type → Type) {̀Monad M} :=
iter : ∀ A B, (A → M (A + B)) → A → M B.

Good implementations of the MonadIter interface must satisfy the iterative laws. In
a total language such as Coq, this limits the possible implementations. Base instances
include ITrees and the predicate monad (_ → Prop) where we can tie the knot using
the impredicative nature of Prop. In addition, we can lift MonadIter through a wide
variety of monad transfomers, e.g., stateT S M where M is an instance of MonadIter.

Traced categories. Figure 2.16 also shows the loop combinator, an alternative
presentation of recursion that is derivable from iter. We can think of the C part of the
body’s input and output types as input and output “ports” that get patched together
with a “back-edge” by iter. We use loop in Chapter 3 to model linking of control-flow
graphs. This loop combinator equips KTrees with the well-studied structure of a
traced monoidal category [Joyal et al., 1996, Hasegawa, 1997].

2.3.2. Recursion. The ITree library also features combinators for directly
expressing recursion, using a technique developed by McBride [2015] to represent
recursive calls as events. Figure 2.18 shows the code for a general mutual-recursion
combinator, mrec. Here, an indexed type D : Type → Type gives the signature of
a recursive function, or, using multiple constructors, a block of mutually recursive
functions. For example, D := ackermannE represents a function with two nat arguments
and a result of type nat.

Inductive ackermannE : Type → Type :=
| Ackermann : nat → nat → ackermannE nat.

A recursive event handler for D is an event handler of type D ⇝ itree (D +' E), so
it can make recursive calls to itself via D events, and perform other effects via E events.
As an example, the handler h_ackermann pattern-matches on the event Ackermann m n

to extract the two arguments of the function, and to refine the result type to nat. The
body of the function makes recursive calls by trigger-ing Ackermann events, without
any requirement to ensure the well-foundedness of the definition.

Definition h_ackermann : ackermannE ⇝ itree (ackermannE +' emptyE) :=
fun _ '(Ackermann m n) ⇒
if m =? 0 then Ret (n + 1)
else if n =? 0 then trigger (inl1 (Ackermann (m-1) 1))
else (ack ← trigger (inl1 (Ackermann m (n-1))) ;;

trigger (inl1 (Ackermann (m-1) ack))).

2In Haskell, there is a class MonadFix also associated with recursion and monads, with method
mfix : (A → M A) → M A. However, MonadIter and MonadFix have quite different purposes.
Whereas MonadIter constructs a computation as a fixed point, MonadFix constructs a value as a
fixed point, which is both the input and the output of the computation. A computation is iterated
by iter, as exemplified by the unfold law, whereas mfix only runs its given computation once, as
demonstrated by the law mfix (const u) = u.

17

f = f

f

f
g

= f
g

f

g

= f

g
f

f = f

(Colored boxes denote applications of iter.)

Figure 2.17. Diagrammatic representation of the laws of iterative categories
(Lemma 2.3.1)

The mrec combinator ties the knot. Given a recursive handler D ⇝ itree (D +' E),
it produces a handler D ⇝ itree E, where all D events have been handled recursively.

Definition ackermann : nat → nat → itree emptyE nat :=
fun m n ⇒ mrec h_ackermann (Ackermann m n).

The implementation of mrec in Figure 2.18 works similarly to interp, applying
the recursive handler rh to events in D. However, whereas interp directly uses the
ITree produced by the handler as output, mrec adds it as a prefix of the ITree to
be interpreted recursively: the inl1 d branch returns bind (rh _ d) k, which will be
processed in subsequent steps of the iter loop.

For reasoning, mrec is also characterized as a fixed point by an unfolding equation,
which applies the recursive handler rh : D ⇝ itree (D +' E) once, and interprets
the resulting ITree with interp, where D events are passed to mrec again, and E events
are passed to the identity handler, i.e., trigger, which keeps events uninterpreted.

18

(* Interpret an itree in the context of a mutually recursive definition (rh) *)
Definition mrec {D E} (rh : D ⇝ itree (D +' E)) : D ⇝ itree E :=

fun R d ⇒ iter (fun t : itree (D +' E) R ⇒
match t with
| Ret r ⇒ Ret (inr r)
| Tau t ⇒ Ret (inl t)
| Vis (inl1 d) k ⇒ Ret (inl (bind (rh _ d) k))
| Vis (inr1 e) k ⇒ bind (trigger e) (fun x ⇒ Ret (inl (k x)))
end) (rh _ d).

Figure 2.18. Mutual recursion via events

mrec rh d ≈ interp (case_ (mrec rh) id_) (rh d)

In fact, mrec is an analogue of iter, equipping event handlers themselves with the
structure of an iterative category. It satisfies the same equations as iter, relating
event handlers instead of KTrees.

2.4. Extracting ITrees

One of the big benefits of ITrees is that they work well with Coq’s extraction
facilities. If we extract the echo definition from Section 2, we obtain the code shown
at the top of Figure 2.19.3 The itree type extracts to a lazy datatype, and observe

forces its evaluation.
To actually run the represented computation, we provide a driver that traverses the

itree, forcing all of its computation and providing handlers for any visible events that
remain in the tree. The OCaml function run does exactly that, where, for the sake of
this example, we interpret each Input event as a call to OCaml’s read_int command
and each Output event as a call to print_int.4 This kind of simple event handling
already suffices to add basic IO and “printf debugging” to Coq programs, which can
be extremely handy in practice. We can, of course, implement more sophisticated
event handlers, using the full power of OCaml.

ITrees extractability has played a key role in several different parts of an ongoing
research project that seeks to use Coq for Deep Specifications.5 In particular, our
re-implementation of the Vellvm [Zakowski et al., 2021] formalization of LLVM,
which aims to give a formal semantics for the LLVM IR in Coq, heavily uses ITrees
exactly as proposed in this dissertation to build a denotational semantics for LLVM
IR code. The Vellvm semantics has many layers of events and handlers (for global
data, local data, interactions with the memory model, internal and external functions
calls, etc.), and the LLVM IR control-flow graphs are a richer version of the Asm
language (Section 3.2). The flexibility of using ITree-based interpreters means that

3For simplicity, here we also extract Coq’s nat type as OCaml’s int type.
4Thanks to its dependent type, the OCaml extraction of Vis uses OCaml’s Obj.t as the domain

of the embedded continuations, so handlers should be written with care, otherwise type-safety could
be jeopardized.

5http://www.deepspec.org.

19

http://www.deepspec.org

let rec echo =

lazy (Vis (Input, fun x ->

lazy (Vis (Output (Obj.magic x), fun _ -> echo))))

(* OCaml handler (manually written, not extracted code) *)

let handle_io e k = match e with
| Input -> k (Obj.magic (read_int ()))

| Output x -> print_int x ; k (Obj.magic ())

let rec run t =

match observe t with
| Ret r -> r

| Tau t -> run t

| Vis (e, k) -> handle_io e (fun x -> run (k x))

Figure 2.19. OCaml extracted from the echo example (top) and
OCaml handler and “driver” loop (bottom)

Vellvm can define a relational specification that accounts for nondeterministic features
of LLVM (such as undef) but that can also be refined into an implementation. We
are able to extract an executable interpreter that performs well enough to test small-
to medium-sized LLVM code samples (including recursion, loops, etc.). All but the
outermost run driver are extracted from Coq, as in the echo example.

ITrees are also used as executable specifications to model the semantics of web
servers [Koh et al., 2019, Li et al., 2021]. The ITree representation serves two
purposes: (1) ITrees model the interactive operations of the web server in a way
that can be connected via Princeton’s VST framework [Appel, 2014, 2011] to a C
implementation, and (2) the model can also be used for property-based testing with
QuickChick [Lampropoulos and Pierce, 2018]. The ability to link against handlers
written in OCaml means that the testing framework can be used to test real web
servers like Apache across the network, in addition to linking against our own web
servers. Here again, the performance of the extracted executable has been good enough
that we have felt no need to do any optimization on the ITree representation.

20

CHAPTER 3

Application I: Compiling Imp to Asm

To demonstrate the compositionality of ITree-based semantics and the usability
of our Coq library, we use ITrees to formalize and verify a compiler from a variant
of the Imp language from Software Foundations [Pierce et al., 2018] to a simple
assembly language, called Asm. Subsequent work in the Vellvm semantics for
LLVM [Zakowski et al., 2021] and the Helix compiler to LLVM [Zaliva et al., 2020]
are based on the ideas from this chapter.

We begin by explaining the denotational semantics of Imp (Section 3.1) and Asm
(Section 3.2). It is convenient to define the semantics in stages, each of which justifies
a different notion of program equivalence. The first stage maps syntax into ITrees,
thereby providing meaning to the control-flow constructs of the language, but not
ascribing any particular meaning to the events corresponding to interactions with
the memory. The second stage interprets those events as effects that manipulate (a
representation of) the actual program state.

We then give a purely inductive proof of the correctness of the compiler (Sec-
tions 3.3 and 3.4). The denotational model enables us to state a termination-sensitive
bisimulation and prove it purely equationally, naturally extending a straightforward
approach for terminating languages with simpler denotational semantics [McCarthy
and Painter, 1967]. The correctness proof relates the semantics of Imp to the semantics
of Asm after their events have been appropriately interpreted into state monads (a
necessity, since compilation introduces new events that correspond to reading and
writing intermediate values). Since Imp programs manipulate one kind of state (global
variables) and Asm programs manipulate two kinds of state (registers and the heap),
the proof involves building an appropriate simulation relation between Imp states and
Asm states.

To streamline, we identify Imp global variables with Asm heap addresses and
assume that Imp and Asm programs manipulate the same kinds of dynamic values.
Neither assumption is critical.

3.1. A Denotational Semantics for Imp

The syntax and the semantics for Imp is given in Figure 3.1. In the absence of
while, a denotational semantics could be defined by structural recursion on statements,
as a function from an initial environment to a final environment; the denotation
function would have type imp → env → (env * unit). However, it is not possible
to give a semantics to while using this naïve denotation because Gallina’s function
space is total. The usual solution is to revamp the semantics dramatically, e.g., by
moving to a relational operational semantics (Section 5.1.5 discusses other approaches).
With ITrees, the denotation type becomes imp → stateT env (itree F) unit, or,

21

(* Imp Syntax --------- *)
Inductive expr : Set := ... (* omitted *)

Inductive imp : Set :=
| Assign (x : var) (e : expr)
| Seq (a b : imp)
| If (i : expr) (t e : imp)
| While (t : expr) (b : imp)
| Skip.

(* Imp Events --------- *)
Variant ImpState : Type → Type :=
| GetVar (x : var) : ImpState value
| SetVar (x : var) (v : value) : ImpState unit.

Figure 3.1. Syntax of Imp

equivalently, imp → env → itree F (env * unit), which allows for nontermination.
It is also more flexible, since the semantics can be defined generically with respect to
an event type parameter F, which can later be refined if new effects are added to the
language or if we want to compose ITrees generated as denotations of Imp programs
with ITrees obtained in some other way.

Figure 3.2 shows how the Imp semantics are structured. We first define denote_expr

and denote_imp, which result in trees of type itree E unit. The type class constraint
ImpState -< E indicates that E permits ImpState actions, a refinement of stateE that
provides events for reading and writing individual variables; we would follow the
same strategy to add other events such as IO. The meanings of expressions and most
statements are straightforward, except for While. This relies on the iter combinator
(see Section 2.3) to first run the guard expression, then either continue to loop (by
returning inl tt to the iter combinator) or signal that it is time to stop (by returning
inr tt).

The second stage of the semantics is interp_imp, which takes ITrees containing
ImpState events and produces a computation in the state monad. It first invokes a
handler for ImpState, h_imp_state, to translate the Imp-specific GetVar and SetVar

events into the general-purpose mapE events provided by the ITrees library (the bimap

operator propagates other events untouched). It then uses interp_map to define their
meaning in terms of actual lookup and set operations on the type env, a simple finite
map from var to value. The final semantics of an Imp statement s is obtained simply
by composing the two functions: interp_imp (denote_imp s).

Factoring the semantics this way is useful for proofs. For instance, to prove the
soundness of a syntactic program transformation from s to s' it suffices to show
that denote_imp s ≈ denote_imp s'; we need not necessarily consider the impact of
interp_imp. We will exploit this semantic factoring in the compiler proof below by
reasoning about syntactic “linking” of Asm code before its state-transformer semantics
is considered.

22

Context {E : Type → Type} {̀ImpState -< E}.

(* Imp Denotational semantics ----------------- - - - *)
(* ITree representing an expression *)
Fixpoint denote_expr (e:expr) : itree E value :=
match e with
| Var v ⇒ trigger (GetVar v)
| Lit n ⇒ ret n
| Plus a b ⇒ l ← denote_expr a ;;

r ← denote_expr b ;; ret (l + r)
| ...
end.

(* Imp Denotational semantics cont'd --------------------- - - *)
(* ITree representing an Imp statement *)
Fixpoint denote_imp (s : imp) : itree E unit :=
match s with
| Assign x e ⇒ v ← denote_expr e ;; trigger (SetVar x v
)

| Seq a b ⇒ denote_imp a ;; denote_imp b
| If i t e ⇒ v ← denote_expr i ;;

if is_true v then denote_imp t else denote_imp e
| While t b ⇒

iter (fun _ ⇒ v ← denote_expr t ;;
if is_true v
then denote_imp b ;; ret (inl tt)
else ret (inr tt))

| Skip ⇒ ret tt
end.

(* Imp state monad semantics ----------------- - - - - - - - - - - - - - - *)
(* Translate ImpState events into mapE events *)
Definition h_imp_state {F: Type → Type} {̀mapE var 0 -< F}

: ImpState ⇝ itree F := ...(* omitted *)

(* Interpret ImpState into (stateT env (itree F)) monad *)
Definition interp_imp {F A} (t : itree (ImpState +' F) A)
: stateT env (itree F) A :=
let t' := interp (bimap h_imp_state id_) t in
interp_map t'.

Figure 3.2. Semantics of Imp

This style of denotational semantics avoids defining a syntactic representation of
machines, which often comes with cumbersome administrative reduction rules. Instead,
we directly manipulate denotations to implement the control-flow structures of the
language.

23

(* Asm syntax --------- *)
Variant instr : Set := ... (* omitted *)

Variant branch {label : Type} : Type :=
| Bjmp (_ : label) (* jump to label *)
| Bbrz (_ : reg) (yes no : label) (* cond. jump *)
| Bhalt.

Inductive block (label : Type) : Type :=
| bbi (_ : instr) (_ : block) (* instruction *)
| bbb (_ : branch label). (* final branch *)

Definition bks A B := fin A → block (fin B).

(* Control-flow subgraph: entries A and exits B. *)
Record asm (A B : nat) : Type :=
{ internal : nat
; code : bks (internal + A) (internal + B) }.

(* Asm events --------- *)
Variant Reg : Type → Type :=
| GetReg (x : reg) : Reg value
| SetReg (x : reg) (v : value) : Reg unit.

Inductive Memory : Type → Type :=
| Load (a : addr) : Memory value
| Store (a : addr) (v : value) : Memory unit.

Figure 3.3. Syntax of Asm

3.2. A Denotational Semantics for Asm

The target of our compiler is Asm, a simple assembly language that represents
computations as collections of basic blocks linked by conditional or unconditional
jumps. Figure 3.3 gives the core syntax for the language, which is split into two levels:
basic blocks and control-flow subgraphs.

A basic block (block) is a sequence of straight-line instructions followed by a branch
that transfers control to another block indicated by a label. As with Imp expressions,
the denotation of instructions is mostly uninteresting, so they are omitted in the
figure.

A control-flow subgraph, or “sub-CFG” (asm in Figure 3.3), represents the control
flow of a computation. These are open program fragments, represented as sets of
labeled basic blocks. The labels in a sub-CFG are separated into three groups: entry
labels, from which the code in a sub-CFG can start executing; exit labels, where the
control flow leaves the sub-CFG; and internal labels, which are invisible outside of the
subgraph. A sub-CFG has a block of code for every entry and internal label; control
leaves the subgraph by jumping to an exit label. Labels are drawn from finite domains,

24

Context {E : Type → Type} {̀Reg -< E} {̀Memory -< E}.

(* Asm denotational semantics ----------------- - - - - - *)
Definition denote_instr (i:instr) : itree E unit
:= ... (* omitted *)

(* Asm denotational semantics cont'd --------------------- - *)
Definition denote_br (b:branch (fin B)):itree E (fin B) :=
match b with
| Bjmp l ⇒ ret l
| Bbrz v y n ⇒

val ← trigger (GetReg v) ;;
if val ?= 0 then ret y else ret n

| Bhalt ⇒ exit
end.

Fixpoint denote_bk {L} (b : block L) : itree E L :=
match b with
| bbi i b ⇒ denote_instr i ;; denote_bk b
| bbb b ⇒ denote_br b
end.

Definition denote_bks (bs:bks A B):ktree E (fin A) (fin B)
:= fun a ⇒ denote_bk (bs a).

Definition den_asm {A B}:asm A B → ktree E (fin A) (fin B)
:= fun s ⇒ loop (denote_bks (code s)).

(* Asm state monad semantics ----------------- - - - - - - - - - - - - - *)
Definition h_reg {F: Type → Type} {̀mapE reg 0 -< F}
: Reg ⇝ itree F := (* omitted *)

Definition h_mem {F: Type → Type} {̀mapE addr 0 -< F}
: Memory ⇝ itree F := (* omitted *)

Definition interp_asm {F A} (t:itree (Reg+'Memory+'F) A)
: memory → registers → itree F (memory*(registers*A)) :=
let h := bimap h_reg (bimap h_mem id_) in
let t' := interp h t in
fun mem regs ⇒ interp_map (interp_map t' regs) mem.

Figure 3.4. Semantics of Asm

e.g., fin A and fin B where A and B are nats, as seen in bks. The finiteness of labels is
useful for Asm program transformations and is faithful to “real” assembly code, but
this restriction is not actually necessary. The correctness proof is independent of this
choice, so we sweep the details under the rug.

Figure 3.4 presents the denotation of Asm programs, which factors into two parts,
just as we saw for Imp. The GetReg and SetReg events represent accesses of register

25

state, and Load and Store accesses of memory.6 Once again, we give meaning to the
control-flow constructs of the syntax independently of the state events. The result of
denote_bks is a ktree that maps each entry label to an itree that returns the label
of the next block to jump to. The den_asm function first computes the denotation of
each basic block and then wires the blocks together using loop, hiding the internal
labels in the process.

The stateful semantics of Asm programs is given by interp_asm, which, like
interp_imp, realizes the register and memory as finite maps using interp_map. As a
result of this nesting, the “intermediate state” of an Asm computation is a value of type
memory * (register * A). Because they are built compositionally from interpreters,
it is very easy to prove that both interp_imp and interp_asm are monad morphisms
in the sense that they commute (up to Tau) with ret and bind, a fact that enables
proofs by rewriting.

3.3. Linking of Control-Flow Subgraphs

We now turn to the compilation of Imp to Asm. The compiler and its proof are
each split into two components. The first phase handles reasoning about control flow
by embedding sub-CFGs into KTrees. In the second phase, we perform the actual
compilation and establish its functional correctness by reasoning about the quotienting
of the local events.

For the first phase, we first implement a collection of reusable combinators for link-
ing sub-CFGs. These combinators correspond to the operations on KTrees described
in Section 2.1.5, which can be seen in this context as presenting a theory of graph
linking at the denotational level. Here are the signatures of the four essential ones
(their implementations are straightforward):

Definition app_asm (ab : asm A B) (cd : asm C D) : asm (A + C) (B +
D).

Definition loop_asm (ab_ : asm (I + A) (I + B)) : asm A B.
Definition pure_asm (f : A → B) : asm A B.
Definition relabel_asm (f : A → B) (g : C → D) (bc : asm B C) : asm A D

.

Two sub-CFGs can be placed beside one another while preserving their labels, via
app_asm. Linking of compilation units is performed by loop_asm: it connects a subset
of the exit labels I as back edges to the imported labels, also named I, and internalizes
them. Visible labels can be renamed with relabel_asm. Finally, pure_asm creates, for
every label a : A, a block that jumps immediately to f a. Together, relabel_asm and
pure_asm provide the plumbing required to use the combinators app_asm and loop_asm

effectively.
The correspondence between these core Asm combinators and operations on KTrees

is given by the following equations, which commute the denotation function inside the
combinator.

6An additional Done event (not shown) represents halting the whole program for blocks terminated
by a Bhalt instruction via exit, but we omit it for the purposes of this exposition.

26

Definition seq_asm {A B C} (ab : asm A B) (bc : asm B C): asm A C
:= loop_asm (relabel_asm swap id_ (app_asm ab bc)).

(* Auxiliary for if_asm *)
Definition cond_asm (e : list instr) : asm 1 (1 + 1)
:= ... (* omitted *)

Definition if_asm {A} (e : list instr) (t : asm 1 A) (f : asm 1 A)
: asm 1 A
:= seq_asm (cond_asm e) (relabel_asm id_ merge (app_asm t f)).

Definition while_asm (e : list instr) (p : asm 1 1) : asm 1 1
:= loop_asm (relabel_asm id_ merge

(app_asm (if_asm e (relabel_asm id inl_ p) (pure_asm inr_))
(pure_asm inl_))).

(a) Coq definitions

ab
bc

B

B

A C
t

f
e1 true

false

A
A

A

p
e

true

false
11

(b) Graphical representation

Figure 3.5. High-level control flow in Asm

den_asm (app_asm ab cd) ≈̂ bimap (den_asm ab) (den_asm cd)
den_asm (loop_asm ab) ≈̂ loop (den_asm ab)

den_asm (relabel_asm f g bc) ≈̂ (pure f >>> den_asm bc >>> pure g)
den_asm (pure_asm f) ≈̂ pure_ktree f

Equipped with these primitives, building more complex control-flow graphs becomes
a diagrammatic game. Figure 3.5 shows how to use the primitives to build linking
operations for sub-CFGs that mimic the control-flow operations provided by Imp. For
instance, sequential composition of asm A B with asm B C places them in parallel, swaps
their entry labels to get a sub-CFG of type asm (B+A) (B+C), and then internalizes the
intermediate label B via loop_asm.

We emphasize that while these control-flow graphs are specific to Imp, their
definitions do not depend on Imp’s or even Asm’s state-transformer semantics. We can
reason about control-flow independently of other events. For instance, the denotation
of the seq_asm combinator is indeed the sequential composition of denotations of its
arguments (up to Tau):

Lemma seq_asm_correct {A B C} (ab : asm A B) (bc : asm B C) :
(den_asm (seq_asm ab cd)) ≈̂ (den_asm ab >>> den_asm bc).

27

The while_asm combinator is more involved, naturally. As illustrated in Figure 3.5,
it constructs the control-flow graph of a while loop given the list of instructions for
the test condition and the compilation unit corresponding to the body of the loop.
The type of p represents a compilation unit with a single imported label (the target
to jump to when the loop body finishes) and a single exported label (the entry label
for the top of the loop body). The correctness of the combinator establishes that its
denotation can be viewed as an entry point that runs the body if a variable tmp_if is
non-zero after evaluating the expression e. This is expressed at the level of KTrees via
the loop operator. In the code below, label_case l analyzes the shape of the label l,
and l1 and l2 are two distinct label constants corresponding to the loop entry or exit,
respectively.

Lemma while_asm_correct (e : list instr) (p : asm 1 1)
: denote_asm (while_asm e p)
≈̂ loop (fun l:fin (1 + 1) ⇒

match label_case l with
| inl _ ⇒ denote_list e ;; v ← trigger (GetReg tmp_if) ;;

if (v:value) then Ret l2 else (denote_asm p l1;; Ret l1)
| inr _ ⇒ Ret l1
end).

Most importantly, the proof of while_asm_correct is again purely equational, relying
solely on the theory of KTrees and correctness equations of the low-level linking
combinators (app_asm_correct, seq_asm_correct, etc.).

3.4. Compiler Correctness

The compiler itself is entirely straightforward. It compiles Imp statements using
the linking combinators along with compile_assign and compile_expr, both of which
are simple (and omitted). We pass to compile_expr the name of a target register (here,
just 0), into which the value of the expression will be computed; it stores intermediate
results in additional Asm registers as needed.

Fixpoint compile (s : stmt) {struct s} : asm 1 1 :=
match s with
| Skip ⇒ id_asm
| Assign x e ⇒ raw_asm_block (after (compile_assign x e) (Bjmp l1))
| Seq l r ⇒ seq_asm (compile l) (compile r)
| If e l r ⇒ if_asm (compile_expr 0 e) (compile l) (compile r)
| While e b ⇒ while_asm (compile_expr 0 e) (compile b)
end.

The top-level compiler correctness theorem is phrased as a bisimulation between
the Imp program and the corresponding Asm program, which simply requires them
to have “equivalent” behavior.

Theorem compile_correct (s : stmt) : equivalent s (compile s).

Figure 3.6 unpacks the definition of equivalent, which requires the ITree denotations
of s and its compilation to be bisimilar. Two ITrees t1 and t2, representing Imp

28

and Asm computations respectively, of types itree (ImpState +' E) A and itree

(Reg +' Memory +' E) B, are bisimilar if, when run in Renv-related initial states, they
produce computations that are equivalent up to Tau and both terminate in states
related by state_invariant TT. The relation Renv formalizes the assumption that the
Imp environment and Asm memory have the same contents when viewed as maps
from Imp variables / Asm addresses to values, and it is implied by state_invariant.
Here, TT is the trivial relation on the output label of Asm, since a statement has a
unique exit point; in general the RAB relation parameter in state_invariant is used to
ensure that both computations jump to the same label, which is needed to prove that
loops preserve the state invariant.

