
The Java programming language provides safety and security guarantees such as

type safety and its security architecture. They distinguish it from other mainstream

programming languages like C and C++. In this work, we develop a machine-checked

model of concurrent Java and the Java memory model in the proof assistant Isa-

belle/HOL and investigate the impact of concurrency on these guarantees. From

the formal model, we show how to automatically obtain an executable, verified

compiler to bytecode and a validated virtual machine. Modularisation is the key to

get a tractable and usable model; we carefully partition the definitions and proofs

into modules that capture the interactions between sequential parts, concurrency,

and the memory model.

9 783866 448858

ISBN 978-3-86644-885-8

Andreas Lochbihler
A MACHINE-CHECKED, TYPE-SAFE MODEL OF JAVA CONCURRENCY

A
 M

A
C

H
IN

E-
C

H
EC

K
ED

, T
Y

PE
-S

A
FE

 M
O

D
EL

 O
F

JA
V

A
 C

O
N

C
U

R
R

EN
C

Y
A

. L
o

ch
b

ih
le

r

Andreas Lochbihler

A MACHINE-CHECKED, TYPE-SAFE MODEL
OF JAVA CONCURRENCY

Language, Virtual Machine, Memory Model,
and Verified Compiler

Andreas Lochbihler

A Machine-Checked, Type-Safe Model of Java Concurrency

Language, Virtual Machine, Memory Model, and Verified Compiler

A Machine-Checked, Type-Safe Model
of Java Concurrency

Language, Virtual Machine, Memory Model,
and Verified Compiler

by
Andreas Lochbihler

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

KIT Scientific Publishing 2012
Print on Demand

ISBN 978-3-86644-885-8

Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Informatik, 2012

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und
nationales Forschungszentrum in der Helmholtz-Gemeinschaft

A Machine-Checked, Type-Safe Model
of Java Concurrency

Language, Virtual Machine, Memory Model,
and Verified Compiler

zur Erlangung des akademischen Grads eines

Doktors der Naturwissenschaften

der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von

Andreas Lochbihler

aus Memmingen

Tag der mündlichen Prüfung: 12. Juli 2012

Erster Gutachter: Prof. Dr.-Ing. Gregor Snelting

Zweiter Gutachter: Prof. Tobias Nipkow, PhD

Contents

1 Introduction 1
1.1 Java concurrency . 2
1.2 Historical overview . 7
1.3 Contributions . 8
1.4 Isabelle/HOL . 13

1.4.1 Notation . 14
1.4.2 Locales . 17
1.4.3 Induction and coinduction 19

2 Sequential JinjaThreads 23
2.1 Source code . 23

2.1.1 Abstract syntax . 24
2.1.2 Type system . 29
2.1.3 Native methods . 34
2.1.4 Well-formedness 35
2.1.5 Dynamic semantics 37
2.1.6 Type safety . 42

2.2 The JinjaThreads virtual machine 43
2.2.1 The bytecode language 44
2.2.2 Semantics . 46
2.2.3 Well-typings . 50
2.2.4 Type safety . 54

2.3 Comparison with Jinja, Bali, and µJava 55

3 Interleaving semantics 59
3.1 Framework for interleaving semantics 60

3.1.1 The multithreaded state 61
3.1.2 Thread actions . 66
3.1.3 Interleaving semantics 75
3.1.4 Infrastructure for well-formedness constraints . . 78

3.2 Multithreading in JinjaThreads 82
3.2.1 Native methods for synchronisation 82

Contents

3.2.2 Source code . 91
3.2.3 Bytecode . 96

3.3 Deadlock and type safety 100
3.3.1 Deadlock as a state property 101
3.3.2 Deadlock for threads 105
3.3.3 Progress up to deadlock 109
3.3.4 Type safety for source code 112
3.3.5 Type safety for bytecode 122

3.4 Related work . 127
3.4.1 Formalisations of Java and Java bytecode 127
3.4.2 Type safety proofs and deadlocks 129
3.4.3 Large-scale programming language formalisations 130

4 Memory models 131
4.1 The heap as a module . 132

4.1.1 Abstract operations and their properties 133
4.1.2 Adaptations to semantics and proofs 136
4.1.3 Design considerations 140

4.2 Sequential consistency . 141
4.3 Java memory model . 142

4.3.1 Informal explanation 143
4.3.2 Formal definition 148
4.3.3 The data race freedom guarantee 164
4.3.4 Consistency . 185
4.3.5 Type safety . 188
4.3.6 Discussion . 192

4.4 Related work . 201
4.4.1 Memory models and data race freedom 201
4.4.2 Abstract heap modules 203
4.4.3 Modular formalisations 204

5 Compiler 205
5.1 Semantic preservation via bisimulation 208

5.1.1 Semantic preservation 208
5.1.2 Simulation properties 210
5.1.3 Lifting simulations in the interleaving framework 218
5.1.4 Semantic preservation for the Java memory model 225

5.2 Explicit call stacks for source code 226
5.2.1 State and semantics 227

x

Contents

5.2.2 Semantic equivalence 232
5.3 Register allocation . 236

5.3.1 Intermediate language J1 236
5.3.2 Compilation stage 1 242
5.3.3 Preservation of well-formedness 243
5.3.4 Semantic preservation 244

5.4 Code generation . 250
5.4.1 Compilation stage 2 250
5.4.2 Preservation of well-formedness 251
5.4.3 Semantic preservation 252

5.5 Complete compiler . 255
5.6 Discussion . 257
5.7 Related work . 259

6 JinjaThreads as a Java interpreter 261
6.1 Isabelle code extraction facilities 262

6.1.1 The code generator 263
6.1.2 The predicate compiler 265
6.1.3 Data structures . 266
6.1.4 Locales and code extraction 267

6.2 Static semantics . 268
6.2.1 Generic well-formedness 268
6.2.2 The bytecode verifier 269
6.2.3 Type inference for source code 271

6.3 Interpreter and virtual machine 272
6.3.1 The single-threaded semantics 272
6.3.2 Schedulers . 274
6.3.3 Tabulation . 276
6.3.4 Efficiency of the interpreter 277

6.4 Guidelines for executable formalisations 280
6.5 The translator Java2Jinja 282

6.5.1 The translation . 284
6.5.2 Validation . 287

6.6 Related Work . 289

7 Discussion and Future Work 291
7.1 Efforts and rewards of a machine-checked formalisation . 291
7.2 Experience: Working with Isabelle/HOL 294
7.3 From Java`ight to JinjaThreads 299

xi

Contents

7.4 Comparison between Java and JinjaThreads 301
7.5 Future work . 305

8 Conclusion 307

A Producer-consumer example 311

B Formal definitions 315
B.1 Declarations and lookup functions 315
B.2 Binary operators . 317
B.3 Heap module implementations 319

B.3.1 Sequential consistency 319
B.3.2 The Java memory model 321

B.4 Native methods . 322
B.4.1 Signatures . 322
B.4.2 Semantics of method clone 323
B.4.3 Semantics of native methods 324
B.4.4 Observability . 327

B.5 Generic well-formedness 327
B.6 Source code . 328

B.6.1 Syntax . 328
B.6.2 Typing rules for expressions 328
B.6.3 Definite Assignment 330
B.6.4 Well-formedness 332
B.6.5 Small-step semantics 332
B.6.6 Observability . 338

B.7 Bytecode . 339
B.7.1 Syntax . 339
B.7.2 Applicability and effect 339
B.7.3 The virtual machine 343
B.7.4 Observability . 348

B.8 The Java memory model 349
B.9 The compiler . 352

B.9.1 Program compilation 352
B.9.2 Compilation stage 1 352
B.9.3 Compilation stage 2 353
B.9.4 Preprocessor . 357

List of Figures 361

xii

Contents

List of Tables 365

Bibliography 367

Index 389

xiii

Abstract

Klein and Nipkow’s formalisation Jinja [83] of a Java-like programming
language was the first that unifies source code, bytecode, and a compiler,
is executable, and has been shown type safe – with Isabelle/HOL [128]
having mechanically checked all definitions and proofs. In this thesis,
I extend Jinja to JinjaThreads with concurrency in the form of Java
threads and the Java memory model (JMM). Moreover, I transfer the
existing theorems of type safety and compiler correctness, and prove the
important JMM guarantee that data-race free programs behave like under
interleaving semantics. Furthermore, I present the first formally-verified
compiler for multithreaded Java.

JinjaThreads splits in two dimensions. On the one hand, like in
Jinja, the compiler connects source code with bytecode on the level
of languages. On the other hand, the semantics spans across different
layers ranging from the implementation of the shared memory via the
formalisation of the languages to the interleaving of threads and the
axiomatic JMM. JinjaThreads is more than the sum of its parts, because
it is their integration in a unified model that permits to correctly capture
their interaction and to make reliable statements about the theory of the
Java programming language.

Jinja has simplified Java in many places for clarity. In contrast, Jin-
jaThreads investigates concurrency as described in the Java language
specification in detail. On the language level, JinjaThreads covers dy-
namic thread creation, synchronisation via locks and monitors, wait
and notify, interruption, and joining on threads. To obtain a tractable
model, I have structured JinjaThreads in modules which encapsulate
language-independent parts and which source code and bytecode share.
For example, the interleaving semantics is parametrised over the single-
threaded semantics and responsible for managing the thread pool, locks,
interrupts, wait sets and notifications. By instantiating the parameters, I
directly obtain the semantics for source code and bytecode. This mod-
ularity allows to formally define deadlock caused by synchronisation,
which the type safety proof has to account for.

The second aspect of concurrency is the JMM. In this thesis, I connect
its axiomatic specification with an operational semantics of Java for the

Abstract

first time. The intuitive memory model sequential consistency interleaves
the individual steps of the threads and makes changes to memory
immediately visible for all threads. In comparison, the JMM allows
more executions such that compilers and the virtual machine itself may
optimise more aggressively. Here, I prove – across all layers of the
semantics – that for the important class of data-race free programs, the
JMM allows only those intuitive executions that sequential consistency
also allows. It is this link to an operation semantics that allows to
formally apply this guarantee to concrete programs. Conversely, I also
prove that the JMM is consistent by showing that it allows all (interleaved)
executions that sequential consistency allows – even for programs with
data races. Regarding type safety of Java with the JMM, I show that it
depends on how type information is managed at runtime.

The JinjaThreads compiler connects source code with bytecode; its
verification shows that both fit together. In particular, the compiler
addresses the interaction between synchronisation and exceptions. Non-
termination, intermediate output, and non-determinism constitute the
challenges for the verification. Here, modularity of the model directly
translates into manageable proofs. For example, I completely resolve the
non-determinism at the level of interleaving semantics – independent of
the language. Unlike for the semantics and type safety, I was not able
to adapt the verification proofs of Jinja, because they were conducted
against the big-step semantics of Jinja source code, which cannot express
interleaving adequately.

Since JinjaThreads is a definitional artefact, one must argue that it
faithfully models Java. In this case, formal verification is not possible,
because Java is not specified formally. Instead, using Isabelle’s code
generator, I have automatically extracted from the formalisation an
interpreter, compiler, and virtual machine in Standard ML. Using them, I
have validated the semantics of source code and bytecode by running and
compiling a test suite of Java programs, which a conversion tool translated
to JinjaThreads abstract syntax. To achieve reasonable execution times, the
interpreter and the virtual machine use verified efficient data structures
and formalised schedulers to resolve the non-determinism. This way,
they perform as good as other formalised virtual machines for Java.

This work demonstrates that today, it is possible to build tractable
models of sizeable programming languages in a theorem prover. Jinja-
Threads now provides the basis for verifying the program analyses for
information flow control that our group is developing. Machine support

xvi

has been crucial, because it reliably detects the impact of changes and
extensions on other parts of the model.

xvii

Zusammenfassung

Jinja von Klein und Nipkow [83] ist die erste Formalisierung einer
Java-ähnlichen Programmiersprache, die Quellcode, Bytecode und einen
Übersetzer vereinigt, ausführbar ist und mittels Isabelle/HOL [128] ma-
schinengeprüft als typsicher nachgewiesen wurde. Diese Dissertation
erweitert Jinja zu JinjaThreads um Nebenläufigkeit durch Java-Threads
und das Java-Speichermodell (JMM). Sie überträgt die bisherigen Theo-
reme zu Typsicherheit sowie Übersetzer-Korrektheit und beweist die für
Programmierer wichtige Garantie des JMMs, dass wettlauffreie Program-
me sich wie bei verschränkter Ausführung verhalten. Dabei entstand
der auch erste formal verifizierte Übersetzer für nebenläufiges Java.

JinjaThreads fächert sich in zwei Dimensionen in seine Komponenten
auf. Einerseits verbindet es – wie schon Jinja – auf der Ebene der
Sprachen Quellcode mit Bytecode durch den Übersetzer. Andererseits
erstreckt sich die Semantik über die verschiedenen Schichten von einer
Implementierung des gemeinsamen Speichers über die Beschreibung der
Sprachen bis hin zur verschränkten Ausführung und zum axiomatischen
JMM. Erst die Integration aller Einzelteile in einem einzigen Modell
erlaubt es, deren Interaktion korrekt zu erfassen und belastbare Aussagen
zur Theorie der Programmiersprache Java zu machen.

Während Jinja an vielen Stellen aus Gründen der Verständlichkeit
Java vereinfacht, untersucht JinjaThreads den Aspekt der Nebenläufig-
keit gemäß der Java Sprachspezifikation [56] im Detail. Auf Sprachebene
umfasst JinjaThreads dynamische Thread-Erzeugung, Synchronisation
über Monitore, Warten auf Benachrichtigung sowie Unterbrechung und
Beitreten von Threads. Wesentlich für die Handhabbarkeit der For-
malisierung ist die modulare Struktur, die sprachunabhängige Teile
herausfaktorisiert, so dass Quell- und Bytecode diese wiederverwen-
den können. Beispielsweise definiert diese Arbeit für die verschränkte
Ausführung aller Threads eines Programms eine parametrisierte Se-
mantik, welche die Threads, Sperren, Unterbrechungen, Wartemengen
und Benachrichtigungen verwaltet; durch Instanziierung der Parameter
erhält man jeweils direkt die Semantiken von Quell- und Bytecode. Erst
diese Modularität erlaubt es, sprachunabhängig durch Synchronisation
erzeugte Verklemmungen zu definieren und im Typsicherheitsbeweis
zu berücksichtigen.

Zusammenfassung

Zur Nebenläufigkeit gehört auch das JMM [115], dessen axiomatische
Spezifikation diese Arbeit erstmals mit einer operationalen Semantik von
Java verbindet. Verglichen mit dem intuitiven Modell für sequenzielle
Konsistenz, bei der die Thread-Einzelschritte verschränkt ausgeführt
werden und Speicherveränderungen sofort für alle Threads sichtbar
werden, erlaubt das JMM mehr Ausführungen, um aggressive Opti-
mierungen bei der Übersetzung nach Bytecode und in der virtuellen
Maschine selbst zu ermöglichen. Diese Arbeit beweist über alle Schichten
der Semantik hinweg, dass für die wichtige Klasse der wettlauffreien Pro-
gramme alle vom JMM erlaubten Ausführungen nicht von sequenzieller
Konsistenz zu unterscheiden sind. Erst durch die Verbindung mit einer
operationalen Semantik wird diese Garantie für konkrete Programme
formal nutzbar. Umgekehrt weist diese Arbeit auch die Konsistenz des
JMMs nach, indem gezeigt wird, dass es alle verschränkten Ausführun-
gen gemäß sequenzieller Konsistenz erlaubt – auch für Programme mit
Wettläufen. Hinsichtlich der Typsicherheit von Java mit dem JMM wird
gezeigt, dass diese davon abhängt, wie Typinformationen zur Laufzeit
verwaltet werden.

Der in dieser Arbeit entwickelte Übersetzer verbindet Quell- und
Bytecode; seine Verifikation zeigt, dass beide Sprachen zusammenpassen.
Bei der Kompilation ist die Herausforderung das Zusammenspiel der
Synchronisationsprimitive mit Ausnahmen, bei der Verifikation sind es
nicht terminierende Programme, Ausgaben und Nichtdeterminismus.
Hier zeigt sich, wie wesentlich die Modularität der Semantik für die
Handhabbarkeit der Beweise ist; beispielsweise lässt sich Nichtdeter-
minismus auf der Ebene der verschränkten Ausführung vollkommen
sprachunabhängig auflösen. Anders als bei Semantik und Typsicherheit
ließen sich dabei die alten Jinja-Beweise nicht anpassen, da diese in
Bezug auf die Gesamtschrittsemantik der Quellsprache geführt wurden,
die Nebenläufigkeit nicht adäquat ausdrücken kann.

Da JinjaThreads ein definitorisches Artefakt des Modellierungspro-
zesses ist, muss begründet werden, dass JinjaThreads Java adäquat
abbildet. Eine formale Verifikation ist hier nicht möglich, weil die Spe-
zifikation von Java nicht formal ist. Stattdessen wurde mit Isabelles
Codegenerator vollautomatisch aus der Formalisierung ein Interpreter,
ein Übersetzer und eine virtuelle Maschine für JinjaThreads-Programme
in Standard ML extrahiert. Damit wurde die Semantik von Quell- und
Bytecode durch eine Testsuite von Java-Programmen validiert, nachdem
diese ein Konvertierungswerkzeug in die abstrakte Syntax von Jinja-

xx

Threads übersetzt hatte. Um akzeptable Ausführungszeiten zu erzielen,
verwenden der Interpreter und die virtuelle Maschine verifizierte effizi-
ente Datenstrukturen und eigens formalisierte Abwickler zur Auflösung
des Nichtdeterminismus. Damit sind sie ähnlich schnell wie andere
formalisierte virtuelle Maschinen für Java.

Diese Arbeit zeigt, dass heutzutage umfangreiche Programmierspra-
chen in handhabbarer Form in Theorembeweisern abgebildet werden
können. So stellt JinjaThreads jetzt die semantische Grundlage für die
Verifikation der am Lehrstuhl entwickelten Programmanalysen zur
Informationsflusskontrolle. Umgekehrt wäre diese Arbeit wegen der
Komplexität des Modells ohne Maschinenunterstützung unmöglich ge-
wesen, da nur so Auswirkungen von Änderungen und Erweiterungen
auf andere Teile des Modells zuverlässig festgestellt werden konnten.

xxi

Acknowledgements

First, I would like to thank my advisor Prof. Gregor Snelting for his
support, advice and the opportunity to pursue my own ideas without
pressure. I also thank Prof. Tobias Nipkow for reviewing this thesis.

I would also like to thank my former and current colleagues in the
Isabelle group at Passau and Karlsruhe, Daniel Wasserrab and Denis
Lohner, for the numerous discussions ranging from technical issues with
Isabelle to possible directions to pursue. Whenever I ran into a problem
or had a sketchy idea, they never denied me to scribble inintelligible
symbols and formulae on their whiteboards, but always helped to arrange
my ideas and sort things out. Further, I thank Martin Hecker for sharing
with me his understanding of the Java memory model. Neither must
I forget to mention the discussions with all the other members of the
group, which helped to set my views in perspective. In particular, they
are Matthias Braun, Sebastian Buchwald, Andreas Zwinkau, and Manuel
Mohr from the compiler group, and Christian Hammer, Dennis Giffhorn,
Jürgen Graf, and Martin Mohr, who develop VALSOFT/Joana.

I am also indebted to the Isabelle developers in Munich, for answering
my questions on the Isabelle mailing list and on the phone. In particular,
I thank Stephan Berghofer and Florian Haftmann for introducing me to
Isabelle’s code generator at TPHOLs 2008 in Montreal. They and Lukas
Bulwahn set me on track for code generation and always helped to fix
or circumvent its limitations. Jasmin Blanchette and his tool Nitpick
have saved me from trying to prove wrong lemmata. The cooperation
with Peter Lammich set the ground for extracting efficient code from
JinjaThreads.

Furthermore, I thank the students Jonas Thedering and Antonio Zea,
who developed the converter Java2Jinja and solved all the annoyances
of Eclipse by themselves.

Finally, I thank Wolfgang Pausch, Denis Lohner, Martin Hecker,
and Claudia Reinert for reading preliminary drafts of this thesis. Their
comments helped to make the presentation more intelligible and focused.

The work in Chapters 2, 3, and 6 has been partially funded by the
Deutsche Forschungsgemeinschaft grants Sn11/10-1 and Sn11/10-2.

Threads cannot be implemented as a library.

Hans-J. Boehm 1
Introduction

The Java programming language provides safety and security guar-
antees for all programs, which distinguish it from other mainstream
programming languages like C and C++. Two are particularly important:
type safety and Java’s security architecture. Type safety expresses that
“nothing bad”, e.g., a segmentation fault, will happen during execution.
The security architecture permits to execute untrusted code safely in a
sandbox, i.e., without access to critical system resources [54].

Another distinctive feature of Java is its built-in support for multi-
threading and its semantics for executing threads in parallel [56, §17]. Yet,
while it is well-known that multithreading non-trivially interacts with
type safety and Java’s security guarantees [56, 145], their combination
has never been considered formally.

In this thesis, I build a machine-checked model of Java concurrency
called JinjaThreads for both Java source code and bytecode, and inves-
tigate the effects of multithreading on type safety and Java’s security
guarantees. Moreover, I formalise a compiler from source code to byte-
code and prove it correct. As the starting point of this work, I have
used Jinja, a sequential Java-like language with compiler and type-safety
proofs by Klein and Nipkow [83].

This work originates in the Quis custodiet (QC) project [147]. Using
the proof assistant Isabelle/HOL [128], QC aims at mechanically verifying
program analyses for information flow control (IFC) [53, 64, 65] that are
developed in the VALSOFT/Joana project [173]. In QC, JinjaThreads
defines the programming language and semantics against which program
analyses like Wasserrab’s formalisation of program slicing [175–177] are
verified. In the long term, QC aims to build a verified, trusted prototype
for analysing and executing security-critical Java programs.

Chapter 1. Introduction

1.1 Java concurrency

For this thesis to be self-contained, this section gives a quick tour of the
concurrency features of Java 6. Since Java itself is widely used today, I
do not explicitly introduce sequential Java, but refer unfamiliar readers
to the Java language specification (JLS) [56].

Java concurrency revolves around threads, i.e., parallel strands of
execution with shared memory. A program controls a thread through its
associated object of (a subclass of) class Thread. To spawn a new thread,
one allocates a new object of class Thread (or any subclass thereof) and
invokes its start method. The new thread will then execute the run
method of the object, in parallel with all other threads. Each thread
must be spawned at most once, every further call to start raises an
IllegalThreadState exception. The thread terminates when run termi-
nates, either normally or abruptly due to an exception. The static method
currentThread in class Thread returns the object associated with the
executing thread.

Java offers four kinds of synchronisation between threads: locks, wait
sets, joining and interrupts. The package java.util.concurrent in the
Java API [76] builds sophisticated forms of synchronisation from these
primitives and atomic compare-and-set operations.

Every object (and array) has an associated monitor with a lock and a
wait set. Locks are mutually-exclusive, i.e., at most one thread can hold
a lock at a time, but re-entrant, i.e., a thread can acquire a lock multiple
times [56, §17.1]. For locking, Java uses synchronized blocks that take a
reference to an object or array. A thread must acquire the object’s lock
before it executes the block’s body, and releases the lock afterwards. If
another thread already holds the lock, the executing thread must wait
until the other thread has released it. Thus, synchronized blocks on the
same object never execute in parallel. The method modifier synchronized
is equivalent to wrapping the method’s body in a synchronized block
on the this reference [56, §8.4.3.6]. Java bytecode has explicit instructions
for locking (monitorenter) and unlocking (monitorexit) of monitors.
The major difference to synchronized blocks is that they can be used
in unstructured ways; if the executing thread does not hold the lock,
monitorexit fails with an IllegalMonitorState exception.

To avoid busy waiting, a thread can suspend itself to the wait set of an
object by calling the object’s method wait, which class Object declares [56,
§17.8]. To enter the wait set, the thread must have locked the object’s

2

1.1. Java concurrency

monitor and must not be interrupted; otherwise, an IllegalMonitorState
exception or InterruptedException, respectively, is thrown. If successful,
the call also releases the monitor’s lock completely. The thread remains
in the wait set until (i) another thread interrupts or notifies it, or (ii) if
wait is called with a time limit, the specified amount of time has elapsed,
or (iii) it wakes up spuriously. After having been removed, the thread
reacquires the lock on the monitor before its execution proceeds normally
or, in case of interruption, by raising an InterruptedException. The
methods notify and notifyAll remove one unspecified or all threads from
the wait set of the call’s receiver object. Like for wait, the calling thread
must hold the lock on the monitor. Thus, the notified thread continues
its execution only after the notifying thread has released the lock.

When a thread calls join on another thread, it blocks until (i) the
thread that the receiver object identifies has terminated, or (ii) another
thread interrupts the joining thread, or (iii) an optionally-specified
amount of time has elapsed. In the second case, the call raises an
InterruptedException; otherwise, it returns normally.

Interruption [56, §17.8.3] provides asynchronous communication
between threads. Calling the interrupt method of a thread sets its
interrupt status. If the interrupted thread is waiting or joining, it aborts
that, raises an InterruptedException, and clears its interrupt status.
Otherwise, interruption has no immediate effect on the interrupted
thread. Instead, class Thread implements two methods to observe
the interrupt status. First, the static method interrupt returns and
resets the interrupt status of the executing thread. Second, the method
interrupted returns the interrupt status of the receiver object’s thread
without changing it.

Apart from that, class Thread also declares the methods yield and
sleep [56, §17.9]. They instruct the scheduler to prefer other threads
and cease execution for the specified time, respectively. Since these
are only recommendations to the scheduler, they cannot be used for
synchronisation.

Figure 1.1 shows some examples of synchronisation in a program
with three threads that are run in parallel. However, it is prone to various
forms of deadlock caused by locking, waiting and joining. Note that
interruption alone cannot lead to deadlocks, because it is asynchronous.

For a start, suppose that threads t1 and t2 first acquire the locks on
the shared objects p and q, respectively. Then, all threads are in deadlock
for the following reasons: t1 must acquire the lock on q, which t2 is

3

Chapter 1. Introduction

thread t1

synchronized (p) {
synchronized (q) {
synchronized (q) {
q.wait();

}}}

thread t2

synchronized (q) {
synchronized (p) {
q.notify();

}}

thread t3

t2.join();
if (...)
t1.interrupt();

Figure 1.1: Three Java threads with different deadlock possibilities

holding, but t2 itself must acquire the lock on p that t1 is holding, i.e.,
they are waiting for each other cyclically. Moreover, t3 is waiting for
either t2 terminating or itself being interrupted, but t2 cannot terminate
and there is no other thread which could interrupt t3.

A slightly different situation arises when t1 executes first until it
suspends itself to q’s wait set. In terms of locks, it has first acquired p’s,
then q’s twice, and finally released both on q, but it is still holding the
lock on p. Hence, when t2 starts to execute, it can acquire q’s lock, but
not p’s. Consequently, all threads are again in deadlock: t1waits to be
removed from the wait set, but none of the other threads could do so,
because t2waits for t1 releasing p’s lock and t3waits for t2 to terminate
or some other thread interrupting itself. Note that spurious wake-ups do
not matter in this case. If t1 wakes up spuriously, then it must reacquire
its locks on q first, i.e., t1 and t2 again end up waiting for each other.

Now suppose that t2 starts and is the first to acquire both locks q and
p. Then, the call to notify has no effect since q’s wait set is empty. Thus,
it releases p and q (in that order) and terminates. Hence, t3’s call to join
terminates normally. Suppose further that t3’s if condition evaluates to
false, i.e., t1 is not interrupted and t3 terminates. When t1 subsequently
enters q’s wait set, it is immediately deadlocked, because there is no
thread to remove it from the wait set. Note that in this case, there is
only a single thread in deadlock, which is not possible if deadlock is
due to locks and joins only. In case of a spurious wakeup, t1 terminates
normally.

Finally, consider the same scenario again, but let t3 interrupt t1.
Under this schedule, no deadlock occurs. If t3 calls interrupt before t1
calls wait, the latter call does not suspend t1 to q’s wait set, but raises the
InterruptedException immediately. Otherwise, the interrupt removes t1
from q’s wait set. Then, t1 first reacquires the locks on q before it raises

4

1.1. Java concurrency

class C { static int x = 0, y = 0; }

thread t1

1: C.y = 1;
2: int i = C.x;

thread t2

3: C.x = 2;
4: int j = C.y;

(a)

1
3

2
4

i == 2
j == 1

1
2

3
4

i == 0
j == 1

3
4

1
2

i == 2
j == 0

(b)

Figure 1.2: Program with two threads (a) and three of its sequentially consistent
schedules (b), adapted from [2, Fig. 1 & 2]

the exception. In either case, t1’s synchronized blocks correctly release
all locks despite the exception.

Beyond threads and synchronisation, Java also specifies how shared
memory behaves under concurrent accesses, which is known as the Java
memory model (JMM) [56, §17.4]. Let me sketch the main ideas behind
the JMM with Figure 1.2. The program on the left has two threads, each
of which sets one of C’s static fields x and y and subsequently reads the
other into a local variable. Figure 1.2b shows three schedules for the
program and for each schedule, the final values stored in the threads’ local
variables. There are three further schedules, but they result in the same
assignments to i and j. All these schedules assume sequential consistency
(SC) [93], which is the most intuitive memory model: There is a global
notion of time, one thread executes at a time, and every write to a memory
location immediately becomes visible to all threads. In particular, the
result i == j == 0 is impossible under SC as the following argument
shows. If it was possible, then l. 1 must execute after l. 4 and l. 3 after l. 2.
Since l. 1 and l. 3 literally precede l. 2 and l. 4, respectively, one obtains
the contradiction that l. 1 executes after l. 4 after l. 3 after l. 2 after l. 1.

For efficiency reasons, modern hardware implements memory models
that are weaker than SC to allow for local caches and optimisations [3,165].
For example, if threads t1 and t2 execute on different processors, the
writes in ll. 1 and 3 might still be queued in the processors’ write buffers,
when the reads in ll. 2 and 4 execute. Thus, the reads retrieve the
initial values for C.x and C.y, i.e., 0, from main memory, which results
in i == j == 0. Similarly, compiler optimisations might reorder the
independent statements in each thread. Then, i == j == 0 is possible

5

Chapter 1. Introduction

static Object data;
volatile static boolean done = false;

thread t1

1: data = ...;
2: done = true;

thread t2

3: while (!done) {}
4: ... = data;

Figure 1.3: Synchronisation and publication of data through a volatile field

for the transformed program even under SC. Therefore, a correct imple-
mentation of SC must take extra precautions and conservatively disable
such optimisations in all code, because the code does not provide any
clues when it should do so. To avoid the ensuing slow-down, the JMM
relaxes SC and allows the outcome i == j == 0 in the example.

Nevertheless, the JMM provides the intuitive SC semantics under
additional assumptions – known as the data-race freedom (DRF) guar-
antee [4]. Two accesses to the same location conflict if (i) they originate
from different threads, (ii) at least one is a write, and (iii) the loca-
tion is not explicitly declared as volatile. A data race occurs if two
conflicting accesses may happen concurrently, i.e., without synchroni-
sation in between. If the program contains no data races, the JMM
promises that it behaves like under SC. In other words: If a program-
mer protects all accesses to shared data via locks or declares the fields
as volatile, she can forget about the JMM and assume interleaving
semantics, i.e., SC.

In the above example, there are two data races: the write of C.y in l. 1
races with the read in l. 4 and similarly l. 2 and l. 3 for C.x, i.e., the DRF
guarantee does not apply. To eliminate these data races, one can use the
synchronisation mechanisms from above, e.g., wrapping every line in its
own synchronized block on C’s class object.

Alternatively, one can declare C’s static fields x and y as volatile,
because accesses to such fields never conflict.1 Since these fields are
marked, Java implementations know when to take appropriate measures.
Thus, programmers can use volatile fields to implement their own

1When a thread reads from a volatile field, it synchronises with all other threads that
have written previously to that field. Hence, the reading thread can be sure that everything
that should have happened in the other threads prior to their writes in fact has happened
prior to its read. For the formal semantics, see §4.3.2.

6

1.2. Historical overview

synchronisation mechanisms like in the example in Figure 1.3. After
thread t1 has finished the construction of the data object to be passed, it
releases thread t2 from spinning in l. 3 by setting the volatile flag done.
Volatile semantics of the JMM guarantees that thread t2 sees the correct
data, even though data itself is not volatile, i.e., no precautions slow
down accesses to data.

Java also gives semantics to programs with data races, which is the
main cause for the technical complexity of the JMM. This is essential, since
malicious code could otherwise exploit data races to break type safety
and Java’s security architecture. This semantics, however, is weaker than
SC in that it allows more behaviours. Still, it is too strong, because it
does not allow as many compiler optimisations as desired [38, 115, 162].
Conversely, it is unclear whether it is strong enough to ensure type safety
and the Java security guarantees.

1.2 Historical overview

In the mid-1990s, Nipkow’s group started their work on the Bali project
[11, 84] which lead to a comprehensive model (called Java`ight) of the
JavaCard language, a sequential subset of Java. They formalised the
type system and a big-step semantics with a proof of type safety, and
an axiomatic Hoare-style semantics that is shown sound and relatively
complete with respect to the big-step semantics [129, 135–138, 156, 157].
At the same time, they studied the interaction between Java source code
and bytecode for a smaller subset that was named µJava [85]. This line of
work [24, 79–81, 86, 87, 126, 130, 146, 167, 168] lead to formal models of the
virtual machine (VM), of the bytecode verifier, and to a compiler from
source code to bytecode. These are complemented by proofs of type
safety for source code and bytecode, and preservation of type correctness
and semantics for the compiler.

Both Bali and µJava only consider sequential Java, although multi-
threading has been envisioned as future work from the start [129]. An
important step towards this goal was Jinja by Klein and Nipkow [83],
because they developed a small-step semantics for Jinja source code that
they proved equivalent to the big-step semantics. Additionally, they
redesigned the type safety proof to use the small-step semantics, and
they considerably slimmed down Bali and µJava.

7

Chapter 1. Introduction

Thus, when I started to work on a formal semantics for concurrent
Java in 2007, the choice for the sequential semantics was obvious: Jinja.
Isabelle/HOL as the proof assistent was set, because the Quis custodiet
project used it already and the semantics should become part of it – and
Jinja was the most complete semantics of Java in Isabelle/HOL that fea-
tured a small-step semantics. A small-step semantics is crucial, because
big-step semantics cannot express interleaving semantics adequately.

Of course, there have already been other formalisations of concurrent
Java source code or bytecode [104, 20] in other provers (see §3.4.1 for an
in-depth discussion), which could have been ported to Isabelle. However,
none of them had been used in large proofs about the semantics. Hence, it
was unclear whether they would be easy to use in verifying the program
analyses of the QC project. In contrast, Jinja had evolved over ten years
and the type safety proof and compiler verification demonstrate its
usability. Thus, it seemed reasonable to extend Jinja with concurrency.

In retrospect, I have not regretted this choice. For validating the
semantics, it would have been better if Jinja had included all the Java
features that Bali and µJava had already covered. Hence, I have reintro-
duced arrays and the full set of binary operators – see §2.3 for a detailed
comparison.

Adding multithreading to a sequential language is pervasive, because
almost every definition and every proof needs to be adapted. Although
I have tried to reuse in JinjaThreads as much as possible from Jinja, it
is more the general ideas and concepts that have survived than their
literal formulation in Isabelle/HOL. Hence, JinjaThreads is incompatible
with Jinja, but every Jinja program can be trivially transformed into a
JinjaThreads program.

1.3 Contributions

The technical contributions of this thesis are the following:

• a model of Java threads for source code and bytecode (Chapter 3);
• proofs of type safety with deadlocks (§3.3);
• modular single-threaded semantics shared between SC and the

JMM (Chapter 4);
• a proof of the DRF guarantee (§4.3.3), consistency (§4.3.4), and type

safety (§4.3.5) of the JMM;

8

1.3. Contributions

• an example that the JMM corrupts Java security in theory (§4.3.5);
• a verified compiler from source code to bytecode (Chapter 5);
• an efficient, executable interpreter, virtual machine, type checker,

and compiler that are extracted automatically from the formal
model (Chapter 6); and

• validating the model by compiling and running Java programs in
a test harness (§6.5).

The complete model and all proofs are formalised in the proof assistant
Isabelle/HOL and available online [106] in the Archive of Formal Proofs.2

My model JinjaThreads covers all concurrency features from the Java
language specification [56] except

• the methods stop, destroy, suspend, and resume in class Thread,
as they are deprecated;

• timing-related features like timed wait and Thread.sleep, because
JinjaThreads does not model time;
• the compare-and-swap operations for the java.util.concurrent

package, since these are vendor-specific extensions of Java; and
• spurious wake-ups, because the JLS discourages VMs to perform

those and they would obscure deadlocks. Standard Java coding
practice circumvents this; see §4.3.6 for details.

The concurrency features that JinjaThreads covers are embedded
in (an extension of) Jinja [83] by Klein and Nipkow, which I introduce
in Chapter 2. The sequential features include classes with objects,
fields, and methods, inheritance with method overriding and dynamic
dispatch, arrays, exception handling, assignments, local variables, and
standard control structures. Like its predecessor, JinjaThreads omits some
sequential features from Java to remain tractable, e.g., static and final
fields and methods, visibility modifiers, interfaces, class initialisation,
and garbage collection. §7.4 contains the complete list, and in §6.5.1, I
discuss how some of them can be emulated.

Thus, JinjaThreads is the first machine-checked model that unifies
multithreaded Java source code, bytecode, and a compiler. In particular,
JinjaThreads subsumes all of Jinja except for the big-step semantics and
the proof of equivalence to the small-step semantics.

2In this thesis, I describe version e7d44e610544 in the archive. It works with Isabelle
development version 915af80f74b3.

9

Chapter 1. Introduction

declaration & lookup native methods subtyping

general infrastructure

= new parts = parts adapted from Jinja = dropped parts
= executable = used to prove

big-step semantics

small-step semantics

type system

type safety

equivalence

source code

bytecode verifier

defensive VM

aggressive VM

type safety

equivalence

bytecode

stage 1 stage 2

verified compiler

interleaving scheduler Java memory model

DRF, consistencyconcurrent semantics

Figure 1.4: Structure of JinjaThreads in comparison with Jinja’s

Figure 1.4 shows the resulting structure of JinjaThreads. New parts
are set in bold, adapted ones normally, and dropped ones in grey with
dotted lines. The source code part defines the syntax, the type system,
and a small-step semantics. The bytecode part formalises bytecode
instructions, a virtual machine for individual threads in two equivalent
flavours (aggressive and defensive), and a bytecode verifier. Both parts
share some general infrastructure, the interleaving semantics and the
JMM formalisation. The compiler translates source code into bytecode
in two stages.

I prove type safety using the standard approach by Wright and
Felleisen [180]. Subject reduction, i.e., preservation of well-typedness,
easily carries over from Jinja. However, potential deadlocks severely
complicate the progress theorem, which shows that execution does
not get stuck. In fact, formalisations of type soundness for concurrent
programming languages typically leave out the progress theorem or
their notion of deadlock is implicit in the theorem’s assumptions, e.g.,
[57, 73, 94, 166, 169]. This way, one cannot be sure that the theorem’s

10

1.3. Contributions

layer source code bytecode

7 Java memory model

co
nc

ur
re

nt
se

m
an

ti
cs

6 complete interleavings

5 interleaved small-step

4 thread start & finish events

si
ng

le
-t

hr
ea

de
d

se
m

an
ti

cs

statements call stacks

3 & exception handling

expressions single instruction

2 native methods

1 heap operations

Figure 1.5: JinjaThreads stack of semantics

notion coincides with the intuitive understanding of deadlock, especially
because deadlock can arise in many different ways (§1.1). In contrast, I
formalise deadlock semantically (§3.3) and then prove type safety with
respect to this notion.

Furthermore, JinjaThreads advances the state of the art in modelling
concurrency. Previous formal semantics for multithreaded Java source
code or bytecode [9, 14, 15, 20, 48, 70, 104, 166] stopped at interleaving
semantics, i.e., sequential consistency. On the contrary, I formally connect
the Java programming language with the Java memory model for the
first time. Nevertheless, JinjaThreads models sequential consistency, too.

Here, separation of concerns and sharing of definitions and proofs are
crucial to obtain a tractable model – not only between source code and
bytecode, but also between the different memory models. To disentangle
sequential aspects, the concurrency features, and the memory model
from one another, I have built the semantics as a stack of seven layers
(Figure 1.5). For example, to switch from source code to bytecode, one
only needs to exchange layer 3, which defines the semantics of the
language primitives. Analogously, the type safety proof at level 3 holds
for both memory models, because they differ only in layers 1, 4, 6, and 7.

Furthermore, I have identified several previously unknown corner
cases that the JMM misses and show how to deal with them. Moreover,
I prove that the JMM indeed provides the DRF guarantee. Previous

11

Chapter 1. Introduction

proofs [8,69] made assumptions about the sequential semantics, this work
shows that these assumptions were justified. Regarding the other two
promises of the JMM, namely type safety and Java’s security guarantees,
the answers are less positive. Only a weak form of type safety holds,
which excludes allocation of objects, i.e., the JMM allows Java programs
to access unallocated objects (albeit in a type-correct fashion); and the
JMM compromises Java’s security guarantees.

JinjaThreads also extends Jinja’s non-optimising compiler to handle
the synchronisation primitives, and proves that it preserves semantics,
well-typedness, and data race freedom of programs. Preservation of
well-typedness is a straightforward extension of Jinja’s proofs, but
semantic preservation requires a completely different approach, because
Jinja used the big-step semantics, which no longer exists. In particular,
verification must deal with the non-determinism of concurrency and
different granularity of atomic operations. Using a bisimulation approach,
I obtain a stronger correctness statement than Klein and Nipkow for Jinja,
which also covers non-terminating executions. Again, JinjaThreads’s
modular structure ensures that the result holds for both SC and the JMM.
Thus, this is the first verified compiler for Java threads.

The various proofs about the semantics and the compiler demonstrate
that JinjaThreads is indeed a tractable model, albeit large, and that today’s
prover technology can handle such large models. Nevertheless, one
must also make sure that it faithfully abstracts reality, i.e., Java. However,
JinjaThreads’ size is beyond the point up to which good common sense
suffices to convince oneself. Therefore, I have undertaken the effort
to validate the model by executing smallish Java programs in both
the source code and bytecode semantics. To that end, I have used
Isabelle’s code generator to generate code for all definitions in grey boxes
in Figure 1.4. Chapter 6 discusses the necessary steps and what the
pitfalls were. This way, I have automatically extracted an executable
well-formedness checker, interpreter, virtual machine and compiler for
JinjaThreads programs from the Isabelle formalisation.

To make the vast supply of Java programs available for experimenting
and testing with the semantics, I have developed together with the
students Jonas Thedering and Antonio Zea the (unverified) conversion
tool Java2Jinja3 as a plugin to the Eclipse IDE. It converts Java class

3Java2Jinja is availabe for download at
http://pp.info.uni-karlsruhe.de/projects/quis-custodiet/Java2Jinja/

12

http://pp.info.uni-karlsruhe.de/projects/quis-custodiet/Java2Jinja/

1.4. Isabelle/HOL

declarations into JinjaThreads abstract syntax and provides a front-end
to the well-formedness checker, interpreter and VM. Validation was
not in vain, it discovered a bug in JinjaThreads’ implementation of the
division and modulus operators (§6.5.2).

The size of the formalisation also poses a challenge for presentation.
To keep the presentation intelligible, Chapter 2 starts with the sequential
subset of JinjaThreads and omits everything that is related to multithread-
ing. Then, I extend this subset with Java concurrency (Chapter 3) and the
memory models (Chapter 4). This also demonstrates how Jinja evolved
to JinjaThreads and what adaptations to the sequential semantics were
necessary. Since I show most definitions only in excerpts or informally
and change some of them multiple times, I have included the complete
formal definition of the languages and semantics for source code and
bytecode in Appendix B. Most of the proofs are only sketched or omitted
completely, but they can be found in [106] with all the gory details of a
machine-checked formalisation.

1.4 Isabelle/HOL

I have used the theorem prover Isabelle with higher-order logic (HOL)
[128] as meta-language to formalise this work. Isabelle is able to check
formalised definitions for being type-correct in the meta-language and
formalised proofs for correctness. Although Isabelle offers sophisticated
tools for proof automation, users must still decompose proofs into many
small steps and guide the proof search. Yet, being an interactive proof
assistant, Isabelle also supports the user in devising a formalised proof.
For example, it correctly generates all non-trivial inductive cases for her
and solves the trivial ones automatically. Conversely, Isabelle does not
accept proofs of the form “analogous to . . . ” or “without loss of generality,
. . . ” In such a case, the user must either repeat the proof or generalise
it such that it works for all relevant cases. Thus, constructing elegant
formal proofs still remains a business for experts. I have omitted most
proofs in the presentation and only sketched the line of argument. Since
I have written most proofs in the human-readable language Isar [25,179],
the interested reader may consult the formalisation sources [106] for full
details.

Despite Isabelle having formally checked all lemmas and theorems
of this thesis, typing errors may have slipped in during typesetting.

13

Chapter 1. Introduction

Although Isabelle can in principle typeset definitions and theorems
automatically to rule out such mistakes, I have transcribed all formulae
in this thesis from the formalisation manually for two reasons. First,
complex locale hierarchies (locales are Isabelle’s module system, §1.4.2)
confuse Isabelle’s pretty-printer such that it loses track of pretty-printing
syntax and outputs all fixed parameters, i.e., its output becomes unin-
telligible. Second, the presentation simplifies the formalisation in a few
places for the sake of readability. For example, it glosses over some
technical details such as trivial type coercions (see Footnotes 29 and 30).
Chapters 2 and 3 present the definitions without the generalisations that
later chapters add, although there is only one set of formal definitions
with all extensions and generalisations. Consequently, I show how to
adapt the simplified presentations in the later chapters. Appendix B
contains the unsimplified definitions with all extensions.

1.4.1 Notation

The meta-language HOL mostly uses standard mathematical notation.
This section introduces further notation and in particular some basic
data types and operations on them.

Implication in Isabelle/HOL is written −→ or =⇒ and associates to
the right. Since the latter form stems from Isabelle’s environment for
natural deduction, it separates the assumptions in proof rules, but cannot
occur inside other HOL formulae. I abbreviate multiple assumptions by
enclosing them in J and K with the separator “;”. Displayed implications
are often printed as inference rules. For example, modus ponens is
written P −→ Q =⇒ P =⇒ Q or JP −→ Q; PK =⇒ Q or

P −→ Q P

Q

Biimplication P←→ Q is shorthand for P −→ Q and Q −→ P.
The set of HOL types includes the basic types of truth values, natural

numbers, integers and 32 bit machine words, which are called bool, nat,
int, and word32, respectively. The space of total functions is denoted
by⇒. Type variables are written ′a, ′b, etc. t :: τ means that the HOL
term t has HOL type τ. To distinguish variables from defined constants,
I typeset variables in italics (e.g., x, y, f) and defined names slantedly
(e.g., x, y, f).

14

1.4. Isabelle/HOL

Pairs come with two projection functions fst :: ′a× ′b⇒ ′a and snd ::
′a × ′b⇒ ′b. Tuples are identified with pairs nested to the right, i.e.,
(a, b, c) is identical to (a, (b, c)) and ′a× ′b× ′c to ′a× (′b× ′c). Dually, ′a+ ′b
denotes the disjoint sum of ′a and ′b; the injections are Inl :: ′a⇒ ′a + ′b
and Inr :: ′b⇒ ′a + ′b. Records are tuples with labelled components, e.g.,
Lx = 1, y = 2M.

Sets (type ′a set) are isomorphic to predicates (type ′a⇒ bool) with
bijections _ ∈ _ and { x | x. _ x }, where | x denotes the bound variable
and can be omitted if equal to the preceding term, e.g., y ∈ { x. P x } ←→
P y. UNIV :: ′a set is the set of all elements of type ′a, ∅ denotes the
empty set. The image operator f ‘ A applies f to all elements of A, i.e.,
f ‘ A =

{
f a | a. a ∈ A

}
. For example, f ‘ UNIV (written range f) denotes

f ’s range. The predicate finite on sets characterises all finite sets. The
operator] :: ′a set⇒ ′b set⇒ (′a + ′b) set denotes disjoint union on sets.

The definite description operator ιx. P x is known as Russell’s ι-
operator. It denotes the unique x such that P x holds, provided exactly
one exists. Hilbert’s ε-operator (indefinite description operator), written
εx. P x, denotes one (fixed, but underspecified) x such that P x holds,
provided P is satisfiable at all. Otherwise, both operators are unspecified.

Lists (type ′a list) come with the empty list [] and the infix constructor
· for consing. Variable names ending in “s” usually stand for lists. The
function append, written @ as infix operator, concatenates two lists, |xs|
denotes the length of xs, and set converts lists into sets. If i < |xs|, xs[i]
denotes the i-th element of xs, and xs[iB x] replaces the i-th element
of xs with x. Further standard operations on lists are available: hd xs
returns (tl xs removes) the first element of (from) xs, and take n xs
returns (drop n xs removes) the first n elements of (from) xs; replicate n x
constructs the list [x, x, . . . , x] of length n; rev xs reverses xs map f xs
applies the function f to all elements of the list xs; filter P xs with
syntax [x← xs. P x] retains only elements from xs that fulfill P; zip xs ys
combines xs and ys elementwise into a list of pairs; foldl f a xs and
foldr f xs a reduce the list xs with the binary operator f and start value a,
associating to the left and right, respectively; concat = foldl append []
concatenates a list of lists; distinct xs checks whether the elements in xs
occur only once.

datatype ′a option = None | Some ′a

adjoins a new element None to ′a, all existing elements in type ′a are
also in ′a option, but prefixed by Some. For succinctness, I write bac

15

Chapter 1. Introduction

for Some a. For example, bool option consists of the three values None,
bTruec, and bFalsec. The underspecified inverse the of Some satisfies
the bxc = x. Variables whose name ends in “o” usually have option type.
Option.map f maps None to None and bxc to

⌊
f x

⌋
.

Case distinctions on datatypes use guard-like syntax. For example,
case xo of None ⇒ a | bxc ⇒ f pattern-matches on xo. If xo is None, it
returns a; if xo is bxc, the result is f where f may refer to x.

Function update is defined as follows: Let f :: ′a⇒ ′b, a :: ′a, and b :: ′b.
Then, f (aB b) = λx. if x = a then b else f x.

As all functions in HOL are total, partial functions are modelled as
functions of type ′a⇒ ′b option where None represents undefinedness
and f x =

⌊
y
⌋

means that f maps x to y. I abbreviate ′a⇒ ′b option
by ′a ⇀ ′b and call such functions maps. The notation f (x 7→ y) is
shorthand for f (xB

⌊
y
⌋
), and it extends to lists: f (xs [7→] ys) means

f
(
x[0] 7→ y[0]

)
. . .

(
x[i] 7→ y[i]

)
where i is the minimum of |xs| − 1 and |ys| − 1.

Multiple updates like f (x 7→ y) (xs [7→] ys) can be written as f (x 7→
y, xs [7→] ys). The everywhere undefined map λ_. None is written empty.
Updates of empty are written [x 7→ y], [xs [7→] ys], etc. The domain of f
(written dom f) is the set of points at which f is defined, ran f denotes
the range of f . Function map-of turns an association list, i.e., a list of
pairs, into a map:

map-of [] = empty
map-of ((x, y) · xs) = (map-of xs)(x 7→ y)

The order m1 ⊆m m2 on maps denotes that m2’s domain contains m1’s
and m1 and m2 are equal on dom m1. I say that m1 is a restriction of m2
and m2 an extension of m1.

FinFuns [109] (type ′a⇒f
′b) are functions that are almost everywhere

constant, which Isabelle’s code generator implements as associative
lists (§6.1.3). For this thesis, one may treat them just like ordinary
functions except for some notation. Function application and update
are written f f x and f (x :=f y), respectively; Kf y denotes the FinFun
that maps everything to y. The decoration with subscripts f extends to
other update notation for maps, e.g., f (x 7→f y) denotes f (x :=f

⌊
y
⌋
) and

[x 7→f y] abbreviates (Kf None)(x :=f
⌊
y
⌋
).

16

1.4. Isabelle/HOL

1.4.2 Locales

Locales [12] are Isabelle’s approach to modularisation. A locale decla-
ration defines the signature of a context, which consists of the locale
parameters with fixed types (fixes) and the assumptions about the pa-
rameters (assumes). It also defines a predicate with the locale’s name
that collects all assumptions.

For example, the following locale monoid declares a module monoid
whose parameters, i.e., abstract operations, are the binary operator � and
the neutral element e. It has three assumptions: assoc states associativity
and neutral states that e is left and right neutral – free variables in the
assumptions (such as a, b, and c) are implicitly universally quantified.
Note that the type of the elements of the monoid is the type variable
′a rather than an opaque type. This way, module implementations can
instantiate ′a as needed.

locale monoid = fixes � :: ′a⇒ ′a⇒ ′a and e :: ′a
assumes assoc : (a� b) � c = a� (b� c)
and neutral : a� e = a e� a = a

A locale context collects declarations such as theorems and definitions,
which may depend on the parameters and assumptions. If a definition
or proof uses the module, but does not need to look at one concrete
implementation, it goes in such a locale context. For example:

fun (in monoid) pow :: ′a⇒ nat⇒ ′a where
pow x 0 = e
| pow x (n + 1) = x� pow x n

lemma (in monoid) pow-plus : pow x (n + m) = pow x n� pow x m

Locale interpretations correspond to module implementations – they
instantiate the parameters of a locale and discharge the assumptions. This
specialises all collected declarations to the given parameters, optionally
adding a name prefix. For example,

interpretation list : monoid @ [] 〈〈proof〉〉

interprets the monoid for lists. This yields the function list.pow and the
lemma list.pow-plus, in which the type ′b list instantiates the type variable

17

Chapter 1. Introduction

′a for the monoid elements and @ and [] replace � and e, respectively, i.e.,

list.pow x 0 = [] list.pow x (n + 1) = x @ list.pow x n
list.pow x (n + m) = list.pow x n @ list.pow x m

To use or extend a module, locales can inherit from other locales
where parameters may be renamed, specialised and names prefixed as
necessary. From the module point of view, the inherited locale exports
all the declarations it has collected. Here is an example for monoid
homomorphisms:

locale monoid-hom = m1 : monoid �1 e1 + m2 : monoid �2 e2
for �1 :: ′a⇒ ′a⇒ ′a and e1 :: ′a and �2 :: ′b⇒ ′b⇒ ′b and e2 :: ′b +
fixes h :: ′a⇒ ′b
assumes h e1 = e2 and h (a�1 b) = (h a) �2 (h b)

lemma (in monoid-hom) hom-pow : h (m1.pow x n) = m2.pow (h x) n

The locale monoid-hom imports the locale monoid twice and redeclares
the inherited parameters in the for clause. To avoid ambiguities, refer-
ences to the first (second) are prefixed with m1 (m2) and the parameters
renamed to �1 and e1 (�2 and e2), respectively. Additionally, it fixes
another parameter h and assumes that it is a monoid homomorphism.
The lemma demonstrates how imported declarations are referenced.

JinjaThreads heavily uses locales to define interfaces between the
different layers in the stack of semantics such that the development on
higher levels can be reused by different implementations of the lower
levels. For example (Chapter 3), the locale for interleaving semantics
fixes a parameter for the single-threaded semantics. Then, source code
and bytecode reuse the definitions and theorems for the interleaving
semantics by interpretation. From the module point of view, source code
and bytecode implement the module for single-threaded semantics on
which the interleaving semantics builds.

To overcome incompatibilities between the code generator and the
locale infrastructure, which I explain in §6.1.4, I have separated the
declaration of parameters from the assumptions by splitting the locales
whenever executability is a concern. Locales with names ending in
-base only fix the parameters, the others inherit from them and add the
assumptions.

18

1.4. Isabelle/HOL

1.4.3 Induction and coinduction

JinjaThreads heavily uses inductive and coinductive definitions, e.g., for
the type system, small-step semantics, and complete interleavings. Since
coinductive definitions and coinduction are less known than inductive
ones, I contrast the former with the latter. Moreover, I briefly show how
Isabelle’s automation supports such definitions and proofs.

Consider, for example, the following introduction rules of the reflexive
and transitive closure (RTC) r∗∗ of a binary relation r.

r∗∗ a a

r∗∗ a b r b c

r∗∗ a c
(1.1)

When one interprets them as an inductive definition, the binary prediate
r∗∗ is defined as follows:

1. r∗∗ a a holds for any a, and
2. r∗∗ a c holds if r∗∗ a b already holds for some b such that r b c, and
3. r∗∗ holds for nothing else – or, equivalently, r∗∗ is the strongest

predicate satisfying 1 and 2.

The last clause is characteristic for inductive definitions. In particular, r∗∗

holds for concrete x and y only if one can prove r∗∗ x y in finitely many
steps using the rules of (1.1).

Now, consider the coinductive definition of r∗∗ with the same intro-
duction rules as for r∗∗:4

refl : r∗∗ a a==== step :
r∗∗ a b r b c

r∗∗ a c
============ (1.2)

This definition characterises r∗∗ as follows:

1. r∗∗ a a holds for any a, and
2. r∗∗ a c holds if r∗∗ a b holds for some b such that r b c, and
3. r∗∗ a b is the weakest predicate with the property that whenever it

holds, this can be justified by 1 or 2.5

4I use double horizontal bars for coinductive definitions to distinguish them from
inductive ones.

5Pierce calls this property “‘self-justifying’: every assertion in it [the predicate considered
as a set] is justified by other assertions that are also in it” [143, §21.1].

19

Chapter 1. Introduction

a b

c d
(a) Graph r

a b

c d
(b) Inductive RTC r∗∗

a b

c d
(c) Coinductive RTC r∗∗

Figure 1.6: Example to illustrate the difference between inductive and coinductive
definitions

Again, the last clause is characteristic for coinductive definitions. In
particular, r∗∗ does not hold for concrete x and y only if one can prove
¬ r∗∗ x y in finitely many steps.

To appreciate the difference between inductive and coinductive
definitions, consider Figure 1.6. Let r be the binary predicate on a type
with four elements a, b, c, and d as shown as a graph in Figure 1.6a, i.e.,
only r a b, r b d, and r c c hold. The inductive RTC r∗∗ adds the missing
loops at a, b, and d, and the transitive edge from a to d (Figure 1.6b).
Figure 1.6c shows the coinductive RTC. It includes everything from the
inductive RTC, but adds edges from c to every other element, too – even
though c is disconnected from the rest of the graph. These edges are
justified, because the loop at c permits to apply step infinitely often.
Hence, one cannot prove that these edges do not belong to r∗∗. When
defining predicates coinductively, one must be careful to avoid such
infinite recursion when it is not intended.

Isabelle/HOL provides a package to automate inductive and coinduc-
tive definitions [142] of predicates and sets. Given the introduction rules
for a (co)inductive predicate, it computes the corresponding functional F
over predicates and defines the predicate as the least (greatest) fixed point
lfp F (gfp F) of F. Next, the package proves monotonicity of F to ensure
that the fixed point exists. Unless the premises involve user-defined
operators that take as a parameter the predicate to be defined, this is com-
pletely automatic. Then, the package derives from the definition the spec-
ified introduction rules, a rule for case analysis, and a (co)induction rule.

The functional F for the introduction rules in (1.1) and (1.2) is the
same, namely

λP x1 x2. (∃a. x1 = a∧ x2 = a)∨ (∃a b c. x1 = a∧ x2 = c∧ P a b∧ r b c)

20

1.4. Isabelle/HOL

where the parameter P abstracts the predicates r∗∗ and r∗∗ to be defined.
Since F is automatically proven monotone, r∗∗ is defined as lfp F and r∗∗
as gfp F.

The induction rule (1.3) stems from the fact that lfp F is the intersection
of all F-closed binary predicates, where P is F-closed iff F(P) x y implies
P x y. Hence, to prove that some property P holds for all points x and y
with r∗∗ x y, it suffices to prove that P is F-closed.

r∗∗ x y ∀a. P a a ∀a b c. r∗∗ a b −→ P a b −→ r b c −→ P a c

P x y
(1.3)

Dually to (1.3), the package derives the coinduction rule (1.4) for r∗∗
from the fact that gfp F is the union of all F-consistent binary predicates,
where P is F-consistent iff P x y implies F(P) x y.

P x y
∀x1 x2. P x1 x2 −→

(∃a. x1 = a∧ x2 = a)∨
(∃a b c. x1 = a∧ x2 = c∧ (P a b∨ r∗∗ a b)∧ r b c)

r∗∗ x y
(1.4)

Duality of (1.3) and (1.4) extends to how they are used in proofs:
Induction (1.3) serves to prove properties P of all elements of r∗∗; it
eliminates the premise r∗∗ x y towards the goal P x y. Conversely, the
coinduction rule (1.4) has the coinductive predicate r∗∗ in the conclusion.
Hence, it can only establish that r∗∗ contains all elements that satisfy the
(F-consistent) property P, but it is useless in deriving properties of all
elements of r∗∗.

Sometimes, it is convenient to strengthen the coinduction rule such
that one may delay to show the consistency requirement for P. To that
end, P is replaced by a family Q k of predicates indexed over a well-
founded relation R (written wf R), where k measures how often one may
delay to show the consistency requirement. For r∗∗, the strengthened
coinduction rule is

wf R Q k x y

∀k x1 x2. Q k x1 x2 −→
(∃k′. (k′, k) ∈ R∧Q k′ x1 x2)∨

(∃a. x1 = a∧ x2 = a)∨
(∃a b c. x1 = a∧ x2 = c∧ ((∃k′. Q k′ a b)∨ r∗∗ a b)∧ r b c)

r∗∗ x y

21

Chapter 1. Introduction

The additional case ∃k′. (k′, k) ∈ R∧Q k′ x1 x2 in the last premise permits
to defer showing consistency if one can descend in R from k to k′ without
changing the elements. After one step in the consistency proof, one may
freely choose the new index k′ in the last case. For examples of such
strengthened coinduction rules, see Lemmata 4.16 and 5.2.

Proof. Isabelle does not automatically prove the strengthened coinduc-
tion rule, i.e., the user has to prove it manually for every coinductive
definition for which she needs it. From the last premise, one proves
by well-founded induction that the last premise of (1.4) holds for P
instantiated with λx y. ∃k. Q k x y. The claim r∗∗ x y then follows directly
with (1.4). �

(Co-)Induction is the main proof principle for (co-)datatypes, too.
Isabelle’s datatype package [26] defines algebraic datatypes. The package
automatically derives the induction rule and a combinator for primitive
recursion, which destructs the term towards a result. For example, the
type of finite lists ′a list is defined by

datatype ′a list = [] | ′a · ′a list

Again, coalgebraic datatypes (codatatypes) are dual: Users must
construct them manually, e.g., [110, 142], and the corecursion operator
constructs them. Possibly infinite lists (HOL type ′a llist), e.g., have the
corecursion operator

llist-corec a f = (case f a of None⇒ [] |
⌊
(x, a′)

⌋
⇒ x · llist-corec a′ f)

It can be used, e.g., to define the iteration of a function f :

[b, f b, f (f b), f (f (f b)), . . .] = llist-corec b (λa.
⌊
(a, f a)

⌋
)

For a good introduction to corecursive definitions in Isabelle, see [142]
by Paulson. The coinduction rule is used to prove such terms equal.

22

Bernard of Chartres used to say that we are like dwarfs
on the shoulders of giants, so that we can see more
than they, and things at a greater distance, not by
virtue of any sharpness of sight on our part, or any
physical distinction, but because we are carried high
and raised up by their giant size.

John of Salisbury, Metalogicon 2
Sequential JinjaThreads

In this chapter, I present the abstract syntax, type system, and semantics
of sequential JinjaThreads including a proof of type safety, for both
source code (§2.1) and bytecode (§2.2). In Chapters 3 and 4, I extend
the sequential parts to Java concurrency. JinjaThreads also comes with a
compiler and bytecode verifier, whose presentation I defer to Chapters 5
and 6, respectively, since this chapter focusses on the languages, type
systems, and semantics.

As JinjaThreads builds on Jinja, I have taken the vast bulk of sequential
features from Jinja, but made some adaptations and extensions. Klein
and Nipkow have presented most of these features in detail [83], so I do
not treat the sequential constructs in depth, here. Rather, this chapter
introduces the main ideas and notation relevant for the rest of this thesis.
Consequently, I present most definitions only in excerpts or informally.
Appendix B contains the complete formal definitions, which include
all generalisations of the later chapters. In §2.3, I compare sequential
JinjaThreads to its predecessors Jinja, Bali, and µJava, and discuss the
relevant changes.

2.1 Source code

This section describes the sequential part of JinjaThreads source code
called J. First, I define the abstract syntax, covering values and types,
expressions and statements, and program declarations with lookup
operations on them (§2.1.1). The static semantics of the language is
completed by the type system (§2.1.2) and well-formedness constraints
(§2.1.4). In §2.1.5, I sketch the small-step semantics, focussing on native

Chapter 2. Sequential JinjaThreads

methods. Finally, the type safety proof (§2.1.6) shows that static and
dynamic semantics fit together.

2.1.1 Abstract syntax

In this section, I present the abstract syntax for JinjaThreads source code,
bottom up. I start off with values and types, continue with expressions
and statements, and conclude with program declarations and lookup
functions on them. Abstract syntax falls into a generic part and one
specific to source code. This way, bytecode can reuse the generic parts
(see §2.2.1). JinjaThreads only defines an abstract syntax, but no concrete
input syntax. In §6.5, I discuss how to translate the concrete syntax of
Java into JinjaThreads abstract syntax.

There are HOL types cname for class names, mname for method
names, and vname for variable names and field names. To make the
semantics executable (Chapter 6), all of them are isomorphic to strings
– as opposed to leaving them unspecified. For example, the special
reference this to the current object is modelled as a local variable with
name “this”. In the sequel, I use the following variable conventions: C,
D for class names, M for method names, V for variable names, and F for
field names. v stands for values, T for JinjaThreads types, a for addresses
and e for expressions.

Values and types

There are five kinds of JinjaThreads values (of HOL type val, see Fig-
ure 2.1): a dummy value Unit, booleans Bool b where b :: bool, 32-bit
integers Intg i where i :: word32, the null reference Null, and references
Addr a where a :: addr. For the moment, I treat the type of addresses
addr as an opaque type, the memory models in Chapter 4 add more
structure.

JinjaThreads types (of HOL type ty, see Figure 2.1) are the type
Void for Unit, primitive types Boolean and Integer, and three kinds of
reference types, namely NT for the null reference, Class C for classes,
and Array T for arrays with element type T. T[] is shorthand for Array T.
The predicate is-refT on types ty tests for reference types.

The map typeof statically assigns types to values, see Figure 2.1 for
the definition. References (Addr a) are statically not typable, because

24

2.1. Source code

datatype val = Unit | Bool bool | Intg word32 | Null | Addr addr
datatype ty = Void | Boolean | Integer | NT | Class cname | Array ty

typeof Unit = bVoidc
typeof (Bool b) = bBooleanc typeof Null = bNTc
typeof (Intg i) =

⌊
Integer

⌋
typeof (Addr a) = None

Figure 2.1: JinjaThreads values and types

their type may depend on the object or array that gets allocated at a at
run time.

Expressions

JinjaThreads source code J is an imperative language where everything
is an expression (HOL type expr) with a return value: statements are
modelled as expressions that return Unit. Table 2.1 shows the sequential
subset of expressions that JinjaThreads supports. It extends Jinja’s source
code language by the following expressions (marked with ∗): (i) test on
run time types with instanceof and (ii) array creation, array cell access
and update, and reading the length of an array. Expressions whose
syntax has been generalised are marked with ‡: casts are now possible
between arbitrary types, not only classes; and local variable blocks carry
an optional explicit initialisation vo :: val option. Figure 2.2 introduces
abbreviations for frequent expressions.

The binary operator bop ranges over the binary operators (HOL type
bop) known from Java: ==, !=, <, <=, >, >=, +, –, ∗, /, %, &, |, ˆ,
<<, >>, and >>>. The two other binary operators in Java, short-circuit
conjunction && and disjunction ||, are represented by the conditional
operator:

e1 «&&» e2 = if (e1) e2 else false
e1 «||» e2 = if (e1) true else e2

To implement static binding of fields, field access and assignment
are annotated with the class D that declares the field. Jinja provides a
preprocessor [83, §2.6] that computes these annotations and converts
unqualified field accesses into Var this.F{D}, where D is the class being
processed. JinjaThreads extends this preprocessor (see Appendix B.9.4

25

Chapter 2. Sequential JinjaThreads

expression description

new C allocation of an object of class C
new T[e] ∗ allocation of an array with element type T
Cast T e ‡ checked cast of e to type T
e instanceof T ∗ check if e , Null is assignment-compatible to T
Val v literal value
e1 «bop» e2 binary operator
Var V local variable access
V B e assignment to local variable
e1[e2] ∗ array cell access
e1[e2] B e3 ∗ array cell assignment
e.length ∗ array length
e.F{D} field access
e1.F{D} B e2 field assignment
e.M(es) method call
{V : T = vo; e} ‡ local variable declaration with opt. initial value
e1; ; e2 sequential composition
if (e1) e2 else e3 conditional
while (e1) e2 while loop
throw e exception throwing
try e1 catch(C V) e2 exception handling

Table 2.1: Sequential JinjaThreads expressions

null = Val Null unit = Val Unit
true = Val (Bool True) false = Val (Bool False)
addr a = Val (Addr a) Throw a = throw (addr a)
{V : T; e} = {V : T = None; e}

Figure 2.2: Abbreviations for common expressions

for the definition) to handle (i) the super qualifier for fields and (ii) array
lengths like fields. Regarding the latter, the JLS specifies [56, §6.4.5] that
array lengths be stored in a final field length. However, JinjaThreads
provides the special syntax e.length for accessing array lengths, because
Java bytecode and the Java memory model (JMM) treat array lengths
specially anyway. Therefore, the preprocessor replaces the unannotated

26

2.1. Source code

datatype ′m prog = Program ′m cdecl list
type_synonym ′m cdecl = cname× ′m class
type_synonym ′m class = cname× fdecl list× ′m option mdecl list
type_synonym fdecl = vname× ty× fmod
record fmod = volatile :: bool
type_synonym ′m mdecl = mname× ty list× ty× ′m

type_synonym J-mb = vname list× expr
type_synonym J-prog = J-mb prog

Figure 2.3: Type definitions for program declarations

access e.length{} by e.length if e’s type is an array. This correctly imple-
ments that array length hides the field length of class Object if it declares
such.

Program declaration

Figure 2.3 shows the type definitions for program declarations. A
program declaration (of type ′m prog, variable convention P)6 is a list of
class declarations (type ′m cdecl), each of which consists of the class name
and the class itself. The class (type ′m class) declares its direct superclass,
its fields and methods. A field declaration (type fdecl) is a tuple of
field name, type and field modifiers. For field modifiers, JinjaThreads
features only volatile. A method declaration (type ′m mdecl) consists of
the method name, a list of the parameters’ types, the return type, and the
method body. Class declarations specialize ′m to ′m option to allow for
optional method bodies. If the method body is None (written Native),
only the signature of a native method is declared.

The method body is left as a type parameter ′m such that all Jin-
jaThreads languages reuse this generic format for declarations. For
the source code language, a method body consists of the list of formal
parameter names and the expression itself (type J-mb). Then, a source
code program has type J-prog, which plugs in J-mb for ′m in ′m prog.

6In JinjaThreads, ′m prog is a type of its own (with injection Program) rather than an
abbreviation like the other types for declarations and ′m prog in Jinja, because this permits
data refinement of programs in Isabelle’s code generator (see §6.3.3). This is only of
technical interest since ′m prog and ′m cdecl list are isomorphic.

27

Chapter 2. Sequential JinjaThreads

Although JinjaThreads requires certain system classes to work prop-
erly, it does not distinguish between them and user-defined classes.
System classes are like ordinary classes except that JinjaThreads specifies
their class names and every proper program declaration must define
them. For the sequential part, the following system classes are needed:
Object, Throwable, and the system exceptions

sys-xcpts =

[NullPointer, ClassCast, ArithmeticException, OutOfMemory,
ArrayIndexOutOfBounds, ArrayStore, NegativeArraySize]. (2.1)

The class Object is the root of the class hierarchy and Throwable the root
of all exception and error classes that can be thrown. The names for the
system exceptions are self-explanatory, their Java counterparts reside in
the java.lang package.

Lookup functions

For most parts of JinjaThreads, the exact representation of programs is
irrelevant. Instead, they access declaration information via the following
lookup functions:

• class P C extracts the class with name C from P.

• is-class P C predicates that P declares a class with name C,

• P `C≺1 D denotes that C is a direct subclass of D in P.

• P `C sees M:Ts→T = meth in D means that class C sees a method
named M implemented in class D, taking method overriding into
account. Ts is the list of parameter types, T the return type, and
meth :: ′m option the optional method body. For JinjaThreads
source code, meth is either Native or of the form

⌊
(pns, body)

⌋
, i.e.

the formal parameter names pns and the expression body.

• P ` C has F:T (f m) in D denotes that in P, the superclass D of C
declares the field F with type T and field modifiers f m.

• P `C sees F:T (f m) in D is like P `C has F:T (f m) in D except that
F must also be visible in C, i.e. there is no intervening declaration
of F in the subclass hierarchy between C and D that hides the field
F in D.

28

2.1. Source code

The following example (in an imaginary concrete syntax) from [83]
illustrates method overriding and field hiding:

class B extends A {field F:TB
method M:TBs->T1 = mB}

class C extends B {field F:TC
method M:TCs->T2 = mC}

We have both P `C has F:TC (f m) in C and P `C has F:TB (f m) in B,
where f m is Lvolatile = FalseM. In constrast, we have P ` C sees
F:TC (f m) in C, but not P ` C sees F:TB (f m) in B, because the dec-
laration of F in C hides the one in B.

Method overriding only considers names, not the declared types.
Consequently, JinjaThreads does not allow method overloading. In
the above example, we have P ` B sees M:TBs→T1 = bmBc in B and
P ` C sees M:TCs→T2 = bmCc in C, but not P ` C sees M:TBs→T1 =
bmBc in B, because M’s definition in C overrides the one from B. More-
over, the lookup functions need not take into account the effects of access
modifiers like private and protected, because JinjaThreads omits those.

I do not present the formal definitions for these lookup functions
here, because I have taken them almost unchanged from Jinja [83]. They
can be found in Appendix B.1.

2.1.2 Type system

The base type of a type T is T with all Array constructors stripped off:

base-type T = (case T of T′[]⇒ base-type T′ | _⇒ T)

Types are valid (predicate is-type) iff all classes they refer to exist in
the program and, in case of array types, their base type is not NT (see
Figure 2.4). Array types with element type NT are an artefact of the
formalisation, they do not occur in Java programs as there is no syntax for
the type NT. Treating them as invalid types also avoids other problems,
e.g., infinite ascending chains in the subtype relation (see below). types P
denotes the set of all valid types for P.

Subtyping

In this section, I present subtyping on JinjaThreads types. The subclass
relation P ` _ �∗ _ is the reflexive and transitive closure of the direct

29

Chapter 2. Sequential JinjaThreads

is-type P Void = True is-type P Boolean = True
is-type P Integer = True is-type P NT = True
is-type P (Class C) = is-class P C
is-type P (T[]) = is-type P T ∧ base-type T , NT

types P =
{

T. is-type P T
}

Figure 2.4: Valid types of a program

≤refl : P ` T ≤ T ≤subcls :
P `C�∗ D

P ` Class C ≤ Class D

≤null : P ` NT ≤ Class C ≤null[] : P ` NT ≤ T[]

≤Object : P ` T[] ≤ Class Object ≤Array :
P ` T ≤ T′

P ` T[] ≤ T′[]

Figure 2.5: The subtype relation

subclass relation P ` _ ≺1 _. This induces a subtype relation P ` _ ≤ _
on JinjaThreads types; Figure 2.5 shows the definition. The point-wise
extension of ≤ to lists of types is written [≤].

The rules for subtyping follow Java, e.g., the array type constructor
_[] is covariant (≤Array). Subtyping is reflexive, transitive, and, if the
subclass hierarchy is acyclic, antisymmetric.

The subtype relation has infinite chains, both decreasing and ascend-
ing ones. For example, ≤Array gives in combination with ≤Object and
≤null[]:

P ` . . . ≤ Class Object[][] ≤ Class Object[] ≤ Class Object
P ` NT ≤ NT[] ≤ NT[][] ≤ NT[][][] ≤ . . .

However, every infinite ascending chain, as I show in §6.2.2, must contain
invalid types. The bytecode verifier (§6.2.2) cannot deal with infinite
ascending chains, which has been the motivation for disallowing arrays
with NT as element type.

Figure 2.6 shows the Hasse diagram for the subtype relation for the
following program declaration. Invalid types have been omitted.

30

2.1. Source code

Class Object

Class Object[]

Class Object[][]

Class Object[][][]

. . .

NT

Class B[][]

Class A[][]

Class C[]

Class C[][]

Class B[]

Class A[]

Class B

Class A

Class C

. . .

Integer[][]

Boolean[][]

Void[][]

Integer[]

Boolean[]

Void[]

. . .

IntegerBooleanVoid

Figure 2.6: Hasse diagram for the subtype relation P ` _ ≤ _ restricted to types P
for the program P of four classes Object, A, B, and C where P ` A ≺1 Object,
P ` B≺1 Object, and P `C≺1 B.

class Object {}
class A extends Object {}
class B extends Object {}
class C extends B {}

The left-hand side illustrates how the subclass relation is replicated for
every number of array dimensions. The right-hand side shows that
arrays of primitive types are subtypes of arrays of Object with one
dimension less.

31

Chapter 2. Sequential JinjaThreads

WTbinop:
P, E ` e1 :: T1 P, E ` e2 :: T2 P ` T1 «bop» T2 :: T

P, E ` e1 «bop» e2 :: T

WTaass:

P, E ` e1 :: T[]
P, E ` e2 :: Integer P, E ` e3 :: T′ P ` T′ ≤ T

P, E ` e1[e2] B e3 :: Void

WTcall:

P, E ` e :: T P, E ` es [::] Ts′ class-of T = bCc
P `C sees M:Ts→Tr = meth in D P ` Ts′ [≤] Ts

P, E ` e.M(es) :: Tr

WTcond:

P, E ` e :: Boolean
P, E ` e1 :: T1 P, E ` e2 :: T2 P ` lub (T1, T2) = T

P, E ` if (e) e1 else e2 :: T

WTthrow:
P, E ` e :: Class C P `C�∗ Throwable

P, E ` throw e :: Void

WTtry:

P, E ` e1 :: T
P, E(V 7→Class C) ` e2 :: T P `C�∗ Throwable

P, E ` try e1 catch(C V) e2 :: T

Figure 2.7: Selected typing rules for JinjaThreads source code

Type judgement

The type system for J is modelled as type judgements of the form
P, E ` e :: T where the environment E (of type vname⇀ ty, abbreviated
as env) assigns types to local variables. P, E ` es [::] Ts extends P, E ` _ :: _
pointwise to lists of expressions and types. Figure 2.7 shows a subset of
the rules that exhibit the key features, Appendix B.6.2 lists the full set.

Analogous to the abstract syntax, where e1 «bop» e2 treats all 17 binary
operators uniformly, WTbinop applies to all binary operators – the
judgement P ` T1 «bop» T2 :: T captures the individual differences. It
denotes that the binary operator bop takes arguments of types T1 and T2
and the result is of type T. Figure 2.8 shows some representative rules –
the others are similar (Appendix B.2). WT/ for integer division is typical
for integer operators. The equality operator requires the arguments’

32

2.1. Source code

WT/: P ` Integer «/» Integer :: Integer

WT==:
P ` T1 ≤ T2 ∨ P ` T2 ≤ T1

P ` T1 «==» T2 :: Boolean

WT&int: P ` Integer «&» Integer :: Integer

WT&bool: P ` Boolean «&» Boolean :: Boolean

Figure 2.8: Typing rules for the binary operators /, ==, and &

types to be comparable in the subtype relation (WT==), which imposes
in particular equal types for primitive types. Overloaded operators like
& and | have one rule for each case (WT&int and WT&bool). Unlike in
Java, + only operates on Integers, not on String, because Strings are not
primitive in JinjaThreads.

Array cell assignment (WTaass), like any other assignment, requires
that the type of the right-hand side is a subtype of the left-hand side’s.

Rule WTcall deals with method calls. Since programs must explicitly
declare native methods, it uniformly handles calls to native and non-
native ones. It uses the partial function class-of T that returns the least
class that is a supertype of T if T , NT. It is defined as

class-of (Class C) = bCc class-of (T[]) =
⌊
Object

⌋
(2.2)

and None for all other types. Hence, if the type T of the receiver is an
array, method lookup starts in C = Object. Thus, all arrays inherit the
methods from class Object.7

In WTcond for conditionals, P ` lub (T1, T2) = T denotes that T
is a least upper bound (lub) for T1 and T2 w.r.t. subtyping. Note that

7The JLS [56, §6.4.5] requires that arrays inherit all methods from class Object
except for clone. Arrays (type T[]) must override the clone from Object to (i) in-
crease its visibility from protected to public, (ii) remove the checked exception
CloneNotSupportedException from the signature, and (iii) specialize the return type
from Object to T[]. As JinjaThreads neither models visibility nor checked exceptions,
(i) and (ii) are irrelevant. However, JinjaThreads does not follow (iii) – which only
the third edition of the JLS has introduced – because this special case would unneces-
sarily complicate definitions and proofs. Hence, JinjaThreads programs must explic-
itly cast the return value. For example, int[] a; a = new int[1].clone(); becomes
{a : Integer[]; a B Cast (Integer[]) (new Integer[Val (Intg 1)].clone([]))} with an explicit
cast.

33

Chapter 2. Sequential JinjaThreads

lubs need not be unique at this point because P might be an ill-formed
program declaration with cycles in the class hierarchy.

In rules WTthrow and WTtry for exception throwing and han-
dling, the constraint P ` C �∗ Throwable enforces that only subclasses
of Throwable may be used as exceptions. WTtry also illustrates the
environment for local variables: The catch block implicitly declares the
local variable V of type Class C for the exception reference, which is
modelled as the update of V in E in the premise for e2. The constraint
P ` C �∗ Throwable also ensures that the catch block refers to an exist-
ing class C because Throwable is a system class which all well-formed
programs must declare.

2.1.3 Native methods

Some methods that the standard Java API specifies cannot be imple-
mented in Java syntax, e.g., clone and hashcode in class Object. If it
were for the sequential part only, it would not be worth the effort to
model native methods in JinjaThreads. However, calls to native methods
implement most of Java’s concurrency features, e.g., wait in Object and
start in Thread. Therefore, I added the infrastructure for including native
methods in JinjaThreads.

A program must explicitly declare the native methods it uses, with
Native as method body (see §2.1.1). This allows the typing rules and
method overriding to treat native methods like normal methods, see
WTcall for an example. However, the semantics only provides a fixed
set of native methods, because native methods by definition cannot
be implemented in JinjaThreads syntax and thus must be hard-wired.
To that end, the judgement C.M(Ts) :: Tr expresses that the semantics
provides a native method M for class C with parameter types Ts and
return type Tr. Well-formedness (§2.1.4) ensures that the semantics
implements all methods that a program declares as native.

The sequential part defines only the two native methods clone and
hashcode as follows, but I add more in §3.2.1:

Object.clone([]) :: Class Object
Object.hashcode([]) :: Integer (2.3)

I defer the semantics of these native methods to the semantics section
(§2.1.5).

34

2.1. Source code

2.1.4 Well-formedness

For most proofs, JinjaThreads programs must be well-formed. The
well-formedness criteria fall in two categories: First, generic constraints
such as acyclicity of the class hierarchy are independent of the concrete
language. Second, language-specific constraints like well-typedness
depend on the type of method bodies. To factor out the latter, the well-
formedness test for programs takes a well-formedness test for method
bodies as a parameter, ranged over by w f -mb:

type_synonym ′m wf-mdecl-test = ′m prog⇒ cname⇒ ′m mdecl⇒bool

Generic well-formedess

The generic well-formedness predicates are shown in Figure 2.9. The
function classes, which is the inverse to Program, returns the list of class
declarations of a program. Hence, map fst (classes P) computes the list
of declared class names.

A program P is well-formed iff the system classes are as required
(denoted by wf-syscls P), every class is declared only once, and all
class declarations are well-formed. For the system classes, JinjaThreads
requires class declarations for Object and Throwable and the latter must
be a superclass of all system exceptions. This implicitly ensures that P
declares all system exceptions.

A declaration of class C is well-formed (predicate wf-cdecl) iff all
field and method declarations are well-formed (predicates wf-fdecl and
wf-mdecl), no field or method is declared twice, and if C is not Object,
its direct superclass D exists and is no subclass of C (which rules out
cycles in the subclass relation), and method overriding is contravariant
in the parameters and covariant in the return type.

The predicate wf-overriding checks the last constraint. The overrid-
ing method may have less specific parameter types and a more specific
return type. Note that method overriding considers only method names,
not signatures, i.e., there is no overloading.

The predicate wf-mdecl checks that declared types are valid. For
native methods, it checks that the semantics provides this method;
for normal methods, it applies the language-specific well-formedness
checker.

35

Chapter 2. Sequential JinjaThreads

wf-prog :: ′m wf-mdecl-test⇒ ′m prog⇒ bool
wf-prog w f -md P←→ wf-syscls P∧ distinct (map fst (classes P))∧

(∀cd ∈ set (classes P). wf-cdecl w f -md P cd)

wf-syscls :: ′m prog⇒ bool
wf-syscls P←→ is-class P Object∧ is-class P Throwable ∧

(∀C ∈ set sys-xcpts. P `C�∗ Throwable)

wf-cdecl :: ′m wf-mdecl-test⇒ ′m prog⇒ ′m cdecl⇒ bool
wf-cdecl w f -md P (C, D, f s, ms)←→
(∀ f d ∈ set f s. wf-fdecl P f d)∧ distinct (map fst f s)∧
(∀md ∈ set ms. wf-mdecl w f -md P C md)∧ distinct (map fst ms)∧
(C , Object −→ is-class P D∧¬ P `D�∗ C∧

(∀md ∈ set ms. wf-overriding P D md))

wf-fdecl :: ′m prog⇒ fdecl⇒ bool
wf-fdecl P (F, T, f m)←→ is-type P T

wf-overriding :: ′m prog⇒ cname⇒ ′m mdecl⇒ bool
wf-overriding P D (M, Ts, Tr, m)←→ (∀D′ Ts′ T′r m′.

P `D sees M:Ts′→T′r = m′ in D′ −→ P ` Ts′ [≤] Ts∧ P ` Tr ≤ T′r)

wf-mdecl :: ′m wf-mdecl-test⇒ ′m option wf-mdecl-test
wf-mdecl w f -md P C (M, Ts, Tr, m)←→

set Ts ⊆ types P∧ is-type P Tr ∧
(case m of Native⇒ C.M(Ts) :: Tr

| bmbc ⇒ w f -md P C (M, Ts, Tr, mb))

Figure 2.9: Generic well-formedness constraints

wf-J-mdecl :: J-mb wf-mdecl-test
wf-J-mdecl P C (M, Ts, Tr, (pns, body))←→
|Ts| = |pns| ∧ distinct pns∧ this < set pns∧
(∃T. P, [this 7→Class C, pns [7→] Ts] ` body :: T ∧ P ` T ≤ Tr)∧
D body

⌊
{ this } ∪ set pns

⌋
wf-J-prog = wf-prog wf-J-mdecl

Figure 2.10: Well-formedness for JinjaThreads source code

36

2.1. Source code

type_synonym J-state = heap× locals
type_synonym locals = vname⇀ val
type_synonym heap = addr⇀ heap-entry
datatype heap-entry = Obj cname fields | Arr ty fields cells
type_synonym fields = vname× cname⇀ val
type_synonym cells = val list

Figure 2.11: Type definitions for the sequential state

Well-formed source code

Let me now turn to well-formedness for J programs (Figure 2.10). To that
end, wf-prog gets instantiated with the checker wf-J-mdecl for J method
declarations, abbreviated as wf-J-prog. I have taken the definition
unchanged from Jinja [83]. It checks for

parameter names They must be equally many as parameter types, pair-
wise different and different from the this pointer.

typability The method body must be typable with a subtype of the
declared return type.

definite assignment Definite assignment requires that during evalua-
tion, whenever a local variable is read, it must have been assigned
to before. The functionD e A syntactically checks if e accesses only
initialised variables if run from a state in which all variables in A
have already been initialised. I have taken this test unchanged from
Jinja with straightforward adaptations for the language extensions.
Hence, I do not present the details here, Appendix B.6.3 shows the
formal definition. For how it works, see [83].