Since the compiler introduces temporary variables, the bisimulation does not hold
over the uninterpreted ITrees. To prove that expressions are compiled correctly, we
need to explain how reads and writes of Asm registers relate to the computations
done at the Imp level. The relation sim_rel establishes the needed invariants, which
ensure that the code generated by the compiler (1) doesn’t corrupt the Asm memory,
(2) uses registers in a “stack discipline,” and (3) computes the Imp intermediate result
v into the target register n. These properties are used to prove the correctness of
compile_expr.

Crucially, despite correctness being termination sensitive, the proofs follow by
structural induction on the Imp terms: all coinductive reasoning is hidden in the
library. As in the first phase, the reasoning here follows by rewriting, this time using
the bisimilarity relation and equations about interp_imp and interp_asm that are
induced by virtue of being compositionally defined from interp_state.

Setting aside the usual design of the simulation relation, the resulting proofs
are slightly verbose, but extremely elementary. They mostly consist in successive
rewrites to commute the denotation with the various combinators, and some elementary
semantic reasoning where events are reached to prove that the simulation relation is
preserved. We believe that these kind of equational proofs can be automated to a
large degree, a perspective we would like to explore in further works.

29

(* Relate an Imp env to an Asm memory *)
Definition Renv (g_imp : Imp.env) (g_asm : Asm.memory) : Prop :=
∀ k v, alist_In k g_imp v ↔ alist_In k g_asm v.

Definition sim_rel l_asm n: (Imp.env * value) → (Asm.memory * (Asm.registers * unit))
→ Prop :=

fun '(g_imp', v) '(g_asm', (l_asm', _)) ⇒
Renv g_imp' g_asm' ∧ (* we don't corrupt any of the Imp state *)
alist_In n l_asm' v ∧ (* we get the right value in register n *)
(∀ m, m < n → ∀ v, alist_In m l_asm v ↔ alist_In m l_asm' v).

(* we don't mess with anything on the "stack" *)

Context {A B : Type}. (* Imp / Asm intermediate result types *)
Context (RAB : A → B → Prop). (* Parameter that relates intermediate results *)

(* Relate Imp to Asm intermediate states. *)
Definition state_invariant (a : Imp.env * A) (b : Asm.memory * (Asm.registers * B))

:=
Renv (fst a) (fst b) ∧ (RAB (snd a) (snd (snd b))).

Definition bisimilar {E} (t1 : itree (ImpState +' E) A)
(t2 : itree (Reg +' Memory +' E) B) :=

∀ g_asm g_imp l, Renv g_imp g_asm
→ eutt (state_invariant RAB) (interp_imp t1 g_imp) (interp_asm t2 g_asm l).

(* Imp / Asm program equivalence *)
Definition TT : unit → fin 1 → Prop := fun _ _ ⇒ True.
Definition equivalent (s:stmt) (t:asm 1 1) : Prop
:= bisimilar TT (denote_stmt s) (den_asm t f1).

Figure 3.6. Simulation relations for the compiler correctness proof

30

CHAPTER 4

Application II: Verified Transactional Objects

4.1. Introduction

From multiprocessors to distributed systems, concurrency plays a key role in
modern computing. Concurrent algorithms exhibit complex behaviors and are prone
to subtle bugs, thus making concurrency a valuable target for formal verification.
The literature on verifying concurrent systems has explored a diversity of consistency
models and verification techniques.

4.1.1. Consistency Models. Concurrent systems consist of individual agents—
which may be threads, processes, machines, etc.—communicating with each other.
Through their interactions, agents gain their own partial views of the world, which
may correlate with each other more or less strongly, for example depending on whether
communication channels may delay, reorder, lose, or duplicate messages or memory
instructions. A consistency model is a description of these modalities of communication.
Two standard and closely related consistency models are sequential consistency and
linearizability.

Sequential consistency [Lamport, 1979] requires that operations appear to execute
atomically in some global order, called a linearization, consistent with the order
observed locally by each process. Linearizability [Herlihy and Moss, 1993] is a stronger
model, augmenting sequential consistency with the constraint that the global ordering
of non-overlapping operations be also preserved by the linearization. The connections
between sequential consistency and linearizability run deep [Attiya et al., 2017, Filipovic
et al., 2009]. To give a concrete example distinguishing these two conditions, consider
an execution of three processes concurrently accessing a shared reference, illustrated
in Figure 4.1. Processes invoke methods to read and write the reference; these
methods are represented here by the interval of time between their invocation and
their completion. Processes A and B write values 1 and 2 to the reference, while
process C reads from it. Under sequential consistency, any permutation of those
operations is a valid linearization. Process C may thus read either 1 or 2, or the
initial value 0 if it is scheduled before A and B. Under linearizability, process B
must appear to be scheduled after process C in order to preserve the ordering of their
non-overlapping operations, thus C is guaranteed not to read 2.

On the one hand, since weaker consistency models impose fewer synchronization
constraints, they generally enable more performant implementations. Relaxed consis-
tency models, which are weaker than sequential consistency, are also of notable interest
as they accurately describe the behavior of common hardware architectures [Steinke
and Nutt, 2004]. On the other hand, weaker consistency guarantees put more burden
on the correct and effective usage of data structures in higher-level applications.

31

A: write 1
B: write 2

C: read

time

Figure 4.1. Concurrent history of a shared mutable reference

One benefit of linearizability over weaker consistency models is compositionality:
complex linearizable objects can be constructed from smaller linearizable objects.
Thus, linearizability aligns well with the themes of this dissertation. This chapter
presents a framework of verified linearizable objects leveraging the compositional
aspects of interaction trees.

4.1.2. Verification for Concurrency. Among the many approaches to formally
verifying concurrent data structures, one principal distinguishing factor is the degree of
automation. Model checking [Clarke et al., 2018, 1994, Černỳ et al., 2010] is a common
basis for automated solutions. Implementations are expressed as finite state machines
and specifications as first-order logical formulas, so that the resulting verification
problem can be handled by standard model checking techniques and tools. A general
limitation of model checking is the need to restrict the search space, to make the
problem tractable at the cost of soundness, e.g., by bounding the length of executions
or the number of threads considered [Burckhardt et al., 2010]. For that reason,
automated verification techniques are most often applied to validate high-level models
of concurrent algorithms, before developing their final implementations separately.

In contrast, this work targets the practice of interactive theorem proving. The
general approach is to design semantic models or program logics to be implemented in
a proof assistant. What is lost in automation is gained in expressiveness. High-level
specifications can be written in an expressive, higher-order language, and we can
construct formal proofs that apply to all possible executions of a given program.
In this context of interactive theorem proving for concurrency, a central topic is
separation logic [Reynolds, 2002]. It is an extension of Hoare logic, viewing imperative
programs in terms of assertions on state. Separation logic introduces a separating
conjunction, joining together assertions on disjoint parts of the program, which is key
to the ubiquitous problem of aliasing. Separation logic is a foundation for many more
concepts for dealing with concurrency: atomic triples [Rocha Pinto et al., 2014], ghost
state [Jung et al., 2016b], prophecy variables [Jung et al., 2019], etc. VST [Appel, 2014]
and Iris [Jung et al., 2015] are two notable implementations of concurrent separation
logic in Coq. Separation logic is an axiomatic approach to program verification,
investigating the structure of logical predicates on state. This chapter presents a more
algebraic approach, viewing linearizable objects as first-class entities. Our main case
study leverages this aspect to verify a transactionally predicated map object, built as
a nontrivial compositon of individual linearizable (and serializable) objects.

4.1.3. From Linearizability to Serializability. Two styles of concurrency have
been studied intensively from a formal-methods perspective. On the one hand, we

32

have classic data structures (e.g., stacks, queues, dictionaries) that rely on primitives
like locks and compare-and-set instructions to guarantee atomicity of their methods;
we might call these single-method-atomic data structures. On the other hand, there is
a separate tradition of transaction-based APIs, which guarantee atomicity of chains of
method calls; let us call them multi-method-atomic. In broad strokes, single-method
atomicity is appealing for its superior performance, while multi-method atomicity is
appealing for its simpler programming model.

Sometimes it is useful to break a complex concurrent application into pieces
written in both of these styles [Spiegelman et al., 2016, Assa et al., 2020, Elizarov
et al., 2019], but no one had previously shown how to prove functional correctness of
such applications. We remedy this gap with a new framework for modular proofs of
programs that mix the two styles.

As a motivating case study, we focus on transactional predication [Bronson et al.,
2010]. The idea behind data structures implemented in this style—typically finite
sets or maps—is to combine software transactional memory (STM) [Shavit and
Touitou, 1995, Harris et al., 2005], which provides good compositionality and reasoning
properties but is relatively inefficient, with a concurrent data structure that exhibits
good performance but provides a noncomposable interface. Instead of storing the
entire data structure in transactional memory, we store predicates about the data
structure—Boolean-valued mutable references indicating the membership of particular
elements in the set. Updates to the predicates reflect actual changes to the data
structure, while a nontransactional concurrent object manages the mapping between
keys and predicates; this split reduces conflict detection to the STM’s detection
of write-write and read-write collisions. The challenge is finding a framework that
supports ergonomic proofs involving both kinds of mechanisms.

A growing community of “programmer-provers” have learned to be effective at
proving properties of code written in the native programming languages of various
proof assistants. These native languages tend to be purely functional, but frameworks
like interaction trees have demonstrated how to extend the lightweight combination
of programming and proof that arises naturally for pure functional programs to
situations involving a range of computational effects. Unfortunately, when we include
concurrency the complexity of reasoning increases dramatically.

To add concurrency on top of a proof assistant’s native functional language and
proof tools, we organize code into layered collections of concurrent objects whose
specifications force all methods to behave atomically; in this setting we support a
variety of concurrency styles, principally those associated with traditional linearizable
concurrent data structures and serializable transactional memory. To support transac-
tions, we introduce a novel technique of passing code reified as interaction trees and
applying instrumentation functions to transform those trees.

For example, consider a concurrent stack object with methods push and pop. If
such an object has been proven linearizable against a natural specification, clients can
treat calls to push and pop as atomic, ignoring their actual implementations, which
might use tricky fine-grained primitives like compare-and-swap. However, one level
up, clients do still need to reason about the ways that sequences of calls to push
and pop can nondeterministically interleave. For instance, if one wanted to transfer

33

the elements of one concurrent stack to another, a naive implementation may be the
following moveStack function:

moveStack(from, to) := vo ← from.pop();
match vo with None⇒ return ()

| Some(v) ⇒ moveStack(from, to); to.push(v)

Multiple calls to moveStack from different client threads on the same from stacks may
interleave their invocations of push and pop, resulting in two subsets of the initial
stack being sent to different destinations. In particular, if the desired behavior of
moveStack were to transfer the elements from one stack to another atomically, it would
be necessary to employ a more sophisticated implementation involving synchronization
mechanisms external to the stack.

The complexity of reasoning about concurrent objects is one reason why transac-
tions [Papadimitriou, 1979, Herlihy and Moss, 1993, Shavit and Touitou, 1995, Harris
et al., 2005] have become a popular concurrency abstraction. Transactions allow the
programmer to declare that a particular block of code must be run atomically, leaving
it to the compiler and/or runtime protocol to figure out how to provide this atomicity
both soundly and efficiently.

Software transactional memory is probably the best-known realization of this idea
in the functional-programming world. It allows programmers to write code like

moveStackAtomically(from, to) := asTransaction(λ_. moveStack(from, to))

where the call to moveStack is wrapped in a thunk and passed to a library procedure
that promises to run such thunks atomically.

Our goal is to blend transactions and classical concurrent objects into a unified
concurrent-object framework. In particular, we want to capture transaction protocols
as objects that accept user transactions—thunks that chain calls together—and execute
them atomically. Further, we want to express the correctness of such objects in terms
of linearizability, so that we can compose our verified transactional objects with other
verified linearizable objects.

Our key technical advance is making the structure of concurrent programs more
syntactic by using interaction trees (Chapter 2) and executing them later with an
explicit interpreter. The previous chapters have demonstrated interaction trees for
representing sequential programs, and I will now show how to adapt them into a
framework for linearizability proofs of concurrent objects. Interestingly, in this setting,
serializability (the classical transaction correctness condition [Papadimitriou, 1979])
turns out to be literally a special case of linearizability for objects whose higher-order
methods take code (represented as interaction trees) as arguments. Note the contrast
with familiar correctness criteria for transactions, which are typically stated as ad-hoc
conditions [Papadimitriou, 1979, Guerraoui and Kapalka, 2008, Doherty et al., 2013,
Scott, 2006, Jagannathan et al., 2005].

To make this framework more efficient, our library methods perform syntactic
transformations on their interaction-tree arguments. For example, consider how
asTransaction might transform the tree of method calls moveStack wishes to perform.
After inlining a bit of library code, we first see insertion of code for initialization

34

(beginTransaction) and finalization (commitTransaction, etc.).
moveStackAtomically(from, to) :=

_← beginTransaction;
r ← moveStack ′(from, to);
match r with None⇒ abortTransaction

| Some(r)⇒ _← commitTransaction; return(r)
The library builds an instrumented routine moveStack ′, which looks just like moveStack
but with calls to instrumented methods like from.pop′() instead of from.pop(), where
from.pop′() is a modified version of from.pop() whose concurrent read and write
methods have been replaced with transactional trans_read and trans_write methods,
and any sequence of transactional methods between a beginTransaction call and a
commitTransaction call shall appear to execute atomically as a whole. Concurrent
transactions may conflict with each other, in which case subsequent transactional
method calls may no longer return consistent results. Instead, those methods fail by
returning a None value, and all the previous operations of the ongoing transaction are
cancelled.

pop() := ...; (* Original code: *)
v ← read(i); k(v)

pop′() := ...; (* Instrumented code: *)
vo ← trans_read(i);
match vo with None⇒ return(None)

| Some(v)⇒ k ′(v)
Crucially, the free monad represents programs explicitly as trees of method calls and
responses to their return values, allowing us to traverse these trees syntactically and
add uniform instrumentation.

Recapping, we adopt linearizable objects as the foundation of our framework. An
object packages concurrent code with private state to implement public methods,
and it is verified with respect to a sequential specification. The framework supports
modular implementation and verification of concurrent libraries that include both
classic linearizable data structures and serializable transactional objects. It formu-
lates serializability in terms of linearizability and offers a unified proof technique
where all library modules are proved linearizable against straightforward sequential
specifications.

The modular nature of the framework fits our goal of verifying transactional
predication. The basic idea, presented in more detail in the next section, is to
combine a concurrent map with a transactional-memory library, yielding a higher-
level transactional concurrent map abstraction. While the map we build on provides
atomicity only at the level of single-key reads and writes, the higher-level map allows
grouping of several dependent reads and writes in transactions. The underlying
concurrent map is used to associate keys with references to mutable memory cells
managed by the transactional-memory system. As a result, key lookups have the
performance of the concurrent map, while the values associated with several keys can
be read or written within a single atomic transaction. Each of these main ingredients
is itself constructed atop more primitive library modules with their own sequential
specifications and is separately verified.

In summary, our key contributions are:
35

• We present a core formal framework for verified linearizable objects whose
methods are expressed as interaction trees (Chapter 2). The framework
includes powerful composition combinators to define implementations and
specifications and verify implementations (Section 4.2 to Section 4.4), mod-
ularly. A key component of the framework is a unified proof principle for
linearizability (Section 4.5), which we demonstrate by verifying a concurrent
hash-map object (Section 4.5.1) and a concurrent histogram (Section 4.5.2).
• Within this framework, we introduce verified transactional objects. The key

idea is to view transactions as first-class entities, represented as interaction
trees, and use interaction-tree rewriting to instrument transactions with the
bookkeeping calls required to ensure atomic execution. We use the composition
operations defined earlier to state transaction serializability as an instance of
linearizability. We then apply the proof principle for linearizability to prove
the serializability of a transactional-memory object based on transactional
mutex locks (TML) [Dalessandro et al., 2010] (Section 4.6).
• We use this framework to carry out a significant case study, leveraging

its support for compositional reasoning to verify a concurrent-set object
implemented using transactional predication (Section 4.7). To our knowledge,
this correctness proof is the first rigorous one—mechanized or otherwise—for
a concurrent object that encapsulates both a conventional concurrent data
structure and a transactional-memory implementation.
• We package our verification framework as a reusable Coq library, proved correct

from first principles. The Coq library7 mechanizes everything presented in
the thesis, including the main case study and all its dependencies.

The work presented in this chapter, originally published in Lesani et al. [2022],
was started independently by my coauthors prior to my work on interaction trees.
Significant portions of this chapter present work that was completed prior to my
involvement, namely: the verification principle for linearizability (Section 4.5), its
application to verifying hash-map and histogram objects, and the verification of
the transactional mutex locking protocol (Section 4.6.1). They are preserved in this
dissertation for they help to illustrate the scope of this project. However, I was actively
engaged in writing the expository sections (Sections 4.2 to 4.4 and 4.6), requiring
a non-trivial effort in untangling the concepts relevant to the framework for a clear
presentation.

It is notable that the coinductive type of interaction trees and associated key
definitions such as the interp combinator appeared early on this project. Nonetheless,
the originality of the ITree library is rather to be found in the surrounding equa-
tional theory up to weak bisimulation, and I’ve made use of it in the verification of
transactional predication (Section 4.7), which is my main technical contribution.

7Source available at https://zenodo.org/record/6342476

36

https://zenodo.org/record/6342476

inc := i← r.read();
ok ← r.cas(i, i + 1);
if ok then i + 1 else inc

Figure 4.2. inc method

4.2. Overview

We begin by fixing terminology and notation for some standard concepts, using the
example of a simple concurrent counter; then we review the core idea of transactional
predication.

4.2.1. Objects. We speak of objects encapsulating some state which is accessed
through methods grouped into interfaces. An object implements a high-level interface
by issuing a sequence of calls to a low-level interface. A core assumption, which
significantly simplifies our composition laws, is that object methods may not spawn
new threads—i.e., concurrency arises at the level of applications, not internally in
libraries.

Consider an object with just one method, inc, which increments an abstract counter
and returns its new value. We can implement this object in terms of a compare-
and-swap (CAS) register interface, with methods read, write, and cas (Figure 4.2).
Multiple application threads may call inc simultaneously. For example, Figure 4.3(a)
shows a possible execution history starting with two calls to inc in two concurrent
threads, displaying interactions through the counter’s high- and low-level interfaces.
Time flows vertically. Horizontal arrows are events—either method calls (rightward
arrows) or returns (leftward arrows). Calls from the external environment to the
counter object are on the left; calls from the counter to the underlying CAS register
object are in the middle of the diagram. Events in thread 1 are shown in red (and
normal font); events of thread 2 are blue (and italic). In this execution, both threads
first execute read and get the same value back. Both then try to compare-and-swap,
but only one of them (thread 2) succeeds, incrementing the counter once. Thread 2
returns the value of the counter, now at 2. Thread 1 tries again and finally succeeds,
incrementing the counter to 3. The counter object translates single calls from its own
clients (on the left) into multiple calls to its low-level interface (on the right).

4.2.2. Objects and Linearizability. A sequential specification describes the
high-level behavior of an object when its methods are executed sequentially, waiting
for each to return before calling the next one. Formally, a sequential specification for a
given interface is defined as a labeled state-transition system, where the labels are pairs
of method calls and return values. Alternatively, a sequential specification can itself
be viewed as an idealized “atomic object,” whose methods execute fully and return
their results as soon as they are called. We say that an object is linearizable [Herlihy
and Wing, 1990] with respect to a sequential specification when every method invoked
on the object appears to execute atomically at some point between its call and its
return, matching the behavior of the method call from the sequential specification.
(We will formally define linearizability and its properties in Section 4.4.) For example,
Figure 4.3(b) shows how the high-level history of the counter object in Figure 4.3(a)

37

C
o

u
n

te
r

C
A

S

R
e
g

is
te

r

in
c

in
c

re
a
d

re
a
d 1 1

c
a
s
 1

 2

c
a
s
 1

 2

tr
u
e

fa
ls

e

re
a
d

2

c
a
s
 2

 3

tr
u
e

2 3

A
b

s
tr

a
c
t

C
o

u
n

te
r

in
c

in
c 2 3

S
e
q

u
e
n
ti
a
l

S
p

e
c

T
im

e

S
ta

te
 =

 1

(a
)

(b
)

(c
)

C
o

u
n

te
r

Im
p

l
A

b
s
tr

a
c
t

C
A

S
 R

e
g

is
te

r

in
c

in
c

re
a
d

re
a
d 1 1

c
a
s
 1

 2

c
a
s
 1

 2

tr
u
e

fa
ls

e

re
a
d

2

c
a
s
 2

 3

tr
u
e

2 3

S
e
q

u
e
n
ti
a
l

S
p

e
c

S
ta

te
 =

 2

S
ta

te
 =

 3

in
c

in
c

S
ta

te
 =

 1

S
ta

te
 =

 2

S
ta

te
 =

 3

c
a
s
 1

 2

re
a
d

re
a
d

re
a
d

c
a
s
 1

 2

c
a
s
 2

 3

F
ig

ur
e

4.
3.

Ex
ec

ut
io

n
of

a
lin

ea
riz

ab
le

co
un

te
r

ob
je

ct
(a

)
Po

ss
ib

le
ex

ec
ut

io
n

hi
st

or
y

of
a

co
un

te
r

ob
je

ct
im

pl
em

en
te

d
us

in
g

a
C

A
S

re
gi

st
er

ob
je

ct
.

(b
)

Li
ne

ar
iz

at
io

n
of

th
e

hi
gh

-le
ve

lh
ist

or
y,

ob
se

rv
ed

ex
te

rn
al

ly
by

ca
lle

rs
of

th
e

co
un

te
r

ob
je

ct
.

(c
)

Li
ne

ar
iza

tio
n

of
th

e
lo

w-
lev

el
hi

st
or

y,
ob

se
rv

ed
in

te
rn

al
ly

by
th

e
co

un
te

ro
bj

ec
tw

he
n

ca
lli

ng
th

e
CA

S
re

gi
st

er
ob

je
ct

.

38

can also be produced by a sequence of atomic interactions with an idealized counter
shown in lighter gray: the idealized counter responds first to thread 2 and then to
thread 1.

So far, we have focused on one side of interfaces, where an object acts as the
callee of its high-level interface (here, inc); the object must satisfy the high-level
sequential specification that is associated with the interface. The object also acts
as the caller of its low-level interface (here, read and cas), which is itself associated
with a low-level sequential specification that the object can rely on in order to satisfy
its high-level specification. In the example, our counter object interacts, through its
low-level interface, with a CAS-register object that it assumes is linearizable with
respect to its own sequential specification. Figure 4.3(c) shows a linearization of the
low-level history from Figure 4.3(a).

4.2.3. Transactions and Serializability. An appealing feature of linearizable
objects is that, in every layer of a hierarchical system and its proofs, every object
is proved against a straightforward sequential specification of the objects it depends
on. In the example, when proving the linearizability of the counter object, we can
restrict attention to histories where low-level method calls return immediately, allowing
us to reason about many fewer interleavings than if we had to consider the actual
implementations of read and cas. However, while the methods of a linearizable object
are logically atomic, clients must still reason about possible interleavings of sequences
of calls.

A more user-friendly model of concurrency is offered by transactional memory,
which allows client programmers to choose the granularity of atomic actions, delimiting
blocks of client code—possibly containing multiple calls—that must execute atomically
as wholes, a requirement called serializability. We will model transactional memory’s
correctness as a special case of linearizability: atomic transactions can be viewed as
calls to the methods of a linearizable object, where the arguments to those methods
consist of programs to be interpreted (atomically). A program is an interaction tree
that may include method calls on an interface. One familiar way to implement such an
object is to interpret transactions in an environment where conflicts can be detected
and transactions can be rolled back. We will formalize this approach (in Section 4.6)
as a form of “transaction instrumentation,” inserting “transaction life-cycle” method
calls.

4.2.4. Transactional Objects. The fine-grained conflict detection of transactional-
memory protocols can hinder performance. Implementations of high-performance
transactional objects [Bronson et al., 2010, Spiegelman et al., 2016, Assa et al., 2020,
Elizarov et al., 2019] use TM (transactional memory) only sparingly, to reduce the
frequency of “false conflicts,” instead delegating most memory accesses to more efficient
concurrent data structures. They achieve the best of both worlds: composability from
TM and performance from concurrent data structures.

An elegant realization of this idea is the technique called transactional predication
[Bronson et al., 2010]. Figure 4.4 shows the internal structure of a transactional-set
object built in this style. The transactional set is vertically composed on top of the
horizontal composition of two lower-level objects: a locator (which wraps a concurrent

39

Concurrent map

Array of
locks

Array of hash
buckets

CAS register
(timestamp)

Mutable
references

(predicates)

Fine-grained

transactional

interface
Multi-method

atomic interface

Single-method

atomic interfaces

Transactional set

Locator
(mapping keys to TM

locations)

Transactional memory
(transactional mutex lock object)

Figure 4.4. Architecture of transactional predication

map) and a TM. The locator maps each element that has ever been in the set (whether
or not it is still in the set at the moment) to a location (a mutable cell) managed by
the TM. A location stores a mutable Boolean (called a predicate, hence the technique’s
name) that represents whether the element is currently in the set. The locations
themselves are managed by the TM. A locator is a simple concurrent object that is
built on top of a concurrent-map object. (We will later implement a concurrent-map
object on top of arrays of locks and buckets and implement the TM object on top of a
register and a map object.) Given an element, the locator checks whether the element
is already in the map. If the element is present, the locator returns the location that
the element is mapped to. If it is not, the locator puts the element and a fresh TM
location in the map.