2.1.5 Dynamic semantics

Having described the static semantics of J, I now turn to the dynamic
semantics of the sequential subset.

State

The state (type J-state) is a pair of a heap (of type heap) for objects and
arrays and a store for local variables (of type locals), see Figure 2.11. For

37

Chapter 2. Sequential JinjaThreads

now, the heap maps addresses to heap entries, which can either be objects
or arrays.8 Objects Obj C f s store their class name C and a field table f s
which maps pairs (F, D) to values. It is essential that the table’s keys
include the class D that declares the field F, because an object may have
multiple fields of the same name. Arrays Arr T f s cs have an element
type T, a field table f s, and a list of cells cs each of which contains a value.
The length of the cell list determines the array length. In Java, arrays
inherit all fields of Object [56, §6.4.5], so arrays need the field table for
them. The declaring class is irrelevant in this field table, but I keep it for
uniformity. For notation, h ranges over heaps, xs over local variables,
and s over states. The functions hp and lcl extract the heap and the store
from a state, respectively.

To simplify the semantics, JinjaThreads allocates one object for each
system exception on the initial heap start-heap at start-up time. The
function addr-of-sys-xcpt C returns the address of the preallocated object
for the system exception C. As the exact definition is not relevant at the
moment, I defer it to §4.1.

Statically, addresses have no type (cf. Figure 2.1). Dynamically, type
information for an address (HOL type hty) consists of the class name or –
if it is an array – of the type of its elements and its length. The accessor
functions ty-of and array-length-of extract the type and array length.

datatype hty = ClassT cname | ArrayT ty nat

ty-of (ClassT C) = Class C ty-of (ArrayT T n) = T[]
array-length-of (ArrayT T n) = n

The function typeof-addr :: heap⇒ addr⇀ hty computes the type infor-
mation from the heap:

typeof-addr h a = (case h a of
⌊
Obj C _

⌋
⇒ bClassT Cc

| bArr T _ csc ⇒
⌊
ArrayT T |cs|

⌋
| None⇒ None

(2.4)

Then, typeofh extends typeof to addresses accordingly:

typeofh v = (case v of Addr a⇒ Option.map ty-of (typeof-addr h a)
| _⇒ typeof v)

8In Chapter 4, I will revisit and change the heap model to accomodate different notions
of concurrency.

38

2.1. Source code

Clone:
new-Addr h =

⌊
a′
⌋

h′ = h(a′B h a)

P ` 〈a.clone([]), h〉 →nc 〈Ret-Val a′, h′〉

CloneF:
new-Addr h = None

P ` 〈a.clone([]), h〉 →nc 〈Ret-sys-xcpt OutOfMemory, h〉

NChashc: P ` 〈a.hashcode([]), h〉 →nc 〈Ret-Val (Intg (hash-addr a)), h〉

Figure 2.12: Semantics of native method calls in the sequential part

Native methods

I now turn to the semantics for native methods. The sequential language
defines only two, namely hashcode and clone (2.3), but I add more in
§3.2.1 for Java concurrency. Native method calls may either return a
value v (denoted Ret-Val v) or the address a of an exception (written
Ret-Xcp a). I abbreviate Ret-Xcp (addr-of-sys-xcpt C) as Ret-sys-xcpt C.

Native method calls execute in one step: P ` 〈a.M(vs), h〉 →nc 〈vx, h′〉
denotes that calling M on address a with parameters vs and the heap
h returns a value or exception address vx and the updated heap h′.
Figure 2.12 shows the definition. The partial function new-Addr returns
a fresh address for a given heap, if there is one, and None otherwise.
Clone copies the object at a to the fresh address a′ in one go, CloneF
raises the OutOfMemory exception if all addresses are already in use.
NChashc computes the object’s hash using the function hash-addr ::
addr⇒word32. Again, the concrete definitions for new-Addr and
hash-addr are irrelevant until Chapter 4.

Binary operators

The evaluation of binary operators is defined via a partial function
binop :: bop⇒ val⇒ val⇀ bop-ret, which returns either the evaluated
value or the address of an exception.

type_synonym bop-ret = val + addr

In case of type mismatches, it returns None to denote undefinedness.
Essentially, it unpacks the values and applies the appropriate operator
on bool or word32. Figure 2.13 shows the definitions for the binary

39

Chapter 2. Sequential JinjaThreads

binop / (Intg i1) (Intg i2) =
bif i2 = 0 then Inr (addr-of-sys-xcpt ArithmeticException)

else Inl (Intg (i1 sdiv i2))c
binop == v1 v2 =

⌊
Inl (Bool (v1 = v2))

⌋
binop & (Intg i1) (Intg i2) =

⌊
Inl (Intg (i1 AND i2))

⌋
binop & (Bool b1) (Bool b2) =

⌊
Inl (Bool (b1 ∧ b2))

⌋
Figure 2.13: Evaluation for the binary operators /, ==, and &

operators /, ==, and &, see Appendix B.2 for the others. Division /
(and analogously the remainder operation %) tests whether the divisor
is 0, and if so, returns the preallocated ArithmeticException. Contrary
to the typing rules in Figure 2.8, the equality test == omits any (unnec-
essary) type checks, infeasible cases are mapped to

⌊
Inl (Bool False)

⌋
.

Overloaded operators like & are defined for more than one combination
of value constructors. binop /, binop ==, and binop & return None for
all value combinations not shown in Figure 2.13.

Small-step semantics

The core semantics for J is a small-step semantics written P ` 〈e, s〉 →
〈e′, s′〉. I say that the expression e reduces in state s to e′ and state s′. It is
a standard small-step semantics with rules for subexpression reduction
and exception propagation. An expression is final, i.e., fully reduced,
when it is either a value Val v or a thrown exception Throw a.

For example, Figure 2.14 shows all rules for reducing method calls,
which demonstrate the main ideas. For an extensive discussion, see [83].
The formal definition, with all extensions due to concurrency, can be
found in Appendix B.6.5.

Rules Robj and Rparam reduce the subexpressions of the call –
P ` 〈_, _〉 [→] 〈_, _〉 lifts P ` 〈_, _〉 → 〈_, _〉 to parameter lists of expres-
sions. If one of the subexpressions throws an exception, rules RobjX and
RparamX propagate it. For the other expressions, similar rules exist for
subexpressions that need to be evaluated. These rules also determine
the order of evaluation: The object is evaluated before the parameters
because Rparam and RparamX are only applicable when the object is
already a value.

40

2.1. Source code

Robj:
P ` 〈e, s〉 → 〈e′, s′〉

P ` 〈e.M(es), s〉 → 〈e′.M(es), s′〉

Rparam:
P ` 〈es, s〉 [→] 〈es′, s′〉

P ` 〈Val v.M(es), s〉 → 〈Val v.M(es′), s′〉

RobjX: P ` 〈Throw a.M(es), s〉 → 〈Throw a, s〉

RparamX: P ` 〈Val v.M(map Val vs @ Throw a · es), s〉 → 〈Throw a, s〉

RcallN: P ` 〈null.M(map Val vs), s〉 → 〈THROW NullPointer, s〉

Rcall:

typeof-addr (hp s) a = bhTc
P ` class-of ′ hT sees M:Ts→Tr =

⌊
(pns, body)

⌋
in D

|vs| = |pns| |Ts| = |pns|

P ` 〈addr a.M(map Val vs), s〉 →
〈blocks (this · pns) (Class D · Ts) (Addr a · vs) body, s〉

Rnative:

typeof-addr h a = bhTc
P ` class-of ′ hT sees M:Ts→Tr = Native in D

P ` 〈a.M(vs), h〉 →nc 〈vx, h′〉 e′ = native-Ret2J vx

P ` 〈addr a.M(map Val vs), (h, xs)〉 → 〈e′, (h′, xs)〉

Figure 2.14: Small-step semantics for reducing method calls

If the receiver evaluates to the null pointer null, the preallocated
NullPointer exception is thrown (RcallN), where THROW C abbreviates
Throw (addr-of-sys-xcpt C). map Val vs expresses that the parameter
list has completely reduced to a list of values.

Rcall and Rnative are the main rules for calling a normal and native
method, respectively. If the called method M for the receiver is not native,
Rcall looks up the method definition in P and inlines the method body;
the function blocks Vs Ts vs e surrounds e with local variable blocks
for variables names Vs with types Ts and initial values vs. Dynamic
inlining avoids the need for modelling the call stack explicitly; the local
variable blocks ensure static binding for the this pointer and parameter
names. Conversely, Rnative dispatches the call to the semantics for
native methods. The function native-Ret2J injects the result vx into

41

Chapter 2. Sequential JinjaThreads

expressions as follows: Val v for return values Ret-Val v and Throw a for
exception addresses Ret-Xcp a. Similar to the partial function class-of
on ty, the total function class-of ′ on hty determines the class at which
method lookup starts, i.e., Object for ArrayT _ _ and C for ClassT C.

The semantics is strict in the sense that it gets stuck when values
and types are not as expected, e.g., if the called method does not exist
or requires a different number of parameters. The progress theorem
(Theorem 2.1) shows that the type system rules out such cases.

Typically, the semantics of a program results from chaining together
the individual steps of the semantics. However, as I aim for concurrency,
I stop with the small-step semantics for now. Chapter 3 completes the
semantics.

2.1.6 Type safety

In this section, I sketch the type safety proof for the sequential part of
J. It takes the traditional form of two theorems, progress and preser-
vation [180]. Progress expresses that any well-typed expression can
reduce unless it is final. Preservation means that well-typed expressions
reduce only to well-typed expressions whose type may only become
more specific in the subtype relation. The proofs require the following
invariants:

Conformance expresses that semantic objects conform to their syntac-
tic description. A value v conforms to a type T (written P, h ` v :≤ T) iff
v’s dynamic type is a subtype of T. This conformance notion naturally
extends to list of values (written P, h ` vs [:≤] Ts), stores and environ-
ments (written P, h ` xs (:≤) E), objects, arrays, heaps (written P ` h

√
),

and states (written P, E ` s
√

), see Appendix B.3 for the formal definitions.
Conformance satisfies two essential properties: First, values read from a
conformant state always conform to their declared type. Second, state
updates preserve state conformance if the new values conform to the
locations’ types.

The typing rules from §2.1.2 are too strong to be invariant under
reductions. For example, they rule out literal addresses in expressions,
which arise naturally during reduction. To make them well-typed, the
run-time type system [46] P, E, h ` e : T takes the heap into account
and relaxes various preconditions that are not invariant. For example,
the subtyping condition in WTaassmay be violated during evaluation
because e1’s element type may become more specific thanks to covariant

42

2.2. The JinjaThreads virtual machine

subtyping on arrays. The semantics throws an ArrayStore exception in
that case. The details have been discussed at length elsewhere [46, 83],
so I do not repeat them here.

Now, progress holds under suitable conditions:

Theorem 2.1 (Progress). If wf-J-prog P and P, E, h ` e : T andD e bdom xsc
and P ` h

√
and ¬ final e, then P ` 〈e, (h, xs)〉 → 〈e′, s′〉 for some e′ and s′.

Proof. The proof proceeds by induction on P, E, h ` e : T. Well-formed-
ness ensures that method calls have the correct number of parameters;
definite assignment checks that local variables are initialised when read;
and heap conformance prevents field access from getting stuck if the
accessed field has no value. �

The subject reduction theorem expresses that reductions preserve
well-typedness. It is shown by induction on P ` 〈e, s〉 → 〈e′, s′〉.

Theorem 2.2 (Subject reduction). If wf-J-prog P and P ` 〈e, s〉 → 〈e′, s′〉
and P, E, hp s ` e : T and P, E ` s

√
, then there exists a T′ such that

P, E, hp s′ ` e′ : T′ and P ` T′ ≤ T.

Preservation also requires the following preservation lemmata for all
other invariants, i.e. definite assignment and conformance. Again, their
proofs are by induction on the reduction.

Lemma 2.1 (Preservation of definite assignment). If wf-J-prog P and
P ` 〈e, s〉 → 〈e′, s′〉 andD e

⌊
dom (lcl s)

⌋
, thenD e′

⌊
dom (lcl s′)

⌋
.

Lemma 2.2 (Preservation of conformance). Let wf-J-prog P and P `
〈e, (h, xs)〉 → 〈e′, (h′, xs′)〉 and P, E, h ` e : T. If P ` h

√
, then P ` h′

√
. If

P, h ` xs (:≤) E, then P, h′ ` xs′ (:≤) E.

2.2 The JinjaThreads virtual machine

This section describes the JinjaThreads virtual machine language (§2.2.1),
its operational semantics (§2.2.2), well-formedness (§2.2.3) and the type
safety proof (§2.2.4). The bytecode language and the JinjaThreads virtual
machine (VM) model Java bytecode and the Java VM according to the
Java Virtual Machine Specification (JVMS) [103].

43

Chapter 2. Sequential JinjaThreads

type_synonym jvm-method = nat× nat× instr list× ex-table
type_synonym jvm-prog = jvm-prog prog

type_synonym ex-table = ex-entry list
type_synonym ex-entry = pc× pc× cname option× pc× nat

Figure 2.15: Method bodies in bytecode

2.2.1 The bytecode language

The bytecode language JVM reuses many concepts from source code. For
program declarations, I only have to specify the type of method bodies to
be plugged in for ′m. Everything else remains unchanged, in particular,
the lookup functions, subtyping and generic well-formedness.

A method body (msl, mxl, ins, xt) in the bytecode language (of type
jvm-method, see Figure 2.15) consists of an instruction list ins, an ex-
ception table xt, the maximum stack length msl, and the number mxl of
required registers, not counting the this pointer and parameters. Hence,
a JVM program instantiates the type variable ′m with jvm-method. The
lookup functions instrs-of P C M and ex-table-of P C M extract the
instruction list and exception table for method M in class C from P.

The exception table xt is a list of exception table entries (f , t, Co, pc, d)
where Co is either some class name bCc or the special constant Any =
None. The exception handler starting at the index pc in ins expects d
elements on the stack. It handles exceptions that are raised by instructions
in the interval from f inclusive to t exclusive. If Co is a class name bCc, it
handles only those that are a subclass of C; if Co is Any, it handles all.

Any might seem redundant because all exceptions must be sub-
classes of Throwable, i.e., bThrowablec could replace Any. However, I
include Any for two reasons: First, the Java Virtual Machine specifica-
tion (JVMS) [103, §4.7.3] also specifies such a “catch-all” value, which
is meant for compiling finally blocks. Second, bThrowablec and Any
are interchangeable only if one can prove that all raised exceptions are
subclasses of Throwable, which requires a type safety proof. Thanks to
Any, the compiler verification (Chapter 5) can avoid the subject reduction
and preservation proofs for the intermediate language by not relying on
such invariants.

Table 2.2 shows the instruction set of the sequential JinjaThreads
VM (HOL type instr). If not provided explicitly, operands are taken

44

2.2. The JinjaThreads virtual machine

instruction description

Load i load from register i
Store i store into register i
Push v push literal value v on stack
Pop pop value from stack
Dup ∗ duplicate top value on stack
Swap ∗ swap top elements on stack
BinOp bop ‡ apply binary operator bop
New C create object of class C
NewArray T ∗ create array with element type T
ALoad ∗ fetch array cell
AStore ∗ set array cell
ALength ∗ get length of array
Getfield F C fetch field F declared in class C
Putfield F C set field F declared in class C
Checkcast T ‡ ensure that value conforms to type T
Instanceof T ∗ check if object is of type T
Invoke M n invoke method M with n parameters
Return return from method
Goto i relative jump
IfFalse i branch if top of stack is Bool False
ThrowExc throw top of stack as exception

Table 2.2: Instructions of the sequential virtual machine

from the stack and results pushed onto the stack. §3.2.3 will add the
instructions for multithreading. Similar to Table 2.1, ‡marks instructions
which have been generalised with respect to Jinja. Now, casts between
arbitrary types are possible, and the two instructions for binary operators
in Jinja have been combined into one that covers all 17 operators from
JinjaThreads.

The instructions that Jinja does not feature are marked with ∗. Klein
[79] has already modelled arrays and the instructions Dup and Swap for
stack manipulation for µJava. Instanceof is a variation of Checkcast that
returns a Boolean rather than throwing an exception if it fails.

In comparison to Java bytecode instructions, JinjaThreads unifies
instructions that only differ on their operand types (e.g., aload and

45

Chapter 2. Sequential JinjaThreads

type_synonym jvm-state = addr option× heap× frame list
type_synonym frame = opstack× registers× cname×mname× pc
type_synonym opstack = val list
type_synonym registers = val list
type_synonym pc = nat

Figure 2.16: Type definitions for the sequential VM state space

iload) in polymorphic ones (e.g., Load), but the instructions have not
been simplified conceptually. Moreover, a few instructions for stack and
register manipulation (e.g., dup2, iinc) have been omitted, but they can
be simulated by existing ones or could be added easily. Neither does
JinjaThreads include any instructions for omitted types such as byte and
float nor advanced control flow instructions like tableswitch and jsr
for subroutines.

2.2.2 Semantics

As with source code, I only present the VM up to executing single
instructions and defer complete executions to §3.2.3. The model of the
sequential JinjaThreads virtual machine (VM) covers its state space and
the semantics of the bytecode language.

The state space

The state space is taken from the Jinja VM [83], Figure 2.16 shows the
relevant type definitions: The state (xcp, h, f rs) of type jvm-state consists
of an exception flag xcp (bac corresponds to Throw a in J and None
denotes none), a heap h (the same as in J) and a stack of call frames.

Each method executes in its own call frame (type frame). A call frame
(stk, loc, C, M, pc) contains the operand stack stk, an array loc of registers
for the this pointer, the parameters, and local variables, the class name C,
the method name M, and the program counter pc. Although registers
are modelled as lists, their length does not change during execution. In
contrast, the size of the operand stack does change, but the maximum
size is statically known.

A state is final iff the stack of call frames is empty.

46

2.2. The JinjaThreads virtual machine

exec-instr (Invoke M′ n) P h stk loc C M pc f rs =
(let ps = rev (take n stk); r = stk[n]; Addr a = r; bhTc = typeof-addr h a
in if r = Null then

{ (
⌊
addr-of-sys-xcpt NullPointer

⌋
, h, (stk, loc, C, M, pc) · f rs) }

else let (D, Ts, Tr, m) = method P (class-of ′ hT) M′

in case m of Native⇒
{native-Ret2jvm n h′ stk loc C M pc f rs vx | vx h′.
(vx, h′) ∈ exec-native P a M′ ps h }

|
⌊
(msl, mxl, ins, xt)

⌋
⇒

let f r′ = ([], r · ps @ replicate mxl undefined-Val, D, M′, 0)
in { (None, h, f r′ · (stk, loc, C, M, pc) · f rs) })

Figure 2.17: Single-step semantics of the Invoke instruction

The aggressive VM

I now turn to the semantics of JinjaThreads bytecode. Following the Jinja
VM, the JinjaThreads VM is defined in a functional style.

The function exec-instr :: instr⇒ jvm-prog⇒ heap⇒ opstack⇒
registers⇒ cname⇒mname⇒ pc⇒ frame list⇒ jvm-state set defines
the semantics of a single instruction. Given the instruction, the program,
the heap, and the curried non-empty call stack, it produces a non-
empty set of successor states by pattern-matching on the instruction.
The complete definition for exec-instr can be found in Appendix B.7.3,
which includes the adaptations for concurrency. Although exec-instr is
deterministic for sequential JinjaThreads, it returns a set of successor
states, because this will be convenient later for multithreading (§3.2.3)
and the Java memory model (Chapter 4).

As an example, Figure 2.17 shows the definition for Invoke. If the
receiver r is the null pointer, it throws a NullPointer exception; the old
frame and call stack is reassembled such that exception handling can find
the right handler. If not, let a denote the receiver address, hT its dynamic
type information and m the method body that method lookup returns.
If the call is native, i.e., m = Native, exec-instr delegates the call to the
functional reimplementation exec-native of P ` 〈_._(_), _〉 →nc 〈_, _〉.
Similarly to native-Ret2J, the function native-Ret2jvm assembles the
new state from the result. Otherwise, exec-instr prepares the new call
frame f r′ according to the method body (msl, mxl, ins, xt): Initially, the

47

Chapter 2. Sequential JinjaThreads

exec P (xcp, h, []) = ∅
exec P (None, h, (stk, loc, C, M, pc) · f rs) =

exec-instr (instrs-of P C M)[pc] P h stk loc C M pc f rs
exec P (bac , h, f r · f rs) = { xcpt-step P a h f r f rs }

Figure 2.18: Combining normal execution and exception handling in the VM

operand stack is empty; the registers contain the receiver (i.e., this
pointer) and the parameters ps (which are in reverse order on the stack);
replicate mxl undefined-Val fills the remaining registers with the dummy
value undefined-Val.

Being functional rather than relational, exec-instr uses functional
lookup operations like method whose specifications rely on Russell’s
ι-operator. For example,

method P C M = ι(D, Ts, Tr, meth). P `C sees M:Ts→Tr = meth in D

If there is no such method, method P C M is unspecified.
This leads to an aggressive VM: As can be seen in Figure 2.17,

exec-instr assumes that there are always sufficiently many operands of
the right types on the stack, all methods and fields exist, etc. If not, the
result is unspecified. The type safety proof (§2.2.4) shows that these
cases cannot occur for well-formed programs (to be defined in §2.2.3).

The function exec :: jvm-prog⇒ jvm-state⇒ jvm-state set incorpo-
rates exception handling in the semantics (see Figure 2.18). The VM
halts if the call stack is empty. If no exception is flagged, exec executes
the next instruction via exec-instr. Otherwise, xcpt-step (definition in
Appendix B.7.3) tries to find an exception handler in the top-most call
frame f r that matches the flagged exception at address a. If one is found,
the operand stack is trimmed to the size specified in the exception table
entry, a is pushed on the operand stack, and the program counter is set
to the start of the handler. Otherwise, it pops f r and rethrows a at the
Invoke instruction of the previous call frame.

For convenience, there also is a relational view on exec:

s′ ∈ exec P s

P ` s→jvm s′

48

2.2. The JinjaThreads virtual machine

check-instr (Invoke M′ n) P h stk loc C M pc f rs =
(n < |stk| ∧ is-Ref stk[n] ∧
(stk[n] , Null −→
(let ps = rev (take n stk); Addr a = stk[n]; bhTc = typeof-addr h a;

C′ = class-of ′ hT; (D, Ts, Tr, meth) = method P C′ M′

in typeof-addr h a , None∧ P ` C′ has M′ ∧
P, h ` ps [:≤] Ts∧ (meth = Native −→ D.M′(Ts) :: Tr))))

Figure 2.19: Defensive checks for the Invoke instruction

The defensive VM

JinjaThreads also features a defensive VM that introduces additional
type and sanity checks at run time. If they are violated, the defensive
VM raises a type error. The function execd adds these checks on top of
the aggressive VM exec.

datatype ′a type-error = TypeError | Normal ′a

execd P s = if check P s then Normal (exec P s) else TypeError

The function check checks that the class and method in the top call frame
exist and that the program counter and stack size are valid. Moreover, if
an exception is flagged, it must be the address of an object on the heap and,
if an exception handler in the current method matches, the stack must
have at least as many elements as the handler expects. Otherwise, if no
exception is flagged, check calls check-instr (with identical parameters
as exec-instr) to check instruction-specific conditions. For example,
Figure 2.19 shows the run-time checks for the Invoke instruction. It
clearly parallels the definition of exec-instr in Figure 2.17. is-Ref v
predicates that v is Null or some Addr a, and P ` C has M abbreviates
∃Ts Tr meth D. P `C sees M:Ts→Tr = meth in D. When a native method
is called, i.e., m = Native, check-instr checks that the semantics does
implement the native method.

Again, there is also a relational view on the defensive VM:

¬ check P s

P ` Normal s→jvmd TypeError

check P s s′ ∈ exec P s

P ` Normal s→jvmd Normal s′
(2.5)

49

Chapter 2. Sequential JinjaThreads

2.2.3 Well-typings

When executing bytecode, the JinjaThreads VM relies on the following
assumptions: There are as many operands as needed and of the right
types; registers are initialised before being read; the operand stack stays
within the declared limit; the declared register number is correct; and
the program counter always points to a valid instruction.

To prevent violations of these assumptions during execution, the
bytecode must satisfy certain type constraints, similar to the typing rules
for source code. Other than source code, bytecode does not declare the
types of the registers and the stack elements. Hence, JinjaThreads models
type information separately. This yields an abstract interpretation of
the bytecode semantics with values being abstracted to types, similar to
bytecode verification (§6.2.2).

Well-typings in JinjaThreads do not differ from Jinja in any essential
way. Here, I therefore only sketch the main ideas and introduce the
notation relevant for this thesis. For details, see [83].

Typings

A state type τ characterises a set of run-time states for one instruction by
giving type information for the operand stack and registers. τ = None
denotes that control flow cannot reach the instruction. Otherwise, say
τ =

⌊
(ST, LT)

⌋
, ST :: ty list gives the types for the elements on the

operand stack and LT the types for the register contents. The elements
of LT are either Err or OK T for some type T :: ty. Err denotes that
a register is unusable and its type is unknown, e.g., if it has not been
initialised yet. For example,

⌊
([], [OK (Class C), Err])

⌋
denotes that the

stack is empty and there are two registers, register 0 holds a reference to
an object of a subclass of C (or the Null pointer), the second is unusable.
A method type τs is a list of state types, one for each instruction. A
program typing for P is a function Φ such that Φ C M is the method type
for every method M in every class C of P.

A state type τ for an instruction i is a state well-typing iff i can
execute safely in any state that τ characterises and τ is consistent with the
successor instruction’s state type (to be explained below). A method type
τs is a method well-typing iff each of its state types is a state well-typing
for its instruction.

50

2.2. The JinjaThreads virtual machine

appi (Invoke M n, P, (ST, LT)) =
n < |ST| ∧
(ST[n] , NT −→

(∃C Ts Tr m D. class-of ST[n] = bCc ∧
P `C sees M:Ts→Tr = m in D∧ P ` rev (take n ST) [≤] Ts)

effi (Invoke M n, P, (ST, LT)) =
let T = ST[n]; bCc = class-of T; (_, _, Tr, _) = method P C M
in (Tr · drop (n + 1) ST, LT)

Figure 2.20: Applicability and effect for the Invoke instruction

Abstract interpretation of the semantics

Applicability app takes the checks of the defensive VM to the type level –
in a state well-typing, it defines when the instruction can execute safely.
It is split into appi for normal and xcpt-app for exceptional execution.
Similar to check-instr, the function appi checks the instruction-specific
preconditions. For example, Figure 2.20 shows the definition for the
Invoke instruction. It parallels check-instr from Figure 2.19 – except
for the check that the semantics implements native methods because
well-formedness ensures this already.

For exceptions, is-relevant-class i P C predicates that handlers for
class C might match some exception that instruction i raises. Using this
specification, xcpt-app statically approximates all handlers that might
match at run time. Among others, it checks that they do not expect more
stack elements than are currently on the stack.

Effect (function eff) simulates exec on the type level. Since app
has already checked the instructions preconditions, eff’s specification
is aggressive. It returns a list of pairs, each of which consists of the
successor program counter and the changed state type. Like app, eff
decomposes into effi for normal executions and xcpt-eff for jumping to
exception handlers. Note how effi closely follows exec-instr, e.g., by
comparing Figure 2.20 to Figure 2.17. Here, effi does not treat the case
when the receiver is Null, because exec-instr always raises an exception
in that case. Note how effi uses the return types in method signatures
as summary information for the call. In contrast to the semantics, it
deals with normal and native methods uniformly, because looking up
the method to retrieve the signature works uniformly.

51

Chapter 2. Sequential JinjaThreads

Like xcpt-app, xcpt-eff determines via is-relevant-class all potential
exception handlers and adds them as successors with the stack typing
trimmed to the specified height.

Consistency formalises that the effects are consistent with the state
types of the successor instructions. To that end, Jinja first lifts the subtype
relation to state types, written P ` τ ≤′ τ′. OK elements are ordered
according to the subtype relation, Err becomes the new top element. For
register types LT, this relation is extended pointwise to lists. For the
stack typing ST, the relation is P ` _ [≤] _. The least state type is None;
on

⌊
(ST, LT)

⌋
, the order is componentwise. Now, consistency requires

that the state type τ of the successor i′ is greater than or equal to the state
type that eff computes.

An example well-typing

For example, Figure 2.21 shows a method in class C that takes a single
Integer¸ parameter and returns an Object. The left column specifies the
instruction list and all of the right-hand side is a well-typing. A state type
is one single row of the table, it describes the situation before executing
the instruction in the same row. Initially, the stack is empty and the
registers contain the this pointer and the parameter. It loads the this
pointer and calls the native method clone on it, which clones the this
pointer. Note how the receiver type Class C on the stack is replaced
with the declared return type Class Object of clone. Then, it stores the
returned reference to the clone in register 1, reusing the former parameter
register. Finally, it loads this again and returns it. The Return instruction
is also the handler for the OutOfMemory exception that the call to clone
may raise. In that case, the method returns the caught exception.

Control flow merges at Return: Normal execution linearly runs from
the first to the last instruction. In the exceptional case, Return executes
directly after Invoke. Hence, the normal effect of the second Load 0 and
the exceptional effect of Invoke for the specified handler must both be
≤
′-smaller than or equal to the state type for Return. They are

b [Class C], [OK (Class C), OK (Class Object)]c
and b[Class OutOfMemory], [OK (Class C), OK Integer] c,

respectively. For the stack, Object is a superclass of C and OutOfMemory,
so this is fine. In the register 1, Integer and Class Object have no common
supertype, so it must be marked unusable, i.e., Err.

52

2.2. The JinjaThreads virtual machine

instruction list stack registers

Load 0 b([], [OK (Class C), OK Integer])c
Invoke clone 0 b([Class C], [OK (Class C), OK Integer])c
Store 1 b([Class Object], [OK (Class C), OK Integer])c
Load 0 b([], [OK (Class C), OK (Class Object)])c
Return b([Class Object], [OK (Class C), Err])c

exception table: [(1, 2,
⌊
OutOfMemory

⌋
, 4, 0)]

maximum stack length: 1
local registers: 0

Figure 2.21: Example of a method well-typing

Well-formedness

Method well-typings are only method-local. Rather than checking
applicability and effect across method boundaries do they take the
method signatures as summaries for method calls. Among others,
well-formedness ensures that these summaries are indeed correct.

A method declaration (M, Ts, T,
⌊
(msl, mxl, ins, xt)

⌋
) in class D is well-

typed with respect to τs iff

(i) τs is a well-typing for the method,

(ii) all state types in τs contain only valid types, and respect the
maximum stack length msl and the fixed number mxl of registers,
and

(iii) τs satisfies the start condition, i.e., it is non-empty and the first state
type τs[0] is ≤′-greater than the abstraction of the initial state of the
call frame. Remember from Figure 2.17 that in the initial state, the
operand stack is empty and the registers contain the this pointer
and parameters, the local variables are undefined. Its abstraction
is

⌊
([], OK (Class D) ·map OK Ts @ replicate mxl Err)

⌋
.

Note that without the start condition, the typing replicate |ins| None
would be a well-typing for any method declaration with non-empty
instruction sequence, but then, the method may never be called, because
the first instruction is marked unreachable (None).

53

Chapter 2. Sequential JinjaThreads

A program typing Φ is a (program) well-typing for P iff every method
M in every class C of P is well-typed with respect to Φ C M. A JVM
program P is well-formed (written wf-jvm-prog P) iff it satisfies the
generic well-formedness constraints (Figure 2.9) and there is a program
well-typing Φ for it.

This definition of well-formedness is not constructive, because it does
not specify how to obtain the well-typing from the bytecode program. To
that end, JinjaThreads contains a bytecode verifier (§6.2.2). It rephrases
the abstract interpretation as a data flow analysis problem and computes
a well-typing with Kildall’s algorithm [78].

2.2.4 Type safety

Type safety for bytecode means that the assumptions of the VM are
always met at run time. This is expressed most clearly as: The defensive
VM never raises a type error when it executes a well-formed program
P. Let Φ be the well-typing for P. Naturally, the proof requires a state
invariant called conformance, written P, Φ ` s

√
.

Conformance requires that the state type correctly abstracts the
run-time state (xcp, h, f rs), i.e.,

(i) if xcp = bacflags the exception at address a, a designates an object on
the heap h whose class C is a subclass of Throwable and conforms
to the exception specification in xcpt-app for the current instruction
in the top-most call frame,

(ii) the heap conforms, i.e., P ` h
√

,

(iii) for all call frames (stk, loc, C, M, pc) in f rs, C declares M, pc points to
a reachable instruction and the contents of the operand stack stk and
registers loc conform to the type that the well-typing (Φ C M)[pc]
specifies, and

(iv) all call frames except for the top-most one are halted at an Invoke
instruction that calls a method whose static summary information,
i.e. parameter types and return type, is compatible with the call
frame above.

For a well-formed program and correct state, one can now show type
safety:

54

2.3. Comparison with Jinja, Bali, and µJava

Theorem 2.3 (Type safety). Let Φ be a well-typing for P and P, Φ ` s
√

.
Then, the following statements hold:

(a) The defensive VM does not raise a type error:

¬ P ` Normal s→jvmd TypeError

(b) Aggressive and defensive VM agree:

P ` s→jvm s′ iff P ` Normal s→jvmd Normal s′.

(c) Conformance is preserved: If P ` s→jvm s′, then P, Φ ` s′
√

.

The proof for (a) and (c) proceeds by case distinction on the current
instruction. (b) directly follows from (a) by construction of the defensive
VM. (c) shows that app and eff are indeed abstract interpretations of the
semantics.

2.3 Comparison with Jinja, Bali, and µJava

In this section, I compare the sequential part of JinjaThreads with its
predecessors Jinja [83], Bali [11, 84, 135], and µJava [79, 85]. A goal in
extending Jinja with concurrency was to reuse as much as possible from
Jinja. Hence, I built on many of the fundamental concepts, although
textually, almost every definition has undergone some adaptations. Here,
I only present the conceptual changes.

Every valid Jinja program can be trivially converted into a valid
JinjaThreads program; one merely needs to adapt it to the generalisations
of expressions, instructions, and declarations of native methods and
additional system exceptions. Beyond that, sequential JinjaThreads
extends Jinja mainly in three respects: binary operators, arrays, and
native methods.

Binary operators

Jinja and µJava support only the binary operators for equality == and
integer addition+. In [84], Bali covers the full range of binary operators in
Java – except for string concatenation, but syntactically distinguishes the
overloaded operators &, |, and ˆ. Binary operators always return a value,

55

Chapter 2. Sequential JinjaThreads

e.g., division by 0 yields 0 instead of throwing an ArithmeticException.
Moreover, Bali declares, but does not correctly implement the operators
&, |, ˆ, and >> that manipulate integers bit-wise.

JinjaThreads covers the same set of operators as Bali. While Jinja-
Threads’ predecessors use unbounded integers (type int), I changed
them in JinjaThreads to 32-bit machine integers (type word32) from
Isabelle’s word library. Hence, I can draw on the functions from the
Isabelle word library for correctly implementing the bit-wise operators –
except for / and %. The latter are implemented manually, because the
word library only defines division and remainder for unsigned words.
Thus, the arithmetic operations follow the Java behaviour even in case
of overflows. However, this comes at the expense of introducing various
coercions between word32, nat, and int for array accesses. In bytecode,
BinOp takes the operator as a parameter, thereby unifying the various
Java bytecode instructions, which are available as abbreviations.

Like Bali, JinjaThreads defines typing rules for binary operators (Fig-
ure 2.8) and the semantics (Figure 2.13) to encapsulate binary operators
from the rest of the language. Unlike Bali, JinjaThreads generalises these
such that a binary operator may fail with an exception, e.g., division by 0.

Arrays

Both Bali and Klein’s extension of µJava bytecode [79] model arrays,
but they have been omitted in Jinja. JinjaThreads reintroduces arrays.
Everything is standard except for the set types P of valid types. Bali
allows arrays with NT as element type; infinite ascending chains do
not matter as it does not model an executable bytecode verifier. Klein
limits the maximum number of array dimensions such that types P is
finite. The class file format for Java bytecode limits array dimensions
to 255 [103, §4.8.1]. There is no such bound for Java source code, but
the maximum number of array dimensions can be computed statically
for any fixed program. Instead of formalising and verifying such a
computation, I leave the number of array dimensions unbounded in
JinjaThreads.

Arrays entail the following adaptations to Jinja: First, additional
conversions with class-of and class-of ′ permit to uniformly reuse the
lookup functions, which are defined only for class names, e.g., in method
calls (Figure 2.7, WTcall; Figure 2.14, Rcall; Figures 2.17 and 2.19).
This way, Object may declare fields and methods freely, which all array

56

2.3. Comparison with Jinja, Bali, and µJava

types inherit [56, §6.4.5]. Bali and µJava disallow fields in class Object¸ ,
because their heap model cannot handle fields in arrays [79, §6.2]. The
JLS neither specifies any field in Object, nor does it forbid such. The
implementation of Object in the Java standard library does not declare
any fields, but user-defined implementations of Object may do so.

Second, JinjaThreads generalises casts to arbitrary types, not only
classes as in Jinja and µJava. At the same time, I also introduce an
instanceof operator which allows to test on reference types without
resorting to exceptions.

Third, as all thrown exceptions must be objects (and not arrays), the
type safety proof requires that Throwable replace Object as the root of
the exception hierarchy (like in Bali). For example, WTthrow and WTtry
(Figure 2.7) strengthen the check is-class P C with P `C�∗ Throwable. In
contrast, Klein’s extension of µJava permits to throw arrays as exceptions.

Native methods

Native methods are new in JinjaThreads, none of its predecessors has
included them. Although the semantics only implements two native
methods, namely hashcode and clone in sequential JinjaThreads, native
methods will be crucial for multithreading.

Unlike Java, calls to clone in Object omit the test whether the receiver
object implements the Cloneable interface, because JinjaThreads does
not model interfaces. Instead, clone always returns a copy of the receiver
if there is enough memory left. Also, JinjaThreads does not specialize
the return type of clone for arrays (see Footnote 7 on page 33).

Other changes

Apart from the above extensions, sequential JinjaThreads also changes
the following aspects of Jinja: For source code, JinjaThreads only defines
a small-step semantics, but no big-step semantics, because a big-step
semantics cannot adequately express the interleaving of threads. Jinja
defined both a big-step and small-step semantics and proved them
equivalent. Bali and µJava source code define only a big-step semantics.

Moreover, following a change in the JLS from the second [55] to the
third edition [56], the typing rule for the conditional operator ? : (in
JinjaThreads written as if (e) e1 else e2) has changed: According to the
second edition [55, §15.25], which Jinja follows, the subtype relation

57

Chapter 2. Sequential JinjaThreads

must relate e1’s type T1 with e2’s type T2, i.e., P ` T1 ≤ T2 or P ` T2 ≤ T1;
then, the conditional’s type is the larger one of T1 and T2. In the new
edition [56, §15.25], T1 and T2 only need to have a lub, which is also the
type of the conditional, cf. WTcond (Figure 2.7). Although this change
may seem negligible, it affects code extraction (§6.2.3) non-trivially.

Further, a local variable block {V : T = bvc ; e} in source code contains
an optional initialisation value v, in which execution also keeps track of
V’s value. Jinja omits the = bvc, but emulates it as {V : T; V B Val v; ; e},
i.e., an uninitialised block whose body starts with assignment to the
variable. Adding the explicit initialisation simplifies the semantics and
proofs, e.g., progress (Theorem 2.1) no longer requires a custom induction
rule.

In bytecode, exception handling has changed a little: Following the
JVMS [103, §4.7.3], exception tables may now contain the special value
Any to handle all exceptions that are raised at the guarded instructions
(cf. §2.2.1). This increase in expressiveness simplifies the compiler
verification (Chapter 5).

When an instruction raises an exception, the Jinja VM immediately
transfers control to the right exception handler, which may require
to scan and pop an arbitrary large part of the call stack. In contrast,
the JinjaThreads VM allows raised, but yet unhandled exceptions as
intermediate states, and searches the exception handlers of one call frame
at a time (cf. Figure 2.18). This simplifies some proofs, in particular
the compiler verification (cf. Chapter 5), but, in turn, conformance
must be strengthened to account for the new states (condition (i) in the
conformance definition, §2.2.4, is new).

More importantly, with this approach, the defensive VM can easily
check that the operand stack contains sufficiently many values, before
it trims it to the length that the exception handler expects. In Jinja, this
check is missing.

58

Multithreading is just one damn thing after, before,
or simultaneous with another.

Andrei Alexandrescu 3
Interleaving semantics

In this chapter, I describe how to add Java-style multithreading to the
semantics from Chapter 2 and prove type safety. A precursor to this
work has been published in [107].

Multithreading in JinjaThreads comprises dynamic thread creation,
synchronisation via monitors, the wait-notify mechanism, and thread
interruption. To separate the semantics of these mechanisms and their im-
plications for type safety from the low-level details of allowed compiler
and run-time optimisations, I defer the Java Memory Model [56, §17.4] to
Chapter 4. Instead, I use interleaving semantics with a single shared mem-
ory through which threads interact. JinjaThreads omits all timing-related
features such as Thread.sleep(long) and Object.wait(long) because
JinjaThreads does not model time. Neither does it include the deprecated
methods stop, suspend, and resume in Thread, nor the library extensions
in java.util.concurrentwhich are not an integral part of Java.

The challenges in this chapter are the following:

language-independent interleaving Since both source code and byte-
code must implement the above multithreading features, they best
share as much as possible of the formalisation. To that end, I first
develop a generic framework for interleaving semantics (§3.1), which
is parametrised by the semantics of individual threads.

reuse of the sequential semantics and proofs As the framework man-
ages the multithreaded state and implements the multithreading
features, I reuse the sequential semantics from Chapter 2 with as little
adaptations as possible (§3.2.2 and §3.2.3). Consequently, I am able
to reuse the type safety theorems of sequential JinjaThreads when

Chapter 3. Interleaving semantics

layer source code bytecode

5 interleaved small-step

statements call stacks

3 & exception handling

expressions single instruction

2 native methods

Figure 3.1: Stack of semantics with interleaving

proving type safety for multithreaded JinjaThreads. Here again, I
show how to share as much as possible between source code and
bytecode. The stack of semantics in Figure 3.1 shows how source code
and bytecode share native methods and the interleaving semantics.
As it can be seen at the layer numbering, some layers are still missing.
I add them in Chapter 4 on memory models.

characterisation of deadlocks Progress is non-trivial when threads can
deadlock. Therefore, §3.3 formalises deadlock and refines prog-
ress such that it allows for deadlock. This again is designed to be
independent of the language.

3.1 Framework for interleaving semantics

The framework for interleaving semantics manages the interleaving of
individual threads. It separates the single-thread semantics from the
burdens of multithreading: It manages the multithreaded state (§3.1.1),
i.e., the locks, wait sets, the thread pool, and interrupts. At the same
time, it isolates the local states of the threads from each other.

Interaction between individual threads and the interleaving semantics
only happens through designated actions called thread actions (cf. §3.1.2).
They allow the framework to be oblivious of thread-local states such that
I can use it for both source and bytecode.

Apart from the interleaving semantics (§3.1.3), the framework also
provides the infrastructure to lift predicates and invariants on states of
single threads to multithreaded states (§3.1.4).

60

3.1. Framework for interleaving semantics

3.1.1 The multithreaded state

The multithreaded state consists of five components: the locks status,
the thread pool, the shared heap, the wait sets, and the interrupts. In this
section, I present each of them first before I assemble the multithreaded
state.

Locks

Java-style locks are mutually exclusive and re-entrant, i.e., at most one
thread may hold the lock at one time, but it can acquire it multiple times.
Hence, a lock (of type ′t lock) stores which thread holds it, and if so, how
many times; ′t is the type variable for thread IDs. A natural choice for
′t lock is the HOL type (′t × nat) option. Then, None denotes that the
lock is not held by any thread, and

⌊
(t, n)

⌋
means that the thread with ID

t has acquired the lock n + 1 times. Instead of working directly with this
type, I introduce the following operations on ′t lock; Figure 3.2 shows
their implementations.

has-locks L t number of times t has acquired L
may-lock L t test whether t may lock L
lock-lock L t acquire L for t once
unlock-lock L release L once
acquire-lock L t n acquire L for t n times
release-lock L t completely release L if t holds L

In the following, has-lock L t is short-hand for has-locks L t > 0.
Note that some operations on locks should be partial. For example,

lock-lock
⌊
(t′, n)

⌋
t only makes sense if t′ = t. However, since HOL

is a logic of total functions, I must define lock-lock for t′ , t, too.
For simplicity, lock-lock ignores t and increments t′’s lock counter in
that case, but any other implementation would be fine, too.9 This
choice allows to remove some preconditions from certain lemmata. For
instance, if has-lock L t, then also has-lock (acquire-lock L t′ n) t. Other
implementations would require the precondition t′ = t or, equivalently,
may-lock L t′.

The status of all locks is modelled as a function from lock identifiers
(type variable ′l) to locks. Anticipating code generation in Chapter 6, this

9I could also have left lock-lock unspecified for that case using Isabelle’s specification
command. However, underspecification is detrimental to code generation (see §6.4).

61

Chapter 3. Interleaving semantics

has-locks None t = 0
has-locks

⌊
(t′, n)

⌋
t = (if t = t′ then n + 1 else 0)

may-lock None t = True may-lock
⌊
(t′, n)

⌋
t = (t = t′)

lock-lock None t =
⌊
(t, 0)

⌋
lock-lock

⌊
(t′, n)

⌋
t =

⌊
(t′, n + 1)

⌋
unlock-lock None = None
unlock-lock

⌊
(t, n)

⌋
= (if n = 0 then None else

⌊
(t, n− 1)

⌋
)

acquire-lock L t 0 = L
acquire-lock L t (n + 1) = acquire-lock (lock-lock L t) t n

release-lock None t = None
release-lock

⌊
(t′, n)

⌋
t = (if t′ = t then None else

⌊
(t′, n)

⌋
)

Figure 3.2: Implementation of lock operations

is actually not a function, but a FinFun (see §1.4.1). Thus, the status of all
locks formally has type ′l⇒f

′t lock, written (′l, ′t) locks. For this chapter,
the almost constant nature of FinFun’s is irrelevant, and the reader may
think of them as ordinary functions – except for the omnipresent “f” in
the notation.

Thread pool

The multithreaded semantics manages the threads and their local states
in a thread pool. A thread pool ts is a map from thread IDs to thread-local
states (type variable ′x) of the following type.

type_synonym (′l, ′t, ′x) tpool = ′t⇀ (′x× ′l tr-locks)

Free thread IDs are mapped to None. If ts t =
⌊
(x, ln)

⌋
, then t identifies

the thread whose local state is x (of type ′x). For example, for the source
code semantics, x stores the current expression and the store of local
variables, i.e., ′x gets instantiated with expr × locals. In bytecode, ′x
consists of the exception flag and the call stack.

The thread pool also stores for every thread a multiset ln of temporarily
released locks, which I also model as a FinFun:

type_synonym ′l tr-locks = ′l⇒f nat

62

3.1. Framework for interleaving semantics

For example, when a Java thread suspends itself to a wait set, it tem-
porarily releases the lock on the associated monitor. Upon removal from
the wait set, it must reacquire the lock before it can continue (see §3.2.1
for the details of the mechanism). Recall the notation for FinFuns from
§1.4.1: Kf 0 denotes the empty multiset, and (Kf 0)(l :=f 2), e.g., is the
multiset which only contains l twice.

The multithreaded semantics keeps track of which locks have been
thus released and how many times the thread had acquired them before.
Moreover, the thread continues to execute only after it has reacquired
its temporarily released locks. Since the multithreaded semantics im-
plements all this (§3.1.3), , the single-threaded semantics need neither
remember how many times the lock had been acquired, nor reacquire it
explicitly afterwards.

Wait sets

Java offers wait sets as an alternative to busy waiting. Threads may
suspend themselves to the wait set of a monitor where they remain until
another thread notifies or interrupts them.

JinjaThreads does not model wait sets explicitly. Rather, it stores for
every thread its wait set status:

type_synonym (′w, ′t) wait-sets = ′t⇀ ′w wait-set-status

where ′w wait-set-status consists of the values InWS w, WS-Notified, and
WS-WokenUp, and ′w represents the type of wait set identifiers. The
wait set of a monitor w :: ′w contains all threads whose wait status is
bInWS wc. The predicate waiting wo tests whether the wait set status
wo :: ′w wait-set-status option is of the form bInWS w′c, i.e., the associated
thread is in a wait set.

Figure 3.3 shows the different values for a thread’s wait set status
and their transitions as an automaton. Initially, after the thread has been
spawned, its wait set status is None, i.e., the thread is not in any wait set.
Normal execution takes place in that state (dotted arrow). The thread can
suspend itself to a wait set with ID w (status bInWS wc). When another
thread notifies or wakes up the thread (dashed lines), the latter’s status
changes to bWS-Notifiedc or

⌊
WS-WokenUp

⌋
, respectively. From either

of them, it leaves the wait set cycle and returns to the normal state None
by processing the notification or wake-up, respectively. If the thread has

63

Chapter 3. Interleaving semantics

None bInWS wc

bWS-Notifiedc

⌊
WS-WokenUp

⌋

Spawn

Suspend w

Notify w

WakeUp t

Notified

WokenUp

Figure 3.3: Wait sets, notification, and interruption

temporarily released some locks when it suspended itself to the wait
set, it must reacquire them in states bWS-Notifiedc and

⌊
WS-WokenUp

⌋
(dotted arrow). Following the JLS [56, §17.8], reacquisition precedes
processing the removal from the wait set, i.e., notification or wake-up,
although the order is semantically irrelevant.

This only illustrates the purpuse of the different wait set status. I
define the semantics and the interaction with locks formally in §3.1.3.

Interrupts

Java threads interrupt each other by invoking the interrupt method
in class Thread. When running normally, the interrupted thread must
actively query its interrupt status to take notice of the interrupt. However,
if it is in a wait set at the time of interruption, it is removed from the
wait set. When it is joining on a thread, it aborts joining. In both cases, it
raises an InterruptedException.

The interleaving semantics stores the pending interrupts in a set of
thread IDs, i.e., a thread t is interrupted iff t is in this set.

type_synonym ′t intrs = ′t set

The multithreaded state

A multithreaded state (ls, (ts, h), ws, is) consists of locks ls, a thread pool
ts, the shared memory h, the wait set status ws, and the interrupts is.

64

3.1. Framework for interleaving semantics

thread t1

synchronized (f) {
synchronized (g) {
synchronized (f) {
g.wait();

}}}

thread t2

synchronized (g) {
t1.interrupt();
}

Figure 3.4: Two threads with locks, wait sets, and interrupts

type_synonym (′l, ′t, ′x, ′h, ′w) state =

(′l, ′t) locks× ((′l, ′t, ′x) tpool× ′h) × (′w, ′t) wait-sets× ′t intrs

The multithreaded semantics leaves the shared memory h :: ′h uninter-
preted, it just passes h between the threads. The projection functions
locks, thr, shr, wset, and intrs return the locks, the thread pool, the shared
memory, the wait sets, and the pending interrupts of a state, respectively.

For example, consider Figure 3.4 with two threads t1 and t2. Suppose
t1 executes first until it enters the wait set of monitor g and then t2
executes until is has interrupted t1. Suppose further that f references an
object at address f , and similarly for g. Then, this state is represented by
the tuple (ls, (ts, h), ws, is) where

ls = [f 7→f (t1, 1), g 7→f (t2, 0)], i.e., threads t1 and t2 hold the locks f
and g twice and once, respectively; all other locks are free.

ts = [t1 7→ (. . . , (Kf 0)(g :=f 1)), t2 7→ (. . . , Kf 0)], i.e., the thread pool
stores the thread-local states (omitted) and the temporarily released
locks. Thread t1 has temporarily released the lock on g which it
had held once before. Thread t2 has not temporarily released any
locks.

h = [f 7→Obj . . . , g 7→Obj . . . , t1 7→Obj Thread . . . , t2 7→Obj Thread . . .],
i.e., the shared heap contains the objects referenced by f and g, and
the objects associated with threads t1 and t2.

ws = [t1 7→WS-WokenUp], i.e., an interrupt has removed thread t1 from
g’s wait set.

is = { t1 }, i.e., only thread t1 has a pending interrupt.

65

Chapter 3. Interleaving semantics

3.1.2 Thread actions

The framework manages the multithreaded state, but the single-threaded
semantics needs to query and manipulate that state. To keep them
separated, the latter must not directly access that state. Instead, it uses a
thread action to spawn a new thread, to acquire a lock, to wake another
thread, etc., which provides a clear and restricted interface to access and
update the multithreaded state. Thus, I can decompose proofs about
the multithreaded semantics to the level of threads, because interaction
between threads can only happen via thread actions (and the shared
memory).

Reductions in the single-threaded semantics carry a thread action
as label, i.e., I will adapt the sequential semantics from Chapter 2
accordingly (§3.2). When the interleaving semantics picks a reduction,
it changes the multithreaded state according to the thread action. Note
that these actions are the only means of “communication” between the
two levels. Since this is unidirectional, the interleaving semantics can
transfer information to the single-threaded semantics only by picking
one reduction that the latter offers. Hence, the single-threaded semantics
must anticipate in its reductions all possible answers it is willing to
accept from the interleaving semantics.

Syntax of thread actions

Thread actions are composed of multiple basic thread actions (BTA).
The framework implements 17 different BTAs, which can be split in five
groups. Figure 3.5 shows the type definitions.

Locking Lock acquires a lock once for the current thread t – no other
thread may hold the lock. Unlock releases it once, provided t is
holding it. Release temporarily releases the lock if t holds it, and has
no effect otherwise. UnlockFail tests whether t does not hold a lock,
i.e., unlocking it would fail. There is no counterpart to UnlockFail
for testing whether a thread holds a lock. This can be simulated by
[Unlock, Lock], because the interleaving semantics picks a reduction
only if the current state satisfies the precondition of all BTAs of the
thread action.

66

3.1. Framework for interleaving semantics

datatype lock-act = Lock | Unlock | UnlockFail | Release
datatype (′t, ′x, ′h) new-thread-act = Spawn ′t ′x ′h | ThreadEx ′t bool
datatype ′t condition-act = Join ′t | Yield
datatype (′t, ′w) wait-set-act =

Suspend ′w |Notify ′w |NotifyAll ′w |WakeUp ′t |Notified |WokenUp
datatype ′t intr-act = Intr ′t | ClearIntr ′t | IsIntrd ′t bool

Figure 3.5: Type definitions for basic thread actions

Thread creation Spawn t x h spawns a new thread with ID t and initial
local state x. There must not yet be a thread with ID t. Later (§3.1.4),
it will be convenient to remember the shared heap h at spawn time.
ThreadEx t b tests whether there is a thread with ID t in the thread
pool, where b :: bool denotes the result.

Condition actions Join t joins on thread t, i.e., t must have terminated
before. Yield causes the current thread to pause temporarily and
allow other threads to execute. Yield is only relevant for schedulers
(§6.3.2).

Wait sets Suspend w inserts the current thread into the wait set w, any
previous assignment is lost. Notify w (NotifyAll w) wakes up one
(all) of the threads in the wait set w, their wait set status becomes
bWS-Notifiedc (see Figure 3.3). If w is empty, no thread is woken up.
WakeUp t changes t’s wait set status to

⌊
WS-WokenUp

⌋
, if it has been

in a wait set before. Otherwise, nothing happens.

Notified and WokenUp label reductions that process the notification
and wake-up for the thread that has been notified or woken up.

Interruption Intr t adds t to the set of interrupted threads; ClearIntr t
removes it. IsIntrd t b tests whether the set of interrupted threads
contains t, i.e., whether t has a pending interrupt; b :: bool denotes
the result.

To remember the lock on which BTAs for locking operate, they are
arranged in a FinFun las :: ′l lock-acts such that the BTAs for lock l are
listed in lasf l. In summary, a thread action consists of a FinFun for the
BTAs for locks and one list for each of the other groups.

67

Chapter 3. Interleaving semantics

type_synonym ′l lock-acts = ′l⇒f lock-act list

type_synonym (′l, ′t, ′x, ′h, ′w, ′o) thread-action =
′l lock-acts× (′t, ′x, ′h) new-thread-act list× ′t condition-act list×
(′t, ′w) wait-set-act list× ′t intr-act list× ′o list

Since thread actions are used as labels for the reductions, they include
a sixth component of type ′o list for further extensions (§4.3.2). The
projection functions 〈ta〉l, 〈ta〉t, 〈ta〉c, 〈ta〉w, 〈ta〉i, and 〈ta〉o extract from
the thread action ta the BTAs for locks, thread creation, conditions, wait
sets, interrupts, and the extension part, respectively.

All BTAs of a thread action are executed in a single reduction; if there
is at least one BTA in the thread action of a reduction whose precondition
is not met, the interleaving semantics does not select the reduction.
Thus, a single-thread semantics can affect and query multiple parts of
the multithreaded state in one step by composing BTAs. Since every
BTA (except Release) affects only one part of the state, the interleaving
semantics remains flexible and the proofs simple.

For example, in Java, a call to the wait method must test that the
thread t has not been interrupted and that it holds the lock l associated
with the receiver object, release the latter, and suspend t to the associated
wait set w. This can be expressed by the following thread action:

((Kf [])(l :=f [Unlock, Lock, Release]),
[], [], [Suspend w], [IsIntrd t False], . . .)

As this notation is cumbersome to read and write, I use a list-like notation
for thread actions, with lock identifiers added to lock BTAs. The Isabelle
parser and pretty printer are set up such that they automatically convert
it into the corresponding thread action. Hence, the above thread action
is written as

LUnlock→l, Lock→l, Release→l, Suspend w, IsIntrd t False, . . .M

Let’s now examine how the thread action achieves its goal. First,
Unlock→l, Lock→l checks that the current thread holds l without effec-
tively changing the lock status. Then, Release→l releases l and Suspend w
adds the thread to the wait set. IsIntrd t False tests that the thread t has
no pending interrupt.

Note that the order of BTAs of the same group (and lock identifier)
is important. For example, LLock→l, Unlock→lM does not alter the lock

68

3.1. Framework for interleaving semantics

upd-L :: ′t lock⇒ ′t⇒ lock-act⇒ ′t lock
upd-L L t Lock = lock-lock L t
upd-L L t Unlock = unlock-lock L
upd-L L t UnlockFail = L
upd-L L t Release = release-lock L t

upd-Ls :: ′t lock⇒ ′t⇒ lock-act list⇒ ′t lock
upd-Ls L t [] = L
upd-Ls L t (la · las) = upd-Ls (upd-L L t la) t las

upd-locks :: (′l, ′t) locks⇒ ′t⇒ ′l lock-acts⇒ (′l, ′t) locks
(upd-locks ls t las)f l = upd-Ls (lsf l) t (lasf l)

Figure 3.6: Update functions of the lock status for lock BTAs

state either, but checks that no other thread holds l. Conversely, BTAs
of different groups are unordered, even though the L. . .M notation might
conjure up the illusion of a total ordering.

Semantics of thread actions

The semantics for BTAs follows their division in groups. For each group,
there are update functions for the affected parts of the multithreaded
states and predicates to check the preconditions.

Lock actions For lock BTAs, Figure 3.6 shows the update functions of
the lock status. The function upd-L maps lock BTAs to the operations
on locks from §3.1.1. Note that UnlockFail does not change the lock
because this BTA only queries the lock status. The functions upd-Ls and
upd-locks lift this function to lists of lock BTAs for a single lock and to
FinFuns for all locks, respectively.

The preconditions for the lock actions are shown in Figure 3.7. These
functions exactly follow the pattern for the update functions: ok-L trans-
lates single BTAs to operations on locks, ok-Ls lifts ok-L to lists, and
ok-locks checks all lists in the lock FinFun of a thread action simultane-
ously. Note how ok-Ls L t (la · las) updates the lock L such that checking
the remaining BTAs las takes the effect of the first BTA la on L into account.

Since the locks that a thread has temporarily released are stored
separately from the lock status, there are update functions for that part,

69

Chapter 3. Interleaving semantics

ok-L :: ′t lock⇒ ′t⇒ lock-act⇒ bool
ok-L L t Lock = may-lock L t
ok-L L t Unlock = has-lock L t
ok-L L t UnlockFail = ¬has-lock L t
ok-L L t Release = True

ok-Ls :: ′t lock⇒ ′t⇒ lock-act list⇒ bool
ok-Ls L t [] = True
ok-Ls L t (la · las) = ok-L L t la∧ ok-Ls (upd-L L t la) t las

ok-locks :: (′l, ′t) locks⇒ ′t⇒ ′l lock-acts⇒ bool
ok-locks ls t las = (∀l. ok-Ls (lsf l) t (lasf l))

Figure 3.7: Preconditions for lock BTAs

upd-trl :: nat⇒ ′t lock⇒ ′t⇒ lock-act⇒ nat
upd-trl n L t Release = n + has-locks L t
upd-trl n L t _ = n

upd-trls :: nat⇒ ′t lock⇒ ′t⇒ lock-act list⇒ nat
upd-trls n L t [] = n
upd-trls n L t (la · las) = upd-trls (upd-trl n L t la) (upd-L L t la) t las

upd-TRL :: ′l tr-locks⇒ (′l, ′t) locks⇒ ′t⇒ ′l lock-acts⇒ ′l tr-locks
(upd-TRL ln ls t las)f l = upd-trls (lnf l) (lsf l) t (lasf l)

Figure 3.8: Update functions for temporarily released locks

too (Figure 3.8), which follow the same pattern. Remember that for
a fixed lock ID, the state of the temporarily released locks is just the
number of times the thread had held it.

Thread creation actions For thread creation BTAs, the functions upd-thr
and upd-thrs update the thread pool (Figure 3.9). Spawned threads
are stored under their thread ID with the initial state given in the BTA
and no temporarily released locks. The predicates ok-thr and ok-thrs
check the preconditions (Figure 3.10), i.e., t is a free thread ID for
Spawn t x m, and b in ThreadEx t b expresses whether t is not a free
thread ID. Thread IDs are free iff they are not in the domain of the thread
pool map.

70

3.1. Framework for interleaving semantics

upd-thr :: (′l, ′t, ′x) tpool⇒ (′t, ′x, ′h) new-thread-act⇒ (′l, ′t, ′x) tpool
upd-thr ts (Spawn t x m) = ts(t 7→ (x, Kf 0))
upd-thr ts (ThreadEx t b) = ts

upd-thrs ::
(′l, ′t, ′x) tpool⇒ (′t, ′x, ′h) new-thread-act list⇒ (′l, ′t, ′x) tpool

upd-thrs ts [] = ts
upd-thrs ts (nt · nts) = upd-thrs (upd-thr ts nt) nts

Figure 3.9: Update functions for thread creation BTAs

free-thread-id :: (′l, ′t, ′x) tpool⇒ ′t⇒ bool
free-thread-id ts t = (ts t = None)

ok-thr :: (′l, ′t, ′x) tpool⇒ (′t, ′x, ′h) new-thread-act⇒ bool
ok-thr ts (Spawn t x m) = free-thread-id ts t
ok-thr ts (ThreadEx t b) = (b , free-thread-id ts t)

ok-thrs :: (′l, ′t, ′x) tpool⇒ (′t, ′x, ′h) new-thread-act list⇒ bool
ok-thrs ts [] = True
ok-thrs ts (nt · nts) = ok-thr ts nt∧ ok-thrs (upd-thr ts nt) nts

Figure 3.10: Preconditions for thread creation BTAs

Note that Spawn t x m has the same precondition as ThreadEx t False,
which seems redundant at first sight. However, this redundancy sim-
plifies the theorems and proofs because Spawn BTAs cannot override
existing threads. Hence, I do not have to formalise that a thread action
tests whether a thread t exists before it spawns t.

Condition actions Condition actions do not affect the multithreaded
state. Hence, there are no update functions, but only predicates for the
preconditions, see Figure 3.11. A thread t successfully joins on the thread
t′ iff

• t′ has not yet been started, i.e., thr s t = None, or

• t′ is not the executing thread itself, t′ has been fully evaluated, not
temporarily released any locks and is not in any wait set.

71

Chapter 3. Interleaving semantics

locale final-thread = fixes final :: ′x⇒ bool

ok-cond :: (′l, ′t, ′x, ′h, ′w) state⇒ ′t⇒ ′t condition-act⇒ bool
ok-cond s t (Join t′) =

case thr s t′ of None ⇒ True
|
⌊
(x, ln)

⌋
⇒ t , t′ ∧ final x∧ ln = Kf 0∧wset s t′ = None

ok-cond s t Yield = True

ok-conds :: (′l, ′t, ′x, ′h, ′w) state⇒ ′t⇒ ′t condition-act list⇒ bool
ok-conds s t cas = (∀ca ∈ set cas. ok-cond s t ca)

Figure 3.11: Predicates for condition actions

The predicate final on the thread-local state determines if t′ has been
fully evaluated. For modularity, final is an implicit parameter to ok-cond
which source code and bytecode will instantiate (§3.2.2 and §3.2.3). In
Isabelle, I use the locale declaration to hide the final parameter.

The predicate ok-conds lifts ok-cond to lists cas. As there is no update
function, it merely conjoins the preconditions of all actions in cas.

Wait set actions For updating the wait sets, I define the relation t `
ws =wa⇒ ws′ where t denotes the executing thread, ws and ws′ the
original and successor wait sets, and wa the wait set action to be executed.
Unlike the other update functions, it is a relation, because Notify w
non-deterministically picks one thread t′ from the wait set.10 The rules
in Figure 3.12 implement the wait set automaton from Figure 3.3. For
Notify w, the update relation removes one arbitrary thread t′ from w if
there is any. In contrast, WakeUp t′ is deterministic as it removes t′ from
any wait set it has been suspended to. The BTAs Notified and WokenUp
reset t’s wait set status to None for normal execution.

As before, I lift _ ` _ =_⇒ _ to lists of BTAs. To that end, I define
the reflexive, transitive closure r∗∗∗ :: ′a⇒ ′b list⇒ ′a⇒ bool of a ternary
relation r :: ′a⇒ ′b⇒ ′a⇒ bool as

r∗∗∗ a [] a
r∗∗∗ a bs a′ r a′ b a′′

r∗∗∗ a (bs @ [b]) a′′

10I model this as a non-deterministic relation rather than an underspecified function,
using, e.g., Hilbert’s choice operator, because the code generator cannot deal with this kind
of underspecification (§6.4).

72

3.1. Framework for interleaving semantics

t ` ws =Suspend w⇒ ws(t 7→ InWS w)

ws t′ = bInWS wc

t ` ws =Notify w⇒ ws(t′ 7→WS-Notified)

∀t′. ws t′ , bInWS wc

t ` ws =Notify w⇒ ws

t ` ws =NotifyAll w⇒
λt. if ws t = bInWS wc then bWS-Notifiedc else ws t

ws t′ = bInWS wc

t ` ws =WakeUp t′⇒
ws(t′ 7→WS-WokenUp)

∀w. ws t′ , bInWS wc

t ` ws =WakeUp t′⇒ ws

t ` ws =Notified⇒ ws(tBNone) t ` ws =WokenUp⇒ ws(tBNone)

Figure 3.12: Update relation for wait sets

Then, t ` _ [=_⇒] _ is the reflexive, transitive closure of t ` _ =_⇒ _,
i.e., the former folds the latter over a list of wait set actions.

Unlike the other BTAs, the ones for wait sets do not have indi-
vidual preconditions on the state. Rather, bNotifiedc and

⌊
WokenUp

⌋
characterise reductions of t that are meant to process notifications and
interruptions. The predicate ok-wsets formalises that such reductions
require the wait set status to be bWS-Notifiedc and

⌊
WS-WokenUp

⌋
,

respectively, and all other reductions require the wait set status to be
None.

ok-wsets ws t was =
if Notified ∈ set was then ws t = bWS-Notifiedc
else if WokenUp ∈ set was then ws t =

⌊
WS-WokenUp

⌋
else ws t = None

In particular, the rules for _ ` _ =Notified⇒ _ and _ ` _ =WokenUp⇒ _
in Figure 3.12 are applicable unconditionally.

Interrupt actions Figure 3.13 defines the update functions upd-int
and upd-ints and predicates ok-intr and ok-intrs for interrupt actions.
The interleaving semantics merely manages the set of interrupts, but it
attaches no specific behaviour to them, nor does it impose any form of

73

Chapter 3. Interleaving semantics

upd-int :: ′t intrs⇒ ′t intr-act⇒ ′t intrs
upd-int is (Intr t) = is∪ { t }
upd-int is (ClearIntr t) = is− { t }
upd-int is (IsIntrd t b) = is

upd-ints :: ′t intrs⇒ ′t intr-act list⇒ ′t intrs
upd-ints is [] = is
upd-ints is (ia · ias) = upd-ints (upd-int is ia) ias

ok-intr :: ′t intrs⇒ ′t intr-act⇒ bool
ok-intr is (IsIntrd t b) = (b = (t ∈ is))
ok-intr is (Intr t) = True
ok-intr is (ClearIntr t) = True

ok-intrs :: ′t intrs⇒ ′t intr-act list⇒ bool
ok-intrs is [] = True
ok-intrs is (ia · ias) = ok-intr is ia∧ ok-intrs (upd-int is ia) ias

Figure 3.13: Update functions and predicates for interruption BTAs

access control. Note that Intr and ClearIntr have no preconditions, they
can change the interrupts of any thread, even non-existing ones. IsIntrd
tests for pending interrupts similar to ThreadEx for thread existence.

As all BTAs in a thread action must be checked and executed in one
step, it is straight-forward to implement a compare-and-swap operation
on the interrupt status: For example, LIsIntrd t True, ClearIntr tM checks
that t is interrupted and clears it atomically.

Thread actions Now, I combine all the update functions and predicates
for basic thread actions into a single one for thread actions. ok-ta checks
the preconditions of all five groups, and upd-ta combines the update
functions, except for upd-TRL, which the interleaving semantics will
apply directly when it updates the thread-local state.

ok-ta :: (′l, ′t, ′x, ′h, ′w) state⇒ ′t⇒ (′l, ′t, ′x, ′h, ′w, ′o) thread-action⇒ bool
ok-ta s t ta = ok-locks (locks s) t 〈ta〉l ∧ ok-thrs (thr s) 〈ta〉t ∧

ok-conds s t 〈ta〉c ∧ ok-wsets (wset s) t 〈ta〉w ∧ (3.1)
ok-intrs (intrs s) 〈ta〉i

74

3.1. Framework for interleaving semantics

upd-ta :: (′l, ′t, ′x, ′h, ′w) state⇒ ′t⇒ (′l, ′t, ′x, ′h, ′w, ′o) thread-action
⇒(′l, ′t, ′x, ′h, ′w) state

ls′ = upd-locks ls t 〈ta〉l ts′ = upd-thrs ts 〈ta〉t
t ` ws [=〈ta〉w⇒] ws′ is′ = upd-ints is 〈ta〉i
upd-ta (ls, (ts, h), ws, is) t ta (ls′, (ts′, h), ws′, is′)

Design considerations

I have designed the basic thread actions such that each depends on
and affects only one part of the state, if possible. This also guided the
partitioning of the multithreaded state into five components. I store
locks separately from threads because all threads need to access them.
The locks that a thread has released temporarily, however, are local to
the thread and thus stored together with its local state in the thread pool.
As Notify and WakeUp modify the wait set status of other threads, the
wait set status is split off the thread pool in a separate map. The interrupt
status of a thread is like a global variable that all threads can access and
modify. Thus, it could also have been part of the shared heap, which the
single-threaded semantics manages. However, I model it explicitly in
the interleaving semantics because interruption is relevant for deadlocks
(see §3.3).

The multithreaded state must satisfy simultaneously the precondi-
tions of all BTAs of which a thread action is composed. This is a powerful
means to the single thread semantics to express preconditions for certain
reductions. In fact, it is more expressive than what I need for Java threads.
For example, no thread simultaneously joins on a thread and spawns a
new thread. Thus, I am free to define the semantics of combining BTAs
such that proofs are as modular and simple as possible. For example,
the preconditions of the different parts of a thread action are checked
independently on the original state (3.1).

3.1.3 Interleaving semantics

In this section, I put everything together that I have defined so far to
obtain the interleaving semantics in the framework. It takes the single-
threaded semantics as a parameter r :: (′l, ′t, ′x, ′h, ′w, ′o) semantics which
source and bytecode will instantiate accordingly (§3.2).

75

Chapter 3. Interleaving semantics

Normal

thr s t =
⌊
(x, Kf 0)

⌋
t ` (x, shr s) −ta→ (x′, h′)

ok-ta s t ta upd-ta s t ta (ls′, (ts′, h), ws′, is′)
s′ = (ls′, (ts′(t 7→ (x′, upd-TRL ls t (Kf 0) 〈ta〉l)) , h′), ws′, is′)

s−t:ta→ s′

Acquire

thr s t =
⌊
(x, ln)

⌋
ln , Kf 0

¬waiting (wset s t) may-acquire-TRL (locks s) t ln

s−t:(Kf [], [], [], [], [], acq-events ln)→ upd-acq s t x ln

Figure 3.14: Reductions in the interleaving semantics

type_synonym (′l, ′t, ′x, ′h, ′w, ′o) semantics =
′t⇒ ′x× ′h⇒ (′l, ′t, ′x, ′h, ′w, ′o) thread-action⇒ ′x× ′h⇒ bool

In Isabelle, the locale multithreaded-base fixes the parameters f inal
(inherited from final-thread), r, and acq-events:

locale multithreaded-base = final-thread +
fixes r :: (′l, ′t, ′x, ′h, ′w, ′o) semantics (_ ` _−_→ _)
and acq-events :: ′l tr-locks⇒ ′o list

(3.2)

A single-step reduction r t (x, h) ta (x′, h′) is written t ` (x, h)−ta→ (x′, h′).
It denotes that the thread with ID t can atomically reduce in the thread-
local state x with shared heap h to the thread-local state x′ with the new
heap h′ with thread action ta.

The last parameter acq-events of the locale produces the label (i.e.,
the sixth component of a thread action) for when a thread reacquires its
temporarily released locks. Although these labels only become relevant
in Chapter 4, I include them in the formalisation now such that I do not
have to adapt the definitions later.

Figure 3.14 shows the definition of the atomic steps of the interleaving
semantics redT (with syntax s−t:ta→ s′). The reductions of the interleav-
ing semantics carry the ID t of the executing thread and the executed
thread action ta as label.

Normal injects the atomic steps of the threads into the interleaving
semantics. Given a thread t with local state x and without any temporarily
released locks (Kf 0), if t can reduce with the shared heap shr s to x′

and h′ with thread action ta, the interleaving semantics tests whether

76

3.1. Framework for interleaving semantics

ta’s preconditions are met and, if so, applies ta’s effects to the state. In
this new state, it updates t’s local state to x′ and its temporarily released
locks, and the shared heap to h′, which yields the successor state.

The other rule Acquire reacquires the locks ln that a thread has tem-
porarily released. Suppose t is a thread which has temporarily released
some locks, i.e., ln , Kf 0, and is not in a wait set, i.e., ¬waiting (wset s t).
The predicate may-acquire-TRL :: (′l, ′t) locks⇒ ′t⇒ ′l tr-locks⇒ bool
tests whether t may acquire all of its temporarily released locks.

may-acquire-TRL ls t ln = (∀l. lnf l > 0 −→ may-lock ls t l)

If so, acquire-TRL :: (′l, ′t) locks⇒ ′t⇒ ′l tr-locks⇒ (′l, ′t) locks updates
the lock state accordingly.

(acquire-TRL ls t ln)f l = acquire-lock (lsf l) t (lnf l)

This produces the multithreaded state

(acquire-TRL (locks s) t ln, ((thr s)(t 7→ (x, Kf 0)) , shr s),
wset s, intrs s)

which I abbreviate as upd-acq s t x ln. Note that t’s multiset of temporarily
released locks is now empty. This reduction step carries as label the
thread ID and a thread action without any BTAs, but the third parameter
acq-events of the locale determines the last component of the thread
action – I will define it in §4.3.2.

Reductions in the reflexive and transitive closure redT∗∗∗ of the inter-
leaving semantics are written as s−ttas→∗ s′. The list ttas, which has the
type (′t × (′l, ′t, ′x, ′h, ′w, ′o) thread-action) list, collects all the labels, i.e.,
thread ID and thread action, of the individual steps.

A thread is final iff its local state is final, its multiset of temporarily
released locks is empty, and its wait set status is None, i.e., neither is it in
a wait set, nor has it been removed from one without having processed
the removal. final-threads s denotes the set of all final threads in the
multithreaded state s. s itself is final (written mfinal s) iff all threads are
final.

thr s t =
⌊
(x, Kf 0)

⌋
final x wset s t = None

t ∈ final-threads s

mfinal s = (dom (thr s) ⊆ final-threads s)

77

Chapter 3. Interleaving semantics

The locale multithreaded-base imposes no assumptions on its param-
eters, but for the interleaving semantics to work correctly, the single-
threaded semantics must be well-behaved. The locale multithreaded
collects the most fundamental constraints.

locale multithreaded = multithreaded-base +
assumes final-no-red : Jt ` (x, h) −ta→ (x′, h′); final xK =⇒ False
and Spawn-heap :

Jt ` (x, h) −ta→ (x′, h′); Spawn t′′ x′′ h′′ ∈ set 〈ta〉tK =⇒ h′′ = h′

final-no-red expresses that final states are final, i.e., they cannot reduce any
further. For proofs, it is convenient to remember the shared heap at the
time when a thread is spawned (see §3.1.4 and §5.1.3). The assumption
Spawn-heap imposes that the shared heap in the BTAs indeed remembers
the shared heap at spawn time.

final-no-red also implies that m f inal states are final:

Lemma 3.1. If mfinal s, then there are no t, ta, s′ such that s−t:ta→ s′.

3.1.4 Infrastructure for well-formedness constraints

Many theorems about the single-threaded semantics impose constraints
on the state. For example, subject reduction (Theorem 2.2) requires
conformance of the state, and progress (Theorem 2.1) requires definite
assignment and heap conformance. For type safety, one must show that
the semantics preserves these constraints (Lemmata 2.2 and 2.1 for state
conformance and definite assignment, respectively). I now define the
machinery to transfer such constraints and their preservation lemmata
to the multithreaded semantics at little cost.

Thread-local predicates

Suppose that the predicate Q :: ′t⇒ ′x⇒ ′h⇒ bool denotes such a con-
straint. The operator ↑_↑ lifts Q to a predicate of type (′l, ′t, ′x) tpool⇒
′h⇒ bool on the thread pool and shared heap such that ↑Q↑ imposes Q
on all threads in the thread pool.

↑Q↑ ts h = (∀t. case ts t of None⇒ True |
⌊
(x, ln)

⌋
⇒ Q t x h)

In the case of definite assignment, e.g., Q = (λt (e, xs) h.D e bdom xsc),
since the definite assignment check D (§2.1.4) only depends on the

78

3.1. Framework for interleaving semantics

locale lifting-wf = multithreaded +
fixes Q :: ′t⇒ ′x⇒ ′h⇒ bool
assumes preserves-red : Jt ` (x, h) −ta→ (x′, h′); Q t x hK =⇒ Q t x′ h′

and preserves-Spawn :
Jt ` (x, h) −ta→ (x′, h′); Q t x h; Spawn t′′ x′′ h′ ∈ set 〈ta〉tK
=⇒ Q t′′ x′′ h′

and preserves-other :
Jt ` (x, h) −ta→ (x′, h′); Q t x h; Q t′′ x′′ hK =⇒ Q t′′ x′′ h′

Figure 3.15: Definition of locale lifting-wf

thread-local state, which has type expr × locals in source code. Then,
↑Q↑ ts h denotes that all threads in the thread pool ts assign to all local
variables before they are used provided that all variables in the thread’s
local store have already been initialised.

To transfer the preservation lemma to the multithreaded state, I
define the locale lifting-wf (see Figure 3.15). It fixes the constraint Q and
assumes that

1. single-thread reductions preserves Q (preserves-red),

2. Q holds for new threads at the time of creation (preserves-Spawn),
and

3. Q is preserved even if another thread, which also satisfies Q,
changes the shared heap in a reduction (preserves-other).

Under these assumptions, the interleaving semantics preserves ↑Q↑.

Lemma 3.2 (Preservation for ↑_↑). Let ↑Q↑ (thr s) (shr s). If s−t:ta→ s′

or s−ttas→∗ s′, then ↑Q↑ (thr s′) (shr s′), too.

Reconsider the definite assignment example. Lemma 2.1 discharges
the first assumption of lifting-wf. As a spawned thread executes the run
method of the associated Thread object, the well-formedness constraints
for source code (§2.1.4) ensure preserves-Spawn. The last assumption
preserves-other is vacuous for D because D does not depend on the
heap.

79

Chapter 3. Interleaving semantics

Thread-local predicates with additional data

Some predicates on the thread level also need additional data, which is
thread-specific, but invariant, e.g., a typing environment for the local
store. I model such extra invariant data as maps from thread IDs to some
type ′i. Now, let Q :: ′i⇒ ′t⇒ ′x⇒ ′h⇒ bool also include the invariant
data. The operator ⇑Q⇑ lifts Q to thread pools similar to ↑_↑.

⇑Q⇑ I ts h =

(∀t. case ts t of None⇒ True |
⌊
(x, ln)

⌋
⇒ ∃i. I t = bic ∧Q i t x h)

where I :: ′t⇀ ′i is a map to invariant data. Such a map I is well-formed
with respect to the thread pool ts (written ts `i I) iff their domains are
equal.

In the case of state conformance from §2.1.6, for example, I stores the
typing environment E for the thread’s local store. Hence, the constraint
is λE t (e, xs) h. P, E ` (h, xs)

√
.

Let I(nts Q) denote the extension of I with invariant data for
threads spawned in nts. For all Spawn t x h ∈ set nts, I(nts Q) updates
I at t to εi. Q i t x h.

I([] Q) = I
I(Spawn t x h · nts Q) = (I(t 7→ εi. Q i t x h))(nts Q)
I(ThreadEx t b · nts Q) = I(nts Q)

(3.3)

For labels ttas of the reflexive and transitive closure _ −_→∗ _ , let
I(ttas [] Q) denote the extension

I(concat (map (λ(t, ta). 〈ta〉t) ttas) Q).

The term map (λ(t, ta). 〈ta〉t) ttas extracts all thread creation BTAs from
ttas, concat combines them in one list. The extension preserves well-
formedness of maps to invariant data.

Lemma 3.3. Suppose thr s `i I. If s−t:ta→ s′, then thr s′ `i I(〈ta〉t Q). If
s−ttas→∗ s′, then thr s′ `i I(ttas [] Q).

Equation 3.3 shows why it is necessary to remember the shared heap
in Spawn actions. _(_ Q) must know the heap at spawn time to
choose the right invariant data, because it may depend on the heap at

80

3.1. Framework for interleaving semantics

creation time. Since the transitive, reflexive closure discards the heaps of
intermediate steps, I must store it in the thread actions.11

Similarly to lifting-wf, the locale lifting-inv collects the assump-
tions for lifting the preservation theorems. The main difference is that
lifting-inv existentially quantifies over the invariant data for spawned
threads. In fact, lifting-wf is just the special case of lifting-inv with the
constraint instantiated to λ_. Q.

locale lifting-inv = multithreaded +
fixes Q :: ′i⇒ ′t⇒ ′x⇒ ′h⇒ bool
assumes Jt ` (x, h) −ta→ (x′, h′); Q i t x hK =⇒ Q i t x′ h′

and Jt ` (x, h) −ta→ (x′, h′); Q i t x h; Spawn t′′ x′′ h′ ∈ set 〈ta〉tK
=⇒ ∃i′′. Q i′′ t′′ x′′ h′

and Jt ` (x, h) −ta→ (x′, h′); Q i t x h; Q i′′ t′′ x′′ hK =⇒ Q i′′ t′′ x′′ h′

Analogous to Lemma 3.2, the next lemma shows that these assumptions
are sufficient for the interleaving semantics preserving ⇑Q⇑.

Lemma 3.4 (Preservation for ⇑_⇑). Suppose that ⇑Q⇑ I (thr s) (shr s).

(i) If s−t:ta→ s′, then ⇑Q⇑ I(〈ta〉t Q) (thr s′) (shr s′).

(ii) If s−ttas→∗ s′, then ⇑Q⇑ I(ttas [] Q) (thr s′) (shr s′).

General invaraints

The above machinery works only for constraints that depend on the
thread-local state and the shared heap only, but some lemmata need to
impose constraints on the complete state. I have not developed any setup
for such cases, but deal with them on a per-case basis. Nevertheless,
I define a predicate invariant to succinctly express preservation for
arbitrary ternary relations r and sets of states invar, i.e., that invar is
r-closed:

invariant r invar = (∀a b a′. a ∈ invar −→ r a b a′ −→ a′ ∈ invar)

Lemma 3.5. Let a ∈ invar and invariant r invar. If r a b a′ or r∗∗∗ a bs a′,
then a′ ∈ invar.

11Alternatively, one might try to choose the invariant data for spawned heaps w.r.t. to
some underspecified intermediate heap. In that case, transitivity of _ −_→∗ _ does not
carry over to extensions because the possible intermediate heaps may change. But with
the above approach, I(nts @ nts′ Q) = I(nts Q)(nts′ Q) holds.

81

Chapter 3. Interleaving semantics

3.2 Multithreading in JinjaThreads

The framework for interleaving semantics from the previous section
leaves the single-threaded semantics abstract. In this section, I define the
single-threaded semantics for source code (§3.2.2) and bytecode (§3.2.3),
which are adaptations and extensions of the sequential semantics from
§2.1.5 and §2.2.2, respectively. They describe the full behaviour of a
single thread, including all synchronisation and communication with
other threads, e.g., via thread actions. Hence, I present how to imple-
ment Java concurrency in terms of thread actions. The multithreaded
semantics of source code and bytecode specialises the framework for
interleaving semantics with the respective single-threaded semantics.
Since Java provides most synchronisation as native methods, I define
them first (§3.2.1) such that source code and bytecode can share their
implementation.

3.2.1 Native methods for synchronisation

This section concentrates on the multithreading features that Java pro-
vides via method calls. I implement them as native methods, reusing
the formalism for native methods in sequential JinjaThreads from §2.1.3
and §2.1.5.

Signatures I add to the signatures for native methods from (2.3) the
signatures shown in Figure 3.16. The first group of four are the methods
of Thread for (i) spawning (start), (ii) joining on (join), (iii) interrupting
(interrupt), and (iv) testing for interruption (isInterrupted) of a thread.

The second group of methods consists of static methods in class
Thread in Java. Since JinjaThreads lacks static methods, I moved them to
class Object such that they can be called from every method via the this
pointer.12 They all operate on the current thread: currentThread returns
the associated object, interrupted checks and clears the interrupt status,
and yield advises the scheduler to schedule other threads if possible.

The last group declares Object’s methods for the wait-notify-mecha-
nism.

12To ensure that this change does not affect method lookup, the method names
currentThread, interrupted, and yield internally use characters that do not occur in
normal Java method names.

82

3.2. Multithreading in JinjaThreads

Thread.start([]) :: Void
Thread.join([]) :: Void
Thread.interrupt([]) :: Void
Thread.isInterrupted([]) :: Boolean

Object.currentThread([]) :: Class Thread
Object.interrupted([]) :: Boolean
Object.yield([]) :: Void

Object.wait([]) :: Void
Object.notify([]) :: Void
Object.notifyAll([]) :: Void

Figure 3.16: Signatures of native methods for Java concurrency

Recording thread interaction Before I present the semantics for the
new native methods, I define the sixth component (of type ′o list in the
interleaving semantics) of thread actions, although they will become
relevant only in Chapter 4. During this chapter, they may be safely
ignored. I introduce them now to include them in the semantics rules
such that I do not have to change them later on.