The interface of a transactional set accepts user programs on the set interface and
executes them atomically. Given a user program, it inserts TM life-cycle calls such as
TM initialization and commitment calls into the program. For each set method call on
an element in the user program, the locator is called to find the location corresponding
to that element. A TM read or write method on the Boolean value stored in that
location is performed depending on the set method call (membership, insert, or delete).
A single transaction may access several elements of the set, leading to accesses to
several locations in the TM. Since the TM enforces atomicity of all such accesses to the
locations, the transactional-set object inherits the same atomicity. Accesses to these
locations track conflicts only at the semantic level for the set interface. Contending
accesses inside the locator do not lead to conflicts. By contrast, a set implemented
purely based on TM tracks conflicts on the low-level reads and writes and aborts more
transactions.

4.2.5. Verified Transactional Objects. The use of a concurrent object (the
locator) together with a TM raises significant challenges for verification. The TM
guarantees the atomicity of transactions that use just its own interface, but the
methods of the transactional set call methods on both the locator and the TM. How
can the atomicity guarantees of the TM be used to prove the atomicity guarantees of
the transactional set? An important observation is that the locator object behaves
like a pure function, as far as its callers can tell: although the mapping from the keys

40

Definition Interface := Type → Type.

(a) Type of interfaces

Inductive Map {K V : Type} : Interface :=
| Get : K → Map V
| Put : K → V → Map unit.

(b) Map interface

Figure 4.5. Definition of interfaces in Coq

to the locations is actually decided dynamically, once a mapping is made, it stays
unchanged. We prove simulation relations that let us substitute method calls on the
locator with ordinary function calls in the metalanguage. This substitution reduces
method calls on the transactional set to transactions on the TM interface, allowing
us to apply the atomicity guarantees of the TM directly. (See Section 4.7 for more
detail.)

This proof style assigns each component a natural specification, without antici-
pating how other parts of the hierarchy will work. For instance, the specifications of
classical concurrent data structures need say nothing about transactions. Also, the
approach is modular: each library component can be proved separately against its
natural specification.

This transactional set can be composed on top of any concurrent map and trans-
actional memory implementing the given specifications. As concrete examples, this
dissertation also presents concrete implementations of those specifications to illustrate
the core concepts of our framework. We show a concurrent map using lock striping,
which uses an array of locks to protect an array of buckets; and a transactional mutex
lock (TML) object, which uses a compare-and-swap register to increment timestamps
that control concurrent accesses to mutable references.

Now we are ready to dive into the details. The next section formalizes the ideas of
objects, interfaces, and sequential specifications. Section 4.4 and Section 4.5 formalize
linearizability, together with the related concepts of simulation and composition,
and Section 4.5.1 and Section 4.5.2 apply them to verify concurrent data structures.
Section 4.6 and Section 4.7 formalize transactions and transactional predication.

4.3. Concurrent Objects

Interfaces. An interface M is a collection of method calls. A method call,
for example lookup(k), intuitively consists of a method name (lookup) paired with
its arguments (k)—e.g., lookup(1) and lookup(2) are different method calls. The
arguments to methods typically consist of first-order values (integers, strings), but
they may also be programs (described below); indeed, this possibility will be key to
our treatment of transactions in Section 4.6.

Definition 4.3.1. An interface is a type constructor M : Type → Type. The type
M R is the type of methods with return type R (Figure 4.5a).

41

Definition Impl (M N : Interface) := (∀ (R : Type), M R → Prog N R).
Record Spec (M : Interface) :=
{ State : Type
; Init : State
; Transitions : State → ∀ (R : Type), M R → State → R → Prop }.

Record Object (M : Interface) :=
{ LowM : Type → Type
; ObjImpl : Impl M LowM
; ObjLowSpec : Spec LowM }.

Figure 4.6. Implementations, sequential specifications, and objects in Coq

For instance, the map interface map associating keys of type K with values of type
V can be defined as follows (Figure 4.5b): The type constructor map has two data
constructors get and put. For any key k, there is a method call get(k) : map (option V),
where the result type is option V . Similarly, for any key k and value v, there is a
method call put(k, v) : map unit.

Programs. Programs are data structures that describe chains, or more generally
trees, of method calls. They play two roles in our framework: as the bodies of methods
associated with objects and as the bodies of transactions. We represent them as
interaction trees.

This encoding of programs is important for the flexibility of our framework. First,
interaction trees are potentially infinite, as required, for example, to implement an
algorithm that retries some action until it succeeds, like the counter in Section 4.2.
Second, programs are first-class, syntactic objects that can be manipulated by other
programs, which allows encoding a variety of useful code transformations, including
what we need to implement transactional memory cleanly (Section 4.6).

Definition 4.3.2. An implementation of a high-level interface M in terms of a
low-level interface N is defined as a handler (Section 2.2):

Impl M N = (M ⇝ itree N)
i.e., implementations are polymorphic functions ∀R, M R→ itree N R, ensuring that
a high-level method m is mapped to a program impl(m) over the low-level interface
with the same result type R.

For example, Figure 4.7 shows an implementation of a counter interface using a
CAS register interface, which encodes in Coq the pseudocode from Figure 4.2.

The identity implementation, id : Impl M M , maps any method m to the program
(x← m; x), which calls the same method and returns its result. It will serve as the
identity of vertical composition (in Section 4.4).

To define the semantics of an implementation, we must first define the semantics
of its low-level interface by specifying the values its methods may return when called
sequentially.

Definition 4.3.3. A sequential specification spec of an interface M , written spec :
Spec M , is a labeled state-transition system: it is a tuple (S, s0, ∆), comprising a type S

42

Inductive Counter : Interface :=
| Incr : Counter nat.

Inductive Cas : Interface :=
| Read : Cas nat
| CompareAndSwap : nat → nat → Cas bool.

CoFixpoint counter_impl : Impl Counter Cas := fun R (m : Counter R) ⇒
match m with
| Incr ⇒ n ← trigger Read ;;

ok ← trigger (CompareAndSwap n (n+1)) ;;
if ok then ret i+1 else counter_Impl _ Incr

end.

Figure 4.7. Implementation of counter interface using CAS register interface

of abstract states, an initial state s0 of type S, and a relation ∆ : ∀R,P(M R×S×R×S)
between a method call, a current state, a result, and a next state, where P(U) denotes
the powerset of U . (The result type R is another parameter of that relation, which we
leave implicit in the examples in the rest of this chapter.)

In practice, interfaces are designed with a particular sequential specification in
mind, so one might consider merging the two notions as one. Interfaces are a kind
of shallow specifications, only indicating the types of inputs and outputs, whereas
our sequential specifications are a kind of deep specifications, describing the desired
relations between inputs and outputs. However, keeping these notions separate lets
us structure the process of verification in a fine-grained way. Implementations are
raw, unverified code, under a lightweight well-typedness constraint depending only
on interfaces. Objects (defined later in this section) pair up implementations with a
specification of their low-level interface, this induces some observable behavior through
the high-level interface. Verifying an object is to prove some relation between the
object’s observable behavior and a sequential specification of its high-level interface,
such as linearizability or serializability.

As an example, consider a sequential specification of locks, call it lock-spec. Its
transition system, shown in Figure 4.8a, has a state of type bool that represents
whether the lock is acquired, with initial state false. The two methods of the interface
are lock and unlock (with result type unit): the semantics of the former is to toggle
the state to true, and the latter to set it to false. This simple specification indeed
captures the behavior of a lock: if more than one thread simultaneously try to lock,
only one will be allowed to take the transition from the initial false to true, and other
threads will have to wait for it to unlock the state back to false to have another chance
at taking the lock. As another example, the sequential specification of a register,
reg-spec, is a tuple of the type N (numbers), the initial value 0, and the obvious
transition system (Figure 4.8b) for the methods read, write, and cas. The method cas
takes two arguments, changes the value of the register to the second argument if its
current value is equal to the first argument, and returns a Boolean indicating whether

43

∆lock-spec = {(lock, false, (), true), (unlock, true, (), false)}
(a) Lock specification

∆reg-spec = {(read, n, n, n) | n ∈ N}
∪ {(write(n), m, (), n) | n, m ∈ N}
∪ {(cas(n, m), n, true, m) | n, m ∈ N}
∪ {(cas(n, m), p, false, p) | n, m, p ∈ N, n ̸= p}

(b) Register specification with compare-and-swap

∆map-spec = {(get(k), f, f(k), f) | f ∈ K → option V }
∪ {(put(k, v), f, (), f [k 7→ v]) | f ∈ K → option V, k ∈ K, v ∈ V }

(c) Map specification

Figure 4.8. Examples of sequential specifications

CallStep
(m, s, r, s′) ∈ ∆

(s | x← m; p(x))→spec (s′ | p(r))

TauStep

(s | τ ; p)→spec (s | p)

Figure 4.9. Program transition rules

it succeeded. Finally, a sequential specification for maps, map-spec, can be defined as
follows. The state is a mapping from keys K to values option V , with an initial state
that maps any keys to the “none” value ⊥. The interface is given by two methods
(with the expected transitions, Figure 4.8c): get(k) with the return type option V for
lookup and put(k, v) with the return type unit for insertion.

A sequential specification of an interface naturally provides a stateful interpretation
of programs over the same interface, represented as a transition relation →spec, defined
in Figure 4.9, between pairs (s | p) of abstract states and programs, where finished
programs do not step.

Definition 4.3.4. An object obj with interface M , written obj : Object M , is a
triple (N , impl, spec) of low-level interface N , implementation impl : Impl M N , and
sequential spec : Spec N .

Multiple threads may make method calls on the high-level interface of an object;
the corresponding programs will run concurrently, interleaving calls to the object’s
low-level interface. The semantics of the low-level interface is given by a sequential
specification, and every low-level method call operates atomically on the shared
low-level state according to that specification.

The observable behavior of an object is characterized by the methods that the
clients may call concurrently and the responses that they receive. Formally, behavior
is modeled by the trace semantics of the following state-transition system. Let

44

Spawn
θ ̸∈ Θ

(s | Θ) θ,m−−→obj (s | Θ; θ 7→ impl(m))

Step
(s | p)→spec (s′ | p′)

(s | Θ; θ 7→ p)→obj (s′ | Θ; θ 7→ p′)

Return

(s | Θ; θ 7→ v) θ,v−→obj (s | Θ)

Figure 4.10. Operational semantics of concurrent objects

obj = (N , impl, spec) be an object with high-level interface M and low-level interface
N . In a concurrent execution, the state of the object consists of a pair of (1) a shared
low-level state s of the sequential specification spec and (2) the states of all the threads,
represented as a finite map Θ from thread identifiers θ (drawn from some infinite
supply of names) to programs p over the low-level interface N , each representing the
remainder of a method that a thread has yet to finish executing. (We write Θ; θ 7→ p
to denote a map Θ extended with the mapping from θ to p.) The initial state of the
object is the pair (s0 | ∅), containing the initial state s0 of spec and the empty thread
state ∅.

The operational semantics of the object obj, shown in Figure 4.10, has three kinds
of transitions, all written →obj , with different labels above the arrow.

(1) A new thread can be spawned to execute a high-level method call m. Such
a step is represented by a transition labeled with a fresh thread identifier θ
(not already in Θ) as well as the method (and arguments) m. The thread
state Θ is extended with a mapping from the new identifier θ to the program
that the implementation impl associates to the method m.

(2) A thread can step internally, based on the program transition relation defined
above, and mutate the internal state. The environment cannot observe this
transition, so it is unlabeled.

(3) A thread can return once it is done, i.e., when the remaining program is a
leaf v. This transition is labeled with the thread identifier (to identify the
transition that initially spawned this thread) and its result v. The transition
takes the thread out of the state. (This removal lets us model the possibility
for one thread θ to perform multiple calls sequentially, waiting for each call
to return before making the next call.)

A history (or trace) is a sequence of events e—either call events (θ, m) or return
events (θ, v). The observable behavior beh(obj) of an object is the set of histories
produced by the above transition system (e−→obj) starting from the initial state, i.e.,
beh(obj) = {(e0 . . . en) | ∃ s Θ, (s0 | ∅) →⋆

obj
e0−→obj · · · →⋆

obj
en−→obj (s | Θ)}. Note that

multiple low-level internal steps (→⋆
obj , the transitive closure of →obj) may happen

between two labeled steps, but they are not recorded in the history (e0 . . . en).
45

4.4. Linearizability and Composition

Having thus defined the semantics of individual objects, we now formalize the
familiar notions of simulation, linearizability, and composition, their properties, and
their relation with each other in a novel unified framework. We first define a notion of
refinement between objects based on trace inclusion. This notion, in turn, will allow
us formally to capture linearizability between an object and a specification. Then, we
state properties of linearizability that support its hierarchical verification by successive
refinements. Finally, we define composition patterns for objects and state properties of
compositions that support modular verification of linearizability for composed objects.

Simulation. We define simulation relations for specifications and objects in
three steps. We first define simulation between two specifications. Then, on top of
that notion, we define simulation between an object and a specification when the
object is executed sequentially. Finally, we define simulation between two objects
when they execute concurrently.

Intuitively, a specification simulates another specification with the same interface
iff (1) every value that can be returned by a method call on the former can also be
returned by the same method call on the latter, and (2) this property continues to
hold for the resulting post-states.

Definition 4.4.1 (Specification simulation). The similarity relation between two
sequential specifications spec1 ≲SP spec2, where spec1 = (S1, s1, ∆1) and spec2 =
(S2, s2, ∆2) are specifications of the same interface M , is the greatest simulation
relation, i.e., a relation satisfying the following condition: for all m, r, and s′

1, if
(m, s1, r, s′

1) ∈ ∆1, then there exists s′
2 such that (m, s2, r, s′

2) ∈ ∆2 and (S1, s′
1, ∆1)

simulates (S2, s′
2, ∆2).

Any object obj can be interpreted in a sequential manner: the bodies of the
methods are interpreted atomically as state transitions over the states of the low-level
specification, by iterating the program transition relation →spec until we reach a value.
This convention associates obj to a sequential specification whose interface is the
high-level interface of obj.

Definition 4.4.2 (Interpreted sequential specification). The interpreted sequential
specification for the object obj = (N , impl, spec) with respect to the low-level specifi-
cation spec = (S, s0, ∆) is the specification interp-as-spec(obj) = (S, s0, ∆′) where, for
all m, we have ∆′ ∋ (m, s, v, s′) iff (s | impl(m))→∗

spec (s′ | v).

Definition 4.4.3 (Sequential object simulation). An object obj sequentially simulates
a sequential specification spec, written obj ≲S spec, iff the interpreted sequential
specification of obj simulates spec—i.e., interp-as-spec(obj) ≲SP spec.

Intuitively, if an object sequentially simulates a specification, it behaves according
to the specification when its methods are executed sequentially.

Definition 4.4.4 (Concurrent object refinement). An object obj1 (concurrently) refines
another object obj2 written obj1 ≲C obj2, if the observable behavior of obj1 is included
in that of obj2, i.e., obj1 ≲C obj2 iff beh(obj1) ⊆ beh(obj2).

46

Specification simulation ≲SP : Spec M → Spec M → Prop
Sequential object simulation ≲S : Object M → Spec M → Prop

Concurrent refinement ≲C : Object M → Object M → Prop
Linearizability ≲L : Object M → Spec M → Prop

Horizontal composition + : Object M → Object N → Object (M + N)
Vertical composition ▷O : Impl M N → Object N → Object M

Figure 4.11. Signatures of main definitions in Section 4.4

The objects obj1 and obj2 are called concrete and abstract objects, respectively.
Note that concurrent refinement relates objects with a common high-level interface,
while their low-level interfaces may differ: these are viewed as internal to each object.

Concurrent refinement is both reflexive and transitive, allowing verification of
objects to proceed in steps. Transitivity allows us to decompose refinement proofs of
an object into steps. Reflexivity allows us to refine only parts of a composite object.

Linearizability. We define linearizability of an object with respect to a
specification as a concurrent refinement between the object and an “atomic object”
associated with the specification.

Definition 4.4.5 (Atomic object). Any sequential specification spec of an interface
M can be associated with an atomic object atomic(spec) = (M , id, spec). (Recall the
definition of the identity implementation: id = (m 7→ (x← m; x)).)

The atomic object trivially “wraps” the sequential specification as its low-level
interface, delegating every method call to the corresponding method of the sequential
specification. The intuition is that this object behaves atomically because every
method call executes in just a single low-level step, modifying the low-level state
according to the sequential specification and immediately returning a value. (Clients
of such an object can still see some nondeterminism because it takes separate steps to
call the method [spawn a thread], execute it, and return a value, and these steps may
be interleaved with the steps of other method calls.)

This definition allows us to connect specification simulation and concurrent refine-
ment. If one specification simulates another, then the former’s atomic object refines
the latter’s atomic object.

Proposition 4.4.6. spec ≲SP spec′ ⇒ atomic(spec) ≲C atomic(spec′).

Definition 4.4.7 (Linearizability). An object obj is linearizable with respect to a
sequential specification spec iff obj concurrently simulates the atomic object associated
with spec, i.e., obj ≲C atomic(spec). We then write obj ≲L spec.8

8This simple presentation of linearizability in terms of a refinement relation from obj to (an
object derived from) spec is equivalent to the original definition due to Herlihy and Wing [1990].
In an execution of the object atomic(spec), while clients observe the history h of high-level method
calls and returns, each method call is performed in a single internal step according to the sequential

47

The proof of linearizability of an object obj with respect to a specification spec
can be carried out in two steps using an intermediate specification spec′: first prove
that obj is linearizable with respect to spec′, then prove that spec′ simulates spec.
Proposition 4.4.8. obj ≲L spec′ ∧ spec′ ≲SP spec ⇒ obj ≲L spec.

Alternatively, linearizability of an object obj with respect to a specification spec can
be proved hierarchically using an intermediate object obj ′: first prove linearizability of
obj with respect to the interpreted specification of obj ′, then prove sequential simulation
from obj ′ to spec. We will use this decomposition later to verify a concurrent hash-map
data structure.
Proposition 4.4.9. obj ≲L interp-as-spec(obj ′) ∧ obj ′ ≲S spec ⇒ obj ≲L spec.

Composition. Objects support two fundamental composition patterns: hori-
zontal composition corresponds to the union of interfaces, while vertical composition
interprets the low-level calls of one implementation in terms of another implementation.

Horizontal composition. Given two interfaces M1 and M2, we write their disjoint
union as M1 + M2. We can then define the horizontal composition of implementations
and sequential specifications as follows. Given two implementations impl1 : Impl M1 N1
and impl2 : Impl M2 N2, their horizontal composition impl1+impl2 : Impl (M1+M2) (N1+
N2) simply implements high-level methods from M1 using impl1 and methods from M2
using impl2. This composition is defined formally as bimap in the category of event
handlers (Sections 2.1.5 and 2.2.3). We can similarly define horizontal composition for
sequential specifications spec1 + spec2 and objects obj1 + obj2. Horizontal composition
satisfies the following property with respect to concurrent refinement, allowing us to
refine each summand independently. Herlihy and Wing [1990] call this property the
compositionality of linearizability:
Proposition 4.4.10. obj1 ≲C obj ′

1 ∧ obj2 ≲C obj ′
2 ⇒ (obj1 + obj2) ≲C (obj ′

1 + obj ′
2).

Reflexivity of ≲C allows keeping parts of a composite object the same while others
are rewritten.

Vertical composition. The vertical composition ▷ of an implementation impl1 :
Impl M1 M2 on top of another impl2 : Impl M2 M3, written impl1 ▷ impl2 : Impl M1 M3,
is defined by interpreting the low-level calls in the body of impl1 using the methods of
impl2. The operation ▷ is the categorical composition in the category of event handlers
(Section 2.2.3). We can then define the vertical composition ▷O of an implementation
impl1 : Impl M1 M2 on top of an object obj2 with interface M2, which is an object
impl1▷O obj2 with interface M1, by composing impl1 with the implementation contained
in obj2.

Vertical composition satisfies the following property with respect to concurrent
refinement, allowing us to refine the internal object obj ′ to obj:
specification spec, in the interval between its initial call and final return. The sequence s of those
internal steps is a (sequential) trace of spec. In fact, s is a linearization of the observed history h,
in the sense of Herlihy and Wing [1990]. The set beh(atomic(spec)) is exactly the set of histories h
that can be linearized to sequential traces of spec. An object obj is linearizable with respect to a
specification spec iff all of its histories h ∈ beh(obj) can be linearized to sequential traces of spec.
Thus, an object obj is linearizable iff beh(obj) is a subset of beh(atomic(spec)).

48

Proposition 4.4.11. obj ≲C obj ′ ⇒ (impl ▷O obj) ≲C (impl ▷O obj ′).

It will be convenient to write the construction of an object (N, impl, spec) as
impl ▷S spec, leaving implicit the low-level interface N . Then ▷O is defined by impl ▷O

(impl ′ ▷S spec) = (impl ▷ impl ′) ▷S spec. Furthermore, because ▷, ▷O, and ▷S expect
different types of right operand, we can unambiguously omit parentheses in expressions
involving only these three operators, and thanks to the associativity of ▷, we can even
freely reassociate parentheses, modulo changing the operators so that the resulting
expression is still well-typed, e.g., (f ▷ g) ▷O obj = f ▷O (g ▷O obj).

Two implementations impl1 and impl2 are considered equal when they map methods
to the same programs, up to ignoring finite runs of silent steps τ . This notion of
equality is a congruence with respect to + and ▷. Proposition 4.4.12 summarizes
equations relating + and ▷ that will be needed in the proof in Section 4.7. Those
equations involve the following identity elements for + and ▷. As we saw before, for
any interface M , there is a trivial implementation id : Impl M M which maps a method
to a program that simply calls the same method. Such a trivial implementation is an
identity for vertical composition ▷. The empty interface Empty, containing no methods,
is the identity for horizontal composition +, in the sense of monoidal categories: there
is a left unitor, that is to say, an implementation emptyL : Impl (Empty + M) M for
every interface M , satisfying various equations; there are also a right unitor and an
associator, omitted for brevity.

Proposition 4.4.12. Vertical and horizontal composition define a monoidal category
whose objects and morphisms are respectively interfaces and implementations. In other
words, they satisfy certain equations, including (among others),

(1) (f ▷ g) ▷ h = f ▷ (g ▷ h) (3) (f + g) ▷ (h + k) = (f ▷ h) + (g ▷ k)
(2) id ▷ f = f ▷ id = f (4) (id + g) ▷ emptyL = emptyL ▷ g

for any implementations f , g, h and k with interfaces that make the equations well-
typed.

4.5. Verification of Linearizability

We now present a novel proof principle for concurrent refinement. It allows
reasoning about the method bodies as programs (interaction trees) and does not
require them to be translated to low-level labeled transition systems. Further, instead
of stating and proving a simulation relation on the global states of a pool of concurrent
programs, it factors and decomposes the simulation relation into separate and simpler
invariants on the object state and programs, and it factors the simulation proof into
separate and simpler proof obligations. The proof technique is a general method that
supports verification of both lock-based and lock-free algorithms. In Section 4.5.1, we
apply this principle and the hierarchical proof techniques that we saw in Section 4.4 to
verify the linearizability of a concurrent hash-map object. We use the same principle in
Section 4.5.2, to prove the linearizability of a concurrent histogram, and in Section 4.6.1,
to prove the correctness of Transactional Mutex Locks (TML) [Dalessandro et al.,
2010], an implementation of transactional memory.

49

inc′ := i← r.read();
r.write(i + 1);
i + 1

Figure 4.12. inc′ method

The work presented in this section—the proof principle and the examples of
objects verified using it—was completed by my coauthors prior to my joining this
project [Lesani et al., 2022].

In a concurrent execution (Section 4.3), the state of an object is a pair (s | Θ) of a
data state s and a thread pool Θ. Stating invariants about these pairs is complicated
and distracts from interesting similarities between the concrete and abstract objects
themselves. Further, reasoning about the pool of threads involves boilerplate steps
such as reasoning about spawning and returning threads and stating and proving
conditions for every thread or pair of threads in the pool.

Invariant relations. To prove that a concrete object refines an abstract object,
we need to define three relations and prove five obligations. Start with a concrete
object (N , impl, spec) on the low-level specification spec = (S, s0, ∆) and an abstract
object

(
N ′, impl ′, spec′

)
on the low-level specification spec′ = (S ′, s′

0, ∆′). The data
relation RD captures the relation between the concrete and abstract data. The program
relation RP captures the relation between the corresponding concrete and abstract
programs. Finally, the interprogram relation RI captures the mutual relation between
pairs of concrete and abstract programs.

For example, consider the inc method that we saw in Figure 4.2 of a counter
object c, compared with the inc′ method of a counter object c′ in Figure 4.12. The
concrete counter c is linearizable with respect to the interpreted specification of the
abstract counter c′. Informally, the proof principle captures the following invariants.
(1) The data relation RD says that the states of the two base objects r are equal.
(2) The program relation RP captures a correspondence between the intermediate
concrete and abstract programs. It is defined based on the linearization point, a
low-level method call in the concrete program where the abstract program should
be executed instantaneously. When the intermediate concrete program has not yet
reached the linearization point, the corresponding intermediate abstract program is
not executed yet. After the linearization point, the corresponding abstract program
is already evaluated to a value. In this example, the linearization point is reached
when the cas call succeeds. The entire abstract method inc′ is executed then. (3) In
this example, the interprogram relation RI is trivially true. Our framework provides
simple instantiations of the proof technique as well. For example, an instance does
not require the specification of the interprogram relation (i.e., it is simply instantiated
as true).