The JinjaThreads semantics instantiate ′o to the HOL type event,
which records the heap operations and synchronisation events of a
thread; Table 3.1 describes the elements. Although some of the syn-
chronisation events are similar to BTAs, I keep them separate such that
thread interactions for implementing correct interleaving are clearly
distinguished from synchronisation that is relevant for the memory
model. For example, SUnlock represents the effects of releasing a lock
on the shared memory; these are independent of how often a thread
actually releases the lock using Unlock or Release BTAs. For a detailed
discussion, see §4.3.1 and §4.3.2.

Well-formedness Concurrency needs three additional system excep-
tions. Hence, I append IllegalThreadState, IllegalMonitorState, and
InterruptedException to sys-xcpts from Equation 2.1. Consequently,
generic well-formedness requires that every program declares them as
subclasses of Throwable (cf. Figure 2.9). Moreover, wf-syscls P now
also requires that P declare the class Thread, and wf-cdecl demands that

83

Chapter 3. Interleaving semantics

event description

he
ap

Read a al v read v from member al of address a
Write a al v write v to member al of address a
Allocate a hT allocate address a for type information hT
New-Obj a C abbreviation for Allocate a (ClassT C)
New-Arr a T n abbreviation for Allocate a (ArrayT T n)

sy
nc

hr
on

is
at

io
n

TStart t spawn thread t
TJoin t join thread t
SLock a acquire lock a at least once
SUnlock a release lock a at least once
TIntr t interrupt thread t
TIntrd t determine that the thread t has been interrupted
Extern a M vs v call to external method M on a with parameters

vs and return value v, e.g., for printing

Table 3.1: Events record memory and synchronisation operations of a thread

Thread declare a run method without parameters and with return type
Void, i.e.,

C = Thread −→ (∃m. (run, [], Void, m) ∈ set ms)

is added conjunctively to wf-cdecl w f -md P (C, D, f s, ms) in Figure 2.9.

Semantics To implement the new native methods, I extend the seman-
tics for native methods P, t ` 〈a.M(vs), h〉 −ta→nc 〈va, h′〉. Note that the
semantics now takes the thread ID t of the executing thread as an addi-
tional parameter and carries a thread action ta as label. The former rules
from Figure 2.12 are adapted accordingly. They also take the thread ID,
but ignore it; their thread action label only records the heap interaction
(see §4.1.2 for details), i.e., it is of the form L. . .M where . . . is a list of events.

Now, I must also specify how source code and bytecode instantiate
type variables in the interleaving semantics. Addresses (HOL type
addr) identify locks (type variable ′l) and wait sets (′w), because every
object has one monitor and one wait set. The heap becomes the shared
memory (′h). For thread IDs (′t), I use the opaque type thread-id with
the operations a2t :: addr⇒ thread-id and t2a :: thread-id⇒ addr for

84

3.2. Multithreading in JinjaThreads

now – later, thread IDs and addresses will be the same (§4.2, §4.3.2).
a2t converts addresses of objects of (subclasses of) Thread into their
associated thread ID, and t2a is a2t’s left inverse on addresses at which
such objects may be allocated.13 I defer instantiating the thread-local
state (′x) because it differs between source code and bytecode.

The JLS specifies the native methods from Figure 3.16 only incom-
pletely or not at all. Hence, I relied on the Java API [76] and, in case
the JLS and API are ambiguous, on test runs of the Java HotSpot VM,
version 1.6.0_22. The latter cases are marked as such.

Figure 3.17 shows the rules for the native methods of Thread, all of
which carry the preconditions typeof-addr h a = bClassT Cc, P ` C �∗

Thread, and – except for StartFail and JoinIntr – t′ = a2t a. I have
omitted them for conciseness.

Rule Start spawns a new thread which is associated with the receiver
object. The new thread is to execute the run method of the receiver object.
Since both source code and bytecode build on the semantics of native
methods, Start cannot include the concrete initial state of the new thread
in the Spawn BTA, because their state representations differ. Instead, it
specifies to execute (without parameters) the run method that class C sees
with receiver object a. The semantics for source code and bytecode has
to convert this into the state representation as required. If the thread has
already been started, StartFail raises an IllegalThreadState exception.

The join method waits for the receiver thread to terminate, so Join
includes the basic thread action Join t′ where t′ = a2t a. However,
the API specifies that join first has to test whether the current thread t
has not been interrupted. Otherwise, it raises an InterruptedException
(JoinIntr). Note that the interleaving semantics picks the reductions
Join or JoinIntr only if their thread action’s precondition is satisfied. In
particular, if t′ is not final and t is not interrupted, the call to join gets
stuck until either t′ terminates or t gets interrupted.

Although the implementation of class Thread in Sun’s and Oracle’s
JDK SE 6 declares (and has always declared in previous versions) the
methods start and join as synchronized, neither the JLS nor the API
require this. Hence, none of the rules for start and join includes Lock
and Unlock actions, because such synchronisation would erroneously
hide data races, which the Java memory model in §4.3 is about.

13This restriction may seem overly complicated, because any object may be allocated
at any address in the current heap model (see §2.1.5). However, it is relevant for more
elaborated ones, e.g., when addresses store the thread’s ID that allocated it.

85

Chapter 3. Interleaving semantics

Start: P, t ` 〈a.start([]), h〉 −LSpawn t′ (C, run, a) h, TStart t′M→nc
〈Ret-Val Unit, h〉

StartFail: P, t ` 〈a.start([]), h〉 −LThreadEx (a2t a) TrueM→nc
〈Ret-sys-xcpt IllegalThreadState, h〉

Join: P, t ` 〈a.join([]), h〉 −LJoin t′, IsIntrd t False, TJoin t′M→nc
〈Ret-Val Unit, h〉

JoinIntr: P, t ` 〈a.join([]), h〉 −LIsIntrd t True, ClearIntr t, TIntrd tM→nc
〈Ret-sys-xcpt InterruptedException, h〉

Intr: P, t ` 〈a.interrupt([]), h〉
−LThreadEx t′ True, WakeUp t′, Intr t′, TIntr t′M→nc
〈Ret-Val Unit, h〉

IntrInex: P, t ` 〈a.interrupt([]), h〉 −LThreadEx t′ FalseM→nc
〈Ret-Val Unit, h〉

isIntrdT: P, t ` 〈a.isInterrupted([]), h〉 −LIsIntrd t′ True, TIntrd t′M→nc
〈Ret-Val (Bool True), h〉

isIntrdF: P, t ` 〈a.isInterrupted([]), h〉 −LIsIntrd t′ FalseM→nc
〈Ret-Val (Bool False), h〉

Figure 3.17: Semantics of native methods of class Thread. All rules additionally
have the premises typeof-addr h a = bClassT Cc, P `C�∗ Thread, and – except
for StartFail and JoinIntr – t′ = a2t a.

When a thread interrupts another thread t′ through the interrupt
method (Intr), t′ is removed from any wait set (BTA WakeUp t′) and its
interrupt status is set (BTA Intr t′), if t′ already exists as a thread in the
thread pool (BTA ThreadEx t′ True). However, if t′ is merely a Thread
object which has not yet been started, the call to interrupt has no effect
(IntrInex). The isInterrupted method returns the interrupt status of the
receiver thread t′ = a2t a (isIntrdT and isIntrdF).

Figure 3.18 shows the rules for static native methods of Thread. A
call to currentThread returns the address of the object associated with the
current thread (CurrTh). It uses the function t2a to convert the thread
ID t into the address of the associated object. The interrupted method
returns and clears the interrupt status of the executing thread (IntrdT

86

3.2. Multithreading in JinjaThreads

CurrTh: P, t ` 〈a.currentThread([]), h〉 −LM→nc
〈Ret-Val (Addr (t2a t)), h〉

IntrdT: P, t ` 〈a.interrupted([]), h〉
−LIsIntrd t True, ClearIntr t, TIntrd tM→nc
〈Ret-Val (Bool True), h〉

IntrdF: P, t ` 〈a.interrupted([]), h〉 −LIsIntrd t FalseM→nc
〈Ret-Val (Bool False), h〉

Yield: P, t ` 〈a.yield([]), h〉 −LYieldM→nc 〈Ret-Val Unit, h〉

Figure 3.18: Static native methods of Thread, implemented as methods of Object

and IntrdF). Calling yield simply emits the BTA Yield (Yield), which
tells the scheduler to schedule another thread.

The rules for wait, notify, and notifyAll are more complicated (Fig-
ure 3.19). I start with notify and notifyAll. A call to either of them first
tests via Unlock→a, Lock→a whether the current thread has locked the
receiver object’s monitor a, without changing a’s lock state. If so, it emits
the BTA Notify a or NotifyAll a, respectively (Ntf and NtfAll). Other-
wise, UnlockFail→a checks that the thread does not hold the lock; rules
NtfFail and NtfAllFail then raise an IllegalMonitorState exception.

I now explain the rules for wait from Figure 3.19 by going through
Figure 3.20. It shows the individual steps to execute the call to wait as
state transitions. Every state is defined by four relevant components
which the legend at the bottom explains. The transitions are labelled
by the rules that generate them – solid lines are t’s steps, dashed lines
denote reductions of other threads. From the three inital states at the
top, the transitions lead to what the call returns, i.e., Unit or a system
exception. Note how the transitions from the initial state in the centre
step through the wait set automaton from Figure 3.3.

If the thread does not hold the lock on a (top left state), WaitFail
raises an IllegalMonitorState exception. If t does hold the lock, wait tests
whether t has a pending interrupt.14 If so (top right state), WaitIntrd1
clears it and raises an InterruptedException.

14Neither the JLS [56, Ch. 17.8] nor the Java API [76] specify whether wait first tests for
interrupts or for the lock on the monitor. JinjaThreads follows the HotSpot VM, which
tests for the lock state first.

87

Chapter 3. Interleaving semantics

Ntf: P, t ` 〈a.notify([]), h〉 −LUnlock→a, Lock→a, Notify aM→nc
〈Ret-Val Unit, h〉

NtfFail: P, t ` 〈a.notify([]), h〉 −LUnlockFail→aM→nc
〈Ret-sys-xcpt IllegalMonitorState, h〉

NtfAll: P, t ` 〈a.notifyAll([]), h〉
−LUnlock→a, Lock→a, NotifyAll aM→nc
〈Ret-Val Unit, h〉

NtfAllFail: P, t ` 〈a.notifyAll([]), h〉 −LUnlockFail→aM→nc
〈Ret-sys-xcpt IllegalMonitorState, h〉

WaitFail: P, t ` 〈a.wait([]), h〉 −LUnlockFail→aM→nc
〈Ret-sys-xcpt IllegalMonitorState, h〉

WaitIntrd1: P, t ` 〈a.wait([]), h〉
−LUnlock→a, Lock→a,

IsIntrd t True, ClearIntr t, TIntrd tM→nc
〈Ret-sys-xcpt InterruptedException, h〉

Wait: P, t ` 〈a.wait([]), h〉
−LSuspend a, Unlock→a, Lock→a, Release→a,

IsIntrd t False, SUnlock aM→nc
〈Ret-Unchanged, h〉

WaitNtfd: P, t ` 〈a.wait([]), h〉 −LNotifiedM→nc 〈Ret-Val Unit, h〉

WaitIntrd2: P, t ` 〈a.wait([]), h〉 −LWokenUp, ClearIntr t, TIntrd tM→nc
〈Ret-sys-xcpt InterruptedException, h〉

Figure 3.19: Semantics of the native methods wait, notify, and notifyAll

Otherwise, the thread is in the top state in the centre, i.e., t holds the
lock on a, it has not temporarily released any locks, its wait set status
is None and it is not interrupted. Then, Wait suspends t to a’s wait set
and temporarily releases all locks on a. Whether t will be interrupted
or notified determines whether wait should return normally or raise an
InterruptedException. As this is still indeterminate at this point of time,
I extend the return values for native method calls with the special token
Ret-Unchanged, which Wait returns. The semantics of Ret-Unchanged

88

3.2. Multithreading in JinjaThreads

∅

o,�o
∅

�o

∅

o

IllegalMonitorState

WaitFail

InterruptedException

WaitIntrd1
{ a }

a �o

Wait

{ a }
N �o

Ntf, NtfAll
{ a }

I o

Intr

∅

N �o

Acquire

∅

I o

Acquire

{ a }
N o

Intr

∅

N o

Acquire
Intr

Unit

WaitNtfd

Unit

WaitNtfd

InterruptedException

WaitIntrd2

Legend:

lock state of a w.r.t. t
t does not hold a
t holds a

set of t’s temporarily
released locks

t’s wait set status
None

a bInWS ac
N bWS-Notifiedc
I

⌊
WS-WokenUp

⌋
t’s interrupt status
o t is interrupted
�o t is not interrupted
o,�o either of both

reduction of current thread:
reduction of other threads:

rule name

Figure 3.20: Steps for t executing a call to wait on object a

89

Chapter 3. Interleaving semantics

is that the thread’s next step should be to call the same method with
the same parameters once more. This allows to effectively split the call
to wait into two steps. Since Wait suspends t to the wait set a, the
interleaving semantics expects t to process its removal from the wait set
in its next reduction, which must be tagged with the BTA Notified and
WokenUp, respectively.

However, the interleaving semantics only picks one of t’s reductions
after it has been removed from the wait set and reacquired the locks on a.
Hence, when another thread calls notify or notifyAll on a, or interrupt
on t, t is removed from the wait set a (cf. Figure 3.3).15 Note that this
determines the result of the call to wait. Now, t’s next step is to reacquire
the locks on a. There is no need to add a rule for that to t’s semantics
because Acquire of the interleaving semantics takes care of this.

Next, the second call to wait must process t’s removal from the wait
set, which WaitNtfd and WaitIntrd2 implement. The latter also clears
t’s interrupt status as required by the JLS [56, §17.8.1]. Note that another
thread may interrupt t after t is has been notified, but before WaitNtfd
processes t’s removal. In that case, the call to wait returns normally and
t’s interrupt status is still set.

Interaction of interruption and notification JinjaThreads follows the
JLS on the interaction between interruption and notification. Suppose
the thread t in a wait set a is notified and interrupted “simultaneously”.
Then, it may either return normally with its interrupt status set, or
raise an InterruptedException. In the second case, the notification must
not be lost, i.e., all other threads in the wait set must return with an
InterruptedException or one of them gets notified.

JinjaThreads meets this requirement as follows: Notifications use
the BTA Notify or NotifyAll, interrupts use WakeUp (Intr). Hence,
the interleaving semantics remembers how a thread has been removed
in the wait set status bWS-Notifiedc and

⌊
WS-WokenUp

⌋
, respectively

(cf. Figures 3.3 and 3.20). This already determines whether WaitNtfd
or WaitIntrd2 will process the removal, i.e., whether wait returns
normally or throws an InterruptedException. In particular, WaitNtfd
and WaitIntrd2 do not depend on the interrupt status at the time when
they execute.

15If a’s wait set contains multiple threads, the interleaving semantics may pick a thread
different from t to be removed upon the call to notify.

90

3.2. Multithreading in JinjaThreads

Otherwise, if they did and the two wait set states bWS-Notifiedc and⌊
WS-WokenUp

⌋
were merged, notifications could be lost. Suppose, for

example, two threads t1 and t2 are in a wait set w and another thread
calls notify on a, which removes t1. While t1 waits to reacquire the locks
on a, another thread interrupts t1 (the Intr transistions from left to centre
in Figure 3.20). In the above scenario, these states would be merged with
the ones on the right. Hence, when t1 processes its removal, its interrupt
status has been set, i.e., it raises an InterruptedException. But now, the
notification is lost, because t2 remains in the wait set. This violates the
above requirement.

The JLS also requires that any implementation must determine an
order over the concurrent notification and interruption – which does not
have to be consistent with other orderings – and behave accordingly [56,
§17.8.1]. In JinjaThreads, the interleaving of threads automatically defines
an order on notifications (BTA Notify and NotifyAll) and interrupts
(BTA WakeUp) from different threads which is consistent with all other
orderings. If a single thread could issue notifications and interrupts
in one step, these would be ordered by their position in the thread
action. For example, LNotify a, WakeUp tM orders the notification before
the interrupt, and in LWakeUp t, Notify aM, the interrupt precedes the
notification.

3.2.2 Source code

In the previous section, I have implemented native methods that deal with
most of Java concurrency. Now, I define the single-threaded semantics for
concurrency and extend the source code language J with synchronized
statements. With this semantics, I instantiate the interleaving semantics
from §3.1.3 to obtain J’s interleaving semantics.

Adaptations to sequential JinjaThreads

Similarly to the semantics for native methods in the previous section, the
semantics P, t ` 〈e, (h, xs)〉−ta→〈e′, (h′, xs′)〉 of single threads for J adapts
the small step semantics P ` 〈e, (h, xs)〉 → 〈e′, (h′, xs′)〉. First, it takes
the thread ID t as a parameter. Second, every reduction is labelled by a
thread action. None of the existing rules – except for Rnative for native
methods – issues BTAs of their own. Instead, rules for subexpression
reduction propagate the label, and all others carry the empty thread

91

Chapter 3. Interleaving semantics

action LM.16 For example, Robj and RcallN now are as follows; the
additions are highlighted in grey.

Robj:
P, t ` 〈e, s〉 − ta→〈e′, s′〉

P, t ` 〈e.M(es), s〉 − ta→〈e′.M(es), s′〉

RcallN: P, t ` 〈null.M(es), s〉 − LM→〈THROW NullPointer, s〉

Beyond the above changes, I have to adapt the rule Rnative for native
method calls to the changes in §3.2.1 as follows:

Rnative:

typeof-addr h a = bhTc
P ` class-of ′ hT sees M:Ts→Tr = Native in D

P, t ` 〈a.M(vs), h〉 − ta→nc 〈vx, h′〉 ta′ = native-TA2J P ta
e′ = native-Ret2J (addr a.M(map Val vs)) vx

P, t ` 〈addr a.M(map Val vs), (h, xs)〉 − ta′→〈e′, (h′, xs)〉

Remember that native-Ret2J converts the returned value or exception
into J syntax. To deal with the new return token Ret-Unchanged, it now
takes another parameter of type expr that it returns for Ret-Unchanged
and ignores otherwise. Moreover, the local state of newly spawned
threads in the thread action ta of the native call must be adapted to
the state representation in J. To that end, native-TA2J P ta applies the
conversion function native-BTA2J P to all local states (C, M, a) of all
Spawn BTAs in ta. native-BTA2J P (C, M, a) looks up the parameter-less
method M for class C and wraps its body in a block for the this pointer
initialised to a, similarly to the rule Rcall for method calls. It leaves the
local store undefined for all variables.

native-BTA2J P (C, M, a) =
let (D, _, _, m) = method P C M;

⌊
(_, body)

⌋
= m

in ({this : Class D = bAddr ac ; body}, empty))
(3.4)

The synchronized statement

Java has only a single statement for concurrency, namely synchronized.
Everything else is provided as native methods, see §3.2.1. Hence, I

16Except for rules that access the heap, i.e., object and array allocation, field and array
cell access. These rules record their accesses in the sixth component using the heap events
from Table 3.1. As these only become relevant in Chapter 4, I discuss them there.

92

3.2. Multithreading in JinjaThreads

expression description

sync (e1) e2 lock monitor e1 for executing block e2
insync (a) e execute block e while having locked monitor a

Table 3.2: Expressions for synchronized statements

extend the abstract syntax of J (see Table 2.1) with the expressions shown
in Table 3.2.

sync (e1) e2 models Java’s synchronized statements, as specified
in [56, §14.19]. It acquires the monitor e1 first, then executes e2, and
finally releases the monitor. To remember that a synchronized statement
has already acquired the monitor, I use the expression insync (a) e instead
of sync (addr a) e, which is not part of the input language. JinjaThreads
does not model synchronized methods explicitly, because they are
syntactic sugar for ordinary methods with their whole body inside a
synchronized statement.

There is only one typing rule WTsync for sync (_) _ statements.

WTsync :
P, E ` e1 :: T1 is-refT T1 T1 , NT P, E ` e2 :: T

P, E ` sync (e1) e2 :: T

The monitor expression e1 must have a reference type, but not NT. The
return type of sync (e1) e2 is e2’s type. Similar to try _ catch(_ _) _,
sync (e1) e2 generalises the synchronized statement to arbitrary expres-
sions,. This is necessary to treat synchronized methods – which may
return a value – as syntactic sugar for sync (this) _ around their body.
As insync (_) _ must not occur in programs, there is no typing rule
for it.

Figure 3.21 shows the new reduction rules for synchronized blocks.
Rsync1 reduces the monitor subexpression. If the monitor subexpression
becomes null, a NullPointer exception is raised (RsyncN). If an exception
is raised while reducing the monitor subexpression, RsyncX propagates
the same exception. If the monitor subexpression reduces to some
monitor address a, the thread can only reduce further by acquiring the
lock on a. In that case, Rlock rewrites the sync (addr a) e expression
to insync (a) e to remember that the lock has been granted. Then,
Rsync2 executes the body. Once it has become a value or raised an

93

Chapter 3. Interleaving semantics

Rsync1:
P, t ` 〈e1, s〉 −ta→〈e′1, s′〉

P, t ` 〈sync (e1) e2, s〉 −ta→〈sync (e′1) e2, s′〉

RsyncN: P, t ` 〈sync (null) e, s〉 −LM→〈THROW NullPointer, s〉

RsyncX: P, t ` 〈sync (Throw a) e, s〉 −LM→〈Throw a, s〉

Rlock: P, t ` 〈sync (addr a) e, s〉
−LLock→a, SLock aM→〈insync (a) e, s〉

Rsync2:
P, t ` 〈e, s〉 −ta→〈e′, s′〉

P, t ` 〈insync (a) e, s〉 −ta→〈insync (a) e′, s′〉

Runlck: P, t ` 〈insync (a) (Val v), s〉
−LUnlock→a, SUnlock aM→〈Val v, s〉

RunlckX: P, t ` 〈insync (a) (Throw a′), s〉
−LUnlock→a, SUnlock aM→〈Throw a′, s〉

Figure 3.21: Semantics of synchronized blocks

exception, Runlck and RunlckX unlock the monitor, and return the
value or propagate the exception, respectively.

Note that it is not necessary to explicitly release (and later reacquire)
the monitor a when the body e of insync (a) e calls wait on a. The basic
thread action Release in Wait and temporarily released locks in the
interleaving semantics (cf. Acquire) take care of this.

Interleaving semantics

In §3.2.1, I have already specified how the type variables in the inter-
leaving semantics get instantiated for JinjaThreads source code and
bytecode. Now, I fill in the missing details for thread-local states and the
parameters of the locales. For J, the local state (type variable ′x) consists
of an expression and the local store, i.e., expr× locals.

To instantiate the locale multithreaded-base (3.2), I need some glue
to adjust the parameter grouping, which is the price for not changing
the original Jinja small-step semantics to syntactically match the format

94

3.2. Multithreading in JinjaThreads

of the framework for interleaving.17 J-final and J-red P, defined below,
instantiate the parameters final and r. Since events are irrelevant for this
chapter, I defer the definition of acq-events to Chapter 4.

J-final = (λ(e, xs). final e)
J-red P = (λt ((e, xs), h) ta ((e′, xs′), h′).

P, t ` 〈e, (h, xs)〉 −ta→〈e′, (h′, xs′)〉)

By instantiating the locale, I also specialize the definitions in it. To
distinguish them from the original definitions, I prefix them with J.,
e.g., J.redT denotes redT with the above parameter instantiations. As
J-red takes an additional parameter P for the program declaration, the
specialised versions also take such a parameter if necessary, e.g., J.redT P.
Analogous to §3.1.3, I write P ` s −t:ta→ s′ for a single step in the
interleaving semantics J.redT P, and P ` s−ttas→∗ s′ for the reflexive and
transitive closure (J.redT P)∗∗∗.

Lemma 3.6.
J-final and J-red P are well-formed with respect to the interleaving semantics.

Proof. I must show the assumptions of the locale multithreaded (cf.
§3.1.3). final-no-red follows by case analysis of the rules. Spawn-heap
holds by induction on the small step semantics and case analysis on the
semantics for native methods. �

Start state

The start state J-start P C M vs for program P has exactly one thread
start-tID with thread-local state

(blocks (this · pns) (Class D · Ts) (Null · vs) body, empty)

where (D, Ts, _,
⌊
(pns, body)

⌋
) = method P C M. Hence, start-tID is

about to execute the non-native method M in class C with parameters vs.

17Modelling the interleaving semantics after the single-threaded semantics would have
been no better alternative. Then, the interleaving semantics would be cluttered with glue
code for splitting and composing pairs, because the thread local state would consist of two
parts that I would have to store together to avoid additional invariants.

95

Chapter 3. Interleaving semantics

Setting the this pointer to Null simulates a static method.18 The initial
heap start-heap has preallocated a Thread object for start-tID and objects
for all system exceptions. There are no locks held or temporarily released,
all wait sets are empty and there are no interrupts. Formally:

J-start P C M vs =
(let (D, Ts, _, m) = method P C M;

⌊
(pns, body)

⌋
= m

e = blocks (this · pns) (Class D · Ts) (Null · vs) body
in (KfNone, ([start-tID 7→ ((e, empty), Kf 0)] , start-heap), empty, ∅))

A start state as specified by P, C, M, and vs is well-formed (written
wf-start P C M vs) iff C sees a non-native method M and the parameters
vs conform to M’s parameter types in the start-heap.

3.2.3 Bytecode

In this section, I extend the single-threaded semantics for JinjaThreads
bytecode to concurrency. As I use the interleaving semantics from §3.1
for bytecode, too, this section follows the same line as the previous for
source code.

Adaptations to the sequential JinjaThreads VM

As the multithreading features are mostly hidden in native methods
(§3.2.1), which source code and bytecode implement similarly, I adapt
the JinjaThreads VM analogously to what I did for J:

1. The semantics functions exec-native, exec-instr, and exec now take
the thread ID as parameter and return a set of pairs of thread action
and successor state rather than just a set of successor states.

2. native-Ret2jvm also handles the return token Ret-Unchanged.

18Calling Thread’s static native methods like yield from the start method M becomes
more complicated, because Var this.yield([]) (as §3.2.1 suggests) raises a NullPointer
exception. Instead, they must be invoked on some other object. In practice, this is negligible
since it only applies to the start method and the converter from Java to JinjaThreads (§6.5)
wraps a method for bootstrapping around the actual main method. The same applies to
the initial state for bytecode (§3.2.3).

96

3.2. Multithreading in JinjaThreads

exec-instr (Invoke M′ n) P t h stk loc C M pc f rs =
(let ps = rev (take n stk); r = stk[n]; Addr a = r; bhTc = typeof-addr h a
in if r = Null then

{ (LM,
⌊
addr-of-sys-xcpt NullPointer

⌋
, h, (stk, loc, C, M, pc) · f rs) }

else let (D, Ts, Tr, m) = method P (class-of ′ hT) M′

in case m of Native⇒
{ (native-TA2jvm P ta,

native-Ret2jvm n h′ stk loc C M pc f rs vx) | ta vx h′.
(ta, vx, h′) ∈ exec-native P t a M′ ps h }

|
⌊
(msl, mxl, ins, xt)

⌋
⇒

let f r′ = ([], r · ps @ replicate mxl undefined-Val, D, M′, 0)
in { (LM, None, h, f r′ · (stk, loc, C, M, pc) · f rs) })

exec P t (xcp, h, []) = ∅

exec P t (None, h, (stk, loc, C, M, pc) · f rs) =

exec-instr (instrs-of P C M)[pc] P t h stk loc C M pc f rs

exec P t (bac , h, fr · f rs) = { (LM, xcpt-step P a h fr f rs) }

Figure 3.22: Adaptations to the single-step semantics for the VM

3. Analogous to native-BTA2J, the function native-BTA2jvm con-
structs the initial states of spawned threads. Then, the conver-
sion function native-TA2jvm P ta applies native-BTA2jvm P to all
spawned threads in ta.

native-BTA2jvm P (C, M, a) =
let (D, _, _, m) = method P C M;

⌊
(mxs, mxl, ins, xt)

⌋
= m

in (None, [([], Addr a · replicate mxl undefined-Val, D, M, 0)]))

Figure 3.22 shows the updated definitions from Figures 2.17 and
2.18. I highlighted the additions in grey, everything else remains un-
changed. In the same way, I adapt the defensive VM execd P t s and the
relational views (notation P, t ` s− ta→jvm s′ and P, t ` s− ta→jvmd s′,
respectively) to include the thread ID and the thread action.

97

Chapter 3. Interleaving semantics

instruction description

MEnter acquire lock on monitor
MExit release lock on monitor

Table 3.3: Instructions for monitors

exec-instr MEnter P t h stk loc C M f rs =
(let v · stk′ = stk; Addr a = v
in if v = Null then
{ (LM,

⌊
addr-of-sys-xcpt NullPointer

⌋
, h, (stk, loc, C, M, pc) · f rs) }

else { (LLock→a, SLock aM, None, h, (stk′, loc, C, M, pc + 1) · f rs) })

exec-instr MExit P t h stk loc C M f rs =
(let v · stk′ = stk; Addr a = v
in if v = Null then

{ (LM,
⌊
addr-of-sys-xcpt NullPointer

⌋
, h, (stk, loc, C, M, pc) · f rs) }

else
{ (LUnlock→a, SUnlock aM, None, h, (stk′, loc, C, M, pc + 1) · f rs),
(LUnlockFail→aM,

⌊
addr-of-sys-xcpt IllegalMonitorState

⌋
,

h, (stk, loc, C, M, pc) · f rs) })

Figure 3.23: Semantics of the instructions for monitors

Instructions for monitors

Table 3.3 lists the new instructions MEnter and MExit for monitors.
They are the bytecode equivalent of sync (_) _ blocks; they lock and
unlock, respectively, the monitor whose address is at the top of the stack.
Figure 3.23 defines their semantics.

If the value v on top of the stack is Null, they both raise a NullPointer
exception. Otherwise, MEnter acquires the lock with the thread action
LLock→a, SLock aM where a is the address that v denotes. Note that
the source code semantics uses the same thread action (Rlock). MExit
unlocks the monitor a with the thread action LUnlock→a, SUnlock aM
just like Runlck. Unlike sync (_) _, locking and unlocking need not be
structured in bytecode, i.e., MEnter and MExit need not come in pairs.
Hence, MExit may also fail with an IllegalMonitorState exception if the
current thread does not hold the monitor.

98

3.2. Multithreading in JinjaThreads

appi (MEnter, P, (T · ST, LT)) = is-refT T
appi (MExit, P, (T · ST, LT)) = is-refT T

effi (MEnter, P, (T · ST, LT)) = (ST, LT)
effi (MExit, P, (T · ST, LT)) = (ST, LT)

Figure 3.24: Applicability and effect for MEnter and MExit

For the well-typings and the bytecode verifier, Figure 3.24 defines
the abstract interpretation of MEnter and MExit on the level of types
(see §2.2.3). For both instructions, applicability requires that the stack
is non-empty and the top element is a reference type, and the effect is
dropping the top element.

Interleaving semantics

Bytecode instantiates the interleaving semantics twice, once for the
aggressive VM and once for the defensive. The type variables are the
same as for J – except for the thread-local states. For both the aggressive
and defensive VM, a thread-local state consists of the exception flag
and the call stack. Such a thread-local state is jvm-final iff the call stack
is empty. Then, jvm-exec P and jvm-execd P instantiate parameter r
of the locale multithreaded-base for the aggressive and defensive VM,
respectively. Like for J-red, they require some glue to adjust the parameter
grouping.

jvm-final = (λ(xcp, f rs). f rs = [])

jvm-exec P = (λt ((xcp, f rs), h) ta ((xcp′, f rs′), h′).
P, t ` (xcp, h, f rs) −ta→jvm (xcp′, h′, f rs′))

jvm-execd P = (λt ((xcp, f rs), h) ta ((xcp′, f rs′), h′).
P, t ` Normal (xcp, h, f rs)−ta→jvmd

Normal (xcp′, h′, f rs′))

Note that jvm-execd turns the defensive VM into a strict VM as it no
longer raises TypeErrors, but just gets stuck. Nevertheless, I keep refer-
ring to it as the defensive VM in the following. The reason for dropping
TypeError is that I can avoid duplications by using the same represen-
tation for thread-local states for both the aggressive and defensive VM.

99

Chapter 3. Interleaving semantics

For example, I can use the same state invariants for both VMs. In §3.3.5,
I discuss how this simplification affects the type safety theorem.

For the definitions in the locale multithreaded-base, I use the prefixes
jvm. and jvmd. to mark the versions of the aggressive and defensive
VM, respectively. I write P ` s −t:ta→jvm s′ for jvm.redT P s (t, ta) s′,
P ` s −t:ta→jvmd s′ for jvmd.redT P s (t, ta) s′, and P ` s −ttas→∗jvm s′

(P ` s−ttas→∗jvmd s′) for the reflexive and transitive closure of jvm.redT P
(jvmd.redT P).

Lemma 3.7. jvm-final with either jvm-exec P or jvm-execd P are well-formed
with respect to the interleaving semantics.

Proof. I show the assumptions of the locale multithreaded for the pa-
rameter instantiations jvm-final, jvm-exec P and jvm-final, jvm-execd P.
final-no-red follows by unfolding the definitions and exec P t (xcp, h, [])
being the empty set (see Figure 3.22). Spawn-heap holds by case analysis
on emptiness of the call stack, the exception flag, the current instruction
and the native method that is being called. �

Start state

The initial state jvm-start P C M vs of the JVM is the same as for J, except
for the thread-local state of start-tID, which is

(None, [([], Null · vs @ replicate mxl undefined-Val, D, M, 0)])

where (D, _, _,
⌊
(mxs, mxl, ins, xt)

⌋
) = method P C M, i.e., no exception is

flagged and the VM is about to execute the first instruction of method M
in D. Like in J-start P C M vs, no lock is held, all wait sets are empty, there
are no interrupts, and start-heap has preallocated objects for start-tID
and the system exceptions.

3.3 Deadlock and type safety

For sequential languages, type safety is typically expressed as the syn-
tactic properties progress and preservation (see §2.1.6). Progress means
that every well-formed and well-typed expression can be reduced unless
it has already been fully evaluated, i.e., the semantics is not missing any
reduction rules. Full evaluation is determined by a syntactic predicate

100

3.3. Deadlock and type safety

final. Preservation requires that reductions preserve well-typedness and
well-formedness. In §3.1.4, I have shown how to transfer preservation
proofs from single threads to the interleaving semantics, i.e., they do not
pose a problem. Deadlocks, however, can break the progress property.

Therefore, I formally define the concept of deadlock (§3.3.1, §3.3.2)
and prove progress up to deadlock (§3.3.3) for the interleaving semantics.
For the latter, I identify sufficient conditions on the single-threaded
semantics. Hence, source code and bytecode can reuse the progress
theorem by discharging these conditions (§3.3.4, §3.3.5).

Although progress typically identifies allowed stuck states syntacti-
cally, I formalise deadlock (and thus the allowed stuck states) semantically
for two reasons. First, I want the formalisation to be shared between
source code and bytecode, but any syntactic characterisation necessarily
depends on the thread-local state representation. Second, deadlock
typically involves several threads, i.e., a syntactic characterisation would
have to examine all of them together. Hence, not only is there no easy
syntactic characterisation, but any such would also break the abstraction
of the interleaving semantics. Instead, I define deadlocks by looking at
the possible thread actions of all threads. In principle, one could derive
syntactic conditions from this definition by analysing the single-thread
semantics, but I have not done so.

3.3.1 Deadlock as a state property

A system is said to be in deadlock iff all threads are waiting for something
that will never occur. In operating systems, deadlock of processes has
four preconditions on resource usage: mutual exclusion, hold and wait,
circular waiting, and no preemption (see, e.g., [134]). In the interleaving
semantics, there are four “resources” that a thread can wait for: acquiring
a lock, termination of another thread, being removed from a wait set,
and interruption. Since all of them are implemented as BTAs, I can
formally define deadlock solely in terms of the reductions of a thread –
independent of the concrete language.

Consider, for example, the schedules in Figure 3.25. On the left-hand
side, in Figure 3.25a, thread t1 acquires the lock l1, then thread t2 acquires
the lock l2. To continue, t2 needs the lock l1, too, so the Lock→l1 is
postponed. However, t1 requests the lock l2, which t2 is holding. Hence,
both threads are in deadlock. In the centre (Figure 3.25b), t3 waits for
t4’s termination, but t4 suspends itself to the wait set w. Hence, both t3

101

Chapter 3. Interleaving semantics

t1 : t2 :
Lock→l1

Lock→l2
(Lock→l1)

(Lock→l2)
(a)

t3 : t4 :
(Join t4)

Suspend w

(b)

t5 : t6 :

(IsIntrd t6 True)

final
(c)

Figure 3.25: Three schedules with two threads each that lead to deadlock

and t4 are in deadlock, because there is no thread left to notify t4. The
right-hand side (Figure 3.25c) shows a similar example with interruption.
t6 waits for being interrupted, but t5 terminates without doing so. Thus,
t6 is deadlocked.

In the interleaving semantics, things are a bit more tricky than in the
above examples, because threads can atomically request any number of
locks and join on other threads. Moreover, they can wait for different
events non-deterministically. In Java, for example, the Thread.join()
method either waits for the receiver thread to terminate or for the
executing thread to be interrupted.

To get a hold on this, I first define for what a thread may wait
in deadlock. The function waits ta :: (′l + ′t + ′t) set extracts all the
resources for which the executing thread may be waiting, i.e., all the
locks it acquires, the threads it joins on, and the threads which must be
interrupted. Formally:

waits ta ={
l. Lock ∈ set (〈ta〉lf l)

}
] { t. Join t ∈ set 〈ta〉c }] intr-waits 〈ta〉i

where] is disjoint union and intr-waits 〈ta〉i is the set of thread IDs t for
which 〈ta〉i contains an element IsIntrd t True which is not preceeded by
Intr t or ClearIntr t. The last constraint removes interrupt checks whose
result does not depend on the initial interrupt state, but is determined
by the preceeding interrupt actions. Consider, for example,

intr-waits LIsIntrd t True, ClearIntr tM = { t } (3.5)
intr-waits LIntr t, IsIntrd t TrueM = ∅ (3.6)

The thread action in (3.5) tests whether t has been interrupted and, if
so, clears the interrupt status. Hence, it waits for t being interrupted.

102

3.3. Deadlock and type safety

MWlock:
has-lock ((locks s)f l) t′ t′ , t t′ ∈ T

must-wait s t (Inl l) T

MWjoin:
not-final-thread s t′ t′ ∈ T

must-wait s t (Inr (Inl t′)) T

MWintr:
all-final-except s T t′ < intrs s

must-wait s t (Inr (Inr t′)) T

Figure 3.26: Thread t must wait for resource w indefinitely

In (3.6), however, the test IsIntrd t True holds vacuously because Intr t
sets the interrupt flag right before the test.

Note that I do not care about actions for unlocking, thread creation
and thread existence, wait sets and not being interrupted for the following
reasons:

unlocking Only a thread itself would be able to remedy the missing
lock, not others.

thread creation In Java, spawning a thread either succeeds or raises an
exception, i.e., it cannot deadlock.

wait sets A thread in a wait set cannot do anything to be removed.
ok-wsets only distinguishes normal execution from processing the
removal from a wait set. Waiting threads will be dealt with specifically.

non-interruption For the interleaving semantics, non-interruption is
dual to interruption, i.e., I could treat both uniformly, but in Java,
threads can only wait for being interrupted.

The predicate must-wait s t w T determines that in state s, the thread
t will wait indefinitely for resource w :: ′l + ′t + ′t under the assumption
that all threads in T are already deadlocked. Figure 3.26 shows the
formal definition. The thread t must wait forever for the lock l (case
w = Inl l), if l is held by another thread t′ which is deadlocked (MWlock).
The join on another thread t′ fails forever (case w = Inr (Inl t′)), if the
thread t′ is not final and already deadlocked (MWjoin). The predicate
not-final-thread s t denotes that t exists, but is not final, i.e., t ∈ dom (thr s)

103

Chapter 3. Interleaving semantics

deadlock s =
(∀t x. thr s t =

⌊
(x, Kf 0)

⌋
∧¬final x∧wset s t = None

−→ t ` (x, shr s) o ∧
∀W. t ` (x, shr s) W o −→ ∃w ∈W. must-wait s t w (dom (thr s))∧

(∀t x ln. thr s t =
⌊
(x, ln)

⌋
∧ ln , Kf 0∧¬waiting (wset s t)

−→ ∃l. lnf l > 0∧must-wait s t (Inl l) (dom (thr s)))∧
(∀t x. thr s t =

⌊
(x, Kf 0)

⌋
−→ wset s t , bWS-Notifiedc ∧wset s t ,

⌊
WS-WokenUp

⌋
)

Figure 3.27: Formal definition of deadlock

and t < final-threads s. Note that not-final-thread s t negates the precon-
dition of Join (see Figure 3.11) except for t , t′, which is irrelevant here.
A thread waits indefinitely for t′ being interrupted (case w = Inr (Inr t′),
MWintr), if t′ is not interrupted, but all non-deadlocked threads are
final – expressed by the predicate all-final-except.

all-final-except s T = { t. not-final-thread s t } ⊆ T

With these preparations, I can now formally define deadlock, see
Figure 3.27. First, I introduce two abbreviations: t ` (x, h) o denotes that
t can reduce in the local state x and heap h with some thread action ta
such that ta is not contradictory in itself, i.e., there is a multithreaded
state s such that ok-ta s t ta. For example, LLock→l, UnlockFail→lM and
LIntr t, IsIntrd t FalseM are contradictory. The predicate t ` (x, h) W o
denotes that t can reduce in state (x, h) with a thread action ta such that
W = waits ta. It abstracts t’s reductions to the resources W it waits for.

Then, a multithreaded state s is in deadlock (written deadlock s) iff

(i) every non-final thread t that is ready to execute, say thr s t =⌊
(x, Kf 0)

⌋
and wset s t = None, can reduce, and no matter how it

might reduce, it must wait indefinitely, and

(ii) every thread with temporarily released locks that is not in a wait
set must wait indefinitely on one of these, and

(iii) for every thread which has not temporarily released any locks, its
wait set status is neither bWS-Notifiedc nor

⌊
WS-WokenUp

⌋
.

The first condition is the default case: t ` (x, shr s) o ensures that the
thread is not just stuck, i.e., universal quantification on W does not

104

3.3. Deadlock and type safety

hold vacuously. For must-wait, I consider all threads as deadlocked
(i.e., T = dom (thr s)), because the system as a whole is supposed to
be in deadlock. Note that quantifying over all W with t ` (x, shr s) W o
allows a thread to non-deterministically wait for different “resources”.
The second condition accounts for acquisition of temporarily released
locks. Since it is the interleaving semantics that performs the acquisition
(Acquire), but not the single threads, I need an extra case for that. The
last condition ensures that there is no thread which has been removed
from a wait set and has already reacquired the released locks, but has not
yet processed the removal internally. Note that there is no condition for
threads in wait sets, because they are automatically deadlocked when
there is no thread to remove them.

For simplicity, I do not require that there is at least a thread which is
not final. Hence, every mfinal state is also in deadlock.

Lemma 3.8. States in deadlock are stuck, i.e., if s−t:ta→ s′, then¬deadlock s.

3.3.2 Deadlock for threads

The previous section defines when all threads are in deadlock. However,
some threads may already be in deadlock while others keep running.
In this section, I define deadlock for single threads and prove that this
notion generalises deadlock as a state property.

Figure 3.28 defines the set deadlocked of threads in deadlock coin-
ductively. Note that coinductivity naturally captures that a thread is
not deadlocked iff one can deduce in finitely many steps that it is not.
Hence, finitely many steps (of other threads) suffice to allow the thread
under consideration to continue. This definition considers the set of
threads to be closed with respect to the outside, i.e., one cannot add
a spinning thread to the system, which would “undeadlock” again all
waiting threads.

Rules Dactive and Dacquire are very similar to conditions (i) and (ii)
of deadlock, respectively. The only difference is the set of threads that
must-wait takes: Instead of all threads, it now consists of deadlocked
and final ones. The last rule Dwait expresses that a waiting thread is
deadlocked if all other threads are either final or deadlocked themselves
(which includes waiting).19

19Remember that I do not model spurious wake-ups from wait sets. Otherwise, a waiting
thread would never be deadlocked, because it could always be woken up spuriously.

105

Chapter 3. Interleaving semantics

Dactive:

thr s t =
⌊
(x, Kf 0)

⌋
wset s t = None t ` (x, shr s) o

∀W. t ` (x, shr s) W o −→
∃w ∈W. must-wait s t w (deadlocked s∪ final-threads s)

t ∈ deadlocked s
===

Dacquire:

thr s t =
⌊
(x, ln)

⌋
¬waiting (wset s t) lnf l > 0

must-wait s t (Inl l) (deadlocked s∪ final-threads s)

t ∈ deadlocked s
==

Dwait:

thr s t =
⌊
(x, ln)

⌋
waiting (wset s t) all-final-except s (deadlocked s)

t ∈ deadlocked s
===

Figure 3.28: Coinductive definition of the set of threads in deadlock

Rule Dwait completely differs from condition (iii): The latter disal-
lows the wait set status bWS-Notifiedc and

⌊
WS-WokenUp

⌋
, which is

implicit in deadlocked because there is no introduction rule for these
cases. Recall that deadlock imposes no constraints on waiting threads,
since they are implicitly included there.

Remember from §1.4.3 that (co)inductives predicates are defined as
the fixed point of the associated functional and that this functional must
be monotone. For deadlocked, I therefore must show that must-wait
and all-final-except are monotone, because deadlocked is passed as a
parameter to them.

Lemma 3.9 (Monotonicity of all-final-except and must-wait). Let T ⊆ T′.
If all-final-except s T, then all-final-except s T′. If must-wait s t w T, then
must-wait s t w T′.

Consider Figure 3.29 for an example of different deadlock situations.
Suppose there are six threads which at the moment can reduce with the
thread actions shown on the left-hand side. If there are multiple thread
actions, then there is one reduction for each. Suppose further that no
thread is waiting and that the i-th thread holds the lock li. The graph on
the right-hand side shows which thread is waiting to obtain a lock held
by another thread. Then, threads III and VI are waiting for each other
without other reduction options. Clearly, both of them are deadlocked.
Although I and II are also waiting for each other, they are not deadlocked

106

3.3. Deadlock and type safety

I: LUnlock→l1, Lock→l2M
II: LUnlock→l2, Lock→l1M,

LLock→l3M, LLock→l4M
III: LLock→l6M
IV: LM
V: LLock→l2, Lock→l3M

VI: LLock→l3M

I II III

IV V VI

Figure 3.29: Example with deadlocked threads

at the moment: II has two more reduction options. Waiting on lock l3
will be in vain, because III is deadlocked. However, IV is not waiting
for any resource, hence II may still hope to obtain the lock l4 some time.
Hence, I is not in deadlock either, as II might release l2 afterwards. Since
thread actions must be executed atomically, we may not interleave the
thread actions of I and II, i.e., first unlock both l1 and l2 and then lock l2
and l1 again. Note that V is waiting simultaneously for II and III, because
V ` _ { Inl l2, Inl l3 } o. Since III is already in deadlock, so is V. Clearly, IV is
not deadlocked. If its wait set status is None, the empty thread action LM
is possible. Otherwise, it is bWS-Notifiedc or

⌊
WS-WokenUp

⌋
, but then

IV is not deadlocked by definition. Now, suppose thread IV is in a wait
set. Then, all threads are deadlocked, because every thread except IV is
waiting for some other thread to release a lock, and the only thread that
could be reduced (i.e., IV) is waiting for some other thread waking it up.

Next, I show that deadlocked leads to the same characterisation of
states in deadlock as deadlock. Let deadlock′ s denote that all non-final
threads are deadlocked, i.e.,

deadlock′ s = (∀t. not-final-thread s t −→ t ∈ deadlocked s)

Theorem 3.1. deadlock s iff deadlock′ s.

Proof. From left to right: Suppose deadlock s and not-final-thread s t.
Then, t ∈ deadlocked s by coinduction with the set of not-final-threads
as the coinduction invariant. In the coinduction step, I must show
that any t′ with not-final-thread s t′ satisfies the assumptions of one
of deadlocked’s introduction rules – with deadlocked s replaced by
{ t. not-final-thread s t } ∪ deadlocked s. Dactive and Dacquire follow
from the assumption deadlock s, because they differ from their counter-
parts in the definition of deadlock only in the sets of thread IDs passed to

107

Chapter 3. Interleaving semantics

must-wait. But they are equal in that case for the coinduction invariant,
because

{ t. not-final-thread s t } ∪ deadlocked s∪ final-threads s = dom (thr s)

As all-final-except s ({ t. not-final-thread s t } ∪ deadlocked s) holds vac-
uously, the case for Dwait is trivial.

For the other direction, suppose t′ ∈ deadlocked s for all t′ such that
not-final-thread s t′. All three conditions of deadlock trivially hold for
final threads t, so suppose not-final-thread s t. Hence, t ∈ deadlocked s.
From this, conditions (i) and (ii) in the definition of deadlock directly
follow by monotonicity of must-wait (Lemma 3.9). The last condition
(iii) holds because deadlocked’s definition excludes threads with the
forbidden wait set status. �

Given the thread-wise predicate about deadlock, I strengthen Lem-
ma 3.8 to the following lemma, which is proven by case analysis on
s−t:ta→ s′ and t ∈ deadlocked s. Lemma 3.8 then directly follows with
Theorem 3.1.

Lemma 3.10. Every thread in deadlock is stuck, i.e., if s −t:ta→ s′, then
t < deadlocked s.

Since I am considering now deadlocks of individual threads, execution
may continue even if some threads are deadlocked. Still, threads in
deadlock should remain deadlocked; otherwise, the deadlock definition
would be flawed. However, deadlock preservation requires that the
single-threaded semantics is well-behaved:

1. The changes of the shared heap by the executing threads must
not deprive a deadlocked thread of all of its reduction options.
Otherwise, it would be stuck and therefore no longer deadlocked,
since deadlock explicitly excludes stuck threads.

2. Such changes must not enable new reduction options which would
undeadlock it, either.

Locale preserve-deadlocked collects these assumptions (Figure 3.30).
It fixes a set wf-states of well-formed states only for which the preser-
vation requirements have to hold. The first assumption expresses that
the interleaving semantics redT preserves wf-states. The other two

108

3.3. Deadlock and type safety

locale preserve-deadlocked = multithreaded +
fixes wf-states :: (′l, ′t, ′x, ′h, ′w) state set
assumes invariant redT wf-states
and Js ∈ wf-states; s−t′:ta→ s′; thr s t =

⌊
(x, Kf 0)

⌋
; t ` (x, shr s) oK

=⇒ t ` (x, shr s′) o
and Js ∈ wf-states; s−t′:ta→ s′; thr s t =

⌊
(x, Kf 0)

⌋
;

t `(x, shr s′)W′ oK =⇒ ∃W ⊆W′. t ` (x, shr s) W o

Figure 3.30: Locale preserve-deadlocked collects the requirements for preserva-
tion of deadlock

assumptions express exactly the requirements from above. Note the
covariance in the set W in the last assumption: Since t ` _ W o expresses
that one of t’s reduction requires all resources in W, changes in the heap
may only increase W. Under these assumptions, the following holds:

Lemma 3.11 (Preservation of deadlock). Let s ∈ wf-states. If s−t:ta→ s′

or s−ttas→∗ s′, then deadlocked s ⊆ deadlocked s′.

Proof. If s −t:ta→ s′, the proof proceeds by case analysis on redT. In
either case Normal and Acquire, suppose t′ ∈ deadlocked s. I show
t′ ∈ deadlocked s′ by coinduction with deadlocked s as coinduction
invariant. In the coinductive step, case analysis on t′ ∈ deadlocked s
yields the interesting cases Dactive and Dacquire; the case Dwait con-
tradicts the assumption s−t:ta→ s′. In both former cases, the reduction
from s to s′ preserves must-wait. For Dactive, the assumptions of
preserve-deadlocked relate t′ ` (x, _) o and t′ ` (x, _) _ o between shr s and
shr s′, respectively.

The case s−ttas→∗ s′ follows from s−t:ta→ s′ by induction; the locale’s
first assumption reestablishes the induction invariant s ∈ wf-states in
the inductive step. �

3.3.3 Progress up to deadlock

Recall that I have formalised deadlocks to obtain a progress result for
the interleaving semantics. In this section, I prove the following theorem
and present the assumptions about _ ` _−_→ _ on which it depends.

Theorem 3.2 (Progress up to deadlock). Let s ∈ wf-states. If¬deadlock s,
then there are t, ta, and s′ such that s−t:ta→ s′.

109

Chapter 3. Interleaving semantics

locale progress = multithreaded +
fixes wf-states :: (′l, ′t, ′x, ′h, ′w) state set
assumes invariant redT wf-states
and wf-stateD : s ∈ wf-states =⇒ ok-locks-thr s∧ ok-wset-final s
and progress : Js ∈ wf-states; thr s t =

⌊
(x, Kf 0)

⌋
; ¬final xK

=⇒ ∃ta x′ h′. t ` (x, shr s) −ta→ (x′, h′)
and wf-ta :

Js ∈ wf-states; thr s t =
⌊
(x, Kf 0)

⌋
; t ` (x, shr s) −ta→ (x′, h′)K

=⇒ ∃s′. ok-ta s′ t ta
and wf-red :

Js ∈ wf-states; thr s t =
⌊
(x, Kf 0)

⌋
; ¬waiting (wset s t);

t ` (x, shr s) −ta→ (x′, h′)K
=⇒ ∃ta′ x′′ h′′. t ` (x, shr s) −ta′→ (x′′, h′′)∧

(ok-ta s t ta′ ∨ ok-ta′ s t ta′ ∧waits ta′ ⊆ waits ta)
and Suspend-not-final :

Js ∈ wf-states; thr s t =
⌊
(x, Kf 0)

⌋
; ¬waiting (wset s t);

t ` (x, shr s) −ta→ (x′, h′); Suspend w ∈ set 〈ta〉wK =⇒ ¬final x′

and Wakeup-waits :
Js ∈ wf-states; thr s t =

⌊
(x, Kf 0)

⌋
; t ` (x, shr s) −ta→ (x′, h′);

Notified ∈ set 〈ta〉w ∨WokenUp ∈ set 〈ta〉wK =⇒ waits ta = ∅

Figure 3.31: Definition of locale progress

Theorem 3.2 requires certain assumptions about the single-threaded
semantics, which I collect in the locale progress, see Figure 3.31. Like
preserve-deadlocked, it fixes a set wf-states of well-formed states that is
closed under reductions. wf-stateD ensures that well-formed states satisfy
two invariants: Only existing threads hold the locks (ok-locks-thr s) and
all threads in dom (wset s) exist in thr s with their local state not being
final (ok-wset-final s). Together with the other constraints, the latter
invariant ensures that threads which have been removed from a wait set
are able to process the removal.

The assumption progress expresses the usual progress condition for
single threads: Every thread in any well-formed state whose local state
is not final can reduce.

The remaining assumptions restrict the single-thread semantics such
that irreducible multithreaded states are final or in deadlock. wf-ta

110

3.3. Deadlock and type safety

ensures that the thread action of any reduction is not contradictory in
itself.

Similar to progress expressing that no reduction rule is missing for
well-typed terms, wf-red formalises that the reduction rules are able to
generate all thread actions that are needed. ok-ta′ formalises that ta’s
conditions are met except for BTAs which are allowed to cause deadlock.
It is like ok-ta (3.1) with the following modifications:20

• ok-Ls stops checking the lock preconditions when it encounters
the first Lock BTA for l that t cannot acquire – though it does
enforce the preconditions of Unlock and UnlockFail prior to this
Lock BTA. For example, take ta = LLock→l, Unlock→l, Unlock→lM.
Then, ok-ta′ requires that t already holds the lock l once, or that it
cannot acquire the lock l.21

• ok-intr ignores conditions of BTAs of the form IsIntrd _ True.

• ok-cond s t (Join t′) is always True.

Thus, wf-red requires that every thread which is ready to execute, say
with thread action ta, can reduce with thread action ta′ such that either
the current state s already meets ta′’s preconditions, or s meets them
except for BTAs that are allowed to deadlock, but in the latter case, it
must not add anything it is waiting for in ta′ compared to ta.

Assumption Suspend-not-final demands that a thread be not final after
it has suspended itself to a wait set, i.e., it can later process its removal.

The last one Wakeup-waits requires that while processing the removal
from a wait set, the thread does not execute BTAs which may cause
deadlock. Although the interleaving semantics could deal with such
BTAs, I disallow them, because they would complicate the deadlock
formalisation and proofs unnecessarily, and neither source code nor
bytecode semantics uses this.

Under these assumptions, Theorem 3.2 holds.

20Technically, to implement the modifications, I have defined predicates ok-Ls′, ok-intr′,
and ok-cond′ that ok-ta′ uses. As these modifications are obvious, I omit their presenta-
tion.

21ok-Ls stops checking at Locks instead of skipping them (like ok-intr and ok-cond
do for IsIntrd _ True and Join _) because Lock changes the lock status, i.e., checking the
conditions of subsequent lock BTAs would be meaningless.

111

Chapter 3. Interleaving semantics

Proof of Theorem 3.2. As s is not in deadlock, by definition (Figure 3.27),
there must be a thread, say thr s t =

⌊
(x, ln)

⌋
, such that

(a) t is not waiting, ln = Kf 0, not final x, and either not t ` (x, shr s) o
or there is a set W such that t ` (x, shr s) W o and t need not wait for
any w ∈W, or

(b) t is not waiting, ln , Kf 0, and it need not wait for any of the locks
in ln, or

(c) ln = Kf 0 and t’s wait set status is bWS-Notifiedc or
⌊
WS-WokenUp

⌋
.

I show for each case that t can take a step next.
In case (a), progress postulates a reduction t ` (x, shr s)−ta→ (_, _). wf-

ta ensures that the thread actions of any reduction is not contradictory in
itself, in particular ta is not. Hence, t` (x, shr s) o by definition. With (a), let
W be such that t ` (x, shr s) W o and t need not wait for any w ∈W. Again
by definition, there is a reduction t ` (x, shr s) −ta′→ (_, _) with W =
waits ta′. By wf-red, there is another reduction t ` (x, shr s)−ta′′→ (x′, h′)
such that either (i) ok-ta s t ta′′, or (ii) ok-ta′ s t ta′′ and waits ta′′ ⊆
waits ta′. In case (i), I am done by Normal, because upd-ta is a right-
total relation. In case (ii), by choice of ta′, all w ∈ waits ta′′ ⊆ waits ta′

meet their precondition. Hence, ok-ta′ s t ta′′ implies ok-ta s t ta′′, and I
am back at case (i).

In case (b), the reduction directly follows with Acquire.
In case (c), t must process its removal from a wait set. By wf-stateD,

ok-wset-final s, in particular not final x. By the same argument as in case
(a), there is a reduction t ` (x, shr s)−ta′′→ (x′, h′) such that ok-ta s t ta′′

or ok-ta′ s t ta′′. If ok-ta′ s t ta′′, 〈ta′′〉w contains Notified or WokenUp
due to t’s wait set status. By Wakeup-waits, waits ta′′ = ∅, i.e., ok-ta′ s t ta′′

and ok-ta s t ta′′ coincide. Thus, Normal yields the desired reduction. �

3.3.4 Type safety for source code

With the above preparations in place, I now prove type safety for J.redT P
(Theorem 3.3). Thereby, I reuse the type safety proof for the sequential
subset from §2.1.6.

Theorem 3.3 (Type safety). Let wf-J-prog P and wf-start P C M vs. If
P ` J-start P C M vs−ttas→∗ s such that ¬P ` s−t′:ta′→ s′ for any t′, ta′, s′,
then for every thread t in s, say thr s t =

⌊
((e, xs), ln)

⌋
,

112

3.3. Deadlock and type safety

(i) if e = Val v, then ln = Kf 0 and P, shr s ` v :≤ T where

(start-ETs P C M)(ttas [] P, _, _ ` _, _
√
) t =

⌊
(E, T)

⌋
and start-ETs P C M is the initial map [start-tID 7→ (empty, Tr)] where
Tr is M’s return type.

(ii) if e = Throw a, then ln = Kf 0 and typeof-addr (shr s) a =
bClassT Cc for some C such that P `C�∗ Throwable,

(iii) otherwise, t ∈ J.deadlocked P s.

In any case, t has an associated Thread object at address t2a t in shr s.

Let me first review the type safety statement. Suppose we run the
non-native method M of class C with the correct number of parameters
vs of the correct types, and this halts in state s. Then, all threads
of s either (i) have terminated normally with a return value v which
conforms to the return type of the thread’s initial method, which is M
for t = start-tID and run otherwise, or (ii) have terminated abnormally
with an exception a which refers to an object of a subclass of Throwable,
or (iii) are deadlocked. In particular, this also shows that synchronized
blocks cannot get stuck because the thread does not hold the lock on
the monitor. Note that type safety does not state anything about non-
terminating program runs. These are uninteresting, because they are
obviously not stuck, but do not return anything either.

In the remainder of this section, I develop the invariant necessary to
ultimately prove Theorem 3.3 via progress and preservation. I always
assume that P is well-formed, i.e., wf-J-prog P.

For progress, I have already discussed in §3.3.3 that it does not suffice
to show that every non-final thread can reduce in the single-threaded
semantics – the interleaving semantics may not be able to execute
the reduction, because the current state violates the thread action’s
precondition. In locale progress (Figure 3.31), I have collected sufficient
conditions to lift a single-threaded progress property to the interleaving
semantics (Theorem 3.2). Now, I show that J-red P satisfies these
conditions. Remember that the locale progress restricts the assumptions
about the single-threaded semantics to a set wf-states of well-formed
states that all reductions of the interleaving semantics must preserve.
Hence, I first develop what the well-formedness constraints for J are.

113

Chapter 3. Interleaving semantics

WTrtSync:
P, E, h ` e1 : T1 is-refT T1 P, E, h ` e2 : T

P, E, h ` sync (e1) e2 : T

WTrtInsync:
typeof-addr h a , None P, E, h ` e : T

P, E, h ` insync (a) e : T

Figure 3.32: Run-time typing rules for synchronized blocks

Thread-local well-formedness constraints

The progress theorem for single threads (Theorem 2.1) requires that
(i) the expression is type correct, (ii) it passes the definite assignment
check, and (iii) the heap conforms. Subject reduction (Theorem 2.2)
shows preservation for (i), but additionally requires that the local store
conforms. Lemmata 2.1 and 2.2 show preservation of definite assignment
and conformance, respectively.

First of all, I must adapt these proofs to the changes and extensions
from the previous section. In particular, I add typing rules for sync (_) _
blocks to the run-time type system (see Figure 3.32). The rule WTrtSync
replaces WTsync for sync (e1) e2 and drops the constraint T1 , NT,
because e1 may evaluate to null during reduction. There is now a rule
WTrtInsync for insync (a) e blocks, because Rlock introduces them in
reductions. It requires the monitor address to be allocated and the body
to be run-time typable. With these rules, proving the cases for sync (_) _
blocks in progress and subject reduction follows the standard pattern.
Since sync (_) _ blocks involve neither the local store nor the heap,
preservation of definite assignment and conformance is not affected.

Moreover, subject reduction now additionally requires that the ID
of the executing thread has an associated thread object, because call-
ing currentThread returns its address (CurrTh). Thread conformance
P, h ` t

√

t captures this as it predicates that typeof-addr h (t2a t) =
bClassT Cc for some C such that P ` C �∗ Thread. Consequently, the
subject reduction theorem now is as follows. Again, additions with
respect to 2.2 are highlighted in grey.

Theorem 3.4 (Subject reduction). If wf-J-prog P, and P, t ` 〈e, s〉 − ta→
〈e′, s′〉, and P, E, hp s ` e : T, and P, E ` s

√
, and P, hp s ` t

√

t , then there is
a T′ such that P, E, hp s′ ` e′ : T′ and P ` T′ ≤ T.

114

3.3. Deadlock and type safety

Naturally, wf-states must impose all these thread-local constraints.
In §3.1.4, I have developed the infrastructure for lifting such predicates
and preservation theorems to the interleaving semantics. For definite
assignment, the lifted predicate is ↑λt (e, xs) h.D e bdom xsc↑, written
↑D↑. Conformance and typability depend on a typing environment E
and the initial type T of the expression, which do not change during
reduction. Hence, I model them as invariant data in a combined predicate.
Let P, (E, T), t ` (e, xs), h

√
denote

∃T′. P, E, h ` e : T′ ∧ P ` T′ ≤ T ∧ P, E ` (h, xs)
√
∧ P, h ` t

√

t (3.7)

Then, P, _ ` _, _ ⇑
√
⇑ lifts P, _, _ ` _, _

√
to multithreaded states using the

lifting infrastructure from §3.1.4:

P, ETs ` ts, h ⇑
√
⇑ = ⇑P, _, _ ` _, _

√
⇑ ETs ts h

A heap h′ extends h (written hE h′) iff h′ allocates at least all addresses
that h does, and types and array lengths of entries in h are unchanged in
h′.22 Heap extension abstracts from changes to data in object fields and
array cells during reductions:

Lemma 3.12. If P, t ` 〈e, (h, xs)〉 −ta→ 〈e′, (h′, xs′)〉, then h E h′. If P `
s−t:ta→ s′ or P ` s−ttas→∗ s′, then shr sE shr s′.

As conformance and the run-time type system only rely on type infor-
mation in the heap, they are monotone with respect to heap extensions:

Lemma 3.13. Let hE h′. If P, h ` v :≤ T, then P, h′ ` v :≤ T. If P, E, h ` e : T,
then P, E, h′ ` e : T. If P, h ` t

√

t, then P, h′ ` t
√

t.

Lemma 3.14 (Preservation of definite assignment, typability and confor-
mance). Suppose P ` s−t:ta→ s′.

(i) If ↑D↑ (thr s) (shr s), then ↑D↑ (thr s′) (shr s′).

(ii) If P, ETs ` thr s, shr s ⇑
√
⇑, let ETs′ = ETs(〈ta〉t P, _, _ ` _, _

√
).

Then P, ETs′ ` thr s′, shr s′ ⇑
√
⇑.

Proof. By Lemmata 3.2 and 3.3, it suffices to discharge the assumptions of
locales lifting-wf and lifting-inv from §3.1.4 for ↑D↑ and P, _ ` _, _ ⇑

√
⇑,

respectively.

22Heap extension has already been formalised in Jinja [82], but is not described in [83].

115

Chapter 3. Interleaving semantics

The first assumption of each follows from the preservation theorems
for single threads (Theorem 3.4 and Lemmata 2.1 and 2.2, adapted
to concurrency) except for thread conformance. Thread conformance
is preserved because it is monotone with respect to heap extensions
(Lemma 3.13) and reductions only extend the heap (Lemma 3.12).

The second assumption requires that the initial state of spawned
threads satisfy the conditionsD and (3.7), respectively. Thread confor-
mance holds because t2a is the left-inverse to a2t for addresses of objects
of subclasses of Thread. For the rest, native-BTA2J builds the initial state
from the method body of the run method, which must exist by well-
formedness. Hence, its declaration meets J’s method well-formedness
constraints (Figure 2.10), from which the desired constraints follow.

The third assumption imposes that changes to the heap by other
threads preserve the constraints. SinceD does not depend on the heap,
this holds trivially for (i). For (ii), such changes are only heap extensions
by Lemma 3.12 with respect to which conformance and typability are
monotone (Lemma 3.13). �

Inter-thread well-formedness constraints

Unfortunately, these constraints do not suffice to discharge the assump-
tion wf-red of progress. It demands that if there is a reduction, then
there is always a feasible one – except for deadlocking reductions due
to Lock, Join, and IsIntrd _ True. For most reductions with BTAs, there
are other reductions with negated preconditions such that one of them
is always feasible. For example, Start and StartFail complement each
other, and so do IntrdT and IntrdF. However, if a thread’s local state
does not conform to the multithreaded state, wf-red may be violated in
two cases:

1. The lock status assigns less locks to a thread than its insync (_) _
blocks remember. In that case, Runlck and RunlckX try to unlock a
monitor that is not held, but there is no reduction with UnlockFail.

2. The wait set status is bWS-Notifiedcor
⌊
WS-WokenUp

⌋
, but the next

reduction is not a native call to wait. Hence, the semantics cannot
issue thread actions with Notified or WokenUp, respectively.

For both cases, I introduce additional constraints that the reductions in
J.redT P preserve.

116

3.3. Deadlock and type safety

For case 1, I define a function I :: expr⇒ addr⇒ nat such that I e a
counts the insync (a) _ subexpressions in e for any monitor address
a. I write has-I eif I e is not 0 everywhere, i.e., e contains at least one
insync (_) _ subexpression. Then, the invariant lock-conf ls ts expresses
that for all thread IDs t,

(i) if t does not exist, it holds no locks, i.e., if ts t = None, then
¬has-lock (lsf a) t for all monitor addresses a, and

(ii) if t does exist, its insync (_) _ subexpressions exactly remember its
locks, i.e., if ts t =

⌊
((e, xs), ln)

⌋
, then I e a = has-locks (lsf a) t +

lnf a for all a. Note that lock-conf must add t’s temporarily released
locks (lnf a) to the locks t actually holds (has-locks (lsf a) t), because
the insync (a) _ blocks remain when a call to wait on a temporarily
releases the locks on a.

However, preservation of lock-conf requires another invariant. Con-
sider, for example, RsyncN and suppose that e has an insync (a) _ subex-
pression. Then, I (sync (null) e) a > 0 andI (THROW NullPointer) a =
0, but a’s lock state does not change. Hence, if the original state satisfies
lock-conf, the successor state will not. The problem here is that e contains
an insync (_) _ block although execution has not yet reached it.

To disallow such cases, I define the predicate ok-I e which ensures
that insync (_) _ subexpressions occur only in subexpressions in which
the next reduction will take place. Figure 3.33 shows the definition.
For expressions with subexpressions, the definition follows a common
pattern; all subexpressions must satisfy ok-I, too, and if has-I for
any subexpression, then all subexpressions which are evaluated before
must be a value. The predicate is-Val e expresses that e is of the form
Val v. For example, if has-I e2 in e1 «bop» e2, then e1 must be a value,
because e1 is evaluated before e2. Control expressions allow insync (_) _
blocks only for the currently evaluated subexpression; for example,
in e1; ; e2, only for e1. The loop while (e1) e2 does not allow them
in either e1 or e2 because the semantics immediately rewrites it to
if (e1) e2; ; while (e1) e2 else unit, which would duplicate any insync (_) _
subexpression. The auxiliary function has-Is es checks whether has-I e
holds for some e ∈ set es.

Lemma 3.15. If ¬has-I e, then ok-I e.

Proof. By induction on e. �

117

Chapter 3. Interleaving semantics

ok-I (new C) = True
ok-I (new T[e]) = ok-I e
ok-I (e instanceof T) = ok-I e
ok-I (Cast T e) = ok-I e
ok-I (Val v) = True
ok-I (e1 «bop» e2) = ok-I e1∧ ok-I e2∧ (has-I e2 −→ is-Val e1)
ok-I (Var V) = True
ok-I (V B e) = ok-I e
ok-I (e1[e2]) = ok-I e1∧ ok-I e2∧ (has-I e2 −→ is-Val e1)
ok-I (e1[e2] B e3) = ok-I e1 ∧ ok-I e2 ∧ ok-I e3

∧ (has-I e2 −→ is-Val e1)∧ (has-I e3 −→ is-Val e1 ∧ is-Val e2)
ok-I (e.length) = ok-I e
ok-I (e.F{D}) = ok-I e
ok-I (e1.F{D} B e2) = ok-I e1∧ ok-I e2∧ (has-I e2 −→ is-Val e1)
ok-I (e.M(es)) = ok-I e∧ ok-Is es∧ (has-Is es −→ is-Val e)
ok-I {V : T = vo; e} = ok-I e
ok-I (e1; ; e2) = ok-I e1 ∧¬has-I e2
ok-I (if (e) e1 else e2) = ok-I e∧¬has-I e1 ∧¬has-I e2
ok-I (while (e1) e2) = ¬has-I e1 ∧¬has-I e2
ok-I (throw e) = ok-I e
ok-I (try e1 catch(C V) e2) = ok-I e1 ∧¬has-I e2
ok-I (sync (e1) e2) = ok-I e1 ∧¬has-I e2
ok-I (insync (a) e) = ok-I e
ok-Is [] = True
ok-Is (e · es) = ok-I e∧ (has-Is es −→ is-Val e)

Figure 3.33: Definition of ok-I

Like with the other thread-local well-formedness conditions, I lift
ok-I to multithreaded states, written ↑ok-I↑, and show preservation
with the locale lifting-wf.

Lemma 3.16 (Preservation of ok-I and ↑ok-I↑).

(i) If P, t ` 〈e, s〉 −ta→〈e′, s′〉 and ok-I e, then ok-I e′.

(ii) If P ` s−t:ta→ s′ and ↑ok-I↑ (thr s) (shr s),
then ↑ok-I↑ (thr s′) (shr s′).

Proof. Case (i) by induction on the semantics. Isabelle proves all cases
automatically except for non-native method calls (Rcall). In that case,

118

3.3. Deadlock and type safety

the body body of the called method is well-typed because P is well-formed.
Well-typed expressions have no insync (_) _ subexpressions because
there is no typing rule for them. Hence, ok-I body by Lemma 3.15.

Case (ii) by Lemma 3.2 and instantiating the locale lifting-wf (Fig-
ure 3.15). Case (i) discharges the first assumption, and the same argument
as for Rcall in the proof of (i) shows the second assumption. The third
is vacuous because ok-I does not depend on the heap. �

Now, I am finally able to prove preservation of lock-conf.

Lemma 3.17 (Preservation of lock-conf). Let lock-conf (locks s)(thr s) and
↑ok-I↑ (thr s) (shr s). If P ` s−t:ta→ s′, then lock-conf (locks s′)(thr s′).

Proof. By case analysis on the interleaving semantics. In case Acquire, t’s
local state remains unchanged and therefore I, too. Moreover, upd-acq
correctly acquires all of t’s temporarily released locks, because no other
thread holds any of them by Acquire’s last assumption. Since the
temporarily released locks ln are reset to Kf 0, the sum of lnf a and
has-locks ((locks s)f a) t remains the same for all locks a. Moreover, other
threads are not affected at all.

In case Normal, I have P, t ` 〈e, (shr s, xs)〉 −ta→ 〈e′, (shr s′, xs′)〉
where thr s t =

⌊
((e, xs), Kf 0)

⌋
and thr s′ t =

⌊
((e′, xs′), ln′)

⌋
for some ln′.

Hence, ok-I e. Induction on the small-step semantics (and case analysis
for native method calls) shows thatI e′ a is equal toI e a plus the number
of Lock→a and less the number of Unlock→a BTAs in 〈ta〉lf a. But this
change is exactly how upd-locks and upd-TRL change the sum of t’s
locks and temporarily released locks on a, respectively (by induction
on 〈ta〉lf a with the assumption ok-Ls ((locks s)f a) t (〈ta〉lf a)). Hence,
lock conformance holds for t in s′. As all lock actions’ preconditions are
satisfied, the reduction does not affect locks and local states of threads
other than t, so lock conformance holds for them in s′, too. Having
inspected all existing threads, I am left with newly spawned threads
t′. Condition (1) in lock-conf’s definition ensures that t′ does not hold
any lock. By the same argument as in the proof of Lemma 3.16, t′’s
initial expression e satisfies ¬has-I e, because it is the body of the run
method. Since t′ has not temporarily released any locks by construction
(cf. Figure 3.9), lock conformance also holds for t′ in s′. �

I now turn to the second way in which J-red may violate wf-red. In
principle, I could pursue the same path as for lock conformance and

119

Chapter 3. Interleaving semantics

require that whenever a thread’s wait set status is not None, its next
reduction will be a call to the native method wait, and show preservation.
However, formalising the native-call-to-wait invariant is tedius and
preservation proofs are no easier. Instead, I define an invariant that is
independent of the local state and that I can reuse for the bytecode type
safety proof in §3.3.5.

Given a set I of well-formed multithreaded states, ok-Suspend I re-
stricts I to states in which the local states of all threads with wait set status
other than None have resulted from a former reduction whose thread
action contains a Suspend BTA. Formally (in locale multithreaded-base):

ok-Suspend I =
{ s. s ∈ I ∧

(∀t ∈ dom (wset s). ∃s0 ∈ I. ∃s1 ∈ I. ∃ttas x0 ta x w ln ln′.
s0 −t:ta→ s1 ∧ s1 −ttas→∗ s∧ thr s0 t =

⌊
(x0, Kf 0)

⌋
∧

t ` (x0, shr s0) −ta→ (x, shr s1)∧ Suspend w ∈ set 〈ta〉w ∧
ok-ta s0 t ta∧ thr s1 t =

⌊
(x, ln)

⌋
∧ thr s t =

⌊
(x, ln′)

⌋
) }

Then, ok-Suspend preserves preservation of invariants by definition.

Lemma 3.18 (Preservation of ok-Suspend). If invariant redT I, then
invariant redT (ok-Suspend I).

Type safety

Finally, I define the set J-wf-states P of well-formed states for the type
safety proof as

J.ok-Suspend P { s. ∃ETs. P, ETs ` thr s, shr s⇑
√
⇑∧ ↑D↑ (thr s) (shr s)∧

↑ok-I↑ (thr s) (shr s)∧ lock-conf (locks s) (thr s) }

Lemma 3.19. J-red P satisfies the assumptions of progress for well-formed
states J-wf-states P. Formally: progress J-final (J-red P) (J-wf-states P).

Proof. I proof the assumptions of locale progress (Figure 3.31) as fol-
lows. Invariance of J-wf-states follows from Lemmata 3.14, 3.16, 3.17,
and 3.18. The well-formedness condition ok-locks-thr directly follows
from lock-conf because this is just case (i) in lock-conf’s definition.
ok-wset-final follows from J.ok-Suspend and the assumption Suspend-
not-final, which I discharge below. progress is just the progress theorem

120

3.3. Deadlock and type safety

2.1, adapted for concurrency. Inductions on the small-step semantics
show the assumptions wf-ta, Suspend-not-final, and Wakeup-waits.

Now, only wf-red remains to be shown. By s ∈ J-wf-states P, if t’s wait
set status is not None, t’s last reduction must have issued a Suspend BTA
in a state with a heap which the current heap shr s extends. Induction
on this reduction shows that t can now reduce with basic thread actions
LNotifiedM and LWokenUpM as necessary.

So suppose wset s t = None. Without loss of generality, assume
¬ ok-ta′ s t ta. Proof by induction over the small-step semantics. The
interesting cases are Runlck and Rnative.

In case Runlck, I (insync (a) _) a > 0, i.e., by lock conformance, t
holds the lock a. Thus, unlocking a is possible, i.e., ok-ta′ s t ta holds.

In case Rnative, the proof proceeds by case analysis of the semantics
for native methods. For each case with a non-trivial thread action, one
must manually provide the alternative reduction. I present Join as an
example: From ¬ ok-ta′ s t ta, I obtain t ∈ intrs s, because ok-ta′ does not
check the precondition of Join to allow for deadlocks. Hence, JoinIntr is
possible. �

Corollary 3.1. Let s ∈ J-wf-states P be not in deadlock. Then, there are t, ta,
and s′ such that P ` s−t:ta→ s′.

Proof. This is Theorem 3.2 with Lemma 3.19 discharging the locale
assumptions. �

The initial state J-start P C M vs satisfies all these well-formedness
constraints.

Lemma 3.20. If wf-J-prog P and wf-start P C M vs,
then J-start P C M vs ∈ J-wf-states P.

Finally, I am able to prove type safety.

Proof of Theorem 3.3. By Lemma 3.20, J-start P C M vs ∈ J-wf-states P.
Since J-wf-states P is closed under reductions, s ∈ J-wf-states P, too.
Hence, s ∈ J.deadlock P by Corollary 3.1, which subsumes all mfinal
states. If e is f inal, cases (i) and (ii) follow from s being well-formed.
Otherwise, Theorem 3.1 yields case (iii). The associated thread object
exists because s ∈ J-wf-states P implies thread conformance. �

121

Chapter 3. Interleaving semantics

Preservation of deadlocks

In §3.3.2, the locale preserve-deadlocked established conditions on the
single-threaded semantics such that threads in deadlock remain in
deadlock, even when other threads keep executing. Now, I show that
J-red P satisfies these conditions with J-wf-states P as the set of well-
formed states.

Lemma 3.21. J-red P meets the assumptions of locale preserve-deadlocked
(Figure 3.30), i.e., preserve-deadlocked J-final (J-red P) (J-wf-states P).

Proof. The first assumption is identical to the first in progress and there-
fore holds by the same argument as in Lemma 3.19. The assumptions
progress and wf-ta of progress imply preservation of P, t ` _ o (second
assumption in preserve-deadlocked). The thrid assumption follows
from the next lemma, because P ` s−t′:ta→ s′ implies shr sE shr s′. �

Lemma 3.22. Suppose P, t ` 〈e, (h′, xs)〉 −ta→〈e′, s′〉. If P, E, h ` e : T for
some h such that h E h′, P ` h

√
, and P, h ` t

√

t, then there exist ta′, e′′, s′′

such that P, t ` 〈e, (h, xs)〉 −ta′→〈e′′, s′′〉 and waits ta′ = waits ta.

Proof. By induction on the small step semantics. Well-typedness of e in h
and heap conformance ensure that field access and method lookup still
succeed, heap extension ensures that the same methods (in particular
native ones) are called. �

Preservation of deadlock now follows from Lemmata 3.11 and 3.21.

Theorem 3.5 (Preservation of deadlock). Suppose s ∈ J-wf-states P. If P `
s−t:ta→ s′ or P ` s−ttas→∗ s′, then J.deadlocked P s ⊆ J.deadlocked P s′.

3.3.5 Type safety for bytecode

In this section, I show type safety for well-typed bytecode. The approach
is the same as for source code (§3.3.4), namely (i) identify necessary
additional invariants, and (ii) prove the assumptions of locale progress.
Instead of presenting the steps in detail once more, I focus on the
similarities with and differences from source code. In this section, I
always assume that Φ is a well-typing for P.

Theorem 3.6 (Type safety). Let P be well-formed with well-typing Φ and
the start state jvm-start P C M vs be well-formed.

122

3.3. Deadlock and type safety

(a) The aggressive VM runs until all threads have terminated or are dead-
locked. Formally:
If P ` jvm-start P C M vs−ttas→∗jvm s such that ¬P ` s−t:ta→jvm s′

for any t, ta, s′, then for every thread t in s, say thr s t =
⌊
((xcp, f rs), ln)

⌋
,

(i) P, Φ ` t:(xcp, shr s, f rs)
√

, and

(ii) if f rs , [] or ln , Kf 0, then t ∈ jvm.deadlocked P s.

(b) Aggressive and defensive VM commute. Formally:
P ` jvm-start P C M vs−ttas→∗jvm s iff
P ` jvm-start P C M vs−ttas→∗jvmd s.

Compare this statement of type safety to the one for the sequential
VM (Theorem 2.3). Theorem 2.3(a) showed that the sequential defensive
VM never raises a type error. However, the multithreaded VM jvm-execd
cannot raise such type errors by construction because of the following
drawbacks of modelling type errors: On the one hand, I could have
adjoined TypeError to the thread-local state of the defensive VM, but as
I have argued in §3.2.3, I then cannot reuse the proof invariants for the
defensive and aggressive VM. On the other hand, a single thread raising
a type error could halt the whole VM with a type error. However, this
does not fit the structure of the interleaving semantics because a single
thread cannot abort the execution of other threads.

Hence, I cannot express absence of type errors directly, but I show
progress (Lemma 3.27) instead. This is equivalent to the absence of type
errors for individual steps, because type errors and normal reductions
exclude each other in the defensive VM, see (2.5). Yet, Theorem 3.6 is
slightly weaker than 2.3 for type errors, because the former does not
exclude the case in which one thread is stuck at a type error and another
thread runs for ever.

Parts 3.6(a)(i) and 3.6(b) express the remaining two parts of The-
orem 2.3, where P, Φ ` _:_

√
strengthens P, Φ ` _

√
to include thread

conformance (see below).
Let me now turn to the proof of Theorem 3.6. Both the theorem

and its proof are in structure similar to type safety for source code
(Theorem 3.3). First, I describe the necessary well-formedness con-
straints jvm-wf-states P Φ on the multithreaded states. Then, I prove
that jvm.redT P and jvmd.redT P preserve them and the start state
jvm-start P C M vs satisfies them, and that they are sufficient to discharge

123

Chapter 3. Interleaving semantics

the assumptions of locale progress. The actual proof of Theorem 3.6
follows the same line as the one for Theorem 3.3, so I do not repeat it
here.

Well-formedness constraints

Just like J-wf-states P, jvm-wf-states P Φ includes all well-formedness
constraints of the sequential type safety proof, i.e., state conformance.
Due to the new native method currentThread, single-threaded preserva-
tion now additionally requires thread conformance. Hence, I strengthen
bytecode conformance to include thread conformance

P, Φ ` t:s
√
= P, Φ ` s

√
∧ P, snd s ` t

√

t (3.8)

and lift it to thread pools with the infrastructure from §3.1.4.

P, Φ ` (ts, h) ↑
√
↑ = ↑λt (xcp, f rs) h. P, Φ ` t:(xcp, h, f rs)

√
↑ ts h

Then, I define jvm-wf-states P Φ as

jvm.ok-Suspend P { s. P, Φ ` (thr s, shr s) ↑
√
↑ ∧

ok-locks-thr (locks s) (thr s) }

Let me compare jvm-wf-states with J-wf-states. Using the language-
independent invariant transformer ok-Suspend, they both ensure that
wait set status and thread-local states agree. Note that it is irrelevant
whether jvm-wf-states uses jvm.ok-Suspend or jvmd.ok-Suspend. They
both yield the same set because aggressive and defensive VM commute
for conformant states (see Lemma 3.23 below). Also, they both include
the thread-local well-formedness constraints lifted to multithreaded
states with ↑_↑ and ⇑_⇑.

In contrast, J-wf-states and jvm-wf-states differ on the inter-thread
well-formedness constraints. The latter requires only ok-locks-thr, be-
cause locale progress does so. In particular, no constraints on the locks
are necessary, because unlike sync (_) _ blocks, unlocking a monitor
with MExit may fail (see Figure 3.23).

Proof of type safety

Now, I present the key lemmata for proving the JinjaThreads VM type
safe.

124

3.3. Deadlock and type safety

Lemma 3.23. Aggressive and defensive VM commute.

(i) Let P, Φ ` t:s
√

. Then

P, t ` Normal s−ta→jvmd Normal s iff P, t ` s−ta→jvm s′.

(ii) Let P, Φ ` (thr s, shr s) ↑
√
↑. Then

P ` s−t:ta→jvmd s′ iff P ` s−t:ta→jvm s′.

Proof. Case (i) adapts Theorem 2.3 (b) to include thread ID and thread
actions. I extend the proof to cover the new native methods and monitor
instructions.

For (ii), either direction proceeds by case analysis of the reduction.
Case Acquire is trivial because it does not depend on the single-threaded
semantics. Case Normal follows from (i). �

The next lemma shows that the VM does not get stuck. Together with
Lemma 3.23, it strengthens absence of type errors (Theorem 2.3 (a)) in
that the defensive VM may not get stuck.

Lemma 3.24 (Progress). Let P, Φ ` t:(xcp, h, f rs)
√

and f rs , []. Then, there
are ta and s′ such that P, t ` (xcp, h, f rs) −ta→jvm s′.

Next, I turn to the preservation lemmata.

Lemma 3.25 (Preservation of conformance). If P, Φ ` (thr s, shr s) ↑
√
↑

and P ` s−t:ta→jvm s′, then P, Φ ` (thr s′, shr s′) ↑
√
↑.

Proof. It suffices to discharge the assumptions of locale lifting-wf from
§3.1.4. Single-threaded preservation (assumption 1) needs to extend the
sequential type safety proof (Theorem 2.3 (c)) for the new native methods
and monitor instructions.