As another example, consider the programs in Figure 4.14. (To simplify the
example, we show only the bodies of the methods.) On the right, we have the
implementation p′ of a sequential object o′ with two method calls on a base object
b. On the left, we have the implementation p of a concurrent object o that protects
the same calls with a lock l. The concrete object o is linearizable with respect to

50

InitObl : RD(s0, s′
0)

PPSymObl : RI(p1, p2, s, p′
1, p′

2, s′)⇒
RI(p2, p1, s, p′

2, p′
1, s′)

CallObl : RD(s, s′)⇒
RP(impl(m), s, impl ′(m), s′)
∧ (RP(p, s, p′, s′)⇒

RI(impl(m), p, s, impl ′(m), p′, s′))

RetObl : RD(s, s′) ∧ RP(v, s, p′, s′) ⇒ p′ = v

StepObl :
RD(s1, s′

1) ∧
RP((x← n; f(x)), s1, p′

1, s′
1) ∧

(n, s1, v, s2) ∈ ∆⇒
∃ p′

2 s′
2,

(s′
1, p′

1)→∗
∆′ (s′

2, p′
2)

∧ RD(s2, s′
2) (1)

∧ RP(f(v), s2, p′
2, s′

2)
∧ (∀ p p′, (2)

RP(p, s1, p′, s′
1) ∧

RI((x← n; f(x)), p, s1, p′
1, p′, s′

1)⇒
RP(p, s2, p′, s′

2)
∧ RI(f(v), p, s2, p′

2, p′, s′
2))

∧ (∀ p1 p′
1 p2 p′

2, (3)
RP(p1, s1, p′

1, s′
1) ∧

RP(p2, s1, p′
2, s′

1) ∧
RI(p1, p2, s1, p′

1, p′
2, s′

1)⇒
RI(p1, p2, s2, p′

1, p′
2, s′

2))
The concrete object is (N , impl, spec) on the low-level specification spec = (S, s0, ∆),
and the abstract object is

(
N ′, impl ′, spec′

)
on the low-level specification spec′ =

(S ′, s′
0, ∆′). Unprimed and primed variables are used for the concrete and abstract ob-

jects respectively. The data relation is RD(s, s′), the program relation is RP(p, s, p′, s′)
and the interprogram relation is RI(p1, p2, s, p′

1, p′
2, s′). The free variables are univer-

sally quantified.

Figure 4.13. Proof principle for concurrent refinement

the interpreted specification of the abstract object o′. Informally, the proof principle
captures the following invariants. (1) The data relation RD says that, when the lock
l is in the released mode, the states of the two base objects b are equal. (2) The
program relation RP: In this example, the linearization point is reached when the
lock is released. When the intermediate concrete program has not yet reached the

51

p :=
1 l.lock ();
2 b.m1();
3 x← b.m2();
4 l.unlock ();

x

p′ :=

b.m1();
x← b.m2();

x

Figure 4.14. Proof principle example

linearization point, the corresponding intermediate abstract program is not executed
yet. However, it holds that if part of the abstract program that corresponds to the
executed part of the concrete program is executed, then the state of the abstract base
object will be the same as the concrete base object. When the concrete program p
reaches line 4, the entire abstract program p′ is executed and results in the same state
for the base objects. (3) Interprogram relation RI: No two concrete programs can be
in the critical section (at lines 2 and 3).

More precisely, the data relation RD(s, s′) defines an invariant between the low-
level concrete state s and the abstract state s′. The program relation RP(p, s, p′, s′)
defines an invariant between the concrete program p paired with data state s and
the corresponding abstract program p′ paired with data state s′. The interprogram
relation RI(p1, p2, s, p′

1, p′
2, s′) defines a mutual relation among two running concrete

programs p1 and p2 (with data state s) and two corresponding abstract programs p′
1

and p′
2 (with data state s′).

The overall simulation relation is simply defined as the conjunction of the data
relation RD between the concrete and abstract data states, the program relation RP
for each program in the thread pool (and its corresponding abstract program), and
the interprogram relation RI for each pair of programs in the thread pool (and their
corresponding abstract programs).

Proof obligations. Figure 4.13 summarizes the proof obligations. These proof
obligations imply that the overall simulation relation is preserved. The obligation
InitObl states that the data relation RD holds between the initial concrete state
s0 and abstract state s′

0. PPSymObl states that the interprogram relation RI is
symmetric over programs.

The obligation CallObl states that when a method is called, the invariants are
preserved. Let us consider a method m implemented by the program impl(m) in the
concrete object and by impl ′(m) in the abstract object. The new pair of concrete
impl(m) and abstract impl ′(m) programs should be in the program relation RP with
every concrete state s and abstract state s′ that are in the data relation RD. In addition,
the two programs impl(m) and impl ′(m) should be in the interprogram relation RI
with any pair of concrete p and abstract p′ programs that are in the program relation
RP. When the concrete object returns a value, the obligation RetObl requires the
abstract object to return the same value. If a concrete leaf value v is in program
relation RP with an abstract program p′ and states s and s′ that are also in the data
relation RD, then the abstract program p′ should be the same leaf value v.

52

m(k, x) :=
L1 s← size();

let i := (hash k) modulo s in
L2 y ← arrayCall(i, m(k, x));

y
(a) hash-map

Lock array

Hash table

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

8

9

10

11

12

13

4
 m

o
d
 8

 =
 4

1
2
 m

o
d
 8

 =
 4

(b) Concurrent hash-map

m(k, x) :=
L1 ls← locks.size();

let li := (hash k) modulo ls in
L2 _← locks.arrayCall (li, lock);
L3 bs← buckets.size();

let bi := (hash k) modulo bs in
L4 y ← buckets.arrayCall (bi, m(k, x));
L5 _← locks.arrayCall (li, unlock);
L6 y

(c) conc-hash-map
In (a), the metavariable m stands for either the get or put method on the map interface.
The variable x is the second argument, either nothing (for get) or the value to write
(for put). In (c), locks.m′() and buckets.m′() refer to methods m′ of the lock and bucket
arrays respectively.

Figure 4.15. Implementations of sequential and concurrent hash-map objects

The obligation StepObl states that the invariants are preserved by program steps:
when the program relation RP holds for the pair of a concrete program x← n; f(x)
and an abstract program p′

1 and a pair of concrete and abstract data states s and
s′ that are in the data relation RD, if the concrete program steps, then the abstract
program p′

1 can take steps such that (1) both the data and program relations are
preserved after the step for the resulting states and programs. In addition, it states
that (2) if before the step, a pair of concrete and abstract programs p and p′ were in
the program relation RP and also in the interprogram relation RI with the concrete
call program x← n; f(x) and its corresponding abstract program p′

1, then after the
53

step, the program and interprogram relations are preserved. Further, it states that (3)
if before the step, two pairs of concrete and abstract programs p1, p′

1 and p2, p′
2 were

each in the program relation RP and also in the interprogram relation RI with each
other, then after the step, their interprogram relation is preserved with the new data
states. This proof principle is for forward simulation, and the StepObl condition
states proof obligations for a method call as a forward step.

For our first example above, the three predicates of StepObl hold as follows:
(1) After the step, RD holds, because the value of the register is incremented by
either both or neither of the concrete and abstract programs. Further, RP is trivially
preserved as the abstract steps are taken according to the RP relation. (2) The RP

relation for another pair of concrete and abstract programs is preserved since RP is
independent of the data state. (3) RI trivially holds.

In our second example: (1) After the step, RD holds because if the lock is released,
the abstract program takes a step as well, and the concrete and abstract post-states
become the same. Further, RP is trivially preserved as the abstract steps are taken
according to the RP relation. (2) When a program steps, the RP relation for any other
program is preserved as follows. The definition of RP allows the concrete program to
be in an intermediate step of the critical section only when the lock is in the acquired
state. By the mutual-exclusion property of RI , at most one of the stepping program
or the other program is in the critical section. If the other program is in the critical
section, the stepping program is not in the critical section and cannot release the lock
to break the RP relation for the other program. If the other program is not in the
critical section, any change that the stepping program makes to the state of the lock
does not affect the RP relation for the other program. Further, the mutual-exclusion
relation RI between the two is preserved. If the other program is already in the critical
section, the state of the lock is acquired, and the stepping program cannot acquire
the lock and step into the critical section. (3) The relation RI for two other programs
is preserved trivially because a stepping program cannot affect the mutual-exclusion
property between them.

4.5.1. Hierarchical Verification of Linearizability. We saw the sequential
specification of maps, map-spec, in Section 4.3. We next implement both sequential
and concurrent hash-map objects, hash-map and conc-hash-map. The former uses
just an array of buckets; the latter, in addition, uses an array of locks. We show
that the concurrent hash-map object conc-hash-map is linearizable with respect to the
sequential specification of maps map-spec. The proof is divided into two steps, by
Lemma 4.4.9, with the sequential object hash-map as an intermediate specification:
we first show that hash-map sequentially simulates map-spec, and then we show that
conc-hash-map is linearizable with respect to the interpreted sequential specification
of hash-map.

Sequential hash-map. The sequential hash-map object hash-map is implemented
as a vertical composition on top of an array object, which represents an indexed
sequence of other objects. (Formally, the array object type is parametric—at the
metalevel—in the cell object type: for each type of cells, there is a separate type of
arrays of those cells.) The array interface provides two methods: a method arrayCall

54

that, given an index and a method call, calls the method on the object stored at that
index; and a method size that returns the size of the array. Each cell of the array
refines the object that the array is instantiated with.

We use a closed-address hash-map, where each bucket refers to a set of items. In
the hash-map object, the array elements are map objects that represent buckets with
colliding keys. The bucket map bmap can be any simple map object (thus, the map
interface plays both high- and low-level roles in the implementation of the hash-map).
Figure 4.15a presents the implementation of methods of the hash-map. Map methods
are parametrized by the key k being accessed, which we hash to obtain the index i of
the corresponding bucket. We then call the input method on the map object contained
in that bucket and return its result.

If the given bucket-map object sequentially simulates the map specification, the
hash-map object sequentially simulates the map specification as well.

Lemma 4.5.1 (Sequential simulation of map object).

bmap ≲S map-spec ⇒ hash-map ≲S map-spec

Concurrent hash-map. We implement a striped concurrent hash-map as an object
conc-hash-map. The structure of the buckets is similar to the sequential hash-map
that we saw above. The bucket map bmap is not linearizable (not thread-safe). As
Figure 4.15b shows, the implementation uses lock striping to protect access to buckets.
An array of locks is used, and the lock at index i protects all the buckets at indices
j such that j is i modulo the size of the lock array. Thus, the concurrent hash-map
object is a vertical composition on the horizontal composition of two objects: an
array of bucket maps (bmap) and an array of locks (lock). Figure 4.15c presents the
implementation of the methods of the concurrent hash-map. It gets the size of the
lock array, gets the input key of the call, computes the lock index as the hash value
of the input key modulo that size, acquires the lock at the lock index, then gets the
size of the bucket array, computes the bucket index as the hash value of the input key
modulo that size, performs the input method on the bucket index, releases the lock at
the lock index, and returns the resulting value.

To prove the correctness of the concurrent hash-map, we use the sequential hash-
map as an intermediate specification. The following lemma states that the concurrent
hash-map object is linearizable with respect to the interpreted specification of the
sequential hash-map.

Lemma 4.5.2 (Linearizability of lock object).

lock ≲L lock-spec ⇒ conc-hash-map ≲L interp-as-spec(hash-map)

Finally, we apply the hierarchical technique of Lemma 4.4.9 to Lemmas 4.5.2 and
4.5.1. We conclude that the concurrent hash-map object is linearizable with respect
to the map specification.

Corollary 4.5.3 (Linearizability of concurrent hash-map).

bmap ≲S map-spec ∧ lock ≲L lock-spec ⇒ conc-hash-map ≲L map-spec
55

hist-imp :=
get (k) :=

G1 r ← map.get (k);
G2 r

inc (k) :=
I1 r ← map.get (k);
I2 match r with
I3 | ⌈v⌉ ⇒
I4 s← map.replace (k, v, v + 1);
I5 if (s)v + 1
I6 elseinc (k)
I7 | ⊥ ⇒
I8 r ← map.putIfAbsent(k, 1);
I9 match r with
I10 | ⌈_⌉ ⇒ inc (k)
I11 | ⊥ ⇒ 1

Figure 4.16. Implementation of a histogram object on a map object

4.5.2. Linearizability of Vertical Compositions. Linearizability ensures that
concurrent method calls on the object appear to execute atomically and behave
according to the sequential specification of the object. This guarantee is only provided
for individual method calls on the object. However, methods of a vertical composition
on top of the object may make multiple calls to the object; therefore, they are not
necessarily atomic. Studies of production code [Shacham et al., 2011] show that
atomicity bugs are prevalent in vertical compositions. In this section, we see how
a concurrent histogram can be implemented as a vertical composition on top of a
concurrent hash-map and how its linearizability can be verified using the same proof
technique that we saw in Section 4.5.

A histogram is a data structure that represents values for a set of bars. We
first consider the sequential specification of histograms hist-spec. The interface of
a histogram is parametric in terms of the key type K for the bars, and it provides
two methods: get(k) and inc(k). The state is a mapping m from keys K to optional
natural values optionN. The transition system of hist-spec makes a transition on get(k)
that keeps the state the same and returns the value of k in the current state m. It
makes two different transitions on inc(k) depending on whether k is in the domain of
the current state map m. If k already exists, it increments its value in m; otherwise,
it adds to the map m a mapping from k to the “some” value of 1. In both transitions,
it returns the value of k in the post-state.

We will see a histogram object that is implemented by a vertical composition on
top of a map object. This map object provides an extended interface: in addition
to the methods get(k) and put(k, v), it provides putIfAbsent(k, v) and replace(k, v, v′).
Similar to the basic map, the sequential specification of the extended map emap-spec
stores a mapping m from keys to optional values. Its transition system makes two

56

different transitions on putIfAbsent(k, v): if k is not in the domain of the state map
m, it extends m with a mapping from k to v; otherwise, it leaves m the same. In
both cases, it returns the optional value of k in the prestate. Similarly, there are two
possible transitions on replace(k, v, v′): if the value of m for k is v, it replaces v with
v′ and returns true; otherwise, it leaves the state unchanged and returns false.

The implementation hist-imp of the histogram object is presented in Figure 4.16.
The get method is simply delegated to the underlying map object (at G1). On the
other hand, a naive implementation of the inc method, which would simply get the
current value and put back an incremented value, is not atomic, and concurrent calls
on it can easily violate the sequential specification. In the implementation of inc, the
current value of the key k is first obtained from the underlying map object (at I1).
A “some” value containing an actual value v is represented as ⌈v⌉, and the “none”
value is represented as ⊥. If the key k is already mapped to some value v (at I3), it
should be updated to v + 1. In order to avoid racing updates to the underlying map,
the inc method attempts to replace v atomically with v + 1 (at I4). If the value of k
is not changed between I1 and I4 by a concurrent update, the replace call succeeds
and returns true. In this case, the increment is performed and the new value v + 1
is returned (at I5). Otherwise, the inc method is repeated by a recursive call (at I6).
(We note that the inc method has a corecursive definition.) If the key k is not in the
underlying map (at I7), a new mapping from k to 1 needs to be added. Similarly to
the previous case, in order to avoid racing updates to the underlying map, the inc
method attempts to put the value 1 for k atomically via a putIfAbsent call (at I8).
The putIfAbsent method always returns the previous value of k. Therefore, if it fails,
it returns some value (at I10), and the inc method is called again. If it succeeds, it
returns none ⊥ (at I11), and the new value 1 is returned.

The vertical composition of the histogram implementation on top of the extended
map is linearizable with respect to the sequential specification of the histogram.

Theorem 4.5.4. hist-imp ▷O emap-spec ≲L hist-spec.

The proof of this theorem uses the proof technique that we saw in Section 4.5 and
used in Section 4.5.1. The invariants for this proof are the following: (1) The data
relation RD says that the states of the underlying concrete map and the abstract map
of the histogram are equal. (2) The program relation RP captures a correspondence
between the intermediate concrete and abstract programs according to the linearization
points. Similar to the previous use cases, when the intermediate concrete program
has not yet reached the linearization point, the corresponding intermediate abstract
program is not executed yet. After the linearization point, the corresponding abstract
program is already evaluated to a value. The linearization point of the get method is
the get call on the underlying map (at G1). The linearization point of the inc method
is its last replace (at I4) or putIfAbsent (at I10) method call before its returns. (3) The
interprogram relation RI is trivially true.

4.6. Transactions

Linearizability offers simple guarantees at the level of individual method calls,
but it is still up to the caller to compose these guarantees to reason about complex

57

(m, s, r, s′) ∈ ∆
(?m, s, ⌈r⌉, s′) ∈ ∆′ (?m, s,⊥, s) ∈ ∆′

Figure 4.17. Abortable transition relation

programs that successively call multiple methods. A more convenient model for
concurrent programming is offered by transactions: arbitrary programs, combining
multiple calls to some interface, which are expected to run atomically as a whole. In
this section, we first characterize the specification of transactions and then present
objects that implement the specification.

Given an interface, a transaction is a program p on this interface. A transaction is
expected to execute atomically: either execute completely or abort without any effect.
To embody this idea, we introduce a special interface whose one method ?exec takes
a whole program as an argument, represented as an interaction tree. This method
is expected to run the transaction atomically. We equip ?exec with a sequential
specification by lifting the sequential specification of the underlying interface used by
the transaction, as we describe next.

Program specification. The program specification corresponding to a given
specification spec = (S, s0, ∆) for the interface M , written prog-spec(spec), is the speci-
fication (S, s0, ∆′), which describes an interface Prog M with just one method, exec(p),
where p is itself a program on M . The relation ∆′ is defined as (exec(p), s, v, s′) ∈ ∆′

if and only if (s, p)→∗
spec (s′, v), which says that when exec(p) runs starting from the

initial state s, it ends in a state s′ obtained by interpreting the sequence of method
calls in p based on spec.

Abortable specifications. Transactions execute concurrently and may conflict
on their accesses to the shared state. Therefore, atomic execution of one transaction
may prevent atomic execution of another. Thus, transactions may be aborted, and
the client can either retry immediately or back off to reduce contention and retry. To
capture this behavior, we define abortable specifications.

First, an interface M can be translated into an abortable interface ?M . For any
method m : M R, there is a corresponding abortable method ?m : ?M ({⊥}+R), where
the result of the method is made optional: it is either “some” value ⌈r⌉ containing an
actual result r, or it is the “none” value ⊥.

The abortable version of a given specification (S, s0, ∆) over the interface M = m,
written ab-spec(spec), is then a specification (S, s0, ∆′) over the abortable interface
?M = ?m. The transition relation ∆′, shown in Figure 4.17, can nondeterministically
either execute the method call and return its result ⌈r⌉ or else abort without changing
the state and return the “none” value ⊥.

Transactional specification. Based on the above definitions of program
and abortable specifications, we can now define a transactional specification, which
characterizes the atomic execution of full programs, where aborting is always a
possibility. The transactional specification of a given specification spec, written
trans-spec(spec), is simply: ab-spec(prog-spec(spec)).

58

prog-spec : Spec M → Spec (Prog M)
ab-spec : Spec M → Spec (?M)

trans-spec : Spec M → Spec (?Prog M)

Figure 4.18. Program, abortable, and transactional specification transformers

instrument(?exec(p)) :=
t← init ();
instrument′(t, p)

instrument′(t, p) :=
match p with
| y ← m(x); f(y)⇒ r ← lift(t, m(x)); instRet(f, r)
| r ⇒ o← commit(t); instEnd(r, o)
| τ ; p⇒ τ ; instrument′(t, p)

instRet(f, r) :=
let ⟨t, o⟩ := r in
match o with
| ⌈r⌉ ⇒ τ ; instrument′(t, f(r))
| ⊥ ⇒ abort t;⊥

instEnd(r, o) :=
match o with
| ⌈t⌉ ⇒ abort t;⊥
| ⊥ ⇒ ⌈r⌉

Figure 4.19. Transaction instrumentation

Strict serializability. Based on the above definition of transactional specification,
we now define the strict serializability of an object. An object obj that implements
interface M is strictly serializable with respect to a specification spec of M , written
obj ≲SS spec, if and only if obj is linearizable with respect to the transactional
specification of spec, i.e., obj ≲L trans-spec(spec).

There is a close relation between linearizability and strict serializability. Herlihy
and Wing [1990] mention that “linearizability can be viewed a special case of strict
serializability where transactions are restricted to consist of a single operation.” Our
modular framework captures strict serializability as an instance of linearizability with
“operations” (i.e., methods) as programs.

Transactional objects. Having defined strict serializability, we now turn our
attention to constructing verified transactional objects—objects that provably meet the
specification trans-spec(spec) and therefore provide ?exec methods, which take as input
transactions (programs) and run them atomically. We define a two-piece template
for doing so. First, we instrument the input program, inserting “life-cycle” methods

59

to initiate, commit, and abort transactions. Second, we implement the methods of
those instrumented transactions in an object, called a transaction protocol object.
Below, we first consider the interface of a transaction protocol and the corresponding
instrumentation. Then we construct the transactional object as a vertical composition
of the instrumented program on top of a transaction protocol object.

Note that this construction is a reusable instance of the compositional definition
and verification methodology that we saw in Section 4.4. The instrumentation function
is independent of the transaction-protocol object. Therefore, the user programs can be
instrumented independently and can be composed with different underlying protocols
that have different performance characteristics. In addition, decoupling the protocols
allows them to be used as the underlying objects of other transformations, as we will
see for predicated objects in Section 4.7.

Transaction protocol interface. A transaction protocol interface trans(M)
wraps another interface M , making it so that the interface M can be used inside of
a transaction. For instance, we can obtain the interface for transactional memory
by wrapping the map interface into a transactional protocol interface. A transaction
protocol interface trans(M) provides the following four methods: init, lift, abort, and
commit, which define the life-cycle methods of a transaction.

The method init : TLocal initializes the transaction and returns the transaction-
local state (for example, an initial timestamp for the transaction). This state is passed
between and updated by the other three methods during execution. The method
lift : TLocal ×M R → (TLocal × Option R) takes the current transaction-local state
and a method call m and tries to execute m. It returns a pair including the updated
transaction-local state. The execution of m may not be successful, due to a conflict, so
lift also returns an optional value, where ⊥ indicates failure, and ⌈r⌉ indicates that m
successfully returned r. If a call is not successful, then the method abort : TLocal→ unit
is subsequently called to clean up before the transaction is aborted. Finally, the method
commit : TLocal→ Option TLocal commits the transaction. Committing may itself fail
due to a conflict, so it returns an option value. If it is not successful, commit returns
the transaction-local state to be passed to the subsequent abort call; otherwise, when
successful, it returns ⊥.

Transaction instrumentation. Given a transaction protocol interface trans(M)
and a program p that uses M , the function instrument presented in Figure 4.19
transforms p into a program over trans(M). (1) The method init is inserted at the
beginning of the transaction. (2) Each method m in the program is executed by the lift
method. The execution may succeed, in which case the continuation is instrumented,
or it may fail, in which case abort is called. This logic is handled by instRet. (3)
Finally, if the program returns r, commit is called. Since that might fail, instEnd
checks the outcome and triggers an abort, returning ⊥, upon failure; otherwise the
value resulting from the execution of the program is returned.

Transactional objects. Instrumented transactions need to run on top of
some other object that provides life-cycle methods. Given an implementation pro
of the transaction protocol interface trans(M), we obtain a transactional object
by instrumentation and vertical composition: trans-obj(pro) = instrument ▷O pro.
The protocol object pro is correct if the transactional object it produces is strictly

60

init () :=
I1 t← reg.read ();

if (t mod 2 = 1) init () else t

lift (t, m′) :=
match m′with
| get (k)⇒

G1 v ← map.get (k);
G2 gt← reg.read ();

if (gt = t)⟨t, ⌈v⌉⟩ else ⟨t,⊥⟩
| put (k, v)⇒

if (t mod 2 = 0)
P1 b← reg.cas (t, t + 1);

if (b)
P2 _← map.put (k, v);

⟨t + 1, ⌈unit⌉⟩
else ⟨t + 1,⊥⟩

else
P3 _← map.put(k, v);

⟨t, ⌈unit⌉⟩

abort (t) := unit

commit (t) :=
if (t mod 2 = 1)

C1 _← reg.write(t + 1);
⊥

else ⊥

Figure 4.20. Implementation of the TML protocol tml-imp

serializable for any set of programs. That is, with respect to the specification spec, we
have trans-obj(pro) ≲SS spec. The following lemma formalizes a way of decomposing
that obligation, for an arbitrary candidate object.
Lemma 4.6.1. A candidate protocol object tm = (M0, tm-imp, spec0) is strictly serializ-
able with respect to map-spec iff (instrument▷tm-imp)▷Sspec0 ≲L trans-spec(map-spec).

4.6.1. Transactional mutex locking. It remains to see how to implement a
transaction protocol object correctly. For the case of the map interface (which yields an
implementation of transactional memory), we proved two implementations are strictly
serializable: the single global lock [Menon et al., 2008] protocol and the Transactional
Mutex Locking (TML) protocol [Dalessandro et al., 2010]. We illustrate the technique
with TML.

The TML protocol object tml is a transaction protocol object for the map interface.
It provides get and put methods on a map of keys to values. The protocol object

61

uses a pair of a register and a map as its low-level interface. The register represents
the global clock for the protocol, and the map stores values for the keys. We say
that a transaction is a writer if it executes at least one put method and is a reader
if it executes no put methods. Writer transactions acquire exclusive access to the
map by compare-and-swapping the parity of the global clock from even to odd, and
they later release it by changing the parity of the global clock back to even. Reader
transactions execute optimistically: they do not acquire any locks and do not block
writer transactions.

Figure 4.20 represents the implementation of the TML protocol object. In the
recursive init method, the transaction reads the global clock (I1) in a loop until it is
even (i.e., there is no concurrent writer transaction). The transaction keeps the final
time that it reads in init as its transaction-local time t.

To lift the get method, first the value of the input key is read from the map
(G1), and then the global clock is read (G2). If the global time is still equal to the
transaction-local time, no writer transaction has been active in the meantime, and
the values that the current transaction has read are still valid. Hence, the transaction
returns the read value. Otherwise, the values that the transaction has speculatively
read may have changed, and it returns failure.

For the put method, it is first checked if the current transaction has already acquired
exclusive access to the map, i.e., the transaction-local time is odd. If that is the case,
the transaction can access the map directly (P3). Otherwise, the transaction tries to
acquire exclusive access by incrementing the global time using a compare-and-swap
(P1). If the compare-and-swap is not successful, the global clock has changed since it
has been read in the init method. Another writer transaction has acquired exclusive
access to the map and may have changed it. Therefore, the values previously read by
the current transaction may no longer be valid, and the method fails by returning ⊥.
If the compare-and-swap is successful, then the map is updated with the input key
and value (P2). The transaction keeps the fact that it has acquired exclusive access
by incrementing its transaction-local time to the next odd value.

TML performs updates only if the transaction already has exclusive access and
it is safe to perform the updates. Therefore, the abort method simply returns. The
commit method checks the parity of the transaction-local time. If the transaction-local
time is odd, the current transaction is a writer and has acquired exclusive access. It
releases the exclusive-access right by incrementing the global time to the next even
value (C1). Finally, the commit method returns successfully.

Theorem 4.6.2. The TML protocol object tml is strictly serializable with respect
to the map interface.

By Lemma 4.6.1 and the definition of transactional specification, we should prove
the following concurrent refinement,
(instrument ▷ tml-imp) ▷S (reg-spec + map-spec) ≲C atomic(ab-spec(prog-spec(map-spec)))

Intuitively, any step of a user program that is instrumented and vertically composed
on tml should be refined by the whole execution of the user program or by not running
it at all. To prove this refinement, we use the same proof principle that we saw in

62

Figure 4.13. The unfixed linearization point of a reader transaction is the method call
G2 of its last successful get method call. Otherwise, it is C1 (for a writer transaction).

4.7. Transactional Predication

We show an example of composing a linearizable object and a serializable object:
transactional predication. Whereas, in Section 4.5.1, we implemented a linearizable
map object, which guarantees that individual map methods are executed atomically,
here we want to implement a serializable map object, which guarantees the atomicity
of arbitrary map transactions, i.e., programs that may involve many map method
calls. Transactional predication is a technique to implement a serializable map object
given a linearizable map (Section 4.5.1) and a TM, i.e., a serializable object of mutable
references (Section 4.6.1). The general idea is that the linearizable map quickly maps
keys to references, so that calls on the high-level interface can be transformed into
calls on references that are managed by the TM. The TM is used only for the final
critical calls, which avoids expensive repeated TM calls but gains TM’s composability
properties.

Transactional predication may be a simple idea, but formalizing it is challenging
because it implements a serializable object using linearizable and serializable objects.
A naive and tedious verification approach would be to reason about how arbitrary
high-level transactions are reduced to low-level transactions. Instead, we define
transactional predication as a composition of implementations, and we reason about
it compositionally and algebraically, by equational reasoning about vertical and
horizontal object compositions (▷, +).

4.7.1. Transactional Map. We saw the structure of the predicated set in Fig-
ure 4.4. The predicated map is similar except that instead of a Boolean, a location
stores the value of the key or ⊥ if the key is removed. The predicated map implements
the high-level map interface (from Section 4.3) from keys Key to values Val using the
sum RefMap + TM of the two low-level interfaces RefMap and TM.

The interface TM is the map interface (that we saw in Section 4.3) instantiated with
Ref as the keys and Val as values. The references are abstract locations (users may not
inspect them, and they are typically meant to be references to mutable memory cells).
This interface is implemented by a serializable object such as TML (Section 4.6.1),
i.e., programs consisting of get and put calls can be executed atomically.

4.7.2. Locator. The interface RefMap is a map of keys Key to references Ref,
with only one method lookup : Key→ Ref. It is implemented by the locator shown in
Figure 4.21, atop a low-level map which provides methods get(k) and putIfAbsent(k, v).
The locator object is a “lazy” map from keys to mutable references (locations) managed
by the underlying transactional memory. When a key is looked up for the first time, a
new reference will be allocated and returned; when the same key is looked up again,
the same reference will be returned.

The locator object should appear to behave as a pure function ϕ : Key → Ref
associating map keys to references. A subtlety is that references will be allocated
dynamically, so the function ϕ is only determined at runtime. In order to formally
relate ϕ to the locator object, we convert ϕ into a sequential specification ref-map-specϕ

63

locator (lookup(k)) :=
o← get (k);
match o with
| ⌈p⌉ ⇒ p
| ⊥ ⇒

p← newRef;
p← putIfAbsent (k, p);
p

Figure 4.21. Locator implementation

pred-map (m) :=
match m with
| get (k)⇒

r ← RefMap.lookup (k);
v ← TM.get (r);
v
| put (k, v)⇒

r ← RefMap.lookup (k);
TM.put (r, v);
⊥

Figure 4.22. Core function of transactional predication

parametrized by the pure function ϕ : Key→ Ref, whose transitions associate lookup(k)
calls to return values ϕ(k). Since the return value is entirely determined by the
method call, the state type is trivially a singleton. The correctness theorem for
a locator does not exactly match the general definition of linearizability, because
the abstract object ref-map-specϕ now depends on the trace of the concrete object
locator. For any history h of the object locator (h ∈ beh(locator)), there exists a
function ϕ : Key→ Ref such that h is a history of the specification ref-map-specϕ, i.e.,
beh(locator) ⊆ ∪ϕ beh(ref-map-specϕ).

We elide the details of the application of that theorem to simplify the presentation
of this proof. The rest of the refinement proof in the remainder of this section is after
refining the locator to its specification. Thus, that proof will be applied to the history
h from which we obtained the function ϕ.

Given a function ϕ, we can also define another implementation pure-mapϕ =
(lookup(k) 7→ ϕ(k)) of the specification ref-map-specϕ, by directly using ϕ to answer
lookup calls. This alternative representation of ref-map-specϕ is useful in equational
proofs since it abstracts away the “lazy” implementation. The low-level interface of
pure-mapϕ is Empty as the object simply returns the value of ϕ for k without making
any low-level calls. The specification ref-map-specϕ and the implementation pure-mapϕ

are related by the following equality (which we will use in later proofs). Let us write
obj1 =C obj2 when obj1 ≲C obj2 ∧ obj2 ≲C obj1.

64

Lemma 4.7.1. For all ϕ and s,
id ▷S (ref-map-specϕ + s) =C (pure-mapϕ + id) ▷ emptyL ▷S s

The key idea is that a program that makes calls to the interface RefMap + M
intuitively has the same behavior as the program with interface M obtained by
interpreting away the RefMap calls using ϕ. The pure-mapϕ object does not use a
low-level interface, so pure-mapϕ + id can be composed on top of emptyL to filter calls on
its left low-level interface. The resulting programs call methods only on the interface
M (of s).

4.7.3. Predication. The implementation of predicated map pred-map is shown in
Figure 4.22. The function pred-map interprets a map method m that is parametrized
by the key k. It first looks up the reference r associated with the key k by a lookup
in the RefMap interface. Then, it accesses the value stored in the reference via get
or put in the TM interface. The implementation pred-map is used later to instrument
transactions over the exposed map interface.

The predicated map reduces calls on its map interface to calls on another map.
Thus, it is straightforward that the object with the implementation pred-map on the
low-level specification ref-map-specϕ + map-spec sequentially simulates the high-level
specification map-spec.

Lemma 4.7.2.
interp-as-spec (pred-map ▷S (ref-map-specϕ + map-spec)) ≲SP map-spec

4.7.4. Instrumentation. To instrument a transaction p, we first compose it
on top of the pred-map implementation to obtain a program over the sum interface
RefMap + TM. Then, we instrument the program with the function instrumentR, a
variant of instrument, defined in Figure 4.19, where the main change is that instrumentR
only lifts method calls m that belong to the TM interface, while forwarding RefMap
calls without modification. We then compose it on top of id + tm-imp that leaves
the left calls unchanged but interprets the right TM calls by the TM implementation
tm-imp.

p-map-imp = transF(pred-map) ▷ instrumentR ▷ (id + tm-imp)
The operator transF, defined below, transforms an implementation f of an interface
M into an implementation transF(f) of the interface ?Prog(M). When called with a
transaction p, transF(f) makes a single call with the instrumented transaction p ▷ f .

transF : Impl M N → Impl (?Prog(M)) (?Prog(N))
transF(f) = (?exec(p) 7→ (v ← ?exec(p ▷ f); v))

The following lemma states the relation between instrument and instrumentR.
Lemma 4.7.3. For all p, f and g,

transF(f) ▷ instrumentR ▷ (g + id) ▷ emptyL = transF(f ▷ (g + id) ▷ emptyL) ▷ instrument.

The function instrumentR is applied to programs on a sum interface M + TM, and
it wraps calls on the right but does not alter calls on the left. Therefore, the methods
on the left can be interpreted using an implementation g before the instrumentation.

65

Further, since the composition on emptyL removes the calls on the left, the function
instrument can be applied instead of instrumentR.

4.7.5. Strict serializability. The final transactional object is
p-map = p-map-imp ▷S (ref-map-specϕ + spec0)

where spec0 is the specification of the low-level interface of the TM protocol. The
goal is to prove the serializability of this object with respect to the map specification
map-spec.

Before the proof, we give a helper lemma. It states that interpreting a program p
by an implementation f and then interpreting it under the transactional specification
of s is the same as interpreting it directly as a transaction under the interpreted
sequential specification of f .

Lemma 4.7.4. For all f and s, transF(f)▷S trans-spec(s) ≲SS interp-as-spec(f ▷S s).

The proof of serializability is equational, i.e., by successive refinements. This
proof style allows us to package the correctness conditions of individual components
as (in)equations that are then chained together in the final proof in well-delimited
rewriting steps interleaved with some administrative simplifications or factorizations
provided by the equational theory of interaction trees (Proposition 4.4.12). The high-
level idea is that the pure calls to ref-map-specϕ on the left can be filtered (step 2),
and programs that are instrumented on the right by instrumentR can be transformed
to flat programs that are instrumented by instrument (step 5). Having isolated the
TM implementation tm-imp, its serializability guarantees can be applied (step 7).
Finally, the correctness theorem of the core implementation exposes the map sequential
specification (step 11). Those key steps rely respectively on properties of the low-level
specification ref-map-spec, the instrumentation functions instrument and instrumentR,
the serializable object tm, and the core implementation pred-map laid out above.

Theorem 4.7.5 (Correctness of transactional predication).
p-map ≲SS map-spec

Proof.
(1) p-map = p-map-imp ▷S (ref-map-specϕ + spec0)
(2) By Lemma 4.7.1 (after expanding with p-map-imp = p-map-imp ▷ id):
≲C p-map-imp ▷ (pure-mapϕ + id) ▷ emptyL ▷S spec0

(3) Unfold p-map-imp:
transF(pred-map) ▷ instrumentR ▷ (id + tm-imp) ▷ (pure-mapϕ + id) ▷ emptyL ▷S spec0

(4) Commute vertical compositions based on properties of ▷ and + (Proposition 4.4.12):
= transF(pred-map)▷ instrumentR▷(pure-mapϕ + id)▷(id+tm-imp)▷emptyL ▷S spec0
= transF(pred-map) ▷ instrumentR ▷ (pure-mapϕ + id) ▷ emptyL ▷ tm-imp ▷S spec0

(5) By Lemma 4.7.3:
= transF(pred-map ▷ (pure-mapϕ + id) ▷ emptyL) ▷ instrument ▷ tm-imp ▷S spec0

(6) Abbreviate m = pred-map ▷ (pure-mapϕ + id) ▷ emptyL:
= transF(m) ▷ instrument ▷ tm-imp ▷S spec0

(7) By serializability of tm (Lemma 4.6.1):
≲C transF(m) ▷O atomic(trans-spec(map-spec))

66

(8) By definition of atomic and simplification:
= transF(m) ▷O (id ▷S trans-spec(map-spec))
= transF(m) ▷S trans-spec(map-spec)

(9) By Lemma 4.7.4 and the definitions of linearizability and strict serializability:
≲C atomic(trans-spec(interp-as-spec(m ▷S map-spec)))

(10) By Lemma 4.7.1:
≲C atomic(trans-spec(interp-as-spec(pred-map ▷S (ref-map-specϕ + map-spec))))

(11) By Lemma 4.7.2 and Proposition 4.4.6:
≲C atomic(trans-spec(map-spec))

(12) By the definitions of linearizability and strict serializability:
≲SS map-spec □

4.8. Opacity

Our framework models strict serializability in terms of linearizability. Opacity
[Guerraoui and Kapalka, 2008], another correctness condition for transactional memo-
ries, requires active in addition to completed transactions to observe consistent state.
Previous work [Lesani et al., 2012b] defined a transition system (or specification) for
opacity that constrains the return values of all calls from active transactions. Here
we give a sketch of how we can model opacity in terms of linearizability as well. A
protocol object is opaque iff it is linearizable with respect to the opacity specification.

Given a interface M , recall that a transaction protocol object is an object implement-
ing the protocol interface trans(M). Given also a specification spec with interface M ,
we previously defined strict serializability with respect to spec in terms of linearizability
(of the instrumented protocol object) with respect to trans-spec(spec). The specifi-
cation trans-spec(spec) specifies the observable behavior of completed transactions.
Opacity will be defined similarly as linearizability (of the protocol object—without
instrumentation) with respect to a specification opacity-spec(spec). The specification
opacity-spec(spec) specifies the behavior of individual transactional methods in active
transactions.

The opacity specification opacity-spec(spec) = (Sopacity, s0,opacity, ∆opacity) of type
Spec trans(M), from a specification spec = (S, s0, ∆spec) : Spec M consists of the
following components. First, a state in Sopacity is a pair of a state in S, to be the
result of committed operations, and a log of live transactions, which is a mapping
ℓ from transaction IDs to histories ℓ(t) = ⌈(m1, r1) . . . (mi, ri)⌉. Additionally, ℓ may
map a transaction ID to ⊥ to indicate a transaction which failed, but has yet to be
aborted explicitly. Second, the initial state is s0,opacity = (s0 | ∅), with an empty log
in the second component. Third, the transition relation ∆opacity is defined by the
inference rules in Figure 4.23, to specify the behavior of the trans(M) methods init(),
lift(t, m), commit(t), and abort(t). These rules are adapted from the opacity automaton
in Lesani et al. [2012b] to our present setting. To keep the presentation simple, this
specification assumes that the transaction-local state t used by transactional methods
consists only of a transaction ID. The method init() returns a fresh transaction ID,
initializing it with an empty history. For a method lift(t, m), which executes m in
transaction t, it is successful only if it can produce a consistent result r, i.e., such
that the history of that transaction is valid starting from the current committed state

67

Opacity-init
t ̸∈ ℓ

(init, (s, ℓ), t, (s, ℓ[t 7→ ε])) ∈ ∆opacity

Opacity-lift-Ok
ℓ(t) = ⌈h⌉ s

h·(m,r)−−−−→spec s′

(lift(t, m), (s, ℓ), (t, ⌈r⌉), (s′, ℓ[t 7→ ⌈h · (m, r)⌉])) ∈ ∆opacity

Opacity-lift-Fail
t ∈ ℓ

(lift(t, m), (s, ℓ), (t,⊥), (s, ℓ[t 7→ ⊥])) ∈ ∆opacity

Opacity-commit-Ok
ℓ(t) = ⌈h⌉ s

h−→spec s′

(commit(t), (s, ℓ),⊥, (s′, ℓ \ t)) ∈ ∆opacity

Opacity-commit-Fail
t ∈ ℓ

(commit(t), (s, ℓ), ⌈t⌉, (s, ℓ)) ∈ ∆opacity

Opacity-abort
t ∈ ℓ

(abort(t), (s, ℓ), (), (s, ℓ \ t)) ∈ ∆opacity

Aux-ε

s
ε−→spec s

Aux-Cons
s

h−→spec sh (m, sh, r, s′) ∈ ∆spec

s
h·(m,r)−−−−→spec s′

Figure 4.23. Transitions of the opacity specification opacity-spec(spec),
with auxiliary transition relation h−→spec

s. The method commit(t) must also check the history for validity, as the commited
state may have changed since the last method invocation from that transaction. If
that succeeds, t is removed from the log ℓ, the resulting log is denoted as ℓ \ t. The
method abort(t) is called when either lift(t, m) or commit(t) fails to remove t from the
log (see also Figure 4.19).

We can now define opacity. A transactional protocol object obj : Object (trans(M))
ensures opacity with respect to a sequential specification spec : Spec M if obj is
linearizable with respect to opacity-spec(spec). We conjecture that this matches the
definition in Lesani et al. [2012b], which has been related to the original formulation
of opacity [Guerraoui and Kapalka, 2008]. Notably, opacity should subsume strict
serializability: if obj ensures opacity with respect to spec, then obj is strictly serializable
with respect to spec.

4.9. Conclusion

We have presented the first case study in formal verification that shows how to
compose verified transactional objects whose implementations blend classic concurrent

68

data structures with transactions. Moreover, while one might expect new complica-
tions in the reasoning framework to support this marriage, we demonstrated how it
can be accomplished in a simple modular framework. Our notion of concurrent-object
correctness is the classic one of linearizability with respect to sequential specifica-
tions, but applied in a higher-order logic with functional programs that manipulate
higher-order structures. Our encoding of transactions relies on methods that take
complete transactions as inputs and rewrite them syntactically to add synchronization,
permitting us to state and prove strict serializability in terms of linearizability.

69

CHAPTER 5

Related Work

5.1. Interaction Trees

There is a wealth of related work investigating structures similar to interaction trees,
with numerous perspectives on interaction, effects, nontermination, compositionality,
and formal reasoning.

The problem of accommodating effectful programming in purely functional settings
is an old one, and a variety of approaches have been explored, monads and algebraic
effects being two of the most prominent. We concentrate on these two techniques,
beginning with general background and then focusing on the closest related work.

5.1.1. Monads, Monad Transformers, and Free Monads. Moggi’s seminal
paper [1989] introduced monads as one way to give meaning to imperative features in
purely functional programs. Monads were subsequently popularized by Wadler [1992]
and Peyton Jones and Wadler [1993] and have had huge impact, especially in Haskell.
However, it was soon recognized that composing monads to combine multiple effects
was not straightforward. Monad transformers [Moggi, 1990] are one way to obtain
more compositionality; for example, Liang et al. [1995] showed how they can be used
to build interpreters in a modular way. The interp_state function from Section 2.2 is
an example of building an event interpreter using a monad transformer in this style.
In our case, not all monads are suitable targets for interpretation: we require them
to support recursion in the sense that their Kleisli categories are iterative [Adámek
et al., 2010, Goncharov et al., 2016]. Correspondingly, not all monad transformers can
therefore be used to build interpreters.

Datatypes à la Carte [Swierstra, 2008] showed how to use a free monad to define
monad instances modularly. Transporting his definition to our setting, we would
obtain the following:

CoInductive Free (E : Type → Type) (R:Type) :=
| Ret : R → Free E R
| Vis : E (Free E R) → Free E R.

This version of the Vis constructor directly applies the functor E to the coinductively
defined type Free E R itself. However, this type violates the strict positivity condition
enforced by Coq: certain choices of E would allow one to construct an infinite loop.

Subsequent work [Apfelmus, 2010, Kiselyov et al., 2013, Kiselyov and Ishii, 2015]
showed how free monads can be made more liberal by exposing the continuation in the
Vis constructor. The resulting “freer” monad (called FFree in their work) is essentially
identical to our ITrees—the difference being that, because they work in Haskell, which
admits nontermination by default, it needs no Tau constructor.

70

When considered up to strong bisimulation, ITrees form the free completely iterative
monad [Aczel et al., 2003] with respect to a functor of the form fun X ⇒ F X +

X, where the second component corresponds to Tau nodes. Quotiented by weak
bisimulation, ITrees define a free pointed monad [Uustalu and Veltri, 2017]. There
is a rich literature on the theory of iteration [Bloom and Ésik, 1993, Milius, 2005,
Goncharov et al., 2017], studying the properties of operators such as mrec in yet more
general category-theoretic settings. The ITrees library makes such results concretely
applicable to formally verified systems.

ITrees are a form of resumptions, which originated from concurrency theory [Milner,
1975]. More precisely, ITrees can be obtained by applying a coinductive resumption
monad transformer [Piròg and Gibbons, 2014, Cenciarelli and Moggi, 1993] to the delay
monad of Capretta [2005]. Other variations of the resumption monad transformer
have been used to model effectful and concurrent programs [Nakata and Uustalu,
2010, Goncharov and Schröder, 2011]. In particular, Nakata and Uustalu [2010] also
used coinductive resumptions in Coq to define the semantics of Imp augmented with
input-output operations. They also defined termination-sensitive weak bisimilarity
(“equivalence up to taus”) using mixed induction-coinduction. However, their semantics
was defined as an explicitly coinductive relation, with judicious introductions of Tau.
Their Coq development was specialized to Imp’s global state and was not intended
to be used as a general-purpose library. In contrast, our semantics are functional
(denotational, definitional) interpreters, and we encapsulate nontermination (Tau is an
internal implementation detail) using recursion operators that are compatible with
Coq’s extraction mechanisms.

5.1.2. Algebraic Effects and Handlers. Algebraic effects are a formalism for
expressing the semantics of effectful computations based on the insight by Plotkin and
Power that many computational effects are naturally described by algebraic theories
[2001, 2002, 2003]. The idea is to define the semantics of effects equationally, with
respect to the term model generated by operations op ∈ Σ, the signature of an algebra.
When combined with the notion of an effect handler, an idea originally introduced by
Cartwright and Felleisen [1994] and later investigated by Plotkin and Pretnar [2013],
algebraic effects generalize to more complex control effects yet still justify equational
reasoning. The monoidal structure of algebraic effects is well known [Hyland et al.,
2006]; more recent work has studied the relationship between monad transformers and
modular algebraic effects [Schrijvers et al., 2016].

In our setting, an event interface such as stateE (Figure 2.12) defines an effect
signature Σ, and its constructors Get and Put s define the operations. Plotkin and
Pretnar used the notation op(x :X. M), corresponding to the ITrees Vis op (fun x:X

⇒ M) construct, and called it “operation application”. They axiomatized the intended
semantics of effects via equations on operation applications—for example, the fact
that two get operations may be collapsed into one was expressed by the equation
get(x : S. get(y : S. kxy)) = get(x : S. kxx). For ITrees, we prove such equations
relative to an interpretation of the events, as in Section 2.2.1.

The handlers of algebraic effects specify the data needed to construct an inter-
pretation of the effect; they have the form handler{return x 7→ f(x), (op(y; κ) 7→

71

h(y, κ))op∈Σ}. In terms of our notation, the return component of the handler specifies
the Ret case of an interpreter, and the sum over operation interpretations is written
using a dependent type. Here, h corresponds to the most general elimination form
for the ITree Vis constructor, which is a function of type ∀ X, E X → (X → itree

E R) → M R for M an iterative monad. However, Coq prevents us from creating a
general-purpose interpeter parameterized by such a type—it needs to see the definition
of the handler’s body to verify the syntactic guardedness conditions.

In a language such as Eff [Bauer and Pretnar, 2015], which supports algebraic
effects natively, the operational semantics plumbs together the continuations with
the appropriate handlers, scoping them according to the dynamic semantics of the
language. In our case, we must explicitly invoke functions like interp_state as needed,
possibly after massaging the structure of events so that they have the right form.

Johann et al. [2010] studied the contextual equivalences induced by interpretations
of standard effects. Most saliently, their paper developed its theory in terms of
observations of “computation trees,” which are “incompletely known” ITrees—they
are inductively defined, and hence finite, but may also include ⊥ leaves that denote
(potential) divergence. Johann et al. showed how to endow the set of computation
trees with a CPO structure based on approximation (⊥ ⊑ t for any tree t) and use
that notion to study contextual equivalences induced by various interpreters. The
techniques proposed there should be adaptable to our setting: instead of working with
observational partial orders, we might choose to work more directly with the ITree
structures themselves.

5.1.3. Effects in Type Theory. Most of the work discussed above was done
either in the context of programming languages with support for general recursion or
in a theoretical “pen and paper” setting, rendering these approaches fundamentally
different to the ITree library which is formalized in a total language. Work more
closely related to ITrees is that undertaken in the context of dependent type theory.