The argument for spawned threads (assumption 2) follows the one
for non-native method calls. By construction, the initial state of a new
thread is just one call frame for the parameter-less run method with
program counter 0. Condition (iii) of method well-typings ensures that
the frame conforms to the well-typing.

Preservation for another thread t changing the heap (assumption
3) falls in two parts. t’s reduction itself preserves heap conformance
(condition (ii) in the definition of P, Φ ` _

√
) and extends the heap. As

all other conformance conditions (exceptions, call frames, thread) are
monotone with respect to heap extensions, conformance is preserved. �

125

Chapter 3. Interleaving semantics

Lemma 3.26 (Preservation of jvm-wf-states). P ` _ −_:_→jvm _ and P `
−:_→jvmd _ preserve jvm-wf-states P Φ.

Proof. Note that redT preserves ok-locks-thr independent of the single-
threaded semantics (proof by case analysis). Then, for the aggressive VM,
preservation follows from preservation of conformance (Lemma 3.25)
and preservation of ok-Suspend (Lemma 3.18).

By Lemma 3.23, Lemma 3.25 also holds for the defensive VM. As
noted above, I would have obtained the same set if jvm-wf-states’s used
jvmd.ok-Suspend. Therefore, preservation for the defensive VM follows
with Lemma 3.18. �

Lemma 3.27. The aggressive and the defensive VM satisfy the assumption of
progress for well-formed states jvm-wf-states P Φ.

Proof. I only sketch the proof for the defensive VM. For the aggressive
VM, I reuse the results for the defensive VM and Lemma 3.23. Invariance
of jvm-wf-states P Φ follows from Lemma 3.26. Assumption wf-stateD
holds because jvm-wf-states P Φ explicitly requires ok-locks-thr s and
jvm.ok-Suspend P enforces ok-wset-final s like for J. Lemma 3.24 dis-
charges progress. Assumptions wf-red, Suspend-not-final and Wakeup-waits
are shown by case analysis whether an exception is flagged and which
instruction executes next. For wf-red, other than in Theorem 3.3 for
Runlck, the case for MExit is straightforward because MExit may fail
with an IllegalMonitorState exception. �

Lemma 3.28. The initial state is well-formed, i.e., if wf-start P C M vs, then
jvm-start P C M vs ∈ jvm-wf-states P Φ.

Deadlock preservation

Preservation of deadlocks for the JinjaThreads VM is analogous to J,
Lemma 3.29 corresponds to Lemma 3.21. The proof for the defensive
VM is analogous, too, where Lemma 3.30 replaces Lemma 3.22.

Lemma 3.29. For well-formed states jvm-wf-states P Φ, exec P and execd P
satisfy the assumptions of locale preserve-deadlocked.

Lemma 3.30. Let P, t ` Normal (xcp, h′, f rs) −ta→jvmd Normal s′ and
P ` h′

√
. If P, Φ ` t:(xcp, h, f rs)

√
for some h such that hE h′, then there exist

ta′ and s′′ such that P, t ` Normal (xcp, h, f rs) −ta′→jvmd Normal s′′ and
waits ta′ ⊆ waits ta.

126

3.4. Related work

Hence, preservation of deadlock again follows with Lemma 3.11.
Since aggressive and defensive VM commute, preservation also extends
to the aggressive VM.

Theorem 3.7 (Preservation of deadlock). Suppose s ∈ jvm-wf-states P Φ.

(i) If P ` s−t:ta→jvmd s′ or P ` s−ttas→∗jvmd s′, then
jvmd.deadlocked P s ⊆ jvmd.deadlocked P s′.

(ii) If P ` s−t:ta→jvm s′ or P ` s−ttas→∗jvm s′, then
jvm.deadlocked P s ⊆ jvm.deadlocked P s′.

3.4 Related work

3.4.1 Formalisations of Java and Java bytecode

Formalisations of (aspects of) sequential Java and Java bytecode abound
in the literature, many of which study Java features that Jinja and
JinjaThreads omit (cf. §7.4). Hartel and Moreau [67] provide a good
overview, Alves-Foss [7] has collected many early works. Most closely
related to JinjaThreads are its predecessors Jinja, Bali and µJava for
sequential Java, see §2.3 for a detailed comparison.

Most formalisations cover either only Java source code or only Java
bytecode. One notable exception is the semantics by Stärk et al. [166]
for a subset of Java source code and bytecode in terms of abstract state
machines, for which they prove subject reduction. Recently, Grunwald et
al. [59] extended it to Java generics. However, they use neither machine
support for the semantics nor for checking their proofs.

For concurrent Java, AtomicJava [51] by Flanagan et al. models most
Java source code features except inheritance and exception handling.
They use it to show that their non-standard type system ensures atomicity.

There are much more formalisations for multithreaded Java bytecode.
First, Liu and Moore [104] report on an executable model M6 of the
KVM, a JVM implementation for embedded devices, in ACL2, which
covers all aspects of the Connected Limited Device Configuration (CLDC)
specification [41]. Like JinjaThreads, their VM semantics implements
native methods from the CLDC standard library, in particular to deal
with reflection, class loading and concurrency. Since they model only
the JVM, the implementations for the native methods manipulate the

127

Chapter 3. Interleaving semantics

VM state directly. In contrast, JinjaThreads encapsulates the semantics
(and signatures) of native method calls such that both source code and
bytecode can reuse it. They aim for verifying small Java programs
[105,122] and JVM implementations with respect to the JVMS. Thus, they
do not define a type system for bytecode nor prove type safety. The M6
models bytecode much closer to the JVMS than JinjaThreads does, e.g.,
the M6 explicitly models the constant pool and string literals. Like its
predecessor, JinjaThreads abstracts from such technical details.

Second, Bicolano [121] serves as the basis for the proof carrying code
infrastructure in the Mobius project [13]. It provides a comprehensive
model for CLDC except for concurrency and class loading in Coq,
which includes the class file format. In BicolanoMT, Huisman and
Petri [70] extend Bicolano with interleaving concurrency. By using
the extension framework by Czarnik and Schubert [42], they do not
need to change the sequential Bicolano semantics at all. In contrast,
JinjaThreads adds the semantics of MEnter and MExit instructions to
the single-threaded semantics and clutters all rules with thread actions.
Conversely, JinjaThreads uses the same interleaving semantics for source
code and bytecode whereas the BicolanoMT extension is tightly tied to
the bytecode language.

Third, Belblidia and Debbabi present a formal small-step semantics
for multithreaded Java bytecode [20]. Like JinjaThreads, they have a
semantics for threads in isolation and a second layer which manages the
threads and receives basic thread actions, which they call labels, from
them. In contrast to the JinjaThreads interleaving framework, at most
one basic thread action can be issued at a time. Their single-threaded
semantics already takes care of the locks, which are stored in the shared
memory, i.e., they only have actions for creating, killing, blocking, and
notifying threads. Yet, neither do they model the wait-notify mechanism,
nor thread interruption; the second layer uses the block and notify actions
to keep track of which threads are ready for execution. Like the M6
and Bicolano, they only give the semantics, but no type system and no
proofs. In JinjaThreads, the framework semantics manages the complete
multithreaded state which includes the locks, wait sets, and interrupts.
This isolates them from one another and alleviates individual threads
from the burdens of multithreading. By allowing multiple basic thread
actions in a single reduction step, single threads can combine basic thread
actions as building blocks for more complex behaviour, while each basic
thread action still has simple semantics.

128

3.4. Related work

Forth, JavaFAN by Farzan et al. [48, 47] is a formal analyser for Java
source and bytecode in Maude, see §6.6 for details. Although they
provide formal semantics for both source code and bytecode, these are
unconnected.

Apart from the ones mentioned above, I know of two other large-scale
formalisations of sequential Java bytecode. First, Barthe et al. [14, 15]
built a JVM similar to the sequential JinjaThreads VM in Coq, which
covers the JavaCard platform. They show type safety for type-correct
bytecode similar to Theorem 2.3.

Second, Atkey [9] has developed an executable JVM in Coq, which
encodes the checks of the defensive VM as dependent types. He argues
that this simplifies large-scale proofs against the JVM because they no
longer need to show that these checks cannot fail.

3.4.2 Type safety proofs and deadlocks

There are only few type safety proofs for multithreaded languages like
Java. However, often only subject reduction is shown, which eliminates
the need to deal with deadlocks.

In [58], Grossman reports on type-based data race detection for
multithreaded Cyclone – a type safe variant of C. In the type safety
proof, he shows the progress property that no well-typed thread can get
“badly stuck”. A thread is badly stuck iff it either is final and still holds
some locks or it would not be able to reduce any further even if it could
acquire an arbitrary additional lock. Together with subject reduction,
type safety follows, i.e., all threads reachable from a well-typed thread
via reductions are not badly stuck. Like deadlocked in JinjaThreads,
badly stuck is defined semantically. In general, being deadlocked is
stronger than being badly stuck because the latter does not involve the
aspect of circular waiting.

Goto et al. [57] also prove type safety for a multithreaded calculus
with a weak memory model. Their progress statement only applies to a
thread if it is not about to execute a synchronisation statement, which is a
crude syntactic approximation of deadlock. Progress with this restriction
no longer guarantees that the semantics is not missing any rule. For
instance, it holds even for an operational semantics without any rules
for synchronized statements.

There are also approaches to prevent potential deadlocks through
type systems, which also must formalise deadlock. For example, Suenaga

129

Chapter 3. Interleaving semantics

and Kobayashi [169] propose a calculus with thread creation, interrupts
and synchronisation via structured locking. They assign to each syntactic
occurrence of a lock a unique level tag. Their type system remembers
bounds on the level of acquired locks in effect labels and ensures deadlock
freedom by requiring that locks must be acquired in ascending order,
which breaks the circular waiting condition. Their deadlock formalisation
is purely syntactic: A set of threads is in deadlock iff every “reducible”
subexpression of the thread’s expressions is a synchronisation statement
which has to acquire a lock which is already held. For JinjaThreads,
such a syntactic characterisation could be obtained from the semantic
definition of deadlock, but I have not done so. However, this cannot
express that some threads are in deadlock while others are still active
like deadlocked does. This unnecessarily weakens their type safety
statement.

3.4.3 Large-scale programming language formalisations

Beyond Java, there are several other large-scale formalisations of pro-
gramming languages in proof assistants. Foster and Vytiniotis [52]
have formalised the core of FeatherweightJava [71] in Isabelle/HOL.
Later, Delaware et al. [45] formalised FeatherweightJava with various
extensions in Coq.

There are also substantial formalisations of C and C++, which are pre-
decessors to Java. Based on Jinja, Wasserrab et al. [178] have formalised
multiple inheritance in C++ and proven it type-safe. Ramananandro
et al. [148, 149] have translated this semantics to Coq and extended it
with concrete memory layouts and object construction and destruction.
Norrish [131–133] has formalised large parts of the C and C++ language
in HOL. Krebbers and Wiedijk [90] are working on formalising the full
C99 standard. They aim to correctly capture the low-level intricacies of
C while keeping the semantics relatively easy to use. Schirmer [158, 159]
developed the SIMPL framework for sequential imperative languages in
Isabelle/HOL and embeds a subset of C. As he concentrates on verifying
programs, he devises an operational and axiomatic semantics where the
latter is sound and complete with respect to the former.

Compiler verifications also come with formalised semantics, see §5.7
for a discussion.

130

Más extraño y más puro que todo hrön es a veces el
ur: la cosa producida por sugestión, el objeto educido
por la esperanza.

Jorge Luis Borges, Tlön, Uqbar, Orbis Tertius; Ficciones 4
Memory models

Zappa Nardelli et al. demand that a specification for a multiprocessor or
programming-language memory model “be integrated with the seman-
tics of the rest of the system (describing the behaviour of the processor
instructions or of the phrases of the programming language). Memory
models are typically presented in isolation, and this makes it all to easy
to gloss over important details.” [181] Hitherto, this criticism has applied
to Java and the JMM, too [8,38,69]. In this chapter, I address this problem
by linking the JinjaThreads semantics from Chapter 3 with the JMM.
Moreover, I study whether this connection sustains the DRF guarantee,
type safety, and the Java security architecture.

To that end, I parametrise the semantics from Chapter 3 over the
memory model (MM) first (§4.1). Thus, the definitions and theorems
from Chapter 3 are in fact the special case for sequential consistency (§4.2).
The main contributions of this chapter then revolve around the JMM:

• a formal link between multithreaded Java and the JMM (§4.3.2),
• proofs of the DRF guarantee (§4.3.3) and consistency of the JMM

(§4.3.4), and
• a proof that the JMM provides only a notion of type safety weaker

than sequential consistency and an example that the JMM compro-
mises Java’s security guarantees (§4.3.5).

Technically, the challenges in this chapter are the following:

abstract over the memory model Chapters 2 and 3 define the semantics
in terms of the concrete heap representation from §2.1.5. To support
different memory models, I abstract over the implementation. To that
end, I identify a set of kernel operations for shared memory together

Chapter 4. Memory models

with their properties and adapt the definitions and proofs. These
operations are flexible enough to cover sequential consistency and
the JMM.

link JinjaThreads with the JMM Implementing the kernel operations
does not suffice for the JMM, because its axiomatic rules decide a
posteriori whether an execution is allowed. Therefore, I connect the
operational semantics for source code and bytecode with the JMM
by associating statements and instructions with their JMM events,
i.e., the events from Table 3.1 that I asked the reader to ignore during
Chapter 3.

prove the DRF guarantee and consistency of the JMM The JMM and
the DRF guarantee have been formalised before [8, 69], but uncon-
nected to a single-threaded semantics. To bridge the gap, I identify
the assumptions of the DRF proof and show that the single-threaded
semantics satisfy them. Although these assumptions are intuitive,
discharging them surprisingly requires a subject reduction proof
for non-speculative executions. Initialisations turn out to be the
main complication. In particular, I construct sequentially consistent
executions for a given prefix.

For consistency, I show that the JMM allows all sequentially consistent
executions of all well-formed programs and, therefore, every well-
formed program has at least one legal behaviour. To my knowledge,
this is the the first consistency proof for the JMM.

4.1 The heap as a module

So far, I have only sketched how JinjaThreads models the heap in §2.1.5.
In fact, JinjaThreads models the heap as a module with abstract operations
and provides implementations for sequential consistency and the Java
memory model. In this section, I introduce the module and its operations
(§4.1.1) and show how the semantics and proofs use it (§4.1.2). In §4.1.3,
I discuss some design decisions for the module.

In Chapters 2 and 3, addresses and thread IDs have been taken from
the opaque types addr and thread-id, respectively. The JMM and code
generation (§6.3.1) require more concrete types. Since Isabelle does not
support type refinement, these types are actually type variables ′addr

132

4.1. The heap as a module

and ′t in JinjaThreads. Hence, all previous definitions that depend on
addresses or thread IDs are in fact polymorphic. For example, the real
types for values (Figure 2.1) and J programs (Figure 2.3) are ′addr val and
′addr J-prog, respectively. From now on, I write such types with these
type parameters.

4.1.1 Abstract operations and their properties

In this section, I define the module’s interface and present the properties
of the abstract operations. As one would expect from a module’s interface,
the type variable ′heap generalises the type heap for heaps such that the
concrete implementations in §4.2 and §4.3 can instantiate ′heap as needed.

In Figure 4.1, the locale declaration heap-base fixes the abstract heap
operations. Locale heap specifies how they affect type information and
array lengths that the heap stores.23 I now explain the intended meaning
of the individual operations.

The functions a2t and t2a convert between addresses and thread
IDs; I have already introduced them in §3.2.1. Since addresses and
thread IDs are now type variables, I must fix the conversion functions
as locale parameters, because different MMs might implement them
differently. Assumption a2t-inverse states that t2a is the left-inverse of a2t
on addresses at which objects of subclasses of Thread may be allocated.
It ensures that the native method currentThread correctly returns the
address of the current thread (CurrTh).

The parameter typeof-addr replaces the constant defined in Equation
(2.4). From a heap, it extracts type information for addresses, which also
includes the length of arrays.

The other operations manipulate the heap. The constant empty-heap
denotes the heap which has no objects allocated. The operation alloc
allocates a new object of the given class or an array of the given element
type and size, respectively. It returns the updated heap h′, and the

23The locale heap both fixes a parameter P and imposes assumptions, which deviates
from the general rule of separating these steps (§1.4.2). However, heap only needs P
to know about valid types and subtyping. Actually, heap-base should fix P, but this is
impossible, because the compiler verification in Chapter 5 refers to definitions in heap-base
for the source code and the compiled program at the same time. Although these definitions
are provably equal, the locale mechanism and the HOL type system do not allow to
conveniently combine them. As all definitions go into heap-base and theorems are not
affected, heap fixes P and the declarations in heap-base explicitly have P as an additional
parameter when necessary.

133

Chapter 4. Memory models

datatype loc = Field vname cname | Cell nat

locale heap-base =
fixes a2t :: ′addr⇒ ′t and t2a :: ′t⇒ ′addr
and typeof-addr :: ′heap⇒ ′addr⇀ hty
and empty-heap :: ′heap
and alloc :: ′heap⇒ hty⇒ ′heap× (′addr option)
and read :: ′heap⇒ ′addr⇒ loc⇒ ′addr val⇒ bool
and write :: ′heap⇒ ′addr⇒ loc⇒ ′addr val⇒ ′heap⇒ bool

locale heap = heap-base + fixes P :: ′m prog
assumes a2t-inverse :

Jtypeof-addr h a = bClassT Cc ; P `C�∗ ThreadK
=⇒ t2a (a2t a) = a

and alloc-type :
Jalloc h hT = (h′, bac); is-htype P hTK
=⇒ typeof-addr h′ a = bhTc

and alloc-hext : alloc h hT = (h′, ao) =⇒ hE h′

and write-hext : write h a al v h′ =⇒ hE h′

Figure 4.1: Locales heap-base and heap declare the heap module’s interface

allocated address bac – or None if the allocation fails, e.g., due to in-
suffcient memory. If the allocation succeeds, a’s type information in h′

must be correct – provided that the allocated type is valid (alloc-type);
is-htype P hT abbreviates is-type P (ty-of hT).

The predicates read and write model access to the heap. The member
al :: loc specifies which field (al = Field F D) or array cell (al = Cell n)
of an address should be accessed. An address a and a member al
identify a location (a, al). Given the current heap h and a location (a, al),
read h a al models (as a predicate) the set of values that memory may
return. Similarly, writing to a location in the heap (write h a al v h′)
non-deterministically updates the heap. Allocations and write access
must be implemented such that they extend the heap (hE h′), i.e., type
information grows monotonically.

hE h′ = typeof-addr h ⊆m typeof-addr h′

Type safety requires further assumptions (Figure 4.2); in particular, the
values that memory returns must conform to the type. This requires the

134

4.1. The heap as a module

locale conf-base = heap-base +
fixes hconf :: ′heap⇒ bool and P :: ′m prog

locale conf = conf-base + heap +
assumes hconf empty-heap
and Jalloc h hT = (h′, ao); hconf h; is-htype P hTK =⇒ hconf h′

and Jwrite h a al v h′; hconf h; P, h ` a·al : T; P, h ` v :≤ TK
=⇒ hconf h′

and Jtypeof-addr h a = bhTc ; hconf hK =⇒ is-htype P hT

locale conf-progress = conf +
assumes Jhconf h; P, h ` a·al : TK =⇒ ∃v. read h a al v
and Jhconf h; P, h ` a·al : T; P, h ` v :≤ TK =⇒ ∃h′. write h a al v h′

locale conf-read = conf +
assumes Jread h a al v; hconf h; P, h ` a·al : TK =⇒ P, h ` v :≤ T

locale typesafe = conf-progress + conf-read

Figure 4.2: Locales for heap conformance

notion of the type of a location. Let P, h ` a·al : T denote that the location
(a, al) is supposed to store values that conform to type T. Formally:

typeof-addr h a = bhTc P ` class-of ′ hT has F:T (fm) in D

P, h ` a·Field F D : T

typeof-addr h a =
⌊
ArrayT T n′

⌋
n < n′

P, h ` a·Cell n : T

Now, consider the locales in Figure 4.2 in detail. Locale conf-base
fixes the predicate hconf for heap conformance as parameter, which
abstracts heap conformance _ ` _

√
from §2.1.6. Locale conf assumes

that the empty heap conforms and all heap-manipulating operations
preserve heap conformance – if only valid types are allocated and type-
conforming values written. Moreover, heap conformance must ensure
that the dynamic types of all addresses are valid, too.

Following the division in progress and preservation, the actual
assumptions for type safety are split in two groups. Locale conf-progress

135

Chapter 4. Memory models

collects the progress assumptions, i.e., for a conformant heap and valid
member of an address, we must always be able to read some value from
that member and write any type-conforming value to it. Conversely,
subject reduction requires that reading from memory always returns
type-conforming values, expressed in locale conf-read. Locale typesafe
combines all these assumptions. This completes the specification of the
heap module.

4.1.2 Adaptations to semantics and proofs

Before I discuss the design considerations in §4.1.3, I present how to adapt
the definitions, theorems, and proofs in Chapter 3 to the heap module.

The language definitions are not affected at all, because the heap
module only affects the dynamic semantics. Neither is the framework
for interleaving semantics, since it is oblivious of the heap representation.
The instantiations themselves for source code and bytecode differ slightly,
as the type variable for the heap ′h is specialised to the type variable ′heap
instead of the concrete type heap.

The abstract heap necessitates many syntactic adaptations in the spec-
ification of and proofs about the single-threaded semantics. Although
locales are invaluable in syntactically hiding the heap operations, some
details still change. For example, heap conformance no longer depends
on the program P inside the locale, because P is one of its parameters and
it would be nonsensical to clutter the formalisation with unnecessary
applications of heap conformance to P. Accordingly, its syntax changes
from P ` h

√
to hconf h.Nevertheless, the definitions and theorems as

presented in Chapter 3 are still machine-checked – to obtain them, one
merely instantiates the generalised versions from this chapter with se-
quential consistency as defined in §4.2. I omit to list these generalisations
as they are straightforward.

The definitions from Chapter 3 that depend on the heap are distributed
over the locales heap-base and conf-base as follows:24 Definitions that
involve heap conformance go into conf-base, whereas heap-base collects

24Language-specific proof invariants (such as run-time well-typedness and bytecode
conformance) demand specialised types for program declarations (such as ′addr J-prog and
′addr jvm-prog, respectively, instead of ′m prog). Since the type variable ′m of the locale
parameter P cannot be instantiated inside the locale due to HOL restrictions, I replicate the
locale hierarchy from Figures 4.1 and 4.2 and constrain ′m as necessary. As this is only a
technical issue, I do not distinguish these copies in the presentation.

136

4.1. The heap as a module

theorem description locale

so
ur

ce
co

de

L 3.6 assumptions of multithreaded heap-base
T 3.3 type safety typesafe
T 3.4 subject reduction conf-read
L 3.12 heap extension heap
L 3.13 heap extension monotonicity heap
L 3.14(i) preservation of definite assignment heap-base
L 3.14(ii) preservation of conformance conf-read
L 3.16 preservation of ok-I heap-base
L 3.17 preservation of lock conformance heap-base
L 3.19 assumptions of progress typesafea

C 3.1 multithreaded progress typesafe
L 3.20 well-formedness of the initial state conf
L 3.21 assumptions of preserve-deadlocked typesafe
L 3.22 preservation of reductions conf-progress
T 3.5 deadlock preservation typesafe

by
te

co
de

L 3.7 assumptions of multithreaded heap-base
T 3.6 type safety typesafe
L 3.23 aggressive & defensive VM commute conf-base + heapb

L 3.24 single-threaded progress conf-progress
L 3.25 preservation of conformance conf-read
L 3.26 preservation of jvm-wf-states conf-read
L 3.27 assumptions of progress typesafea

L 3.28 well-formedness of the initial state conf
L 3.29 assumptions of preserve-deadlocked typesafe
L 3.30 preservation of execution options conf-progress
T 3.7 deadlock preservation typesafe

aLocale progress assumes preservation of wf-states, which requires conf-read. Therefore,
L 3.19 and L 3.27 are in the stronger locale typesafe. For the progress assumptions progress
and wf-red, the assumptions of locale conf-progress suffice.

bL 3.23 requires Φ ` t:s
√

, which is defined in conf-base because it imposes heap
conformance. However, the proof does not depend on heap conformance, but only
requires the heap assumptions. Therefore, it lives in a locale of its own that combines heap
with conf-base.

Table 4.1: Distribution of lemmata (L), theorems (T), and corollaries (C) from
§3.2, §3.3.4, and §3.3.5 over the locales from Figures 4.1 and 4.2

137

Chapter 4. Memory models

the others that only depend on the heap and its operations. The latter
are the vast majority and include all semantics definitions. The former
consist only of proof invariants; they no longer take the program P as
an explicit parameter, because the locale already fixes it. For example,
bytecode conformance is now written as Φ ` t:s

√
instead of P, Φ ` t:s

√
.

For the theorems, the distribution is more complicated. Table 4.1
assigns the lemmata and theorems from §3.2, §3.3.4, and §3.3.5 to the
locales according to the following rules: Theorems whose preconditions
do not depend on heap conformance are provable under the assumptions
of locale heap. Locale heap-base collects those that do not depend on
the heap at all. Single-reduction preservation lemmata that require
heap conformance go into conf – except for subject reduction, which
requires conf-read. Single-reduction progress theorems are provable in
conf-progress. Combinations of subject reduction and progress such as
the type safety theorems live in typesafe. Accordingly, the proofs of
these lemmata and theorems are adapted to use the assumptions of the
respective locales.

Beyond these easy changes in syntax, there are also the following non-
trivial adaptations. First, I construct the start heap start-heap with the
preallocated Thread object and system exceptions from the primitive heap
operations as follows: The constant start-data :: ′heap× ′addr list× bool
preallocates the start heap using alloc, Figure 4.3 shows the definition.
It consists of the start heap start-heap, the list of preallocated addresses
start-addrs and the flag start-ok to indicate whether all allocations have
succeeded. Then, the start thread’s ID start-tID is the thread ID associated
with the preallocated Thread object, and addr-of-sys-xcpt C retrieves the
right address for preallocated system exceptions from start-addrs. For
the start state being well-formed, all allocations must have succeeded.

Second, the semantics rules for accessing members of objects and
arrays now use the abstract heap operations. Figures 4.4 and 4.5 show
the semantics of reading and updating a field of an object or array for
source code and bytecode, respectively. Note that the thread action
records the reading and writing. The semantics for array cells are similar
and can be found in the Appendices B.6.5 and B.7.3.

Third, I must change the implementations for the native methods
hashcode and clone (Figure 2.12). Note that the other native methods
(Figure 3.16) do not manipulate the heap and can thus be left untouched
(Figures 3.17, 3.18, and 3.19). For hashcode, I use Isabelle’s type classes
to safely overload the function hash-addr.

138

4.1. The heap as a module

start-data = (let init (h, as, b) C = if b then
let (h′, ao) = alloc h (ClassT C)
in case ao of None⇒ (h′, as, False)
| bac ⇒ (h′, as @ [a], True)

else (h, as, False)
in foldl init (empty-heap, [], True) (Thread · sys-xcpts))

(start-heap, start-addrs, start-ok) = start-data

start-tID = a2t (hd start-addrs)

addr-of-sys-xcpt = the ◦map-of (zip (Thread · sys-xcpts) start-addrs)

wf-start P C M vs←→
(∃Ts T meth D. P `C sees M:Ts→T = bmethc in D∧

P, start-heap ` vs [:≤] Ts∧ start-ok)

Figure 4.3: The bootstrap process constructs the start heap

Rfacc :
read h a (Field F D) v

P, t ` 〈addr a.F{D}, (h, xs)〉
−LRead a (Field F D) vM→〈Val v, (h, xs)〉

Rfass :
write h a (Field F D) v h′

P, t ` 〈addr a.F{D} B Val v, (h, xs)〉
−LWrite a (Field F D) vM→〈unit, (h′, xs)〉

Figure 4.4: Semantics of field access and field assignment

The former implementation of clone copies the complete object to a
fresh address (Clone) in one step. This is no longer feasible, because the
heap operations allow to access only one member at a time. Therefore,
I define a copy operation copy-mems a a′ als h obs h′ that copies one
by one a list of members als from address a and heap h to address a′.
The resulting heap is h′. Like for ordinary field access, obs records the
memory accesses. Then, based on the receiver’s type, the rules for
clone (i) allocate a new object or array according to the receiver’s type,
(ii) compute the list of members to copy from the program declaration,
and (iii) copy them using copy-mems. The lengthy formal definition can
be found in Appendix B.4.2.

139

Chapter 4. Memory models

exec-instr (Getfield F D) P t h stk loc C M pc f rs =
(let v · stk′ = stk; Addr a = v
in if v = Null then

{ (LM,
⌊
addr-of-sys-xcpt NullPointer

⌋
, h, (stk, loc, C, M, pc) · f rs) }

else
{ (LRead a (Field F D) v′M, None, h, (v′ · stk′, loc, C, M, pc + 1) · f rs)
| v′. read h a (Field F D) v′ })

exec-instr (Putfield F D) P t h stk loc C M pc f rs =
(let v · r · stk′ = stk; Addr a = r
in if r = Null then

{ (LM,
⌊
addr-of-sys-xcpt NullPointer

⌋
, h, (stk, loc, C, M, pc) · f rs) }

else
{ (LWrite a (Field F D) vM, None, h′, (stk′, loc, C, M, pc + 1) · f rs)
| h′. write h a (Field F D) v h′ })

Figure 4.5: Semantics of Getfield and Putfield

4.1.3 Design considerations

Like JinjaThreads as a whole reuses as many concepts of Jinja as possible,
the heap module attempts to naturally abstract from the concrete heap
representation. Jinja has already defined abstractions over the heap
representation such as typeofh; the heap module carries this one step
further. First, it defines a kernel set of operations that permit to completely
separate the semantics from the heap implementation. Then, it re-
implements the existing abstractions in terms of these operations. When
this was not possible, e.g., for heap conformance, I turned the abstraction
into a parameter of the model.

It was more difficult to identify usable assumptions about the opera-
tions on which the proofs rest. To do so, I started to convert representa-
tion-dependent pieces of the main theorems for source code (progress,
preservation, subject reduction) to use the heap module. Thereby, I
examined the facts known in the proof context, which led me to the
above assumptions. On the level of values, they are deliberately weak to
allow for different memory models. For example, allocation must only
return some address which has the correct type in the updated heap.
However, there is no constraint that the address must be fresh or that it

140

4.2. Sequential consistency

has not been typable in the original heap. Similarly, reading from and
writing to the heap need only be defined for conformant heaps.

In contrast to values, JinjaThreads assumes that heap operations
never mess up type information, i.e., the heap is only ever extended
and typable addresses never change their type. Some proofs, e.g., the
compiler verification in Chapter 5, rely on this even for non-conforming
heaps. Therefore, the assumptions in heap must hold for any heap,
not just conforming ones. Such a distinction can also be found in the
specification of the JMM: The JMM guarantees only weak semantics for
values, but requires sequential consistency for types.

The locale hierarchy mirrors JinjaThreads’ proof structure. Distribut-
ing the assumptions over different locales has two advantages over
combining them in a single one. First, as Table 4.1 shows, I can identify
which assumptions a theorem really depends on. Second, one of the
implementations for the JMM (§4.3.2) does not satisfy the locale conf-read
– and therefore neither typesafe. Thanks to the modularity, I can still use
all theorems in conf-progress and its anchestor theories for proofs about
the JMM.

Finally, let me motivate why reading and writing are non-determin-
istic, but allocation is not. Since the JMM abstracts from implementa-
tion details like caches in processors and optimisations in compilers,
non-deterministic reading models their effects. Writing is also non-
deterministic for reasons of symmetry and because other MM formalisa-
tions [34] use non-deterministic writing instead of reading. However,
I model allocation as a function such that bootstrapping can function-
ally construct the start heap from the empty heap (see Figure 4.3). If
allocation was non-deterministic, too, I could not have fully specified
the initial heap, which would complicate code generation. Moreover,
a functional specification does not need progress assumptions like in
locale conf-progress. Nevertheless, there are no fundamental obstacles
to non-deterministic allocation and it would have elegantly solved other
issues, see §4.3.6.

4.2 Sequential consistency

Under sequential consistency [93], a multithreaded program behaves
as if every thread executes at a time and all threads immediately see
all the writes of a thread. Interleaving semantics as presented in Chap-

141

Chapter 4. Memory models

ter 3 captures sequential consistency. In this section, I introduce the
implementation of the heap module from §4.1 for sequential consis-
tency.

To distinguish types and definitions from the abstract ones, I prefix
their names and decorate the notation with “sc”, i.e., sc-heap for heap,
sc-read for read, _, _ `sc _ :≤ _ for _, _ ` _ :≤ _, etc. I use the same scheme
to refer to definitions in the locales heap-base and conf-base that the
interpretation specialises.

For the purpose of code generation (§6.3.1), I use natural numbers as
addresses. Then, the heap representation is defined as in Figure 2.11 and
sc-typeof-addr like typeof-addr in Equation 2.4. The implementation of
the abstract operations follows Jinja’s heap model, I have only extracted
them from different parts of the semantics. The interesting operations
are reading, writing and heap conformance: sc-read h a al v holds iff
in the heap h, member al of address a stores the value v. Similarly,
sc-write h a al v h′ requires that a is allocated in h and h′ is h where a’s
member al is updated to v. The heap h conforms (written P `sc h

√
) iff

for all allocated objects and arrays, their type T is valid, the field map
stores type-conforming values for all fields that P declares for T, and
– for arrays – all array cells store type-conforming values. The formal
definitions of all operations can be found in Appendix B.3.1.

Theorem 4.1. Sequential consistency satisfies all assumptions of the heap
module for any input program.

typesafe sc-a2t sc-t2a sc-typeof-addr sc-empty-heap
(sc-allocate P) sc-read sc-write (P `sc _

√
) P

Corollary 4.1. JinjaThreads source code and bytecode are type safe under
sequential consistency.

4.3 Java memory model

In this section, I first motivate the JMM and explain its central concepts
(§4.3.1), in more detail than in §1.1. Next, I formalise the JMM and
connect it to the JinjaThreads semantics (§4.3.2). Then, I prove modularly
that it provides the DRF guarantee (§4.3.3) and is consistent (§4.3.4).
Further, I show that JMM only provides a weaker from of type safety
and compromises security (§4.3.5). Finally, I discuss the formalisation

142

4.3. Java memory model

and the proofs (§4.3.6). A preliminary version of this section has been
published in [112].

4.3.1 Informal explanation

In §1.1, I have briefly motivated the need for the JMM already. Now, I
delve deeper into how the JMM works.

Since the JMM must ensure that compilers can implement Java on a
variety of hardware with different MMs efficiently, it reduces concrete
thread operations to the events from Table 3.1, which are called inter-
thread actions in JMM terminology:

• reading (Read) from, writing (Write) to and initialising (Allocate)25

locations on the heap – with the abbreviations New-Obj and
New-Arr,

• locking (SLock) and unlocking (SUnlock) a monitor,
• interrupting (TIntr) a thread and observing that it has been inter-

rupted (TIntrd),26

• spawning (TStart) of and joining (TJoin) on a thread, and
• external actions (Extern) – for I/O, for example.

Additionally, the JMM requires that events TInit and TFinish mark the
start and termination of a thread, respectively.

This way, the JMM is independent from syntax and implementation
techniques. It nevertheless gets a global view on how a given program
works algorithmically and on how its threads interact, and uses this to
determine the set of legal behaviours. Note that the JMM falls in two
parts: First, the JMM provides the strong model of sequential consistency
for allocation, type information, and array lengths. In JinjaThreads, the
JMM heap module implementations deal with them. Second, axiomatic
rules determine a posteriori whether a given execution is an allowed
(legal) behaviour of a given program. I model this part as additional
layers on top of the interleaving semantics.

25Technically, the JMM defines an initialisation action that initialises only a single location.
JinjaThreads uses one event per memory allocation that initialises all members of the
allocated address. This way, allocation events keep track of allocated addresses whereas
JMM initialisation actions would not if the allocated object or array contains no members,
e.g., an array of length 0. Note that the special treatment of allocations in the JMM (see
below) ensures that this deviation does not matter semantically.

26The JMM does not mention the events TIntr and TIntrd for thread interruption although
its specification requires them.

143

Chapter 4. Memory models

α
time

definitely before
_ ≤hb α

definitely after
α ≤hb _

maybe concurrently
_ 6≤hb α∧ α 6≤hb _

Figure 4.6: Happens-before provides a notion of time relative to a given event α.
If α is a Read, it may see Write events in the grey area.

In such an execution, the events of a single thread are totally ordered
by the sequence in which they would occur according to the single-
threaded semantics, the so-called program order (notation ≤po). Being
consistent with this total order, the happens-before order ≤hb provides a
notion of time relative to a given event. As Figure 4.6 illustrates, it parti-
tions the other events of the execution into three groups: those that must
have happened before it, those that must happen after it, and those that
may happen concurrently. Synchronisation events, which are all events
except for external actions and reads from and writes to non-volatile
locations, introduce happens-before relationships between events of dif-
ferent threads. Hence, whenever α’s thread cannot deduce – using only
allowed means of synchronisation – that an event β of another thread
must have happened before or will happen after α, then α and βmay hap-
pen concurrently. This permits compilers and hardware to freely reorder
independent statements of a thread without synchronisation in between.

Since the JMM is independent from a concrete language and sequen-
tial semantics, it is custom to write examples such as in Figure 4.7a
in a simple imperative language rather than to obfuscate the point by
irrelevant Java details. In this language, thread-local variables start with
“r”, e.g., r1, r2, whereas x, y, etc. denote shared locations. In examples,
vertical rules separate the threads, and the thread in column i has ID
ti. Above the threads, the initial values of shared locations and any
necessary declarations are given. In Figure 4.15 below, I show how to
translate the above example to Java.

Sequential consistency does not allow the result r1 == 2 and r2 ==
1 for Figure 4.7a, but the JMM does, because multi-core processors allow
it, too. From a single-threaded perspective, l. 1 and l. 2 in the thread
on the left are independent. Hence, one core might execute the write
in l. 2 while l. 1 is still waiting for the memory controller to answer its
request for x. While such an early execution is transparent to sequential

144

4.3. Java memory model

initially: x = y = 0;
1: r1 = x;
2: y = 1;

3: r2 = y;
4: x = 2;

(a)

1: (t1, Read x 2)

2: (t1, Write y 1)

3: (t2, Read y 1)

4: (t2, Write x 2)

(b)

Figure 4.7: Example program with data races [115, Fig. 1] (a) and its JMM
execution for the result r1 == 2, r2 == 1 (b)

initially: x = y = 0;
1: r1 = x;
2: y = r1;

3: r2 = y;
4: x = r2;

1: (t1, Read x 42)

2: (t1, Write y 42)

3: (t2, Read y 42)

4: (t2, Write x 42)

Figure 4.8: Example of the value 42 appearing out of thin air [115, Fig. 2]

programs, the thread on the right can pierce the veil. In this situation,
the second core reads 1 for y in l. 3 from their shared cache and then
writes to x. If memory has not yet returned x’s value, the first core uses
the new value 2 instead – and the unexpected result becomes real.

Figure 4.7b shows how executions are depicted. The threads are
abstracted to events – labelled with the thread ID – and orders. Solid
arrows represent program order, transitive relationships are not shown.
Dotted arrows used in later examples denote synchronisation (synchro-
nises-with relationships, see §4.3.2 for the formal definition). The dashed
arrows denote the flow of values from writes to reads; an execution
assigns to each read event the write event it sees. The JMM requires
that a read sees a write that happens before or may happen concurrently
(grey area in Figure 4.6), i.e., the write must not happen after the read.

The execution shown in Figure 4.7b results in r1 == 2 and r2 == 1.
As there is no synchronisation, happens-before coincides with program
order. Hence, l. 1 and l. 2 may happen “concurrently” with l. 3 and l. 4.
Therefore, l. 1 and l. 3 are allowed to see the writes from l. 4 and l. 2,
respectively. In particular, the thread on the left is not allowed to deduce
that l. 3 must have already executed from the fact that l. 1 reads the value
2 from l. 4, because there is no synchronisation involved.

If only happens-before constrains visibility of write events, values
may appear out of thin air. Consider, e.g., the program and its execution

145

Chapter 4. Memory models

in Figure 4.8, adapted from [115, Fig. 2]. The reads in ll. 1 and 3 may see
the writes in ll. 4 and 2, respectively, as they may happen concurrently.
If both writes write 42, both reads may read 42, although the program
cannot normally produce 42. Hence, 42 appears out of thin air, as the
happens-before constraints do not forbid this.

For type safety and security guarantees, it is vital that values do not
appear out of thin air [145]. Otherwise, malicious code could exploit
this to forge a pointer to an object to which it must not gain access or
which it can then access in a type-unsafe fashion. To preclude this, the
JMM adds a causality condition: Reads that see concurrent writes must
be committed, i.e., there must be a justifying execution that writes the
same value, but the read event sees a write that happens before it. This
causality condition distinguishes the JMM from memory models of other
languages like ADA, where concurrent reads and writes immediately
result in the behaviour being undefined. In the above example, causality
forbids r1 == 42 because no execution can produce the value 42 without
having both reads see the concurrent writes. The important thing to note
is that at the basis of any sequence of justifying executions, there is one
in which all reads see writes that happen before them.

This is where initialisations come into play. The JMM assumes
that all locations are initialised to their default value at the start of the
execution. By definition, these initialisations happen before any other
event. Thus, there is always at least one suitable write that happens
before a given read, which ensures that a basis for justifying executions
exists. Remember that program-order is consistent with happens-before.
Hence, initialisations precede all other events of the same thread in
program order, too, although they correspond to allocations that occur
in the midst of an execution. Figure 4.9b shows an example. Thread t1
generates the events as shown from top to bottom, but the allocation in
l. 3 precedes all others in program order and happens before order.

The requirement that a heap location is conceptually initialised
at the start (instead of when it is allocated) has been one of the main
complications in the proofs – which previous formalisations have omitted
[8, 69]. Since initialisation events originate from dynamic allocation, I
must consider complete executions, which may be infinite, instead of
finite prefixes – at least for the single-threaded semantics. Consider,
e.g., the program and one of its executions in Figure 4.9. Remember
from above that the initialisation for the field f of the object created in
l. 3 at location a happens before all other events, although the single-

146

4.3. Java memory model

class A { field f:int; } initially: x = y = null;
1: r1 = x;
2: if (r1 != null) r2 = r1.f;
3: r3 = new A();
4: y = r3;

5: r4 = y;
6: x = r4;

(a)

(t1, TInit)

1: (t1, Read x a)

2: (t1, Read a (Field f A) 0)

3: (t1, New-Obj a A)

4: (t1, Write y a)

(t1, TFinish)

(t2, TInit)

5: (t2, Read y a)

6: (t2, Write x a)

(t2, TFinish)

(b)

Figure 4.9: Program with an execution in which the read in l. 2 sees the
initialisation from l. 3, which occurs later in the program text

threaded semantics executes it after ll. 1 and 2. Now take the prefix of
this execution up to l. 2. If (t1, New-Obj a A) was not part of the prefix,
the prefix would be ill-formed because l. 2 sees no write. Hence, prefixes
must include the initialisation events. As the single-threaded semantics
produces initialisation events only at allocations, I must run the program
to completion, because it is undecidable at intermediate states whether
all initialisation events have been collected. Thus, the formalisation must
deal with infinite executions.

The technical complexity of the JMM makes it very hard to decide
what the legal behaviours of a program are. Numerous subtleties,
some of which the examples in this chapter illustrate, and the fact that
legality can only be decided for whole programs complicate this further.
Consequently, one cannot expect the average Java programmer to reason

147

Chapter 4. Memory models

layer source code bytecode

7 Java memory model

6 complete interleavings

5 interleaved small-step

4 thread start & finish events

statements call stacks

3 & exception handling

expressions single instruction

2 native methods

1 heap operations

Figure 4.10: Stack of semantics with the JMM

about the JMM. The DRF guarantee relieves the average programmer
from this burden. If all thread communication is explicit in the program,
Java maintains the illusion of sequential consistency. I prove that the
JMM does provide the DRF guarantee in §4.3.3.

4.3.2 Formal definition

The JMM formalisation extends the stack of semantics from Figure 3.1
as shown in Figure 4.10; there are four new layers (shaded). In the
single-threaded semantics, the JMM implements the heap module in two
different ways (layer 1) and inserts the events for thread start and finish
(layer 4). On top of the stack, I define complete interleavings of a program
(layer 6) from which the axiomatic JMM (layer 7) selects the legal execu-
tions. The JMM also introduces a native method for printing on layer 2,
but does not affect the sequential semantics (layer 3) or the interleaving
semantics themselves (layer 5). The rest of this section traverses the stack
from bottom to top and presents the new layers and changes, respectively.

The heap module: JMM implementation 1

An implementation of the heap module must define operations for values
and types, but the weak semantics of the JMM only applies to values.

148

4.3. Java memory model

Recall that checked type casts, virtual method calls, and reading the
length of an array are not part of the events. According to the JLS, reading
types and array lengths must always return the correct data [56, §17.4.5].27

Hence, type information also needs a “memory model”.
In this implementation, I adopt sequential consistency for types, i.e.,

allocation determines the type information of the allocated address and
distributes this information immediately to all threads. Hence, on the
level of types, this approach is the same as in §4.2. Although being
straightforward, it suffers from some drawbacks that I discuss below.

Technically, the heap h reduces to a map from addresses to their type
information, i.e. h :: ′addr⇀ hty. Then, an address is fresh in the heap h
iff h contains no type information for it. Since type information grows
monotonically (as JinjaThreads does not model garbage collection), a
fresh address has not been allocated before and will never be allocated
once more afterwards.

With this heap implementation in mind, the module implementation
is then straightforward: Thread IDs are identified with addresses, the
empty heap is the empty map empty, allocation picks an arbitrary fresh
address, and jmm-typeof-addr is map lookup. Any value can be read
at any time, i.e., jmm-read is constantly True; writing does not change
the heap. The heap conforms iff all allocated addresses have valid types.
The formal definitions can be found in Appendix B.3.2.

Like “sc” for sequential consistency, I prefix or decorate the declara-
tions in the heap locales with “jmm” to refer to their JMM instantiation.

Lemma 4.1. The JMM heap implementation 1 satisfies the assumptions of the
locale conf-progress and its anchestors.

conf-progress jmm-a2t jmm-t2a jmm-typeof-addr jmm-empty-heap
jmm-allocate jmm-read jmm-write (P `jmm _

√
) P

Although this heap implementation is simple and straightforward, it
does not satisfy the assumption of locale conf-read, because jmm-read
allows to read arbitrary values, even non-type-conforming ones. Hence,
subject reduction fails. The DRF guarantee shows that correctly synchro-
nised programs, i.e., without data races, are type safe (§4.3.3), but correct
synchronisation is undecidable. Programs with data races, however,

27Although the JLS specifies that every array has a final field length [56, §6.4.5] that
stores its length, the JMM treats array lengths specially [56, §17.4.5].

149

Chapter 4. Memory models

class A { void f() {} } initially: x = y = null;
1: r1 = x;
2: if (r1 != null) r1.f();
3: y = new A();

4: r2 = y;
5: x = r2;

Figure 4.11: A program where dynamic dispatch requires type information that
is not yet available

may have type-unsafe executions of two kinds. Both exploit that the
type of an address is only determined upon allocation, but not when it is
first used.

First, when the type of an address is not yet known, the source code
semantics or defensive VM get stuck whereas the aggressive VM behaves
in an undefined way. For example, the JMM allows that l. 1 in Figure 4.11
reads the address a of the object allocated in l. 3 via the detour of the
second thread, because an optimising compiler might move l. 3 before
l. 1. However, the semantics does not anticipate such optimisations,
but executes the program as it is. Hence, when l. 2 executes the call
to f on a, the source code semantics gets stuck, because a’s type is still
undefined (i.e., typeof-addr h a = None). So does the defensive VM,
and the aggressive VM calls an unspecified method.

Second, reading an address before its type is determined may also
compromise subject reduction. The program in Figure 4.12 has a legal
execution where x, y and r2 reference an Integer object, although the
program is type correct if it declares them of type String. For a detailled
derivation of this execution, see §4.3.5. This is an artefact of the JMM as
I am not aware of any optimisation that would produce such a result. In
this example, the problem is again that l. 3 reads an address a that has
not yet been allocated. Then, l. 4 non-deterministically chooses the type
of the object to allocate – note that b can be either false (initial value) or
true (assignment in l. 9). Since the object has already been stored in r2
of type String, the second alternative results in a non-conforming state,
i.e., type safe is broken.

A temptingly simple measure would be to restrict reading such that
only allocated addresses may be read from memory. However, the
semantics then would miss some legal JMM behaviours, because this
restriction prohibits reordering with memory allocations. For example,
reconsider the program in Figure 4.11 with l. 2 removed. The JMM

150

4.3. Java memory model

initially: b = false; x = y = null;
1: r1 = y;
2: x = r1;

3: r2 = x;
4: if (b)
5: r3 = new Integer();
6: else
7: r2 = new String();
8: y = r2;

9: b = true;

Figure 4.12: A program with a legal execution where r2 of type String references
an Integer object

allows r1 == y at the end of the modified program, because compilers
are allowed to reorder the independent statements in ll. 1 and 3. However,
the semantics could not produce this result because the read in l. 1 always
happens before the allocation in l. 3, i.e., it could not return the address
to be allocated.

The heap module: JMM implementation 2

To address the above type safety problems, I define the following
alternative implementation of the heap module – see Appendix B.3.2
for the formal definitions. It is motivated by the insight that the core
of the above problems is that the type of an address is only determined
upon allocation, but not when it is first used. This model exposes
the communication channel of type information between threads to the
memory model while the previous one hides it (see below for an example).

Now, it is the address and not the heap that stores type information
for the address. Hence, an address consists of its type information (HOL
type hty) and a sequence number to distinguish objects of the same type.

datatype addr = Address hty nat

The type and array length of an address is the information stored in the
address – provided that it refers to a valid type.28 In particular, type
information for every address is available from the start. Hence, the

28This restriction is necessary for the last assumption of locale conf. Since I want
typeof-addr to not depend on the heap, typeof-addr may only assign types to addresses
that refer to a valid type. Note that this is possible as alloc-type of locale heap is restricted
to valid types.

151

Chapter 4. Memory models

programs in Figures 4.11 and 4.12 are unproblematic, because with this
implementation,

(i) the defensive checks only ensure type correctness, but no longer
test on the referenced object having been allocated, and

(ii) the allocations in ll. 5 and 7 always return different addresses.

Now that I have stripped type information off the shared heap, it only
needs to remember which addresses are fresh for allocation. Hence, the
heap (type jmm′-heap) maps type information (type hty) to the number
of objects of that type that have already been allocated. Allocation then
merely increments that number and uses the former value as sequence
number for the new address. All heaps conform. Moreover, I also restrict
the read operation to require that the value must be type-conforming.
This way, this implementation satisfies all assumptions of the heap
module. To distinguish it from the previous implementation, I call this
implementation JMM’ and use “jmm′” as prefix and decoration of the
operations and derived definitions.

Theorem 4.2. The JMM heap implementation 2 satisfies all assumptions of
the heap module for any input program.

typesafe jmm′-a2t jmm′-t2a jmm′-typeof-addr jmm′-empty-heap
jmm′-read jmm′-write jmm’-hconf P

The JMM’ heap implementation suffers from two disadvantages
compared to the first one. First, since type information partitions the
address space, each read or write of an address value not only transfers
a pointer value as on standard hardware, but simultaneously does so for
the complete run-time type information of the object it references. From
an implementation point of view, this is unrealistic.

Second, restricting the read operation to type correct values effectively
makes the heap implementation type safe “by definition.” Unlike for
JMM heap implementation 1, I conjecture that this restriction does not
exclude any legal JMM behaviour. The causality constraints should
ensure that an execution which reads non-type-conforming values has
no sequence of justifying executions. I have not attempted a formal proof
yet, but if this is shown in the future, then the restriction may be dropped.

Let me now demonstrate how this heap implementation exposes
the hidden communication channel of type information. Consider the

152

4.3. Java memory model

initially: x = 0; y = null;
1: r1 = x;
2: r2 = (r1 == 0 ?

new A() : new B());
3: y = r2;

4: x = 1; 5: r3 = y;
6: r4 = r3.f();

Figure 4.13: Example for implicit communication via type information

program in Figure 4.13. Suppose that classes A and B inherit from some
class C which declares a method f(). Under implementation 1, the
allocation in l. 2 returns the same address value, no matter whether A
or B is allocated. Still, dynamic dispatch at l. 6 tells the thread on the
right about the left thread’s local variable r1. However, from the point of
view of events, the thread on the right only reads an address (in fact the
same value in both cases), but behaves differently. Heap implementation
2 allocates A’s objects at different addresses than B’s. Hence, the value
that l. 5 reads completely determines the call target in l. 6. Analogously,
threads can communicate through array lengths instead of types, see
Figure 4.30 for an example. This is why implementation 2 allocates
arrays of different lengths at distinct addresses.

External actions as observable behaviour

For the JMM, an observable behaviour of a program execution consists
of a subset of the external actions that is consistent with happens before
order and synchronisation order [56, §17.4.9]. This models what the user
or other programs may observe without looking at the internal state of
the JVM. However, the single-threaded semantics for source code and
bytecode do not yet generate external actions. To remedy this, I add a
native method print to class Object that generates intermediate output.

Object.print([Integer]) :: Void

P, t ` 〈a.print(vs), h〉 −LExtern a print vs UnitM→nc 〈Ret-Val unit, h〉 (4.1)

to attach observable behaviour to the examples of this chapter, one
assumes that all variables are output at the end of the program.

Intermediate output is only relevant for constraining the semantics
of non-terminating executions, because in case of termination, one

153

Chapter 4. Memory models

could augment the final state with observations of intermediate states.
However, there is no such final state in non-terminating ones.

Associating statements and instructions with events

The JMM determines which values a read may return by assigning writes
to reads. Synchronisation can restrict (and even enlarge [2, 115]) this set
of possible values. For that, the JinjaThreads semantics produce events
that record memory accesses and synchronisation. Now, I return to the
semantics of native methods and source code from §3.2.1 and §3.2.2,
respectively, to explain the events that they generate. The bytecode
instructions generate the same events as their source code equivalents.

First, reconsider the native methods of class Thread from Figure 3.17.
The generated events follow exactly the JMM specification [56]. Suc-
cessfully spawning a thread generates the appropriate TStart event.
However, no event occurs when spawning fails, because only successful
spawns synchronise with the first action of the started thread [56, §17.4.4].

Similarly, interrupting a thread t (Intr) synchronises with the observa-
tion that t has been interrupted (JoinIntr, isIntrdT, IntrdT, WaitIntrd1,
WaitIntrd2), i.e., Intr produces the event TIntr t, the latter rules generate
TIntrd t. Asymmetrically, clearing t’s interrupt status (JoinIntr, IntrdT,
WaitIntrd1, WaitIntrd2), does not synchronise with the observation
that t is not interrupted (isIntrdF, IntrdF, Wait), i.e., no event records
that. Also, interrupting a thread that has not yet been started has no
effect (IntrInex).

A call to wait unlocks the monitor and reacquires the locks after
notification. Hence, Wait (Figure 3.19) generates the event SUnlock. Re-
member that the interleaving semantics already ensures mutual exclusion
via thread actions as explained in Chapter 3. Since SUnlock only serves
to identify synchronisation points for the memory model, one event
SUnlock suffices, although Waitmay release the monitor multiple times.

When the thread reacquires the lock, Acquire (Figure 3.14) generates
the corresponding event SLock via the locale parameter acq-events,
which I have left unspecified in the presentation so far. Source code and
bytecode both instantiate acq-events such that acq-events ln computes a
list of SLock events for all temporarily released locks in ln.

Only the clone method generates multiple events in a single reduction
(see Appendix B.4.2), namely an allocation for the cloned object or array
and Read and Write for all members that it copies.

154

4.3. Java memory model

The source code semantics generates three kinds of events: First,
sync (_) _ produces SLock and SUnlock events (Rlock, Runlck, and
RunlckX in Figure 3.21). Second, access to members of an object are
recorded in Read and Write events, see, e.g., Rfacc and Rfass in Fig-
ure 4.4. Third, memory allocation via new C and new T[_] generates
events New-Obj _ C and NewArray _ T _, respectively.

Thread start and finish events

Remember that the JMM requires that events mark the start and ter-
mination of every thread (notation TInit and TFinish, respectively). In
JinjaThreads, layer 4 on the stack of semantics implements this generi-
cally as a semantics transformer in the context multithreaded-base from
§3.1.3. Remember that r :: (′l, ′t, ′x, ′h, ′w, ′o) semantics with notation
t ` (x, h) −ta→ (x′, h′) is the single-threaded semantics and the predi-
cate final :: ′t⇒ bool characterises final states. The transformer pairs
every thread’s local state (type ′x) with its status (HOL type status with
elements Pre-Start, Running, and Finished) and extends r to sf.r with
notation t ` ((s, x), h) −ta→sf ((s′, x′), h′) as follows:

SFinit: t ` ((Pre-Start, x), h) −LTInitM→sf ((Running, x), h)

SFrun:
t ` (x, h) −ta→ (x′, h′)

t ` ((Running, x), h) −pair-Pre-Start ta→sf ((Running, x′), h′)

SFfinish:
final x

t ` ((Running, x), h) −LTFinishM→sf ((Finished, x), h)

Threads are initially marked as Pre-Start. They must transition to
Running – which generates the start event TInit (SFinit) – before they can
execute according to r (SFrun). The conversion function pair-Pre-Start ta
pairs the initial states of spawned threads in ta with Pre-Start such that
their first reduction generates the event TInit via SFinit.29 After the

29Technically, the type of events event and its abstraction ′o do not contain the events
TInit and TFinish. Instead, I extend ′o to ′o sf where

datatype ′o sf = Event ′o | TInit | TFinish

In the presentation, I identify ′o and ′o sf and omit the coercion Event. In particular,
pair-Pre-Start ta implicitly injects events in 〈ta〉o to ′o sf and sf.acq-events = map Event ◦
acq-events replaces acq-events.

155

Chapter 4. Memory models

thread has terminated as predicated by final, SFfinish adds the TFinish
event.

Analogously, sf.final replaces final where

sf.final (s, x)←→ s = Finished∧ final x

I will use the prefix “sf.” to refer to semantics that have been transformed
this way, e.g., sf.J-red and J.sf.redT.

Lemma 4.2. If r and final satisfy the well-formedness conditions of the
interleaving semantics (locale multithreaded), so do sf.r and sf.final.

multithreaded final r acq-events

multithreaded sf.final sf.r sf.acq-events

Complete interleavings

The JMM suggests to execute all threads in isolation and to determine a
posteriori the legal executions in terms of their traces of events. Unfor-
tunately, the events from §4.3.1 are insufficient to correctly implement
the JLS, because the JLS (and the Java API) introduce other communi-
cation channels between threads. For example, consider the program
in Figure 4.14 in which two threads race for spawning the same thread.
Suppose both reads in ll. 3 and 5 see the write at l.2. Then, either l. 4 or
l. 6 must throw an IllegalThreadState exception, but not both. Hence,
both l. 4 and l. 6 must be allowed to fail in some executions. Thus, the
two right-most threads may just start, read the address of the Thread
object (then fail with the exception, but no event records that), and then
finish. Hence, if each thread were run in isolation, they both would be
allowed to fail, too. Since this contradicts the specification of the start
method, there is a covert communication channel.

For the start method, the JMM specifies synchronisation only be-
tween a successful call and the first action of the spawned thread [56,
§17.4.4]. A JVM implementation might add additional synchronisation,
but my semantics must not, since such synchronisation might eliminate
data races from programs, i.e., it could wrongly certify programs with
data races as DRF. Therefore, the JinjaThreads semantics generates no
synchronisation events when start fails (StartFail).

Hence, threads cannot execute in isolation, as the JMM suggests.
Instead, I employ the interleaving semantics from §3.1 to compute

156

4.3. Java memory model

initially: x = null;
1: r1 = new Thread();
2: x = r1;

3: r2 = x;
4: r2.start();

5: r3 = x;
6: r3.start();

Figure 4.14: Thread spawn as an implicit communication channel

their interleavings. This way, I reuse the infrastructure for mutual
exclusion for locks and managing the monitor wait sets, notifications
and interrupts. The single-threaded semantics for source code and
bytecode are sf.J-red P and sf.jvm-exec P, respectively, i.e., the semantics
from Chapter 3 augmented with thread start and finish actions from
layer 4.

A complete interleaving E is a possibly infinite list30 of pairs of thread
ID and event. The relation s ⇓ E characterises all complete interleavings
E that start in the state s, which I define as

s ⇓ E←→ (∃ttas. s ↓ ttas∧ E = concat (map events ttas)) (4.2)

where events (t, ta) = map (λe. (t, e)) 〈ta〉o pairs all events in ta with the
thread ID t, and s ↓ ttas collects the list of thread actions labelled with
the thread ID as follows:

s9
s ↓ []
=== Stop

s−t:ta→ s′ s′ ↓ ttas

s ↓ (t, ta) · ttas
=================== Step

where _9 characterises stuck states in the interleaving semantics.
Note that the detour via a list of thread actions is necessary. If I

defined s ⇓ E directly with the above coinductive rules Stop and Step (i.e.,
prepending events (t, ta) to E instead of consing), I could derive every
trace E for a state s that can perform an infinite sequence of reductions
without events, i.e., 〈ta〉o = [], because it would be impossible to prove
that E was not a trace (see also the example on coinductive definitions
in §1.4.3). My approach works fine since (t, ta) · E is productive and
concatenating the infinite list of empty lists yields [].

30Isabelle’s default type for lists ′a list models only finite lists. Therefore, I have
developed a theory of possibly infinite lists (HOL type ′a llist) [110] based on the codatatype
construction by Paulson [142]. For clarity of presentation, I use the same notation for
operations on ′a list and ′a llist (e.g., _ · _, _ @ _, and concat) and omit the coercions between
the two types, although Isabelle distinguishes the former and requires the latter.

157

Chapter 4. Memory models

The start state (Figure 4.3) has preallocated start-tID ’s Thread object
and the system exceptions. Hence, I prefix the complete interleavings
with the appropriate initialisation events start-events:

start-events =
(start-tID, TInit) ·map (λ(C, a). (start-tID, New-Obj a C))

(zip (Thread · sys-xcpts) start-addrs)

For the JMM, a program P always comes with a fixed start state, i.e.,
let start-state refer to either J-start P C M vs or jvm-start P C M vs.31 Then,
the JMM identifies a program with the set E of complete interleavings
that start in start-state, prefixed with start-events. Formally:

E = { start-events @ E |E. start-state ⇓ E }

E contains many ill-formed executions, because read operations may
read arbitrary values, even not type-conforming ones under heap imple-
mentation 1 that no write operation of the program can ever produce.
Since such executions have no write-seen function, the rules on layer 7
discard them.

Let me now present an example ofE in detail. Figure 4.15 shows a Java
implementation of the example in Figure 4.7. There is a bootstrapping
thread t0 that creates and spawns the two threads t1 and t2 whose run
methods contain the code from the example. Since JinjaThreads does
not model static fields, the shared locations x and y are represented by
the fields of a container class C.

All complete interleavings start with the following events that repre-
sent t0’s mainmethod up to the first call to start, abbreviated as αs:

start-events @
[(t0, New-Obj a0 C),
(t0, New-Obj a1 T1), (t0, Write a1 (Field c T1) a0),
(t0, New-Obj a2 T2), (t0, Write a2 (Field c T2) a0), (t0, TStart (a2t a1))]

i.e., t0 allocates the objects for the container and the two threads at
locations a0 to a2 and executes T1’s and T2’s constructors. Remember
that the allocations initialise the fields with default values, i.e., 0 for x
and y declared in C, and Null for c declared in T1 and T2.

31Since start-events already contains start-tID ’s TInit, I assume that the initial thread-
local state for start-tID is paired with Running.

158

4.3. Java memory model

class T0 {
public static void main(String[] args) {
C c = new C();
Thread t1 = new T1(c);
Thread t2 = new T2(c);
t1.start();
t2.start();

} }

class T1 extends Thread {
C c;
T1(C c) { this.c = c; }
public void run() { C c = this.c; int r1 = c.x; c.y = 1; }
}

class T2 extends Thread {
C c;
T2(C c) { this.c = c; }
public void run() { C c = this.c; int r2 = c.y; c.x = 2; }
}

class C { int x, y; }

Figure 4.15: Java implementation for the example in Figure 4.7

Thread t1 has three structurally different traces depending on the
kind of value that reading this.c stores in the local variable c, namely:

1. [TInit, Read a1 (Field c T1) (Addr a), Read a (Field x C) v,
Write a (Field y C) 1, TFinish],

2. [TInit, Read a1 (Field c T1) Null, TFinish], and
3. [TInit, Read a1 (Field c T1) w],

where a is an arbitrary address, v is an arbitrary value, and w is either
Unit or an integer or boolean value. In the first form, the address a
from the Read is then used to access the fields x and y of the referenced
container. In the second, t1 reads Null, so the subsequent field access
raises the preallocated NullPointer exception and the thread immediately
terminates. In the last case, w is type-incorrect, so the semantics gets stuck
upon the next field access, i.e., there is no TFinish. Under implementation
2, the last case is impossible, and v must be an integer value if a = a0,

159

Chapter 4. Memory models

(t0, New-Obj a0 C)

(t0, New-Obj a1 T1)

(t0, New-Obj a2 T2)

(t0, TInit)

(t0, Write a1(Field c T1) a0)

(t0, Write a2(Field c T2) a0)

(t0, TStart t1)

(t0, TStart t2)

(t0, TFinish)

(t1, TInit)

(t1, Read a1 (Field c T1) a0)

(t1, Read c (Field x C) v)

(t1, Write c (Field y C) 1)

(t1, TFinish)

(t2, TInit)

(t2, Read a2 (Field c T2) a0)

(t2, Read c (Field y C) v′)

(t2, Write c (Field x C) 2)

(t2, TFinish)

v = Intg 0 v′ = Intg 0

v = Intg 2

v′ = Intg 1

Figure 4.16: Well-formed executions for the program in Figure 4.15 where
t1 = a2t a1 and t2 = a2t a2

because it forbids reads to return type-incorrect values. Thread t2 has
the same traces with x and y exchanged.

The complete interleavings in E for this program all start with αs
and then interleave the threads. Of these, the JMM considers only
those as well-formed that originate from the first form with a = a0,
v ∈ { Intg 0, Intg 2 } for t1 and v ∈ { Intg 0, Intg 1 } for t2. In particular, the
unexpected behaviour from Figure 4.7 is well-formed. In terms of the
JMM, all these interleavings collapse to four well-formed executions as
shown in Figure 4.16 (where I have omitted the bootstrap events for clarity
– except for t0’s initial event that is relevant for determining what happens
before what). The write-seen arrows are labelled with conditions for
which they apply. All well-formed executions are legal in this example.

160

4.3. Java memory model

Definition of the Java memory model

Now, I formally derive the orders of the JMM from a complete interleaving
E ∈ E. As this core of the JMM has been formalised before [8, 69], I keep
this section brief; for the intuition behind the concepts, see [8, 56, 69, 115].

Since an event can occur multiple times in E, I use the index in E to
assign a unique identifier to an event, i.e., AE = {α. α < |E| } denotes
the set of events for E. In the following, I identify an event with its
index, i.e., I write α instead of E[α] when it is clear from the context. A
read event is an event of the form (t, Read a al v), it reads from location
(a, al) the value v; RE denotes the set of read events of E. A write event
is either a write (t, Write a al v) or an initialisation (t, Allocate a hT),
WE denotes the set of write events in E. A write event α ∈ WE
writes to location (a, al) (is a write to (a, al)) iff α = (_, Write a al _), or
α = (_, Allocate a hT) and al is a member of hT, i.e., (i) if al = Field F D,
then P ` class-of ′ hT has F:_ (_) in D, and (ii) if al = Cell n, then
hT = ArrayT _ n′ such that n < n′. I say that α accesses location
(a, al) iff α is a read or write event that reads from or writes to (a, al),
respectively. locs P E α denotes the set of locations that α ∈ RE ∪WE
accesses; locs P E α = ∅ for α ∈ AE − (RE ∪WE).

For α ∈ WE, value-written P E α (a, al) denotes the value that α
writes to location (a, al) – allocation events write default values (Intg 0,
Bool False, and Null, respectively) for all allocated members; normal
writes Write store the value written themselves; it is undefined if α does
not write to (a, al).

A member al is volatile (written is-volatile P al) iff al = Field F D and
P declares field F in D as volatile. A read or write α is volatile iff α reads
from or writes to a volatile member of a location. Note that array cells
are never volatile by definition [56, §8.3.1.4].

A complete interleaving E already provides the induced total order
≤

E =≤|AE overAE, where R|Arestricts the binary relation R to elements
from A and ≤ is the standard order on natural numbers.

Since the JMM requires initialisation events (i.e. Allocate) to be
ordered before the threads’ initial events, I introduce the (total) execution
order ≤E

eo onAE:

α ≤E
eo α

′
←→ (if initE α then ¬initE α

′
∨ α ≤Eα′ else ¬initE α

′
∧ α ≤Eα′)

where initE α predicates that α is an initialisation event in E, i.e., E[α] =

(_, Allocate _ _).

161

Chapter 4. Memory models

(t, SUnlock a) sw (t′, SLock a)
(t, Write a al v) sw (t′, Read a al v′)

(t, New-Obj a C) sw (t′, Read a al v)
(t, TStart t′) sw (t′, TInit)
(t, TFinish) sw (t′, TJoin t)

(t, Allocate a hT) sw (t′, TInit)
(t, TIntr t′′) sw (t′, TIntrd t′′)

Figure 4.17: Release-acquire pairs

The program order ≤E
po restricts ≤E

eo to events of the same thread.

The synchronisation order ≤P,E
so restricts ≤E

eo to synchronisation events.
Synchronisation events are the initialisation events (Allocate), reads
from and writes to volatile locations, locking (SLock) and unlocking
(SUnlock), thread spawns (TStart) and joins (TJoin), thread start (TInit)
and finish events (TFinish), and the interruption events TIntr and TIntrd.
The synchronises-with order ≤P,E

sw restricts ≤P,E
so to release-acquire pairs

of events. (α,α′) is a release-acquire pair (notation α sw α′, definition
in Figure 4.17) iff

(i) α unlocks a monitor and α′ locks the same monitor,
(ii) α writes to a location that α′ reads,32

(iii) α spawns a thread whose start action is α′,
(iv) α is the finish event of the thread on which α′ joins,
(v) α is an initialisation event and α′ is a thread start event, or

(vi) α interrupts a thread t and α′ observes that t has been interrupted.

The happens-before order ≤P,E
hb is the transitive closure of ≤E

po and ≤P,E
sw .

An execution (E, ws) consists of a complete interleaving E and a
write-seen function ws that assigns to every read event inAE the write
event it sees. This yields the JMM notion of an execution [56, §17.4.6] as
(E,AE,≤E

po,≤P,E
so , ws, value-written P E,≤P,E

sw ,≤P,E
hb).

An execution is well-formed (written P ` (E, ws)
√

) iff every thread
has a thread start event that ≤E-precedes its other events except for
initialisation events (denoted ok-init E) and for all read events α ∈ RE to
some location (a, al),

32I do not need to restrict writes and reads to volatiles explicitly like the JMM does [56,
§17.4.4], because the synchronisation order already imposes this.

162

4.3. Java memory model

W1 ws α writes to (a, al), i.e., ws α ∈ WE and (a, al) ∈ locs P E (ws α),

W2 α reads the value value-written E (ws α) (a, al),

W3 α 6≤P,E
hb ws α,

W4 for all write events β to (a, al), if ws α ≤P,E
hb β ≤P,E

hb α, then β = ws α,
and

W5 if α is a volatile read, then α 6≤P,E
so ws α and for all write actions β to

(a, al), if ws α ≤P,E
so β ≤P,E

so α, then β = ws α.

E is well-formed iff P ` (E, ws)
√

for some ws.
These conditions correspond to the JMM well-formedness conditions

1 (each read sees a write to the same location), 4 (≤P,E
hb consistency) and 5

(≤P,E
so consistency for volatiles) in [56, §17.4.7]. (E, ws) meets conditions 2

(≤P,E
hb is a partial order) and 3 (intra-thread consistency) by construction.

The JMM constrains ≤P,E
so to be anω-order for well-formed executions.

As Aspinall and Ševčík [8] already noted, in an infinitely running
program, infinitely many allocation events for volatile fields synchronise
with thread start events, which violates this constraint, i.e., the JMM
would allow no behaviour at all. To remedy this, I drop this constraint.
Note that ≤E is of order at most ω by construction, hence ≤P,E

so is of order
at most ω+ω by definition.

Lemma 4.3. If E ∈ E, then ok-init E.

A legal execution is a well-formed execution (E, ws) that is justified
by a sequence of justifying executions (Ei, wsi, Ci,ϕi)i, where Ci are the
sets of committed events and the event renaming functions ϕi inject the
committed events of Ei into E’s events. The definition in Figure 4.18 uses
the following notation: inj-on f A expresses that the function f is injective
on the set A; α ϕ−1

i (R) α′ iff ϕi α R ϕi α
′ for a binary relation R; ϕ−1

i+1(α)

abbreviates εα′. α′ ∈ Ci+1 ∧ϕi+1 α
′ = α; (t, e) ' (t′, e′) iff t = t′ and the

events e and e′ are identical except for the values they write or read.
The constraints are exactly the JMM legality conditions 1 to 7 and

9 [56, §17.4.8] with explicit renaming of events plus basic requirements
for commit sequences and event renamings. I omit condition 8 for two
reasons: First, it relies on the transitive reduction of ≤P,Ei

hb , which need

163

Chapter 4. Memory models

P ` (E, ws) justified-by (Ei, wsi, Ci,ϕi)i ←→
(∀i. P ` (Ei, wsi)

√
)∧

(∀i. inj-on ϕi AEi ∧ (∀α ∈ Ci. Ei[α] ' E[ϕi α]
))∧ (∀i. Ci ⊆ AEi)∧

C0 = ∅ ∧ (∀i. ϕi ‘ Ci ⊆ ϕi+1 ‘ Ci+1)∧AE =
⋃

i ϕi ‘ Ci ∧

(∀i. ≤P,Ei
hb

∣∣∣∣
Ci
=ϕ−1

i (≤P,E
hb)

∣∣∣∣
Ci
)∧ (∀i. ≤P,Ei

so

∣∣∣∣
Ci
=ϕ−1

i (≤P,E
so)

∣∣∣∣
Ci
)∧

(∀i. ∀α ∈ WEi ∩Ci. ∀(a, al) ∈ locs P E (ϕi α).
value-written P Ei α (a, al) = value-written P E (ϕi α) (a, al))∧

(∀i. ∀α ∈ REi ∩Ci. ϕi+1 (wsi+1 (ϕ−1
i+1 (ϕi α))) = ws (ϕi α))∧

(∀i. ∀α ∈ REi+1 . ϕi+1 α ∈ ϕi ‘ Ci ∨wsi+1 α ≤
P,Ei+1
hb α)∧

(∀i. ∀α ∈ REi+1 ∩Ci+1.
ϕi+1 α ∈ ϕi ‘ Ci ∨ {ϕi+1 (wsi+1 α), ws (ϕi+1 α) } ⊆ ϕi ‘ Ci)∧

(∀i. ∀α ∈ AEi . ∀α
′
∈ Ci. ∀a M vs v.

Ei[α] = Extern a M vs v −→ α ≤
P,Ei
hb α′ −→ α ∈ Ci)

P,E ` (E, ws) legal←→ E ∈ E∧ P ` (E, ws)
√
∧

(∃(Ei, wsi, Ci,ϕi)i. P ` (E, ws) justified-by (Ei, wsi, Ci,ϕi)i ∧
(∀i. Ei ∈ E))

Figure 4.18: Legality constraints for the justification (Ei, wsi, Ci,ϕi)i for the
execution (E, ws)

not exists for infinite executions. Second, Torlak et al. [171] have shown
that it is irrelevant for all JMM test cases.

I am not going to explain the constraints in detail, as others have done
so already [8, 69]. As §4.3.1 explains, they serve to ban values appearing
out of thin air, but §4.3.5 shows that they fail to do so.

4.3.3 The data race freedom guarantee

Remember that the JMM promises that correctly synchronised programs
behave as if they were executed under sequential consistency. In this
section, I recapitulate the definitions and identify the assumptions of this
guarantee. Then, I show that source code and bytecode indeed satisfy
these assumptions.

The proof of the DRF guarantee extends over all layers of the se-
mantics stack (Figure 4.10). Hence, the challenge consists of adequately
decomposing the proof and distributing it over the layers such that each

164

4.3. Java memory model

proof is as abstract as possible. This way, I prove the DRF guarantee for
both JMM heap implementations and for both source code and bytecode
(Theorem 4.6) almost simultaneously. To that end, I extend the locales
for the heap module (§4.1) and the multithreaded semantics (§3.1.3)
with additional operations and assumptions. It is crucial that these
assumptions respect the abstraction of the layer, i.e., they only refer to
notions of the layer or below, but not above. For example, assumptions
about the heap implementation must not mention JMM executions.

Therefore, this section focuses on what these assumptions are and how
to formalise them. The transition from the global behaviour (executions
and complete interleavings) to the individual steps of the small-step
semantics is the most difficult one, because it must translate global
notions into state invariants. Sometimes, this is not directly possible:
for example, levels 5 and below generalise the happens-before order to
the execution order, because happens-before is hard to express as a state
invariant.

To derive and motivate the low-level assumptions from those on
higher levels, the presentation starts with the proofs on the JMM level
and then descends the stack of semantics, similar to backward-style
reasoning.

The DRF guarantee

In this section, I formally state the DRF guarantee and prove it. Two
events of an execution are conflicting if they are read or write events to
the same location with at least one being a write event. Two conflicting
events constitute a data race if they are not ordered by happens-before,
i.e., may happen concurrently.

An execution (E, ws) is sequentially consistent (SC) iff every read
event α ∈ RE sees the most recent write event, i.e. ws α ≤E

eo α, and
β ≤E

eo ws α or α ≤E
eo β for all write events β to the location that α reads

from.33

A program is correctly synchronised (data race free) iff none of its SC
executions contains a data race. Formally: Whenever E ∈ E, P ` (E, ws)

√

33The JMM only requires that ≤E
po is extended to a total order over all events of all

threads to determine most recent writes [56, §17.4.3]. Aspinall and Ševčík [8] showed that,
to respect mutual exclusion of locks, the total order must also extend ≤P,E

so . My execution
order ≤E

eo extends both by construction.

165

Chapter 4. Memory models

and (E, ws) is SC, then α ≤P,E
hb α′ or α′ ≤P,E

hb α for all conflicting events
α,α′ ∈ AE.

For the DRF guarantee, it is important that only SC executions must
not contain a data race. Otherwise, it would fail its purpose because the
programmer would have to understand the whole JMM to see whether
her program is correctly synchronised and the DRF guarantee applies to it.

My proof of the DRF guarantee (Theorem 4.3) adapts the others’
[8, 69, 115] to deal with memory allocation and initialisations (see §4.3.6
for a discussion). The key idea in all of them is that in a DRF program,
a well-formed execution (E, ws) is SC if every read sees a write that
happens before it (Lemma 4.4) – then, the legality constraints ensure that
all legal executions are SC.

Lemma 4.4 (DRF lemma [8, Lemma 2]). Let E be correctly synchronised
and E ∈ E such that P ` (E, ws)

√
. If ws α ≤P,E

hb α for every read α in RE, then
(E, ws) is sequentially consistent.

To exploit correct synchronisation in a proof of this lemma by contra-
diction (see below), one first obtains a SC execution (E′, ws′) from (E, ws)
as follows: E′ starts like E until the first non-SC read α in E and continues
sequentially consistently from there on. Then, it suffices to find a data
race between α, ws α, and ws′ α in E′. For the latter, I use Lemma 4.6
(see below) to transfer happens-before relationships between E and E′

on their common prefix. The proof therefore rests on two assumptions
on the set of complete interleavings E:

D1 For every sequentially-consistent prefix of a well-formed execution
(E, ws) with E ∈ E, there is a complete interleaving E′ ∈ E with the
same prefix and a write seen-function ws′ such that P ` (E′, ws′)

√

and (E′, ws′) is SC. If E immediately continues with a read after
the prefix, E′ also continues with a read from the same location.

D2 Every execution E ∈ E initialises every location at most once.

The first assumption ensures that E′ as required in the proof of Lemma 4.4
does exist, the second is a standard well-formedness condition. Below, I
prove that source code and bytecode satisfy these.

From the DRF lemma, the DRF guarantee (Theorem 4.3) follows. I
omit its proof since it closely follows [8, Theorem 1].

Theorem 4.3 (DRF guarantee). If the program P is correctly synchronised
and (E, ws) a legal execution, then (E, ws) is sequentially consistent.

166

4.3. Java memory model

To prove Lemma 4.4, I need two more lemmata about happens-before:

Lemma 4.5. Let ok-init E and α,α′ ∈ AE such that initE α and ¬initE α
′.

Then α ≤P,E
hb α′.

Proof. Let ι be the initial event TInit of α′’s thread. By definition, α ≤P,E
sw

ι ≤E
po α

′. �

Lemma 4.6 (happens-before prefix lemma). Let E and E′ be two complete
interleavings such that their first n events differ only in the values read or
written, and let α,α′ < n. If ok-init E′ and α ≤P,E

hb α′, then α ≤P,E′
hb α′.

Proof. By induction on the transitive closure of α ≤P,E
hb α′. In the base

case, α ≤E
po α

′ or α′ ≤P,E
sw α′. By unfolding the definitions, α ≤E′

po α
′ or

α ≤P,E′
sw α′ follows. Hence, α ≤P,E′

hb α′.

In the induction step, I may assume α,α′′ < n, and α ≤P,E
hb α′, and

α′ ≤E
po α

′′ or α′ ≤P,E
sw α′′, and the induction hypothesis if α′ < n, then

α ≤P,E′
hb α′. I must show that α ≤P,E′

hb α′′.
If ¬initE α

′ or initE α
′′, then α′ ≤E α′′ by definition of ≤E

eo, because
α′ ≤E

eo α
′′ follows from either α′ ≤E

po α
′′ or α′ ≤P,E

sw α′′. Since α′′ < n,

also α′ < n′ and the induction hypothesis applies. Moreover, α′ ≤E′
po α

′′

or α′ ≤P,E′
sw α′′ follow from α′ ≤E

po α
′′ or α′ ≤P,E

sw α′′ as in the base case.

Therefore, α ≤P,E′
hb α′′.

Otherwise, I have initE α
′ and ¬initE α

′′. Then, initE α follows from
initE α

′ by induction on α ≤P,E
hb α′. Since α,α′′ < n and E’s and E′’s first

n actions only differ in the values read or written, initE′ α and ¬initE′ α
′′,

too. Hence α ≤P,E′
hb α′′ by Lemma 4.5. �

Now, I am ready to prove the DRF lemma.

Proof of Lemma 4.4. By contradiction. Suppose that (E, ws) is not SC.
Note that ≤E

eo is well-founded by construction. Let α ∈ RE be the ≤E
eo-mi-

nimal read event from some location (a, al) such that ws α is not the most
recent write for α in E. By assumption, ws α ≤P,E

hb α. Moreover, there is a

write event β ∈ WE to (a, al) such that β 6≤P,E
hb ws α, α 6≤P,E

hb β, and β ≤E
eo α

– otherwise, ws α would be the most recent write for α.

167

Chapter 4. Memory models

Then, ¬initE β, as otherwise ¬initE (ws α), because E initialises every
location at most once, and therefore β ≤P,E

hb ws α by Lemma 4.5. I show

that wsα ≤P,E
hb β, which violates the happens-before consistency condition

W4 of ws being well-formed. If initE (ws α), then ws α ≤P,E
hb β by Lem-

ma 4.5. So, suppose ¬initE (ws α). With ¬initE β, both β and ws α occur
before α in E, i.e., β, ws α ≤E α. By requirement D1, I obtain a well-formed
execution (E′, ws′) that starts with E up to α and continues SC, with
α being a read from (a, al) in E′. As β, ws α ∈ AE′ are conflicting and
(E′, ws′) is SC, β ≤P,E′

hb ws α or ws α ≤P,E′
hb β. By Lemma 4.6, β ≤P,E

hb ws α

or ws α ≤P,E
hb β, but β 6≤P,E

hb ws α. �

Note that Lemma 4.6 (and Lemma 4.4 and Theorem 4.3 which build
on it) requires that all initialisation events synchronise with thread start
events, i.e., they are synchronisation events. For example, consider
the program and two of its well-formed interleavings in Figure 4.19.
Both interleavings share the prefix [(t1, TInit), (t1, initialise x), (t2, TInit)].
If only initialisations for volatile locations synchronised with thread
start events (as Manson suggested [114]), (t1, initialise x) would not
synchronize with (t2, TInit), i.e., there would not be such a dotted arrow
in Figure 4.19. For E1, we would still get (t1, initialise x) ≤P,E1

hb (t2, TInit),
because

(t1, initialise x) ≤E1
po (t1, New-Obj a C) ≤P,E1

sw (t2, TInit)

and (t1, New-Obj a C) writes (initialises) the volatile member Field v C.
However, for E2, not (t1, initialise x) ≤P,E2

hb (t2, TInit).
As all initialisation events synchronise with TInit events, I may

subsume initialisation events in a single allocation event. Otherwise, I
would have had to separate the event for initialising ordinary members
from the one for volatiles. This would have complicated the model and
therefore the proofs as well.

At most one initialisation

Above, I have shown the DRF guarantee under two assumptions on
the set E of complete interleavings. In the remainder of this section, I
discharge them for source code and bytecode by descending the stack of
semantics (Figure 4.10) and adapting the assumptions. They act like an

168

4.3. Java memory model

class C {
volatile int v;

}

t1 initialises x = 0;
1: r1 = x;
2: if (r1 == 0)
3: r2 = new C();

4: x = 1;

E1: [(t1, TInit), (t1, initialise x), (t2, TInit), (t1, Read x 0),
(t1, New-Obj a C), (t2, Write x 1), (t1, TFinish), (t2, TFinish)]

(t1, TInit)

(t1, initialise x)

(t2, TInit)

1: (t1, Read x 0)

3: (t1, New-Obj a C)

4: (t2, Write x 1)

((t1, TFinish)

(t2, TFinish)

E2: [(t1, TInit), (t1, initialise x), (t2, TInit), (t2, Write x 1),
(t1, Read x 1), (t1, TFinish), (t2, TFinish)]

(t1, TInit)

(t1, initialise x)

(t2, TInit)

5: (t2, Write x 1)

1: (t1, Read x 1)

(t1, TFinish)

(t2, TFinish)

Figure 4.19: Two well-formed complete interleavings for the program at the top

169

Chapter 4. Memory models

Java memory model

complete interleavings

interleaved small-step

heap operations

6

7

5

1

D4

D1

D4’

D5

D3

D3’ D3’’

ka-type

conf-progress

D2

m-allocated

allocated

Figure 4.20: Assumptions of the DRF guarantee and their decomposition over
the stack of semantics

interface between the levels and ensure that I can share the proofs for all
layers that source code and bytecode share.

To help the reader follow the proofs, Figure 4.20 shows how the
assumptions D1 and D2 evolve and assigns them to the level of the
semantics. The arrows are stylised implications, i.e., the assumption
at its source discharges the one at the target. Where multiple arrows
point to one assumption, the conjunction of the sources imply the
target. For example, assumptions D4 and D3 together discharge D1.
The assumptions ka-type, m-allocated, and allocated extend the heap
module by new operations; hence, I have phrased them as separate
locales instead of additional assumptions. Layer 4 is not shown, because
layer 4 is irrelevant for the assumptions that level 5 makes. Layer 3 and
2 are the core of the semantics where the crucial parts of the assumptions
are discharged. Their assumptions about the heap module are listed at
layer 1.

I start with assumption D2 that every execution initialises a location
at most once. Remember that allocation events initialise locations. When
an allocation returns an address, it was fresh before, but afterwards, it is
allocated, i.e., not fresh. Hence, it suffices to prove that the semantics
correctly keeps track of all memory allocations in the events.