The earliest work on mixing effects with type theory was done by Hancock and
Setzer [2000], followed by Hancock’s dissertation [Hancock, 2000]. This line of work,
inspired by monads and especially Haskell’s IO monad, showed how to encode such
constructs in Martin-Löf type theory. Those theories, in contrast to ITrees, do not
allow silent steps of computation, instead integrating guarded or sized coinductive
types as part of a strong discipline of total functional programming. The benefit of this
is that strong bisimilarity is the only meaningful notion of equivalence; the drawback
is that they cannot handle general recursion. Later work on object encodings [Setzer,
2006] did consider recursive computations, though it did not study their equational
theory or the general case of implementing interpreters within the type theory, as we
have done. More recently, Abel et al. [2017] have demonstrated the applicability of
these ideas in Agda. Although their paper includes a proof of the correctness of a
stack object (among other examples), they do not focus on the general equational
theory of such computations.

As mentioned previously, Capretta proposed using the “delay monad” to encode
general recursion in a type theory, as we do here, though his paper used strong
bisimulation as the notion of equivalence. The delay monad can be seen as either an

72

ITree without the Vis constructor or, isomorphically, an ITree of type itree emptyE R.
The main theoretical contribution of that paper was showing that the monad laws hold
and that the resulting system is expressive enough to be Turing complete. Subsequent
work explored the use of the delay monad for defining operational semantics [Danielsson,
2012] and studied how to use quotient types [Chapman et al., 2015] or higher inductive
types [Altenkirch et al., 2017] to define equivalence up to Tau, which we take as the
basis for most of our equational theory. Because we are working in Coq, which does
not have quotient or higher inductive types, we must explicitly use setoid rewriting,
requiring us to prove that all morphisms respect the appropriate equivalences.

McBride [2015], building on Hancock’s earlier work, used what he called the “general
monad” to implement effects in Agda. His monad variant is defined inductively as
shown below.

Inductive General (S:Set) (T : S → Set) (X : Set) : Set :=
| RetG (x : X)
| VisG (s:S) (k : T s → General S T X).

Its interface replaces our single E : Type → Type parameter with S : Type and a
type family S → Type to calculate the result type of the event. McBride proposed
encoding recursion as an (uninterpreted) effect, as we present in Section 2.3. In
particular, he shows how to give a semantics to recursion using first a “fuel”-based
(a.k.a. step-indexed) model and then by translation into Capretta’s delay monad. The
latter can be seen as a version of our interp_mrec, but one in which all of the effects
must be handled. Our coinductively defined interaction trees also support a general
fixpoint combinator directly, which is impossible for the General monad.

The FreeSpec Coq library, implemented by Letan et al. [2018], uses a “program
monad” to model components of complex computing systems. The program monad
is essentially an inductive version of itree9 (without Tau). What we call “events,”
the FreeSpec project calls “interfaces.” The FreeSpec project is primarily concerned
with modeling first-order, low-level devices for which general recursion is probably not
needed. Its library offers various composition operators, including a form of concurrent
composition, and it includes a specification logic that helps prove (and automate
proofs of) properties about the systems being modeled. However, due to FreeSpec’s
use of the inductive definition, such systems must be structured as acyclic graphs.
Nevertheless, FreeSpec doesn’t eschew coinduction altogether—as we explain below,
it, like CompCert, defines the environment in which the program runs coinductively.
FreeSpec’s handlers are thus capable of expressing diverging computations, but it does
not support the equational reasoning principles that we propose.

Arrows [Hughes, 2000] are another abstraction for effectful computations inspired
directly by category theory, generalizing monads. Paterson [2001] extends that ab-
straction with a loop operator inspired by traced monoidal categories, a generalization
of iterative categories.

5.1.4. Composition with the Environment. An idea that is found in several
of the works discussed above is the need to characterize properties of the program’s

9The original version of FreeSpec also included a bind constructor, but, following our ITrees
development, it was removed in favor of defining bind.

73

environment. Recall the kill9 program from earlier, which halts when the input is
9 but continues otherwise. One might wish to prove that, if the environment never
supplies the input 9, the program goes on forever. In a more realistic setting like
CompCert, one might wish to make assertions about externally supplied functions,
such as OS calls, malloc or memcpy, or to reason about the accumulated output on
some channel such as the terminal.

The behavior of the environment is, in a sense, dual to the behavior of the program.
CompCert, for example, formulates the environment as a coinductively defined “world,”
whose definition is (a richer version of) the following:

CoInductive world : Type :=
World (io : string → list eventval → option (eventval * world))

Here the string and list of eventvals are the outputs of the event (they are provided
by the program), and the result (if any) is a returned value and a new world. The
environment’s state is captured in the closure of the io function. Transliterating this
type to our setting we arrive at:

CoInductive world E : Type := World (io : ∀ {A:Type}, E A → option (A *
world E)).

Letan et al. [2018] use a definition very close to this (without the option) to define
a notion of “semantics” for the program monad. Given such a definition, one can
define a world that satisfies a certain property (for example, one that never produces
9 as an answer) and use it to constrain the inputs given to the program, by “running”
the program under consideration in the given world. CompCert defines “running”
via a predicate called possible_trace that matches the answers provided by the io

function to the events of the program trace.
The CertiKOS project [Gu et al., 2015a, 2018a] takes the idea of composing a

program with its environment even further. Their Concurrent Certified Abstraction
Layers (CCAL) framework also uses a trace-based formulation of semantics. In their
context, traces are called logs and (concurrent) components are given semantics in terms
of sets of traces. Each component (e.g., a thread) can be separately given a specification
in terms of its interface to (valid) external environments, which encode information
about the scheduler and assumptions about other components in the context. A layer
interface can “focus” on subsets of its concurrently executing components; when it is
focused on a single, sequential thread, the interface is a deterministic function from
environment interactions (as represented by the log) to its next action. The parallel
layer composition operation links two compatible layers by “running” them together
(as above) according to the schedule (inputs to one component can be provided by
outputs of the other). In this case, one thread’s behaviors influence another thread’s
environment. They formulate such interactions in terms of concepts from game
semantics, which gives rise to a notion of refinements between layer specifications.
Layers have the symmetric monoidal structure familiar from algebraic effects.

We conjecture that the sequential behavior of the CCAL system could be expressed
in terms of ITrees and that the concurrent composition operations of the framework
could be defined on top of that. Our KTree combinators already offer a rich notion of
composition, including general, mutually recursive linking, which is similar to that

74

offered by CCAL. Moreover, we can define similar “running” operations directly on
ITrees, rather than on traces, coordinating multiple ITrees via an executable scheduler.
This means that, besides proving properties of the resulting system, we can extract
executable test cases [Koh et al., 2019].

5.1.5. Formal Semantics. There are a plethora of techniques used to describe
the semantics of programming languages within proof assistants. In evaluating these
techniques, we need to consider both the simplicity of the definitions and their
robustness to language extensions. The former is important because complex models
are difficult to reason about, while the latter is important because seemingly small
changes sometimes cascade through a language, invalidating previous work.

Denotational semantics translate the object language (e.g., Imp or Asm) into the
meta-language (e.g., Gallina), seeking to leverage the existing power of the proof
assistant. Chlipala [2007] also uses denotational semantics to verify a compiler, but
in a simpler setting with a normalizing source language, and with models individu-
ally tailored to the intermediate languages. In contrast, ITrees serve as a common
foundation for both semantics in our case-study compiler, and an equational theory
enabling the verification of a termination-sensitive theorem. As we saw in Section 3.1,
impure features such as nontermination can make this difficult, as proof assistants
often include only a total function space. One way to circumvent this limitation is
via a “fuel”-based semantics, where computations are approximated to some finite
amount of unwinding. Owens et al. [2016] use this approach to develop functional
big-step semantics. To reason about nonterminating executions, Owens et al. [2016]
leverages the classical nature of the HOL logic to assert that, if no amount of fuel
is sufficient for termination, then the computation diverges. They further show how
oracle semantics [Hobor, 2008] can be used to enrich this language with both IO and
nondeterminism. In practice, the approach is quite similar to ITrees, except that we
can omit the fuel and instead directly construct the infinite computation tree. With
ITrees, events encode oracle queries and Taus represent internal steps, which may
lead to divergence. However, as we showed in Chapter 3, users of ITrees are mostly
insulated from Taus when using the combinators from Section 2.3.

The approach of Owens et al. [2016] is reminiscent of traditional step index-
ing [Ahmed, 2004], in which the meaning of a program is described by a set of
increasingly accurate approximations.

Formalizations of more classic domain-theoretic denotational models exist [Benton
et al., 2009, 2010]. Unfortunately, the learning curve for this style of denotational
semantics was widely considered to be quite steep. The complexity of domain-
theoretic models prompted exploring more operational approaches to formalizing
semantics [Plotkin, 2004b,a]. Big-step operational semantics share a similar flavor to
denotational semantics as they both connect terms directly to their meaning. Unfor-
tunately, interpreting big-step semantics inductively prevents them from representing
divergent computations. Some works [Delaware et al., 2013, Chlipala, 2010] avoid the
issue of nontermination entirely, ascribing semantics only to terminating executions.
Charguéraud [2013] provides a technique for avoiding the problem by duplicating the
semantics both inductively and coinductively, arguing that such duplication can be

75

automated and therefore should not be overly burdensome. The functional style of this
“pretty big step” semantics is quite similar to functional denotational semantics, and
thus bears a resemblance to ITrees. ITrees avoid the need to duplicate the semantics
by giving a data representation rather than a propositional representation.

Leroy and Grall [2009] give an in-depth discussion relating inductive and coinductive
semantic styles, providing an inductive judgment for “terminates in a value (and a
trace)” and a coinductive judgment for “diverges (with an infinite trace).” Relating
these semantics can be difficult, and the proofs sometimes rely on classical logic.

5.1.6. Alternative Interpretations. Those same tree structures also serve
as general representations of recursive data types, encoding the constructors as a
suitable event type (E in itree E). Such types are also called W-types, M-types, or
containers [Abbott et al., 2005, Altenkirch et al., 2015].

Game semantics [Abramsky and McCusker, 1999, Abramsky et al., 1997, Hyland,
1997] is another approach to modelling interactive systems. In interaction trees, the
event type E associates a set of responses to each event. In game semantics, such
a structure is called an arena, viewing events and responses as moves in a game.
Michelbrink [2006] generalizes the trees of Hancock and Setzer [2000] to construct a
simple game semantic model. The CertiKOS project [Gu et al., 2016] is also heavily
influenced by game semantics [Gu et al., 2015a, 2018a, Vale et al., 2022, Koenig and
Shao, 2020].

5.2. Verified Transactional Objects

5.2.1. Composing Concurrent Operations. Several previous works present
techniques to compose multiple calls on concurrent data structures into atomic opera-
tions. Transactional boosting [Herlihy and Koskinen, 2008] benefits from commuta-
tivity specifications to allow concurrent execution of commutative calls and prevent
concurrent execution of noncommuting calls by acquiring the same lock. Later works
presented optimistic variants [Hassan et al., 2014, Dickerson et al., 2019].

Guerraoui [1995] introduced o-atomicity, a property of specifications of atomicity
that allows multiple objects with different serialization orders to be composed in
the same transaction, presenting sketches of both pessimistic and optimistic imple-
mentations that satisfy o-atomicity. Similarly, Reversible Atomic Objects (RAO)
[Antonopoulos et al., 2016] are an implementation technique for such compositions. In
contrast to the two works above, this thesis presents general and composable definitions
to capture different specifications and implementation techniques modularly, plus
proof principles to verify correctness. ROA can be captured in our framework as a
composition instance, and the RAO refinement proof can be captured as linearizability
of the resulting object with respect to the specification of the high-level interface.
Finally, in contrast to RAO, our framework supports recursive method calls.

We saw transactional predication [Bronson et al., 2010] in this thesis. Similarly,
transactional data structures [Spiegelman et al., 2016, Assa et al., 2020] and transac-
tional software objects [Herman et al., 2016] use TM judiciously and further benefit
from specific data-structure semantics and organization to improve efficiency. Follow-
up work presents lock-free variants [Elizarov et al., 2019]. In Foresight [Golan-Gueta

76

et al., 2013], the client declares an overapproximation of the set of methods that
they foresee to be called. To maintains a partial order for the composed operations,
the library may temporarily block a method call that does not commute with the
possible future calls by the environment. A few other works [LaBorde et al., 2019,
Zhang et al., 2018, Lamar et al., 2020] present custom synchronization mechanisms
to provide transactional implementations of specific data structures such as linked
lists and vectors. However, the above do not provide proof techniques and formal
atomicity guarantees.

5.2.2. Testing and Verification of Composed Operations. Colt [Shacham
et al., 2011] and ICFinder [Liu et al., 2013] test atomicity of, and Snowflake [Lesani
et al., 2014] automatically verifies, composed methods that extend the interface of an
already linearizable data structure [Lea, 2000]. Our framework includes tactics that
can automatically verify a strict superset of the above use cases. Further, it supports
the definition of a more diverse set of objects including composition of multiple objects
and transaction protocols, and it provides general proof techniques to verify them.
Flint [Liu et al., 2014] fixes nonatomic composed methods. It infers a specification from
the method itself and applies heuristics to synthesize a concurrent implementation. In
contrast to Flint’s repair of composed methods, our framework supports their formal
definition and mechanized verification.

TxC-ADT [Peterson and Dechev, 2017] generates happens-before graphs and
applies model checking to check the consistency of transactional data structures. By
contrast, our framework presents proof techniques to verify these data structures
mechanically in a proof assistant.

5.2.3. Testing and Verification of Atomicity. Filipović et al. [2010] charac-
terized linearizability as observational refinement. Attiya et al. [2017] characterized
the TM correctness conditions TMS [Doherty et al., 2013] and opacity [Guerraoui
and Kapalka, 2008] as observational refinement. Thus, the notions of simulation
and refinement [Abadi and Lamport, 1991, Lynch and Vaandrager, 1995] have been
applied to verify atomicity [Schellhorn et al., 2012, Bouajjani et al., 2017, Lesani
et al., 2012a, Jagannathan et al., 2014, Hawblitzel et al., 2015b, Turon et al., 2013,
Emmi and Enea, 2019, Kragl et al., 2020]. However, they do not consider verification
of composed operations. A related project [Armstrong et al., 2017] first proves the
atomicity of individual operations (read, write, commit) of the transaction protocol
and then applies simulation to prove serializability on top of that. In contrast to our
formalism, it does not modularly state serializability in terms of linearizability and
uses a standalone definition of opacity.

A related project [Cerone et al., 2014, Murawski and Tzevelekos, 2019] presents
multiple dedicated definitions of linearizability for objects (or libraries) that are
implemented in terms of other objects. Our framework shows that a unified definition
of linearizability, composition combinators, and proof technique can be the foundation
of different instantiations including serializability. A few projects [Raad et al., 2019,
Batty et al., 2013] consider modular verification of data structures on weak memory
[Adve and Gharachorloo, 1996, Sewell et al., 2010]. However, they do not consider
transactions or the relation of linearizability and serializability. Further, the above

77

projects did not consider the composition of transactional memory and concurrent
data structures.

5.2.4. Modular Systems. Objects and sequential specifications are similar to
the modules and interfaces of certified abstraction layers [Gu et al., 2015b], which were
introduced in a sequential and deterministic context. Determinism enables proofs by
downward simulation, and the sequential nature of modules allows them to support a
flexible form of horizontal composition. In contrast, we leverage linearizable objects
[Herlihy and Wing, 1990, Filipović et al., 2010, Gotsman and Yang, 2012] to build
hierarchies of concurrent objects, our simulation proofs are upwards, and horizontal
composition of concurrent objects requires their interfaces to be fully disjoint. In
subsequent work on certified concurrent abstraction layers [Gu et al., 2018b], interfaces
specify behavior at the level of individual threads, whereas we focus on specifications
using simple state machines that are agnostic to the number of threads interacting
with objects.

5.2.5. Program Logics. To our knowledge, while Hoare logics have long been
applied in concurrent program verification, they have not been used for modular
proof of examples combining classic concurrent data structures with transactional
memory. However, many different extensions have been influential, including to our
work. Rely-guarantee reasoning [Jones, 1983] supports temporal decomposition of
a workload across concurrent threads. The pioneering work on concurrent separa-
tion logic [O’Hearn, 2007, Hobor et al., 2008] and its descendants [Windsor et al.,
2017] tackled spatial decomposition of memory across separately verified data struc-
tures. Fruitful combination of these two techniques was demonstrated in the logics
RGSep [Vafeiadis and Parkinson, 2007], LRG [Feng, 2009, Liang and Feng, 2013] and
TaDA [da Rocha Pinto et al., 2014]. This line of work relies on ghost state to formulate
functional-correctness properties. A number of program logics rise to this challenge,
by defining flexible higher-order ghost state connected to notions of state-transition
systems. For instance, the logics FCSL [Nanevski et al., 2014] and Iris [Jung et al.,
2016a, 2015] build in different notions of monoids for expressing protocols [Liang and
Feng, 2013], and the GPS logic [Turon et al., 2014] applied similar ideas in the context
of weak memory.

These logics support much more flexible state-sharing than in our framework.
However, in return, we keep our framework much simpler and modularly build it
from basic definitions, fixing little more than the classic notion of simulation and
linearizability. Yet, we show that elaborate concurrent objects such as transaction
protocols and predicated data structures can be implemented modularly. Further, in
contrast to correctness conditions for transactions that were often written as standalone
definitions [Papadimitriou, 1979, Guerraoui and Kapalka, 2008, Doherty et al., 2013,
Scott, 2006, Jagannathan et al., 2005], we show that serializability can be defined
modularly based on linearizability and composition operations.

78

CHAPTER 6

Future Work and Conclusions

6.1. Existing Work using Interaction Trees

Interaction trees were originally used to verify a simple HTTP server [Koh et al.,
2019, Zhang et al., 2021] using VST [Cao et al., 2018]. Interaction trees also enabled
a connection between VST specifications of the socket primitives used in that server
and CertiKOS specifications [Mansky and Honoré, 2020]. Li et al. [2021] leverage the
executable nature of interaction trees for model-based testing of networked applications.

The theory of interaction trees relies heavily on the Paco library for parameterized
coinduction [Hur et al., 2013]. Challenges in the development of the ITree library
have motivated further generalizations in Paco [Zakowski et al., 2020]. Silver and
Zdancewic [2021] use interaction trees to extend the framework of Dijkstra monads,
for specifying effectful programs, to reason about nontermination and uninterpreted
events.

Vellvm formalizes the semantics of LLVM using interaction trees [Zakowski et al.,
2021]. Vellvm serves as the target of a verified compiler for Helix, a domain-specific
language for numerical algorithms [Zaliva et al., 2020], applying and extending the
proof methodology presented in Chapter 3. Heapster [He et al., 2021] automatically
extracts functional specifications from imperative programs. The semantics of both
the imperative source language and the functional target language are defined using
interaction trees. Vellvm and the imperative fragment of Heapster are of course
both richer languages than Imp, and they leverage the existing theory of events
and handlers to modularly structure additional effects such as nondeterminism and
errors—for representing undefined behavior. The functional fragment of Heapster
is also effectful—using interaction trees—as memory-unsafe programs are extracted to
functional specifications which may raise errors.

Foster et al. [2021] implement the ideas of interaction trees in Isabelle/HOL,
adapting to the lack of higher-order types as we discussed in Section 2.1.1, and
subsequently develop novel semantics for process languages such as CSP. Song et al.
[2022] presents a logic combining contextual refinement and separation logic. Much
like the objects of Chapter 4, the behavior of a module is represented by a handler,
using a generalization of interaction trees featuring dual notions of nondeterminism.

6.2. Improving the Definition of Interaction Trees

It may be worth revisiting some arbitrary decisions in the formal definition of
interaction trees, to simplify parts of the library or to better support new extensions.

The Tau constructor is the root of much of the complexity in coinductive proofs,
that motivates using the Paco library. This is an issue that makes it tedious to define

79

new variants of weak bisimulation—for example to equate trees with different types
of events, or to make some events “invisible”. A different definition of itree such as
the following one, in terms of the delay monad [Capretta, 2005]. This construction
can be viewed as the “free monad transformer” [Kmett] applied to the delay monad
(“FreeT f Delay r”), which suggests that its equational theory is obtained similarly
by transforming—thus reusing—the equational theory of the delay monad:

(* The delay monad *)
CoInductive delay A :=
| Tau (delay A)
| Now (a : A).

Variant itreeF (E : Type → Type) (R : Type) (X : Type) : Type :=
| Vis (A : Type) (e : E A) (k : A → X)
| Ret (r : R).

CoInductive itree E R := delay (itreeF E R (itree E R)).

In ITree, event types are type constructors (E : Type → Type). One consequence
is that the “injectivity of the Vis constructor”, a seemingly natural property:

∀ (E : Type) (A B : Type) (e1 e2 : E A) (k1 k2 : A → itree E B),

Vis e1 k1 = Vis e2 k2 → e1 = e2 ∧ k1 = k2,

is not actually provable in Coq. The issue is that the type A which occurs in the type
of e1 and e2 : E A is also an argument of Vis, so that the equality Vis e1 k1 = Vis

e2 k2 induces a heterogeneous equality between e1 and e2, which is strictly weaker
than homogeneous equality. Thus, the “injectivity of Vis” above is equivalent to the
uniqueness of identity proofs (UIP):

∀ (A : Type) (x y : A) (p q : x = y), p = q

which is notably incompatible with univalence, an active topic of study in type
theory [Univalent Foundations Program, 2013]. In practice, event types E : Type

→ Type are not arbitrary functions on types, but user-defined sum types whose
constructors determine the type index. Under a suitable encoding of that assumption,
the “injectivity of the Vis constructor” may be proved.

There may be further advantages to internalizing the fact that event types are
built out of sums in the representation of event types (E : Type → Type). Currently,
we have a typeclass E -< F which carries a mapping from E events to F events, but
in practice this mapping is also injective, a fact which may be leveraged to obtain
a general form of case analysis on events. For example, Yoon et al. [2022] propose
a variant of that typeclass, denoted D +? E -< F, to express that the sum D +' E is
isomorphic to F, so that we not only know how to map E events to F events, but we also
have a partial inverse from F back to E. A possible concern for this class is brittleness,
in that the “difference” D between F and E is only unique up to isomorphism, but
there are many possible syntactically different values for D (e.g., by associating sums
differently) that may arise from instance resolution in different contexts. Baking the

80

sum structure of event types into their representation may be a less brittle alternative
to accomplish similar goals.

Lastly, interaction trees as defined in this dissertation are a natural representation of
programs with “external choices”, made by the environment. In contrast, representing
“internal nondeterminism” has been a recurrent problem in several applications of
interaction trees. This problem has been addressed in various ad-hoc ways: by defining
a variant of weak bisimulation which makes nondeterministic branches “invisible” [Koh
et al., 2019], by interpreting choices to a “set of itrees” monad [Zakowski et al.,
2021], or, more recently,10 by redefining itree with an additional constructor for
nondeterminism. A principled framework for better understanding this problem and
comparing such solutions may be an interesting direction for future exploration.

6.3. Automating Proofs of Categorical Equations

The ITree library relies heavily on categorical abstractions, via the Kleisli cate-
gory of the itree monad and the category of handlers. Both applications presented in
previous chapters exemplify how this lets us reason about the behavior of nontrivial
systems (nonterminating programs and complex concurrent and transactional objects)
equationally, further boiling down the problem to string-diagramatic intuitions. How-
ever, in practice, the formal proofs can become quite tedious due to an overwhelming
amount of administrative bookkeeping: long chains of compositions must be reassoci-
ated explicitly inbetween “meaningful” steps of rewriting, and associators and unitors
of monoidal categories are sometimes challenging puzzles to cancel out. It would be
worthwhile to develop automated solvers (or adapt any existing ones) for equations in
arbitrary monoidal categories and related structures such as those found in ITree. To
verify such provers, an obvious property is soundness. Its dual, completeness, would
also be useful to characterize the class of equations that may be solved automatically,
to provide insight into the kind of properties that may be proved equationally, and
also to identify weaknesses to address in further work.

6.4. Higher-Order Semantics with Games

Interaction trees are essentially first-order structures. Although it is possible to an
extent to pass interaction trees through events, as we do in the framework of verified
transactional objects (Chapter 4), there remain significant obstacles to model more
expressive systems. For instance, in many languages objects are first-class entities,
which may be instantiated dynamically and treated as run-time values. It also seems
challenging obtain a semantics for recursive higher-order languages such as PCF, in
spite of the existing features to express recursion in ITree.

Game semantics [Hyland, 1997, Abramsky et al., 1997, Hyland and Ong, 2000] are
a promising approach to represent higher-order structures, having notably provided
the first fully abstract denotational semantics for PCF. There is a strong similarity
between game semantics and interaction trees, as interaction trees can be seen as
strategies playing events as moves. Interfaces in game semantics are stateful: the set
of possible moves changes depending on previous moves, whereas the set of events in

10Ongoing work: https://github.com/vellvm/ctrees

81

https://github.com/vellvm/ctrees

an interaction tree is fixed uniformly. This aspect makes games highly expressive and
at the same time quite challenging to formalize in a proof assistant.

6.5. Conclusion

This dissertation presented interaction trees, a structure for constructing exe-
cutable denotational semantics of programming languages in a proof assistant. It is
implemented as a library in Coq providing powerful combinators for composing and
reasoning about interaction trees (Chapter 2).

Equipping Imp and Asm with denotational semantics enabled a fully equational
proof of compiler correctness (Chapter 3). An equational theory of loop operators
fully encapsulated tricky coinductive reasoning about nontermination, and a theory of
handlers allowed us to decompose the semantics of a language into sums of simple
effects [Zakowski et al., 2020, He et al., 2021, Yoon et al., 2022].

The denotational nature of interaction trees also let us build a compositional
framework of verified transactional objects (Chapter 4). Viewing transactions as first-
class programs, interaction trees that may be manipulated by objects, let us formalize
serializability—multi-method atomicity—in terms of linearizability—single-method
atomicity. These two styles of concurrency live alongside each other in the resulting
framework, allowing us to reason about composition patterns combining the best of
both worlds, the performance of classical concurrent objects and the programmability
of transactions.

The structure of interaction trees has a long and rich history in representing effectful
programs and their interactions with the rest of the world (Chapter 5): IO trees [Han-
cock and Setzer, 2000], free monads [Swierstra, 2008], algebraic effects [Plotkin and
Power, 2001, 2003]... The primary contribution of this thesis is to codify a core theory
of interaction trees as a practical and reusable library, enabling further applications to
formal verification in a proof assistant. While some aspects of the datatype definition
may be worth revisiting, as discussed in Section 6.2, I believe improvements on that
front can be made without significantly affecting the user-facing abstractions around
which the library is organized, and which are based on category theory: effects induce
monads, loop combinators follow the laws of iteration, and handlers form a monoidal
category. These robust abstractions guide us towards a denotational approach to
represent the behavior of programs, inspiring us to embrace equational reasoning and
compositionality.

82

Bibliography

Martín Abadi and Leslie Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82(2):253–284, 1991.

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Constructing
strictly positive types. Theoretical Computer Science, 342(1):3–27, 2005.

Andreas Abel, Stephan Adelsberger, and Anton Setzer. Interactive programming in
agda–objects and graphical user interfaces. Journal of Functional Programming, 27,
2017.

Samson Abramsky and Guy McCusker. Game semantics. In Computational logic,
pages 1–55. Springer, 1999.

Samson Abramsky et al. Semantics of interaction: an introduction to game semantics.
Semantics and Logics of Computation, 14(1), 1997.

Peter Aczel, Jirí Adámek, Stefan Milius, and Jiri Velebil. Infinite trees and completely
iterative theories: a coalgebraic view. Theor. Comput. Sci., 300(1-3):1–45, 2003.
doi: 10.1016/S0304-3975(02)00728-4. URL https://doi.org/10.1016/S0304-397
5(02)00728-4.

Sarita V Adve and Kourosh Gharachorloo. Shared memory consistency models: A
tutorial. computer, 29(12):66–76, 1996.

Jiří Adámek, Stefan Milius, and Jiří Velebil. Equational properties of iterative monads.
Information and Computation, 208(12):1306–1348, 2010. ISSN 0890-5401. doi:
https://doi.org/10.1016/j.ic.2009.10.006. URL https://www.sciencedirect.com/
science/article/pii/S0890540110000854. Special Issue: International Workshop
on Coalgebraic Methods in Computer Science (CMCS 2008).

Amal Jamil Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton
University, 2004. URL http://www.cs.indiana.edu/~amal/ahmedsthesis.pdf.

Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and Peter Morris.
Indexed containers. Journal of Functional Programming, 25, 2015.

Thorsten Altenkirch, Nils Anders Danielsson, and Nicolai Kraus. Partiality, revisited.
In Javier Esparza and Andrzej S. Murawski, editors, Foundations of Software Science
and Computation Structures, pages 534–549, Berlin, Heidelberg, 2017. Springer
Berlin Heidelberg. ISBN 978-3-662-54458-7.

Timos Antonopoulos, Paul Gazzillo, Eric Koskinen, and Zhong Shao. Vertical compo-
sition of reversible atomic objects. 2016.

Heinrich Apfelmus. The operational monad tutorial. The Monad.Reader, Issue 15,
2010.

Andrew W. Appel. Verified software toolchain. In Proceedings of the 20th European
Conference on Programming Languages and Systems: Part of the Joint European

83

https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.1016/S0304-3975(02)00728-4
https://www.sciencedirect.com/science/article/pii/S0890540110000854
https://www.sciencedirect.com/science/article/pii/S0890540110000854
http://www.cs.indiana.edu/~amal/ahmedsthesis.pdf

Conferences on Theory and Practice of Software, ESOP’11/ETAPS’11, pages 1–
17, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-19717-8. URL
http://dl.acm.org/citation.cfm?id=1987211.1987212.

Andrew W. Appel. Program Logics - for Certified Compilers. Cambridge University
Press, 2014. ISBN 978-1-10-704801-0. URL http://www.cambridge.org/de/acade
mic/subjects/computer-science/programming-languages-and-applied-logic
/program-logics-certified-compilers?format=HB.

Alasdair Armstrong, Brijesh Dongol, and Simon Doherty. Proving opacity via lin-
earizability: a sound and complete method. In International Conference on Formal
Techniques for Distributed Objects, Components, and Systems, pages 50–66. Springer,
2017.

Gal Assa, Hagar Meir, Guy Golan-Gueta, Idit Keidar, and Alexander Spiegelman.
Nesting and composition in transactional data structure libraries. In Proceedings
of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 405–406, 2020.

Hagit Attiya, Alexey Gotsman, Sandeep Hans, and Noam Rinetzky. Characterizing
transactional memory consistency conditions using observational refinement. Journal
of the ACM (JACM), 65(1):1–44, 2017.

Jeremy Avigad, Mario Carneiro, and Simon Hudon. Data Types as Quotients of
Polynomial Functors. In John Harrison, John O’Leary, and Andrew Tolmach,
editors, 10th International Conference on Interactive Theorem Proving (ITP 2019),
volume 141 of Leibniz International Proceedings in Informatics (LIPIcs), pages 6:1–
6:19, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
ISBN 978-3-95977-122-1. doi: 10.4230/LIPIcs.ITP.2019.6. URL http://drops.da
gstuhl.de/opus/volltexte/2019/11061.

Mark Batty, Mike Dodds, and Alexey Gotsman. Library abstraction for c/c++
concurrency. ACM SIGPLAN Notices, 48(1):235–248, 2013.

Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers.
Journal of Logical and Algebraic Methods in Programming, 84(1):108–123, Jan 2015.

Nick Benton, Andrew Kennedy, and Carsten Varming. Some domain theory and
denotational semantics in coq. In Stefan Berghofer, Tobias Nipkow, Christian Urban,
and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, pages 115–
130, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-03359-9.

Nick Benton, Lars Birkedal, Andrew Kennedy, and Carsten Varming. Formalizing
domains, ultrametric spaces and semantics of programming languages. July 2010.
URL https://www.microsoft.com/en-us/research/publication/formalizing
-domains-ultrametric-spaces-and-semantics-of-programming-languages/.

Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler, Lorenz Panny,
Andrei Popescu, and Dmitriy Traytel. Truly modular (co) datatypes for isabelle/hol.
In International Conference on Interactive Theorem Proving, pages 93–110. Springer,
2014.

Stephen L. Bloom and Zoltán Ésik. Iteration Theories - The Equational Logic
of Iterative Processes. EATCS Monographs on Theoretical Computer Science.
Springer, 1993. ISBN 978-3-642-78036-3. doi: 10.1007/978-3-642-78034-9. URL
https://doi.org/10.1007/978-3-642-78034-9.

84

http://dl.acm.org/citation.cfm?id=1987211.1987212
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
http://drops.dagstuhl.de/opus/volltexte/2019/11061
http://drops.dagstuhl.de/opus/volltexte/2019/11061
https://www.microsoft.com/en-us/research/publication/formalizing-domains-ultrametric-spaces-and-semantics-of-programming-languages/
https://www.microsoft.com/en-us/research/publication/formalizing-domains-ultrametric-spaces-and-semantics-of-programming-languages/
https://doi.org/10.1007/978-3-642-78034-9

Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Suha Orhun Mutluergil.
Proving linearizability using forward simulations. In International Conference on
Computer Aided Verification, pages 542–563. Springer, 2017.

Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. Transactional
predication: high-performance concurrent sets and maps for stm. In Proceedings of
the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing,
PODC ’10, pages 6–15, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-888-9.
doi: 10.1145/1835698.1835703. URL http://doi.acm.org/10.1145/1835698.1835
703.

Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. Line-up: A
complete and automatic linearizability checker. SIGPLAN Not., 45(6):330–340, jun
2010. ISSN 0362-1340. doi: 10.1145/1809028.1806634. URL https://doi-org.pro
xy.library.upenn.edu/10.1145/1809028.1806634.

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W.
Appel. Vst-floyd: A separation logic tool to verify correctness of C programs. J.
Autom. Reasoning, 61(1-4):367–422, 2018. doi: 10.1007/s10817-018-9457-5. URL
https://doi.org/10.1007/s10817-018-9457-5.

Venanzio Capretta. General recursion via coinductive types. Logical Methods in
Computer Science, 1(2):1–18, 2005. ISSN 1860-5974. doi: 10.2168/LMCS-1(2:1)2005.
URL http://www.lmcs-online.org/ojs/viewarticle.php?id=55.

Robert Cartwright and Matthias Felleisen. Extensible denotational language specifica-
tions. In Symposium on Theoretical Aspects of Computer Software, volume LNCS,
pages 244–272. Springer-Verlag, 1994.

Pietro Cenciarelli and Eugenio Moggi. A syntactic approach to modularity in denota-
tional semantics. Technical report, In Proceedings of the Conference on Category
Theory and Computer Science, 1993.

Pavol Černỳ, Arjun Radhakrishna, Damien Zufferey, Swarat Chaudhuri, and Rajeev
Alur. Model checking of linearizability of concurrent list implementations. In
International Conference on Computer Aided Verification, pages 465–479. Springer,
2010.

Andrea Cerone, Alexey Gotsman, and Hongseok Yang. Parameterised linearisability.
In International Colloquium on Automata, Languages, and Programming, pages
98–109. Springer, 2014.

James Chapman, Tarmo Uustalu, and Niccolò Veltri. Quotienting the delay monad
by weak bisimilarity. In Martin Leucker, Camilo Rueda, and Frank D. Valencia,
editors, Theoretical Aspects of Computing - ICTAC 2015, pages 110–125, Cham,
2015. Springer International Publishing. ISBN 978-3-319-25150-9.

Arthur Charguéraud. Pretty-big-step semantics. In Proceedings of the 22Nd European
Conference on Programming Languages and Systems, ESOP’13, pages 41–60, Berlin,
Heidelberg, 2013. Springer-Verlag. ISBN 978-3-642-37035-9. doi: 10.1007/978-3-642
-37036-6_3. URL http://dx.doi.org/10.1007/978-3-642-37036-6_3.

Adam Chlipala. A certified type-preserving compiler from lambda calculus to assembly
language. In Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’07, pages 54–65, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-633-2. doi: 10.1145/1250734.1250742. URL

85

http://doi.acm.org/10.1145/1835698.1835703
http://doi.acm.org/10.1145/1835698.1835703
https://doi-org.proxy.library.upenn.edu/10.1145/1809028.1806634
https://doi-org.proxy.library.upenn.edu/10.1145/1809028.1806634
https://doi.org/10.1007/s10817-018-9457-5
http://www.lmcs-online.org/ojs/viewarticle.php?id=55
http://dx.doi.org/10.1007/978-3-642-37036-6_3

http://doi.acm.org/10.1145/1250734.1250742.
Adam Chlipala. A verified compiler for an impure functional language. In Proceedings of

the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’10, pages 93–106, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-479-9. doi: 10.1145/1706299.1706312. URL http://doi.acm.org/10
.1145/1706299.1706312.

Adam Chlipala. Infinite data and proofs. In Certified Programming with Dependent
Types. MIT Press, 2017. URL http://adam.chlipala.net/cpdt/html/Cpdt.Coi
nductive.html.

Edmund M Clarke, Orna Grumberg, and David E Long. Model checking and abstrac-
tion. ACM transactions on Programming Languages and Systems (TOPLAS), 16
(5):1512–1542, 1994.

Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick Bloem, et al.
Handbook of model checking, volume 10. Springer, 2018.

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. Tada: A
logic for time and data abstraction. In European Conference on Object-Oriented
Programming, pages 207–231. Springer, 2014.

Luke Dalessandro, Dave Dice, Michael Scott, Nir Shavit, and Michael Spear. Trans-
actional mutex locks. In European Conference on Parallel Processing, pages 2–13.
Springer, 2010.

Nils Anders Danielsson. Operational semantics using the partiality monad. In In:
International Conference on Functional Programming 2012, ACM Press. Citeseer,
2012.

Nils Anders Danielsson and Thorsten Altenkirch. Mixing induction and coinduction.
2009.

Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers. Meta-theory à la
carte. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages
207–218, 2013. doi: 10.1145/2429069.2429094. URL https://doi.org/10.1145/24
29069.2429094.

Thomas Dickerson, Eric Koskinen, Paul Gazzillo, and Maurice Herlihy. Conflict
abstractions and shadow speculation for optimistic transactional objects. In Asian
Symposium on Programming Languages and Systems, pages 313–331. Springer, 2019.

Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. Towards formally
specifying and verifying transactional memory. Formal Aspects of Computing, 25
(5):769–799, 2013.

Avner Elizarov, Guy Golan-Gueta, and Erez Petrank. Loft: lock-free transactional
data structures. In Proceedings of the 24th Symposium on Principles and Practice
of Parallel Programming, pages 425–426, 2019.

Michael Emmi and Constantin Enea. Violat: generating tests of observational re-
finement for concurrent objects. In International Conference on Computer Aided
Verification, pages 534–546. Springer, 2019.

Xinyu Feng. Local rely-guarantee reasoning. In POPL ’09, 2009.
Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction

for concurrent objects. In Programming Languages and Systems, 18th European

86

http://doi.acm.org/10.1145/1250734.1250742
http://doi.acm.org/10.1145/1706299.1706312
http://doi.acm.org/10.1145/1706299.1706312
http://adam.chlipala.net/cpdt/html/Cpdt.Coinductive.html
http://adam.chlipala.net/cpdt/html/Cpdt.Coinductive.html
https://doi.org/10.1145/2429069.2429094
https://doi.org/10.1145/2429069.2429094

Symposium on Programming, ESOP 2009, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March
22-29, 2009. Proceedings, pages 252–266, 2009. doi: 10.1007/978-3-642-00590-9_19.
URL https://doi.org/10.1007/978-3-642-00590-9_19.

Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction for
concurrent objects. Theoretical Computer Science, 411(51-52):4379–4398, 2010.

Simon Foster, Chung-Kil Hur, and Jim Woodock. Formally verified simulations of
state-rich processes using interaction trees in isabelle/hol. In 32nd International
Conference on Concurrency Theory, 2021.

Carlos Eduardo Giménez. Un Calcul De Constructions Infinies Et Son Application A
La Verification De Systemes Communicants. PhD thesis, École Normale Supérieure
de Lyon, 1996.

Eduardo Giménez. Codifying guarded definitions with recursive schemes. In Peter
Dybjer, Bengt Nordström, and Jan Smith, editors, Types for Proofs and Programs,
pages 39–59, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg. ISBN 978-3-540-
47770-9.

Guy Golan-Gueta, G. Ramalingam, Mooly Sagiv, and Eran Yahav. Concurrent
libraries with foresight. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, pages 263–274, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2014-6. doi: 10.1145/2491956.2462
172. URL http://doi.acm.org/10.1145/2491956.2462172.

Sergey Goncharov and Lutz Schröder. A coinductive calculus for asynchronous side-
effecting processes. CoRR, abs/1104.2936, 2011. URL http://arxiv.org/abs/11
04.2936.

Sergey Goncharov, Stefan Milius, and Christoph Rauch. Complete elgot monads and
coalgebraic resumptions. Electronic Notes in Theoretical Computer Science, 325:
147–168, 2016.

Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg. Unifying
guarded and unguarded iteration. In Foundations of Software Science and Compu-
tation Structures - 20th International Conference, FOSSACS 2017, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, pages 517–533, 2017. doi:
10.1007/978-3-662-54458-7_30. URL https://doi.org/10.1007/978-3-662-544
58-7_30.

Alexey Gotsman and Hongseok Yang. Linearizability with ownership transfer. In
International Conference on Concurrency Theory, pages 256–271. Springer, 2012.

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (New-
man) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep specifications and
certified abstraction layers. In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’15, pages
595–608, New York, NY, USA, 2015a. ACM. ISBN 978-1-4503-3300-9. doi:
10.1145/2676726.2676975. URL http://doi.acm.org/10.1145/2676726.2676975.

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (New-
man) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep specifica-
tions and certified abstraction layers. In Proceedings of the 42nd Annual ACM

87

https://doi.org/10.1007/978-3-642-00590-9_19
http://doi.acm.org/10.1145/2491956.2462172
http://arxiv.org/abs/1104.2936
http://arxiv.org/abs/1104.2936
https://doi.org/10.1007/978-3-662-54458-7_30
https://doi.org/10.1007/978-3-662-54458-7_30
http://doi.acm.org/10.1145/2676726.2676975

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’15, page 595–608, New York, NY, USA, 2015b. Association for Computing
Machinery. ISBN 9781450333009. doi: 10.1145/2676726.2676975. URL
https://doi.org/10.1145/2676726.2676975.

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm
Sjöberg, and David Costanzo. Certikos: An extensible architecture for building
certified concurrent OS kernels. In 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016.,
pages 653–669, 2016. URL https://www.usenix.org/conference/osdi16/techn
ical-sessions/presentation/gu.

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie Koenig,
Vilhelm Sjöberg, Hao Chen, David Costanzo, and Tahina Ramananandro. Certified
concurrent abstraction layers. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2018, Philadelphia,
PA, USA, June 18-22, 2018, pages 646–661, 2018a. doi: 10.1145/3192366.3192381.
URL http://doi.acm.org/10.1145/3192366.3192381.

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie Koenig, Vil-
helm Sjöberg, Hao Chen, David Costanzo, and Tahina Ramananandro. Certified con-
current abstraction layers. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018, page 646–661, New
York, NY, USA, 2018b. Association for Computing Machinery. ISBN 9781450356985.
doi: 10.1145/3192366.3192381. URL https://doi.org/10.1145/3192366.3192381.

Rachid Guerraoui. Modular atomic objects. Theory and Practice of Object Systems, 1
(2):89–99, 1995.

Rachid Guerraoui and Michal Kapalka. On the correctness of transactional memory.
In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice
of parallel programming, pages 175–184, 2008.

Dwight Guth. A formal semantics of python 3.3. 2013.
Tatsuya Hagino. Codatatypes in ml. Journal of Symbolic Computation, 8(6):629 – 650,

1989. ISSN 0747-7171. doi: https://doi.org/10.1016/S0747-7171(89)80065-3. URL
http://www.sciencedirect.com/science/article/pii/S0747717189800653.

Peter Hancock. Ordinals and interactive programs. PhD thesis, University of Edinburgh,
UK, 2000. URL http://hdl.handle.net/1842/376.

Peter Hancock and Anton Setzer. Interactive programs in dependent type theory. In
Peter G. Clote and Helmut Schwichtenberg, editors, Computer Science Logic, pages
317–331, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. ISBN 978-3-540-
44622-4.

Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable
memory transactions. In Proceedings of the Tenth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’05, page 48–60, New York,
NY, USA, 2005. Association for Computing Machinery. ISBN 1595930809. doi:
10.1145/1065944.1065952. URL https://doi.org/10.1145/1065944.1065952.

Masahito Hasegawa. Recursion from cyclic sharing: Traced monoidal categories and
models of cyclic lambda calculi. In Philippe de Groote and J. Roger Hindley, editors,
Typed Lambda Calculi and Applications, pages 196–213, Berlin, Heidelberg, 1997.

88

https://doi.org/10.1145/2676726.2676975
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
http://doi.acm.org/10.1145/3192366.3192381
https://doi.org/10.1145/3192366.3192381
http://www.sciencedirect.com/science/article/pii/S0747717189800653
http://hdl.handle.net/1842/376
https://doi.org/10.1145/1065944.1065952

Springer Berlin Heidelberg. ISBN 978-3-540-68438-1.
Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran. Optimistic transactional

boosting. In Proceedings of the 19th ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 387–388, 2014.

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. Ironfleet: prov-
ing practical distributed systems correct. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles, SOSP 2015, Monterey, CA, USA, Oc-
tober 4-7, 2015, pages 1–17, 2015a. doi: 10.1145/2815400.2815428. URL
http://doi.acm.org/10.1145/2815400.2815428.

Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. Automated and
modular refinement reasoning for concurrent programs. In International Conference
on Computer Aided Verification, pages 449–465. Springer, 2015b.

Paul He, Eddy Westbrook, Brent Carmer, Chris Phifer, Valentin Robert, Karl Smeltzer,
Andrei Stefanescu, Aaron Tomb, Adam Wick, Matthew Yacavone, et al. A type sys-
tem for extracting functional specifications from memory-safe imperative programs.
Proc. ACM Program. Lang., 5(OOPSLA):1–29, 2021.

Maurice Herlihy and Eric Koskinen. Transactional boosting: a methodology for
highly-concurrent transactional objects. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, PPoPP ’08, pages
207–216, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-795-7. doi: 10.1145/
1345206.1345237. URL http://doi.acm.org/10.1145/1345206.1345237.

Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support
for lock-free data structures. In Proceedings of the 20th Annual International
Symposium on Computer Architecture, ISCA ’93, page 289–300, New York, NY,
USA, 1993. Association for Computing Machinery. ISBN 0818638109. doi: 10.1145/
165123.165164. URL https://doi.org/10.1145/165123.165164.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.
ISSN 0164-0925. doi: 10.1145/78969.78972. URL http://doi.acm.org/10.1145/
78969.78972.

Nathaniel Herman, Jeevana Priya Inala, Yihe Huang, Lillian Tsai, Eddie Kohler,
Barbara Liskov, and Liuba Shrira. Type-aware transactions for faster concurrent
code. In Proceedings of the Eleventh European Conference on Computer Systems,
pages 1–16, 2016.

Aquinas Hobor. Oracle Semantics. PhD thesis, Princeton, NJ, USA, 2008. AAI3333851.
Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. Oracle semantics

for concurrent separation logic. In ESOP, 2008.
Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of

haskell: being lazy with class. In Proceedings of the third ACM SIGPLAN conference
on History of programming languages, pages 12–1, 2007.

John Hughes. Generalising monads to arrows. Science of Computer Programming, 37
(1):67 – 111, 2000. ISSN 0167-6423. doi: https://doi.org/10.1016/S0167-6423(99)0
0023-4. URL http://www.sciencedirect.com/science/article/pii/S0167642
399000234.

89

http://doi.acm.org/10.1145/2815400.2815428
http://doi.acm.org/10.1145/1345206.1345237
https://doi.org/10.1145/165123.165164
http://doi.acm.org/10.1145/78969.78972
http://doi.acm.org/10.1145/78969.78972
http://www.sciencedirect.com/science/article/pii/S0167642399000234
http://www.sciencedirect.com/science/article/pii/S0167642399000234

Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of
parameterization in coinductive proof. In Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’13, pages 193–206, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1832-7. doi:
10.1145/2429069.2429093. URL http://doi.acm.org/10.1145/2429069.2429093.

J Martin E Hyland and C-HL Ong. On full abstraction for pcf: I, ii, and iii. Information
and computation, 163(2):285–408, 2000.

Martin Hyland. Game semantics. Semantics and logics of computation, 14:131, 1997.
Martin Hyland, Gordon Plotkin, and John Power. Combining effects: Sum and

tensor. Theoretical Computer Science, 357(1):70 – 99, 2006. ISSN 0304-3975. doi:
https://doi.org/10.1016/j.tcs.2006.03.013. URL http://www.sciencedirec
t.com/science/article/pii/S0304397506002659. Clifford Lectures and the
Mathematical Foundations of Programming Semantics.

Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. Featherweight java: a minimal
core calculus for java and gj. ACM Transactions on Programming Languages and
Systems (TOPLAS), 23(3):396–450, 2001.

Suresh Jagannathan, Jan Vitek, Adam Welc, and Antony Hosking. A transactional
object calculus. Science of Computer Programming, 57(2):164–186, 2005.

Suresh Jagannathan, Vincent Laporte, Gustavo Petri, David Pichardie, and Jan Vitek.
Atomicity refinement for verified compilation. ACM Transactions on Programming
Languages and Systems (TOPLAS), 36(2):1–30, 2014.

P. Johann, A. Simpson, and J. Voigtländer. A generic operational metatheory for
algebraic effects. In 2010 25th Annual IEEE Symposium on Logic in Computer
Science, pages 209–218, July 2010. doi: 10.1109/LICS.2010.29.

Cliff B. Jones. Specification and design of (parallel) programs. In Information
Processing 83, volume 9, pages 321–332, 1983.

Simon Peyton Jones. Haskell 98 language and libraries: the revised report. Cambridge
University Press, 2003.

Simon Peyton Jones. Tackling the awkward squad: monadic i/o, concurrency, exception
and foreign-language calls in haskell. Engineering theories of software construction,
pages 47–96, 2005.

André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathe-
matical Proceedings of the Cambridge Philosophical Society, 119(3):447–468, 1996.
doi: 10.1017/S0305004100074338.

Ralf Jung. Understanding and evolving the rust programming language. 2020.
Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars

Birkedal, and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for
concurrent reasoning. In POPL ’15, pages 637–650, 2015. ISBN 978-1-4503-3300-9.

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order ghost
state. In Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming, ICFP 2016, pages 256–269, New York, NY, USA, 2016a.
ACM. ISBN 978-1-4503-4219-3. doi: 10.1145/2951913.2951943. URL http:
//doi.acm.org/10.1145/2951913.2951943.