To discharge D2 on the level of interleaving semantics, I extend
the locale multithreaded with a parameter allocated :: ′h⇒ ′addr set
that returns the set of allocated addresses (locale m-allocated in Fig-
ure 4.21). Its specification requires that for every single-thread reduction
t ` (x, h) −ta→ (x′, h′)

170

4.3. Java memory model

(i) the set of allocated addresses never shrinks, i.e., allocated h ⊆
allocated h′,

(ii) 〈ta〉o contains an allocation event for address a iff a ∈ allocated h′

and a < allocated h, and

(iii) 〈ta〉o contains at most one allocation event per address.

Thus, the concept of allocated addresses reduces the global property of
at most one initialisation to a property of single reductions.

To prove that start-events correctly records the allocations of the
start-heap, I relate allocated also with the abstract heap operations. This
way, the proofs about start-events and that the single-threaded semantics
satisfy the assumptions of m-allocated do not depend on the concrete
heap implementation. Locale allocated, from which m-allocated inherits,
formalises these additional assumptions (Figure 4.21):

(i) the empty heap empty-heap has no allocated addresses,

(ii) if successful, allocation updates the heap h to h′ such that the
returned address a is allocated in h′, but not in h, and the other
addresses’ allocation status remains unchanged, and

(iii) writing to a location and failed allocations leave the set of allocated
addresses unchanged.34

The JMM heap implementations instantiate allocated with

dom ◦ jmm-typeof-addr and λh. {Address hT n | hT n. n < h hT },

respectively. Both meet the assumptions of allocated.
Under these assumptions, it is routine to show that start-events

exactly records the allocations for the start heap start-heap and that the
sequential semantics of source code and bytecode meet m-allocated’s
assumptions. This concludes the proof of D2.

Lemma 4.7 (Assumption D2). In locale m-allocated, every execution E ∈ E
initialises every location at most once.

34I do not need any assumption for read because reading cannot change the heap, i.e., it
does not affect allocated by construction.

171

Chapter 4. Memory models

locale allocated-base = heap-base + fixes allocated :: ′heap⇒ ′addr set

locale allocated = allocated-base + heap +
assumes allocated empty-heap = ∅
and alloc h hT = (h′, ba′c)

=⇒ allocated h′ = { a′ } ∪ allocated h∧ a′ < allocated h
and alloc h hT = (h′, None) =⇒ allocated h′ = allocated h
and write h a al v h′ =⇒ allocated h′ = allocated h

locale m-allocated = allocated + mthr : multithreaded +
assumes t ` (x, h) −ta→ (x′, h′) =⇒ allocated h ⊆ allocated h′

and Jt ` (x, h) −ta→ (x′, h′); Allocate a hT ∈ set 〈ta〉oK
=⇒ a ∈ allocated h′ ∧ a < allocated h

and Jt ` (x, h) −ta→ (x′, h′); a ∈ allocated h′; a < allocated hK
=⇒ ∃hT. Allocate a hT ∈ set 〈ta〉o

and Jt ` (x, h) −ta→ (x′, h′); 〈ta〉o[i] = Allocate a hT; i < |〈ta〉o|;
〈ta〉o[j] = Allocate a hT′; j < |〈ta〉o|K =⇒ i = j

Figure 4.21: Locales formalising the set of allocated addresses

Sequential consistency coinductively

For the DRF guarantee, assumption D1 remains to be shown. However,
the JMM definition of SC is not amenable to the coinductive definition
of _ ↓ _ as it relies on the notions of write-seen function and most recent
write, which are only defined for complete interleavings. Therefore,
I introduce a coinductive version of SC and prove that it adequately
models SC.

A snapshot of a sequentially consistent heap (snapshot heap) H is a
finite map from locations to values. The function mrw P h α updates
the snapshot heap H if α is a write or initialisation action, else leaves
H unchanged. The function mrws P folds mrw P over lists of events.
An event list αs is sequentially consistent (SC’) for the snapshot heap H
(denoted P, H ` αs

√

sc) iff

P, H ` []
√

sc
=========

P, mrw P H α ` αs
√

sc α = Read a al v =⇒ H (a, al) = bvc

P, H ` α · αs
√

sc
===

172

4.3. Java memory model

i.e., the empty list is SC’ for all snapshot heaps, and α · αs is SC’ for H iff
αs is SC’ for the updated snapshot heap mrw P H α and if α reads the
value v from a location (a, al), then the snapshot heap H must store v at
(a, al).

The next theorem shows that P, empty ` _
√

sc and sequential consis-
tency are equivalent under the following assumption:

D3 Initialisations precede reads in E. If α ∈ RE reads from some
location (a, al), then there is a write event β ∈ WE such that β ≤E α,
initE β, and (a, al) ∈ locs P E β.

Thus, I can use coinduction to show an execution being SC.

Theorem 4.4. Let ok-init E.

(i) If E initialises every location at most once (assumption D2) and P, empty`
E
√

sc, then there is a ws such that P ` (E, ws)
√

and (E, ws) is SC.

(ii) If initialisations precede reads in E (assumption D3) and P ` (E, ws)
√

and (E, ws) is SC, then P, empty ` E
√

sc.

Proof. (i): Set ws α to be the most recent write for α ∈ RE to location
(a, al). P, empty ` E

√

sc ensures that there is a write event for every read,
D2 guarantees the existence of the most recent one.35 Then, (E, ws) is SC
by definition.

For P ` (E, ws)
√

, only condition W2 of well-formedness, i.e., α reads
value-written E (ws α) (a, al), is interesting. Let αs be the prefix of E up
to α. From P, empty ` E

√

sc, I obtain that mrws P empty αs (a, al) = bvc
and α reads the value v. Since ws α is the most recent write for α in
E, assumption D2 and P, empty ` E

√

sc ensure that ws α < α. Hence,
value-written E (ws α) (a, al) = v holds.

(ii): Suppose P ` (E, ws)
√

and (E, ws) is SC. Let α ∈ RE read v
from location (a, al), and let αs denote the prefix of E up to α. Since
initialisations precede reads in E, the most recent write ws α precedes α,
i.e. ws α ≤E α. Well-formedness condition W2 of P ` (E, ws)

√
yields that

v = value-written E (ws α) (a, al). Since ws α is the most recent write
for α and ws α ≤E α, I also have mrws P empty αs (a, al) = bvc. As this
holds for all reads α, P, empty ` E

√

sc follows by coinduction. �

35Assumption D2 is necessary. For example, suppose that E initialises some location
(a, al) infinitely often, but there is no Write a al _. Then, a read of the default value in E
from (a, al) would be SC’, but not SC, because none of the initialisations is most recent.

173

Chapter 4. Memory models

Corollary 4.2. Let unique initialisations precede reads (assumptions D2
and D3) and ok-init E. Then, P, empty ` E

√

sc iff there is a ws such that
P ` (E, ws)

√
and (E, ws) is SC.

This equivalence holds only if the initialisation of any location (a, al)
occurs before the first read from (a, al) in the complete interleaving. For
example, the complete interleaving

E = [(t, TInit), (t, Read a (Cell 0) 0), (t, New-Arr a Integer 1)]

is SC for ws 1 = 2, but not SC’, i.e. ¬P, empty `E
√

sc. The problem is real:
Figure 4.9 shows a (non-SC) execution of a type-correct program that
violates assumption D3: The initialisation of (a, Field F D) in l. 3 occurs
after the read in l. 2. Thus, in order to exploit this equivalence, I show that
initialisations precede reads in SC’ prefixes of a complete interleaving:

D3’ If a complete interleaving E ∈ E has an SC’ prefix αs followed by a
read from (a, al), αs initialises (a, al).

Lemma 4.8. Assumption D3’ implies D3 for all E ∈ E that are SC’.

Initialisations precede reads

Next, I tackle D3’ by decomposing it into smaller assumptions that no
longer refer to complete interleavings, but only to single reductions in
the small-step semantics – similar to what I did for assumption D2 above.
At the same time, I prove it for a more general class of prefixes such that
I can reuse this assumption when proving consistency in §4.3.4.

A heap record H is a function from locations to sets of values – it
records all values that have been written to a location. Similar to mrw, if
α is a write or initialisation event, the function uhr PH α adds the written
value(s) to the heap recordH , else it leavesH unchanged. The function
uhrs P folds uhr P over lists of events. An event list αs is non-speculative
with respect to the heap record H (denoted P,H ` αs

√

ns) iff for any
read event α in αs from any location (a, al), α reads a value that has
been written to (a, al) in αs before α or that has already been inH (a, al).
Formally:

P,H ` []
√

ns
=========

P, uhr PH α ` αs
√

ns α = Read a al v =⇒ v ∈ H (a, al)

P,H ` α · αs
√

ns
==

174

4.3. Java memory model

A prefix of a complete interleaving is non-speculative iff its list of events
is non-speculative with respect to the empty heap record λ_. ∅.

A snapshot heap H fits to a heap recordH iff whenever H stores a
value for a location (a, al), thenH (a, al) contains that value.

Lemma 4.9. If αs is SC’ for H and H fits to H , then αs is non-speculative
with respect toH .

Corollary 4.3. An SC’ prefix of a complete interleaving is non-speculative.

This corollary shows that it suffices to prove the following assumption
D3’’ instead of D3’.

D3’’ If a complete interleaving E ∈ E has a non-speculative prefix αs
followed by a read from (a, al), αs initialises (a, al).

To discharge D3’’, it suffices to show that (i) the program cannot make up
addresses and (ii) it accesses only the declared fields of objects and cells
within the bounds of the array. Then, since the prefix does not speculate,
the read can only access an existing member of an address that has been
allocated before. Since allocation initialises all fields and array cells, the
member therefore must have been initialised.

For (i), I introduce the concept of known addresses. Let ka :: ′t⇒ ′x⇒
′addr set be another locale parameter which returns the set of addresses
that a given thread stores in its local state. A thread learns an address a
in an event list αs iff αs contains a read event Read _ _ (Addr a) or an
allocation Allocate a _, i.e., it either reads the address from some location
or allocates it. The function learns αs computes the set of learnt addresses
from αs. The single-threaded semantics does not invent addresses iff ka
satisfies the assumptions of locale ka in Figure 4.22.

In detail, after any reduction step, a thread may only know addresses
which it has known before or learnt in this step. Also, a spawned thread
may only know those addresses that the spawning thread knows.36

Conversely, known addresses restrict the heap interactions of a thread
as follows: It must only read from members of known addresses and
whenever it writes an address to a location, it must know the address.
Note the asymmetry between reads and writes. It suffices to restrict the

36I could relax this assumption such that the spawned thread may also know addresses
that the spawning thread is learning in the reduction. However, this is irrelevant for
JinjaThreads and the above form is simpler.

175

Chapter 4. Memory models

locale ka-base = multithreaded-base + fixes ka :: ′t⇒ ′x⇒ ′addr set

locale ka = m-allocated + ka-base +
assumes t ` (x, h) −ta→ (x′, h′) =⇒ ka t x′ ⊆ ka t x∪ learns 〈ta〉o
and Jt ` (x, h) −ta→ (x′, h′); Spawn t′ x′′ h′′ ∈ set 〈ta〉tK

=⇒ ka t′ x′′ ⊆ ka t x
and Jt ` (x, h) −ta→ (x′, h′); Read a al v ∈ set 〈ta〉oK =⇒ a ∈ ka t x
and Jt ` (x, h) −ta→ (x′, h′); 〈ta〉o[i] = Write a al (Addr a′); i < |〈ta〉o|K

=⇒ a′ ∈ ka t x∪ learns (take i 〈ta〉o)

Figure 4.22: Locale ka formalises that threads do not invent addresses

reads to members at known addresses, but not the writes, because it
cannot read from such locations. Moreover, ka allows to write an address
that has just been learnt, but not to read from one of its members. The
clone implementation requires the former because it copies (i.e., reads and
writes) all locations of the object, which may contain arbitrary (unknown)
addresses as values. Technically, it would be fine to immediately read
from a learnt address, but this would unnecessarily complicate the
proofs.

The concept of known addresses naturally extends to multithreaded
states and the interleaving semantics. A state s knows the addresses⋃

t∈dom (thr s) ka t (fst (the (thr s t))), written as kas s.

Lemma 4.10. Let s−t:ta→ s′ in locale ka. Then kas s′ ⊆ kas s∪ learns 〈ta〉o.
If Read a al v ∈ set 〈ta〉o, then a ∈ kas s.

Let the recorded addresses addrs H be the set of all addresses in the
heap recordH , i.e., addrsH =

{
a. ∃a′ al. Addr a ∈ H (a, al)

}
. Then, the

interleaving semantics preserves the invariant that all known or recorded
addresses are allocated for non-speculative executions. The proof goes
by case analysis of the reduction and induction on the prefixes of 〈ta〉o.
It requires that acq-events only generates synchronisation events.

Lemma 4.11. Let s −t:ta→ s′ in locale ka such that P,H ` 〈ta〉o
√

ns. If
kas s∪ addrsH ⊆ allocated (shr s), then

kas s′ ∪ addrs (uhrs PH 〈ta〉o) ⊆ allocated (shr s′).

Now, I can prove that non-speculative prefixes allocate addresses
before they read from their locations, which is part (i) of proving D3’’.

176

4.3. Java memory model

locale ka-type = ka +
fixes Q :: ′t⇒ ′x⇒ ′heap⇒ bool
assumes t ` (x, h) −ta→ (x′, h′) =⇒ hE h′

and Js−t:ta→ s′; ↑Q↑ (thr s) (shr s); P ` H ::≤ shr s; P,H ` 〈ta〉o
√

nsK
=⇒ ↑Q↑ (thr s′) (shr s′)∧ P ` uhrs PH 〈ta〉o ::≤ shr s′

and Jt ` (x, h) −ta→ (x′, h′); Q t x h; Read a al v ∈ set 〈ta〉oK
=⇒ ∃T. P, h ` a·al : T

and Jt ` (x, h) −ta→ (x′, h′); Q t x h; Allocate a hT ∈ set 〈ta〉oK
=⇒ typeof-addr h′ a = bhTc

Figure 4.23: Locale ka-type combines known addresses with type information

Let start-H denote the start heap record uhrs P (λ_. ∅) start-events, and
define events’ (t, ta) = 〈ta〉o to extract events from a reduction label.

Lemma 4.12. In locale ka, let start-state −ttas→∗ s and s −t:ta→ s′ with
Read a al v ∈ set 〈ta〉o such that

P,λ_. ∅ ` start-events @ concat (map events’ ttas)
√

ns.

Suppose kas start-state ⊆ allocated start-heap. Then, either

(i) a is preallocated, i.e., Allocate a hT ∈ set start-events for some hT, or

(ii) some reduction has allocated a, i.e., there are t′, ta′, and hT such that
(t′, ta′) ∈ set ttas and Allocate a hT ∈ set 〈ta′〉o.

Proof. If a ∈ allocated start-heap, then (i) holds by construction of
start-heap. So suppose a < allocated start-heap. Let αs abbreviate
concat (map events’ ttas). Since allocations write default values, which
are never addresses, addrs start-H = ∅ by definition of start-events.
Therefore, kas s ∪ addrs (uhrs P start-H αs) ⊆ allocated (shr s) by
Lemma 4.11 and induction on start-state −ttas→∗ s. In particular, I
have a ∈ allocated (shr s), because a ∈ kas s by Lemma 4.10. Since
a < allocated start-heap, induction on start-state −ttas→∗ s yields (ii)
using the assumptions of locale m-allocated. �

Let me now return to part (ii) of obligation D3’’, namely to show that
the location being read is a declared field or a cell within the bounds of an
array. The proof approach combines known addresses with conformance

177

Chapter 4. Memory models

and heap extension. Conformance of a heap recordH with respect to a
heap h, written P ` H ::≤ h, denotes that all values inH conform to the
location’s type, i.e.,

P ` H ::≤ h←→ (∀a al. ∀v ∈ H (a, al). ∃T. P, h ` a·al : T ∧ P, h ` v :≤ T)

Locale ka-type in Figure 4.23 formally connects the three notions, where
the new parameter Q abstracts over language-specific conformance
conditions:

• Type information grows monotonically.

• Reductions with non-speculative events preserve conformance of
states and heap records.

• Any reduction that starts in a conforming state reads only locations
that have a type.

• After an allocation event, the address’ type information agrees
with the event’s.

For source code, Q is instantiated to the invariant for subject reduction
(Theorem 3.4) from Equation 3.7, i.e., Q t (e, xs) h = ∃E T. P, (E, T), t `
(e, xs), h

√
. For bytecode, Q is bytecode conformance from Equation 3.8,

i.e., Q t (xcp, f rs) h = P, Φ ` t:(xcp, h, f rs)
√

.
The locale parameter ka is implemented as follows. For source code,

J.ka t (e, xs) consists of the addresses that (i) occur in e or ran xs, or
(ii) are preallocated (set start-addrs), or (iii) t2a t returns. The latter
two are necessary, because JinjaThreads preallocates the system excep-
tions – for example, throw null reduces to THROW NullPointer, but
addr-of-sys-xcpt NullPointer need not be known before and is not learnt
– and currentThread returns the address of t’s Thread object. Accordingly,
in bytecode, jvm.ka includes the exception flag when set, all addresses
in local registers and the operand stack in any call frame, and the preal-
located addresses and t2a t. Then, source code and bytecode satisfy the
assumptions of locale ka-type for well-formed programs.37

37For bytecode, this proof assumes that undefined-Val is no address, because this value
initialises the registers of call frames (see Figure 3.22). Theoretically, I could have defined
jvm.ka such that it ignores inaccessible registers in call frames as determined by the
bytecode verifier. Then, this assumption would not be needed. However, this would
severely complicate the proofs in two ways. First, since bytecode satisfies the assumptions

178

4.3. Java memory model

The next lemma shows that locale ka-type implies assumption D3’’.
Hence, initialisations precede reads in non-speculative prefixes of com-
plete interleavings and Theorem 4.4 and Corollary 4.2 are applicable.

Lemma 4.13 (Assumption D3’’). In locale ka-type, let P be well-formed,
↑Q↑ (thr start-state) start-heap, kas start-state ⊆ allocated start-heap,
and P ` start-H ::≤ start-heap. If E ∈ E, E[i] = Read a al v with i < |E|, and
P,λ_. ∅ ` take i (map snd E)

√

ns, then there is a j < i such that E[j] initialises
(a, al).

Proof. Since E ∈ E, there is ttas such that start-state ↓ ttas and E =
start-events @ concat (map events ttas). Since i < |E|, I can split ttas
such that ttas = ttas′ @ (t, ta) · ttas′′, and Read a al v ∈ set 〈ta〉o, and
|concat (map events ttas′)| < i. Then, there are s and s′ such that
start-state −ttas′→∗ s and s−t:ta→ s′. Since non-speculative prefixes of
executions preserve conformance, (a, al) is typable in shr s, i.e., P, shr s `
a·al : T for some T. It suffices to show that there is an event Allocate a hT
in start-events or ttas′ such that typeof-addr (shr s) a = bhTc, because
P, shr s ` a·al : T then implies that Allocate a hT initialises (a, al).

By Lemma 4.12, the address a has been allocated before, i.e., either
in start-events or in ttas′. If Allocate a hT ∈ set start-events, then
typeof-addr start-heap a = bhTc, and therefore typeof-addr (shr s) a =
bhTc since start-heapE shr s. Otherwise, ttas′ = ttas∗ @ (t∗, ta∗) · ttas∗∗ for
some ttas∗, t∗, ta∗, and ttas∗∗ such that Allocate a hT ∈ set 〈ta∗〉o for some
hT. Hence, there are states s∗ and s∗∗ such that start-state −ttas∗→∗ s∗,
s∗ −t∗:ta∗→ s∗∗, and s∗∗ −ttas∗∗→∗ s. By assumption of ka-type, I obtain
typeof-addr (shr s∗∗) = bhTc and therefore typeof-addr (shr s) a = bhTc
since shr s∗∗ E shr s. �

Sequentially consistent completions

Now, only assumption D1 remains to be shown, i.e., sequentially consis-
tent prefixes of well-formed executions can be completed sequentially
consistently. To that end, I construct a sequentially consistent completion

of locale ka only for conformant states, ka must already fix the conformance predicate Q
from ka-type and restrict its assumptions to conformant states. Consequently, all proofs
in ka are burdened with conformance. Second, discharging the assumptions of ka for
bytecode requires to exploit conformance. As can be seen in the bytecode type safety proof
of Jinja and JinjaThreads, good automation is hard to achieve for bytecode conformance.

179

Chapter 4. Memory models

scc s H that starts with a multithreaded state s and a snapshot heap H. I
define scc by corecursion as follows:

scc s H = (if ∃t ta s′. s−t:ta→ s′

then let (t, ta, s′) = ε(t, ta, s′). s−t:ta→ s′ ∧ P, H ` 〈ta〉o
√

sc
in (t, ta) · scc s′ (mrws P H 〈ta〉o)

else [])

In order to prove anything about scc s H, I must make sure that the
predicate to the ε-operator is satisfiable for all reachable configurations.
Hence, I presume for now the following:

D4 The interleaving semantics satisfies the cut-and-update property
for the start state start-state and the start snapshot heap start-H =
mrws P empty start-events.

The cut-and-update property (C&U) for s and H (denoted C&U s H)
denotes the following. Let the state s′ be reachable from s via an
SC’ prefix of a complete interleaving, say s −ttas→∗ s′ such that P, H `
concat (map events’ ttas)

√

sc, and let H′ denote the updated snapshot
heap mrws P H (concat (map events’ ttas)). Then, for every reduction
s′ −t′:ta′→ s′′ from s′, there are ta′′, s′′′ such that (i) s′ −t′:ta′′→ s′′′,
(ii) P, H′ ` 〈ta′′〉o

√

sc, and (iii) P, H′ ` 〈ta′〉o ≈ 〈ta′′〉o (to be explained in a
moment).

Conditions (i) and (ii) predicate that all reachable, non-stuck states
can reduce with events 〈ta′′〉o that are SC’ w.r.t. the current snapshot
heap H′; they suffice to prove that scc does compute an SC’ interleaving
(Lemma 4.15). In condition (iii), P, H′ ` αs ≈ αs′ denotes that two event
lists αs and αs′ consist of the same events up to the first SC’ inconsistent
read in αs (if any) and αs′ continues with a read from the same location.
With condition (iii), given a complete interleaving that is SC’ up to a read
α, I can cut the interleaving after α, replace α with a read of the most
recent value, and continue the interleaving SC’.

Lemma 4.14 (Preservation of C&U). If C&U s H, s−t:ta→ s′, and P, H `
〈ta〉o
√

sc, then C&U s′ (mrws P H 〈ta〉o).

Proof. This holds by definition of C&U because every state that is reach-
able via SC’ executions from s′ is also reachable via SC’ exeuctions from
s by prefixing the SC’ reduction s−t:ta→ s′. �

180

4.3. Java memory model

Under assumption D4, scc computes an SC’ execution (Lemma 4.15).
By the equivalence of SC and SC’ (Theorem 4.4), I then discharge the
main assumption of the DRF proof (Theorem 4.5).

Lemma 4.15.
If C&U s H, then s ↓ scc s H and P, H ` concat (map events’ (scc s H))

√

sc.

Theorem 4.5 (SC completion). Let E ∈ E, P ` (E, ws)
√

, (E, ws) be SC up
to a read event (t, Read a al v), say E = E1 @ (t, Read a al v) · E2 with ws α
being the most recent write for all reads α ∈ AE1 . Then, there are E3, v′,
and ws′ such that E∗ := E1 @ (t, Read a al v′) · E3 ∈ E, P ` (E∗, ws′)

√
, and

(E∗, ws′) is SC.

Proof of Lemma 4.15. I show s ↓ scc s H by coinduction with C&U s H as
the coinduction invariant. If s is stuck, then scc s H = [] and I am done by
Stop. Otherwise, conditions (i) and (ii) of C&U ensure that the predicate
to Hilbert’s choice is satisfiable. Hence, it does pick an SC’ reduction
step s−t:ta→ s′ and updates H to H′ := mrws P H 〈ta〉o. Note how this
mimics Step. Since SC’ reductions preserve C&U (Lemma 4.14), and the
reduction is SC’, C&U s′ H′ holds, too. This concludes the coinductive
step.

For P, H ` concat (map events’ (scc s H))
√

sc, the standard coinduc-
tion rule is too weak because concat is unproductive for any number
of consecutive reductions without events. Hence, I derive a custom
coinduction rule for _, _ ` _

√

sc (Lemma 4.16 below), which allows to
defer the next step if one decreases in a well-founded relation. Taking
as measure the length of the maximal prefix of scc s H for which 〈ta〉o
consists of empty lists, I show P, H ` concat (map events’ (scc s H))

√

sc
with the invariant C&U s H like above. �

Lemma 4.16 (Strong coinduction rule for _, _ ` _
√

sc). Let (Rq)q be a family
of sets over snapshot heaps and lists of events indexed over a type with a
well-founded order ≺. Suppose that for all q and (H,αs) ∈ Rq, either αs = [],
or there is a q′ with q′ ≺ q and (H,αs) ∈ Rq′ , or αs can be split in αs′ and αs′′

such that αs′ , [] and P, H ` αs′
√

sc and if αs′ is finite, there is a q′ such that
(mrws P H αs′,αs′′) ∈ Rq′ or P, mrws P H αs′ ` αs′′

√

sc. If (H∗,αs∗) ∈ Rq∗

for some q∗, then P, H∗ ` αs∗
√

sc.

Proof. By well-founded induction on ≺, I prove that the union R of all
Rq satisfies the following: For all (H,αs) ∈ R, either αs = [], or αs can

181

Chapter 4. Memory models

be split in αs′ and αs′′ such that αs′ , [] and P, H ` αs′
√

sc and if αs′ is
finite, (mrws P H αs′,αs′′) ∈ R or P, mrws P H αs′ ` αs′′

√

sc. This proof
follows the same pattern as for the strong coinduction rule in §1.4.3.

Then, I show P, H∗ ` αs∗
√

sc by coinduction on P, _ ` _
√

sc with coin-
duction invariant (H∗,αs∗) ∈ R. �

Proof of Theorem 4.5. Construct E3 as follows: First, identify the reduction
s −t:ta→ s′ that generates (t, Read a al v). Let E′1 be the prefix of E up
to events (t, ta) exclusively, which is also a prefix of E1. Since all
reads in E1 (and thus E′1) see the most recent write, E′1 is SC’ by The-
orem 4.4. Since C&U holds for the start state and the start snapshot
heap and SC’ reductions preserve C&U (Lemma 4.14), C&U holds for
s and H1 = mrws P empty E′1, too. Hence, by C&U, there are ta′ and
s′′ such that s −t:ta′→ s′′, P, H1 ` 〈ta′〉o

√

sc, and P, H1 ` 〈ta〉o ≈ 〈ta′〉o.
From the latter, I know that 〈ta〉o and 〈ta′〉o are the same up to the read
Read a al v in 〈ta〉o (exclusively), which is Read a al v′ in ta′ for the
SC’-correct value v′. Now, choose E3 to be the rest of 〈ta′〉o followed by
concat (map events (scc s (mrws P H1 〈ta′〉o))).

With Lemma 4.15, I get that E∗ is SC’ and E∗ ∈ E. Theorem 4.4 yields
the required ws′. �

Corollary 4.4. Every well-formed program has a well-formed, sequentially
consistent execution.

Proof. Set E = start-events @ concat (map events (scc s H)). Then, E ∈ E
and P, empty ` E

√

sc by Lemma 4.15 and definition of E and start-events.
By Theorem 4.4, there is a ws such that P ` (E, ws)

√
and (E, ws) is SC. �

Cut and update

For the DRF guarantee, it remains to show that the interleaving semantics
satisfies C&U for the start state (assumption D4). Similar to initialisations
preceding reads, I generalise this property to non-speculative prefixes
and reading any previously written value, not only the most recent one.
Thus, I can reuse the proof for consistency in §4.3.4.

Formally, the sequential semantics has the generalised cut-and-update
property (gC&U) for a state s and heap record H iff for all states s′

reachable from s in the interleaving semantics with non-speculative
events αs and any reduction t ` (x, shr s′)−ta→ (x′, h′) of any thread t in
s′with ok-ta s′ t ta, whenever 〈ta〉o[i] = Read a al v for some i < |〈ta〉o| such

182

4.3. Java memory model

that P, uhrs PH αs ` take i 〈ta〉o
√

ns and for any value v′ ∈ uhrs PH (αs @
take i 〈ta〉o) (a, al), there is a reduction t ` (x, shr s′)−ta′→ (x′′, h′′) such
that ok-ta s′ t ta′, i < |〈ta′〉o| ≤ |〈ta〉o|, 〈ta′〉o[i] = Read a al v′, and
take i 〈ta〉o = take i 〈ta′〉o.

Intuitively, gC&U allows to cut a complete interleaving at any read
event in its non-speculative prefix and replace it with a read from the
same location that reads any value which has previously been written to
that location. This might seem overly complicated, but I cannot require
that the updated read reads any arbitrary value, because I want the DRF
guarantee to hold for both JMM implementations of the abstract heap
model. In particular, the second allows to read only type-correct values.
Since non-speculative executions preserve conformance, gC&U holds
for any abstract heap model that always allows to read all type-correct
values, see Lemma 4.18 below. If I were able to drop this conformance
restriction on the read operation in JMM heap implementation 2, I could
simply require that every read in every state can be cut and arbitrarily
updated, which would considerably simplify the proofs.

Lemma 4.17 (gC&U implies C&U). If P is well-formed, the single-threaded
semantics satisfies gC&U for start-state and start-H , and kas start-state ⊆
allocated start-heap, and ↑Q↑ (thr start-state) start-heap, then it also
satisfies C&U for start-state and start-H.

Proof. Suppose start-state −ttas→∗ s and s−t:ta→ s′ such that P, start-H `
concat (map events’ ttas)

√

sc. Let αs = concat (map events’ ttas) and
H = mrws P start-H αs. I must show that there are ta′ and s′′ such that
s−t:ta′→ s′′, P, H ` 〈ta′〉o

√

sc, and P, H ` 〈ta〉o ≈ 〈ta′〉o.
If s −t:ta→ s′ originates from Acquire, 〈ta〉o contains no read by

definition of acq-events. Hence, ta and s′ themselves serve as witnesses.
Otherwise, t ` (x, shr s) −ta→ (x′, shr s′) for some thread in s by

Normal. By Lemma 4.9, P, start-H ` αs
√

ns, i.e., gC&U allows to cut
and update t’s reductions in state s. Then, construct 〈ta′〉o iteratively
as follows: Start with ta′ = ta and consider the first event in 〈ta′〉o. If
it is an event reading not the most recently written value (according to
the snapshot heap H), change the reduction to the most recently written
value using gC&U, then continue with the new reduction for the next
event. Otherwise, update the snapshot heap H for the event and consider
the next event. This process terminates after at most |〈ta〉o| iterations
because gC&U bounds the length of the replacement events 〈ta′〉o to that
length. The reduction thus obtained serves as witness.

183

Chapter 4. Memory models

The key step in the iteration is to show that H stores a most recently
written value at all. I show similar to Lemma 4.13 that start-state −ttas→∗

s initialises the location. This ensures that H does store some value v
for the location and – since H fits to H = uhrs P start-H αs – H has
recorded v, too. Hence, gC&U ensures that I can cut and update the
reduction as described. �

Now, it remains to show that both source code and bytecode satisfy
gC&U, i.e.,

D4’ The interleaving semantics satisfies gC&U for start-state and
start-H .

Although D4’ is tedious to prove for the layers 2 to 5, from the clone
method to the source code semantics and defensive VM, these proofs
do not pose any interesting challenges. To abstract over both JMM
heap implementations, they make the following assumption about the
implementation, which both implementations satisfy by definition:

D5 The heap implementation allows to read any type-correct value,
i.e., whenever hconf h and P, h ` a·al : T and P, h ` v :≤ T, then
read h a al v.

This assumption is stronger than progress because it allows to read any
type-correct value. Since gC&U involves only non-speculative prefixes
of executions, locale ka-type ensures that these preserve conformance of
the heap and the heap record. Therefore, any value that gC&U requires
to be read conforms to its type. Thus, I am finally able to conclude that
the DRF guarantee holds for source code and bytecode.

Lemma 4.18. In locale ka-type and under assumption D5, the sequen-
tial semantics for source code (bytecode) satisfies gC&U for the start state
J-start P C M vs (jvm-start P C M vs) and start-H provided that (i) P is
well-formed, (ii) wf-start P C M vs, and (iii) the parameters vs only refer to
preallocated addresses, if at all.

Theorem 4.6. The DRF guarantee holds for source code and bytecode.
If the start state satisfies the conditions of Lemma 4.18 and P is correctly

synchronised, then every legal execution is SC.

184

4.3. Java memory model

4.3.4 Consistency

In the previous section, I have shown that the JMM allows solely se-
quentially consistent behaviour for correctly synchronised programs.
This proves that the JMM is strong enough to disallow certain undesired
behaviours. Conversely, consistency requires that the JMM be not too
strong in that for some programs it does not allow any behaviour at all.
In this section, I prove that the JMM does assign some legal behaviour
to every well-formed program, not only to correctly synchronised ones.
In particular, I show that any sequentially consistent execution is legal.
This is not trivial because in programs with data races, the most recent
write for a read need not happen before it. Hence, these data races must
be justified.

Theorem 4.7. Every well-formed source code and bytecode program has a
sequentially consistent execution. Every sequentially consistent execution is
legal.

Like in the previous section, I have identified assumptions on the
interfaces between different layers of the semantics such that I can conduct
the proofs as abstractly as possible. In fact, this section only relies on the
properties of the single-threaded semantics from the previous section.
All theorems are on the level of the interleaving semantics or on higher
ones. Like in §4.3.3, I start at the JMM level with assumptions about
complete interleavings and then discharge these assumptions in the
levels below.

At the JMM level, the assumptions are now

C1 For every sequentially consistent prefix of a well-formed execution
(E, ws) with E ∈ E, there is a complete interleaving E′ ∈ E with the
same prefix and a write seen function ws′ such that (i) P ` (E′, ws′)

√
,

(ii) for all read actions r ∈ AE′ , if r is in the prefix, then ws′ r = ws r
else ws′ r ≤P,E

hb r, and (iii) if E continues with an event α directly
after the prefix, E′ continues with the same α, except that if α is a
read, it may read a different value.

C2 If a well-formed execution has an SC prefix αs followed by a read
from (a, al), αs initialises (a, al).

D2 Every execution initialises every location at most once.

185

Chapter 4. Memory models

Assumption C1 expresses that I can cut any execution after an SC
prefix and continue such that every read in the continuation sees a write
that happens before. The second assumption C2 is similar to D3’ with
SC’ replaced by SC. Assumptions C2 and D2 ensure that for well-formed
executions with an SC prefix followed by a read α, (i) a most recent write
α′ exists for α with α′ < α, and (ii) if a write α∗ happens before α, then
α∗ < α, too.

Theorem 4.8. Under assumptions C1, C2, and D2, every SC execution is
legal.

Proof. Let E ∈ E such that P ` (E, ws)
√

and (E, ws) is SC. I must justify
(E, ws) by a justifying sequence (Ei, wsi, Ci,ϕi)i. For i ≤ |E|, choose some
(Ei, wsi) with the following properties:

• Ei ∈ E
• P ` (Ei, wsi)

√

• i ≤ |Ei|
• take (i− 1) E = take (i− 1) Ei
• Suppose i > 0. If E[i−1] = Read a al v, then Ei[i−1] = Read a al v′ for

some v′, else E[i−1] = Ei[i−1].
• For all read events j ∈ AEi , if j < i − 1 then wsi j = ws j, else

wsi j ≤P,Ei
hb j.

Assumption C1 ensures that such (Ei, wsi) exist. Set Ci =
{

j. j < i
}
, i.e.,

(Ei, wsi) commits the first i events.
For i > |E|, set Ei = E and wsi = ws and Ci = AE. Then, the sequence

(Ei, wsi, Ci,ϕi)i justifies (E, ws) where all renamings ϕi are the identity.
To illustrate how (Ei, wsi, Ci,ϕi)i justifies reads which see writes that

do not happen before, consider the following program where the write
in l. 1 races with the read in l. 2.

initially: x = 0;
1: x = 1; 2: r = x;

(P)

Figure 4.24 shows the executions for the two complete interleavings
where the thread t1 on the left executes before the one on the right (t2).
I wish to justify the SC execution shown in Figure 4.24a. Suppose that
we are about to commit the read event, i.e., i = 5. Figure 4.24b shows
(E4, ws4) where the grey area contains all committed events.

186

4.3. Java memory model

(t1, TInit)

(t1, Write x 1)

(t1, TFinish)

(t2, TInit)

(t2, Read x 1)

(t2, TFinish)

(_, initialise x)

(a) sequentially consistent

(t1, TInit)

(t1, Write x 1)

(t1, TFinish)

(t2, TInit)

(t2, Read x 0)

(t2, TFinish)

(_, initialise x)

(b) writes happen before reads

Figure 4.24: Two executions of the complete interleavings
[(_, initialise x), (t1, TInit), (t1, Write x 1), (t1, TFinish), (t2, TInit), (t2, Read x v),
(t2, TFinish)] for (a) v = 1 and (b) v = 0 for the program (P)

The JMM justification rules allow the write-seen function (dashed
arrows) to change only for reads that the previous justifying execution
has committed for the first time. Since (E5, ws5) commits the read, it must
still see the allocation as there are no other writes that happen before the
read. Thus, Figure 4.24b also shows (E5, ws5). In the next step, (E6, ws6)
may change the read such that it sees the write, i.e., Figure 4.24a shows
(E6, ws6). At the same time, it also commits the last event (t2, TFinish).

This offset explains why the specification of (Ei, wsi) mostly refers to
i− 1. However, one cannot shift the whole sequence by one because the
JMM requires that (E0, ws0) has not yet committed any events.

The proof that (Ei, wsi)i justifies (E, ws) is tedious and largely unin-
teresting, except for the case where the i− 1-th event in E reads from a
write w that does not happen before. In that case, (Ei, wsi) changes the
write from wsi−1 i to ws i. The legality conditions require that (Ei, wsi)
has already commited both of them, i.e., wsi−1 i < i and ws i < i. As
noted above, assumptions C2 and D2 ensure this, because ws i is the
most recent write and wsi−1 i happens before i. �

Corollary 4.5. Under assumptions D2, D3’, D4, C1, and C2, every program
has a legal execution.

Proof. By Corollary 4.4, it has a well-formed SC execution. By Theo-
rem 4.8, this execution is legal. �

187

Chapter 4. Memory models

Next, I show that source code and bytecode satisfy assumptions C1
and C2. Note that the latter is equivalent to D3’ by Theorem 4.4, i.e.,
Lemma 4.13 discharges it.

Assumption C1 is structured similarly to D1. Thus, I construct a
witness execution by corecursion similar to scc, but choose ta such that
reads in 〈ta〉o see writes that happen before them. Since assumptions C2
and D2 ensure that such writes precede the reads in the execution, the
prefix up to the read is non-speculative and thus gC&U ensures that such
a witness exists. Here, the crucial step is to show that such a write exists.
Note that the initialisation exists by assumption D3’’ and happens before
the read by Lemma 4.5. Then, the ≤eo-maximal write to the location that
happens before the read serves as witness. Since the proof structure is
similar to sequentially consistent completions (Lemmata 4.14 and 4.15,
Theorem 4.5), I omit the details.

4.3.5 Type safety

For the JMM heap implementations, I have claimed in §4.3.2 that only the
second leads to a type-safe language. In this section, I substantiate this
claim and discuss the relation between type safety and values appearing
out of thin air.

First, note that for correctly synchronised programs, the DRF guar-
antee applies (§4.3.3). Hence, all of their executions are sequentially
consistent, and analoguous to the type safety proof of sequential consis-
tency, one can show type safety for them. However, the JMM assigns
semantics to all Java programs such that type safety and Java’s security
promises hold unconditionally.

Now, reconsider the program in Figure 4.12, which Figure 4.25a
repeats. Figures 4.25b to Figure 4.25e show the justifying executions
for the type unsafe execution in Figure 4.25e under the JMM heap
implementation 1. The shaded areas contain the committed events.

The trick is to justify the address of the Integer object allocated in
l. 5 as an out-of-thin-air value for the data races on x and y. These races
have the same pattern as in Figure 4.8, where the JMM is sufficiently
strong to disallow out-of-thin-air values. However, in Figure 4.25a, this
cycle occurs only if the then branch (l. 5) executes. The justification
first executes the else branch (l. 7) until both data races on x and y are
committed (Figures 4.25b to 4.25d). Then, the branches are switched
(Figure 4.25e) and the address a keeps being passed between the two

188

4.3. Java memory model

data races as an out-of-thin-air value. The then branch could then do
almost anything – in the example, it allocates an Integer object. The
allocation strategy of the JMM heap implementation 1 uses the same
address as the allocation in l. 7 has used in previous executions. Hence,
the locations x and y of type String now point to an Integer object, which
is type-unsafe.

Note that this problem is not specific to the allocation strategy of
the first heap implementation. A similar example can be conceived for
any given strategy that allows to allocate objects of different types at
the same address. JMM heap implementation 2 circumvents this issue,
because Integer and String objects have distinct address spaces.

However, tying addresses to their dynamic type information only
treats the symptoms, not the cause. First, the type safety statement under
the JMM heap implementation 2 is weaker than for sequential consistency
from §4.2, because jmm′-typeof-addr no longer encodes which addresses
are allocated. For example, bytecode type safety (Theorem 3.6) states that
if a thread terminates with a raised exception a, then typeof-addr h a =
bClassT Cc such that P ` C �∗ Throwable in the final heap h. Under
sequential consistency, this expresses that a refers to an allocated object.
Although this theorem literally holds for any legal execution of the
JMM with heap implementation 2, too, typeof-addr h a = bClassT Cc
no longer implies that a has been allocated during the execution. For
example, Figure 4.26 shows a slight modification of Figure 4.25a. A
justification analogous to Figure 4.25 allows the execution where r1, r2,
x, and y all contain the address that the allocation in l. 5 would return,
but without executing l. 5. Thus, this model assumes that all objects
already “exist” at the start of the execution, allocation merely picks an
“unsed” one.

Second, another variation of this program (Figure 4.27) shows how
to break the out-of-thin-air guarantee of the JMM. It changes ll. 5 and
7 such that they allocate an array of the same type and length. Then,
no heap implementation would be able to disallow x and y pointing
to the object allocated in l. 5. Although the out-of-thin-air guarantee is
not clearly defined, such a forged pointer could be used to break Java’s
security features, which rely on this guarantee. Imagine l. 5 allocaes
the char array that is to store the contents f a String object. By using
malicious code like this, an attacker could obtain a reference to modify
the string’s contents, but Java’s security features “depend upon Strings
being perceived as truly immutable” [56, §17.5].

189

Chapter 4. Memory models

initially: b = false; x = y = null;
1: r1 = y;
2: x = r1;

3: r2 = x;
4: if (b)
5: r3 = new Integer();
6: else
7: r2 = new String();
8: y = r2;

9: b = true;

(a) Program (repeated from Figure 4.12)

(t1, TInit)

1: (t1, Read y Null)

2: (t1, Write x Null)

(t2, TInit)

3: (t2, Read x Null)

4: (t2, Read b False)

7: (t2, New-Obj a String)

8: (t2, Write y a)

(t3, TInit)

9: (t3, Write b True)

(_, Initialise b False)(_, Initialise x Null)(_, Initialise y Null)

(b) Initial execution in which every write happens before the read that sees it. Commit
the writes to and read from location y.

(t1, TInit)

1: (t1, Read y a)

2: (t1, Write x a)

(t2, TInit)

3: (t2, Read x Null)

4: (t2, Read b False)

7: (t2, New-Obj a String)

8: (t2, Write y a)

(t3, TInit)

9: (t3, Write b True)

(_, Initialise b False)(_, Initialise x Null)(_, Initialise y Null)

(c) Change the read of y in l. 1 to see the write in l. 8, commit the writes to and read from
location x.

Figure 4.25: Justifying executions for the type-unsafe one of the program in (a)

190

4.3. Java memory model

(t1, TInit)

1: (t1, Read y a)

2: (t1, Write x a)

(t2, TInit)

3: (t2, Read x a)

4: (t2, Read b False)

7: (t2, New-Obj a String)

8: (t2, Write y a)

(t3, TInit)

9: (t3, Write b True)

(_, Initialise b False)(_, Initialise x Null)(_, Initialise y Null)

(d) Change the read of x in l. 3 to see the write in l. 2, commit the writes to and read from
location b.

(t1, TInit)

1: (t1, Read y a)

2: (t1, Write x a)

(t2, TInit)

3: (t2, Read x a)

4: (t2, Read b True)

5: (t2, New-Obj a Integer)

8: (t2, Write y a)

(t3, TInit)

9: (t3, Write b True)

(_, Initialise b False)(_, Initialise x Null)(_, Initialise y Null)

(e) Change the read of b in l. 4 to see the write in l. 9, which switches the if’s branches such
that l. 5 allocates an Integer instead of a String; commit all remaining events.

Figure 4.25: Justifying executions for the type-unsafe one of the program in (a)

191

Chapter 4. Memory models

initially: b = false; x = y = null;
1: r1 = y;
2: x = r1;

3: r2 = x;
4: if (!b)
5: r2 = new Exception();
6: y = r2;
7: throw r2;

8: b = true;

Figure 4.26: A program that the JMM allows to terminate with a raised, but
unallocated exception

initially: b = false; x = y = null;
1: r1 = y;
2: x = r1;

3: r2 = x;
4: if (b)
5: r3 = new char[2];
6: else
7: r2 = new char[2];
8: y = r2;

9: b = true;

Figure 4.27: Variation of Figure 4.25a

This example shows that the out-of-thin-air guarantee is too weak
to support the Java’s security architecture [54]. However, this is only
a theoretical example, because I do not know of any optimisation in a
compiler, a JVM, nor in hardware that could lead to such behaviour.
Hence, this should be considered a deficiency of the JMM specification.

4.3.6 Discussion

The JMM formalisation

Lessons learnt. The formalisation in §4.3.2 shows how to connect a Java
semantics with the JMM, which has been missing in the literature [8,38,69].
The main insight is that event traces of isolated threads do not suffice
to obey the JLS and Java API. Figures 4.13 and 4.14 present examples
of hidden communication channels in Java that the JMM inter-thread
actions do not capture – although the examples only use Java features
that the JMM mentions. In my model, the basic thread actions are the
only communication channel between the interleaving semantics and the
different threads. With the JMM heap implementation 2, the shared state

192

4.3. Java memory model

remembers only what addresses are fresh. Hence, BTAs suffice to expose
all communication channels for the features that JinjaThreads models.38

Most obviously, the JMM misses events for thread interrupts. It
predicates that Thread.interrupt “synchronises-with the point where
any other thread [...] determines that [the thread] has been interrupted”
[56, §17.4.4], but there are no designated events for neither thread
interruption nor “that point”. Hence, I have added the synchronisation
events TIntr and TIntrd. Their duals for non-interruption ClearIntr and
IsIntrd _ False only exist as BTAs for the interleaving semantics. Similarly,
the API of class Thread requires the existence of BTAs to query a thread’s
state, e.g., ThreadEx. Thus, a comprehensive model of Java concurrency
has to include such BTAs. Previous JMM formalisations [8, 34, 69] did
without these, because they omitted interruption and wait sets, but a
realistic formalisation like JinjaThreads cannot.

The interesting question was which of these new BTAs should become
events that participate in synchronisation and happens-before order. I
follow the original JMM in that only TIntr synchronises with TIntrd. In
particular, BTAs do not occur in complete interleavings, and therefore,
they do not synchronise with any event and need not be committed or
justified. Hence, they do not affect the writes that a read may see. I
consider this sensible, because I have found it very hard to construct
programs that can exploit such additional synchronisation to avoid data
races. Typically, other schedules exhibit races in such programs.

Figure 4.28 shows an exception to this. The read in l. 6 executes only
if the left thread has spawned x before l. 4 executes, which happens after
the write to y in l. 1. Yet, l. 1 does not happen before l. 6 according to the
JMM, because l. 4 does not generate any synchronisation event. Hence,
the program is not correctly synchronised according to my definitions.

However, there are alternative definitions for data races that do
not depend on the happens-before order to approximate time. More
intuitively, two conflicting events race iff in some complete interleaving,
they are adjacent, i.e., no event occurs between them, and the location is

38There is still a covert channel via hashcode, because JinjaThreads implements hashcode
in terms of the overloaded function hash-addr :: ′addr⇒ int. Hence, a thread can infer how
many objects of a given type have already been allocated globally by allocating a new one
and taking its hash code. The easiest way to close this channel is to decouple hashcode’s
implementation from the concrete addresses; Liu and Moore [104], e.g., implement
hashcode such that it always returns 0. Note that this covert channel exists in commercial
JVMs, too, and poses problems for security analyses [123].

193

Chapter 4. Memory models

initially: x = new Thread(); y = 0
1: y = 1;
2: x.start();

3: try {
4: x.start();
5: } catch (IllegalThreadStateException e) {
6: r = y;
7: }

Figure 4.28: The race on Thread.start does not eliminate the data race on y

not marked volatile. For simple models of happens-before, both defini-
tions are equivalent [32], but not for Java with implicit communication
channels between threads.

The program in Figure 4.28 would be correctly synchronised under
the alternative definition, because there is no sequentially consistent
interleaving with adjacent conflicting events. I argue that it is correct
to not consider this program as correctly synchronised, because thread
spawns are a degenerate form of synchronisation, and compilers should
not need to respect such forms. In [32], Boehm and Adve have a similar
problem with trylock in C++. They restore the equivalence by allowing
trylock to fail spuriously. Analogously, one could tweak the start
method to fail spuriously, but this would violate the semantics (see the
example in Figure 4.14).

Under JMM heap implementation 1, I interleave the execution to
obtain sequential consistency for types. This solves the problem of
finding a fresh address for memory allocation, as the shared memory
stores which addresses are fresh. However, complete interleavings
introduce a global notion of time, which typical implementations in
concurrent hardware do not provide.

The JMM heap implementation 2 actually does not need to broadcast
type information at all, because it partitions the address space by type
and array length like in [75], i.e, an address carries complete type
information. Still, the interleaving needs to communicate (via shared
state) which addresses are fresh. With an allocation operation that non-
deterministically returns any address of the correct type, and with the
BTAs as additional events, one could eliminate the complete interleaving;
new rules at the JMM layer then would ensure that every addresses
is allocated at most once. I have not followed this path because I
would have had to reimplement all the management facilities that the

194

4.3. Java memory model

interleaving framework already provides. Moreover, the proofs via state
invariants and preservation theorems rely on the globla notion of time,
although the JMM order relations do not when the constrain the possible
writes for a read.

Faithfulness of the semantics Aspinall and Ševčík [8] suggested to
weaken legality to enable more optimisation without sacrificing the DRF
guarantee. Since my proof on the JMM level follows theirs, it also works
for their weaker notion of legality. I have not formally checked that
JinjaThreads validates all JMM test cases by Pugh et. al. [144]. Torlak
et. al. [171] have shown that the original JMM does not validate test cases
19 and 20, but the fix by Aspinall and Ševčík [8] does. Since none of the
test cases uses dynamic allocation, spawning nor interruption of threads,
nor wait and notify, my formalisation should perform equivalent to
the original JMM. With the fix by Aspinall and Ševčík, my formalisation
should also validate test cases 19 and 20.

Alas, there are two corner cases where JinjaThreads does not model
all allowed behaviours. Remember from Chapter 3 that I do not model
spurious wake-ups, which the JLS permits. However, this opens a
communication channel between a call to notify and wait that can
erroneously make programs correctly synchronised. Figure 4.29 shows
an example. There are only two conflicting events, namely the write in
l. 1 conflicts with the read in l. 8. If spurious wake-ups are impossible, the
following argument shows that l. 1 always happens before l. 8, i.e., there
is no data race. The read in l. 8 executes only if the right-hand thread
wakes up from the call to wait in l. 6. In the absence of spurious wake-ups,
only notify in l. 3 can cause this. Hence, the reacquisition of the monitor
mwhen wait returns happens after the unlock in l. 4, which itself happens
after l. 1 by program order. However, suppose the thread on the right
wakes up spuriously in l. 6. Then, the execution where the thread on the
right runs before the one on the left is sequentially consistent, but the
conflicting ll. 1 and 8 are not related by happens-before, i.e., the program
is incorrectly synchronised. Note that “the Java coding practice of using
wait only within loops that terminate only when some logical condition
that the thread is waiting for holds” [56, §17.8.1] eliminates this problem.
If this advice is followed, spurious wake-ups obscure deadlocks, because
they replace deadlocks by busy waiting (see Figure 7.2 in §7.4 for such a
potential deadlock in Java’s class initialisation procedure [56, §17.4.2]).

195

Chapter 4. Memory models

initially: m = new Object(); x = 0;
1: x = 1;
2: synchronized (m) {
3: m.notify();
4: }

5: synchronized (m) {
6: m.wait();
7: }
8: r = x;

Figure 4.29: Incorrectly synchronised program due to spurious wake-ups

The second corner case arises from inadequate atomicitiy of execution
steps. The interleaving semantics executes every step of the single-
threaded semantics atomically, which includes calls to native methods.
For clone, this assumption is unrealistic. Sun and OpenJDK JVMs allow
threads to concurrently manipulate the object that is being cloned. To
see this, I ran the following test. One thread clones an object with 1000
volatile fields of type int while another changes the first and the last
field. Volatility ensures that the program is correctly synchronised and
the DRF guarantee applies. Then, cloning is observed as not atomic
if the first field of the clone stores the original value, but not the last
field. Depending on the hardware and JVM, I observed non-atomicity
between 270 and 2.5k times out of 10M. Hence, JinjaThreads’s clone
implementation should be replaced by a better one.

Technical changes to the JMM First, for the DRF guarantee, all initiali-
sation events must be synchronisation events, not only those for volatile
locations, which follows Aspinall and Ševčík [8]. In contrast to them, I
do not need a special initialisation thread (which might run infinitely in
the case of an infinite execution), but assign to initialisation events the
thread’s ID which created the object. This change is relevant for the final
field semantics extension to the JMM, which requires to know which
thread created which object [56, §17.5.1].

Second, happens-before for the waitmethod arises not only from the
associated unlock and lock events [56, §17.4.5], but calling interrupt on
the waiting thread synchronises with throwing the InterruptedException,
too. When a thread in a wait set is both interrupted and notified, the
JinjaThreads semantics always respects happens-before, although the
JLS does not require this [56, §17.8.1] – see the discussion in §3.2.1.

Third, I do not model thread divergence events. The JMM introduces
them to “model how a thread may cause all other threads to stall and

196

4.3. Java memory model

fail to make progress” [56, §17.4.2]. My construction achieves the same
via the coinductive definition of _ ↓ _ and concatenation of event lists in
Equation 4.2.

Finally, JinjaThreads models neither final fields nor class initialisation
nor finalisation. Hence, I do not model that part of the JMM, either [56,
§17.5, §12.4.2, §12.6.1.1] – see §7.4 for how this could be included.

The data race freedom guarantee

Insights The DRF guarantee for Java (§4.3.3) has been formalised
before [8, 69] – in fact, I employ the same key ideas for the proof on the
JMM level. The novel aspects are that

• JinjaThreads’ JMM formalisation covers dynamic allocation with
explicit allocation events and infinite executions, and

• I identify the assumptions of the DRF guarantee on the single-
threaded semantics and discharge them for source code and byte-
code.

The key insights are the following:

1. The new events for interruption and different kinds of synchroni-
sation do not affect the DRF proof. This suggests that other means
of synchronisation that JinjaThreads does not cover, e.g. atomics in
java.util.concurrent, do not affect it either.

2. One must find better ways to handle initialisations, as the JMM way
severely complicates the proofs. One option is to omit initialisations
completely. Instead, a read is allowed to not see any write event if
no write to that location has happened before and the value read
is the default value. The default value is uniquely defined when
types partition the address space as explained above.

3. The equivalence of SC and SC’ (Corollary 4.2) shows that the
treatment of initialisations is irrelevant for the DRF guarantee.
Hence, one is not constrained when searching for better ways.

Insight 3 a posteriori justifies Aspinall’s and Ševčík’s simpler approach
of considering finite prefixes for the purpose of formalising the DRF
guarantee [8]. However, it is still insufficient when dealing with the full

197

Chapter 4. Memory models

JMM. For example, the JMM allows the execution in Figure 4.9, but not
some of its prefixes.

Similarly, my DRF proof shows that it would be safe to globally restrict
read operations to type-conforming values – for correctly synchronised
programs. Subject reduction and preservation proofs would become
significantly easier. However, it would disallow some legal executions
of programs with data races such as Figure 4.9.

Technical considerations My proof of Theorem 4.3 differs from [8, 69,
115] mainly in the proof of the DRF Lemma 4.4. I adapt the others’ in
two respects to deal with explicit initialisations.

First, the others topologically sort ≤E
po [115] or ≤P,E

hb [8, 69] first to

obtain ≤E
eo, and then take

{
β. β ≤E

eo α
}

as the prefix for the sequentially
consistent execution. I omit the sorting and use the induced total order
≤

E (rather than ≤E
eo), which does not move initialisation events to the

program start.
Second, Manson et al. [115] and Huisman and Petri [69] require a

sequentially consistent completion E′; so do I. However, the former
ignore that different initialisation events in the suffix might change the
≤

P,_
hb relation on the prefix. The latter note this problem, but add an

axiom that ≤P,_
hb remain unchanged. I circumvent the issue by using ≤E

instead of ≤E
eo. Hence, ≤P,_

hb on the prefix becomes independent of later
initialisations (Lemma 4.6). Aspinall and Ševčík [8] completely avoid it
by restricting their model to finite prefixes of executions.

Initialisations also complicate the construction of sequentially consis-
tent completions. I failed to construct them directly, as due to the special
treatment of initialisations, ill-formed programs might not have such,
see the example below. Hence, I would need appropriate constraints that
the semantics preserves, but the JMM notion of execution is unsuitable
for preservation proofs. Instead, I proved that sequential consistency
with respect to happens-before is the same as for interleaving semantics
– if initialisations do not interfere (Corollary 4.2).39 Being operational,
interleaving semantics is much more amenable to reduction invariants
and their preservation proofs than the JMM. While it is still challenging

39Interestingly, Batty et al. [16, §4] found that initialisations of atomics cause problems in
the DRF proof for C++11, too.

198

4.3. Java memory model

initially: x = 0
1: print a.length;
2: x = 1;

3: r1 = x;
4: new int[r1];

(a)

(t1, TInit)

1: (t1, Extern print 1)

2: (t1, Write x 1)

(t1, TFinish)

(t2, TInit)

3: (t2, Read x 1)

4: (t2, New-Arr a Integer 1)

(t2, TFinish)

(_, Initialise x 0)

(b)

Figure 4.30: An ill-formed program (a) and its execution (b) with a sequentially
consistent prefix (grey area) followed by a read (l. 3) that cannot be cut, updated,
and completed sequentially consistently.

to show properties about scc, most proofs follow the well-known pattern
of preservation.

The program in Figure 4.30a demonstrates that ill-formed programs
can have sequentially consistent prefixes of executions which cannot
be cut, updated, and completed sequentially consistently.40 Note that
the program is ill-formed only because it literally constains an address.
However, such a program could well occur as an intermediate state
while executing a well-formed program.

In the execution in Figure 4.30b, the read in l. 3 sees the write from
l. 2, but the most recent write would be the initialisation of location x.
Suppose that l. 3 is scheduled after l. 1, but before l. 2, as indicated by
the grey area. Then, the prefix up to l. 1 is sequentially consistent, but
has no sequentially consistent completion when l. 3 executes next. If l. 3
is updated to read the initial value 0, then l. 4 allocates an array of length

40For simplicity, this example abstracts from the type checks that cause the semantics to
get stuck.

199

Chapter 4. Memory models

0 at address a, but l. 1 has already output a’s array length as 1. This
violates the JLS that array lengths are always correct [56, §17.4.5]. Note
that this problem only arises for JMM heap implementation 1, because 2
uses different addresses for arrays of different lengths.

In this example, the problem is that t1 literally contains the address a
that the allocation of the other thread t2 returns. The proof of the DRF
guarantee relies on the fact that a thread only knows an address if it has
allocated it itself or it has read it from memory.

Consistency, type safety and out-of-thin-air values

To the best of my knowledge, consistency of the JMM has never been
proven formally before. Although the proof itself is unsurprising, con-
sistency is not obvious, because legality is a collection of axiomatic con-
straints. In particular, it only succeeds because my formalisation omits le-
gality constraint 8 (§4.3.2). Aspinall and Ševčík [8] have already noted this
inconsistency. Consistency and the DRF guarantee show the following:

(i) Every program has some legal behaviour (Corollary 4.5), i.e., the
JMM constraints are not contradictory.

(ii) The JMM is indeed weaker than sequential consistency, because it
allows all SC executions. Together with the introductory example
in Figure 4.7, the JMM is strictly weaker.

(iii) For correctly synchronised programs, the JMM is equivalent to
sequential consistency.

Banning values that appear out of thin air has been an important
concern during the last decade – Pugh [145] first noticed the need to ban
such values and Manson et al. [115] expand on the issue. The recent
standard C++11 bans out of thin air values, too, although informally [72,
§29.3.10]. Nevertheless, it is still unclear what actually constitutes a
value appearing out of thin air and no formal definition has been found
to date. However, one can narrow down this notion from its motivation,
namely Java’s type safety and security promises.

Ševčík [160, 161] proves a weak form of out-of-thin-air guarantee: If
a program has no means of constructing a value, such a value will never
appear in any legal execution. For example, if a program never allocates
an object of a class C, then no legal execution may contain a pointer

200

4.4. Related work

to a C object. But this guarantee is too weak to ensure Java’s security
promises and type safety, as my examples in §4.3.5 shows. Partitioning
the address space by run-time type information rescues type safety, but
is nothing more than a quick fix. A real solution is still missing.

4.4 Related work

4.4.1 Memory models and data race freedom

A lot of work has been devoted to hardware MMs, see [3] for an overview.
Here, I focus on programming language MMs, which are looser than
hardware MMs (and therefore harder to design), because they should
be efficiently implementable on various hardware and allow as many
compiler optimisations as possible, but nevertheless should be defined
unambiguously.

Huisman and Petri [69] have formalised the JMM and the proof of
the DRF guarantee in Coq. They have already noted that initialisations
break the proof, but added an axiom to avoid the problem. They set
out at the abstract level of threads in isolation, without connection to an
operational semantics.

Aspinall and Ševčík [8] have formalised parts of the JMM relevant
for the DRF guarantee and proved the latter in Isabelle/HOL — which I
have found very helpful in extending the DRF guarantee proof. Since
they omit dynamic allocation, they need to consider only finite prefixes
of executions. This simplifies their proofs considerably, as they do not
need to assume that sequentially consistent completion of executions
exist. They do not provide an intra-thread semantics, either. Instead,
they model a program as an unspecified predicate that checks whether a
trace of memory accesses and synchronisation operations represents a
valid execution of the thread. This does not suffice to model the hidden
communication channels between threads that the JLS specifies (see the
examples in Figures 4.13 and 4.14).

For a kernel language, Cenciarelli et al. [38] define an interleaving
small-step semantics that generates configuration structures of events
which an axiomatic theory constrains. On paper, they show that they only
generate behaviours that the JMM allows, but it is unknown whether
they produce every allowed behaviour and whether their model satisfies
the DRF guarantee.

201

Chapter 4. Memory models

Torlak et al. [171] developed a model checker for axiomatic memory
models. Using whole-program analysis, they derive JMM executions
from small Java programs that are restricted to a small (finite) number of
heap locations and finite state; loops are unrolled. Thus, their algorithm
can compute all inter-thread actions and memory allocations in advance.
They focus on checking small test cases rather than providing a full
semantics and proofs.

Jagadeesan et al. [75] define an operational semantics for weak
MMs with speculative computations similar to the JMM. Instead of
validating executions a posteriori, their semantics explicitly encodes
permitted reorderings and speculation. Yet, their model is neither
machine-checked nor comparable to the JMM for programs with data
races and synchronisation. Although they claim that their model bans
values out of thin air, the modified example from §4.3.5 also exhibits the
out of thin air value in their semantics.

Boyland [34] formalises in Twelf a semantics for a simple language
with allocation, synchronisation, volatiles, thread spawns and joins,
which may raise an error upon a data race. He shows that a program
never raises such errors iff it is data-race free in the JMM sense. For
programs with data races, the semantics misses many behaviours that
the JMM allows, e.g., reorderings as in Figures 4.7 and 4.9, whereas my
semantics deals with the full JMM.

The standard C++11 [72] considers programs with data races ill-
formed and assigns undefined semantics to them, but offers finer shades
of synchronisation than Java. Boehm and Adve [32] describe the MM
and prove the DRF guarantee for programs which use only strong syn-
chronisation primitives. They show that such programs are characterised
more intuitively as never having conflicting events adjacent in any inter-
leaving. For the JMM, this equivalence does not hold since threads can
communicate without introducing happens-before relationships (§4.3.6).
Batty et al. [16, 17] have formalised the MM with a focus on rigorously
defining the semantics, and proved correct some compilation schemes
for synchronisation primitives to assembly code.

Ševčík et al. [163] have verified the CompCert compiler backend with
respect to the formal MM for x86 processors by Sewell et al. [164], which
is the first formal correctness proof for an optimising compiler backend
with respect to a weak MM. They expose the x86-TSO model in a C-like
programming language, which is considerably stronger than the JMM
and also provides a DRF guarantee.

202

4.4. Related work

Various type systems exist to statically ensure that programs are data
race free, i.e., the DRF guarantee applies. Flanagan and Abadi [49] came
up with an object calculus and a type system with dependent types to
ensure that data races in accessing object members cannot occur. Object
members are annotated with locks’ names, the type system ensures that
accessing a member is only possible if the specified lock is held by the
thread. An appropriate subject reduction theorem shows soundness.
Flanagan and Freund [50] translated this calculus to full Java bytecode
and implemented it in the rccjava tool. In [58], Grossman extends their
approaches to multithreaded Cyclone, which is a type safe variant of C
(see §3.4.2).

4.4.2 Abstract heap modules

As part of the CompCERT project, Leroy and Blazy [100] have formalised
a heap model for a subset of sequential C. Similar to my approach, they
use Coq’s module system [40] to separate the axiomatic specification
from a concrete implementation. Their module signatures consists of
the four operations alloc, free, load, and store, and two predicates _ � _
and B on validity of block references and their bounds, respectively.
Their JinjaThreads counterparts are alloc, read, write, and allocated,
respectively. Since JinjaThreads has no garbage collection, free has
no counterpart. And B is remotely similar to the information that
typeof-addr and P, _ ` _·_ : _ encode. The four operations are all
partial functions, i.e., implementations must be deterministic. Although
JinjaThreads has similar operations, the assumptions are different. Leroy
and Blazy’s memory module aims to simplify the formal verification of
program transformations. Hence, their assumptions mostly describe the
interplay between allocations, loads and stores on the level of values. In
contrast, most assumptions in JinjaThreads deal with type information.
They also implement one concrete representation that distantly resembles
Jinja’s heap representation, which has been the basis for §4.2.

Ramananandro et al. [148] verify object layout algorithms for C++
multiple inheritance. They use a concrete low-level memory implemen-
tation and abstract over the concrete object layout in terms of a module.
Its operations compute offsets to the this pointer for fields and casts
and must satisfy 26 constraints. They prove that two layout algorithms
satisfy these constraints and that an implementation of a high-level heap
model similar to one by Wasserrab et al. [178] based on these operations

203

Chapter 4. Memory models

is sound. JinjaThreads has no low-level implementation of the heap, but
the heap module is sufficiently abstract that such an implementation
could be shown correct. Then, it would be interesting to show that the
low-level implementation is correct with respect to the current high-level
implementation.

4.4.3 Modular formalisations

Other theorem provers provide facilities for modular reasoning similar
to Isabelle, e.g., Coq [40] and PVS [141]. Since modular developments
are consequently ubiquituous, I only list works with a special emphasis
on modularity and programming languages. Wasserrab and Lohner
[176] decompose the definition and verification of program slicing
and checking for non-interference into locales. Like the heap module
and the single-threaded semantics in JinjaThreads, they use different
interpretations of the locales to easily share definitions and proofs.

Delaware et al. [45] take modularisation to another level. They
formalised FeatherweightJava [71] with various language extensions in
Coq in the style of product lines. Extensions are modelled as features that
can be plugged together to obtain different languages. To that end, they
equip all definitions with variation points, i.e., parameters of the modules.
Like in JinjaThreads, assumptions about the parameters separate the
modules such that the proofs are module-local and theorems compose.
While JinjaThreads employs this concept only for the semantics stack,
Delaware et al. focus on syntactic language extensions. It would be
interesting to see whether their rigorous approach scales to JinjaThreads
to separate the extensions of Chapters 3 and 4 from the previous ones.

204

Poetry is what gets lost in translation.

Robert Frost 5
Compiler

JinjaThreads’ compiler from source code to bytecode bridges the gap
between the two languages; its correctness proof shows that both fit
together.41 More precisely, in this chapter, I extend Jinja’s non-optimising
compiler [83, §5] to JinjaThreads and prove that it is

type-preserving It compiles well-formed source code into well-formed
bytecode (Theorem 5.14).

semantics-preserving If the source program terminates or diverges or
deadlocks, then so does the compiled program and vice versa (The-
orem 5.17). In any case, the intermediate output is the same and
all terminated threads have terminated in the same way (normally
or by throwing a certain exception). In particular, source code and
compiled code have the same set of legal executions under the JMM
(Theorem 5.18).

DRF-preserving The compiled program is correctly synchronised iff the
source code is (Corollary 5.4).

The proof for type preservation follows Jinja’s, because JinjaThreads
only extends the Jinja language. In contrast, concurrency changes the
semantics drastically and, therefore, pervades the proofs, too. The
challenges of semantic preservation are the following:

compiling synchronized blocks is nontrivial in three ways: First, the
source code semantics remembers in a sync (_) _ block the monitor
address whereas bytecode must cache it in a local register. Second,

41A preliminary version of this chapter has been published in [111].

Chapter 5. Compiler

unlike the bytecode instructions for monitors MEnter and MExit,
synchronized blocks enforce structured locking of monitors, i.e.,
unlocking never fails in source code. Hence, the compiler verification
must prove that MExit never fails in compiled programs. Third,
the monitor must also be unlocked when an exception abruptly
terminates the block. To that end, the compiler adds an exception
handler to ensure this.

small-step semantics As JinjaThreads only defines a small-step seman-
tics, I cannot verify the compiler against the big-step semantics as Jinja
does. This is much harder, because the verification must deal with
intermediate states and incomparable granularity of atomic steps.
Moreover, on the state representation level, the VM uses explicit call
stacks, which would be implicit in the big-step semantics. In contrast,
the small-step semantics dynamically inlines method calls, i.e., there
is no call stack at all.

interleavings, deadlocks and nontermination While sequential pro-
grams are typically deterministic, there are many ways in which
threads can interleave. The compiler verification must address this,
because nondeterminism precludes the standard approach of mod-
elling nontermination as “no behaviour”, and deadlocks are a new
form of behaviour. To separate these concerns from sequential chal-
lenges, I prove that the compiler preserves the behaviour of single
threads that is observable to other threads. Since this includes syn-
chronisation and heap access, I conveniently deal with interleavings
and deadlock on the abstract level of the interleaving framework,
which both source code and bytecode instantiate.

The JMM plays only a minor role in the verification, because the
compiler does not optimise. Consequently, DRF preservation follows
easily from semantic preservation, because it preserves the set of complete
interleavings (§5.1.4).

To deal with nondeterminism, I follow a bisimulation approach
(§5.1). As notion of bisimulation, I use delay bisimulation with explicit
divergence, which is sufficiently strong to preserve deadlocks and
nontermination and to support thread-local reasoning. Bisimulation also
addresses the granularity of atomic steps, because it allows the compiler
to introduce or eliminate internal computation steps that other threads
cannot observe.

206

J.redT J0.redT J#
1.redT J′1.redT jvmd.redT

bytecodeintermediate
language J1

source code compP1 compP2

m
≈0 0

m
≈1 1

m
≈1 1

m
≈jvm

J-red J0-red J#
1-red J′1-red jvm-execdt

≈0 0
t
≈1 1

t
≈jvm

red0 red#
1

red′1

exec-meth

exec-methd

e
≈0 1

e
≈jvm

Figure 5.1: Structure of the compiler (top row) and its verification. Each column
corresponds to a semantics or bisimulations (≈), the rows represent different
levels (m = multithreaded, t = single-threaded, e = expressions). The grey areas
group the semantics by the language that they belong to.

JinjaThreads’ compiler J2JVM operates in two stages: The first stage
compP1 allocates local variables to registers (§5.3), the second compP2
generates the bytecode instructions (§5.4). Figure 5.1 shows its structure
and the different semantics that the verification involves.

Although there is just one intermediate language J1, the verification
spans five different semantics: For source code, I first (§5.2) develop a
small-step semantics J0 that makes call stacks explicit like in bytecode
and prove it bisimilar to the source code semantics from §3.2.2. To
deal with the difficulty that MExit can fail, there are two semantics
for the intermediate language: J′1 allows sync (_) _ blocks to fail upon
unlocking, whereas J#

1 does not. For bytecode, I choose the defensive
VM because it gets stuck in ill-formed states. The aggressive VM would
carry on with undefined behaviour, which the source code semantics
cannot simulate.42

42Sometimes, the defensive VM gets stuck earlier than the source code semantics. To
avoid problems in the simulation proof, I take a detour via a semi-aggressive VM exec-meth
and exploit that the defensive and aggressive VM commute (Theorem 3.6). See §5.4.3 for

207

Chapter 5. Compiler

The main verification effort is on the level of expressions and state-
ments (last row in Figure 5.1), which contains all execution steps of a
single thread except for calls to and returns from non-native methods.
The bisimulation relations on this level are marked with “e”. The next
group of semantics lifts the expression level semantics to call stacks and
adds method calls and returns. This level (marked with “t”) corresponds
to the single-threaded semantics J-red and jvm-execd for source code and
bytecode, respectively. Finally, the multithreaded semantics models the
full behaviour for multithreaded programs. In all languages, this is the
interleaving semantics instantiated with the appropriate single-threaded
semantics. The legality constraints of the JMM, which reside even higher
in the stack of semantics, are not affected because the compiler preserves
the set of complete interleavings (§5.1.4).

5.1 Semantic preservation via bisimulation

In this section, I define semantic preservation (§5.1.1), introduce delay
bisimulations with explicit divergence as proof tool (§5.1.2), and show
how preservation for single threads extends to the interleaving semantics
(§5.1.3) and the JMM (§5.1.4).

5.1.1 Semantic preservation

Semantic preservation aims to show that semantic properties established
on the source code also hold for the target code and vice versa. Such
properties or specifications, e.g., a safety property like no null pointer
exceptions, are typically modelled as predicates on the traces of ob-
servable behaviour, i.e., the sequence of observable steps of a program
execution, or on the sets of possible traces (for nondeterministic pro-
grams). Thus, a correct compiler Comp must ensure that the (sets of)
traces of the source program P and of the compiled program Comp P are
equal.

Formally, Comp preserves the semantics of P iff the following holds:
Let s1 and s2 be the initial states for P and Comp P, respectively. For
every execution of P that starts in s1 and terminates in s′1, there must
be an execution of Comp P from s2 to s′2 such that both the executions’

details.

208

5.1. Semantic preservation via bisimulation

traces and the observable data in s′1 and s′2 (such as the result values or
exceptional termination) are the same. For every infinite execution of
P that starts in s1, Comp P has an infinite execution with the same trace
that starts in s2. Conversely, every execution of Comp P from s2 must be
matched that way by one of P from s1.

From a specification point of view, only the second direction is
essential. The interleaving semantics and the memory model only
specify the set of allowed behaviours, of which the implementation
Comp P may pick any (non-empty) subset. Still, I show both directions
for two reasons.

The main reason is that semantics properties on sets of traces such
as possibilistic security properties [118] require both directions. The
compiled code must not miss any observable nondeterministic choice,
neither may it introduce additional observable behaviour. Some atomic
high-level statements are translated into a sequence of simple instructions,
which allow more interleavings. A correct compiler must ensure that
these new interleavings do not lead to new behaviours. Conversely, some
constructs (like exception handling) are atomic in the compiled code, but
require many steps in the source code semantics. Although the compiled
code has consequently less interleavings, no observable behaviour must
be missed. Being part of the Quis Custodiet project [147], JinjaThreads
serves as the semantics basis for verifying concurrent information flow
control algorithms, e.g., for possibilistic non-interference [53]. Hence, to
transfer such results between source code and bytecode, it is essential
that verification covers both directions.

On the technical level, a second reason is that the interleaving frame-
work defines deadlocks in terms of the semantics (§3.3) whose preserva-
tion requires both directions, too.

Regarding schedulers, semantic preservation is possibilistic: The
source and compiled program may have different behaviour under a
fixed scheduler whose strategy depends on unobservable steps. Under a
round-robin scheduler, e.g., the number of unobservable steps between
two observable ones influences the interleaving. Since a compiler
changes this number, source code and bytecode may have different
behaviours under this scheduler. In this sense, semantic preservation
means: If there is a scheduler for P such that s1 produces trace t and
either terminates in s′1 or runs infinitely, then there is also a scheduler
for Comp P such that s2 produces trace t and either ends in s′2 or runs
infinitely, respectively.

209

Chapter 5. Compiler

5.1.2 Simulation properties

For semantic preservation, I must show trace equivalence for the source
code and the compiled code. To do this, it is standard to show bisimilarity.
The latter implies trace equivalence and can be shown by inspecting
individual steps of execution instead of whole program executions. For
the verification, I have chosen delay bisimilarity [1,119] augmented with
explicit divergence [27], because multithreaded states are delay bisimilar
with explicit divergence if each of their threads is so. As this notion is
transitive, I can decompose the compiler into smaller transformations
and verify each on its own. Transitivity ensures that the overall compiler
is correct, too.

In this setting, programs define labelled transition systems (LTS)
whose states are the program states and whose labels constitute the
observable behaviour. I write s tlB s′ for a single transition (move),
i.e., execution step in the small-step semantics, from state s to state
s′ with transition label tl. Both the semantics t ` _ −_→ _ of an indi-
vidual thread t and the interleaving semantics _ −_:_→ _ fit into this
format. A predicate τ-move s tl s′ determines whether the transition
s tlB s′ is unobservable to the outside world, i.e., other threads for
the single-threaded semantics and other processes and the user for the
multithreaded semantics. Such transitions are called silent or τ-moves.
Since their labels are irrelevant, I don’t keep track of them and write
s τB s′ for ∃tl. s tlB s′ ∧ τ-move s tl s′. Moreover, _ τB+ _ denotes the
transitive closure of _ τB _, and _ τB∗ _ the reflexive and transitive
closure. A state s can diverge (denoted s τB∞) iff an infinite sequence of
τ-moves starts in s. A visible move s tlI s′ consists of a finite sequence
of τ-moves followed by an observable transition, i.e., s tlI s′ abbreviates
∃s′′. s τB∗ s′′ ∧ s′′ tlB s′ ∧¬ τ-move s′′ tl s′.

In this chapter, I often have states, labels, reductions, and the like for
two or more programs and semantics. To keep the notation simple and
clear, I will usually index variables, arrows, etc. with numbers to assign
them to one of them, i.e., ′x1, s1, t ` _ −_→1 _, etc. for the first, ′x2, s2,
t ` _−_→2 _, etc. for the second and so on.

A delay bisimulation (with explicit divergence) consists of two binary
relations ≈ and ∼ on states and transition labels, respectively, that satisfy
the simulation diagrams in Figure 5.2:

210

5.1. Semantic preservation via bisimulation

s1

s2 s′2

s′1

≈

tl1
≈

tl2

∼

s1 s′1

s2 s′2

≈

τ

≈

τ ∗

s1

s2

∞

∞

≈

τ

τ

s1

s2

s′1

s′2

≈

tl2

≈

tl1
∼

s1 s′1

s2 s′2

≈

τ

≈

τ ∗ s1

s2

∞

∞

≈

τ

τ

(a) observable moves (b) τ-moves (c) divergence

Figure 5.2: Simulation diagrams for delay bisimulations with explicit divergence.
Solid lines denote assumptions, dashed lines conclusions.

(a) An observable move is simulated by a visible move such that ≈
relates the resulting states and ∼ relates the transition labels.

(b) A τ-move is simulated by a finite (possibly empty) sequence of
τ-moves such that ≈ relates the resulting states.

(c) ≈ relates only states of which either both or none can diverge.

Locale dbisim-div in Figure 5.3 formalises this notion.
Two programs, i.e., transition systems, are (delay) bisimilar (with

explicit divergence) iff there exists a delay bisimulation with explicit
divergence for them that relates their start states. A special case of delay
bisimulation is strong bisimulation [120] where every move is simulated
by exactly one move. When ∼ is obvious from the context, I sometimes
omit it and refer to ≈ as a delay bisimulation.

Note that condition (b) does not imply condition (c) because of the
classic infinite stuttering problem. Infinitely many τ-moves may be
simulated by no move at all.

Figure 5.4 shows two LTSs with states { s1, s′1, s′′1 } and { s2, s′2, s′′2 },
respectively, and a delay bisimulation with explicit divergence (≈,∼)
between them. The upper LTS with start state s1 can delay arbitrarily
long the decision whether to diverge or to produce the observable
transition with label tl1, whereas the lower LTS, whose start state is s2,
must decide immediately. Nevertheless, they are delay bisimilar with

211

Chapter 5. Compiler

type_synonym (′s, ′t) lts = ′s⇒ ′tl⇒ ′s⇒ bool
type_synonym (′s1, ′s2) bisim = ′s1⇒

′s2⇒ bool

locale dbisim-base =
fixes B1 :: (′s1, ′tl1) lts and B2 :: (′s2, ′tl2) lts
and ≈ :: (′s1, ′s2) bisim and ∼ :: (′tl1, ′tl2) bisim
and τ-move1 :: (′s1, ′tl1) lts and τ-move2 :: (′s2, ′tl2) lts

locale dbisim-div = dbisim-base +
assumes simulation1 : Js1 ≈ s2; s1

tl1B1 s′1; ¬ τ-move1 s1 tl1 s′1K

=⇒ ∃tl2 s′2. s2
tl2I2 s′2 ∧ s′1 ≈ s′2 ∧ tl1 ∼ tl2

and simulation2 : Js1 ≈ s2; s2
tl2B2 s′2; ¬ τ-move2 s2 tl2 s′2K

=⇒ ∃tl1 s′1. s1
tl1I1 s′1 ∧ s′1 ≈ s′2 ∧ tl1 ∼ tl2

and simulation-τ1 : Js1 ≈ s2; s1
τB1 s′1K =⇒ ∃s′2. s2

τB∗2 s′2 ∧ s′1 ≈ s′2
and simulation-τ2 : Js1 ≈ s2; s2

τB2 s′2K =⇒ ∃s′1. s1
τB∗1 s′1 ∧ s′1 ≈ s′2

and bisim-diverge : s1 ≈ s2 =⇒ s1
τB1∞←→ s2

τB2∞

locale dbisim-final = dbisim-base +
fixes final1 :: ′s1⇒ bool and final2 :: ′s2⇒ bool
assumes final1-simulation :

Js1 ≈ s2; final1 s1K =⇒ ∃s′2. s2
τB∗2 s′2 ∧ s1 ≈ s′2 ∧ final2 s′2

and final2-simulation :
Js1 ≈ s2; final2 s2K =⇒ ∃s′1. s1

τB∗1 s′1 ∧ s′1 ≈ s2 ∧ final1 s′1

Figure 5.3: Locale dbisim-div formalises the notion of delay bisimulations with
explicit divergence; locale dbisim-final defines preservation of final states

s1 s′1s′′1

s2 s′2s′′2

τ

tl1

τtl2

τ

τ

τ

≈ ≈≈ ∼

Figure 5.4: Example of a delay bisimulation with explicit divergence that is not
a well-founded delay bisimulation

212

5.1. Semantic preservation via bisimulation

s1

s2 s′2

where final1 s1

where final2 s′2

≈
≈

τ ∗

s1 s′1

s2

where final1 s′1

where final2 s2

≈
≈

τ ∗

Figure 5.5: Simulation diagrams for preservation of final states

explicit divergence because divergence (Figure 5.2c) is a trace property
and thus independent of the visited states.

A delay bisimulation (≈,∼) preserves final states iff whenever one
of the related states is final, then the other can reach a final state
via τ-moves. Locale dbisim-final in Figure 5.3 formalises this notion,
Figure 5.5 shows the simulation diagrams. Note that a delay bisim-
ulation with explicit divergence preserves final states if finality coin-
cides with being stuck. However, in general, not all stuck states are
final. For example, deadlocked states in the multithreaded semantics
are stuck, but not final – and so may type-incorrect states. Preser-
vation of final states ensures that compiled programs whose source
code terminates in a final state also terminate in a final state, and vice
versa.

Lemma 5.1 (Transitivity of delay bisimulations). Let (≈1,∼1) and (≈2,∼2)
be delay bisimulations with explicit divergence. Then, their composition
(≈1 � ≈2,∼1 � ∼2) (denoted (≈1,∼1)�B (≈2,∼2)) is also a delay bisimulation
– where � denotes relational composition, i.e., x R� S z for binary relations R
and S iff there is a y such that x R y and y S z.

If both (≈1,∼1) and (≈2,∼2) preserve final states, so does their composition.

Proof. Aceto et al. [1] showed this for delay bisimulations without explicit
divergence, i.e., the simulation diagrams in (a) and (b) of Figure 5.2. The
simulation diagrams in (c) are straightforward to prove.

For preservation of final states, suppose s1 ≈1 � ≈2 s3 and final1 s1.
Hence, s1 ≈1 s2 and s2 ≈2 s3 for some s2. By assumption, there is a s′2
with s2

τB∗2 s′2 and s1 ≈1 s′2 and final2 s′2. By induction on s2
τB∗2 s′2

with invariant s2 ≈2 s3, obtain s′3 such that s′2 ≈ s′3 and s3
τB∗3 s′3,

using simulation-τ1 in the inductive step. Since s′2 is final2, there is
an s′′3 with s′3

τB∗3 s′′3 and s′2 ≈ s′′3 and final3 s′′3 . Then, s3
τB∗3 s′′3 and

s1 ≈1 �B ≈2 s′′3 and final3 s′′3 by transitivity and definition, which

213

Chapter 5. Compiler

s1

s2 s′2

s′1

≈

tl1
≈

tl2

∼

s1 s′1

s2 s′2

≈

τ

≈

τ +

s1 s′1

s2

≈

τ

≈

(with s′1 ≺1 s1)

or

s1

s2

s′1

s′2

≈

tl2

≈

tl1
∼

s1 s′1

s2 s′2

≈

τ

≈

τ + s1

s2 s′2

≈

τ

≈

(with s′2 ≺2 s2)

or

(a) observable moves (b) τ-moves

Figure 5.6: Simulation diagrams for well-founded delay bisimulations

concludes this direction. The other direction that starts from final3 s3
follows by symmetry.43 �

Explicit divergence violates the approach of inspecting individual
steps of execution, because divergence consists of infinitely many steps.
Hence, it is difficult to prove delay bisimilarity with explicit divergence
directly. Instead, I adapt Leroy’s notion of star simulation [97] as follows:

Let≺1 and≺2 be two well-founded binary relations on states. (≈,∼) is
a well-founded delay bisimulation iff it satisfies the simulation diagrams
in Figure 5.6:

(a) Observable moves are simulated as in delay bisimulations with
explicit divergence.

(b) A τ-move si
τBi s′i (i ∈ { 1, 2 }) is either simulated by a finite non-

empty sequence of τ-moves, or by no move at all. In the latter case,
the τ-move being simulated must descend in ≺i, i.e., s′i ≺i si.

Since ≺1 and ≺2 are well-founded, i.e., there are no infinitely decreasing
chains, the infinite stuttering problem cannot occur. Proving well-
founded delay bisimulation is easier than delay bisimulation with explicit
divergence because all assumptions only involve a single transition.

43Proofs by symmetry in this chapter are not only a matter of presentation. I appeal to
symmetry also in the Isabelle formalisation. This way, I had to write detailed proofs for
only one direction.