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order ghost
state. In Proceedings of the 21st ACM SIGPLAN International Conference on

90

http://doi.acm.org/10.1145/2429069.2429093
http://www.sciencedirect.com/science/article/pii/S0304397506002659
http://www.sciencedirect.com/science/article/pii/S0304397506002659
http://doi.acm.org/10.1145/2951913.2951943
http://doi.acm.org/10.1145/2951913.2951943

Functional Programming, pages 256–269, 2016b.
Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin

Timany, Derek Dreyer, and Bart Jacobs. The future is ours: prophecy variables in
separation logic. Proceedings of the ACM on Programming Languages, 4(POPL):
1–32, 2019.

Oleg Kiselyov and Hiromi Ishii. Freer monads, more extensible effects. In Proceedings
of the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC,
Canada, September 3-4, 2015, pages 94–105, 2015. doi: 10.1145/2804302.2804319.
URL http://doi.acm.org/10.1145/2804302.2804319.

Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: an alternative to
monad transformers. In ACM SIGPLAN Notices, volume 48, pages 59–70. ACM,
2013.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4: Formal verification of
an os kernel. In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 207–220, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-752-3. doi: 10.1145/1629575.1629596. URL http://doi.acm.or
g/10.1145/1629575.1629596.

Edward A. Kmett. free library. https://hackage.haskell.org/package/free.
Jérémie Koenig and Zhong Shao. Refinement-based game semantics for certified

abstraction layers. In Proceedings of the 35th Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 633–647, 2020.

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William
Mansky, Benjamin C. Pierce, and Steve Zdancewic. From c to interaction trees:
Specifying, verifying, and testing a networked server. In Proceedings of the 8th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019,
pages 234–248, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6222-1. doi:
10.1145/3293880.3294106. URL http://doi.acm.org/10.1145/3293880.3294106.

Bernhard Kragl, Shaz Qadeer, and Thomas A Henzinger. Refinement for structured
concurrent programs. In International Conference on Computer Aided Verification,
pages 275–298. Springer, 2020.

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. Cakeml:
a verified implementation of ML. In The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA,
USA, January 20-21, 2014, pages 179–192, 2014. doi: 10.1145/2535838.2535841.
URL http://doi.acm.org/10.1145/2535838.2535841.

Pierre LaBorde, Lance Lebanoff, Christina Peterson, Deli Zhang, and Damian Dechev.
Wait-free dynamic transactions for linked data structures. In Proceedings of the 10th
International Workshop on Programming Models and Applications for Multicores
and Manycores, PMAM’19, page 41–50, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450362900. doi: 10.1145/3303084.3309491. URL
https://doi.org/10.1145/3303084.3309491.

Kenneth Lamar, Christina Peterson, and Damian Dechev. Lock-free transactional
vector. In Proceedings of the Eleventh International Workshop on Programming

91

http://doi.acm.org/10.1145/2804302.2804319
http://doi.acm.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
https://hackage.haskell.org/package/free
http://doi.acm.org/10.1145/3293880.3294106
http://doi.acm.org/10.1145/2535838.2535841
https://doi.org/10.1145/3303084.3309491

Models and Applications for Multicores and Manycores, pages 1–10, 2020.
Leslie Lamport. How to make a multiprocessor computer that correctly executes

multiprocess progranm. IEEE transactions on computers, (9):690–691, 1979.
Leonidas Lampropoulos and Benjamin C. Pierce. QuickChick: Property-Based Testing

in Coq. Software Foundations series, volume 4. Electronic textbook, 2018. URL
https://softwarefoundations.cis.upenn.edu/qc-current/index.html.

Douglas Lea. Concurrent programming in Java: design principles and patterns.
Addison-Wesley Professional, 2000.

Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):
107–115, 2009. doi: 10.1145/1538788.1538814. URL http://doi.acm.org/10.114
5/1538788.1538814.

Xavier Leroy and Sandrine Blazy. Formal verification of a c-like memory model and
its uses for verifying program transformations. Journal of Automated Reasoning, 41
(1):1–31, 2008.

Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. Information
and Computation, 207(2):284 – 304, 2009. ISSN 0890-5401. doi: https://doi.org/10
.1016/j.ic.2007.12.004. URL http://www.sciencedirect.com/science/article/
pii/S0890540108001296. Special issue on Structural Operational Semantics (SOS).

Mohsen Lesani, Victor Luchangco, and Mark Moir. A framework for formally veri-
fying software transactional memory algorithms. In International Conference on
Concurrency Theory, pages 516–530. Springer, 2012a.

Mohsen Lesani, Victor Luchangco, and Mark Moir. Putting opacity in its place. In
Workshop on the theory of transactional memory, pages 137–151, 2012b.

Mohsen Lesani, Todd Millstein, and Jens Palsberg. Automatic atomicity verification
for clients of concurrent data structures. In Proceedings of the 16th International
Conference on Computer Aided Verification - Volume 8559, pages 550–567, New
York, NY, USA, 2014. Springer-Verlag New York, Inc. ISBN 978-3-319-08866-2.
doi: 10.1007/978-3-319-08867-9_37. URL http://dx.doi.org/10.1007/978-3-3
19-08867-9_37.

Mohsen Lesani, Li-yao Xia, Anders Kaseorg, Christian J Bell, Adam Chlipala, Ben-
jamin C Pierce, and Steve Zdancewic. C4: verified transactional objects. Proceedings
of the ACM on Programming Languages, 6(OOPSLA1):1–31, 2022.

Thomas Letan, Yann Régis-Gianas, Pierre Chifflier, and Guillaume Hiet. Modular
verification of programs with effects and effect handlers in coq. In Formal Methods
- 22nd International Symposium, FM 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 15-17, 2018, Proceedings, pages 338–354,
2018. doi: 10.1007/978-3-319-95582-7_20. URL https://doi.org/10.1007/97
8-3-319-95582-7_20.

Yishuai Li, Benjamin C. Pierce, and Steve Zdancewic. Model-based testing of net-
worked applications. In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2021, page 529–539, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384599.
doi: 10.1145/3460319.3464798. URL https://doi.org/10.1145/3460319.3464798.

Hongjin Liang and Xinyu Feng. Modular verification of linearizability with non-fixed
linearization points. In Proceedings of the 34th ACM SIGPLAN Conference on

92

https://softwarefoundations.cis.upenn.edu/qc-current/index.html
http://doi.acm.org/10.1145/1538788.1538814
http://doi.acm.org/10.1145/1538788.1538814
http://www.sciencedirect.com/science/article/pii/S0890540108001296
http://www.sciencedirect.com/science/article/pii/S0890540108001296
http://dx.doi.org/10.1007/978-3-319-08867-9_37
http://dx.doi.org/10.1007/978-3-319-08867-9_37
https://doi.org/10.1007/978-3-319-95582-7_20
https://doi.org/10.1007/978-3-319-95582-7_20
https://doi.org/10.1145/3460319.3464798

Programming Language Design and Implementation, PLDI ’13, pages 459–470, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2014-6. doi: 10.1145/2491956.2462
189. URL http://doi.acm.org/10.1145/2491956.2462189.

Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’95, pages 333–343, New York,
NY, USA, 1995. ACM. ISBN 0-89791-692-1. doi: 10.1145/199448.199528. URL
http://doi.acm.org/10.1145/199448.199528.

Peng Liu, Julian Dolby, and Charles Zhang. Finding incorrect compositions of
atomicity. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 158–168, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2237-9. doi: 10.1145/2491411.2491435. URL http://doi.acm.or
g/10.1145/2491411.2491435.

Peng Liu, Omer Tripp, and Xiangyu Zhang. Flint: Fixing linearizability violations.
In Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA ’14, pages 543–560, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2585-1. doi: 10.1145/2660193.2660
217. URL http://doi.acm.org/10.1145/2660193.2660217.

N. Lynch and F. Vaandrager. Forward and backward simulations. Information and
Computation, 121(2):214 – 233, 1995. ISSN 0890-5401. doi: https://doi.org/10.100
6/inco.1995.1134. URL http://www.sciencedirect.com/science/article/pii/
S0890540185711340.

Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer
Science & Business Media, 2013.

Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wisnesky. Toward a
verified relational database management system. In Proceedings of the 37th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’10, pages 237–248, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-
479-9. doi: 10.1145/1706299.1706329. URL http://doi.acm.org/10.1145/170629
9.1706329.

William Mansky and Wolf Honoré. Connecting higher-order separation logic to a
first-order outside world. Programming Languages and Systems. ESOP 2020, 12075,
2020.

Coq development team. The Coq proof assistant reference manual. LogiCal Project,
2018. URL http://coq.inria.fr. Version 8.8.1.

Coq development team. The Coq proof assistant reference manual. The Gallina
specification language. Co-inductive types, Caveat. LogiCal Project, 2019. URL
https://coq.inria.fr/distrib/V8.9.0/refman/language/gallina-specifica
tion-language.html#caveat. Version 8.9.0.

Conor McBride. Turing-completeness totally free. In Mathematics of Program Con-
struction - 12th International Conference, MPC 2015, Königswinter, Germany,
June 29 - July 1, 2015. Proceedings, pages 257–275, 2015. doi: 10.1007/978-3-319-1
9797-5_13. URL https://doi.org/10.1007/978-3-319-19797-5_13.

J McCarthy and J Painter. Correctness of a compiler for arithmetic expressions.
symposium in applied mathematics, vol. 19, mathematical aspects of computer

93

http://doi.acm.org/10.1145/2491956.2462189
http://doi.acm.org/10.1145/199448.199528
http://doi.acm.org/10.1145/2491411.2491435
http://doi.acm.org/10.1145/2491411.2491435
http://doi.acm.org/10.1145/2660193.2660217
http://www.sciencedirect.com/science/article/pii/S0890540185711340
http://www.sciencedirect.com/science/article/pii/S0890540185711340
http://doi.acm.org/10.1145/1706299.1706329
http://doi.acm.org/10.1145/1706299.1706329
http://coq.inria.fr
https://coq.inria.fr/distrib/V8.9.0/refman/language/gallina-specification-language.html#caveat
https://coq.inria.fr/distrib/V8.9.0/refman/language/gallina-specification-language.html#caveat
https://doi.org/10.1007/978-3-319-19797-5_13

science. American Mathematical Society, 1967.
Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza Adl-Tabatabai,

Richard L Hudson, Bratin Saha, and Adam Welc. Single global lock semantics in a
weakly atomic stm. ACM Sigplan Notices, 43(5):15–26, 2008.

Markus Michelbrink. Interfaces as games, programs as strategies. In Jean-Christophe
Filliâtre, Christine Paulin-Mohring, and Benjamin Werner, editors, Types for Proofs
and Programs, pages 215–231, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
ISBN 978-3-540-31429-5.

Stefan Milius. Completely iterative algebras and completely iterative monads. Inf.
Comput., 196(1):1–41, 2005. doi: 10.1016/j.ic.2004.05.003. URL https://doi.org/
10.1016/j.ic.2004.05.003.

Robin Milner. Processes: A mathematical model of computing agents. In H.E. Rose
and J.C. Shepherdson, editors, Logic Colloquium ’73, volume 80 of Studies in
Logic and the Foundations of Mathematics, pages 157 – 173. Elsevier, 1975. doi:
https://doi.org/10.1016/S0049-237X(08)71948-7. URL http://www.sciencedirec
t.com/science/article/pii/S0049237X08719487.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The definition of
standard ML: revised. MIT press, 1997.

Eugenio Moggi. Computational lambda-calculus and monads. pages 14–23, June
1989. Full version, titled Notions of Computation and Monads, in Information and
Computation, 93(1), pp. 55–92, 1991.

Eugenio Moggi. An abstract view of programming languages. Technical Report
ECS-LFCS-90-113, Laboratory for the Foundations of Computer Science, University
of Edinburgh, 1990.

Andrzej S. Murawski and Nikos Tzevelekos. Higher-order linearisability. Journal of
Logical and Algebraic Methods in Programming, 104:86–116, 2019. ISSN 2352-2208.
doi: https://doi.org/10.1016/j.jlamp.2019.01.002. URL https://www.sciencedir
ect.com/science/article/pii/S2352220817302250.

Keiko Nakata and Tarmo Uustalu. Resumptions, weak bisimilarity and big-step
semantics for while with interactive I/O: an exercise in mixed induction-coinduction.
In Proceedings Seventh Workshop on Structural Operational Semantics, SOS 2010,
Paris, France, 30 August 2010., pages 57–75, 2010. doi: 10.4204/EPTCS.32.5. URL
https://doi.org/10.4204/EPTCS.32.5.

Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco.
Communicating state transition systems for fine-grained concurrent resources. In
Proceedings of the 23rd European Symposium on Programming Languages and
Systems - Volume 8410, pages 290–310, New York, NY, USA, 2014. Springer-Verlag
New York, Inc. ISBN 978-3-642-54832-1. doi: 10.1007/978-3-642-54833-8_16. URL
http://dx.doi.org/10.1007/978-3-642-54833-8_16.

Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375(1-3):271–307, 2007.

Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan. Functional
big-step semantics. In Peter Thiemann, editor, Programming Languages and Systems,
pages 589–615, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg. ISBN 978-3-
662-49498-1.

94

https://doi.org/10.1016/j.ic.2004.05.003
https://doi.org/10.1016/j.ic.2004.05.003
http://www.sciencedirect.com/science/article/pii/S0049237X08719487
http://www.sciencedirect.com/science/article/pii/S0049237X08719487
https://www.sciencedirect.com/science/article/pii/S2352220817302250
https://www.sciencedirect.com/science/article/pii/S2352220817302250
https://doi.org/10.4204/EPTCS.32.5
http://dx.doi.org/10.1007/978-3-642-54833-8_16

Christos H Papadimitriou. The serializability of concurrent database updates. Journal
of the ACM (JACM), 26(4):631–653, 1979.

Ross Paterson. A new notation for arrows. ACM SIGPLAN Notices, 36(10):229–240,
2001.

Christina Peterson and Damian Dechev. A transactional correctness tool for abstract
data types. ACM Trans. Archit. Code Optim., 14(4), November 2017. ISSN
1544-3566. doi: 10.1145/3148964. URL https://doi.org/10.1145/3148964.

Simon L Peyton Jones and Philip Wadler. Imperative functional programming. In
Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages: Papers Presented at the Symposium.
ACM Press, Jan 1993.

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi,
Michael Greenberg, Cǎtǎlin Hriţcu, Vilhelm Sjöberg, and Brent Yorgey. Logical
Foundations. Software Foundations series, volume 1. Electronic textbook, May 2018.
Version 5.5. http://www.cis.upenn.edu/~bcpierce/sf.

Maciej Piròg and Jeremy Gibbons. The coinductive resumption monad. Electronic
notes in theoretical computer science., 308:273–288, 2014. ISSN 15710661.

Gordon Plotkin and John Power. Adequacy for algebraic effects. In Furio Honsell
and Marino Miculan, editors, Foundations of Software Science and Computation
Structures, pages 1–24, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN
978-3-540-45315-4.

Gordon Plotkin and John Power. Notions of computation determine monads. In
Mogens Nielsen and Uffe Engberg, editors, Foundations of Software Science and
Computation Structures, pages 342–356, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg. ISBN 978-3-540-45931-6.

Gordon D Plotkin. The origins of structural operational semantics. The Journal
of Logic and Algebraic Programming, 60-61:3 – 15, 2004a. ISSN 1567-8326. doi:
https://doi.org/10.1016/j.jlap.2004.03.009. URL http://www.sciencedirect.com/
science/article/pii/S1567832604000268. Structural Operational Semantics.

Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebr.
Program., 60-61:17–139, 2004b.

Gordon D. Plotkin and John Power. Algebraic operations and generic effects. Applied
Categorical Structures, 11(1):69–94, 2003.

Gordon D Plotkin and Matija Pretnar. Handling Algebraic Effects. Logical Methods
in Computer Science, 9(4), December 2013. doi: 10.2168/LMCS-9(4:23)2013. URL
https://lmcs.episciences.org/705.

Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis. On library
correctness under weak memory consistency: Specifying and verifying concurrent
libraries under declarative consistency models. Proceedings of the ACM on Pro-
gramming Languages, 3(POPL):1–31, 2019.

John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
17th IEEE Symposium on Logic in Computer Science (LICS) 2002, 22-25 July 2002,
Copenhagen, Denmark, Proceedings, pages 55–74, 2002. doi: 10.1109/LICS.2002.10
29817. URL https://doi.org/10.1109/LICS.2002.1029817.

95

https://doi.org/10.1145/3148964
http://www.cis.upenn.edu/~bcpierce/sf
http://www.sciencedirect.com/science/article/pii/S1567832604000268
http://www.sciencedirect.com/science/article/pii/S1567832604000268
https://lmcs.episciences.org/705
https://doi.org/10.1109/LICS.2002.1029817

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. Tada: A
logic for time and data abstraction. In European Conference on Object-Oriented
Programming, pages 207–231. Springer, 2014.

Gerhard Schellhorn, Heike Wehrheim, and John Derrick. How to prove algorithms
linearisable. In Proceedings of the 24th International Conference on Computer
Aided Verification, CAV’12, pages 243–259, Berlin, Heidelberg, 2012. Springer-
Verlag. ISBN 978-3-642-31423-0. doi: 10.1007/978-3-642-31424-7_21. URL
http://dx.doi.org/10.1007/978-3-642-31424-7_21.

Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff. Monad transform-
ers and algebraic effects: What binds them together. Technical Report CW699,
Department of Computer Science, KU Leuven, 2016.

Dana Scott. Data types as lattices. SIAM Journal on computing, 5(3):522–587, 1976.
Dana S Scott and Christopher Strachey. Toward a mathematical semantics for computer

languages, volume 1. Oxford University Computing Laboratory, Programming
Research Group Oxford, 1971.

Michael Scott. Sequential specification of transactional memory semantics. 2006.
Anton Setzer. Object-oriented programming in dependent type theory. Trends in

functional programming., 7, 2006.
Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O

Myreen. x86-tso: a rigorous and usable programmer’s model for x86 multiprocessors.
Communications of the ACM, 53(7):89–97, 2010.

Ohad Shacham, Nathan Bronson, Alex Aiken, Mooly Sagiv, Martin Vechev, and Eran
Yahav. Testing atomicity of composed concurrent operations. In Proceedings of
the 2011 ACM international conference on Object oriented programming systems
languages and applications, OOPSLA ’11, pages 51–64, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0940-0. doi: 10.1145/2048066.2048073. URL
http://doi.acm.org/10.1145/2048066.2048073.

Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of
the Fourteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’95, page 204–213, New York, NY, USA, 1995. Association for Computing
Machinery. ISBN 0897917103. doi: 10.1145/224964.224987. URL https://doi.or
g/10.1145/224964.224987.

Lucas Silver and Steve Zdancewic. Dijkstra monads forever: termination-sensitive spec-
ifications for interaction trees. Proceedings of the ACM on Programming Languages,
5(POPL):1–28, 2021.

Youngju Song, Minki Cho, Dongjae Lee, and Chung-Kil Hur. Conditional contextual
refinement (ccr), 2022. URL https://arxiv.org/abs/2203.07431.

Alexander Spiegelman, Guy Golan-Gueta, and Idit Keidar. Transactional data struc-
ture libraries. In Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’16, pages 682–696, New York,
NY, USA, 2016. ACM. ISBN 978-1-4503-4261-2. doi: 10.1145/2908080.2908112.
URL http://doi.acm.org/10.1145/2908080.2908112.

Robert C Steinke and Gary J Nutt. A unified theory of shared memory consistency.
Journal of the ACM (JACM), 51(5):800–849, 2004.

96

http://dx.doi.org/10.1007/978-3-642-31424-7_21
http://doi.acm.org/10.1145/2048066.2048073
https://doi.org/10.1145/224964.224987
https://doi.org/10.1145/224964.224987
https://arxiv.org/abs/2203.07431
http://doi.acm.org/10.1145/2908080.2908112

Wouter Swierstra. Data types à la carte. Journal of Functional Programming, 18(4):
423–436, 2008.

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. Gps: Navigating weak memory with
ghosts, protocols, and separation. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA ’14, pages 691–707, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-
2585-1. doi: 10.1145/2660193.2660243. URL http://doi.acm.org/10.1145/2660
193.2660243.

Aaron J Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer.
Logical relations for fine-grained concurrency. In Proceedings of the 40th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
343–356, 2013.

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced
Study, 2013.

Tarmo Uustalu and Niccolò Veltri. The delay monad and restriction categories. In
Dang Van Hung and Deepak Kapur, editors, Theoretical Aspects of Computing –
ICTAC 2017, pages 32–50, Cham, 2017. Springer International Publishing. ISBN
978-3-319-67729-3.

Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and separation
logic. In CONCUR. 2007.

Arthur Oliveira Vale, Paul-André Melliès, Zhong Shao, Jérémie Koenig, and Léo
Stefanesco. Layered and object-based game semantics. Proceedings of the ACM on
Programming Languages, 2022.

Philip Wadler. Monads for functional programming. In Program Design Calculi,
Proceedings of the NATO Advanced Study Institute on Program Design Calculi,
Marktoberdorf, Germany, July 28 - August 9, 1992., pages 233–264, 1992. doi:
10.1007/978-3-662-02880-3_8. URL https://doi.org/10.1007/978-3-662-028
80-3_8.

Feng Wang, Fu Song, Min Zhang, Xiaoran Zhu, and Jun Zhang. Krust: A formal
executable semantics of rust. In 2018 International Symposium on Theoretical
Aspects of Software Engineering (TASE), pages 44–51. IEEE, 2018.

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D.
Ernst, and Thomas E. Anderson. Verdi: a framework for implementing and
formally verifying distributed systems. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Portland, OR,
USA, June 15-17, 2015, pages 357–368, 2015. doi: 10.1145/2737924.2737958. URL
http://doi.acm.org/10.1145/2737924.2737958.

Matt Windsor, Mike Dodds, Ben Simner, and Matthew J. Parkinson. Starling:
Lightweight concurrency verification with views. In Rupak Majumdar and Viktor
Kunčak, editors, Computer Aided Verification, pages 544–569, Cham, 2017. Springer
International Publishing. ISBN 978-3-319-63387-9.

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C
Pierce, and Steve Zdancewic. Interaction trees: representing recursive and impure
programs in coq. Proceedings of the ACM on Programming Languages, 4(POPL):

97

http://doi.acm.org/10.1145/2660193.2660243
http://doi.acm.org/10.1145/2660193.2660243
https://homotopytypetheory.org/book
https://doi.org/10.1007/978-3-662-02880-3_8
https://doi.org/10.1007/978-3-662-02880-3_8
http://doi.acm.org/10.1145/2737924.2737958

1–32, 2019.
Irene Yoon, Yannick Zakowski, and Steve Zdancewic. Formal reasoning about layered

monadic interpreters. Proceedings of the ACM on Programming Languages, (ICFP),
2022.

Yannick Zakowski, Paul He, Chung-Kil Hur, and Steve Zdancewic. An equational
theory for weak bisimulation via generalized parameterized coinduction. In Pro-
ceedings of the 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs, pages 71–84, 2020.

Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve
Zdancewic. Modular, compositional, and executable formal semantics for llvm ir.
Proceedings of the ACM on Programming Languages, 5(ICFP):1–30, 2021.

Vadim Zaliva, Ilia Zaichuk, and Franz Franchetti. Verified translation between purely
functional and imperative domain specific languages in helix. In Maria Christakis,
Nadia Polikarpova, Parasara Sridhar Duggirala, and Peter Schrammel, editors,
Software Verification, pages 33–49, Cham, 2020. Springer International Publishing.
ISBN 978-3-030-63618-0.

Deli Zhang, Pierre Laborde, Lance Lebanoff, and Damian Dechev. Lock-free trans-
actional transformation for linked data structures. ACM Transactions on Parallel
Computing (TOPC), 5(1):1–37, 2018.

Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-Yao Xia, Lennart
Beringer, William Mansky, Benjamin Pierce, and Steve Zdancewic. Verifying an http
key-value server with interaction trees and vst. In 12th International Conference
on Interactive Theorem Proving (ITP 2021). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2021.

98

	Executable Denotational Semantics With Interaction Trees
	Recommended Citation

	Executable Denotational Semantics With Interaction Trees
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	Title
	Copyright
	Abstract
	Contents
	List of Figures
	Chapter 1. Introduction
	1.1. Executable Denotational Semantics
	1.2. History and Credits

	Chapter 2. Interaction Trees
	2.1. Definition
	2.2. Semantics of Events and Monadic Interpreters
	2.3. Iteration and Recursion
	2.4. Extracting ITrees

	Chapter 3. Application I: Compiling Imp to Asm
	3.1. A Denotational Semantics for Imp
	3.2. A Denotational Semantics for Asm
	3.3. Linking of Control-Flow Subgraphs
	3.4. Compiler Correctness

	Chapter 4. Application II: Verified Transactional Objects
	4.1. Introduction
	4.2. Overview
	4.3. Concurrent Objects
	4.4. Linearizability and Composition
	4.5. Verification of Linearizability
	4.6. Transactions
	4.7. Transactional Predication
	4.8. Opacity
	4.9. Conclusion

	Chapter 5. Related Work
	5.1. Interaction Trees
	5.2. Verified Transactional Objects

	Chapter 6. Future Work and Conclusions
	6.1. Existing Work using Interaction Trees
	6.2. Improving the Definition of Interaction Trees
	6.3. Automating Proofs of Categorical Equations
	6.4. Higher-Order Semantics with Games
	6.5. Conclusion

	Bibliography