214

5.1. Semantic preservation via bisimulation

The next lemma shows that well-founded delay bisimulation is at
least as strong as delay bisimulation with explicit divergence, i.e., I can
use the former whenever I need the latter.

Lemma 5.2. Let (≈,∼) be a well-founded delay bisimulation for ≺1 and ≺2.
Then, (≈,∼) is a delay bisimulation with explicit divergence.

Proof. Since Figure 5.2a and Figure 5.6a are identical and Figure 5.6b
trivially implies Figure 5.2b, only the simulation diagrams for divergence
(Figure 5.2c) are interesting. The latter directly follow by coinduction
on si

τBi∞ (i ∈ { 1, 2 }) with s1 ≈ s2 and s3−i
τB3−i∞ as coinduction

invariant using the strengthened coinduction rule (see §1.4.3) with ≺3−i
as well-founded order. �

The converse does not hold, as Figure 5.4 shows.44 The relations
≈ and ∼ as shown form a delay bisimulation with explicit divergence
and relate the start states s1 and s2. However, there is no well-founded
delay bisimulation (≈′,∼′) that relates states s1 and s2, because s2 cannot
simulate the τ-move s1

τB1 s1 according to Figure 5.6b. Clearly, ≈′

cannot relate s1 and s′2, because s1 can produce the observable label tl1
and s′2 cannot. This excludes the possibility on the left of Figure 5.6b.
However, the right one is not feasible, either, as s1 ≺1 s1 would violate
well-foundedness of ≺1.

The advantage of delay bisimulation with explicit divergence over
well-founded delay bisimulation is that only the former is closed under
composition (Lemma 5.1), but not the latter. Figure 5.7 shows three
LTSs (solid, dashed, and dotted arrows) and two well-founded delay
bisimulations (dashed and dotted lines) whose composition is no well-
founded delay bisimulation, because there is no suitable well-founded
relation ≺′1 for the solid LTS. Suppose ≺′1 were such. Then, for all i > 0,
ui can only simulate the τ-move s2i−1

τB s2i by staying at ui, hence
s2i ≺

′

1 s2i−1 by Figure 5.6b. But for all j > 0, u′j+1 is related to s2 j whose τ-
move to s2 j+1 it can only simulate by staying at u′j+1. Hence, s2 j+1 ≺

′

1 s2 j

by Figure 5.6b. Therefore, si+1 ≺
′

1 si for all i, i.e., ≺′1 contains an infinite
descending chain, which contradicts well-foundedness.

This example demonstrates only that well-founded delay bisimu-
lations do not compose. It does not rule out that well-founded delay

44This example was found by Nitpick [30], a counter example generator for Isabelle/HOL,
after several failed attempts of mine to prove equivalence (see §7.2).

215

Chapter 5. Compiler

s1 s2 s3 s4 s5 s6 · · ·

t1 t2 t3 t4 t5 t6 · · ·

t′1 t′2 t′3 t′4 · · ·

u1 u2 u3 · · ·

u′1 u′2 u′3 u′4 · · ·

· · ·

· · ·

· · ·

· · ·

�1 �1 �1

�2 �2 �2

Figure 5.7: Three transition systems (solid, dashed, and dotted arrows) and two
well-founded delay bisimulations (dashed and dotted lines) whose composition
is no well-founded delay bisimulation for the solid and dotted transition systems.
All transitions are τ-moves.

bisimilarity is transitive, because there may be delay bisimilarity relations
other than the composition �B for which a well-founded relation exists.
I have not attempted to prove this, because directly composing bisim-
ulation relations helps in breaking down the ultimate correctness result.

For this chapter, an execution ξ from a state s consists of the labels
of a possibly infinite sequence of observable moves and – if these are
only finitely many – the terminal state bsc or the special symbol None
(written ∞→) for divergence. Formally, it is a possibly infinite list of labels
where the constructor for the empty list carries a symbol, i.e., elements
of the following codatatype:45

codatatype (′a, ′b) tllist = []′b |
′a · (′a, ′b) tllist

type_synonym (′s, ′tl) execution = (′tl, ′s option) tllist

45Since Isabelle/HOL has no built-in codatatype support, I construct this type with
the quotient package [77] as the quotient of ′a llist × ′b through the equivalence relation{
((xs, b), (ys, b′)). xs = ys∧ (lfinite ys −→ b = b′)

}
where lfinite characterises finite lists.

216

5.1. Semantic preservation via bisimulation

�terminate :
s τB∗ s′ ∀tl s′′. ¬ s′ tlB s′′

s � []bs′c
========================= �diverge :

s τB∞

s � []∞
→

======

�step :
s tlI s′ s′ � ξ

s � tl · ξ
===============

Figure 5.8: Executions as traces of observable moves

Like for possibly infinite lists (see Footnote 30), I do not distinguish syn-
tactically such lists from ordinary lists, except for the additional symbol
of the empty list constructor. An execution ξ terminates in the state s
iff ξ is finite and the empty list constructor in ξ carries the symbol bsc.

The predicate s � ξ characterises all executions ξ that start in s
(Figure 5.8). If s can reach via τ-moves a stuck state s′, then an execution
terminates in s′ (�terminate). If an infinite sequence of τ-moves starts
in s, then an execution diverges (�diverge). If s can do a visible move
with transition label tl to some state s′, then s’s executions include s′’s
prepended with tl (�step).

Let [≈, ∼] denote the point-wise extension of (≈,∼) to executions,
i.e, ∼ holds point-wise for all list elements and ≈ for the terminal states,
if any. In delay bisimilar transition systems with explicit divergence,
related states have bisimilar executions, i.e., delay bisimulations imply
semantic preservation.

Theorem 5.1 (Semantic preservation). Let (≈,∼) be a delay bisimulation
with explicit divergence for the LTSs (B1, τ-move1) and (B2, τ-move2) and
s1 ≈ s2. Then, the following holds:

(i) Whenever s1 �1 ξ1, then s2 �2 ξ2 for some ξ2 such that ξ1 [≈, ∼] ξ2.

(ii) Whenever s2 �2 ξ2, then s1 �1 ξ1 for some ξ1 such that ξ1 [≈, ∼] ξ2.

Proof sketch. It suffices to prove (i) because (ii) follows from (i) by symme-
try. Since ξ2 is existentially quantified in (i), I must first construct it explic-
itly by corecursion from s1 and ξ1 before showing s2 �2 ξ2 and ξ1 [≈, ∼]
ξ2 by coinduction. However, ξ1 is only a trace of transition labels without
the intermediate states. Since trace properties are strictly weaker than
bisimulation properties, it is too weak to be used as coinduction invariant.

217

Chapter 5. Compiler

Therefore, I define a variant�′ of� where�step not only prepends the
transition label, but also remembers the intermediate state, i.e.,

�′step :
s tlI s′ s′ �′ ξ

s �′ (tl, s′) · ξ
================

Coinduction (with invariant s � ξ1) shows that there is a ξ′1 such that
s �′1 ξ

′

1 and ξ is the projection of ξ′1 on the transition labels. Construct
ξ′2 = simulate s2 ξ

′

1 by corecursion as follows:

simulate s2 []⌊s′1⌋ =
(let s′2 = εs′2. s2

τB∗2 s′2 ∧ (∀tl2 s′′2 . ¬ s′2
tl2B2 s′′2)∧ s′1 ≈ s′2 in []⌊s′2⌋)

simulate s2 []∞
→

= []∞
→

simulate s2 ((tl1, s′1) · ξ1) =

(let (tl2, s′2) = ε(tl2, s′2). s2
tl2I2 s′2 ∧ s′1 ≈ s′2 ∧ tl1 ∼ tl2

in (tl2, s′2) · simulate s′2 ξ1)

Then, I prove by coinduction with invariant s1 ≈ s2 and s1 �
′ ξ′1 that

s �′2 ξ
′

2 and that ξ′1 and ξ′2 are related point-wise by ≈ and ∼. Hence,
choose ξ2 to be the projection of ξ′2 to transition labels. �

Theorem 5.2 (Preservation of final states). Let (≈,∼) preserve final states.
Suppose s1 �1 ξ1 and s2 �2 ξ2 such that ξ1 [≈, ∼] ξ2. Then, ξ1 terminates
in a final1-state iff ξ2 terminates in a final2-state.

5.1.3 Lifting simulations in the interleaving framework

The delay bisimulations for showing semantic preservation always relate
multithreaded states. As I use the framework for interleaving semantics
at all compilation stages, I uniformly lift delay bisimulations for single
threads to multithreaded states. Thus, to show delay bisimilarity on
the multithreaded level, it suffices to show delay bisimilarity for single
threads plus some constraints that the lifting imposes.

A reduction in the multithreaded semantics is a τ-move (predicated by
mτ-move) iff it originates from a τ-move of the single-threaded semantics
via Normal. In particular, reacquisition of temporarily released locks

218

5.1. Semantic preservation via bisimulation

(rule Acquire) is no τ-move, because another thread can observe the
lock acquisition by no longer being able to acquire the lock.

First, I lift a relation on thread-local states and the shared heap to
multithreaded states s1 and s2 as follows: Let t ` (x1, h1) ≈ (x2, h2)

denote a bisimulation relation for thread t and x1
w
≈ x2 be a relation of

thread-local states for threads in wait sets. This induces the following
relation s1 ≈m s2:

(i) Locks, wait sets and interrupts are equal in s1 and s2, i.e., locks s1 =
locks s2, wset s1 = wset s2, and intrs s1 = intrs s2.

(ii) All threads in s1 also exist in s2 and vice versa, i.e., dom (thr s1) =
dom (thr s2).

(iii) For every thread in s1 and s2, say thr s1 t =
⌊
(x1, ln1)

⌋
and thr s2 t =⌊

(x2, ln2)
⌋
, the temporarily released locks are the same (ln1 = ln2),

the thread-local states related (t ` (x1, shr s1) ≈ (x2, shr s2)), and if
t’s wait set status is not None, x1

w
≈ x2.

(iv) All waiting threads exist, i.e., dom (wset s1) ⊆ dom (thr s1).

(v) There are only finitely many threads, i.e., finite (dom (thr s1)).

Let me now briefly review the constraints. Since threads can observe
the status of locks, wait sets and interrupts and the existence of threads,
equality in (i) and (ii) ensures that ≈m-related states are indistinguishable
to any of their threads. Constraint (iii) imposes the thread-local bisimu-
lation on all thread states. The last condition x1

w
≈ x2 imposes stronger

simulation properties on threads in wait sets, because the interleaving se-
mantics does not allow a thread to execute τ-moves between its removal
from the wait set and the (observable) reduction of processing the re-
moval – with BTAs Notified and WokenUp, respectively. Constraint (iv)
ensures that spawned threads are not in a wait set, i.e., their thread-local
states need not satisfy the stronger

w
≈ relation. Finally, the last constraint

(v) ensures that ≈m preserves divergence.
To see that (v) is necessary, consider, e.g., two infinite pools of threads.

In one of them, each thread only does a single τ-move x1
τB1 x′1 before it

terminates. In the other, all threads have terminated in state x2. For the
(well-founded) delay bisimulation between single threads that relates
both x1 and x′1 with x2, constraints (i) to (iv) are satisfied, but the first

219

Chapter 5. Compiler

type_synonym (′l, ′t, ′x, ′h, ′w, ′o) τ-moves =
′x× ′h⇒ (′l, ′t, ′x, ′h, ′w, ′o) thread-action⇒ ′x× ′h⇒ bool

locale τ-multithreaded = multithreaded +
fixes τ-move :: (′l, ′t, ′x, ′h, ′w, ′o) τ-moves
assumes τ-ta : τ-move (x, h) ta (x′, h′) =⇒ ta = LM
and τ-heap : Jt ` (x, h) −ta→(x′, h′); τ-move (x, h) ta (x′, h′)K =⇒ h′= h

Figure 5.9: Locale τ-multithreaded enforces that τ-moves are unobservable

thread pool can diverge (by executing one thread at a time), whereas the
second is stuck. Hence, without constraint (v), ≈m would not be a delay
bisimulation with explicit divergence.

The bisimulation _ ` _ ≈ _ for single threads also yields the relation
on the thread actions as transition labels: ` ta1 ∼ ta2 denotes that ta1 and
ta2 are equal except for the parameters x1, h1 and x2, h2 to Spawn t BTAs
which must satisfy t ` (x1, h1) ≈ (x2, h2), i.e, ta1 and ta2 may only differ
in the initial states of spawned threads, which must be bisimilar.46

The above definition for ≈m is sensible. If (t ` _ ≈ _, ` _ ∼ _) is a
delay bisimulation with explicit divergence, then so is ≈m. However,
this requires additional assumptions that the communication channels
through thread actions are respected; Figures 5.9 and 5.10 collect them.

Most importantly, a thread must not be able to observe the τ-moves
of other threads. To that end, I require that τ-moves neither execute
any BTAs, nor change the shared heap, which the locale τ-multithreaded
formalises in Figure 5.9.

Second, since bisimilarity of threads comprises the shared heap, I
require that heap changes preserve _ ` _ ≈ _, i.e., the heap changes by
one thread must not break bisimilarity of other threads. Assumption
heap-change-preserve of locale m-dbisim-div captures this formally: Let
t ` (x1, h1) ≈ (x2, h2) be two bisimilar states with visible moves to
(x′1, h′1) and (x′2, h′2), respectively, such that t ` (x′1, h′1) ≈ (x′2, h′2), i.e., the
visible moves simulate each other. Then, for any thread t′, whenever
t′ ` (x∗1, h1) ≈ (x∗2, h2) holds for the old heaps h1 and h2, t′ ` (x∗1, h′1) ≈
(x∗2, h′2) must still hold for the updated heaps h′1 and h′2.

46This is the second place (besides lifting thread-local well-formedness conditons in
§3.1.4) where storing the current heap in the BTA Spawn simplifies the definition, because
t ` _ ≈ _ relates pairs of thread-local states and the current heaps.

220

5.1. Semantic preservation via bisimulation

locale m-dbisim-div =
r1 : τ-multithreaded final1 r1 acq-events τ-move1 +
r2 : τ-multithreaded final2 r2 acq-events τ-move2 +

fixes _ ` _ ≈ _ :: ′t⇒ (′x1 ×
′h1, ′x2 ×

′h2) bisim and
w
≈ :: (′x1, ′x2) bisim

assumes dbisim-div (r1 t) (r2 t) (t ` _ ≈ _) (` _ ∼ _) τ-move1 τ-move2
and dbisim-final (r1 t) (r2 t) (t ` _ ≈ _) (` _ ∼ _) τ-move1 τ-move2

(λ(x1, h1). final1 x1) (λ(x2, h2). final2 x2)
and heap-change-preserve :

Jt ` (x1, h1) ≈ (x2, h2); t ` (x′1, h′1) ≈ (x′2, h′2); ` tl1 ∼ tl2;

t ` (x1, h1)
tl1I1 (x′1, h′1); t ` (x2, h2)

tl2I2 (x′2, h′2);
t′ ` (x∗1, h1) ≈ (x∗2, h2)K =⇒ t′ ` (x∗1, h′1) ≈ (x∗2, h′2)

and
w
≈I :

Jt ` (x1, h1) ≈ (x2, h2); t ` (x′1, h′1) ≈ (x′2, h′2); ` tl1 ∼ tl2;

t ` (x1, h1)
tl1I1 (x′1, h′1); t ` (x2, h2)

tl2I2 (x′2, h′2);
Suspend w ∈ set〈ta1〉w; Suspend w ∈ set〈ta2〉wK
=⇒ (x′1, h′1)

w
≈ (x′2, h′2)

and simulation-
w
≈1 :

Jt ` (x1, h1) ≈ (x2, h2); x1
w
≈ x2; t ` (x1, h1) −ta1→1 (x′1, h′1);

Notified ∈ set 〈ta1〉w ∨WokenUp ∈ set 〈ta1〉wK
=⇒ ∃ta2 x′2 h′2. t ` (x2, h2) −ta2→2 (x′2, h′2)∧

t ` (x′1, h′1) ≈ (x′2, h′2)∧ ` ta1 ∼ ta2

and simulation-
w
≈2 :

Jt ` (x1, h1) ≈ (x2, h2); x1
w
≈ x2; t ` (x2, h2) −ta2→2 (x′2, h′2);

Notified ∈ set 〈ta2〉w ∨WokenUp ∈ set 〈ta2〉wK
=⇒ ∃ta1 x′1 h′1. t ` (x1, h1) −ta1→1 (x′1, h′1)∧

t ` (x′1, h′1) ≈ (x′2, h′2)∧ ` ta1 ∼ ta2
and Ex-final-inv : (∃x1. final1 x1)←→ (∃x2. final2 x2)

Figure 5.10: Locale m-dbisim-div collects the necessary assumptions for ≈m
being a delay bisimulation with explicit divergence

221

Chapter 5. Compiler

Third, t ` _ ≈ _ must preserve final states for all t. This ensures that
if a thread t in state s1 successfully joins on another thread t′ in one state
(recall that successfulness is determined by t′’s local state being final),
then any ≈m-bisimilar state s2 can reach via τ-moves a bisimilar state s′2
in which t′’s local state is also final, i.e., t’s join suceeds in s′2, too.

Forth, the wait-notify mechanism requires that when a thread has
been removed from its wait set, its very next step processes the removal.
Therefore, ≈m enforces that threads in wait sets are related in

w
≈. The

next three assumptions connect
w
≈ with the semantics. Assumption

w
≈I

expresses that whenever a thread suspends itself to a wait set,
w
≈must

relate the resulting states. Moreover (assumptions simulation-
w
≈1 and

simulation-
w
≈2),

w
≈ is a “one-step” strong bisimulation for processing the

removal from the wait set, i.e., whenever one of the related states can
process a removal, so can the other (without any intervening τ-moves),
but only t ` _ ≈ _ needs to relate resulting states.

Last, for technical reasons, m-dbisim-div requires that final states
exist for either both single-threaded semantics or none. I discuss this
assumption in more detail in Footnote 47 when I prove preservation for
deadlocks (Theorem 5.4).

Under these assumptions, ≈m is a delay bisimulation with explicit
divergence that preserves final states.

Theorem 5.3. Under the assumptions of locale m-dbisim-div, (≈m,∼m) is a
delay bisimulation for r1.redT and r2.redT that preserves final states. Formally:

(i) dbisim-div r1.redT r2.redT ≈m ∼m r1.mτ-move r2.mτ-move
(ii) dbisim-final r1.redT r2.redT ≈m ∼m r1.mτ-move r2.mτ-move

r1.mfinal r2.mfinal

Proof. I show the simulation diagrams from Figures 5.2 and 5.5 for (i)
and (ii), respectively. As before, it suffices to show just one direction of
each diagram, because the other follows by symmetry.

For an observable move s1 −t:ta1→1 s′1 and ≈m-bisimilar state s2 (Fig-
ure 5.2a), if the move originates from Acquire, s2 can directly simulate it
because ≈m ensures that the lock states of and t’s temporarily released
locks and wait set status in s1 and s2 are equal.

Otherwise (Normal), it originates from some observable move of
t’s semantics, say t ` (x1, shr s1) −ta1→1 (x′1, shr s′1). Since s1 ≈m s2, t
exists in s2 with local state x2 such that t ` (x1, shr s1) ≈ (x2, shr s2)

222

5.1. Semantic preservation via bisimulation

and – if t’s wait set status is not None – x1
w
≈ x2. If t’s wait set status

is None, bisimilarity of the single threads yields a visible move t `
(x2, shr s2)

ta2I2 (x′2, h′2) such that t ` (x′1, shr s′1) ≈ (x′2, h′2) and ` ta1 ∼
ta2. Unfortunately, this does not directly translate into a visible move
of the interleaving semantics, because ta2’s preconditions need not be
met in s2. In particular, if ta2 joins on a thread t′, i.e., Join t′ ∈ 〈ta2〉c, t′

may be final in s1, but need not be final in s2. However, since t′ ` _ ≈ _
preserves final states, t′ can silently reduce to a final state.

Hence, the simulating visible move consists of

• t’s τ-moves,
• the silent reductions to final states of all threads ta2 joins on, and
• t’s observable move.

Proving that ≈m relates the resulting states s′1 and s′2 falls in five parts.
First, the locks, wait sets, interrupts and domains of the thread pool are
equal because τ-moves do not change them and the observable moves
have identical thread actions except for the initial states of spawned
threads. Second, t’s thread-local states x′1 and x′2 are related as required

– assumption
w
≈I establishes x′1

w
≈ x′2 if wset s′1 t , None, which can

only occur if ta1 and ta2 contain a Suspend BTA. Third, ` ta1 ∼ ta2
guarantees that local states of newly spawned threads are related –
dom (wset s1) ⊆ dom(thr s1) ensures that their wait set status is None,
i.e., their local states need not be related in

w
≈. Forth, thanks to assumption

heap-change-preserve, all other threads remain bisimilar. Fifth, finiteness
of the thread pool is preserved because only finitely many threads can
be spawned in a single step. The case for wset s1 t , None is analogous
except that assumption simulation-

w
≈1 yields the simulating move and t

does no τ-moves before the observable move.
Simulating a τ-move (Figure 5.2b) is easy. It must originate from

a τ-move in the single-threaded semantics, so there is a simulating
sequence of τ-moves. Since none of them generates any thread action,
Normal naturally injects them into the interleaving semantics.

To prove preservation of divergence, note that ≈m ensures that there
are only finitely many threads. Induction on this finite set yields that the
interleaving semantics can only diverge if one of its threads can diverge.
Conversely, it obviously can diverge if one of the threads can (by coin-
duction). Putting these arguments together, ≈m preserves divergence.

223

Chapter 5. Compiler

For preservation of final states, remember that all threads in an mfinal
state are final. So suppose r1.mfinal s1 and s1 ≈m s2. By induction on
the (finite) set of threads in s1, there is a state s′2 such that s2

τB∗2 s′2 and
s1 ≈m s′2 and r2.mfinal s′2. In the inductive step, the next thread t can
silently reduce to an appropriate final state because t ` _ ≈ _ preserves
final states. I combine them with the silent moves from the induction
hypothesis to obtain the desired reductions. �

The proof of Theorem 5.3 motivates why I chose delay bisimulation
instead of more common notions of bisimulation like weak bisimulation
by Milner [120]. Milner allows observable moves to be simulated by
a finite sequence of τ-moves, the observable move, and another finite
sequence of τ-moves. However, there is no analogue of Theorem 5.3 for
weak bisimulations, because the observable transition might suspend
itself to a wait set, after which the interleaving semantics does not allow
any additional τ-moves.

Theorem 5.4 (Preservation of deadlocks). Under the assumptions of
locale m-dbisim-div, ≈m preserves deadlocks. Let s1 ≈m s2. If t ∈
r1.deadlocked s1, then s2 can reduce via τ-moves to some s′2 such that s1 ≈m s′2
and t ∈ r2.deadlocked s′2. Conversely, if t ∈ r2.deadlocked s2, then s1 can
reduce via τ-moves to some s′1 such that s′1 ≈m s2 and t ∈ r1.deadlocked s′1.

Proof. By symmetry, it suffices to prove only one direction. So suppose
t ∈ r1.deadlocked s1. Since _ ` _ ≈ _ preserves final states, there is an
s∗2 which is reachable via τ-moves from s2 such that s1 ≈m s∗2 and all
final1 threads in s1 are final2 in s∗2, too (by induction on the finite set
of threads). Since _ ` _ ≈ _ preserves divergence, a similar induction
shows that there is an s′2 which is reachable via τ-moves from s∗2 such
that s1 ≈m s′2 and all threads in s1 that cannot do any τ-move cannot do
any in s′2 either.

Then, I prove t ∈ r2.deadlocked s′2 by coinduction with invariant
t ∈ r1.deadlocked s1. In the coinductive step, I show by case analysis of
t ∈ r1.deadlocked s1 that each case suffices to prove the corresponding
case for t ∈ r2.deadlocked s′2.

For Dactive, this follows from the simulation for observable moves.
Since t is deadlocked in s′1, it cannot do any τ-moves and, therefore,
neither can it in s′2. Hence, the visible move that simulates a move of t
can only consist of the observable move, but no τ-moves. Therefore, ≈m

224

5.1. Semantic preservation via bisimulation

preserves t ` (_, shr s) o and t ` (_, shr s) _ o.47 Since final threads in s1 are
final in s2, too, and locks and wait sets are equal, must-wait is preserved,
too. This concludes this case.

For the cases Dacquire and Dwait, preservation of must-wait and
all-final-except is straightforward by the choice of s′2. Hence, they follow
easily. �

5.1.4 Semantic preservation for the Java memory model

Concerning semantic preservation for the JMM, the JLS only specifies
that “an implementation is free to produce any code it likes, as long as all
resulting executions of a program produce a result that can be predicted
by the memory model” [56, §17.4], i.e., it takes the specification point of
view (§5.1.1).

My bisimulation approach for semantic preservation ensures that
both the source program and the compiled code have the same set of
traces (Theorem 5.1). Since legality of executions only depends on the
set of traces, a semantics-preserving compiler is correct for the JMM,
too. However, the JMM and semantic preservation refer to different
definitions of traces. The former does not distinguish between observable
and silent moves, but includes all of them, whereas the latter only consists
of observable moves. Fortunately, since τ-moves produce no events by
assumption τ-ta in Figure 5.9, concatenating all events as in Equation 4.2
yields the same set of complete interleavings.

Lemma 5.3. s ⇓ E iff E is of the form concat (map events E′) such that
s � E′.

Corollary 5.1. Two programs that are delay bisimilar with explicit divergence
have the same set of legal executions.

Since the JMM formalisation adds thread start and finish events to
the single-threaded semantics (layer 4 in Figure 4.10) by a semantics

47Remember that t ` (x, h) o expresses that t with local state x can reduce with a thread
action ta which is not contradictory in itself. This is where the technical assumption
Ex-final-inv from Figure 5.10 becomes relevant for preservation. It excludes the case in
which some x1 satisfies final1, but final2 is unsatisfiable. Hence, _ ` _ o1 allows Join BTAs in
the underlying execution, but _ ` _ o2 does not, which compromises preservation. Note that
the other assumptions do not exclude this case. Only preservation of final states involves
final, but if x1 is unreachable, _ ` _ ≈ _ need not relate x1 to any x2, i.e., preservation of
final states would be trivially satisfied.

225

Chapter 5. Compiler

transformer, I lift τ-moves and delay bisimulations in the same way. For
the former, sf.τ-move adapts τ-move to the changes in the thread-local
states, but adds no additional τ-moves (assumption τ-ta in Figure 5.9).
In particular, the reductions for start and final events are observable,
because (i) other threads can observe through Join BTAs that the thread
has terminated, and (ii) the interleaving framework does not allow events
for τ-moves.

τ-move (x, h) ta (x′, h′)

sf.τ-move ((Running, x), h) (pair-Pre-Start ta) ((Running, x′), h′)

The lifted bisimulation t ` _ ≈sf _ is defined as follows:

t ` ((s1, x1), h1) ≈sf ((s2, x2), h2)←→
s1 = s2 ∧ t ` (x1, h1) ≈ (x2, h2)∧
(s2 = Finished −→ final1 x1 ∧ final2 x2)

Similarly,
w
≈sf transforms

w
≈:

x1
w
≈ x2

(Running, x1)
w
≈sf (Running, x2)

Now, I can lift t ` _ ≈sf _ and
w
≈sf to multithreaded bisimilations just

like t ` _ ≈ _ and
w
≈.

Lemma 5.4.

m-dbisim-div final1 r1 acq-events τ-move1

final2 r2 acq-events τ-move2 (_ ` _ ≈ _)
w
≈

m-dbisim-div sf.final1 sf.r1 sf.acq-events τ-move1

sf.final2 sf.r2 sf.acq-events τ-move2 (_ ` _ ≈sf _)
w
≈sf

5.2 Explicit call stacks for source code

The verification of both compiler stages requires an explicit notion of
call stacks in the states themselves. The small-step semantics for source
code, however, dynamically inlines method calls (Rcall). Hence, I first

226

5.2. Explicit call stacks for source code

define an alternative state representation and small-step semantics J0
with explicit call stacks for the source code language (§5.2.1). Note that
this does not affect the program declarations, i.e., the input language
itself. Second, after having defined the observable transitions, I prove
that the semantics with call stacks is delay bisimilar to the semantics
without call stacks (§5.2.2).

5.2.1 State and semantics

On the call-stack level, local stores are irrelevant for the semantics; any
free variable can be bound by an additional block. The rule for method
calls Rcall and the start state J-start already do so for the this pointer
and the parameters. Hence, the thread-local state in J0 consists only of a
(non-empty) list of expressions, one for each method on the call stack.
To encode non-emptiness in the HOL type, I model the local state as a
pair of the head and tail of the call stack.

There are now three levels for the semantics. The expression level
deals with the execution of expressions, i.e. method bodies. The call-
stack level lifts the semantics for expressions to call stacks and handles
calls and returns. This is also the semantics for a single thread. The
interleaving semantics lifts this to concurrent programs as before.

To separate method calls and returns from the rest of the semantics,
I introduce two auxiliary functions. First, the partial function call e
returns

⌊
(a, M, vs)

⌋
whenever e is about to call the method M on address

a with parameter values vs, and it is None in all other cases. I say that
e pauses at the call (a, M, vs) iff call e =

⌊
(a, M, vs)

⌋
, and e pauses at a

call iff call e , None. Figure 5.11 shows the definition for call where
is-addr e predicates that e is of the form addr a and is-Vals es denotes
that es consists only of values, i.e., es = map Val vs for some vs. Note
that call traverses the abstract syntax tree in exactly the same way as the
small-step semantics _, _ ` 〈_, _〉 −_→〈_, _〉 does. When it finds a call
of the form addr a.M(map Val vs), it returns

⌊
(a, M, vs)

⌋
; otherwise, it

descends into the subexpression that the small-step semantics evaluates
next if there is any, else it returns None.

The second function inline e0 e follows the same recursion pattern
(Figure 5.12). If e pauses at a call, inline e0 e replaces this call with e0.
Otherwise, inline e0 e leaves e unchanged. Hence, inline mimicks the
small-step semantics’ dynamic inlining of method calls.

227

Chapter 5. Compiler

call (new C) = None
call (new T[e]) = call e
call (e instanceof T) = call e
call (Cast T e) = call e
call (Val v) = None
call (e1 «bop» e2) = (if is-Val e1 then call e2 else call e1)
call (Var V) = None
call (V B e) = call e
call (e1[e2]) = (if is-Val e1 then call e2 else call e1)
call (e1[e2] B e3) =

(if is-Val e1 then (if is-Val e2 then call e3 else call e2) else call e1)
call (e.length) = call e
call (e.F{D}) = call e
call (e1.F{D} B e2) = (if is-Val e1 then call e2 else call e1)
call (e.M(es)) =

(if is-Val e then
(if is-Vals es∧ is-addr e
then

⌊
(ιa. e = addr a, M, ιvs. es = map Val vs)

⌋
else calls es)

else call e)
call {V : T = vo; e} = call e
call (e1; ; e2) = call e1
call (if (e) e1 else e2) = call e
call (while (e1) e2) = None
call (throw e) = call e
call (try e1 catch(C V) e2) = call e1
call (sync (e1) e2) = call e1
call (insync (a) e) = call e
calls [] = None
calls (e · es) = (if is-Val e then call e else calls es)

no-call P h e =
(∀a M vs. call e =

⌊
(a, M, vs)

⌋
−→

(∃hT Ts Tr D. typeof-addr h a = bhTc ∧
P ` class-of ′hT sees M:Ts→Tr = Native in D))

Figure 5.11: The partial function call computes which method e is about to call,
if any; no-call P h e predicates that e is not about to call a non-native method.

228

5.2. Explicit call stacks for source code

inline e0 (new C) = new C
inline e0 (new T[e]) = new T[inline e0 e]
inline e0 (e instanceof T) = (inline e0 e) instanceof T
inline e0 (Cast T e) = Cast t (inline e0 e)
inline e0 (Val v) = Val v
inline e0 (e1 «bop» e2) =

(if is-Val e1 then e1 «bop» (inline e0 e2) else (inline e0 e1) «bop» e2)
inline e0 (Var V) = Var V
inline e0 (V B e) = V B inline e0 e
inline e0 (e1[e2]) =

(if is-Val e1 then e1[inline e0 e2] else (inline e0 e1)[e2])
inline e0 (e1[e2] B e3) =

(if is-Val e1 then
(if is-Val e2 then e1[e2] B inline e0 e3 else e1[inline e0 e2] B e3)

else (inline e0 e1)[e2] B e3)
inline e0 (e.length) = (inline e0 e).length
inline e0 (e.F{D}) = (inline e0 e).F{D}
inline e0 (e1.F{D} B e2) =

(if is-Val e1 then e1.F{D} B inline e0 e2 else (inline e0 e1).F{D} B e2)
inline e0 (e.M(es)) =

(if is-Val e then
(if is-Vals es∧ is-addr e then e0 else e.M(inlines e0 es))

else (inline e0 e).M(es))
inline e0 {V : T = vo; e} = {V : T = vo; inline e0 e}
inline e0 (e1; ; e2) = (inline e0 e1); ; e2
inline e0 (if (e) e1 else e2) = if (inline e0 e) e1 else e2
inline e0 (while (e1) e2) = while (e1) e2
inline e0 (throw e) = throw (inline e0 e)
inline e0 (try e1 catch(C V) e2) = try inline e0 e1 catch(C V) e2
inline e0 (sync (e1) e2) = sync (inline e0 e1) e2
inline e0 (insync (a) e) = insync (a) (inline e0 e)
inlines e0 [] = []
inlines e0 (e · es) =

(if is-Val e then (inline e0 e) · es else e · (inlines e0 es))

Figure 5.12: The function inline e0 e replaces the call that e is about to execute
with e0, if any, and leaves e unchanged otherwise.

229

Chapter 5. Compiler

Red0:
P, t ` 〈e, (h, empty)〉 −ta→〈e′, (h′, xs′)〉 no-call P h e

P, t ` 〈e, h〉 −ta→e
0 〈e
′, h′〉

R0red:
P, t ` 〈e, h〉 −ta→e

0 〈e
′, h′〉

P, t ` 〈(e, es), h〉 −ta→t
0 〈(e

′, es), h′〉

R0call:

call e =
⌊
(a, M, vs)

⌋
typeof-addr h a = bhTc

P ` class-of ′ hT sees M:Ts→Tr =
⌊
(pns, body)

⌋
in D

|vs| = |pns| |Ts| = |pns|

P, t ` 〈(e, es), h〉−LM→0
〈(blocks (this·pns) (Class D·Ts) (Addr a·vs) body, e·es), h〉

R0ret:
final e

P, t ` 〈(e, e′ · es), h〉 −LM→t
0 〈(inline e e′, es), h〉

Figure 5.13: Single-threaded source code semantics with explicit call stacks

The expression level semantics red0 (notation P, t ` 〈e, h〉 −ta→e
0

〈e′, h′〉) is the same as in J except for calling, see Red0 in Figure 5.13.48 To
avoid redundancies, I do not define a new small-step semantics, but use
the predicate no-call P h e to filter out all reductions due to Rcall from
P, t ` 〈e, (h, xs)〉 −ta→〈e′, (h′, xs′)〉. As Figure 5.11 shows, no-call P h e
holds iff whenever e pauses at a call, then the called method must be
native. Note that red0 discards the new local store xs′ after the reduction
– well-formedness ensures that xs′ is always empty (Corollary 5.2).

Figure 5.13 also shows the small-step semantics J0-red for the call-
stack level (notation P, t ` 〈(e, es), h〉 −ta→t

0 〈(e
′, es′), h′〉). It consists of all

reductions of the expression level semantics red0 for the top of the call
stack (R0red). Additionally, it reintroduces the reductions for method
calls that red0 has filtered out (R0call). Rather than dynamically inlining

48Technically, I must also adjust the thread-local state in Spawn actions in ta. Formally,
_, _ ` 〈_, _〉 −_→〈_, _〉 is parametrised over native-TA2J P. The definition of red0 passes
native-TA2J0 P instead of native-TA2J P, where native-TA2J0 P converts all local states
(C, M, a) of Spawn BTAs to

let (D, _, _, m) = method P C M;
⌊
(_, body)

⌋
= m in ({this : Class C = bAddr ac ; body}, [])

In the remainder of this chapter, I omit this technical detail.

230

5.2. Explicit call stacks for source code

the method body, R0call pushes the called method’s body on top of the
call stack and leaves the caller’s expression unchanged. When a method
returns, i.e., its expression is final, R0ret replaces the call in the caller’s
expression with the return value or exception using inline. This assumes
that every expression on the stack except the top one pauses at the
method invocation. R0ret has no counterpart in _, _ ` 〈_, _〉 −_→〈_, _〉,
because dynamic inlining turns returns into no-ops.

A state (e, es) in J0 is final, written final0 (e, es), iff final e and es = [].
The start state J0-start P C M vs has one thread start-tID with local state

(blocks (this · pns) (Class D · Ts) (Null · vs) body, [])

where (D, Ts, _,
⌊
(pns, body)

⌋
) = method P C M.

Analogous to J, the multithreaded semantics J0.redT for J0 is the
interleaving semantics for the parameter instantiations final0 and J0-red.

I consider the following operations as observable moves: memory al-
location, calls to native methods other than hashcode and currentThread,
access and assignment to fields and array cells, reading array lengths, and
synchronisation. In particular, since thread spawns, joining, interruption
and the wait-notify mechanism are implemented as native methods, all of
them are observable. Conversely, all control flow constructs, including ex-
ception throwing and handling, and local variable manipulation are only
relevant to the thread that executes them, so these generate only τ-moves.

For simplicity of the formalisation, I define observability in terms
of the state being reduced rather than the reduction itself. Hence,
either all reductions of a thread in one thread-local state and heap are
observable or none of them. As a consequence, the set of observable
reductions is larger than necessary. For example, the array cell access
addr a[Val (Intg i)] returns either the i-th array cell’s content or fails
with an ArrayIndexOutOfBounds exception. Thus, J and J0 also treat
throwing the ArrayIndexOutOfBounds exception as an observable move.
Fortunately, a larger set of observable moves only strengthens the
correctness result.

Formally, I define a predicate τ-move :: ′m prog⇒ ′heap⇒ ′addr expr⇒
bool that identifies states in which τ-moves originate. Its definition can
be found in Appendix B.6.6. Then, J-τ-move and J0-τ-move determine
the τ-moves for J and J0, respectively, where

J-τ-move P ((e, xs), h) ta _←→ τ-move P h e ∧ ta = LM
J0-τ-move P ((e0, es0), h0) ta _←→ (τ-move P h0 e0 ∨ final e0)∧ ta = LM

231

Chapter 5. Compiler

Lemma 5.5. J and J0 satisfy the assumptions of locale τ-multithreaded.

τ-multithreaded J-final (J-red P) acq-events J-τ-move
τ-multithreaded final0 (J0-red P) acq-events J0-τ-move

5.2.2 Semantic equivalence

Now, I show that J0 is equivalent to J in the sense that a program is
delay bisimilar to itself under the two semantics. Thus, I can verify the
compiler against J0 instead of J.

A variable V is free in the expression e (written V ∈ fv e) iff e contains
a subexpression Var V that is not contained in a local-variable or catch
block that declares V. The expression e is closed iff it contains no free
variables, i.e., fv e = ∅. A call stack of expressions (e0, es0) is well-formed
(notation wf0 (e0, es0)) iff e0 is closed, and all expressions in es0 are closed
and pause at a call. Formally:

wf0 (e0, es0)←→ fv e0 = ∅ ∧ (∀e ∈ set es0. fv e = ∅ ∧ call e , None)

Closedness rules out references to global variables.49 Hence, it is
irrelevant that J0 executes method bodies in a local store that contains
only this and the parameters (R0call) while inlining method calls with
blocks for this and the parameters in J adds them to the local store of the
caller (Rcall).

Let collapse (e0, es0) abbreviate the expression to which inlining
collapses the call stack, i.e., collapse (e0, es0) = foldl inline e0 es0. Then,

the delay bisimulation relation
t
≈0 for single threads relates the J state

((e, xs), h) with ((e0, es0), h0) iff xs is empty, the heaps are the same,
(e0, es0) is well-formed, and (e0, es0) collapses to e. Formally:

wf0 (e0, es0)

((collapse (e0, es0), empty), h)
t
≈0 ((e0, es0), h)

49Already in Jinja, closedness was crucial for the small-step semantics and its equivalence
to the big-step semantics [83, §2.3.2, §2.4.1, §2.5]. Klein and Nipkow write: “we can only
get away with this simple rule for method calls [for the small-step semantics] because there
are no global variables in Java. Otherwise one could unfold a method body that refers to
some global variable into a context that declares a local variable of the same name, which
would essentially amount to dynamic variable binding.” [83, §2.3.2].

232

5.2. Explicit call stacks for source code

Since both J.redT and J0.redT are instances of the interleaving se-

mantics, I lift
t
≈0 to multithreaded states as described in §5.1.3. Let

m
≈0

and ∼0 denote the corresponding instance of ≈m and ` _ ∼ _ where
(e, xs)

w
≈ (e0, es0) iff ¬final e0.

Theorem 5.5. If wf-J-prog P, then (
t
≈0,∼0) is a delay bisimulation with

explicit divergence for J-red P t and J0-red P t.

The proof requires a number of lemmata first.

Lemma 5.6. If wf-J-prog P and P, t ` 〈e, (h, xs)〉 −ta→ 〈e′, (h′, xs′)〉, then
fv e′ ⊆ fv e and dom xs′ ⊆ dom xs∪ fv e

Proof. By induction on P, t ` 〈e, (h, xs)〉 −ta→ 〈e′, (h′, xs′)〉. Method
call (Rcall) is the interesting case. Since the call sees the method,
say P ` C sees M:Ts→Tr =

⌊
(pns, body)

⌋
in D, and P is well-formed,

P, E ` body :: T for E = [this 7→ Class C, pns [7→] Ts] and some T
(see Figure 2.10). Induction on P, E ` body :: T yields fv body ⊆
dom E. Hence, blocks (this ·pns) (Class D ·Ts) (Addr a ·vs) body is
closed. �

Corollary 5.2. If wf-J-prog P and P, t ` 〈e, (h, empty)〉 −ta→〈e′, (h′, xs′)〉
and e is closed, then xs′ = empty.

Lemma 5.7. If wf-J-prog P, then J0-red P t preserves well-formedness.

Proof. Let P, t ` 〈(e0, es0), h〉 −ta→t
0 〈(e

′

0, es′0), h′〉 and wf0 (e0, es0). I show
wf0 (e′0, es′0) by case analysis of the reduction.

For R0red, Lemma 5.6 applies. For R0call, the same argument as for
method calls in Lemma 5.6 yields closedness of the new call frame. For
R0ret, fv (inline e0 e) ⊆ fv e0 ∪ fv e (provable by induction on e) yields
fv (inline e0 e) = ∅. �

A call stack (e0, es0) is normalised iff ¬final e0 or es0 = [], i.e., rule
R0ret is not applicable. The next lemma shows that J0 can silently
normalise any call stack; it is provable by induction on es0.

Lemma 5.8. For every call stack (e0, es0), there is a normalised call stack
(e′0, es′0) such that collapse (e0, es0) = collapse (e′0, es′0) and (e0, es0) silently
reduces to (e′0, es′0).

233

Chapter 5. Compiler

A normalised call stack (e0, es0) simulates reductions of the collapsed
call stack collapse (e0, es0) directly, i.e., without any additional τ-moves.

Lemma 5.9. Let (e0, es0) be well-formed and normalised.

(i) If P, t ` 〈e0, (h, empty)〉 −ta→〈e′0, (h′, empty)〉, then
P, t ` 〈collapse (e0, es0), (h, empty)〉

−ta→〈collapse (e′0, es0), (h′, empty)〉

(ii) If P, t ` 〈collapse (e0, es0), (h, empty)〉 −ta→ 〈e′, (h′, empty)〉, then
e′ is of the form collapse (e′0, es0) and P, t ` 〈e0, (h, empty)〉 −ta→
〈e′0, (h′, empty)〉.

Proof. Note that inlining the top of the call stack preserves well-formed-
ness. Without loss of generality, ¬final e0 – otherwise, es0 = [] by
normalisation and the lemma holds trivially. Then, each direction fol-
lows by induction on es0 from the following generalised one-step versions
for arbitrary e with call e , None:

(i) If P, t ` 〈e0, (h, empty)〉 −ta→〈e′0, (h′, empty)〉, then
P, t ` 〈inline e0 e, (h, xs)〉 −ta→〈inline e′0 e, (h′, xs)〉.

(ii) If P, t ` 〈inline e0 e, (h, xs)〉 −ta→ 〈e′, (h′, xs′)〉, then xs = xs′ and
e′ is of the form e′ = inline e′0 e and P, t ` 〈e0, (h, empty)〉 −ta→
〈e′0, (h′, empty)〉.

Both of them are proved by induction on e. The only interesting case
is when e is the call that inline replaces with e0. Then, the local store in
e0’s reduction must change from xs to empty or vice versa. This follows
from the next two easy lemmata (provable by induction) that Jinja uses
to prove the big-step and small-step semantics equivalent [83, §2.5]:

(i) If P, t ` 〈e, (h, xs)〉 −ta→ 〈e′, (h′, xs′)〉, then P, t ` 〈e, (h, xs0 ++
xs)〉 −ta→〈e′, (h′, xs0 ++ xs′)〉.

(ii) If P, t ` 〈e, (h, xs)〉 −ta→ 〈e′, (h′, xs′)〉 and fv e ⊆ W, then P, t `
〈e, (h, xs�W)〉 −ta→〈e′, (h′, xs′�W)〉,

where f�A restricts the map f to A, i.e., λx. if x ∈ A then f x else None,
and f ++ g abbreviates λx. case g x of None⇒ f x |

⌊
y
⌋
⇒

⌊
y
⌋
. �

The next lemma shows that when e pauses at a call, J’s next reduction
is to replace the call by the method body.

234

5.2. Explicit call stacks for source code

Lemma 5.10. Let call e =
⌊
(a, M, vs)

⌋
and typeof-addr h a = bhTc and

P ` class-of ′ hT sees M:Ts→Tr =
⌊
(pns, body)

⌋
in D and

blks = blocks (this·pns) (Class D·Ts) (Addr a·vs) body.

(i) If P, t ` 〈e, (h, xs)〉 −ta→〈e′, (h′, xs′)〉, then e′ = inline blks e.
(ii) If |vs| = |pns| and |Ts| = |pns|,

then P, t ` 〈e, (h, xs)〉 −ta→〈inline blks e, (h′, xs′)〉.

Proof of Theorem 5.5. By Lemma 5.2, it suffices to find two measures ≺1

and ≺2 for which (
t
≈0,∼0) is a well-founded delay bisimulation. Choose

_ ⊀1 _, and ((e0, es0), h0) ≺2 ((e′0, es′0), h′0) iff |es0| < |es′0|, i.e., only returns
R0ret from method calls (when the call stack shrinks) need not have a
counterpart in J.

For the simulation diagrams from Figure 5.6, I distinguish three cases:

1. Calls of non-native methods. For J0 simulating J, it normalises the
call stack first (Lemma 5.8). Then, Lemma 5.9 shows that the top
call frame of the normalised call stack can reduce using the call, and
Lemma 5.10 decomposes the resulting expression as necessary for
the simulation with R0call. For the other direction, Lemma 5.10
shows that the expression in the top call frame could also inline
the call and so can the collapsed call stack by Lemma 5.9.

2. Returns from a method call (R0ret) are a no-op in J, but the call
stack length decreases.

3. Otherwise, it is an expression-level reduction, for which J and J0
use the same semantics; Lemma 5.9 shows that collapsing the call
stack does not change the semantics. As with calls of non-native
methods, J0 first normalises the call stack.

In all cases, well-formedness of the new call stack holds by preservation
(Lemma 5.7). �

Lemma 5.11. (
t
≈0,∼0) preserves final states.

Theorem 5.6. (
m
≈0,∼0) is a delay bisimulation with explicit divergence for

J.redT P and J0.redT P that preserves final states.

Proof. By Theorem 5.3, it suffices to discharge the assumptions of locale
m-dbisim-div. Theorem 5.5 and Lemma 5.11 discharge the inherited

235

Chapter 5. Compiler

locales. Since
t
≈0 does not depend on the heap, heap-change-preserve

holds trivially. For
w
≈I, case analysis and induction show that whenever

J0-red generates a Suspend BTA, the top call frame is not final. Since
w
≈ guarantees that the J0 call stack is normalised, simulation-

w
≈1 follows

easily, because normalised call stacks simulate J’s reductions without any
additional τ-moves. Similarly, simulation-

w
≈2 holds because J simulates

observable moves of J0 without τ-moves. Finally, Ex-final-inv holds
trivially. �

Finally, I show that the bisimulation relation
m
≈0 contains the well-

formed start state.

Lemma 5.12. If wf-J-prog P and wf-start P C M vs, then J-start P C M vs
m
≈0

J0-start P C M vs.

5.3 Register allocation

The first stage of the compiler replaces variable names in expressions by
indices into an array of registers. In this section, I present the intermediate
language J1 with syntax, well-formedness, and semantics (§5.3.1), the
first compilation stage (§5.3.2), and the proof of its correctness (§5.3.3
and §5.3.4).

5.3.1 Intermediate language J1

Syntax

The intermediate language J1 retains the expressions from source code,
but stores local variable values in an array of registers – like bytecode
does. Hence, local variables in J1 are no longer identified by their
name, but by an index in the array. J1 extends Jinja’s intermediate
language [83, §5.1] analogous to what J does in source code, of which I
have already described the details in §2.3 and §3.2.2.

To avoid duplication, JinjaThreads parametrises the type of expres-
sions (′a, ′b, ′addr) exp not only over the type of addresses ′addr, but also
over the variable names ′a and an annotation type ′b for sync (_) _ and
insync (_) _ blocks. ′addr expr abbreviates (vname, unit, ′addr) exp where
unit is the HOL type of only one element (). Expressions in J1 are of type

236

5.3. Register allocation

(nat, nat, ′addr) exp (denoted ′addr expr1), i.e., variable names are natural
numbers and synci (_) _ and insynci (_) _ blocks are now annotated
with i :: nat.50 Following the JVMS [103, §7.14], the variable i will be
used in bytecode to store the monitor address between the MEnter and
MExit instructions that implement the monitor locking and unlocking.

The type of J1 programs ′addr J1-prog is ′addr expr1 prog. Note that
methods no longer declare parameter names because they have been
replaced by numbers.

Well-formedness

J1 requires a very specific layout of the registers, which compP1 ensures.
Register 0 holds the this pointer, the parameters occupy registers 1 to n
where n is the number of parameters. Then, the local variables follow
according to the nesting depth: If a block {i : T = vo; e} is nested in k local
variable or catch blocks or bodies of sync_ (_) _, then i = 1 + n + k; and
similarly for try e catch(C i) e′ and synci (e) e′. For example,

try e1 catch(C 3) (sync4 ({4 : T1 = vo1; e2}) {5 : T2 = vo2; e3})

is fine for a method with two parameters, but {3 : T1 = vo1; {5 : T2 =
vo2; e}}, {4 : T = vo; e}, and {3 : T1 = vo1; {2 : T2 = vo2; e}} are not.
Klein and Nipkow call this layout “an inverse de Bruijn numbering
scheme” [83, §5.1.1]. The predicate B e n in Figure 5.14 enforces it where
n denotes the starting number for the outermost blocks.

The typing rules for J1 are almost identical to J. In P, E `1 e :: T,
the program P has type ′addr J1-prog and the environment E for local
variables now is a list of types where the i-th element corresponds to
variable i. The rule WT1sync for sync_ (_) _ blocks demonstrates all
relevant changes:

WT1sync:

P, E `1 e1 :: T1
is-refT T1 T1 , NT P, E @ [Class Object] `1 e2 :: T

P, E `1 sync j (e1) e2 :: T

P, E `1 _ :: _ implicitly relies on the numbering scheme with |E| as start
index, as WT1sync ignores the annotation variable j. Instead, it extends
the environment for the monitor variable with the type Class Object.

50Technically, they are annotated in J, too, namely with (). Hence, sync (e) e′ actually
abbreviates sync() (e) e′ and similarly for insync (a) e.

237

Chapter 5. Compiler

B (new C) i ←→ True
B (new T[e]) i ←→ B e i
B (e instanceof T) i ←→ B e i
B (Cast T e) i ←→ B e i
B (Val v) i ←→ True
B (e1 «bop» e2) i ←→ B e1 i∧B e2 i
B (Var j) i ←→ True
B (V B e) i ←→ B e i
B (e1[e2]) i ←→ B e1 i∧B e2 i
B (e1[e2] B e3) i ←→ B e1 i∧ B e2 i∧ B e3 i
B (e.length) i ←→ B e i
B (e.F{D}) i ←→ B e i
B (e1.F{D} B e2) i ←→ B e1 i∧ B e2 i
B (e.M(es)) i ←→ B e i∧Bs es i
B { j : T = vo; e} i ←→ i = j∧B e (i + 1)
B (e1; ; e2) i ←→ B e1 i∧B e2 i
B (if (e) e1 else e2) i ←→ B e i∧B e1 i∧B e2 i
B (while (e1) e2) ←→ B e1 i∧ B e2 i
B (throw e) i ←→ B e i
B (try e1 catch(C j) e2) i←→ B e1 i∧ i = j∧B e2 (i + 1)
B (sync j (e1) e2) i ←→ B e1 i∧ i = j∧B e2 (i + 1)
B (insync j (a) e) i ←→ i = j∧B e (i + 1)
Bs [] i ←→ True
Bs (e · es) i ←→ B e i∧ Bs es i

Figure 5.14: Definition of B

Since the compiler introduces these monitor variables, no expres-
sion should access them. The predicate S e ensures this by checking
that i < fv e′ for all subexpressions of e of the form synci (_) e′ or
insynci (a) e′.51

The well-formedness conditions specific to J1 are similar to J’s (Fig-
ure 2.10). The constraints on parameter names have been dropped and
the numbering scheme and no access to monitor variables are required.
{ ..n } denotes the set of natural numbers from 0 to n inclusive.

51In the definition of fv, I pretended that it is defined on ′addr expr, but in reality it is
defined on (′a, ′b, ′addr) exp. Hence, it works on ′addr expr1, too. The same applies to final,
D, inline, and ok-I.

238

5.3. Register allocation

wf-J1-mdecl P C (M, Ts, Tr, body) =
(∃T. P, Class C · Ts `1 body :: T ∧ P ` T ≤ Tr)∧
D body b{ ..|Ts| }c ∧ B body (|Ts|+ 1)∧S body

wf-J1-prog = wf-prog wf-J1-mdecl

Semantics

The state space of J1 is already close to bytecode. The thread-local state
is a list of call frames each of which consists of an expression and a
fixed-size array of registers for the local variables.

On the expression level, the small-step semantics red1 is now of
the form f ail, P, t ` 〈e, (h, xs)〉 −ta→e

1 〈e
′, (h′, xs′)〉 where P :: ′addr J1-prog

and xs, xs′ :: ′addr val list. The new parameter f ail :: bool determines
whether unlocking a monitor may fail.

The main difference between J0 and J1 is that J1 handles local variables
and synchronisation like bytecode.

In particular, synci (addr a) e stores the monitor address a in the local
variable i upon locking the monitor. Accordingly, when unlocking the
monitor, insynci (a) e ignores a, but retrieves the monitor address from
register i. Figure 5.15 shows the rules for synchronisation. Note that
they explicitly check for the bounds of the register array. Compared
to Figure 3.21, there are two new pairs of rules for unlocking: First,
R1unlckN and R1unlckXN raise a NullPointer exception if the register
xs[i] for the monitor stores the Null pointer instead of an address. Second,
R1unlckF and R1unlckXF allow unlocking to non-deterministically fail
with an IllegalMonitorState exception like MExit (see Figure 3.23). The
switch f ail must be set to True to activate the latter.

f ail, P, t ` 〈e, (h, xs)〉 −ta→e
1 〈e
′, (h′, xs′)〉 differs from P, t ` 〈_, _〉 −_→

〈_, _〉 in two further respects. First, the small-step semantics treats
local variable blocks with initialisation, say {i : T = bvc ; e}, like {i : T =
None; i B Val v; ; e} and completely ignores uninitialised blocks. This
ensures that J1 and bytecode treat local variables identically. Second,
there is no rule for calling non-native methods.

Instead, the semantics J1-red for single threads (notation f ail, P, t `
〈((e, xs), exs), h〉 −ta→t

1 〈((e
′, xs′), exs′), h′〉) takes care of method calls

and returns similar to J0-red – see Figure 5.16 for the definition. The
conversion function native-TA2J1 for thread actions is defined analo-
gously to native-TA2J and native-TA2J0. call1 differs from call only for

239

Chapter 5. Compiler

R1sync1:
f ail, P, t ` 〈e1, s〉 −ta→e

1 〈e
′

1, s′〉

f ail, P, t ` 〈synci (e1) e2, s〉 −ta→e
1 〈synci (e

′

1) e2, s′〉

R1syncN:
i < |xs|

f ail, P, t ` 〈synci (null) e, (h, xs)〉
−LM→e

1 〈THROW NullPointer, (h, xs[iB null])〉

R1syncX: f ail, P, t ` 〈synci (Throw a) e, s〉 −LM→e
1 〈Throw a, s〉

R1lock:
i < |xs|

f ail, P, t ` 〈synci (addr a) e, (h, xs)〉 −LLock→a, SLock aM→e
1

〈insynci (a) e, (h, xs[iBAddr a])〉

R1sync2:
f ail, P, t ` 〈e, s〉 −ta→e

1 〈e
′, s′〉

f ail, P, t ` 〈insynci (a) e, s〉 −ta→e
1 〈insynci (a) e′, s′〉

R1unlckN:
xs[i] = Null i < |xs|

f ail, P, t ` 〈insynci (a
∗) (Val v), (h, xs)〉

−LM→e
1 〈THROW NullPointer, (h, xs)〉

R1unlck:
xs[i] = Addr a i < |xs|

f ail, P, t ` 〈insynci (a
∗) (Val v), (h, xs)〉

−LUnlock→a, SUnlock aM→e
1 〈Val v, (h, xs)〉

R1unlckF:
f ail xs[i] = Addr a i < |xs|

f ail, P, t ` 〈insynci (a
∗) (Val v), (h, xs)〉 −LUnlockFail→aM→e

1
〈THROW IllegalMonitorState, (h, xs)〉

R1unlckXN:
xs[i] = Null i < |xs|

f ail, P, t ` 〈insynci (a
∗) (Throw a′), (h, xs)〉

−LM→e
1 〈THROW NullPointer, (h, xs)〉

R1unlckX:
xs[i] = Addr a i < |xs|

f ail, P, t ` 〈insynci (a
∗) (Throw a′), (h, xs)〉

−LUnlock→a, SUnlock aM→e
1 〈Throw a′, (h, xs)〉

R1unlckXF:
f ail xs[i] = Addr a i < |xs|

f ail, P, t ` 〈insynci (a
∗)(Throw a′), (h, xs)〉 −LUnlockFail→aM→e

1
〈THROW IllegalMonitorState, (h, xs)〉

Figure 5.15: Reduction rules for synchronized blocks in J1

240

5.3. Register allocation

R1red:
f ail, P, t ` 〈e, (h, xs)〉 −ta→e

1 〈e
′, (h′, xs′)〉

f ail, P, t ` 〈((e, xs), exs), h〉 −native-TA2J1 P ta→t
1

〈((e′, xs′), exs), h′〉

R1call:

call1 e =
⌊
(a, M, vs)

⌋
typeof-addr h a = bhTc

P ` class-of ′ hT sees M:Ts→T =
⌊
body

⌋
in D

|vs| = |Ts| e′ = blocks1 0 (Class D · Ts) body
xs′ = Addr a · vs @ replicate (max-vars body) undefined-Val

f ail, P, t ` 〈((e, xs), exs), h〉 −LM→t
1 〈((e

′, xs′), (e, xs) · exs), h〉

R1ret:
final e

f ail, P, t ` 〈((e, xs), (e′, xs′) · exs), h〉 −LM→t
1

〈((inline e e′, xs′), exs), h〉

Figure 5.16: Reduction rules for call stacks in J1

blocks. Initialised blocks never pause at a call, since the semantics first
“uninitialises” them.

call1 ({i : T = vo; e}) = (if vo = None then call1 e else None)

Note that R1call initialises the registers of the new call frame just like
exec-instr does in Figure 3.22. The function max-vars computes the
maximum depth of nested local variables including the variables for
sync_ (_) _ blocks. Analogous to blocks, blocks1 n Ts body wraps body
in uninitialised blocks for local variables n to n + |ts| − 1 with types Ts.

Setting f ail to False or True yields two different semantics of J1, to
which I refer as J#

1 and J′1, respectively; J1 refers to both. Similarly,
I sometimes omit the f ail parameter from the semantics and instead
decorate them with ′ or #, e.g, J#

1-red and _, _ ` 〈_, _〉 −_→t
1
′
〈_, _〉.

Like for source code, the multithreaded semantics J#
1.redT and J′1.redT

are the interleaving semantics instantiated with J#
1-red and J′1-red, respec-

tively. A J1 thread is final, written J1-final ((e, xs), exs), iff final e and exs =
[]. The start state J1-start P C M vs has one thread start-tID with local state

((blocks1 0 (Class D · Ts) (Null · vs) body,
Null · vs @ replicate (max-vars body)undefined-Val), [])

where (D, Ts, _,
⌊
body

⌋
) = method P C M.

241

Chapter 5. Compiler

compE1 (Var V) = Var (index Vs V)

compE1 Vs {V : T = vo; e} = {|Vs| : T = vo; compE1 (Vs @ [V]) e}
compE1 Vs (sync (e1) e2) =

sync|Vs| (compE1 Vs e1) (compE1 (Vs @ [fresh-vname Vs]) e2)

compE1 Vs (insync (a) e) =

insync|Vs| (a) (compE1 (Vs @ [fresh-vname Vs]) e)

Figure 5.17: Register allocation compE1 for local variables, blocks, and synchro-
nisation

On the level of single threads, J#
1 and J′1 are not bisimilar, because

unlocking a monitor can non-deterministically fail in J′1, but not in J#
1.

Below, I will use J#
1 for proving the first compiler stage correct and J′1 for

the second. Then, I will show that under suitable conditions, J#
1 and J′1

coincide on the multithreaded level.
To identify τ-moves, J1 defines a predicate τ-move1 similar to τ-move.

Like for call vs. call1, the only difference is that red1 may silently “unini-
tialise” initialised blocks first.

τ-move1 P h {i : T = vo; e} ←→ vo , None∨ τ-move1 P h e∨ final e

J1-τ-move lifts τ-move1 to call stacks:

J1-τ-move P (((e, xs), exs), h) ta _←→ (τ-move1 P h e∨ final e)∧ ta = LM

Lemma 5.13. J#
1 and J′1 satisfy the assumptions of locale τ-multithreaded.

τ-multithreaded J1-final (J#
1-red P) acq-events J1-τ-move

τ-multithreaded J1-final (J′1-red P) acq-events J1-τ-move

5.3.2 Compilation stage 1

Jinja already contains a compiler compE1 from ′addr expr to ′addr expr1,
i.e., for method bodies. It assigns registers to variables [83, §5.2] in the
following order: first the this pointer, then the method parameters, and
finally local variables ordered by block nesting level. While traversing
the expression, compE1 keeps track of the list of variables Vs declared on

242

5.3. Register allocation

the path from the root of the expression to the current subexpression and
replaces variables V by their index in Vs (written index Vs V), i.e., the
position of the last occurrence of V in Vs. Figure 5.17 shows an excerpt
of its definition, the full definition can be found in Appendix B.9.2.

For sync (e1) e2 blocks, compE1 reserves the register |Vs| to hold the
monitor address. To shift the registers in e2 by 1, it appends a fresh
variable name fresh-vname Vs to Vs. Freshness (i.e., fresh-vname Vs <
set Vs) ensures that it does not hide any variables in surrounding blocks.

Jinja defines an operator compP to lift compilation at the level of
expressions to whole programs [83, §5.4]. I have straightforwardly
adapted it to JinjaThreads programs (see Appendix B.9.1). The compiler
from source code to intermediate language

compP1 = compP (λC M Ts T (pns, body). compE1 (this · pns) body)

applies compE1 to all method bodies.
For example, consider the following method declaration in Java,

whose body is ([f], sync (Var f) (Var this.m([]))) in abstract syntax:

int foo(Object f) { synchronized(f) { return this.m(); } }

This compiles to sync2 (Var 1) (Var 0.m([])).

5.3.3 Preservation of well-formedness

Jinja’s proof of compP1 generating well-formed programs sets the ground
for JinjaThreads’. Extending it is straightforward except for two aspects:

First, JinjaThreads additionally requires that registers for monitors
be not accessed, i.e., condition S body. The next lemma (provable
by induction) shows that compE1 ensures this. The interesting cases
sync (e1) e2 and insync (a) e rely on fresh-vname Vs being fresh for Vs.

Lemma 5.14. If fv e ⊆ set Vs, then S (compE1 Vs e).

Second, preservation of well-typedness requires the stronger induc-
tion on the structure of expressions instead of usual induction on the
derivation of the typing judgement:

Lemma 5.15 ([83, Lem. 5.5.]). If wf-prog w f -md P and P, [Vs [7→] Ts] `
e :: T and |Ts| = |Vs|, then compP1 P, Ts `1 compE1 Vs e :: T.

243

Chapter 5. Compiler

Proof. By induction on e. The interesting new case is sync (e1) e2. From
P, [Vs [7→] Ts] ` sync (e1) e2 :: T, there is a T1 , NT such that is-refT T1,
P, [Vs [7→] Ts] ` e1 :: T1, and P, [Vs [7→] Ts] ` e2 :: T by rule inversion. By
induction hypothesis, compP1 P, Ts `1 compE1 Vs e1 :: T1. For e2, it
does not suffice to apply the induction hypothesis directly, because this
would give compP1 P, Ts `1 compE1 Vs e2 :: T, instead of

compP1 P, Ts @ [Class Object] `1 compE1 (Vs @ [fresh-vname Vs]) e2 ::T

as required by WT1sync. This is also the reason why the standard
induction rule for P, [Vs [7→] Ts] ` e :: T, which Jinja uses, is too weak for
this proof. Instead, since fresh-vname Vs is fresh,

P, [Vs @ [fresh-vname Vs] [7→] Ts @ [Class Object]] ` e2 :: T

follows from JP, E ` e :: T; E ⊆m E′K =⇒ P, E′ ` e :: T (provable by rule
induction) – and the induction hypothesis applies. �

The remaining language-specific well-formedness constraints hold
like in Jinja. Hence, preservation of well-formedness follows.

Theorem 5.7. If wf-J-prog P, then wf-J1-prog (compP1 P).

5.3.4 Semantic preservation

Semantic preservation for the intermediate language falls in two parts.
First, I prove that P and compP1 P are delay bisimilar under the semantics
J0 and J#

1. Second, I show that unlocking a monitor in compP1 P never
fails, i.e., J#

1 and J′1 give the same semantics to compP1 P in spite of J′1’s
additional reductions R1unlckF and R1unlckXF.

Semantic preservation for compE1

J0 and J#
1 only differ in the treatment of local variables. Hence, the thread

features and arrays that JinjaThreads adds to Jinja do not introduce
anything essentially new for the verification. Still, extending the old
correctness proof (which uses a big-step semantics) requires substantial
changes:

(i) The delay bisimulation between J0 and J#
1 must now relate not only

initial and final states, but also all intermediate states.

244

5.3. Register allocation

(ii) Since J0 and J#
1 consist of a stack of semantics, the delay bisim-

ulation at one layer composes language-specific constraints and
bisimilulation relations from the level below (see Figure 5.1), and
so do I compose the proofs.

(iii) I must now also show that the small-step reductions preserve the
language-specific constraints that the bisimulation proof relies on.

Although the simulations are now much finer and covers both directions,
the key ideas for the correctness proof [83, §5.5] are still sufficient.

In detail, the bisimulation relation 0
e
≈1 at the level of expressions is

naturally the heart of the correctness proof, because the translation’s

core is at this level. 0
t
≈1 extends 0

e
≈1 to call stacks; 0

m
≈1 lifts 0

t
≈1 to the

interleaving semantics as described in §5.1.3. Hence, I want to prove

that 0
t
≈1 satisfies the assumptions of locale m-dbisim-div.

Most of these assumptions are simulation properties of the following
form: Given two related states, if either can reduce in a given way, then
the other can also reduce correspondingly such that the resulting states
are related again. These properties can be derived from Theorem 5.8
(forward direction) and Theorem 5.9 (backward direction) in Figure 5.18,
which I now discuss in detail.

Consider the assumptions of the theorems first. The central relation
Vs ` (e0, xs0) ≈ (e1, xs1) fully encapsulates the relation between (e0, xs0)
and (e1, xs1). The others, i.e., fv e0 ⊆ set Vs and |Vs|+ max-vars e1 ≤
|xs1| and D e0 bdom xs0c, are only language-specific constraints that
involve either of them. To improve proof automation, there are separate
preservation lemmata for the latter. Consequently, only Vs ` (e′0, xs′0) ≈
(e′1, xs′1) appears in the conclusion. In detail, Vs ` (e0, xs0) ≈ (e1, xs1)
predicates that

(a) the initialised local variables are the same, i.e., xs0 ⊆m [Vs [7→] xs1],

(b) e1 adheres to the numbering scheme for variables, i.e., B e1 |Vs|,

(c) for all insynci (a) _ subexpressions of e1, xs1 stores Addr a in
register i, and

(d) e0 and e1 are identical except for (i) variable names which are
resolved according to the compilation scheme and (ii) local variable
blocks where xs1 may store the initialisation’s value of e0 and the

245

Chapter 5. Compiler

Theorem 5.8. Let wf-J-prog P and Vs ` (e0, xs0) ≈ (e1, xs1).
Let fv e0 ⊆ set Vs and |Vs|+ max-vars e1 ≤ |xs1|.
Suppose that P, t ` 〈e0, (h, xs0)〉 −ta0→

e
0 〈e
′

0, (h′, xs′0)〉.
Then, there are ta1, e′1, and xs′1 such that Vs ` (e′0, xs′0) ≈ (e′1, xs′1) and the
following hold:

(i) If τ-move0 P h e0, then h′ = h and ta1 = LM and 〈e1, (h, xs1)〉 reduces
in J#

1 with at least one τ-move to 〈e′1, (h′, xs′1)〉.

(ii) If ¬ τ-move0 P h e0 and call e0 , None and call1 e1 , None, then
¬ τ-move1 (compP1 P) h e1 and compP1 P, t ` 〈e1, (h, xs1)〉 −ta1→

e#
1

〈e′1, (h′, xs′1)〉 and ta0 is 0
t
≈1-bisimilar to native-TA2J1 (compP1 P) ta1.

(iii) Otherwise, there are e′′1 and xs′′1 such that 〈e1, (h, xs1)〉 reduces in J#
1 with

(possibly no) τ-moves to 〈e′′1 , (h, xs′′1)〉 and ¬ τ-move1 (compP1 P) h e′′1
and compP1 P, t ` 〈e′′1 , (h, xs′′1)〉 −ta1→

e#
1 〈e

′

1, (h′, xs′1)〉 and ta0 is 0
t
≈1-

bisimilar to native-TA2J1 (compP1 P) ta1.

Theorem 5.9. Let wf-J-prog P and Vs ` (e0, xs0) ≈ (e1, xs1).
Let fv e0 ⊆ set Vs and |Vs|+ max-vars e1 ≤ |xs1| andD e0 bdom xs0c.
Suppose that compP1 P, t ` 〈e1, (h, xs1)〉 −ta1→

e#
1 〈e

′

1, (h′, xs′1)〉.
Then, there are ta0, e′0, and xs′0 such that Vs ` (e′0, xs′0) ≈ (e′1, xs′1) and the
following hold:

(i) If τ-move1 (compP1 P) h e1, then h′ = h and ta0 = LM and 〈e0, (h, xs0)〉
reduces in J0 with τ-moves to 〈e′1, (h′, xs′1)〉. If this involves no τ-moves,
then cnt-IB e′1 < cnt-IB e1.

(ii) If¬ τ-move1 (compP1 P) h e1 and call e0 , None and call1 e1 , None,
then ¬ τ-move0 P h e0 and P, t ` 〈e0, (h, xs0)〉 −ta0→

e
0 〈e
′

0, (h′, xs′0)〉

and ta0 is 0
t
≈1-bisimilar to native-TA2J1 (compP1 P) ta1.

(iii) Otherwise, there are e′′0 and xs′′0 such that 〈e0, (h, xs0)〉 reduces in J0
with (possibly no) τ-moves to 〈e′′0 , (h, xs′′0)〉 and ¬ τ-move0 P h e′′0 and

P, t ` 〈e′′0 , (h, xs′′0)〉 −ta0→
e
0 〈e
′

0, (h′, xs′0)〉 and ta0 is 0
t
≈1-bisimilar to

native-TA2J1 (compP1 P) ta1.

Figure 5.18: Simulation theorems on the expression level for compilation stage 1

246

5.3. Register allocation

block is uninitialised in e1. Such differences in initialisations may
only occur in subexpressions that the semantics reduces next.
Moreover, the other subexpressions must not contain insync_ (_) _
blocks, i.e., ¬has-I _.

Note that I need not require (c) for sync (_) _ expressions, because they
have not yet stored the monitor address in the registers.

The language-specific constraints are similar to Jinja’s correctness
proof. First, to ensure that register allocation succeeds, fv e0 ⊆ set Vs ex-
presses that Vs captures all free variables in e. Second, |Vs|+max-vars e1 ≤
|xs1| guarantees that xs1 is large enough to hold all local variables during
execution. The third constraint D e0 bdom xs0c only appears in Theo-
rem 5.9 and is new compared to Jinja. It ensures that J0 does not get
stuck when looking up a local variable in xs0. This is necessary because
J#
1 does not distinguish initialised and uninitialised variables.

Now, turn to the conclusions. Case (i) corresponds to the τ-move
simulation diagrams for well-founded delay bisimulations in Figure 5.6b.
Theorem 5.8 always proves the left column, i.e., J#

1 simulates every
τ-move in J0 by at least one τ-move. In contrast, J1 deinitialises local
variable blocks before it executes the block’s body (see §5.3.1), which has
no counterpart in J0. Hence, Theorem 5.9(i) allows J0 to stall when the
number of initialised blocks decreases – the measure cnt-IB e1 counts the
initialised blocks in e1.

Case (iii) corresponds to the visible moves simulating observable
moves (Figure 5.6a). Case (ii) is the special case when both e0 and
e1 pause at a call. In that case, no τ-moves may precede the simulat-
ing move. Remember that simulation-

w
≈1 and simulation-

w
≈2 of locale

m-dbisim-div require this for processing the removal from a wait set.
Both cases require the thread actions to be bisimilar, i.e., identical except

for thread-local states of spawned threads, which must be 0
t
≈1-related.

This is what well-formedness (premise wf-J-prog P) is necessary for.
Bisimilarity (defined below) involves definite assignment and no free
variables.

Both theorems are proven by induction on the derivation of the
reduction. The only interesting cases are for local variables and syn-
chronisation blocks, but Jinja’s notions of hidden and unmodified vari-
ables [83, §5.5] suffice for that. Again, it is essential that fresh-vname Vs
is fresh.

247

Chapter 5. Compiler

Now, it is clear what the bisimulation relations should be. Remember
that the expressions in J0 call frames are closed, i.e., Vs = [] and xs0 =
empty. Hence,

e0 0
e
≈1 (e1, xs1)←→

[] ` (e0, empty) ≈ (e1, xs1)∧ fv e0 = ∅ ∧D e0 b∅c ∧max-vars e1 ≤ |xs1|

Lifting to single threads is straightforward. The heaps must be the same,
the call stacks must be 0

e
≈1-related pointwise, and all call frames except

the top pause at a call.

((e0, es0), h0) 0
t
≈1 (((e1, xs1), exs1), h1)←→

h0 = h1 ∧ e0 0
e
≈1 (e1, xs1)∧ |es0| = |exs1| ∧

(∀(e′0, (e′1, xs′1)) ∈ set (zip es0 exs1).

e′0 0
e
≈1 (e′1, xs′1)∧ call e′0 , None∧ call1 e′1 , None)

For 0
m
≈1, I take ≈m from §5.1.3 instantiated with 0

t
≈1 and 0

w
≈1, where

(e0, es0) 0
w
≈1 ((e1, xs1), exs1)←→ call e0 , None∧ call1 e1 , None,

i.e., threads in wait sets must pause at a call.

Lemma 5.16. Let wf-J-prog P. 0
t
≈1 is a delay bisimulation with explicit

divergence for J0-red P t and J#
1-red (compP1 P) t.

Proof. Since J0 and J1 have similar call-stack semantics (Figures 5.13

and 5.16), it follows easily with Theorems 5.8 and 5.9 that 0
t
≈1 is a

well-founded delay bisimulation with well-founded relations ≺0 and ≺1,
where

(e′0, es′0) ≺0 (e0, es0) ←→ False
((e′1, xs′1), exs′1) ≺1 ((e1, xs1), exs1)←→ cnt-IB e′1 < cnt-IB e1

From this, the statement follows by Lemma 5.2. �

Theorem 5.10. Let wf-J-prog P. 0
m
≈1 is a delay bisimulation with explicit

divergence for J0.redT P and J#
1.redT (compP1 P) that preserves final states.

248

5.3. Register allocation

Proof. It suffices to show that the assumptions of locale m-dbisim-div
are met. Lemma 5.16 discharges the first. Preservation of final states

and heap changes is trivial, because (i) finality is invariant under 0
t
≈1

and (ii) 0
t
≈1 only imposes equality on the heaps, but does not otherwise

depend on it.
w
≈I is provable by induction and case analysis, whereas

simulation-
w
≈1 and simulation-

w
≈2 follow from case (ii) of Theorems 5.8 and

5.9. �

Lemma 5.17. If wf-J-prog P and wf-start P C M vs, then

J-start P C M vs 0
m
≈1 J1-start (compP1 P) C M vs.

Equivalence of J#
1 and J′1

The compiler verification has to show that unlocking a monitor in
compiled code never fails. The intermediate language is the right place
for this, because its semantics already stores the monitor address in the
registers like bytecode, but the syntax still enforces the structured locking
discipline.

I prove that J#
1.redT P and J′1.redT P are the same for a multithreaded

state s1 in which the lock state agrees with the insync_ (_) _ subex-
pressions of the threads. Agreement (notation lock-conf1) is defined
analogously to lock-conf in §3.3.4. In such a state, J′1.redT P never picks
R1unlckF nor R1unlckXF, because the precondition of the thread action
LUnlockFail→aM is violated. J#

1.redT P preserves lock-conf1 under the
following condition (notation _

√
) that for every call frame (e1, xs1) of

every thread,

(i) for all subexpressions insynci (a) e′1 of e1, xs1 stores Addr a in
register i and e′1 does not modify register i and

(ii) ok-I e1, i.e., all insync_ (_) _ subexpressions of e1 lie on one path
from the root in e1’s abstract syntax tree (see Figure 3.33).

Hence, I define 1
m
≈1 as follows:

s1 1
m
≈1 s′1 ←→ s1 = s′1 ∧ lock-conf1 (locks s1) (thr s1)∧ s1

√

249

Chapter 5. Compiler

Theorem 5.11. If wf-J1-prog P, then 1
m
≈1 is a strong bisimulation for J#

1.redT P
and J′1.redT P.

Corollary 5.3. If wf-J1-prog P, then 1
m
≈1 is a delay bisimulation with explicit

divergence for J#
1.redT P and J′1.redT P that preserves final states.

Lemma 5.18. If wf-J1-prog P and wf-start P C M vs, then

J1-start P C M vs 1
m
≈1 J1-start P C M vs.

5.4 Code generation

The first stage has already replaced variable names by register numbers.
The second stage compP2 now completes the translation in that it gener-
ates the bytecode instructions and exception tables for the expressions
(§5.4.1). In this section, I show preservation of well-typedness (§5.4.2)
and semantics (§5.4.3) for compP2.

5.4.1 Compilation stage 2

The second stage of the compiler translates expressions into instruction
lists (function compE2 :: ′addr expr1⇒

′addr instr list) and exception
tables (function compxE2 :: ′addr expr1⇒ pc⇒ nat⇒ ex-table). compP2
lifts compE2 and compxE2 to programs using compP and computes the
maximum stack size max-stack and register size using max-vars.

compP2 = compP compMb2

compMb2 C M Ts T body =
(let ins = compE2 body @ [Return]; xt = compxE2 body 0 0
in (max-stack body, max-vars body, ins, xt))

For JinjaThreads, I have extended Jinja’s compE2 and compxE2 to
synci (e1) e2 expressions, on which I focus in this section. For details on
the others, see [83, §5.3] and Appendix B.9.3.

The translation of a synci (e1) e2 expression to bytecode must ensure
that the monitor is unlocked even if an unhandled exception occurs in
e2. An exception handler, which applies to all exceptions, needs to do
this. Thus, the instructions for synci (e1) e2 are

250

5.4. Code generation

compE2 e1 @ [Dup, Store i, MEnter] @
compE2 e2 @ [Load i, MExit, Goto 4] @ [Load i, MExit, ThrowExc]

First, the monitor expression e1 is evaluated, its result on the stack
duplicated and stored in register i; MEnter locks the monitor. Then, the
block e2 is executed, the monitor address loaded back from register i
and the monitor unlocked. Goto 4 jumps to the instruction after the
exception handler that follows. The handler also loads the monitor
address, unlocks the monitor and rethrows the caught exception whose
address is still on top of the stack.

Since the exception tables contain absolute program counters and
stack depth, compxE2 takes the current program counter pc and stack
depth d as parameters. For synci (e1) e2, compxE2 appends to the
exception tables for e1 and e2 the entry (pc1, pc2, Any, pc2 + 3, d) where
pc1 = pc + |compE2 e1|+ 3 and pc2 = pc1 + |compE2 e2|. Hence, the
entry matches all exceptions that e2’s instructions raise. Since it is placed
at the end, it does not take precedence over exception handlers in e2.

Reconsider the compilation example in §5.3.2. compE2 compiles the
method body sync2 (Var 1) (Var 0.m([])) to

[Load 1, Dup, Store 2, MEnter, Load 0, Invoke m 0, Load 2, MExit,
Goto 4, Load 2, MExit, ThrowExc, Return]

with exception table [(4, 6, Any, 9, 0)].
As I have already discussed in §2.2.1, Any is important for the

verification, although bThrowablec would also do in theory. Since the
latter only applies to subclasses of Throwable, the bisimulation relation
would have to ensure that only such exceptions are ever raised. This
would pull in the complete type safety proof of the JVM and therefore
severly complicate the proof.

5.4.2 Preservation of well-formedness

To show that compP2 preserves well-formedness, Jinja defines a type
compiler that computes a well-typing for the generated bytecode [83,
§5.9]. Since JinjaThreads’ extensions for arrays and synchronisation
naturally fit in the compilation scheme, I only present the final theorem –
see the formalisation [106] for the full details.

Theorem 5.12. If wf-J1-prog P, then wf-jvm-prog P.

251

Chapter 5. Compiler

5.4.3 Semantic preservation

The translation from the intermediate language to bytecode is the most
complicated one. It flattens the tree structure of expressions to a linear
list of instructions. Exception handlers are registered in exception
tables. synchronized blocks are implemented by MEnter and MExit
instructions and an exception handler.

To show delay bisimilarity, I first must define which VM transitions
are unobservable, i.e., τ-moves. Exception handling and the following
instructions generate only τ-moves: Load, Store, Push, Pop, Dup, Swap,
BinOp, Checkcast, Instanceof, Goto, IfFalse, ThrowExc, and Return.
Additionally, Invoke generates a τ-move only if the called method is
non-native or one of the native methods hashcode or currentThread.

Like between J0 and J#
1, the key to correctness is delay bisimilarity

on the expression level, on which I focus in this section. Calling and
returning from methods works similarly in J′1 and the JVM, the laborious,
but uninteresting proof lifts delay bisimilarity. The multithreaded level
is the interleaving semantics in both semantics. Hence, I leverage
Theorem 5.3 once more to show delay bisimilarity for J′1 and the JVM.

For the expression level, I take a detour via two new bytecode
semantics exec-meth and exec-methd that differ from the VM in when
they get stuck (see Figure 5.1). A single step of execution is written
chk, P, ins, xt, t ` 〈(stk, loc, pc, xcp), h〉 −ta→e

jvm 〈(stk′, loc′, pc′, xcp′), h′〉: If
the exception flag xcp is None, it denotes that the sanity check chk succeeds
(see below), pc points to an instruction in ins and (stk′, loc′, pc′, xcp′)
describes a possible successor state of executing instruction ins[pc] with
stack stk and registers loc according to exec-instr; ta is the corresponding
thread action. If the exception flag is set, it denotes that xt contains an
exception handler at pc′ that applies and no stack underflow occurs.
Since I am at the expression level, the step must not change the length
of the call stack, i.e., neither return from a method nor call a non-native
method.

The parameter chk controls when the semantics gets stuck. For
exec-meth, chk ensures that the stack does not underflow and that jumps
only go to program counters between 0 and |pc| inclusive. Since it is
stricter than the aggressive VM, steps in exec-meth are preserved when
I enlarge the instruction list at either end and extend the stack at the
bottom. The inductive cases in the simulation proof rely on this. But it is
not as strict as exec-methd, where chk performs all checks of check-instr.

252

5.4. Code generation

Since exec-meth gets stuck only when red′1 is also stuck, I use exec-meth
for simulating red′1’s reductions.

For the other direction, I use exec-methd, because it gets stuck
more often than red′1. For ThrowExc, e.g., check-instr requires that
the thrown exception is a subclass of Throwable, but red′1 does not.
Hence, exec-methd cannot simulate red′1 unless the bisimulation relation
excludes such cases, e.g., by requiring bytecode conformance. But
this would further complicate the proofs which are already tedious.
Conversely, red′1 cannot simulate exec-meth because the former gets
stuck, e.g., when trying to access a field of an integer, but the latter carries
on with undefined behaviour.

As the generated bytecode is well-formed (Theorem 5.12), exec-methd
simulates exec-meth for conformant states and preserves bytecode con-
formance. Note that conformance does not complicate proofs any more at
this level of abstraction, because I do not have to unfold its definition for
individual instructions. This closes the circle of simulations. In principle,
it should be possible to define chk such that the bytecode semantics gets
stuck whenever red′1 does. Since this appears to be very tedious, error-
prone and sensitive to even small changes, I have not attempted to do so.

Note that this detour only affects the semantics, not the bisimulation
relation 1

e
≈jvm. As before, 1

e
≈jvm consists of two parts, (i) a relation

between J1 call frames and JVM expression-level states and (ii) well-
formedness conditions of the states that the semantics preserve individu-
ally. The relation P, e, h ` (e1, xs1) ≈ (stk, loc, pc, xcp) relates a J1 call frame
(e1, xs1) (expression and local variables) to a JVM expression-level state
(stk, loc, pc, xcp) for a heap h that is the same for both. P only defines the
class hierarchy, whereas the expression e :: ′addr expr1 compiles to the
instruction list ins = compE2 e and xt = compxE2 e 0 0. The inductive
definition for ≈mirrors the reduction rules of red′1 and relates a partially
evaluated expression e1 with the corresponding stack stk and registers
loc, and the instruction position pc in the compiled code.

Figure 5.19 shows some representative rules from the inductive
definition. The single rule B1 for all expressions exploits that the last
instruction in a compiled expression always puts its result value on top
of the stack. Unfortunately, this does not extend to exceptions, because
bytecode does not propagate exceptions from subexpressions, but uses
exception tables. Hence, ≈ contains separate exception propagation rules
for every expression, similar to B2. Still, it abstracts from computed

253

Chapter 5. Compiler

B1: P, e, h ` (Val v, xs) ≈ ([v], xs, |compE2 e|, None)

B2:
P, e1, h ` (Throw a, xs) ≈ (stk, loc, pc, bac)

P, synci (e1) e2, h ` (Throw a, xs) ≈ (stk, loc, pc, bac)

B3:
P, e2, h ` (e, xs) ≈ (stk, loc, pc, xcp)

P, synci (e1) e2, h ` (insynci (a) e, xs) ≈
(stk, loc, |compE2 e1|+ 3 + pc, xcp)

B4: P, synci (e1) e2, h ` (synci (Val v) e2, xs) ≈
([v], xs[iB v], |compE2 e1|+ 2, None)

Figure 5.19: Example introduction rules for the relation ≈

values and addresses of thrown exceptions and only requires that they
are the same in both states. Moreover, rules like B3 for all subexpressions
of all expressions embed bisimilar states for the subexpression into the
context of the larger expression, thereby shifting the stack and instruction
pointer as necessary. Finally, the definition contains a rule for every
bytecode instruction and corresponding J1 state. For example, B4 relates
the J1 state which next acquires the monitor’s lock to the intermediate
JVM state after executing the Store i instruction that stores the monitor
address. Although J′1 and the JVM operate on the local variable array
in the same way, the bisimulation relation must not require that xs and
loc be equal, because they differ in such intermediate states like in B4,
which R1lock skips.

The bisimulation relation 1
e
≈jvm specialises this relation to complete

call frames as follows:

P `C sees M:Ts→T =
⌊
body

⌋
in D

P, blocks1 0 (Class D · Ts) body, h ` (e1, xs1) ≈ (stk, loc, pc, xcp)
max-vars e1 ≤ |xs1|

P, h ` (e1, xs1) 1
e
≈jvm (xcp, stk, loc, C, M, pc)

The main simulation theorems at the expression level are similar in
structure to Theorems 5.8 and 5.9. Their proofs consist of a huge induction
on the relation and case analysis of the reductions. Control constructs
like conditionals and loops, which are compiled to (conditional) jumps,
are verified like in sequential Jinja.

254

5.5. Complete compiler

The bisimulation relation 1
t
≈jvm for single threads lifts 1

e
≈jvm to call

stacks. Although great care is required to ensure that everything fits
together, the construction and its verification just reuses the ideas from
the first compilation stage. Hence, I conclude that the second stage is
correct, too.

Theorem 5.13 (Correctness of stage 2). In locale conf-read, suppose that
wf-J1-prog P. Then,

(i) 1
t
≈jvm is a delay bisimulation with explicit divergence for J′1-red P t and

the defensive VM jvm-execd (compP2 P) t.

(ii) 1
m
≈jvm is a delay bisimulation with explicit divergence for J′1.redT P and

jvmd.redT (compP2 P) that preserves final states.

Lemma 5.19. If wf-J1-prog P and wf-start P C M vs, then

J1-start P C M vs 1
m
≈jvm jvm-start (compP2 P) C M vs.

5.5 Complete compiler

In the previous sections, I have shown that all relations in Figure 5.1
are delay bisimulations with explicit divergence. Now, it remains to
compose these results for the full compiler J2JVM = compP2 ◦ compP1.

Preservation of well-formedness follows immediately from Theo-
rems 5.7 and 5.12.

Theorem 5.14. If wf-J-prog P, then wf-jvm-prog (J2JVM P).

For semantic preservation, let (J≈jvm, J∼jvm) be the composition of
all multithreaded delay bisimulations, i.e.,

(J≈jvm, J∼jvm) =
m
≈0 �B 0

m
≈1 �B 1

m
≈1 �B 1

m
≈jvm

Lemmata 5.12, 5.17, 5.18, and 5.19 show that J≈jvm relates the start states.
And Lemma 5.1 composes the bisimulation theorems 5.6, 5.10, 5.13 and
Corollary 5.3 to obtain the main correctness theorem 5.16.

Theorem 5.15. If wf-J-prog P and wf-start P C M vs, then

J-start P C M vs J≈jvm jvm-start (J2JVM P) C M vs.

255

Chapter 5. Compiler

Theorem 5.16. In locale conf-read, if wf-J-prog P, then (J≈jvm, J∼jvm) is a
delay bisimulation with explicit divergence that preserves final states.

dbisim-div (J.redT P) (jvmd.redT (J2JVM P)) J≈jvm J∼jvm
(J.mτ-move P) (jvm.mτ-move (J2JVM P))

dbisim-final (J.redT P) (jvmd.redT (J2JVM P)) J≈jvm J∼jvm
(J.mτ-move P) (jvm.mτ-move (J2JVM P))
J.mfinal jvm.mfinal

All proofs have been conducted independently of the heap module
implementation in various locales. Since 1

t
≈jvm imposes bytecode con-

formance on the JVM state to show that exec-meth and exec-methd are
equivalent, Theorem 5.16 holds for all heap implementations that satisfy
conf-read. These are sequential consistency (§4.2, Theorem 4.1) and JMM
heap implementation 2 (§4.3.2, Theorem 4.2).

Since J≈jvm decomposes into the relations for each stage, I now can
break down correctness in terms of bisimilarity to concrete executions ξ,
i.e., trace equivalence, using the Theorems 5.1 and 5.2 about semantic
preservation. As before, I decorate the semantics arrows with J and jvmd
to refer to the definition with the parameters appropriately instantiated.

Theorem 5.17 (Correctness). Let wf-J-prog and wf-start P C M vs.

(a) Let P ` J-start P C M vs �J ξ. Then, there is a ξ′ such that J2JVM P `
jvm-start (J2JVM P) C M vs �jvmd ξ′ and ξ [J≈jvm, J∼jvm] ξ′. In
particular:

(i) If ξ terminates in s and J.mfinal s, then ξ′ terminates in the
jvm-final state mexception s.

(ii) If ξ deadlocks in state s, then ξ′ deadlocks in some s′, too.
(iii) If ξ diverges or runs infinitely, so does ξ′.

(b) Let J2JVM P ` jvm-start (J2JVM P) C M vs �jvmd ξ
′. Then there is

a ξ such that P ` J-start P C M vs �J ξ and ξ [J≈jvm, J∼jvm] ξ′. In
particular:

(i) If ξ′ terminates in s′ and jvm.mfinal s′, then ξ terminates in some
s such that J.mfinal s and s′ = mexception s.

(ii) If ξ′ deadlocks in state s′, then ξ deadlocks in some s, too.
(iii) If ξ′ diverges or runs infinitely, so does ξ.

In any case, ξ and ξ′ produce the same sequence of events, i.e., map events ξ =
map events ξ′ – in particular, the same output.

256

5.6. Discussion

Proof outline. Case (a) states that every execution of the source code has a
corresponding execution of the bytecode, and case (b) states the converse.
The main statements directly follows from Theorems 5.1 and 5.2.

The subcases (i) to (iii) only specialise this statement to the concrete
bisimulation. For a final J state s, the function mexception s extracts the
correct exception flag for every thread in s, i.e., None for normal termina-
tion and bac if the exception at address a caused the abrupt termination.

Preservation of deadlocks in subcase (ii) does not follow directly,
because I have defined deadlock in terms of the semantics of single
threads, not the interleaved semantics that the bisimulation is about.
However, Theorem 5.4 shows that

m
≈0, 0

m
≈1, and 1

m
≈jvm preserve deadlocks.

For 1
m
≈1, it is easy to show that the semantics for J#

1 and J′1 differ only in

states that cannot be in deadlock. Hence, 1
m
≈1 preserves deadlocks, too.

Since s and s′ are stuck by construction of ξ and ξ′, there are no τ-moves
that Theorem 5.4 would allow, i.e., s and s′ are both deadlocked. �

While the above theorem correctly describes semantic preservation
for sequential consistency, the JMM adds a few layers that are not yet
reflected. First, the events for thread start and finish (layer 4) are missing.
However, §5.1.4 explains how to extend the bisimulation relations

m
≈0,

0
m
≈1, and 1

m
≈jvm to handle them (Lemma 5.4). It is also straightforward

to show that I can extend 1
m
≈1 accordingly. Hence, Theorem 5.16 has an

analogue for the JMM stack of semantics. Second, the layers 6 and 7 for
complete interleavings and legality of executions not yet covered. By
Corollary 5.1, delay bisimiliarity enforces that the complete interleavings
of P and J2JVM P are the same. Thus, so are the legal executions.

Theorem 5.18. Let wf-J-prog P and wf-start P C M vs. Then, (E, ws) is
a legal execution of P with start state J-start P C M vs iff (E, ws) is a legal
execution of J2JVM P with start state jvm-start (J2JVM P) C M vs.

Corollary 5.4. Let wf-J-prog P and wf-start P C M vs. Then, P is correctly
synchronised iff J2JVM P is.

5.6 Discussion

Concurrency poses three challenges to verifying a compiler: (i) nonde-
terministic interleaving, (ii) different granularity of atomic operations

257

Chapter 5. Compiler

between source and bytecode, and (iii) memory models for optimisations.
In this chapter, I have addressed (i) and (ii).

For nondeterminism, I use bisimulation instead of forward simulation,
in which only the compiled program simulates the source program. For
bisimulation, it does not suffice to merely show the other direction,
but some subtleties arise: First, neither the source nor the compiled
program may carry on if the other gets stuck, e.g., due to type errors.
In JinjaThreads, the source code semantics is a small-step semantics,
whereas the VM is an abstract state machine. Both naturally contain
different type checks, only a full type system and type safety proof at
every stage would ensure bisimilarity. By using both the aggressive
and defensive VM in the simulation proofs, I only need a single type
safety proof for bytecode which ensures that both VMs are equivalent
for verified bytecode. Therefore, the compiler verification only holds for
type-safe heap implementations such as JMM heap implementation 2.
In particular, the proofs do not hold for JMM heap implementation 1.

Second, the bisimulation must relate all states that are reachable
from either initial state. Ordinary simulations do not have to relate
intermediate states in the compiled code which the source code skips.
This substantially increases the size of the bisimulation relation and
consequently the number of cases the simulation proofs have to consider.

For example, several statements such as sync (_) _ generate multiple
instructions. Hence, a single observable step in the source code program
is decomposed into a number of silent steps and one observable step in
between. Conversely, exceptions slowly propagate up in source code
whereas the VM directly jumps to the exception handler.

The interleaving semantics, which I use at all stages, allows to
decompose the multithreaded case to single threads, where shared
memory accesses and synchronisation must be observable. Hence,
I do not have to worry about interleavings in the main correctness
proofs themselves. However, this approach also restricts the allowed
optimisations to thread-local ones, because observable behaviour must
not be changed. Consequently, I cannot exploit the additional flexibility
that the JMM allows. For J2JVM, this is irrelevant because it just follows
the recommendations in the JVMS [103, Ch. 7] and does not optimise at
all. In fact, even Sun’s javac compiler in Java 2 SE optimises only very
little, but leaves this to the JIT compiler in the VM.

Classical compiler verifications only cover terminating executions,
see, e.g., [83, 166]. My correctness result also extends to nontermina-

258

5.7. Related work

tion and deadlock. However, the standard (bi-)simulation approach
with τ-moves cannot prove this, because infinitely many consecutive
τ-moves might be simulated by no moves at all, which is known as
the infinite stuttering problem. Instead, my notion of bisimulation ex-
plicitly includes divergence, but is nevertheless transitive unlike other
approaches.

5.7 Related work

Compiler verification in general has been an active research topic for
more than 40 years; see [44] for an annotated bibliography. Rittri [150]
and Wand [174] first used bisimulations for compiler verification for
a simple, parallel functional language. They showed that running the
compiled code on a virtual machine is weakly bisimilar to the source
code’s denotational semantics, which ignores divergence.

Most closely related to JinjaThreads’ compiler is naturally Jinja’s [83,
§5] which itself builds on Strecker’s [167] for µJava as part of the
VerifyCard project. They handle subsets of sequential JinjaThreads and
are verified with respect to the big-step semantics.

More remotely, JinjaThreads’ compiler is related to the one by Stärk
et al. [166], which handles only sequential Java source code. As already
pointed out in [83], they lack the formal rigour required for machine-
checked proofs and their theorem does not imply preservation of non-
terminating computations.

As for compiler verification for concurrent Java, Ševčík and Aspinall
[162] report on verifying individual compiler optimisations w.r.t. the
JMM. They show that (i) the JMM does not allow as many as intended by
its designers for programs with data races, and (ii) all trace-preserving
compilers are correct. However, their proofs are only on paper for a toy
core language without almost all sequential Java features. Hecker [68]
has verified two such transformations for the JMM in Isabelle/HOL.

Leroy’s CompCert project [97–99] has been the most remarkable
landmark in mechanised compiler verification recently. He has verified
a complete compilation tool chain from a subset of C source code to
PowerPC assembly language in Coq. CompCert focuses on low-level
details and language features such as memory layout, register allocation
and instruction selection. JinjaThreads’s simulation diagrams for well-
founded delay bisimulations are similar to CompCert’s, but the latter

259

Chapter 5. Compiler

only require the forward direction (the upper half of Figure 5.6) since
CompCert’s target language is deterministic.

As part of the Verisoft project, Leinenbach [96] has verified a non-
optimising compiler from C0, a subset of C, directly to DLX assembler in
Isabelle/HOL. Like CompCert, he focuses on low-level details and only
proves a weak simulation theorem for sequential executions, but not for
the backward direction.

Compiler correctness for concurrent programs is an active research
under the aspect of memory models. Ševčík et al. [163] have extended
parts of CompCert’s backend to concurrency under the x86-TSO memory
model (see §4.4.1). In [161], Ševčík studies what compiler optimisations
are allowed under the DRF memory model, which provides only the DRF
guarantee. Owens [140] and Batty et al. [16,17,154] verify the implementa-
tion of language primitives for synchronisation in assembly code for vari-
ous hardware memory models. Lea [95] and McKenney and Silvera [117]
have developed guidelines on how to implement the Java and C++ mem-
ory models in modern hardware. These works seem highly relevant for
a potential future extension of JinjaThreads’ compiler to machine code.

One challenge in the compiler verification was to prove that unlocking
a monitor in bytecode never fails. My proof rests on the syntactic
restrictions for the intermediate language. For arbitrary bytecode, Iwama
and Kobayashi [73] propose to tag every object with a usage label which
specifies a policy on how this object may be locked. A type system,
for which they also give a type inference algorithm, guarantees that
method implementations respect the usage tags, and the subject reduction
theorem ensures soundness. It would be interesting to see whether their
type system accepts the bytecode which J2JVM generates – since this
would require a considerable extension of their language, I have not
attempted to do so. If this held, I could avoid having two semantics of
the intermediate language.

To tackle the same problem of proper lock acquisition and release,
Laneve [94] presents an operational semantics and a type system for a
slightly larger subset of Java bytecode which includes both synchronisa-
tion and the wait-notify mechanism. It enforces the structured locking
principle that is known from Java source code. Moreover, the soundness
proof gives that well-typed programs are free of IllegalMonitorState
exceptions, even for calls to wait and notify. Unfortunately, this makes
his type system unusable for the verification of JinjaThreads’ compiler,
because JinjaThreads allows calls to wait to fail like in Java.

260

One can’t proceed from the informal to the formal by
formal means.

Alan J. Perlis 6
JinjaThreads as a Java interpreter

Given the size and complexity of JinjaThreads, making sure that it
faithfully models (a subset of) Java is non-trivial. Rushby [152] and
Norrish [133] suggest three ways to address validation: (i) the social
process of reviewing, publication, and reuse by others, (ii) challenging
the specification by proving sanity theorems, and (iii) validation against
a concrete implementation. JinjaThreads has gone all three ways to
some extend. First, JinjaThreads continues the line of Bali, µJava, and
Jinja. Hence, numerous publications in various venues [24, 79–87, 106,
107, 111–113, 126, 129, 130, 135–138, 146, 156–159, 167, 168] and its reuse
in [37] support the claim of faithfulness. Type safety (Chapter 3) and in
particular the compiler verification (Chapter 5) are excellent examples
for the second. However, bugs may still hide in technical details that
publications gloss over and in areas that sanity theorems fail to cover.

Therefore, this chapter takes the third route.52 Using Isabelle’s
code generator, I obtain an executable interpreter, VM, and compiler
from the formal definitions and validate the semantics by running
Java test programs and comparing the results with Sun’s reference
implementation. To make the vast supply of Java programs available for
testing, I also developed a translator Java2Jinja from Java to JinjaThreads
abstract syntax (§6.5). By running these test cases, I found a bug in
the implementation of binary operators (§6.5.2), which all previous
proofs were unable to reveal. Although validation through testing can
never prove the absence of errors, I am now confident that JinjaThreads
faithfully models the Java subset that I claim.

52Excerpts of this chapter have been published in [113]. Although this is joint work with
Lukas Bulwahn, this chapter presents only my work unless noted otherwise.

Chapter 6. JinjaThreads as a Java interpreter

Another contribution beyond validation are the executable VM, byte-
code verifier, and the compiler themselves, which I have automatically
extracted from the formalisation. Under the assumption that Isabelle’s
code generator is correct, the extracted compiler is verified and the VM
is type safe. In general, everything provable about the formalisation also
applies to them. This is particularly important in the context of Quis
Custodiet, which uses JinjaThreads to verify algorithms for enforcing
information flow policies. Running the certified Java programs under
the extracted VM ensures that the program behaves indeed as predicted
by the static program analysis.

Efficiency of the extracted code matters for both validation through
testing and running non-trivial programs, but JinjaThreads focuses
on proofs and modularity. Hence, non-negligible complications in
specifications and proofs for the sake of direct executability and efficiency
were out of the question. In particular, only the compiler is directly
executable, since it is written as a functional program. In §6.2 and §6.3, I
demonstrate how to combine Isabelle’s code extraction facilities (see §6.1
for an overview) such that (i) changes to the existing formalisation stay
minimal and (ii) efficient implementations replace inefficient or even
unexecutable ones. Empirical evidence shows that the VM is competitive
in performance with another formalised JVM that has been designed for
executability and efficiency from the start (§6.3.4).

From Bulwahn’s and my experience, we have distilled simple guide-
lines on how to develop future formalisations with executability in mind
(§6.4). Thus, JinjaThreads as a case study demonstrates that extracting
efficient code from large developments is feasible – even if executability
is of little concern in their design.

6.1 Isabelle code extraction facilities

In its most basic form, code extraction in Isabelle53 converts functional
programs in HOL into code in a functional programming language like
Standard ML, Haskell, OCaml, and Scala. For example, Figure 6.1 shows

53In the recent Isabelle literature [61,62], the terms “code generation” and “generated code”
refer to automatically obtaining (obtained) code in a functional programming language
from formal specifications. To avoid ambiguities with the bytecode that JinjaThreads’s
compiler outputs, I use the older term “extraction” [22]. This must not be confused with
Coq’s extraction mechanism [102], which is based on the Curry-Howard isomorphism.

262

6.1. Isabelle code extraction facilities

datatype tree = Leaf | Node tree int tree

fun preorder :: tree⇒ int list where
preorder Leaf = []
| preorder (Node l i r) = i · preorder l @ preorder r

(a) Isabelle declaration of binary trees and preorder traversal

datatype tree = Leaf | Node of tree * IntInf.int * tree;
fun preorder Leaf = []
| preorder (Node (l, i, r)) = i :: preorder l @ preorder r;

(b) Extracted ML code for preorder

data Tree = Leaf | Node Tree Integer Tree;
preorder :: Tree -> [Integer];
preorder Leaf = [];
preorder (Node l i r) = i : preorder l ++ preorder r;

(c) Extracted Haskell code for preorder

Figure 6.1: Preorder traversal for binary trees in Isabelle/HOL and the extracted
code

the declaration of a binary tree datatype tree and a pre-order traversal
preorder in Isabelle (a) and the extracted code in Standard ML (b) and
Haskell (c). The extracted code directly mirrors the defining equations
and uses the predefined types and operations for lists and integers.

It serves various purposes. It can be either interfaced and executed
with other code (see the Java2Jinja tool in §6.5 for an example) or run
in the theorem prover’s process to assist the user in proving theo-
rems. Examples for the latter are Isabelle’s counter example generator
Quickcheck [23,36] (§7.2), evaluation of ground terms [62], normalisation
of HOL terms [5], and proof by normalisation [6].

6.1.1 The code generator

Isabelle’s code generator [62] turns a set of equational theorems into a
functional program with the same equational rewrite system, see Fig-
ure 6.1 for an example. As it builds on equational logic, the translation
guarantees partial correctness by construction, because one could simu-

263

Chapter 6. JinjaThreads as a Java interpreter

late every execution step in the functional language by rewriting with
the corresponding equational theorem in the logic. Thus, every theorem
also holds for any terminating execution of the code. For example, the
type safety proof shows that the defensive VM as defined in Isabelle
never gets stuck at a type error for programs that the bytecode verifier
(§6.2.2) accepts. Thus, we can be sure that running verified bytecode
never crashes the extracted JVM because of a type error, either.54

Since only equations matter, the user may easily refine programs and
data without affecting her formalisation globally. Program refinement
can separate code extraction issues from the rest of the formalisation. As
any (executable) equational theorem suffices for code extraction, the user
may locally derive new (code) equations to use upon code extraction.
Hence, existing definitions and proofs remain unaffected, which has
been crucial for JinjaThreads.

For example, consider the definition of the prefix relation prefix on
lists in Figure 6.2. The code generator cannot use the original definition
because it contains an existential quantifier which ranges over an infinite
type. The user can prove the equations prefix-code that pattern-match
on the list constructors [] and · such that the code generator uses them
instead of the definition. Importantly, she does not touch the original
definition, which might break some proofs.

For data refinement, she may replace constructors of a datatype by
other constants and derive equations that pattern-match on these new
(pseudo-)constructors. Neither need the new constructors be injective
and pairwise disjoint, nor exhaust the type. Again, this is local as it
affects only code extraction, but not the logical properties of the refined
type. Thus, one cannot exploit inside the logic the type’s new structure
for code extraction. For example, the lower half of Figure 6.2 defines
the pseudo-constructor Lazy for implementing lists lazily and states the
appropriate code equation prefix-Lazy for prefix.

Only type constructors can be refined; some special types (such as
′a⇀ ′b for maps) must first be wrapped in an (isomorphic) type of their

54As equational logic has no notion of execution, the evaluation strategy of the target
language still can cause abrupt or non-termination [22]. For example, the code for

definition hd′ :: ′a list⇀ ′a where hd′ xs = (let x = hd xs in if xs = [] then None else bxc)

raises a MATCH exception in ML when hd′ is applied to the empty list, because ML’s eager
evaluation tries to compute hd [] although x is never used. In contrast, laziness in Haskell
makes the definition work fine.

264

6.1. Isabelle code extraction facilities

definition prefix :: ′a list⇒ ′a list⇒ bool where
prefix xs ys←→ (∃zs. ys = xs @ zs)

lemma prefix-code [code] :
prefix [] ys←→ True prefix (x · xs) []←→ False
prefix (x · xs) (y · ys)←→ x = y∧ prefix xs ys

definition Lazy :: (unit⇀ ′a× ′a list)⇒ ′a list where
Lazy xs = (case xs () of None⇒ [] |

⌊
(x, xs′)

⌋
⇒ x · xs)

lemma prefix-Lazy [code] :
prefix (Lazy xs) (Lazy ys) =
(case xs () of None ⇒ True
|
⌊
(x, xs′)

⌋
⇒ (case ys () of None ⇒ False
|
⌊
(y, ys′)

⌋
⇒ x = y∧ prefix xs′ ys′))

Figure 6.2: Program and data refinement for the prefix predicate on lists

own (e.g., (′a, ′b) mapping). Data refinement allows to implement them
as associative lists or red-black trees.

6.1.2 The predicate compiler

The predicate compiler [21] translates specifications of inductive pred-
icates, i.e., the introduction rules, into executable equational theorems
for Isabelle’s code generator. The translation is based on the notion of
modes. A mode partitions the arguments into input and output. For a
given predicate, the predicate compiler infers the set of possible modes
such that all terms are ground during execution. Lazy sequences handle
the non-determinism of inductive predicates. By default, the equations
implement a Prolog-style depth-first execution strategy. Applying the
predicate compiler to JinjaThreads’ inductive definitions has initiated the
following improvements by Bulwahn [113] over its initial description [21]:

First, mode annotations restrict the generation of code equations
to modes of interest. This is necessary because the set of modes is
exponential in the number of arguments of a predicate. Therefore,
the space and time consumption of the underlying mode inference
algorithm grows exponentially in that number; for all applications
prior to JinjaThreads, this has never posed a problem. In case of many

265

Chapter 6. JinjaThreads as a Java interpreter

arguments (up to 15 in JinjaThreads), the plain construction of this set
of modes burns up any available hardware resource. To sidestep this
limitation, modes can now be declared and hence they are not inferred,
but only checked to be consistent.

Second, he improved the compilation scheme: The previous one
sequentially checked which of the introduction rules were applicable.
Hence, the input values were repeatedly compared to the terms in the
conclusion of each introduction rule by pattern matching. For large
specifications, such as JinjaThreads’ semantics (contains 89 rules), this
naïve compilation made execution virtually impossible due to the large
number of rules. To obtain an efficient code expression, he modified
the compilation scheme to partition the rules by patterns of the input
values first and then only compose the matching rules – this resembles
similar techniques in Prolog compilers, such as clause indexing and
switch detection. I report on the performance improvements due to this
modification in §6.3.4.

Third, the predicate compiler now offers non-intrusive program
refinement, i.e. the user can declare alternative introduction rules. For
an example, see §6.3.1.

Fourth, the predicate compiler was originally limited to the restricted
syntactic form of introduction rules. Bulwahn added some preprocessing
that transforms definitions in predicate logic to a set of introduction
rules [36]. For example, the predicate compiler now directly processes the
definition of type-safe method overriding wf-overriding in Figure 2.9.

6.1.3 Data structures

Typically, definitions in proof assistants use standard HOL types for data
structures instead of concrete implementations, e.g., ′a⇀ ′b instead of
associative lists or red-black trees. This reduces clutter, because proofs
need not deal with different representations of the map. Such maps occur
in JinjaThreads source code as environment for typing judgements, the
local store, and the heap in the SC implementation. For code extraction,
however, this approach can lead to highly inefficient code or completely
defy extraction (§6.3.4).

Isabelle’s standard library provides associative lists and red-black
trees as backing implementations for maps and sets via data refinement
(§6.1.1), i.e., the code can treat sets and maps as data. As part of my
work, I have generalised this concept to FinFuns [108, 109]. A FinFun is

266

6.1. Isabelle code extraction facilities

a function that is almost-everywhere constant. Via data refinement, it is
implemented as an associative list that additionally stores the function’s
value outside the domain of the associative list. For example, a finite map
would store the default value None, a finite set – modelled as a predicate
– False, and complements of finite sets True. Since the FinFun type ′a⇒f

′b
contains only almost-everywhere constant functions, quantifiers and
function equality are decidable. JinjaThreads uses FinFuns for managing
the locks (§3.1.1) and storing lock BTAs in thread actions (§3.1.2).

Some operations remain unexecutable though, since data refinement
does not enrich the refined type’s structure. For example, iteration over
a finite set remains unexecutable when the result depends on the order
in which the iteration visits the elements. The Isabelle Collections Frame-
work (ICF) [91, 92] (joint work with Peter Lammich) advocates dealing
with refinement explicitly in the logic instead of hiding it in the code
generator. Locales abstractly specify the operations, concrete implemen-
tations interpret them. This allows for executing truly underspecified
functions. Additionally, the ICF provides more data structures (tries and
hashing) and a uniform interface for accessing them. JinjaThreads uses
the ICF for refining the non-deterministic interleaving semantics with a
scheduler.

6.1.4 Locales and code extraction

Locales and code extraction do not (yet) go well together. As code
extraction requires equational theorems in the (foundational) theory
context, equational theorems that reside in the context of a locale cannot
serve as code equations directly, but must be transferred into the theory
context.55 For a simple example, consider a locale L with one parameter
p, one assumption A p and one definition f = . . . that depends on p. Let
g be a function in the theory context for which A (g z) holds for all z. I
want to generate code for f where p is instantiated to g z.

The Isabelle code generator tutorial [61] proposes interpretation and
definition: One instantiates p by g z and discharges the assumption with
A (g z), for arbitrary z. This yields the code equation L.f (g z) = . . .,
which is ill-formed because the left-hand side applies f to the non-
constructor constant g. For code extraction, one must manually define a

55Similarly, the predicate compiler only operates on introduction rules in the theory
context, i.e. the same restrictions and solutions apply.

267

Chapter 6. JinjaThreads as a Java interpreter

new function f’ by f’ z = L.f (g z) and derive f’ z = . . . as code equation.
This approach is unsatisfactory for two reasons: It requires to manually
re-define all dependent locale definitions in the theory context (and for
each interpretation), and the interpretation must be unconditional, i.e.
A (g z) must hold for all z. In JinjaThreads, the latter is often violated,
e.g. g z satisfies A only if z is well-formed.

To overcome these deficiencies, my new approach splits the locale
L into two: L-base and L∗. L-base fixes the parameter p and defines f;
L∗ inherits from L-base, assumes A p, and contains the theorems and
proofs from L. Since L-base makes no assumptions about p, the locale
implementation exports the equation f = . . . in L-base as an unconditional
equation L-base.f p = . . . in the theory context, which directly serves as
code equation. For execution, I merely pass g z to L-base.f. I use this
scalable approach throughout JinjaThreads. Its drawback is that the
existence of a model for f, as required for its definition, must not depend
on L’s assumptions; e.g., the termination argument of a general recursive
function must not require L’s assumptions. Many typical definitions (all
in JinjaThreads) satisfy this restriction.

6.2 Static semantics

The static semantics fall into generic well-formedness constraints (Fig-
ure 2.9) and language-specific ones (Figure 2.10 and §2.2.3). In this section,
I describe what is necessary to obtain an executable well-formedness
checker for source code and bytecode.

6.2.1 Generic well-formedness

Generic well-formedness (Figure 2.9) poses little problems to code ex-
traction. The direct subclass relation P ` _≺1 _ and its reflexive transitive
closure (RTC) P ` _ �∗ _ and the subtype relation P ` _ ≤ _ are induc-
tive predicates that the predicate compiler preprocesses. So does it for
wf-overriding thanks to Bulwahn’s recent extensions in its preprocessor.
Further, since all universal quantifiers are bound by lists, they pose no
problem either. Hence, it is easy to extract code for wf-prog.

It is harder to see that the extracted code might not terminate for
programs with cyclic class hierarchies. The subclass relation P ` _�∗ _
builds on the RTC and the prolog-style execution for RTC might loop

268

6.2. Static semantics

in the hierarchy’s cycle. Instead, I configure the code generator to use a
tabled RTC by Berghofer [113, §2.3]. This ensures that querying P ` _�∗ _
always terminates, i.e., wf-prog reliably detects cyclic class hierarchies.

Even less obvious, another source of non-termination hides in the
order in which the various well-formedness constraints are executed.
wf-prog calls wf-cdecl for all classes in P in the order in which they appear
in P – and wf-cdecl checks that the current class is not part of a cycle in the
class hierarchy (condition¬P `D�∗ C). Hence, when the other predicates
of wf-cdecl are being executed, there still may be some undetected cycle
in other parts of the hierarchy – in particular, superclasses may be part
of that. But method lookup as used in wf-overriding recurses over the
class hierarchy and – like the default setup for P ` _ �∗ _ – might not
terminate. The simplest fix is to check acyclicity up-front. Hence, the
code generator uses the following equation for wf-prog:

wf-prog w f -md P←→
acyclic-hierarchy P∧wf-syscls P∧
distinct (map fst P)∧ (∀cd ∈ set (classes P). wf-cdecl′ w f -md P cd)

acyclic-hierarchy P←→
(∀(C, D, ms, f s) ∈ set (classes P). C , Object −→ ¬P `D�∗ C)

where wf-cdecl′ differs from wf-cdecl only in that wf-cdecl′ omits the
acyclicity test ¬P `D�∗ C.

Both sources of non-termination have already flawed Jinja’s and
µJava’s bytecode verifiers. They are generally hard to track down,
because HOL cannot reflect the notion of computation that is inherent
in the extracted code. Hence, only extensive testing as I have done for
JinjaThreads with Quickcheck (§7.2) and Java2Jinja (§6.5) can provide
some level of confidence.

6.2.2 The bytecode verifier

The bytecode verifier has to check statically that every execution of
the program meets at run-time the assumptions that the VM makes
(§2.2.3). To that end, the JVMS [103] specifies a verification procedure
that interprets bytecode methods abstractly. Like Jinja, JinjaThreads
models the verification as a data flow analysis (DFA) using Klein’s DFA
framework [79]. The abstract values are state types, applicability app and
effect eff implement the transfer functions (see §2.2.3). Hence, bytecode

269

Chapter 6. JinjaThreads as a Java interpreter

verification is to compute a solution to the data flow problem, using the
summary information for methods, i.e. parameter and return types, from
the program declaration. Any solution of the data flow analysis yields a
consistent method-well typing. Since JinjaThreads only extends Jinja’s
bytecode verifier to the new instructions, I omit a detailed presentation
and refer the interested reader to [83].

The DFA framework solves DFA problems using Kildall’s worklist
algorithm [78] under the following prerequisites that ensure correctness
and termination: First, there is no infinitely ascending chain of valid
types, all transfer functions are monotone and preserve validity of types.
Second, the least upper bound of two abstract values is computable and
a valid type.

Only proving the ascending chain condition (ACC, notation acc) and
computing least upper bounds (lub) are novel. In Jinja, the set of valid
types is finite, i.e., acyclicity of the class hierarchy ensures the ACC.
JinjaThreads, however, contains infinitely many types due to unbounded
array dimensions. In fact, as described in §2.1.2, the subtype relation
does contain infinitely ascending chains. The key to proving ACC
and computing lubs is that single inheritance in JinjaThreads allows
to organise valid reference types other than NT in a tree rooted at
Class Object such that valid supertypes are exactly the transitive parents
– see Figure 2.6 for the Hasse diagram. Hence, the distance from the root
Class Object, i.e., the depth, is a measure on array and class types for
subtyping. The function inheritance-level P C recurses over P’s class
hierarchy to determine the number of superclasses of C; the acyclicity
check ensures that the recursion always terminates. Then, the function
subtype-measure computes the depth in the tree.

subtype-measure P (Class C) = inheritance-level P C
subtype-measure P (T[]) = 1 + subtype-measure P T
subtype-measure P _ = 0

inheritance-level P C =
(if acyclic (P ` _≺1 _)∧ is-class P C∧C , Object
then let

⌊
(D, _, _)

⌋
= class P C in inheritance-level P D + 1

else 0)

Hence, subtyping on valid class and array types has no infinitely ascend-
ing chain. From this, it follows easily that subtyping on valid types has
no such chain either.

270

6.2. Static semantics

Lemma 6.1. If wf-prog w f -md P, then acc (types P) (P ` _ ≤ _).

The above tree structure of the subtype relation also allows to extend
Jinja’s iterative algorithm for computing lubs on class names to valid
types. If both types T1 and T2 are class or array types, start with T at T1
and keep ascending in the tree until T is a supertype of T2. Then, T is the
lub of T1 and T2. Otherwise, the lub does not depend on the program
and therefore can be hardwired.

Using Klein’s DFA framework, I obtain an executable bytecode
verifier to decide the bytecode-specific well-formedness constraints.
Hence, wf-jvm-prog is executable.

In µJava, Klein [79] bounds the number of array dimensions by 255 as
the JMVS does [103] due to syntactic restrictions of the class file format.
Thus, the type universe is finite and the ascending chain condition
reduces to acyclicity. Moreover, Klein’s bytecode verifier computes sets
of types instead of taking the least upper bound. Hence, he does not
need to derive an executable lub implementation. The same would be
possible for JinjaThreads, because one could compute a bound on the
dimensions for every program. However, I conjecture that dealing with
sets is less efficient than computing lubs. Moreover, type checking source
code needs executable lubs anyway (§6.2.3).

6.2.3 Type inference for source code

Source code well-formedness (Figure 2.10) requires well-typedness of
the method body. Hence, a well-formedness checker must include a type
checker, but even type checking requires type inference. Consider, e.g.,
the typing judgement for assignment to array cells below, which repeats
WTaass from Figure 2.7.

P, E ` e1 :: T[] P, E ` e2 :: Integer P, E ` e3 :: T′ P ` T′ ≤ T

P, E ` e1[e2] B e3 :: Void

When the predicate compiler compiles _, _ ` _ :: _, mode analysis must
ensure that all variables are assigned to ground terms when the modes of
the assumptions consider them as input. Type checking corresponds to
the mode where all parameters are input, type inference assigns output
to the expression type. Since P, E, e1, e2, and e3 occur in input positions in
the conclusion of WTaass in either case, they pose no problem. However,

271

Chapter 6. JinjaThreads as a Java interpreter

the first and third premise require T and T′ to be ground for type checking.
Hence, the predicate compiler can choose to either enumerate all pairs
(T′, T) for which the subtype relation P ` T′ ≤ T holds, or infer e1’s and
e3’s type and check for P ` T′ ≤ T, or any combination thereof. Note that
in case e1[e2] B e3 is type-incorrect, only the second option terminates
always, because Class Object (NT) has infinitely many subtypes (super-
types). To force the predicate compiler choose right, mode annotations
allow only mode “everything input” for the subtype relation.

For type inference, the rule for the conditional operator _ ? _ : _
in Java requires to compute the lub of the types of the second and
third argument [56, §15.25]. As the declarative definition of the type
system uses the declarative lub definition (WTcond), type inference (and
thus type checking) is not executable. Therefore, I have parametrised
_, _ ` _ :: _ by the lub operation. The standard version takes the
declarative lub predicate from §2.1.2, the one for code extraction the
executable lub implementation of the bytecode verifier (§6.2.2). Then,
I prove that both versions agree on acyclic class hierarchies rooted at
Object, but I cannot refine the declarative definition because equality
only holds under acyclicity. Since generic well-formedness ensures the
precondition, wf-J-mdecl can use the executable version.

After these preparations, well-formedness for source code no longer
poses any difficulties for code extraction. Note that all the setup is
transparent to the existing formalisation.

6.3 Interpreter and virtual machine

In this section, I describe the obstacles on the way to an executable
source code interpreter and an executable virtual machine, and how to
overcome them.

6.3.1 The single-threaded semantics

Memory model

For code extraction, I only use sequential consistency as heap module
implementation (§4.2), because the legality constraints of the JMM are
axiomatic and thus not executable. As sketched in Figure 2.11, sequential
consistency models the heap as a partial function from addresses (natural

272

6.3. Interpreter and virtual machine

RparamX: P, t ` 〈Val v.M(map Val vs @ Throw a · es), s〉
−LM→〈Throw a, s〉

RparamX2:
is-Throws es

P, t ` 〈Val v.M(es), s〉 −LM→〈hd (dropWhile is-Val es), s〉

Figure 6.3: Original and alternative introduction rule of the small-step semantics

numbers) to objects and arrays. Allocation must find a fresh address, i.e.,
one not in the heap’s domain. Originally, this was defined via Hilbert’s
underspecified (and thus not executable) ε-operator as in (6.1). For code
extraction, I had to change new-Addr’s specification to the least fresh
address, replacing εwith LEAST. Then, I proved (6.2) and (6.3) to search
for the least fresh address.

new-Addr h
= if (∃a. h a = None) then bεa. h a = Nonec else None (6.1)

new-Addr h = gen-new-Addr h 0 (6.2)
gen-new-Addr h n

= if (h n = None) then bnc else gen-new-Addr h (n + 1) (6.3)

Small-step semantics

The small-step semantics P, t ` 〈e, (h, xs)〉 −ta→ 〈e′, (h′, xs)〉 is another
inductive predicate. The predicate compiler processes 84 of 88 intro-
duction rules automatically. For the others, I must provide alternative
introduction rules via program refinement. Figure 6.3 shows the rule
RparamX for propagating the exception raised while evaluating the
parameters, which is representative for the four. This rule violates the
desired mode for executing the semantics because its execution would
require pattern-matching against the term map Val vs @ Throw a · es.
The remedy is to declare the alternative introduction rule RparamX2: It
replaces the problematic term by a fresh variable es and instead uses the
guard is-Throws es with the following inductive definition.

is-Throws (Throw a · es)
is-Throws es

is-Throws (Val v · es)

To obtain Throw a as the reduced expression, dropWhile is-Val removes
es’s prefix of values until the head is the raised exception. To ensure

273

Chapter 6. JinjaThreads as a Java interpreter

that the alternative introduction rules replace the definitional ones in a
complete manner, I have to prove the elimination rule that corresponds
to the new introduction rules, a technically difficult, but conceptionally
straightforward task.

Mode annotations for executing the small-step semantics are crucial.
The abstraction of the heap module in the locale heap-base adds seven
parameters to the small-step semantics in the theory context, which
consequently allows a monstrous number of modes.

Virtual machine

The single-threaded VM poses no significant challenges for code extrac-
tion, because it is written as a functional program. Unfortunately, the
code generator does not yet support set comprehensions over predicates
such as read and write. Hence, I adapt the equations for accessing the
heap like in Figure 4.5 to directly use their functional implementation
produced by the predicate compiler.

6.3.2 Schedulers

Executing the interleaving semantics from Chapter 3 poses three prob-
lems:

1. The thread pool and the wait sets are modelled as functions of type
_⇒ _ option. Neither quantifying over these maps’ domains (e.g.
to decide whether all threads have terminated) nor picking one
of its elements (e.g. to remove an arbitrary thread from a wait set
upon notification) are executable.

2. The state space of all possible interleavings is usually too large to
be effectively enumerable. Therefore, one wants to pick one typical
interleaving.

3. JinjaThreads programs that might not terminate should at least
produce a prefix of the observable operations of such an infinite
run.

To address the first, I previously [109] proposed to replace these maps
with FinFuns, a generalisation of finite maps. Although quantification
over the domain then becomes executable, it turned out that choosing

274

6.3. Interpreter and virtual machine

an underspecified element remains unexecutable. I therefore use them
only for lock management (§3.1.1). For the thread pool and the wait sets,
I instead follow the approach of the Isabelle Collections Framework [92].
In the refined multithreaded state, I replace the concrete functions with
modules, i.e., type variables and abstract operations that I specify in two
locales. Picking an arbitrary element remains underspecified, but this is
now explicit inside the logic, not HOL’s metalogic. Before code extraction,
I instantiate the locales with concrete data structure implementations
like red-black trees and thus resolve the underspecification.

As to the second problem, I do not use the predicate compiler for
_ −_:_→ _ and _ −_→∗ _, as it would produce a depth-first search that
enumerates all possible interleavings. The first few interleavings would
be such that one thread executes completely (or until it blocks), then the
next thread executes completely, etc. Interesting interleavings would
occur only very much later – or never at all, if one of the preceding ones did
not terminate. Instead, I let a scheduler pick the next thread at each step.

Formally, a scheduler consists of two operations (that I specify ab-
stractly in two locales again): The function schedule takes the scheduler’s
state and the refined multithreaded state, and returns either a thread
together with its next transition and the updated scheduler state, or
None to denote that the execution has finished or is deadlocked. The
other function wakeup chooses from a monitor’s wait set the thread to
be notified. In terms of these two functions, I define a deterministic,
executable step function that updates the multithreaded state just like
the non-deterministic interleaving semantics does. To obtain a complete
interleaving as a potentially infinite trace, I corecursively unfold this step
function. Then, I formally prove that this in fact yields an interleaving.

I have instantiated this specification with two concrete schedulers:
a round-robin scheduler and a random scheduler based on a pseudo-
random number generator. The most intricate problem is how to obtain
(as a function) the thread’s step from the (relational) small-step semantics,
once the scheduler has decided which thread to execute. Fortunately,
the semantics under SC is deterministic, if one considers only transitions
whose preconditions are met by the current state. Thus, I use Bulwahn’s
executable version of Russell’s definite descriptor [113].

Corecursive traces also solve the third problem. I instruct the code
generator to implement possibly infinite lists lazily. For Haskell, this is
the default; for the other target languages, data and program refinement
provide an easy setup.

275

Chapter 6. JinjaThreads as a Java interpreter

1 datatype ′m prog = Program ′m cdecl list
2 definition prog-impl-invar P′ c s f m =

(c = Mapping (class (Program P′))∧ . . .)
3 typedef ′m prog-impl =

{
(P′, c, s, f , m). prog-impl-invar P′ c s f m

}
morphisms impl-of Abs-prog

4 definition ProgDecl = Program ◦ fst ◦ impl-of
5 code_datatype ProgDecl
6 lemma [code] : class (ProgDecl P) = lookup (fst (snd (impl-of P)))
7 definition tabulate P′ = Abs-prog (P′, tab-class P′, tab-subcls P′, . . .)
8 lemma [code] : Program = ProgDecl ◦ tabulate
9 fun compP-impl f (P, c, s, f , m) =

(let P′=map (compC f) P in (P′, tab-class P′, s, f , tab-method P′))
10 definition compP′ f = Abs-prog ◦ compP-impl f ◦ impl-of
11 lemma [code] : compP f (ProgDecl P) = ProgDecl (compP′ f P)

Figure 6.4: Tabulation for lookup functions and the subclass relation

6.3.3 Tabulation

An execution of a JinjaThreads program frequently checks type casts
and performs method lookups. However, with the above setup, the
semantics recomputes the subtype relation and lookup functions at every
type cast and method call from scratch. Now, I show how to leverage
program and data refinement to avoid such recomputations with only
minimal changes to the formalisation itself. I precompute the subclass
relation, field and method lookup (a standard technique for VMs) and
store them in mappings – Isabelle’s special-purpose type for maps, see
§6.1.1. Figure 6.4 sketches the necessary steps.

Remember that a JinjaThreads program declaration wraps the list of
class declarations in a type of its own (l. 1 in Figure 6.4, repeated from
Figure 2.3).

First, I define the type ′m prog-impl (l. 3); the morphisms impl-of
and Abs-prog translate between the new type and the set of its elements.
Apart from the original program declaration (as a list P′), the elements
(P′, c, s, f , m) consist of mappings from class names to (i) the class decla-
ration (c), (ii) the set of its superclasses (s), and (iii) two mappings for field
and method lookup with field and method names as keys (f and m). The
invariant prog-impl-invar (l. 2) states that the mappings correctly tabulate

276

6.3. Interpreter and virtual machine

the lookup functions and subclass relation. Then, I define (l. 4) and declare
(l. 5) the new constructor ProgDecl :: ′m prog-impl⇒ ′m prog for data
refinement, which (in the logic) only extracts the program declaration.

For the lookup functions, the subclass relation, and the associated
constants that the predicate compiler has introduced, I next prove code
equations that implement them via lookup in the respective mapping – see
l. 6 for class declaration lookup. This program refinement suffices to avoid
recomputing lookup functions and the subclass relation during execution.

However, the extracted code now expects the input program to come
with the correctly precomputed mappings. Thus, I define tabulate (l. 7)
and auxiliary functions (not shown) that tabulate the lookup functions
and subclass relation in these mappings for a given list P′ of class
declarations. Finally, I implement the former constructor Program in
terms of tabulate and ProgDecl (l. 8).

As the representation of programs has changed, I must also adapt the
compiler. The function compP-impl is compP’s analogon on the repre-
sentation of type ′m prog-impl (l. 9). First, it compiles all classes and then
rebuilds the tabulations for class and method. Since compilation does not
change the subclass relation or field lookup, their tabulations need not
be recomputed. compP′ takes compP-impl to the new type ′m prog-impl
(l. 10). Finally, I derive the new code equation for compP (l. 11).

6.3.4 Efficiency of the interpreter

Although I cannot expect the generated interpreter to be as efficient as
an optimising JVM, to see whether it is suited to run small programs,
I have evaluated it on a standard producer-buffer-consumer example;
Appendix A contains the code. The producer thread allocates n objects
and enqueues them in the ring buffer, which can store ten elements at the
same time. Concurrently, the consumer thread dequeues n objects from
the buffer. Table 6.1 lists the running times of the source code interpreter
for different code generator setups. All tests ran on a Pentium DualCore
E5300 2.6 GHz with 2GB RAM using MLton 20100608 and Ubuntu
GNU/Linux 9.10. The figures are the average of four runs for each setup.

With the adaptations from §6.3.1 and §6.3.2 only, the code is un-
bearably slow (column 1). For n = 100, interpreting the program takes
38 min, i.e., 2,320.35 s. As the main bottleneck, I identified the naïve com-
pilation scheme for the small-step semantics. Switching to the improved
compilation scheme in the predicate compiler (§6.1.2) speeds up the

277

Chapter 6. JinjaThreads as a Java interpreter

default with almost heap tabu-
n setup indexing strict as RBT lation

10 236.51 3.40 .12 .11 .09
100 2, 320.35 31.03 1.71 .99 .86

1,000 — — 579.76 9.84 8.67
10,000 — — — 91.77 81.73

100,000 — — — 1, 394.93 1, 280.62

Table 6.1: Timing (in seconds) for running the producer-consumer example
(Appendix A) on n objects for different adjustments to the source code interpreter;
— denotes timeout after 1 h

interpreter by two orders of magnitude (column 2). The definite descrip-
tor ι that extracts the result configuration from the enumerations, strictly
evaluates all branches. Hence, explicit laziness in the generated code
is unnecessary. If I remove the most obvious constructions that enforce
laziness from the code equations that were compiled under the improved
scheme, a program run with n = 100 takes only 1.71 s (column 3).

As n increases, another bottleneck shows up: memory allocation
(cf. §6.3.1). Since the heap is modelled as a function and writes as
function updates, i.e., closures, finding the next fresh address takes time
quadratic in the number of previous allocations. Thus, interpreting the
example program is quadratic in n although the program itself only
requires linearly many steps. To speed up allocation and read access,
I implemented the heap module (§4.1.1) for sequential consistency a
second time with efficient data structures from the ICF: The heap is
now a red-black tree (RBT) with addresses as keys, the array cell list
becomes an RBT with indices as keys, and tries implement the field
tables. Combined with the other improvements, this already provides a
decent interpreter (column 4): Run times grow linearly in n as expected.
n = 100, 000 is an outlier because memory consumption exceeds the
two 2 GB of physical memory and garbage collection of the ML runtime
environment runs frequently.

Finally, I also added tabulation (§6.3.3), where the mappings are for
simplicity implemented as associative lists. Surprisingly, the speed-up
(less than 15%) is modest. The reason might be the tiny class hierarchy
of the example program for which lookup functions terminate quickly.

278

6.3. Interpreter and virtual machine

default heap tabu- caching w/o tabulation
n setup as RBT lation tabulation & caching

10 1.00 .03 .01 .02 .01
100 1.81 .11 .07 .07 .06

1,000 23.68 1.07 .70 .61 .62
10,000 — 10.97 7.07 6.21 6.29

100,000 — 109.90 71.12 62.36 63.05

Table 6.2: Timing (in seconds) for running the producer-consumer example
(Appendix A) on n objects for different setups of the virtual machine; — denotes
timeout after 1 h.

I also ran the tests with the code generated in Haskell (compiled with
Glasgow Haskell Compiler 6.10.4) and OCaml (compiled to native code
with OCaml 3.11.1). The Haskell code is about 50% slower than ML and
the OCaml code takes between 2 and 5 times as much time as MLton.
Nevertheless, the different adjustments to the interpreter affect the run
times similarly to ML.

I have also compiled the example program with JinjaThreads’ com-
piler and run it in the virtual machine. Table 6.2 shows the timings for
the VM – again with different setups. Although the VM is much faster
than the source code interpreter, the VM is still relatively slow under the
default setup (column 1). Like for source code, switching to red-black
trees helps (column 2). Tabulation (column 3) has a much greater effect
(35% speed-up) on the VM, because the VM performs method lookup
at every step to retrieve the next instruction to execute. Therefore, I
implemented a second VM that caches the instruction list and exception
table in the call frames. With the heap as RBT, this gains another 12%
in performance over tabulation (column 4). Surprisingly, combining
tabulation and caching slightly slows the VM down (column 5). Since the
performance loss is not a constant, it is unlikely that building the lookup
tables is the reason. Rather, I suspect that the more complicated type
representation for JinjaThreads programs impairs MLton’s optimiser,
since the same effect is much stronger (20% slow-down) under PolyML
5.4.1, which optimises less aggressively.

Although the VM run-times are already decent (about one minute for
100,000 objects), the interpreter and VM are still far from a commercial
VM: The Java HotSpot VM takes only 150 ms for 100,000 objects.

279

Chapter 6. JinjaThreads as a Java interpreter

In [104], Lui and Moore test their JVM formalisation M6 in ACL2
on a simple parallel factorial algorithm. To compare my interpreter
with theirs, I have converted the Java program to JinjaThreads with the
Java2Jinja tool (§6.5). For computing 10! with five threads in parallel, the
source code semantics takes 26.7 s and the VM just 0.2 s. The M6 takes
6.2 s when run in the ACL2 interpreter, version 2.7 with GNU CLISP 2.42.
Hence, JinjaThreads and the M6 have comparable performance.

6.4 Guidelines for executable formalisations

From Bulwahn’s and my experience with JinjaThreads, we have distilled
the following guidelines to easily obtain executable formalisations in
Isabelle/HOL.

Avoid Hilbert’s ε-operator! Hilbert’s choice cannot express under-
specification adequately as, in HOL’s model, its interpretation is fully
specified. Partial correctness of the code generator guarantees that all
evaluations in the functional language hold in every model. Thus, one
cannot replace it by any implementing function that chooses one suitable
value consistently and fixes the underspecified function to one concrete
model. Instead, use one of the following options:

1. Change the definition to make the choice deterministic and imple-
mentable, e.g., always pick the least element.

2. Use locales for intra-logical underspecification and instantiate the
choice operator to a concrete implementation by locale interpreta-
tion.

3. Switch to a relational description and prove the correctness for all
values.

The first is least intrusive to the formalisation, but requires changes to
the original specification. To execute the deterministic choice, one needs
to run the predicate compiler on the choice property and use Bulwahn’s
executable definite descriptor for predicates [113], or implement a suitable
search algorithm via program refinement. I use the former in the
scheduler (§6.3.2) and the latter for memory allocation (§6.3.1).

280

6.4. Guidelines for executable formalisations

The second is the most flexible option, but also tedious, as the
locale does not automatically setup proof automation and lacks true
polymorphism. I use this approach, e.g., to specify schedulers (§6.3.2).
Care must be taken in combination with data refinement via the code
generator, as the choice must not depend on the additional structure that
the interpretation introduces.

The last option completely avoids underspecification, but relinquishes
the functional implementation. For code extraction, one should either
(i) apply the predicate compiler to obtain code that computes all pos-
sible implementations for the specification, or (ii) provide a functional
implementation and show correctness (§6.3.2). For the latter, one must
typically replace the involved types with others that have additional
structure.

Structure locales wisely! Modular specifications, i.e., locales, and code
extraction do not (yet) go well together (see §6.1.4). To combine them,
one best adheres to the following discipline: One locale Sig fixes the
parameters’ signatures and contains all definitions that depend on the
parameters. Another locale Spec extends Sig and states the assumptions
about the parameters; all proofs that depend on the assumptions go into
Spec. For functions and inductive predicates of Sig, one feeds the equa-
tional theorems and introduction rules exported into the theory context
to the code generator or predicate compiler, respectively. To obtain the
(correctness) theorems, instantiate Spec and prove the assumptions. I
have used this approach throughout JinjaThreads.

Annotate predicates with modes! Mode annotations for predicates
instruct the predicate compiler to generate only modes of interest, not all
modes that its mode analysis can infer. They provide three benefits. First,
if the predicate has many parameters, analysing all modes can quickly
become computationally intractable (cf. §6.3.1) – in this case, they are
necessary. Second, they ease maintenance and debugging as they fail
immediately after adjustments: If changes in the development disable a
mode of interest, an error message indicates which clauses are to blame.
Without annotations, the missing mode might remain undiscovered
until much later, which then complicates correcting errors. Third, some
not annotated, but inferable modes might lead to generation of slow or
non-terminating functions. By disallowing them, the predicate compiler

281

Chapter 6. JinjaThreads as a Java interpreter

cannot accidentally pick one of them when it compiles a subsequent
predicate.

6.5 The translator Java2Jinja

Formalisations in the size of JinjaThreads require better validation than
manually scrutinising the definitions and comparing them to the lan-
guage specification. One way of validating the semantics is to execute
test programs and check for the expected result. However, JinjaThreads’
syntax is different from and only a subset of Java’s.

Hence, to make the vast supply of Java programs available, Jonas
Thedering, Antonio Zea, and I have developed the conversion tool
Java2Jinja56 as a plugin to the Eclipse IDE with the following modes
of operation. First, it translates Java class hierarchies into JinjaThreads
abstract syntax, emulating many unsupported Java features. Second, it
provides a frontend to the well-formedness checker (§6.2), interpreter
(§6.3), and compiler (§5.5) that I have extracted from the formalisation
using Isabelle’s code generator. Third, it can automatically run full test
suites where command-line arguments and the expected output are
provided as Java annotations in the programs.

Being implemented in Java and on top of the Eclipse Java Develop-
ment Tools (JDT), the translator itself defies formal verification. The
possibility for introducing errors is negligible for the subset of Java that
JinjaThreads directly models, because the translations are minuscule.
However, even small Java programs require some parts of the Java
standard API which exceed this subset, e.g., class String. Therefore,
Java2Jinja emulates these features with non-trivial, unverified transfor-
mations (§6.5.1), which possibly introduce errors. I have extensively
tested Java2Jinja (§6.5.2), but this naturally cannot prove their absence.
These threats could only be avoided if JinjaThreads was extended to
support the missing features, which are mostly of sequential nature.
However, this is beyond the scope of this work.

Figure 6.5 shows Java2Jinja’s user interface. When the user invokes
the conversion tool, e.g., using the new button Java2Jinja in the tool bar,
which the mouse cursor points to, she can choose which main method
to execute and specify parameters as needed. Then, the translated

56http://pp.info.uni-karlsruhe.de/projects/quis-custodiet/Java2Jinja/

282

http://pp.info.uni-karlsruhe.de/projects/quis-custodiet/Java2Jinja/

6.5. The translator Java2Jinja

Figure 6.5: Java2Jinja in the Eclipse IDE for the producer-consumer example
from Appendix A

program can be checked for well-formedness or executed in the extracted
interpreter or VM – Java2Jinja prints the results in the console window
(at the bottom).

Note that well-formedness checking is a sanity check for the trans-
lation being correct, not syntactic correctness of the Java source code.
The JDT already catch such compiler errors. Nevertheless, JinjaThreads
considers some well-formed Java programs to be ill-formed, because
its definite assignment analysis (taken from Jinja) is less precise than
the one that the JLS specifies [56, §16]. For example [56, §16], the
following program passes Java’s definite assignment test, but not Jinja-
Threads’, because the latter’s analysis does not infer that the access to

283

Chapter 6. JinjaThreads as a Java interpreter

k in the method call occurs only if both conditions are evaluated, i.e., k
is initialised.

int k; if (v > 0 && (k = ...) >= 0) { System.out.println(k); }

6.5.1 The translation

Although JinjaThreads syntax already covers a substantial part of Java,
lots of syntactic sugar and some imperative control structures are omitted.
Some of them could be easily added to the semantics, bloating the model
and especially proofs. Others would require substantial re-engineering.
Hence, Java2Jinja tries to emulate these as good as possible. In the
following, I briefly describe the translations.

Operators JinjaThreads misses the operator for string concatenation [56,
§15.18.1], unary ones [56, §15.15], postfix ones [56, §15.14], and compound
assignment ones [56, §15.26.2]. Java2Jinja replaces string concatenation
with StringBuilder as allowed by the JLS [56, §15.18.1.2]. Unary op-
erators are emulated via their binary counterparts, e.g., -x becomes
Val (Intg 0) «–» (Var x). Postfix operators are emulated using a fresh
local variable that remembers the former value. For example, y = x++;
becomes y B {~tmpVar_0 : Integer = None; ~tmpVar_0 B x; ; x B
Var ~tmpVar_0 «+» Val (Intg 1); ; Var ~tmpVar_0}. Here, the translation
exploits that Java identifiers never contain ~ and that local variable
blocks in JinjaThreads may return a value. Compound assignments are
desugarized and fresh local variables store the computed parts of the
left-hand side (e.g., f() in a[f()] += x;) such that they are evaluated
only once.

Primitive types The primitive types byte, short, char, and int are all
mapped to Integer. This is sound since all Java operators automatically
promote these to int. There is no support for long or floating point values.
Auto-(un)boxing of supported primitive types [56, §5.1.7, §5.1.8] is
replaced by method calls of the appropriate classes, e.g., Integer i = 0; is
translated like Integer i = Integer.valueOf(0);. Conversions between
primitive types are either no-ops (widening [56, §5.1.2]) or extract the
required bits (narrowing [56, §5.1.3]). For example, (char) x becomes
x & 65535.

284

6.5. The translator Java2Jinja

Control flow structures JinjaThreads only supports conditionals, while
loops, and exceptions. Java’s other statements for locally transferring
control (switch, do-while loops, and for loops) are implemented with
conditionals and while loops. Non-local transfer of control (break,
continue, return) are implemented by throwing an exception and catching
it again at the target. For finally clauses, Java2Jinja follows the JVMS’
recommendation for compilation to bytecode [103, §7.13]. They are
duplicated and inserted at the end of the try block and in an exception
handler that catches all raised exceptions.

Methods Java2Jinja resolves overloaded methods and appends the
method descriptor to the name [103, §4.3.3]. Lack of visibility constraints
affects method resolution in that private methods should be resolved stat-
ically. Since JinjaThreads knows only dynamic dispatch, private methods
are renamed uniquely such that dynamic and static dispatch agree. The
same applies to invocations with super – if necessary, method signatures
are duplicated and the dynamically dispatched version delegates to the
statically dispatched. For example, in

class A { void g() { h(); } private void h() { } }
class B extends A { void g() { super.g(); } void h() { } }

g in Amust call h of A and super.g()must disable dynamic dispatch for
g and call A’s method. Hence, h in A is renamed to A~h()V and there are
two copies of A’s method g: (i) A~g()V is called by super.g();, its body
calls A~h()V. (ii) g()V delegates to A~g()V, B overrides it.

Abstract methods throw an UnsupportedOperationException. Native
methods are translated to native JinjaThreads methods. If JinjaThreads
does not provide an implementation (§2.1.3 and §3.2.1), the program is
ill-formed and execution gets stuck when such a method is called.

Constructors and initialisation Like in Java bytecode, JinjaThreads al-
lows objects to be allocated without executing their constructor. Java2Jinja
inserts the constructor calls and default constructors as necessary. In-
stance initialisers [56, §8.6] and field initialisations [56, §8.3.2] are added
to the constructors after the call of the super-constructor in the order
they appear in the program text.

285

Chapter 6. JinjaThreads as a Java interpreter

Static members and compile-time constants Since JinjaThreads sup-
ports only non-static members, Java2Jinja introduces a singleton class
that collects all static fields, methods and initialisers. Their names are
prefixed by the fully qualified name of the declaring class to avoid
ambiguities. Moreover, every object and array stores a reference to the
singleton object in a field through which threads access these members.
For simplicity, all static initialisers are executed before the main method
of the program, which violates the official class initialisation proce-
dure [56, §12.4]. Following the latter would require further substantial
transformations of the program.

Nested classes Java2Jinja provides limited support for nested classes
in that it replaces them by ordinary top-level classes that store a reference
to the enclosing instance if necessary. However, accessing fields and
local variables of enclosing classes and methods is still experimental.

Generics Type erasure removes all generics. Reflective type tokens
such as <T> void f(Class<T> c) and multiple bounds are not supported.

Interfaces Although interfaces are widely used in Java programs, they
cannot be simulated in JinjaThreads and are therefore unsupported.
In the special case where a class C inherits from Object and a single
interface I, Java2Jinja turns I into a class and changes the class hierarchy
such that I extends Object and C extends I. Since interfaces are another
common source of ill-formedness of converted programs, Java2Jinja lists
all problematic classes and interfaces during the translation as a warning
message.

Standard API Every Java program uses Java’s standard API, e.g., the
mainmethod takes an array of Strings. To avoid that unnecessary parts
are sucked in, Java2Jinja approximates the classes and their members that
are actually needed and only translates these. Otherwise, irrelevant code
would bloat the JinjaThreads code or possibly inhibit correct translation,
because it might include unsupported Java code, e.g., heavy use of
interfaces. It would also deteriorate performance, since (i) the well-
formedness checker has to analyse more code, and (ii) initialisations
before the mainmethod starts take longer, because they allocate all string

286

6.5. The translator Java2Jinja

literals. The heuristics is sound except for initialisations. For example,
Java2Jinja removes the field i from

class A { int i = 1 / 0;
public static void main(String[] args) { new A(); } }

because it is not used. Hence, the translated program terminates normally
whereas the Java program fails with an ArithmeticException.

Further, JinjaThreads also provides a customized version of the
standard library classes derived from OpenJDK 6 [139]. Some native
methods like System.arraycopy are implemented manually such that
they are available in translated programs. Moreover, we have removed
Unicode processing from String and Character and replaced the affected
methods with those from CLDC [41] with ASCII support only. Unicode
processing requires large character data tables that are initialised laziliy
through class initialisation in Java. As Java2Jinja initialises all classes
before the start of the program, the translated program would eagerly
initialise all of them, which consumes prohibitive amounts of memory
and time.

6.5.2 Validation

I have tested the semantics and translation thoroughly by executing
numerous test cases from different sources. Although most bugs were
caused by the translation, I also found one in the semantics: For divi-
sion and remainder, JinjaThreads used the default implementation that
Isabelle’s Word library provides, but the JLS specifies them differently
for negative divisors. Since both source code and bytecode use the very
same operation, the compiler verification was not able to catch this bug.

In detail, I have used the following test cases:

• 59 hand-written programs for regression testing.

• Jacks [74], a suite of test cases designed to identify bugs in Java
compilers. These tests identified only bugs in the translation. I use
136 cases out of 149 from the runtime section, the 13 remaining
ones deal with binary compatibility, which does not apply to
JinjaThreads. For 30 out of the 136, the translation fails or is
incorrect. In detail, 11 cases inherently rely on unsupported
features like native methods, interfaces, and floats; initialisation
issues cause 4 failures; 13 cases exhibit bugs in the translation,

287

Chapter 6. JinjaThreads as a Java interpreter

in particular for nested classes. The remaining 2 cases require
behaviour that the interpreter does not produce, e.g., it crashes
instead of raising an OutOfMemory exception.

• Tests for the java.lang.* classes from OpenJDK 6 [139]. Since they
test OpenJDK’s implementation of the API, many rely on native
methods or other Java features like Unicode that JinjaThreads
does not implement. Hence, I found only 24 out of 184 test cases
(13%) that Java2Jinja can correctly translate to JinjaThreads. One
of these also exhibited the division and remainder bug mentioned
above. Using JinjaThreads’ compiler to bytecode and its VM for
execution, all but four test cases terminated within minutes. These
four are randomised test cases with a large number of iterations
and use System.arraycopy frequently, which is particularly slow in
JinjaThreads.

I have also looked at OpenJDK tests for other packages. However,
these typically use IO or the Java collections framework. Jinja-
Threads does not model the former and the latter heavily uses
interfaces. Therefore, they cannot be used.

Validation by executing translated test programs checks the translator
and the semantics at the same time. Since the translation itself is
very complex, failed test cases must be examined manually to see
whether the translation or the semantics is buggy. In all but one case,
it was the translation’s fault. In principle, it is conceivable that bugs
in the translation hide errors of the semantics. Since Java2Jinja directly
translates the Java subset that JinjaThreads models, this possibility is
negligible.

Therefore, I conclude that validation has been successful for the
subset under examination. The numerous failures indicate that the
model should cover more features such that less error-prone emulations
are necessary (see §7.4 for more details). Although validation has tested
the sequential semantics thoroughly, execution explores only a single
schedule for a multithreaded program. Hence, this approach cannot
prove that the semantics covers all allowed behaviours. For example, in
§4.3.6, I have already mentioned two cases for which JinjaThreads does
not model the full behaviour. Moreover, validation has not covered the
JMM at all, because it is not executable. In conclusion, this is only a first
step towards rigorous validation.

288

6.6. Related Work

6.6 Related Work

Most closely related to JinjaThreads’ well-formedness checker and com-
piler is Berghofer’s and Strecker’s work [24] on extracting a well-formed-
ness checker and compiler for JinjaThreads’ predecessor Bali. The former
suffers from the very same termination problems that I have presented
in §6.2, the latter is similar to JinjaThreads compiler except that it does
not support exceptions. For an in-depth comparison, see §7.3.

Some formalisations of Java and the JVM in theorem provers are
directly executable. First, the M6 by Lui and Moore [104, 105] models
the JVM in ACL2 covering the CLDC specification; see §3.4.1 for details.
Efficient execution was a major goal in its design. Thus, it is remarkable
that JinjaThreads achieves similar performance although it focuses on
simplifying proofs. Moore’s and Porter’s jvm2acl2 tool [122] translates
Java bytecode into M6’s representation. Since the M6 models Java
bytecode quite closely to the JVMS, jvm2acl2 in fact translates only
concrete to abstract syntax. JinjaThreads is far from such a point.

Second, Farzan et al. [48, 47] report on a formal semantics for Java
source code and a virtual machine for Java bytecode in Maude. Maude’s
rewriting logic allows to execute programs in abstract syntax symboli-
cally and analyse them using model-checking techniques. Their source
code semantics covers about the same subset as JinjaThreads except for
exceptions. For efficiency reasons, their semantics is based on continua-
tions. This way, they bypass a major source of inefficiency from which
JinjaThreads’ source code interpreter suffers. For example, recursive
methods enclose the statement to execute in more and more blocks for
this and the parameters, and execution has to traverse them at every step
of execution. Hence, executing

void recurse(int d) { if (d > 0) recurse(d - 1); }

in source code is quadratic in d. Continuation-based semantics keeps the
next statement to execute at the outer-most level. Note that explicit call
stacks in JinjaThreads bytecode also avoid the problem. Their VM follows
a traditional style, but separates deterministic sequential instructions
from non-deterministic multithreading to boost performance. They also
implemented JavaFAN as a front-end to the semantics that takes Java
source code or bytecode and converts it into abstract syntax. It is unclear
whether JavaFAN tries to emulate missing features like Java2Jinja does.
Moreover, they do not report on any attempt to validate their semantics

289

Chapter 6. JinjaThreads as a Java interpreter

or the translation. In an effort to cross-validate deduction rules of the
Key system, Sasse [155] found and corrected several bugs in their source
code semantics.

Third, Atkey [9] presents an executable JVM model in Coq. He
concentrates on encoding defensive checks as dependent types, but does
not provide any data about the efficiency.

The CCCP tool by Wasserrab [175] is similar to Java2Jinja. It translates
C programs to CoreC++ [178], another descendant of Jinja, and executes
them in the source code semantics. He also uses the tool for validating
CoreC++.

Batty et al. [17] have implemented Cppmem to explore their formal-
isation of the C++ memory model in Isabelle/HOL. It consists of two
parts. First, a (manually written) symbolic execution engine generates
sets of potential executions for a given (small) C++ program. Second,
a checker that Isabelle’s code generator has extracted from the formal-
isation prunes this set to the executions that the C++ memory model
actually allows. The interpreter and VM that I have extracted implement
sequential consistency; the axiomatic definition of the Java memory
model is beyond the capabilities of Isabelle’s code generator.

Code extraction in general is a well-established business, in particular
extraction of functional implementations. In [116], Marić presents
a formally verified implementation of a SAT solver in Isabelle/HOL.
In the CeTA project, Thiemann and Sternagel [170] generate a self-
contained executable termination checker for term rewrite systems. The
Flyspeck project uses code extraction to compute the set of tame graphs
[18, 127]. All these formalisations were developed with executability
in mind. Complications in proofs to obtain an efficiently executable
implementation were willingly taken and handling them are large
contributions of these projects.

Code extraction in Coq [102] has been used in various developments,
notably the CompCert compiler [99] and the certificate checkers in the
MOBIUS project [13]. Like in Isabelle, functional specifications pose no
intrinsic problems. Although code extraction is in principle possible for
any Coq specification, mathematical theories can lead to “a nightmare in
term of extracted code efficiency and readability” [102]. Hence, Coq’s
users, too, are facing the problem of how to extract (roughly) efficient
code from specifications not aimed towards executability. ACL2 and
PVS translate only functional implementations to Common Lisp.

290

The hardest thing is to go to sleep at night, when there
are so many urgent things needing to be done. A
huge gap exists between what we know is possible
with today’s machines and what we have so far been
able to finish.

Donald Knuth 7
Discussion and Future Work

After hundreds of pages filled with formal definitions and technical
details, this chapter takes a step back. Now, I contrast the efforts with
the rewards (§7.1), comment on my experience as an Isabelle user (§7.2)
and on how the advances in Isabelle influenced the formalisation (§7.3),
compare JinjaThreads with Java (§7.4), and identify directions for future
work (§7.5).

7.1 Efforts and rewards of a machine-checked
formalisation

Efforts Building a formal model of a programming language in a theo-
rem prover is a major investment. I have been working on JinjaThreads
for five years, but not full-time. Not counting developing foundational
libraries for Isabelle [108, 110], I estimate the net amount of time at
three person years. It is difficult to exactly break down the figure to the
individual parts, since I have worked on some of them in parallel. I
had the first working version of the interleaving semantics (as described
in [107] without thread interruption) and the type safety proof for source
code after about four months. Extending it to bytecode took less than
one month. The abstract heap module and the JMM formalisation with
the proofs required about one year. The compiler was most laborious
with more than one year. Since I worked on code extraction occasionally
during the whole development, I am not able to give a figure for that.
The remaining time has gone into refactoring the formalisation and
extending the JinjaThreads language.

Chapter 7. Discussion and Future Work

defini- lem- lo- Jinja
tions mata cales LoC LoC

shared infrastructure 158 397 10 5,690 1,808
interleaving semantics 91 406 11 5,140 —
source code + type safety 55 196 7 6,461 2,684a

bytecode + verifier 58 258 12 7,274 3,878
JMM + DRF 97 483 41 13,105 —
compiler + verification 139 1,398 30 34,024 4,112
code extraction 169 231 25 6,471 591

library extensions 19 220 0 1,947 292
DFA framework 62 268 6 3,948 3,835

total 848 3,857 142 84,060 17,200

anot counting the big-step semantics and the equivalence proof (2,052 LoC)

Table 7.1: Formalisation size of JinjaThreads in comparison with Jinja

Table 7.1 lists some figures that measure JinjaThreads’ size: the
number of definitions (including (co-)recursive and (co-)inductive ones),
lemmata (including theorems and corollaries), locales, and the lines of
Isabelle code. It breaks down the total figures into the various parts of
JinjaThreads (cf. Figure 1.4). For comparison, the last column shows the
lines of code (LoC) of the respective part of Jinja.

Since JinjaThreads covers a larger subset of Java than Jinja, it is, of
course, larger. Source code and bytecode have roughly doubled in size
to account for concurrency and arrays. Shared infrastructure has even
tripled, but one third stems from native methods (1318 LoC) and binary
operators (585 LoC). Here, it can be seen that reusing the interleaving
semantics in source code and bytecode pays off, although I suppose
that two monolithic semantics would have required less than twice the
5 kLoC of the framework. The benefit of reuse becomes much clearer for
the JMM and the proofs about it. 10 kLoC out of the 13 kLoC are needed
to formalise the JMM and the language-independent parts of the DRF
guarantee and consistency. Only 3 kLoC fall upon discharging the final
assumptions of the locales about the single-threaded semantics – and
these 3 kLoC distribute roughly equally over native methods, source

292

7.1. Efforts and rewards

code, and bytecode. This shows that my design separates concurrency
from single-threaded issues well.

The compiler verification offers a different picture – the transition
from big-step to small-step semantics caused its size to explode. In detail,
the bisimulation framework and lifting proofs (§5.1) require 4,237 LoC.
Explicit call stacks in source code add another 2,068 LoC. However, the
majority (18,231 LoC) is spent on the bisimulation relations and proofs
for the individual compiler stages. In code generation, in particular,
I have to deal with each inductive case manually. Specialised proof
procedures might have been sensible here.

Code extraction refers to the extensions that were necessary to obtain
the executable interpreter, VM, and compiler. In particular, it subsumes
the formalisation of schedulers (§6.3.2). It is one order of magnitude
larger than in Jinja, but offers another level of quality in two respects.
First, Jinja used manual translations for unexecuable definitions like
Hilbert’s choice, whereas JinjaThreads does without. Second, Jinja
does not care about efficiency, whereas I have demonstrated that the
JinjaThreads VM is usable in practice.

On a Pentium DualCore 2.50 GHz running Ubuntu 10.04, Isabelle in
single-threaded mode takes 1:55 h and 17 GB of memory to process the
JinjaThreads sources, recheck all proofs, and extract the executable parts.

Rewards The investment in the formalisation starts to pay off fairly
soon in various ways.

First, we can be sure that the proofs are correct with respect to the
formal definitions, and that the formal definitions are at least type-
checked. In particular, a series of false claims and their subsequent
disproof – as has happened for the JMM [115,38,162,171] – is impossible.
Type-checking alone supports the formalisation tremendously, because
obvious mistakes are caught early on. In addition, Isabelle provides
some tools for finding bugs automatically (see §7.2 for details).

Furthermore, machine-support is fundamental for extending and
adapting such a formal model, since proofs can be replayed automatically.
JinjaThreads has evolved from Jinja gradually, adding feature after feature.
In such a step, Isabelle determines which proofs need to be extended
or changed and – most importantly – which ones I need not reconsider.
Extending a pen-and-paper model requires to revisit all theorems and

293

Chapter 7. Discussion and Future Work

proofs, which is tedious and error-prone, because subtle interactions
may be missed easily.

The ability to replay proofs was equally essential during the develop-
ment of a single feature. After I had corrected a typo or conceptual error
in a definition or theorem, Isabelle automatically rechecks the theorems
that had already been adapted to the new feature. Often enough, such
typos have erroneously rendered some proof cases trivial that in fact
need some argument. A typical example is to inadvertently give two
(different) variables the same name. The following typing rule for local
variable blocks illustrates the problem:

is-type P T P, E(V 7→ T) ` e :: T′

case vo of None⇒ True | bvc ⇒ ∃T′′. typeof v =
⌊
T′′

⌋
∧ P ` T′′ ≤ T

P, E ` {V : T = vo; e} :: T′

Following the format and naming conventions of the other rules (see
Appendix B.6.2), one is tempted to write T instead of T′ in the shaded po-
sitions, but T already denotes the type of the declared variable. Obviously,
the corresponding inductive case of the theorem

JP, E ` e :: T; ran E ⊆ types PK =⇒ is-type P T

becomes trivial with the typo.
In conclusion, mechanisation

(i) supports the process of formalising,
(ii) guarantees the absence of errors, and

(iii) eases reuse in other projects, because definitions can be easily
adapted when necessary and Isabelle checks that everything fits
together properly.

7.2 Experience: Working with Isabelle/HOL

In this section, I comment on my experience of formalising JinjaThreads
with Isabelle/HOL and which features were particularly useful and
which would have been desirable.

294

7.2. Experience: Working with Isabelle/HOL

Essential Isabelle features

Essential Isabelle features for JinjaThreads are Isar, locales, and the
high degree of built-in proof automation, on which I now comment in
turn.

Almost all proofs in JinjaThreads are written in Isabelle’s declarative
proof language Isar [179, 25], see Figure 7.1 for an example. Proofs
in Isar style tend to be a bit longer than imperative proof scripts and
usually take more time to write, but the extra effort is not spent in vain.
Since Isar follows the mathematical language of informal reasoning, Isar
proofs are intelligible to non-experts. Being declarative, they typically
make the line of argument explicit. Moreover, Isar proofs are more
robust to adaptations than imperative proof scripts or hand-coded proof
procedures, because when the proofs are replayed, (i) they break exactly
where manual intervention is necessary, and (ii) being declarative, they
record the exact intermediate statement, i.e., one need not guess what the
proof state should have been. Therefore, Isar proofs are easier to maintain,
which is a major concern in large formalisations like JinjaThreads. Such
adaptations of existing proofs are triggered by new Isabelle releases
(seven of which happened during the development of JinjaThreads) and
changes to the formalisation itself.

Locales have proven essential in structuring the formalisation, as can
be seen in Chapters 3, 4, and 5. Unfortunately, locale contexts are purely
dynamic, i.e., whenever one switches from one locale to another, Isabelle
discards the old and constructs the new from scratch. Since this involves
to replay each previous declaration of the new context including all
inherited locales, entering a locale context can take a few minutes. In fact,
when Isabelle processes JinjaThreads, the peaks in memory consumption
occur when it rebuilds such locale contexts.

Thanks to Isabelle’s sophisticated procedures for proof automation,
JinjaThreads does not need custom tactics, although theorem-specific
tactics might drastically reduce some proof sizes, as Chlipala demon-
strates in a case study in Coq [39]. Instead, I have focused on properly
setting up proof automation, where simplification is the main workhorse.
Unfortunately, Isar provides only little support for simplification steps,
but favors natural deduction. Consequently, predicates should come
with introduction and elimination rules to be used in Isar proofs and
simplification rules for good automation. However, Isabelle’s means
of specification used to provide either the former ((co)inductive) or the

295

Chapter 7. Discussion and Future Work

latter (fun). Upon my suggestion, Bulwahn extended the inductive pack-
age such that one can a posteriori derive rewrite rules for (co-)inductive
predicates and sets. Since this feature has been available, I have defined
most predicates and sets (co-)inductively and had Isabelle automatically
derive simplification rules.

Sledgehammer [29, 33] runs automated theorem provers to discover
a proof of a theorem. It is particularly useful for proof obligations about
notions from libraries that the formalisation builds on, e.g., 32-bit integers
and coinductive natural numbers. In such a case, Sledgehammer only
needs to combine the right bunch of lemmata that the library provides.
Since it identifies the relevant ones, this saves the user from the time-
consuming task of becoming an expert for each library she uses. It is
less effective for solving goals about what one is currently developing,
though, because the lemma base is still largely incomplete, and the new
lemmata are rarely simple consequences of others.

Counterexample generation

To support the user in exploratory stages, Isabelle provides two coun-
terexample generators Quickcheck [23] and Nitpick [28, 30]. When the
user enters a theorem she wants to prove, they automatically try to refute
it and present a counterexample, if they succeed.

Quickcheck converts the putative statement into ML code via Isa-
belle’s code generator, installs test data generators for the free variables,
and executes the code. If the code returns False, the assignment to the
free variables constitutes a counterexample. Quickcheck supported the
development of JinjaThreads only little because it suffers from two draw-
backs. First, the code generator must be able to process all definitions that
the statement refers to. This restriction is severe, because early on, when
the definitions still keep changing, most errors are to be found, but time
is not spent on deriving executable equations for all constants unless one
expects them to be in the final form. Moreover, proof invariants such as
conformance involve universal or existential quantifiers, which cannot
be executed. Second, until recently, it used to generate the test data
randomly, which often misses the subtle cases. Now, Bulwahn changed
Quickcheck to use exhaustive search [29, 36]. On the positive side, when
it is applicable, Quickcheck is extremely fast. Even statements that in-
volve complicated definitions are tested within seconds. In JinjaThreads,
Quickcheck has spotted typos in definitions and statements, but none

296

7.2. Experience: Working with Isabelle/HOL

of the conceptual bugs in definitions; exhaustive testing might have
changed the latter.

Nitpick follows a different approach. It converts the statement and
all definitions and axioms it depends on into first-order relational logic
(FORL) and calls a relational model finder. This way, it handles non-
executable constructs and underspecification without further ado, but
is limited by the complexity of the generated formula. Moreover, its
performance is sensitive to the FORL encoding. Although sensible
defaults are provided, Blanchette et al. [31] showed that manually tuning
Nitpick’s numerous parameters can boost performance.

In JinjaThreads, I applied Nitpick successfully for the bisimulations
from §5.1, where it found the counterexample in Figure 5.4 after several
attempts of mine to prove the equivalence of delay bisimulation with
explicit divergence and well-founded delay bisimulations. However,
Nitpick’s output overwhelmed the model finder for any theorem that
involves program declarations or the semantics. Conversely, Nitpick
helped a lot in developing the library of coinductive lists [110], because
it is able to find unintuitive counterexamples with infinite lists, which
are out of Quickcheck’s reach.

In conclusion, both Quickcheck and Nitpick work well for smallish
developments, but they are of little help to identify intricate cases where
things do not fit together in formalisations as large as JinjaThreads.

Suggestions for improvement

Despite the good support for developing formalisations, I found the
following suggestions for further improvement.

Isabelle’s support for coinductive datatypes, corecursive definitions
and proofs by coinduction is poor. Coinductive datatypes still must
be constructed manually like Paulson did 15 years ago [142]. The
proof method for coinductive proofs lacks many of the conveniences
of its inductive counterpart. Consequently, coinductive Isar proofs
typically contain four steps of boilerplate code (the highlighted parts
of the proof57 in Figure 7.1). First, auxiliary variables for instantiated
coinduction parameters are introduced (l. 3). Second, all assumptions
are combined using HOL conjuction (instead of meta-conjuction that

57tmap f g xs is the map operator for terminated coinductive lists. It applies f to all
elements of xs and g to the symbol of the []_ constructor.

297

Chapter 7. Discussion and Future Work

1 lemma assumes s �′ ξ shows s � tmap snd id ξ
2 proof −
3 def ξ′ ≡ tmap snd id ξ
4 with assms have ∃ξ. s �′ ξ∧ ξ′ = tmap snd id ξ by . . .
5 thus s � ξ′

6 proof coinduct
7 case (τRuns s ξ′)
8 then obtain ξ where s �′ ξ and ξ′ = tmap snd id ξ by . . .
9 thus ?case by . . .

10 qed
11 qed

Figure 7.1: Isar proof for the proof step s �′ ξ =⇒ s � tmap snd id ξ from
Theorem 5.1. Boilerplate code is highlighted.

Isar proofs favor) and generalised using existential quantifiers (l. 4).
Third, the goal is restated using the auxiliary variables (l. 5). After
the subsequent application of the coinduction rule, every coinductive
case unpacks the existential quantifiers and separates the assumptions
again (l. 8). Thus, a five-line proof is bloated with six lines of boiler-
plate code.

Another neglected issue is support for refactorings, e.g., (i) mov-
ing and renaming definitions and theorems, (ii) promoting subproofs
to lemmata, (iii) changing the order of parameters or pretty-printing
syntax for a function or predicate, and (iv) (un-)currying functions
and predicates. While simple renamings can be achieved relatively
easily with standard command-line tools and their support of regular
expressions, changing the order of parameters is particularly tricky,
because Isar proofs often refer to variables in theorems and proofs by
position. In total, I have spent at least two months on such simple
refactorings for the most pressing issues, but much remains to be done
in this respect. In particular, JinjaThreads in its current state lacks
consistent naming of constants, variables and theorems and much of
the pretty syntax in this thesis. Fortunately, Ruegenberg [151] has re-
cently implemented the Levity prototype for renaming definitions and
theorems and moving the latter. I hope that this work continues and
am looking forward to when such tool support is availabe in Isabelle’s
IDE.

298

7.3. From Java`ight to JinjaThreads

7.3 From Java`ight to JinjaThreads

JinjaThreads is currently the result of 15 years of formalising Java in
Isabelle/HOL, see §1.2 for the historic view. In this section, I look back to
see what has made it into JinjaThreads and how new features of Isabelle
offer new formalisation options.

Reuse is most obvious in Jinja’s declaration infrastructure, lookup
functions and generic well-formedness, which can be traced back to early
versions of Bali [129]. Although the definitions have changed textually
over time, JinjaThreads still benefits from the good choice of proven
lemmata and setup for proof automation. Similarly, the sequential VM
follows the well-engineered structure fromµJava and Jinja. JinjaThreads’s
compiler inherits Jinja’s and merely extends it to the new statements
for arrays and synchronisation, and the same applies to the proof of
type-preservation. However, the proof of semantic correctness merely
exploits the same abstract ideas, but completely differs in all other
respects, because it is now carried out against the concurrent small-step
semantics instead of the sequential big-step semantics. Bytecode and the
bytecode verifier also descend directly from µJava.

In contrast, the small-step semantics for source code is comparatively
young, as Bali only defines a preliminary one and µJava none at all. Thus,
in retrospect, Nipkow’s and Oheimb’s investment in Bali [129] keeps
paying off. Still, it has taken more than a decade to achieve their goal of
extending Bali with Java concurrency.

Among the numerous improvements in Isabelle, the effect of three
on the formalisation deserves mentioning. The most obvious is the Isar
language [179, 25] of human-readable proof, which I have discussed
already in §7.2. Some parts of JinjaThreads go back to early parts of Bali
and µJava and are therefore still written as imperative proof scripts.

Second come more powerful packages that reduce clutter in defini-
tions and proofs. In detail, Krauss’ packages for defining (partial) recur-
sive functions [88,89] automate termination proofs or render them unnec-
essary and additionally derive custom rules for induction and case anal-
ysis. Even if the function is primitively recursive and therefore structural
induction would suffice, proof automation often works better with cus-
tom rules, because the latter incorporates how other parameters change
in recursive calls. With structural induction, proof automation often
fails to discover these changes. For example, I use fun to define ok-thrs
from Figure 3.10. The auxiliary lemma Jok-thrs ts nts; Spawn t x h ∈

299

Chapter 7. Discussion and Future Work

set ntsK =⇒ ts t = None is proven automatically with the custom
induction rule, but automation fails with structural induction on nts.58

The third aspect concerns code extraction. Jinja and its predecessors
used the first version of Isabelle’s code generator by Berghofer [22]. This
has now been replaced by Haftmann’s [62] and Bulwahn’s predicate
compiler [21]. The new version handles type classes, data refinement,
and data type invariants, and compiles predicates inside the logic.
In [92,109,113], I have explored these new possibilites for code extraction.
JinjaThreads exploits them in the following ways. It rarely uses type
classes – a widely-used Isabelle feature for type-safe overloading [63]
– but naturally depends on them via the standard library. Data refine-
ment and data type invariants [60] are essential to a posteriori replace
unexecutable or inefficient data structures by more efficient ones, e.g.,
tabulation (§6.3.3).

Berghofer’s code generator was already able to handle inductive
definitions, but it performed the (non-trivial) transformations outside
the LCF inference kernel [21]. The new predicate compiler computes a
functional implementation for inductive definitions inside the logic and
proves it correct. Apart from the increased confidence of correctness, all
Isabelle tools can now be used to manipulate the functional interpreter.
For example, JinjaThreads simplifies the code equations to improve
performance (see §6.3.4). Moreover, an implementation of Russell’s
definite description operator using the functional interpreter [113] (§6.1.2)
would require an extension of the code generator if compilation happened
outside the logic.

In [24], Berghofer and Strecker report on the effort needed to extract
µJava’s well-formedness checker and compiler. They had to replace
manually existential quantifiers like in wf-J-mdecl’s definition (Fig-
ure 2.10) with new predicates. Bulwahn has added a preprocessor to
transform definitions in predicate logic to a set of introduction rules [113],
such that this step is no longer necessary. Still, it is not advisable to invoke
the preprocessor on wf-J-mdecl, because it applies the transformation too
aggressively. Not only does it introduce such an inductive predicate for
the existentially quantified subformula, but also for all the other constants,

58Alternatively, I could have defined ok-thrs inductively, like many of the other predicates
(see the discussion in §7.2). fun’s induction rule is more versatile, because the induction
rule from an inductive definition requires that the statement to prove contains ok-thrs as a
premise. When proving simplification rules for such predicates, I can use only the former
directly.

300

7.4. Comparison between Java and JinjaThreads

i.e., |_|, distinct, set,D, and for the constants these depend on. To guide
the preprocessor, I have promoted this subformula to a constant of its
own, invoked it on the new constant, and replaced the subformula by the
new constant in wf-J-mdecl’s code equation. Although this still requires
manual intervention, it is a significant improvement over the state in 2003,
because the user does not need to perform any of the conversions himself.

Apart from that, Berghofer and Strecker also face the problem that a
definition is only (efficiently) executable under certain preconditions, but
all calling contexts satisfy the precondition. In JinjaThreads, this concerns
least upper bounds and the typing rules (§6.2.3). It is unfortunate that
no satisfactory solution has been found to date. Since the code generator
restricts invariants for data types to be first-order [60], they can only
solve this problem in the most simple cases.

7.4 Comparison between Java and JinjaThreads

JinjaThreads is not Java – this becomes most obvious when one looks at
all the transformations Java2Jinja needs to perform (§6.5.1) – but Jinja-
Threads does not aim for a comprehensive model, anyway. Nevertheless,
JinjaThreads covers the full range of concurrency features from the JLS.
In particular, most thread features are accessed through native method
calls like in Java. It is faithful except for spurious wake-ups and atomicity
of clone (§4.3.6).

However, it misses a few concurrency issues from the Java stan-
dard API. Most prominent are the java.util.concurrent package and
Thread’s methods isAlive, holdsLock, and getState. The former, a
library of lock-free and thread-safe classes for synchronisation and ex-
changing data between threads, builds on an atomic compare-and-set
(CAS) operation. In JinjaThreads, the CAS operation could be imple-
mented directly as a native method that atomically reads and writes
a volatile location.59 Similarly, one could add the three methods of
class Thread, too. holdsLock could be implemented directly via the fol-
lowing thread actions: LUnlock→a, Lock→aM when it returns True, and

59The java.util.concurrent classes define further CAS methods with weaker ordering
constraints than volatile semantics. To model them, one has to define appropriate
synchronisation events and extend the JMM accordingly. Since the proofs about the
memory model hardly depend on the kind of synchronisation, this should not pose any
big problems.

301

Chapter 7. Discussion and Future Work

LUnlockFail→aM for False. However, isAlive requires another BTA for
querying that a thread has not yet terminated (the dual to Join). getState
necessitates further BTAs, e.g., for querying whether a thread is waiting
in a wait set or joining on another thread. For the latter, the current imple-
mentation for join no longer works. At present, if a (uninterrupted) thread
t joins on thread t′, but t′ has not yet finished, then t is stuck at the call.
In particular, the multithreaded state does not record the failed attempt,
but t’s state that getState returns changes from running to waiting. One
could extend the interleaving semantics to record such failed attempts in
the multithreaded state. However, getState’s documentation disallows
to use it for synchronisation purposes in the JMM sense. Hence, the same
issues arise as for synchronisation via thread spawning (Figure 4.28).

As for sequential Java, numerous features are still missing, the follow-
ing lists them. From the concurrency point of view, class initialisation,
final fields, and finalisation are particularly interesting for the following
reasons:

1. Classes must be initialised at most once even if multiple threads
trigger initialisation concurrently. Interesting points are whether
the initialisation procedure in the JLS [56, §12.4.2] in fact achieves
this, and how one can model the allowed deviations from it
[56, §12.4.3]. The latter affects whether a program is correctly
synchronised, because threads can implicitly synchronise through
class initialisation.

For example, consider the two threads in Figure 7.2 with the classes
and their static initialisers on the left. Class initialisation occurs in
ll. 2 and 3, and both classes cause initialisation of the other. Note
that the initialisation of B succeeds only when it is triggered by
A’s initialisation, because in that case, B’s static initialiser reads the
default value false for A.a as part of recursive class initialisation.
Hence, l. 4 executes only if l. 2 executes before l. 3. There is only one
potential data race, namely on x between l. 1 and l. 4 – accesses to the
static members occurs only in static initialisers and therefore cannot
participate in data races. Since initialisation involves locking and
unlocking, l. 2 happens before (in the JMM sense) l. 3, and so does l. 1
before l. 4. Thus, there is no data race and the program is correctly
synchronised. However, the JLS allows compilers and the JVM
to remove unnecessary synchronisation for class initialisation [56,
§12.4.3]. It is unclear whether this exception applies to the above

302

7.4. Comparison between Java and JinjaThreads

class A {
static boolean t = B.b;
static boolean a = true;

}
class B {
static boolean b = true;
static { if (A.a) throw new Error(); }

}

initially: x = 0
1: x = 1;
2: new A();

3: new B();
4: r = x;

Figure 7.2: Synchronisation through and potential deadlock during class initiali-
sation

example and whether the compiler must still ensure the semantics
of synchronisation, i.e., whether ll. 3 and 4 must not be reordered.

Moreover, class initialisation according to the JLS [56, §12.4.2] may
cause the program from Figure 7.2 to deadlock. If both threads
simultaneously start to initialise A and B, respectively, each thread
can end up in the other class’ monitor, waiting to be notified. Since
there is no other thread to wake them up, they are deadlocked.60

This is a known defect of the class initialisation procedure, but no
better solution is known [35]. If class initialisation is revised again,
one could then use a suitable extension of JinjaThreads to prove
the absence of deadlocks.

Class initialisation would require non-trivial changes to the seman-
tics and the compiler verification. Liu and Moore [104] model class
initialisation by switching their VM M6 into a designated state and
executing the static initialiser like a static method in its own call
frame. I guess that a similar approach might work for JinjaThreads,
too.

2. For final fields, the JMM provides stronger guarantees than for
ordinary ones [56, §17.5]. Since final fields are closely tied to con-
structors, one first must extend JinjaThreads with constructors,61

60Even if either of the threads wakes up spuriously, step 2 of the initialisation procedure
immediately suspends the thread again. Hence, they should be considered deadlocked
in that case, too. However, spurious wake-ups would remove the threads from the waits
again, i.e., both threads would keep spinning in step 2. This is an example of how spurious
wake-ups can obscure deadlocks.

61A good starting point would be Klein’s work on constructors in µJava bytecode [79].

303

Chapter 7. Discussion and Future Work

but it should then be straightforward to extend the JMM formalisa-
tion with final fields. However, final fields are designed to be used
without synchronisation. In particular, writes to final fields need
not happen before reads [56, §17.5.1] – otherwise, final fields would
have synchronisation semantics like volatiles. Therefore, one must
also revisit data-race freedom. Ideally, one would show that data
races on final fields can only occur in programs that already contain
another data race on some non-final field.62 This would strenghten
the DRF guarantee, because one would not need to consider final
fields when checking data race freedom. If this does not hold,
however, one should nevertheless exclude final fields from data
races, because their usage should not expel programs from the
DRF guarantee. However, one then has to check whether the DRF
guarantee still holds.

3. Finalisation executes in separate finalisation threads for which the
JMM defines separate visibility restrictions [56, §12.6.1.1]. It would
be interesting to study which coding idioms for finalisers in fact
yield DRF programs.

Note that exceptions are the only kind of non-local transfer of control
in JinjaThreads source code. From the compiler perspective, it would
be interesting to also include break, continue, return, because they
interact with sync (_) _ blocks non-trivially. If one of the former causes
such a block to terminate abruptly, the lock must be released like in the
exceptional case, but bytecode provides no dedicated support like an
exception handler table for that. More generally, finally blocks – which
are missing, too – can intercept such transfer of control, execute arbitrary
code and even redirect the flow of control. While it is well-known how
to model such constructs semantically, e.g. [99, 135], the compiler and its
verification would need substantial adaptations.

62The informal argument goes like this: Only the constructor assigns to final fields of an
object, i.e., there are exactly two writes to a final field: the initialisation with the default
value and the constructor’s assignment, but they never conflict by definition. Since a
conflicting read of the final field must occur in another thread, the thread must have learnt
the object’s address before. Hence, both threads must synchronise to pass the address
without a data race. If the thread adheres to the coding discipline of not writing “a reference
to the object being constructed in a place where another thread can see it before the object’s
constructor is finished” [56, §17.5], then the writes to the final field happen before the reads.
It remains to be shown whether this informal argument can be made rigorous.

304

7.5. Future work

When one views JinjaThreads as an efficient, executable formalised
interpreter and VM, the most pressing issues are static fields and methods,
interfaces, the remaining primitive types, and primitive support for
Strings. Java`ight has already covered the first two [135], but neitherµJava
nor Jinja have. Reintroducing them would be tedious, but uninteresting.
The main obstacle for primitive types is that Isabelle lacks a formalisation
of floating points at present, but existing solutions in other theorem
provers should be easily portable [43,66,153]. Busenius [37] has included
Strings in his port of JinjaThreads to Coq.

Apart from the above, JinjaThreads also omits the following: method
overloading, abstract classes and methods, throws clauses, auto-boxing,
generics, nested classes, packages, access modifiers, class loaders, reflec-
tion, and the statements assert and switch.

7.5 Future work

The mainly negative results on the JMM – the original set of JMM events
is insufficient to implement the Java API (§4.3.2), type safety hinges on all
objects being in existence from the start (§4.3.5), security guarantees are
compromised (§4.3.5) – immediately raise the question for future research:
How can we do better? Since the JMM does not allow optimisations as
intended [8, 38, 115, 162, 171], either, another revision seems necessary.
However, it is unclear what out-of-thin-air values should be and how
to characterise them formally. Analogously, it is currently unknown
how to formally state and prove the security guarantees that the JMM is
supposed to provide. Future work must address these questions and
investigate how possible solutions restrict the compiler beyond the DRF
model.

Although I have shown how to connect syntax and single-threaded
semantics with the JMM, the solution is not completely satisfying, because
interleaving semantics still occurs as an intermediate layer. It could be
eliminated with two radical changes. First, the shared heap is reduced to
carry no information at all – the allocation operation of the heap module
returns non-deterministically any address, even if it might already be in
use. Then, every thread executes in isolation. Second, the multithreaded
semantics connects to single threads via their set of possible traces of
thread actions and events. It imposes the global synchronisation order,
ensures mutual exclusion of locks and freshness of allocations, keeps

305

Chapter 7. Discussion and Future Work

track of the wait sets and interrupts, etc. The JMM then matches reads
and writes as before.

Since this amounts to a complete redesign, most proofs would need
to be redone, because the preservation proofs rely on the global notion
of time. However, such a change would free the way to re-introduce the
(more intuitive) big-step semantics for single threads. It seems worth-
while to explore whether coinductive big-step operational semantics,
which has recently become popular in the Coq community [101,124,125],
offers an elegant approach for infinite executions for JinjaThreads, too.

The Quis custodiet project, in which JinjaThreads originates, suggests
another direction for future work, namely extending JinjaThreads to full
Java. Then, one could run safety-critical programs, which the verified IFC
tool has certified, in an extracted VM such that the program behaviour
definitely respects the semantics.

At the moment, the main show stoppers are interfaces, primitive
types like long and double, and class initialisation. Interfaces only affect
the type system, but not concurrency; since Bali models them, including
them should not pose any deep problems. Neither would additional
primitive types, as they are orthogonal to concurrency, but this would
require to formalise floating-point arithmetic in Isabelle first. Class
initialisation is a different matter, see the previous section for details.

The challenges in this scenario are (i) keeping the formal model
tractable and (ii) tuning the extracted VM for efficiency. However, I
would not expect any deep insights for Java as a programming language,
since most features have already been studied in isolation.

Finally, if either direction is followed, validation of the model be-
comes even more important. My work in §6.5.2 is only a first step in
this direction, since the scheduler produces only one single behaviour,
and only for the sequentially consistent heap implementation. Hence,
validation tests the sequential subset more thoroughly than multithread-
ing. In particular, this approach cannot prove that some behaviour is
erroneously disallowed due to the inherent non-determinism. To boost
confidence in JinjaThreads as a model for Java, one can devise a tool
that tests whether a given behaviour is allowed, or that enumerates
all allowed behaviours of a program. Then, one could explore the full
model, ideally interactively, albeit only for tiny programs due to the
state space explosion. For sequential consistency, e.g., enumeration of all
possible interleavings would be possible by using the predicate compiler
for the interleaving semantics (see §6.3.2).

306

Studies serve for delight, for ornament and for ability.
To spend too much time in studies is sloth, to use
them too much for ornament is affectation; to make
judgement wholly by their rules is the humour of a
scholar.

Francis Bacon, Essays 8
Conclusion

My mechanised model of multithreaded Java spans from a realistic
subset of Java source code and bytecode plus compiler via operational
semantics for statements and instructions to the axiomatic Java memory
model. I have shown type safety, consistency of the JMM, and the DRF
guarantee, and verified the compiler. It is executable and has been tested
thoroughly.

In this work, I have focused on studying the effects of concurrency
in a unified model rather than in isolation such that important details
cannot be missed easily. Tractability quickly becomes a major concern,
modularity is the key to push the limits. I have demonstrated how to
disentangle sequential aspects, concurrency features, and the memory
model from each other, and the proofs show that JinjaThreads is indeed
a usable model despite being sizeable.

Beyond the structuring principle and unified model, I also contributed
to the analysis of individual facets. First, I have given a precise and formal
definition of deadlock in terms of the single-threaded semantics. Hence,
the type safety statement is stronger than previous ones which over-
approximate deadlocks syntactically. Second, the compiler verification
was the first for multithreaded Java. Although the proof technique is
much more difficult than for sequential languages, it can be reused to
verify translations between different program representations. Although
the compiler literature often considers such translations obviously correct,
this work shows once more [99] that formally proving them correct is
non-trivial. Third, I have bridged the gap between Java and the Java
memory model, and identified several subtle cases that the JMM misses.
Via this link, I also proved the DRF guarantee and consistency, and
discovered that the JMM in theory breaks Java’s security architecture.

Chapter 8. Conclusion

The DRF proof is not limited to Java, because it is largely independent
of the Java-specific legality conditions. In fact, the key lemma 4.4 plays a
similar role in other DRF guarantee proofs, e.g., [4,32]. They all postulate
sequentially consistent completions of prefixes, which I have constructed
formally for the first time and for a realistic language. For Java, this
surprisingly requires a full type-safety proof, but this need not be a
restriction for other languages. C and C++, e.g., assign such type-unsafe
programs undefined semantics and exclude them from the guarantee.

For the Quis custodiet project, the formalisation of bytecode and the
executable (sequentially consistent) VM are probably the most relevant
parts. QC’s analyses for information flow control operate on Java
bytecode, so it is natural to verify them against the bytecode formalisation.
The executable VM and the converter Java2Jinja are the first step towards
a trusted environment for executing security-critical Java programs.

However, the analyses are sound only for sequential consistency, but
not the JMM. Like for Java’s security architecture, out-of-thin-air values
compromise their soundness, too. For example, standard points-to
analysis as used in VALSOFT/Joana and QC determines that r2 and r3
never alias for the program in Figure 4.27, but the JMM allows aliasing.
Since the IFC algorithms build on this information, they, too, become
unsound for programs with data races, although Hammer [64] and
Giffhorn [53] claim that VALSOFT/Joana correctly over-approximates
the weak semantics of the JMM. This is just another evidence that the
specification of the JMM is flawed.

Beyond Quis custodiet, JinjaThreads is already used in other contexts,
too. Busenius [37] has ported a preliminary version to Coq and extended
it with generics and wildcards. He uses it as a target language for
the verification of Expi2Java [10], a code generator for cryptographic
protocols. He chose JinjaThreads “over other formalized Java fragments
because of its comprehensiveness.” [10, §6]. In the context of the CeTA
project [170], Kochesser is using Java2Jinja and the compiler to convert
Java programs into Jinja bytecode [personal communication], which is
then fed to CeTA’s termination and complexity analyser.

In the future, JinjaThreads could be used, e.g., to cross-validate other
formal semantics for (concurrent) Java. For example, Trentelman [172]
has verified some proof rules of the KeY tool [19], a verification tool for
JavaCard programs, against Jinja’s predecessor Bali. Continuing this
effort, JinjaThreads could formally link different analyses tools like KeY
with the IFC checker formalisation from the Quis custodiet project. In

308

such a setting, the compiler verification becomes especially valuable
because it permits to transfer results freely between source code (KeY)
and bytecode (QC).

309

A
Producer-consumer example

This producer-consumer example program in JinjaThreads source code
syntax has been used for benchmarking the interpreter and VM (§6.3.4).

Example n = Program (SystemClasses @ [ThreadC, StringC, IntegerC,
BufferC, ProducerC n, ConsumerC n, TestC])

ProducerC n =
(“Producer′′, Thread,
[(“buffer′′, Class “Buffer′′, Lvolatile = FalseM)],
[(run, [], Void, b([],
{“i′′ : Integer =

⌊
Intg 0

⌋
;

while (Var “i′′ «!=» Val (Intg (word-of-int n))) (
Var “buffer′′.“put′′([
{“temp′′ : Class “Integer′′;

“temp′′ B new “Integer′′; ;
Var “temp′′.“value′′{} B “i′′; ; Var “temp′′}]); ;

“i′′ B Var i «+» Val (Intg 1))})c)])

ConsumerC n =
(“Consumer′′, Thread,
[(“buffer′′, Class “Buffer′′, Lvolatile = FalseM)],
[(run, [], Void, b([],
{“i′′ : Integer =

⌊
Intg 0

⌋
;

while (Var “i′′ «!=» Val (Intg (word-of-int n)))
{“o′′ : Class Object;

“o′′ B Var “buffer′′.“get′′([]); ;
“i′′ B Var i «+» Val (Intg 1)}})c)])

Appendix A. Producer-consumer example

BufferC =
(“Buffer′′, Object,
[(“buffer′′, Class Object[], Lvolatile = FalseM),
(“front′′, Integer, Lvolatile = FalseM),
(“back′′, Integer, Lvolatile = FalseM),
(“size′′, Integer, Lvolatile = FalseM)],
[(“constructor′′, [Integer], Void, b([“size′′],

“buffer′′ B new Class Object[Var “size′′]; ;
“front′′ B Val (Intg 0); ;
“back′′ B Val (Intg − 1); ;
Var this.“size′′{} B Val (Intg 0))c),

(“empty′′, [], Boolean, b([],
sync (Var this) (Var “size′′ «==» Val (Intg 0)))c),

(“full′′, [], Boolean, b([],
sync (Var this) (Var “size′′ «==» (Var “buffer′′).length))c),

(“get′′, [], Class Object, b([],
sync (Var this) (

while (Var this.“empty′′([]))
try Var this.wait([]) catch(InterruptedException “e′′) unit; ;

“size′′ B Var “size′′ «–» Val (Intg 1); ;
{“result′′ : Class Object;

“result′′ B Var “buffer′′[Var “front′′]; ;
“front′′ B Var “front′′ «+» Val (Intg 1); ;
(if (Var “front′′ «==» Var “buffer′′.length)

“front′′ B Val (Intg 0)
else unit); ;

Var this.notifyAll([]); ;
Var “result′′}))c),

(“put′′, [Class Object], Void, b([“o′′],
sync (Var this) (

while (Var this.“full′′([]))
try Var this.wait([]) catch(InterruptedException “e′′) unit; ;

“back′′ B Var “back′′ «+» Val (Intg 1); ;
(if (Var “back′′ «==» Var “buffer′′.length)

“back′′ B Val (Intg 0)
else unit); ;

Var “buffer′′[Var “back′′] B Var “o′′; ;
“size′′ B Var “size′′ «+» Val (Intg 1); ;
Var this.notifyAll([])))c)])

312

TestC =
(“Test′′, Object, [],
[(“main′′, [Class “String′′[]], Void, b(
{“b′′ : Class “Buffer′′;

“b′′ B new “Buffer′′; ;
Var “b′′.“constructor′′([Val (Intg 10)]); ;
{“p′′ : Class “Producer′′;

Var “p′′ B new “Producer′′; ;
{“c′′ : Class “Consumer′′;

Var “c′′ B new “Consumer′′; ;
Var “c′′.“buffer′′{} B Var “b′′; ;
Var “p′′.“buffer′′{} B Var “b′′; ;
Var “c′′.start([]); ; Var “p′′.start([])}}})c)])

IntegerC =
(“Integer′′, Object, [(“value′′, Integer, Lvolatile = FalseM)], [])

StringC = (“String′′, Object, [], [])

ThreadC =
(Thread, Object, [],
[(run, [], Void,

⌊
([], unit)

⌋
),

(start, [], Void, Native), (join, [], Void, Native),
(interrupt, [], Void, Native), (isInterrupted, [], Boolean, Native)])

SystemClasses =
[ObjectC, ThrowableC, NullPointerC, ClassCastC, OutOfMemoryC,
ArrayIndexOutOfBoundsC, ArrayStoreC, NegativeArraySizeC,
ArithmeticC, IllegalMonitorStateC, IllegalThreadStateC,
InterruptedC]

ObjectC =
(Object, “′′, [],
[(wait, [], Void, Native), (notify, [], Void, Native),
(notifyAll, [], Void, Native), (hashcode, [], Integer, Native),
(clone, [], Class Object, Native), (print, [Integer], Void, Native),
(currentThread, [], Class Thread, Native),
(interrupted, [], Boolean, Native), (yield, [], Void, Native)])

ThrowableC = (Throwable, Object, [], [])

313

Appendix A. Producer-consumer example

NullPointerC = (NullPointer, Throwable, [], [])

ClassCastC = (ClassCast, Throwable, [], [])

OutOfMemoryC = (OutOfMemory, Throwable, [], [])

ArrayIndexOutOfBoundsC =
(ArrayIndexOutOfBounds, Throwable, [], [])

ArrayStoreC = (ArrayStore, Throwable, [], [])

NegativeArraySizeC = (NegativeArraySize, Throwable, [], [])

ArithmeticC = (ArithmeticException, Throwable, [], [])

IllegalMonitorStateC = (IllegalMonitorState, Throwable, [], [])

IllegalThreadStateC = (IllegalThreadState, Throwable, [], [])

InterruptedC = (InterruptedException, Throwable, [], [])

314

DON’T PANIC!
Douglas Adams, The Hitchhiker’s Guide to the Galaxy B

Formal definitions

This appendix contains the formal definitions for JinjaThreads source
code and bytecode syntax and semantics. I have not repeated the
interleaving framework from §3.1, because §3.1 already contains all
unabridged definitions.

B.1 Declarations and lookup functions
Type declarations

datatype ′addr val = Unit | Bool bool | Intg word32 | Null | Addr ′addr
datatype ty = Void | Boolean | Integer | NT | Class cname |

Array ty
datatype hty = ClassT cname | ArrayT ty nat

datatype ′m prog = Program ′m cdecl list
type_synonym ′m cdecl = cname× ′m class
type_synonym ′m class = cname× fdecl list× ′m option mdecl list
type_synonym fdecl = vname× ty× fmod
record fmod = volatile :: bool
type_synonym ′m mdecl = mname× ty list× ty× ′m

ty-of (ClassT C) = Class C ty-of (ArrayT T n) = T[]
array-length-of (ArrayT T n) = n

Lookup functions

class declarations classes (Program P) = P
class declaration class (Program P) = map-of P
valid class name is-class P C = (class P C , None)

Appendix B. Formal definitions

direct subclass relation
class P C =

⌊
(D, rest)

⌋
C , Object

P `C≺1 D

subclass relation P `C�∗ D = (λC D. P `C≺1 D)∗∗ C D

valid types is-type P Void = True
is-type P Boolean = True
is-type P Integer = True
is-type P NT = True
is-type P (Class C) = is-class C
is-type P (T[]) = is-type P T ∧ base-type T , NT

types P =
{

T. is-type P T
}

is-htype P hT = is-type P (ty-of hT)

base type base-type T = (case T of T′[]⇒ base-type T′ | _⇒ T)

method lookup

_ ` _ sees-methods _ ::
′m prog⇒ cname⇒ (mname⇀ (ty list× ty× ′m) × cname)⇒ bool

class P Object =
⌊
(D, f s, ms)

⌋
Mm = Option.map (λm. (m, Object)) ◦map-of ms

P ` Object sees-methods Mm

class P C =
⌊
(D, f s, ms)

⌋
C , Object P ` D sees-methods Mm

Mm′ = Mm ++ (Option.map (λm. (m, C)) ◦map-of ms)

P ` C sees-methods Mm′

where Option.map f None = None Option.map f bxc =
⌊

f x
⌋

P `C sees M:Ts→T = meth in D =
(∃Mm. P ` C sees-methods Mm∧Mm M =

⌊
((Ts, T, meth), D)

⌋
)

method P C M = (ι(D, Ts, T, meth). P `C sees M:Ts→T = meth in D)

316

B.2. Binary operators

field lookup

P ` F has-fields FDTs ::
′m prog⇒ cname⇒ ((vname× cname) × (ty× fmod)) list⇒ bool

class P Object =
⌊
(D, f s, ms)

⌋
FDTs = map (λ(F, T, f m). ((F, Object), (T, f m))) f s

P ` Object has-fields FDTs

class P C =
⌊
(D, f s, ms)

⌋
C , Object P ` D has-fields FDTs

FDTs′ = map (λ(F, T, f m). ((F, C), (T, f m))) f s @ FDTs

P ` C has-fields FDTs′

P `C has F:T (f m) in D =
(∃FDTs. P ` C has-fields FDTs∧map-of FDTs (F, D) =

⌊
(T, f m)

⌋
)

P `C sees F:T (f m) in D = (∃FDTs. P ` C has-fields FDTs∧
map-of (map (λ((F, D), T f m). (F, (D, T f m))) FDTs) F =

⌊
(D, T, f m)

⌋
fields P C = (ιFDTs. P ` C has-fields FDTs)

field P C F = (ι(D, T, f m). . P `C sees F:T (f m) in D)

is-volatile P (Field F D) = volatile (snd (snd (field P D F)))
is-volatile P (Cell n) = False

B.2 Binary operators
datatype bop = == | != | < | <= | > | >= | + | – | ∗ | / | % |

<< | >> | >>> | & | | | ˆ

Signatures

P ` T1 ≤ T2 ∨ P ` T2 ≤ T1

P ` T1 «==» T2 :: Boolean

P ` T1 ≤ T2 ∨ P ` T2 ≤ T1

P ` T1 «!=» T2 :: Boolean

P ` Integer «<» Integer :: Boolean P ` Integer «<=» Integer :: Boolean

P ` Integer «>» Integer :: Boolean P ` Integer «>=» Integer :: Boolean

P ` Integer «+» Integer :: Integer P ` Integer «–» Integer :: Integer

P ` Integer «∗» Integer :: Integer P ` Integer «/» Integer :: Integer

317

Appendix B. Formal definitions

P ` Integer «%» Integer :: Integer P ` Integer «<<» Integer :: Integer

P ` Integer «>>» Integer :: Integer P ` Integer «>>>» Integer :: Integer

P ` Integer «&» Integer :: Integer P ` Boolean «&» Boolean :: Boolean

P ` Integer «|» Integer :: Integer P ` Boolean «|» Boolean :: Boolean

P ` Integer «ˆ» Integer :: Integer P ` Boolean «ˆ» Boolean :: Boolean

Semantics
binop == v1 v2 =

⌊
Inl (Bool (v1 = v2))

⌋
binop != v1 v2 =

⌊
Inl (Bool (v1 , v2))

⌋
binop < (Intg i1) (Intg i2) =

⌊
Inl (Bool (i1 <s i2))

⌋
binop <= (Intg i1) (Intg i2) =

⌊
Inl (Bool (i1 ≤s i2))

⌋
binop > (Intg i1) (Intg i2) =

⌊
Inl (Bool (i2 <s i1))

⌋
binop >= (Intg i1) (Intg i2) =

⌊
Inl (Bool (i2 ≤s i1))

⌋
binop + (Intg i1) (Intg i2) =

⌊
Inl (Bool (i1 + i2))

⌋
binop – (Intg i1) (Intg i2) =

⌊
Inl (Bool (i1 − i2))

⌋
binop ∗ (Intg i1) (Intg i2) =

⌊
Inl (Bool (i1 ∗ i2))

⌋
binop / (Intg i1) (Intg i2) =
bif i2 = 0 then Inr (addr-of-sys-xcpt ArithmeticException)

else Inl (Intg (i1 sdiv i2))c
binop % (Intg i1) (Intg i2) =
bif i2 = 0 then Inr (addr-of-sys-xcpt ArithmeticException)

else Inl (Intg (i1 smod i2))c
binop & (Intg i1) (Intg i2) =

⌊
Inl (Intg (i1 AND i2))

⌋
binop & (Bool b1) (Bool b2) =

⌊
Inl (Bool (b1 ∧ b2))

⌋
binop | (Intg i1) (Intg i2) =

⌊
Inl (Intg (i1 OR i2))

⌋
binop | (Bool b1) (Bool b2) =

⌊
Inl (Bool (b1 ∨ b2))

⌋
binop ˆ (Intg i1) (Intg i2) =

⌊
Inl (Intg (i1 XOR i2))

⌋
binop ˆ (Bool b1) (Bool b2) =

⌊
Inl (Bool (b1 , b2))

⌋
binop << (Intg i1) (Intg i2) =

⌊
Inl (Intg (i1 << unat (i2 AND 0x1f)))

⌋
binop >> (Intg i1) (Intg i2) =

⌊
Inl (Intg (i1 >>> unat (i2 AND 0x1f)))

⌋
binop >>> (Intg i1) (Intg i2) =

⌊
Inl (Intg (i1 >> unat (i2 AND 0x1f)))

⌋
binop _ _ _ = None

318

B.3. Heap module implementations

Auxiliary functions on word32:
<s, ≤s signed comparisons
+, −, ∗ addition, subtraction, and multiplication
sdiv, smod signed division and remainder
AND , OR , XOR bitwise “and”, “or”, and “xor”
unat unsigned interpretation of word32 as nat
<<, >>, >>> left shift, unsigned and signed right shift63

B.3 Heap module implementations
default values

default-val :: ty⇒ ′addr val
default-val Void = Unit default-val NT = Null
default-val Boolean = Bool False default-val (Class C) = Null
default-val Integer = Intg 0 default-val (T[]) = Null

conformance
P, h ` v :≤ T←→ (∃T′. typeofh v = bT′c ∧ P ` T′ ≤ T)
P, h ` vs [:≤] Ts←→ |vs| = |Ts| ∧ (∀(v, T) ∈ set (zip vs Ts). P, h ` v :≤ T)
P, h ` xs (:≤) E←→ (∀V v. xs V = bvc −→ (∃T. E V = bTc ∧ P, h ` v :≤ T))
P, E ` (h, xs)

√
←→ P, h ` xs (:≤) E∧ hconf h

B.3.1 Sequential consistency
type of thread IDs (instantiates ′t):

type_synonym thread-id = nat

type of addresses (instantiates ′addr):
type_synonym addr = nat

type of the heap (instantiates ′heap):
type_synonym heap = addr⇀ heap-entry
datatype heap-entry = Obj cname fields | Arr ty fields cells
type_synonym fields = vname× cname⇀ addr val
type_synonym cells = addr val list

conversion between address and thread ID
abbreviation sc-a2t = (λa. a)
abbreviation sc-t2a = (λt. t)

63Note that the meaning of >> and >>> from Isabelle’s word library is opposite to Java.

319

Appendix B. Formal definitions

implementation of abstract heap operations
sc-typeof-addr h a = (case h a of

⌊
Obj C _

⌋
⇒ bClassT Cc

| bArr T _ csc ⇒
⌊
ArrayT T |cs|

⌋
| None⇒ None)

sc-empty-heap = empty
sc-allocate P h hT =

(case new-Addr h of None⇒ (h, None)
| bac ⇒ (h(a 7→ blank P hT) , bac))

sc-read:
h a =

⌊
Obj C f s

⌋
f s (F, D) = bvc

sc-read h a (Field F D) v

h a =
⌊
Arr T f s cs

⌋
f s (F, D) = bvc

sc-read h a (Field F D) v

h a =
⌊
Arr T f s cs

⌋
n < |cs|

sc-read h a (Cell n) cs[n]

sc-write:
h a =

⌊
Obj C f s

⌋
h′ = h(a 7→Obj C (f s((F, D) 7→ v)))

sc-write h a (Field F D) v h′

h a =
⌊
Arr T f s cs

⌋
h′ = h(a 7→Arr T (f s((F, D) 7→ v)) cs)

sc-write h a (Field F D) v h′

h a =
⌊
Arr T f s cs

⌋
h′ = h(a 7→Arr T f s (cs[nB v]))

sc-write h a (Cell n) v h′

auxiliary definitions
hash-addr = word-of-int ◦ int
new-Addr h =

(if ∃a. h a = None then bLEAST a. h a = Nonec else None)
blank P (ClassT C) = Obj C (init-fields (fields P C))
blank P (ArrayT T n) =

Arr T (init-fields (fields P Object) (replicate n (default-val T))
init-fields =

map-of ◦map (λ(FD, (T, f m)). (FD, default-val T))

heap conformance
P `sc h

√
= (∀ho ∈ ran h. P, h `sc ho

√
)

P, h `sc Obj C f s
√

= is-class P C∧ P, C, h `sc f s
√

P, h `sc Arr T f s cs
√

=
is-type P (T[])∧ P, Object, h `sc f s

√
∧ (∀v ∈ set cs.P, h `sc v :≤ T)

320

B.3. Heap module implementations

P, C, h `sc f s
√

=
(∀ F T f m D. P `C has F:T (f m) in D −→

(∃v. f s (F, D) = bvc ∧ P, h `sc v :≤ T))

B.3.2 The Java memory model
Version 1: Type information grows

thread IDs and addresses are unified, but remain unspecified
type of the heap (instantiates ′heap):

type_synonym ′addr jmm-heap = ′addr⇀ hty

conversion between address and thread ID
abbreviation jmm-a2t = (λa. a)
abbreviation jmm-t2a = (λt. t)

implementation of abstract heap operations
jmm-typeof-addr h a = Option.map ty-of (h a)
jmm-empty-heap = empty
jmm-allocate h hT =

(case jmm-new-Addr h of None⇒ (h, None)
| bac ⇒ (h(a 7→ hT) , bac))

jmm-read h a al v = True
jmm-write h a al v h′ = (h′ = h)

auxiliary definitions
jmm-new-Addr h =

(if ∃a. h a = None then bεa. h a = Nonec else None)

heap conformance
P `jmm h

√
= (∀hT ∈ ran h. is-htype P hT)

Version 2: Addresses store type information

type of addresses (instantiates ′addr):
datatype addr = Address hty nat

type of thread IDs (instantiates ′t):
type_synonym thread-id = addr

type of the heap (instantiates ′heap):
type_synonym jmm′-heap = hty⇒ nat

321

Appendix B. Formal definitions

conversion between address and thread ID
abbreviation jmm′-a2t = (λa. a)
abbreviation jmm′-t2a = (λt. t)

implementation of abstract heap operations:
jmm′-typeof-addr P h (Address hT n) =

(if is-htype P hT then bhTc else None)
jmm′-empty-heap = (λhT. 0)
jmm′-allocate h hT =

(let n = h hT in (h(hTB n + 1) , bAddress hT nc))
jmm′-read P h a al v = (∀T. P, h `jmm′ a·al : T −→ P, h `jmm′ v :≤ T)
jmm′-write h a al v h′ = (h′ = h)

auxiliary definitions
hash-addr (Address hT n) = word-of-int (int n)

heap conformance
jmm’-hconf h = True

B.4 Native methods

B.4.1 Signatures
Thread.start([]) :: Void
Thread.join([]) :: Void
Thread.interrupt([]) :: Void
Thread.isInterrupted([]) :: Boolean
Object.wait([]) :: Void
Object.notify([]) :: Void
Object.notifyAll([]) :: Void
Object.clone([]) :: Class Object
Object.hashcode([]) :: Integer
Object.currentThread([]) :: Class Thread
Object.interrupted([]) :: Boolean
Object.yield([]) :: Void
Object.print([Integer]) :: Void

322

B.4. Native methods

B.4.2 Semantics of method clone
copying one member:

copy-mem :: ′addr⇒ ′addr⇒ loc⇒ ′heap⇒ (′addr, ′t) event list⇒ ′heap⇒ bool
read h a al v write h a′ al v h′

copy-mem a a′ al h [Read a al v, Write a′ al v] h′

copying a list of members:
copy-mems :: ′addr⇒ ′addr⇒ loc list⇒ ′heap

⇒ (′addr, ′t) event list⇒ ′heap⇒ bool

copy-mems a a′ [] h [] h

copy-mem a a′ al h αs h′ copy-mems a a′ als h′ αs′ h′′

copy-mems a a′ (al · als) h (αs @ αs′) h′′

cloning an object or array:
heap-clone :: ′m prog⇒ ′heap⇒ ′addr

⇒
′heap⇒ ((′addr, ′t) event× ′addr) option⇒ bool

typeof-addr h a = bhTc alloc h hT = (h′, None)

heap-clone P h a h′ None

typeof-addr h a = bClassT Cc
alloc h (ClassT C) = (h′,

⌊
a′
⌋
) P ` C has-fields FDTs

copy-mems a a′ (map (λ((F, D), _). Field F D) FDTs) h′ αs h′′

heap-clone P h a h′′
⌊
(New-Obj a′ C · αs, a′)

⌋
typeof-addr h a =

⌊
ArrayT T n

⌋
alloc h (ArrayT T n) = (h′,

⌊
a′
⌋
) P ` Object has-fields FDTs

als = map (λ((F, D), _). Field F D) FDTs @ map Cell [0..<n]
copy-mems a a′ als h′ αs h′′

heap-clone P h a h′′
⌊
(New-Arr a′ T n · αs, a′)

⌋

323

Appendix B. Formal definitions

B.4.3 Semantics of native methods
native methods of class Thread (Figure 3.17):

typeof-addr h a = bClassT Cc P `C�∗ Thread t′ = a2t a

P, t ` 〈a.start([]), h〉 −LSpawn t′ (C, run, a) h, TStart t′M→nc 〈Ret-Val Unit, h〉

typeof-addr h a = bClassT Cc P `C�∗ Thread

P, t ` 〈a.start([]), h〉 −LThreadEx (a2t a) TrueM→nc
〈Ret-sys-xcpt IllegalThreadState, h〉

typeof-addr h a = bClassT Cc P `C�∗ Thread t′ = a2t a

P, t ` 〈a.join([]), h〉 −LJoin t′, IsIntrd t False, TJoin t′M→nc 〈Ret-Val Unit, h〉

typeof-addr h a = bClassT Cc P `C�∗ Thread

P, t ` 〈a.join([]), h〉 −LIsIntrd t True, ClearIntr t, TIntrd tM→nc
〈Ret-sys-xcpt InterruptedException, h〉

typeof-addr h a = bClassT Cc P `C�∗ Thread t′ = a2t a

P, t ` 〈a.interrupt([]), h〉 −LThreadEx t′ True, WakeUp t′, Intr t′, TIntr t′M→nc
〈Ret-Val Unit, h〉

typeof-addr h a = bClassT Cc P `C�∗ Thread t′ = a2t a

P, t ` 〈a.interrupt([]), h〉 −LThreadEx t′ FalseM→nc 〈Ret-Val Unit, h〉

typeof-addr h a = bClassT Cc P `C�∗ Thread t′ = a2t a

P, t ` 〈a.isInterrupted([]), h〉 −LIsIntrd t′ True, TIntrd t′M→nc
〈Ret-Val (Bool True), h〉

typeof-addr h a = bClassT Cc P `C�∗ Thread t′ = a2t a

P, t ` 〈a.isInterrupted([]), h〉 −LIsIntrd t′ FalseM→nc 〈Ret-Val (Bool False), h〉

static native methods of class Thread as methods of class Object
(Figure 3.18):

P, t ` 〈a.currentThread([]), h〉 −LM→nc 〈Ret-Val (Addr (t2a t)), h〉

P, t ` 〈a.interrupted([]), h〉 −LIsIntrd t True, ClearIntr t, TIntrd tM→nc
〈Ret-Val (Bool True), h〉

324

B.4. Native methods

P, t ` 〈a.interrupted([]), h〉 −LIsIntrd t FalseM→nc 〈Ret-Val (Bool False), h〉

P, t ` 〈a.yield([]), h〉 −LYieldM→nc 〈Ret-Val Unit, h〉

native methods of class Object (Figures 2.12 and 3.19 and Equation 4.1):

heap-clone P h a h′ None

P, t ` 〈a.clone([]), h〉 −LM→nc 〈Ret-sys-xcpt OutOfMemory, h′〉

heap-clone P h a h′
⌊
(αs, a′)

⌋
P, t ` 〈a.clone([]), h〉 −(Kf[], [], [], [], [],αs)→nc 〈Ret-Val (Addr a′), h′〉

P, t ` 〈a.hashcode([]), h〉 −LM→nc 〈Ret-Val (Intg (hash-addr a)), h〉

P, t ` 〈a.notify([]), h〉 −LUnlock→a, Lock→a, Notify aM→nc 〈Ret-Val Unit, h〉

P, t ` 〈a.notify([]), h〉 −LUnlockFail→aM→nc
〈Ret-sys-xcpt IllegalMonitorState, h〉

P, t ` 〈a.notifyAll([]), h〉 −LUnlock→a, Lock→a, NotifyAll aM→nc
〈Ret-Val Unit, h〉

P, t ` 〈a.notifyAll([]), h〉 −LUnlockFail→aM→nc
〈Ret-sys-xcpt IllegalMonitorState, h〉

P, t ` 〈a.wait([]), h〉 −LUnlockFail→aM→nc 〈Ret-sys-xcpt IllegalMonitorState, h〉

P, t ` 〈a.wait([]), h〉
−LUnlock→a, Lock→a, IsIntrd t True, ClearIntr t, TIntrd tM→nc
〈Ret-sys-xcpt InterruptedException, h〉

P, t ` 〈a.wait([]), h〉
−LSuspend a, Unlock→a, Lock→a, Release→a,

IsIntrd t False, SUnlock aM→nc
〈Ret-Unchanged, h〉

P, t ` 〈a.wait([]), h〉 −LNotifiedM→nc 〈Ret-Val Unit, h〉

P, t ` 〈a.wait([]), h〉 −LWokenUp, ClearIntr t, TIntrd tM→nc
〈Ret-sys-xcpt InterruptedException, h〉

P, t ` 〈a.print(vs), h〉 −LExtern a print vs UnitM→nc 〈Ret-Val unit, h〉

325

Appendix B. Formal definitions

aggressive functional implementation of native methods:

exec-native :: ′m prog⇒ ′t⇒ ′addr⇒mname⇒ ′addr val list⇒ ′heap
⇒((′addr, ′t, cname×mname× ′addr, ′heap, ′addr, (′addr, ′t) event)

thread-action× ′addr native-ret× ′heap) set
exec-native P t a M vs h =
(if M = wait then
{ (LUnlock→a, Lock→a, IsIntrd t True, ClearIntr t, TIntrd tM,

Ret-sys-xcpt InterruptedException, h),
(LSuspend a, Unlock→a, Lock→a, Release→a, IsIntrd t False, SUnlock aM,
Ret-Unchanged, h),
(LUnlockFail→aM, Ret-sys-xcpt IllegalMonitorState, h),
(LNotifiedM, Ret-Val Unit, h),
(LWokenUp, ClearIntr t, TIntrd tM, h, Ret-sys-xcpt InterruptedException) }

else if M = notify then
{ (LNotify a, Unlock→a, Lock→aM, Ret-Val Unit, h),
(LUnlockFail→aM, Ret-sys-xcpt IllegalMonitorState, h) }

else if M = notifyAll then
{ (LNotifyAll a, Unlock→a, Lock→aM, Ret-Val Unit, h),
(LUnlockFail→aM, Ret-sys-xcpt IllegalMonitorState, h) }

else if M = clone then
{ (Kf [], [], [], [], [],αs), Ret-Val a′, h′) | αs a′ h′. heap-clone P h a h′

⌊
(αs, a′)

⌋
}

∪ { (LM, Ret-sys-xcpt OutOfMemory, h′) | h′. heap-clone P h a h′ None }
else if M = hashcode then { (LM, Ret-Val (Intg (hash-addr a)), h) }
else if M = print then { (LExtern a M vs UnitM, Ret-Val Unit, h) }
else if M = currentThread then { (LM, Ret-Val (Addr (a2t a)), h) }
else if M = interrupted then
{ (LIsIntrd t True, ClearIntr t, TIntrd tM, Ret-Val (Bool True), h),
(LIsIntrd t FalseM, Ret-Val (Bool False), h) }

else if M = yield then { (LYieldM, Ret-Val Unit, h) }
else let bhTc = typeof-addr h a

in if P ` ty-of hT ≤ Class Thread then let ta = a2t a; Class C = ty-of hT in
if M = start then
{ (LSpawn ta (C, run, a) h, TStart taM, Ret-Val Unit, h),
(LThreadEx ta TrueM, Ret-sys-xcpt IllegalThreadState, h) }

else if M = join then
{ (LJoin ta, IsIntrd t False, TJoin taM, Ret-Val Unit, h),
(LIsIntrd t True, ClearIntr t, TIntrd tM,
Ret-sys-xcpt InterruptedException, h) }

else if M = interrupt then
{ (LThreadEx ta True, WakeUp ta, Intr ta, TIntr taM, Ret-Val Unit, h),
(LThreadEx ta FalseM, Ret-Val Unit, h) }

326

B.5. Generic well-formedness

else if M = isInterrupted then
{ (LIsIntrd ta FalseM, Ret-Val (Bool False), h),
(LIsIntrd ta True, TIntrd taM, Ret-Val (Bool True), h) }

else { (LM, undefined) }
else { (LM, undefined) })

B.4.4 Observability
unobservable native methods calls: τnative :: cname⇒mname⇒ bool

τnative Object hashcode τnative Object currentThread

B.5 Generic well-formedness
sys-xcpts :: cname list
sys-xcpts = [NullPointer, ClassCast, ArithmeticException, OutOfMemory,

ArrayIndexOutOfBounds, ArrayStore, NegativeArraySize,
IllegalThreadState, IllegalMonitorState, InterruptedException]

wf-prog :: ′m wf-mdecl-test⇒ ′m prog⇒ bool
wf-prog w f -md P←→ wf-syscls P∧ distinct (map fst (classes P))∧

(∀cd ∈ set (classes P). wf-cdecl w f -md P cd)

wf-syscls :: ′m prog⇒ bool
wf-syscls P←→ is-class P Object∧ is-class P Throwable ∧ is-class P Thread∧

(∀C ∈ set sys-xcpts. P `C�∗ Throwable)

wf-cdecl :: ′m wf-mdecl-test⇒ ′m prog⇒ ′m cdecl⇒ bool
wf-cdecl w f -md P (C, D, f s, ms)←→
(∀ f d ∈ set f s. wf-fdecl P f d)∧ distinct (map fst f s)∧
(∀md ∈ set ms. wf-mdecl w f -md P C md)∧ distinct (map fst ms)∧
(C , Object −→ is-class P D∧¬ P `D�∗ C∧

(∀md ∈ set ms. wf-overriding P D md)∧
(C = Thread −→ (∃m. (run, [], Void, m) ∈ set ms))

wf-fdecl :: ′m prog⇒ fdecl⇒ bool
wf-fdecl P (F, T, f m)←→ is-type P T

wf-overriding :: ′m prog⇒ cname⇒ ′m mdecl⇒ bool
wf-overriding P D (M, Ts, Tr, m)←→ (∀D′ Ts′ T′r m′.

P `D sees M:Ts′→T′r = m′ in D′ −→ P ` Ts′ [≤] Ts∧ P ` Tr ≤ T′r)

327

Appendix B. Formal definitions

wf-mdecl :: ′m wf-mdecl-test⇒ ′m option wf-mdecl-test
wf-mdecl w f -md P C (M, Ts, Tr, m)←→

set Ts ⊆ types P∧ is-type P Tr ∧

(case m of Native⇒ C.M(Ts) :: Tr
| bmbc ⇒ w f -md P C (M, Ts, Tr, mb))

B.6 Source code

B.6.1 Syntax
datatype (′a, ′b, ′addr) exp = new cname | new ty[(′a, ′b, ′addr) exp] |

Cast ty (′a, ′b, ′addr) exp | (′a, ′b, ′addr) exp instanceof ty | Val ′addr val |
(′a, ′b, ′addr) exp «bop» (′a, ′b, ′addr) exp | Var ′a |
′a B (′a, ′b, ′addr) exp | (′a, ′b, ′addr) exp[(′a, ′b, ′addr) exp] |
(′a, ′b, ′addr) exp[(′a, ′b, ′addr) exp] B (′a, ′b, ′addr) exp | (′a, ′b, ′addr) exp.length |
(′a, ′b, ′addr) exp.vname{cname} |
(′a, ′b, ′addr) exp.vname{cname} B (′a, ′b, ′addr) exp |
(′a, ′b, ′addr) exp.mname((′a, ′b, ′addr) exp list) |
{
′a : ty = ′addr val option; (′a, ′b, ′addr) exp} |
(′a, ′b, ′addr) exp; ; (′a, ′b, ′addr) exp |
if ((′a, ′b, ′addr) exp) (′a, ′b, ′addr) exp else (′a, ′b, ′addr) exp |
while ((′a, ′b, ′addr) exp) (′a, ′b, ′addr) exp | throw (′a, ′b, ′addr) exp |
try (′a, ′b, ′addr) exp catch(cname ′a) (′a, ′b, ′addr) exp |
sync′b ((

′a, ′b, ′addr) exp) (′a, ′b, ′addr) exp | insync′b (
′addr) (′a, ′b, ′addr) exp

type_synonym ′addr expr = (vname, unit, ′addr) exp
type_synonym ′addr J-mb = vname list× ′addr expr
type_synonym ′addr J-prog = ′addr J-mb prog

B.6.2 Typing rules for expressions

is-class P C

P, E ` new C :: Class C

P, E ` e :: Integer is-type P (T[])

P, E ` new T[e] :: T[]

P, E ` e :: T′ P ` T ≤ T′ ∨ P ` T′ ≤ T is-type P T

P, E ` Cast T e :: T

P, E ` e :: T′ P ` T ≤ T′ ∨ P ` T′ ≤ T is-type P T is-refT T

P, E ` e instanceof T :: Boolean

328

B.6. Source code

typeof v = bTc

P, E ` Val v :: T

E V = bTc

P, E ` Var V :: T

P, E ` e1 :: T1 P, E ` e2 :: T2 P ` T1 «bop» T2 :: T

P, E ` e1 «bop» e2 :: T

E V = bTc P, E ` e :: T′ P ` T′ ≤ T V , this

P, E ` V B e :: Void

P, E ` e :: T[]

P, E ` e.length :: Integer

P, E ` e1 :: T[] P, E ` e2 :: Integer

P, E ` e1[e2] :: T

P, E ` e1 :: T[] P, E ` e2 :: Integer P, E ` e3 :: T′ P ` T′ ≤ T

P, E ` e1[e2] B e3 :: Void

P, E ` e :: T class-of T = bCc P `C sees F:T′ (f m) in D

P, E ` e.F{D} :: T′

P, E ` e1 :: T1 class-of T1 = bCc
P `C sees F:T′ (f m) in D P, E ` e2 :: T2 P ` T2 ≤ T′

P, E ` e1.F{D} B e2 :: Void

P, E ` e :: T P, E ` es [::] Ts′

class-of T = bCc P `C sees M:Ts→Tr = meth in D P ` Ts′ [≤] Ts

P, E ` e.M(es) :: Tr

is-type P T P, E(V 7→ T) ` e :: T′

case vo of None⇒ True | bvc ⇒ ∃T′′. typeof v =
⌊
T′′

⌋
∧ P ` T′′ ≤ T

P, E ` {V : T = vo; e} :: T′

P, E ` e1 :: T1 P, E ` e2 :: T2

P, E ` e1; ; e2 :: T2

P, E ` e :: Boolean P, E ` e1 :: T1 P, E ` e2 :: T2 P ` lub (T1, T2) = T

P, E ` if (e) e1 else e2 :: T

P, E ` e1 :: Boolean P, E ` e2 :: T

P, E ` while (e1) e2 :: Void

329

Appendix B. Formal definitions

P, E ` e :: Class C P `C�∗ Throwable

P, E ` throw e :: Void

P, E ` e1 :: T P, E(V 7→Class C) ` e2 :: T P `C�∗ Throwable

P, E ` try e1 catch(C V) e2 :: T

P, E ` e1 :: T1 is-refT T1 T1 , NT P, E ` e2 :: T2

P, E ` sync (e1) e2 :: T2

P, E ` [] [::] []
P, E ` e :: T P, E ` es [::] Ts

P, E ` e · es [::] T · Ts

B.6.3 Definite Assignment
Hypersets: type_synonym ′a hyperset = ′a set option

Nonet B = None
A tNone = None
bAc t bBc = bA∪ Bc

Noneu B = B
A uNone = A
bAc u bBc = bA∩ Bc

None	 a = None
bAc 	 a = bA− { a }c

a ∈∈ None = True
a ∈∈ bAc = a ∈ A

Definitely assigned variables:
A :: (′a, ′b, ′addr) exp⇒ ′a hyperset
A (new C) = b∅c
A (new T[e]) = A e
A (e instanceof T) = A e
A (Cast T e) = A e
A (Val v) = b∅c
A (e1 «bop» e2) = A e1 tA e2
A (Var V) = b∅c
A (V B e) = b{V }c tA e
A (e1[e2]) = A e1 tA e2
A (e1[e2] B e3) = A e1 tA e2 tA e3
A (e.length) = A e
A (e.F{D}) = A e
A (e1.F{D} B e2) = A e1 tA e2
A (e.M(es)) = A etAs es
A {V : T = vo; e} = A e	V
A (e1; ; e2) = A e1 tA e2

330

B.6. Source code

A (if (e) e1 else e2) = A et (A e1 uA e2)
A (while (e1) e2) = A e1
A (throw e) = None
A (try e1 catch(C V) e2) = A e1 u (A e2 	V)
A (syncb (e1) e2) = A e1 tA e2
A (insyncb (a) e) = A e

As :: (′a, ′b, ′addr) exp list⇒ ′a hyperset
As [] = b∅c
As (e · es) = A etA es

Definite assignment test:
D :: (′a, ′b, ′addr) exp⇒ ′a hyperset⇒ bool
D (new C) A ←→ True
D (new T[e]) A ←→D e A
D (e instanceof T) A ←→D e A
D (Cast T e) A ←→D e A
D (Val v) A ←→ True
D (e1 «bop» e2) A ←→D e1 A∧D e2 (AtA e1)
D (Var V) A ←→ V ∈∈ A
D (V B e) A ←→D e A
D (e1[e2]) A ←→D e1 A∧D e2 (AtA e1)
D (e1[e2] B e3) A ←→

D e1 ∧D e2 (AtA e1)∧D e3 (AtA e1 ∧A e2)
D (e.length) A ←→D e A
D (e.F{D}) A ←→D e A
D (e1.F{D} B e2) A ←→D e1 A∧D e2 (AtA e1)
D (e.M(es)) A ←→D e A∧Ds es (AtA e)
D {V : T = vo; e} ←→

(if vo = None thenD e (A	V) elseD e (At b{V }c))
D (e1; ; e2) A ←→D e1 A∧D e2 (AtA e1)
D (if (e) e1 else e2) A ←→D e A∧D e1 (AtA e)∧D e2 (AtA e)
D (while (e1) e2) A ←→D e1 A∧D e2 (AtA e1)
D (throw e) A ←→D e A
D (try e1 catch(C V) e2) A←→D e1 A∧D e2(At b{V }c)
D (syncb (e1) e2) A ←→D e1 A∧D e2 (AtA e1)
D (insyncb (a) e) A ←→D e A

Ds :: (′a, ′b, ′addr) exp list⇒ ′a hyperset⇒ bool
Ds [] ←→ True
Ds (e · es) A ←→D e A∧D es (AtA e)

331

Appendix B. Formal definitions

B.6.4 Well-formedness
wf-J-mdecl :: ′addr J-mb wf-mdecl-test
wf-J-mdecl P C (M, Ts, Tr, (pns, body))←→
|Ts| = |pns| ∧ distinct pns∧ this < set pns∧
(∃T. P, [this 7→Class C, pns [7→] Ts] ` body :: T ∧ P ` T ≤ Tr)∧
D body

⌊
{ this } ∪ set pns

⌋
wf-J-prog = wf-prog wf-J-mdecl

B.6.5 Small-step semantics
Subexpression reduction rules

P, t ` 〈e, s〉 −ta→〈e′, s′〉

P, t ` 〈new T[e], s〉 −ta→〈new T[e′], s′〉

P, t ` 〈e, s〉 −ta→〈e′, s′〉

P, t ` 〈Cast T e, s〉 −ta→〈Cast T e′, s′〉

P, t ` 〈e, s〉 −ta→〈e′, s′〉

P, t ` 〈e instanceof T, s〉 −ta→〈e′ instanceof T, s′〉

P, t ` 〈e1, s〉 −ta→〈e′1, s′〉

P, t ` 〈e1 «bop» e2, s〉 −ta→〈e′1 «bop» e2, s′〉

P, t ` 〈e2, s〉 −ta→〈e′2, s′〉

P, t ` 〈Val v1 «bop» e2, s〉 −ta→〈Val v1 «bop» e′2, s′〉

P, t ` 〈e, s〉 −ta→〈e′, s′〉

P, t ` 〈V B e, s〉 −ta→〈V B e′, s′〉

P, t ` 〈e1, s〉 −ta→〈e′1, s′〉

P, t ` 〈e1[e2], s〉 −ta→〈e′1[e2], s′〉

P, t ` 〈e2, s〉 −ta→〈e′2, s′〉

P, t ` 〈Val v1[e2], s〉 −ta→〈Val v1[e′2], s′〉

P, t ` 〈e1, s〉 −ta→〈e′1, s′〉

P, t ` 〈e1[e2] B e3, s〉 −ta→〈e′1[e2] B e3, s′〉

332

B.6. Source code

P, t ` 〈e2, s〉 −ta→〈e′2, s′〉

P, t ` 〈Val v1[e2] B e3, s〉 −ta→〈Val v1[e′2] B e3, s′〉

P, t ` 〈e3, s〉 −ta→〈e′3, s′〉

P, t ` 〈Val v1[Val v2] B e3, s〉 −ta→〈Val v1[Val v2] B e′3, s′〉

P, t ` 〈e, s〉 −ta→〈e′, s′〉

P, t ` 〈e.length, s〉 −ta→〈e′.length, s′〉

P, t ` 〈e, s〉 −ta→〈e′, s′〉

P, t ` 〈e.F{D}, s〉 −ta→〈e′.F{D}, s′〉

P, t ` 〈e1, s〉 −ta→〈e′1, s′〉

P, t ` 〈e1.F{D} B e2, s〉 −ta→〈e′1.F{D} B e2, s′〉

P, t ` 〈e2, s〉 −ta→〈e′2, s′〉

P, t ` 〈Val v1.F{D} B e2, s〉 −ta→〈Val v1.F{D} B e′2, s′〉

P, t ` 〈e, s〉 −ta→〈e′, s′〉

P, t ` 〈e.M(es), s〉 −ta→〈e′.M(es), s′〉

P, t ` 〈es, s〉 [−ta→] 〈es′, s′〉

P, t ` 〈Val v.M(es), s〉 −ta→〈Val v.M(es′), s′〉

P, t ` 〈e, (h, xs(VB vo))〉 −ta→〈e′, (h′, xs′)〉

P, t ` 〈{V : T = vo; e}, (h, xs)〉 −ta→〈{V : T = xs′ V; e′}, (h′, xs′(VB xs V))〉

P, t ` 〈e1, s〉 −ta→〈e′1, s′〉

P, t ` 〈e1; ; e2, s〉 −ta→〈e′1; ; e2, s′〉

P, t ` 〈e, s〉 −ta→〈e′, s′〉

P, t ` 〈if (e) e1 else e2, s〉 −ta→〈if (e′) e1 else e2, s′〉

P, t ` 〈e, s〉 −ta→〈e′, s′〉

P, t ` 〈throw e, s〉 −ta→〈throw e′, s′〉

P, t ` 〈e1, s〉 −ta→〈e′1, s′〉

P, t ` 〈try e1 catch(C V) e2, s〉 −ta→〈try e′1 catch(C V) e2, s′〉

P, t ` 〈e1, s〉 −ta→〈e′1, s′〉

P, t ` 〈sync (e1) e2, s〉 −ta→〈sync (e′1) e2, s′〉

333

Appendix B. Formal definitions

P, t ` 〈e, s〉 −ta→〈e′, s′〉

P, t ` 〈insync (a) e, s〉 −ta→〈insync (a) e′, s′〉

P, t ` 〈e, s〉 −ta→〈e′, s′〉

P, t ` 〈e · es, s〉 [−ta→] 〈e′ · es, s′〉

P, t ` 〈es, s〉 [−ta→] 〈es′, s′〉

P, t ` 〈Val v · es, s〉 [−ta→] 〈Val v · es′, s′〉

Expression reduction rules

alloc h (ClassT C) = (h′, bac)

P, t ` 〈new C, (h, xs)〉 −LNew-Obj a CM→〈addr a, (h′, xs)〉

alloc h (ClassT C) = (h′, None)

P, t ` 〈new C, (h, xs)〉 −LM→〈THROW OutOfMemory, (h′, xs)〉

i <s 0

P, t ` 〈new T[Val (Intg i)], s〉 −LM→〈THROW NegativeArraySize, s〉

0 ≤s i alloc h (ArrayT T (nat (sint i))) = (h′, bac)

P, t ` 〈new T[Val (Intg i)], (h, xs)〉
−LNew-Arr a T (nat (sint i))M→〈addr a, (h′, xs)〉

0 ≤s i alloc h (ArrayT T (nat (sint i))) = (h′, None)

P, t ` 〈new T[Val (Intg i)], (h, xs)〉 −LM→〈THROW OutOfMemory, (h′, xs)〉

typeofhp s v =
⌊
T′

⌋
P ` T′ ≤ T

P, t ` 〈Cast T (Val v), s〉 −LM→〈Val v, s〉

typeofhp s v =
⌊
T′

⌋
¬P ` T′ ≤ T

P, t ` 〈Cast T (Val v), s〉 −LM→〈THROW ClassCast, s〉

typeofhp s v =
⌊
T′

⌋
b←→ v , Null∧ P ` T′ ≤ T

P, t ` 〈Val v instanceof T, s〉 −ta→〈Val (Bool b), s〉

binop bop v1 v2 = bInl vc

P, t ` 〈Val v1 «bop» Val v2, s〉 −LM→〈Val v, s〉

binop bop v1 v2 = bInr ac

P, t ` 〈Val v1 «bop» Val v2, s〉 −LM→〈Throw a, s〉

334

B.6. Source code

lcl s V = bvc

P, t ` 〈Var V, s〉 −LM→〈Val v, s〉

P, t ` 〈V B Val v, (h, xs)〉 −LM→〈unit, (h, xs(V 7→ v))〉

P, t ` 〈null[Val v], s〉 −LM→〈THROW NullPointer, s〉

typeof-addr (hp s) a =
⌊
ArrayT T n

⌋
i <s 0∨ sint i ≥ int n

P, t ` 〈Val v1[Val v2], s〉 −LM→〈THROW ArrayIndexOutOfBounds, s〉

typeof-addr h a =
⌊
ArrayT T n

⌋
0 ≤s i sint i < int n read h a (Cell (nat (sint i))) v

P, t ` 〈Val v1[Val v2], (h, xs)〉 −LRead a (Cell (nat (sint i))) vM→〈Val v, (h, xs)〉

P, t ` 〈null[Val v2] B Val v3, s〉 −LM→〈THROW NullPointer, s〉

typeof-addr (hp s) a =
⌊
ArrayT T n

⌋
i <s 0∨ sint i ≥ int n

P, t ` 〈addr a[Val (Intg i)] B Val v3, s〉
−LM→〈THROW ArrayIndexOutOfBounds, s〉

typeof-addr (hp s) a =
⌊
ArrayT T n

⌋
0 ≤s i sint i < int n typeofhp s v3 =

⌊
T′

⌋
¬P ` T′ ≤ T

P, t ` 〈addr a[Val (Intg i)] B Val v3, s〉 −LM→〈THROW ArrayStore, s〉

typeof-addr h a =
⌊
ArrayT T n

⌋
0 ≤s i sint i < int n

typeofh v3 =
⌊
T′

⌋
P ` T′ ≤ T write h a (Cell (nat (sint i))) v3 h′

P, t ` 〈addr a[Val (Intg i)] B Val v3, (h, xs)〉
−LWrite a (Cell (nat (sint i))) v3M→〈unit, (h′, xs)〉

P, t ` 〈null.length, s〉 −LM→〈THROW NullPointer, s〉

typeof-addr (hp s) a =
⌊
ArrayT T n

⌋
P, t ` 〈addr a.length, s〉 −LM→〈Val (Intg (word-of-int (int n))), s〉

P, t ` 〈null.F{D}, s〉 −LM→〈THROW NullPointer, s〉

read h a (Field F D) v

P, t ` 〈addr a.F{D}, (h, xs)〉 −LRead a (Field F D) vM→〈Val v, (h, xs)〉

P, t ` 〈null.F{D} B Val v2, s〉 −LM→〈THROW NullPointer, s〉

335

Appendix B. Formal definitions

write h a (Field F D) v2 h′

P, t ` 〈addr a.F{D} B Val v2, (h, xs)〉 −LWrite a (Field F D) v2M→〈unit, (h′, xs)〉

P, t ` 〈null.M(es), s〉 −LM→〈THROW NullPointer, s〉

typeof-addr (hp s) a = bhTc
P ` class-of ′ hT sees M:Ts→Tr =

⌊
(pns, body)

⌋
in D

|vs| = |pns| |Ts| = |pns|

P, t ` 〈addr a.M(map Val vs), s〉
−LM→〈blocks (this · pns) (Class D · Ts) (Addr a · vs) body, s〉

typeof-addr h a = bhTc P ` class-of ′ hT sees M:Ts→Tr = Native in D
P, t ` 〈a.M(vs), h〉 −ta→nc 〈vx, h′〉

ta′ = native-TA2J P ta e′ = native-Ret2J (addr a.M(map Val vs)) vx

P, t ` 〈addr a.M(map Val vs), (h, xs)〉 −ta′→〈e′, (h′, xs)〉

P, t ` 〈{V : T = vo; Val v}, s〉 −LM→〈Val v, s〉

P, t ` 〈Val v; ; e2, s〉 −LM→〈e2, s〉 P, t ` 〈if (true) e1 else e2, s〉 −LM→〈e1, s〉

P, t ` 〈if (false) e1 else e2, s〉 −LM→〈e2, s〉

P, t ` 〈while (e1) e2, s〉 −LM→〈if (e1) e2; ; while (e1) e2 else unit, s〉

P, t ` 〈throw null, s〉 −LM→〈THROW NullPointer, s〉

P, t ` 〈try Val v catch(C V) e2, s〉 −LM→〈Val v, s〉

typeof-addr (hp s) a = bClassT Dc P `D�∗ C

P, t ` 〈try Throw a catch(C V) e2, s〉 −LM→〈{V : Class C = bac ; e2}, s〉

typeof-addr (hp s) a = bClassT Dc ¬P `D�∗ C

P, t ` 〈try Throw a catch(C V) e2, s〉 −LM→〈Throw a, s〉

P, t ` 〈sync (null) e2, s〉 −LM→〈THROW NullPointer, s〉

P, t ` 〈sync (addr a) e2, s〉 −LLock→a, SLock aM→〈insync (a) e2, s〉

P, t ` 〈insync (a) (Val v), s〉 −LUnlock→a, SUnlock aM→〈Val v, s〉

336

B.6. Source code

Exception propagation rules

P, t ` 〈new T[Throw a], s〉 −LM→〈Throw a, s〉

P, t ` 〈Cast T (Throw a), s〉 −LM→〈Throw a, s〉

P, t ` 〈(Throw a) instanceof T, s〉 −LM→〈Throw a, s〉

P, t ` 〈Throw a «bop» e2, s〉 −LM→〈Throw a, s〉

P, t ` 〈Val v1 «bop» Throw a, s〉 −LM→〈Throw a, s〉

P, t ` 〈V B Throw a, s〉 −LM→〈Throw a, s〉

P, t ` 〈Throw a[e2], s〉 −LM→〈Throw a, s〉

P, t ` 〈Val v1[Throw a], s〉 −LM→〈Throw a, s〉

P, t ` 〈Throw a[e2] B e3, s〉 −LM→〈Throw a, s〉

P, t ` 〈Val v1[Throw a] B e3, s〉 −LM→〈Throw a, s〉

P, t ` 〈Val v1[Val v2] B Throw a, s〉 −LM→〈Throw a, s〉

P, t ` 〈Throw a.length, s〉 −LM→〈Throw a, s〉

P, t ` 〈Throw a.F{D}, s〉 −LM→〈Throw a, s〉

P, t ` 〈Throw a.F{D} B e2, s〉 −LM→〈Throw a, s〉

P, t ` 〈Val v1.F{D} B Throw a, s〉 −LM→〈Throw a, s〉

P, t ` 〈Throw a.M(es), s〉 −LM→〈Throw a, s〉

P, t ` 〈Val v.M(map Val vs @ Throw a · es), s〉 −LM→〈Throw a, s〉

P, t ` 〈{V : T = vo; Throw a}, s〉 −LM→〈Throw a, s〉

P, t ` 〈Throw a; ; e2, s〉 −LM→〈Throw a, s〉

P, t ` 〈if (Throw a) e1 else e2, s〉 −LM→〈Throw a, s〉

P, t ` 〈throw (Throw a), s〉 −LM→〈Throw a, s〉

337

Appendix B. Formal definitions

P, t ` 〈sync (Throw a) e, s〉 −LM→〈Throw a, s〉

P, t ` 〈insync (a) (Throw a′), s〉 −LUnlock→a, SUnlock aM→〈Throw a′, s〉

auxiliary functions
blocks [] [] [] e = e
blocks (V ·Vs) (T · Ts) (v · vs) e = {V : T = bvc ; blocks Vs Ts vs e}

B.6.6 Observability
τ-move :: ′m prog⇒ ′heap⇒ ′addr expr⇒ bool
τ-move P h (new C) ←→ False
τ-move P h (new T[e]) ←→ τ-move P h e∨ is-Throw e
τ-move P h (Cast T e) ←→ τ-move P h e∨ is-Throw e∨ is-Val e
τ-move P h (e instanceof T) ←→ τ-move P h e∨ is-Throw e∨ is-Val e
τ-move P h (Val v) ←→ False
τ-move P h (e1 «bop» e2) ←→ τ-move P h e1 ∨ is-Throw e∨

is-Val e1 ∧ (τ-move P h e2 ∨ is-Throw e2 ∨ is-Val e2)
τ-move P h (Var V) ←→ True
τ-move P h (V B e) ←→ τ-move P h e∨ is-Throw e∨ is-Val e
τ-move P h (e1[e2]) ←→ τ-move P h e1 ∨ is-Throw e1 ∨

is-Val e1 ∧ (τ-move P h e2 ∨ is-Throw e2)
τ-move P h (e1[e2] B e3) ←→ τ-move P h e1 ∨ is-Throw e1 ∨

is-Val e1 ∧ (τ-move P h e2 ∨ is-Throw e2 ∨

is-Val e2 ∧ (τ-move P h e3 ∨ is-Throw e3))
τ-move P h (e.length) ←→ τ-move P h e∨ is-Throw e
τ-move P h (e.F{D}) ←→ τ-move P h e∨ is-Throw e
τ-move P h (e1.F{D} B e2) ←→ τ-move P h e1 ∨ is-Throw e1 ∨

is-Val e1 ∧ (τ-move P h e2 ∨ is-Throw e2)
τ-move P h (e.M(vs)) ←→ τ-move P h e∨ is-Throw e∨

(∃v. e = Val v∧ (τ-moves P h es∨ is-Throws es∨ is-Vals es∧ (v = Null∨
(∀T C Ts Tr D. typeofh v = bTc −→ class-of T = bCc −→

P `C sees M:Ts→Tr = Native in D −→ τnative D M))))
τ-move P h {V : T = vo; e} ←→ τ-move P h e∨ is-Throw e∨ is-Val e
τ-move P h (sync (e1) e2) ←→ τ-move P h e1 ∨ is-Throw e1
τ-move P h (insync (a) e) ←→ τ-move P h e
τ-move P h (e1; ; e2) ←→ τ-move P h e1 ∨ is-Throw e1 ∨ is-Val e1
τ-move P h (if (e1) e2 else e3) ←→ τ-move P h e1 ∨ is-Throw e1 ∨ is-Val e1
τ-move P h (while (e1) e2) ←→ True
τ-move P h (throw e) ←→ τ-move P h e∨ is-Throw e∨ e = null
τ-move P h (try e1 catch(C V) e2)←→ τ-move P h e1 ∨ is-Throw e1 ∨ is-Val e1

338

B.7. Bytecode

τ-moves :: ′m prog⇒ ′heap⇒ ′addr expr list⇒ bool
τ-moves P h [] ←→ False
τ-moves P h e · es ←→ τ-move P h e∨ is-Val e∧ τ-moves P h es

J-τ-move P ((e, xs), h) ta _ ←→ τ-move P h e ∧ ta = LM

auxiliary functions: is-Throw e←→ (∃a. e = Throw a)

B.7 Bytecode

B.7.1 Syntax
Instructions

datatype ′addr instr = Load nat | Store nat | Push ′addr val | Pop | Dup | Swap |
BinOp bop | New cname | NewArray ty | ALoad | AStore | ALength |
Getfield vname cname | Putfield vname cname | Checkcast ty | Instanceof ty |
Invoke mname nat | Return | Goto int | IfFalse int | ThrowExc |
MEnter |MExit

Program declarations

type_synonym ′addr jvm-method = nat× nat× ′addr instr list× ex-table
type_synonym ′addr jvm-prog = ′addr jvm-method prog

type_synonym ex-table = ex-entry list
type_synonym ex-entry = pc× pc× cname option× pc× nat

B.7.2 Applicability and effect
datatype ′a err = Err | OK ′a
type_synonym tyi = ty list× ty err list

ok-val (OK T) = T
the-Array (T[]) = T

Effect
successor instructions under normal execution:

succs :: ′addr instr⇒ tyi⇒ pc⇒ pc list
succs (Load i) τ pc = [pc + 1]
succs (Store i) τ pc = [pc + 1]
succs (Push v) τ pc = [pc + 1]

339

Appendix B. Formal definitions

succs Pop τ pc = [pc + 1]
succs Dup τ pc = [pc + 1]
succs Swap τ pc = [pc + 1]
succs (BinOp bop) τ pc = [pc + 1]
succs (New C) τ pc = [pc + 1]
succs (NewArray T) τ pc = [pc + 1]
succs ALoad τ pc = (if (fst τ)[1] = NT then [] else [pc + 1])
succs AStore τ pc = (if (fst τ)[2] = NT then [] else [pc + 1])
succs ALength τ pc = (if (fst τ)[0] = NT then [] else [pc + 1])
succs (Getfield F D) τ pc = [pc + 1]
succs (Putfield F D) τ pc = [pc + 1]
succs (Checkcast T) τ pc = [pc + 1]
succs (Instanceof T) τ pc = [pc + 1]
succs (Invoke M n) τ pc = (if (fst τ)[n] = NT then [] else [pc + 1])
succs Return τ pc = []
succs (Goto i) τ pc = [nat (int pc + i)]
succs (IfFalse i) τ pc = [pc + 1, nat (int pc + i)]
succs ThrowExc τ pc = []
succs MEnter τ pc = (if (fst τ)[0] = NT then [] else [pc + 1])
succs MExit τ pc = (if (fst τ)[0] = NT then [] else [pc + 1])

effect of instructions:

effi :: ′addr instr× ′m prog× tyi⇒ tyi
effi (Load i, P, ST, LT) = (ok-val LT[i] · ST, LT)
effi (Store i, P, T · ST, LT) = (ST, LT[iBOK T])
effi (Push v, P, ST, LT) = (the (typeof v) · ST, LT)
effi (Pop v, P, T · ST, LT) = (ST, LT)
effi (Dup, P, T · ST, LT) = (T · T · ST, LT)
effi (Swap, P, T1 · T2 · ST, LT) = (T2 · T1 · ST, LT)
effi (BinOp bop, P, T1 · T2 · ST, LT) = ((ιT. P ` T1 «bop» T2 :: T) · ST, LT)
effi (New C, P, ST, LT) = (Class C · ST, LT)
effi (NewArray T, P, T′ · ST, LT) = (T[] · ST, LT)
effi (ALoad, P, T1 · T2 · ST, LT) = (the-Array T2 · ST, LT)
effi (AStore, P, T1 · T2 · T3 · ST, LT) = (ST, LT)
effi (ALength, P, T · ST, LT) = (Integer · ST, LT)
effi (Getfield F D, P, T · ST, LT) = (fst (snd (field P D F)) · ST, LT)
effi (Putfield F D, P, T1 · T2 · ST, LT) = (ST, LT)
effi (Checkcast T, P, T′ · ST, LT) = (T · ST, LT)
effi (Instanceof T, P, T′ · ST, LT) = (Boolean · ST, LT)

340

B.7. Bytecode

effi (Invoke M n, P, ST, LT) =
(let bCc = class-of ST[n]; (_, _, Tr, _) = method P C M
in (Tr · drop (n + 1) ST, LT))

effi (Goto i, P, ST, LT) = (ST, LT)
effi (IfFalse i, P, T · ST, LT) = (ST, LT)
effi (MEnter i, P, T · ST, LT) = (ST, LT)
effi (MExit i, P, T · ST, LT) = (ST, LT)

relevant classes for exception handlers

binop-relevant-class :: bop⇒ ′m prog⇒ cname⇒ bool
binop-relevant-class / P C←→ P `ArithmeticException�∗ C
binop-relevant-class % P C←→ P `ArithmeticException�∗ C
binop-relevant-class _ P C←→ False

is-relevant-class :: ′addr instr⇒ ′m prog⇒ cname⇒ bool
is-relevant-class (BinOp bop) P C←→ binop-relevant-class P C
is-relevant-class (Getfield F D) P C←→ P `NullPointer�∗ C
is-relevant-class (Putfield F D) P C←→ P `NullPointer�∗ C
is-relevant-class (Checkcast T) P C←→ P `ClassCast�∗ C
is-relevant-class (New C) P C←→ P `OutOfMemory�∗ C
is-relevant-class ThrowExc P C←→ True
is-relevant-class Invoke M n P C←→ True
is-relevant-class (NewArray T) P C←→

P `OutOfMemory�∗ C∨ P `NegativeArraySize�∗ C
is-relevant-class ALoad P C←→

P `ArrayIndexOutOfBounds�∗ C∨ P `NullPointer�∗ C
is-relevant-class AStore P C←→ P `ArrayIndexOutOfBounds�∗ C∨

P `ArrayStore�∗ C∨ P `NullPointer�∗ C
is-relevant-class ALength P C←→ P `NullPointer�∗ C
is-relevant-class MEnter P C←→

P ` IllegalMonitorState�∗ C∨ P `NullPointer�∗ C
is-relevant-class MExit P C←→

P ` IllegalMonitorState�∗ C∨ P `NullPointer�∗ C
is-relevant-class _ P C←→ False

is-relevant-entry :: ′m prog⇒ ′addr instr⇒ pc⇒ ex-entry⇒ bool
is-relevant-entry P i pc (f , t, Co, h, d)←→

(case Co of Any⇒ True | bCc ⇒ is-relevant-class i P C)∧ f ≤ pc∧ pc < t

relevant-entries :: ′m prog⇒ ′addr instr⇒ pc⇒ ex-table⇒ ex-table
relevant-entries P i pc = filter (is-relevant-entry P i pc)

341

Appendix B. Formal definitions

xcpt-class Any = Class Throwable
xcpt-class bCc = Class C

xcpt-eff :: ′addr instr⇒ ′m prog⇒ pc⇒ tyi⇒ ex-table⇒ (pc× tyi option) list
xcpt-eff i P pc (ST, LT) xt =

map (λ(f , t, Co, h, d). (h, b(xcpt-class Co · drop (|ST| − d) ST, LT)c))
(relevant-entries P i pc)

norm-eff :: ′addr instr⇒ ′m prog⇒ pc⇒ tyi⇒ (pc× tyi option) list
norm-eff i P pc τ = map (λpc′. (pc′,

⌊
effi (i, P, τ)

⌋
)) (succs i τ pc)

eff :: ′addr instr⇒ ′m prog⇒ pc⇒ ex-table⇒ tyi option⇒ (pc× tyi option) list
eff i P pc xt None = []
eff i P pc xt bτc = norm-eff i P pc xt @ xcpt-eff i P pc τ xt

Applicability

appi :: ′addr instr× ′m prog× pc× nat× ty× tyi⇒ bool
appi (Load i, P, pc, msl, Tr, ST, LT) ←→

i < |LT| ∧ LT[i] , Err∧ |ST| < msl
appi (Store i, P, pc, msl, Tr, T · ST, LT) ←→ i < |LT|
appi (Push v, P, pc, msl, Tr, ST, LT) ←→

|ST| < msl∧ typeof v , None
appi (Pop, P, pc, msl, Tr, T · ST, LT) ←→ True
appi (Dup, P, pc, msl, Tr, T · ST, LT) ←→ |ST|+ 1 < msl
appi (Swap, P, pc, msl, Tr, T1 · T2 · ST, LT) ←→ True
appi (BinOp bop, P, pc, msl, Tr, T1 · T2 · ST, LT) ←→ (∃T. P ` T1 «bop» T2 :: T)
appi (New C, P, pc, msl, Tr, ST, LT) ←→ is-class P C∧ |ST| < msl
appi (NewArray T, P, pc, msl, Tr, Integer · ST, LT)←→ is-type P (T[])
appi (ALoad, P, pc, msl, Tr, Integer · T · ST, LT) ←→ T , NT −→ is-Array T
appi (AStore, P, pc, msl, Tr, T1 · T2 · T3 · ST, LT) ←→

T2 = Integer∧ (T3 , NT −→ is-Array T3)
appi (ALength, P, pc, msl, Tr, T · ST, LT) ←→ T = NT∨ is-Array T
appi (Getfield F C, P, pc, msl, Tr, T · ST, LT) ←→

(∃T f f m. P `C sees F:T f (f m) in C∧ P ` T ≤ Class C)
appi (Putfield F C, P, pc, msl, Tr, T1 · T2 · ST, LT) ←→

(∃T f f m. P `C sees F:T f (f m) in C∧ P ` T2 ≤ Class C∧ P ` T1 ≤ T f)
appi (Checkcast T, P, pc, msl, Tr, T′ · ST, LT) ←→ is-type P T
appi (Instanceof T, P, pc, msl, Tr, T′ · ST, LT) ←→ is-type P T ∧ is-refT T′

appi (Invoke M n, P, pc, msl, Tr, ST, LT) ←→

n < |ST| ∧
(ST[n] , NT −→ (∃C D Ts T m. class-of ST[n] = bCc ∧

P `C sees M:Ts→T = m in D∧ P ` rev (take n ST) [≤] Ts))

342

B.7. Bytecode

appi (Return, P, pc, msl, Tr, T · ST, LT) ←→ P ` T ≤ Tr
appi (Goto i, P, pc, msl, Tr, ST, LT) ←→ 0 ≤ int pc + i
appi (IfFalse i, P, pc, msl, Tr, Boolean · ST, LT) ←→ 0 ≤ int pc + i
appi (ThrowExc, P, pc, msl, Tr, T · ST, LT) ←→

T = NT∨ (∃C. T = Class C∧ P `C�∗ Throwable)
appi (MEnter, P, pc, msl, Tr, T · ST, LT) ←→ is-refT T
appi (MExit, P, pc, msl, Tr, T · ST, LT) ←→ is-refT T
appi (_, P, pc, msl, Tr, ST, LT) ←→ False

xcpt-app :: ′addr instr⇒ ′m prog⇒ pc⇒ nat⇒ ex-table⇒ tyi⇒ bool
xcpt-app i P pc msl xt τ =

(∀(f , t, Co, h, d) ∈ set (relevant-entries P i pc xt).
(case Co of Any⇒ True | bCc ⇒ is-class P C)∧ d < |fst τ| ∧ d < msl)

app :: ′addr instr⇒ ′m prog⇒ nat⇒ ty⇒ nat⇒ nat⇒ ex-table⇒ tyi option
⇒bool

app i P msl Tr pc mpc xt None←→ True
app i P msl Tr pc mpc xt bτc ←→

appi (i, P, msl, Tr, τ)∧ xcpt-app i P pc msl xt τ∧
(∀(pc′, τ′) ∈ set (eff i P pc xt bτc). pc′ < mpc)

B.7.3 The virtual machine
Semantics of instructions

exec-instr (Load n) P t h stk loc C M pc f rs =
{ (LM, (None, h, (loc[n] · stk, loc, C, M, pc + 1) · f rs)) }

exec-instr (Store n) P t h stk loc C M pc f rs =
{ (LM, (None, h, (tl stk, loc[nB hd stk], C, M, pc + 1) · f rs)) }

exec-instr (Push v) P t h stk loc C M pc f rs =
{ (LM, (None, h, (v · stk, loc, C, M, pc + 1) · f rs)) }

exec-instr Pop P t h stk loc C M pc f rs =
{ (LM, (None, h, (tl stk, loc, C, M, pc + 1) · f rs)) }

exec-instr Dup P t h stk loc C M pc f rs =
{ (LM, (None, h, (hd stk · stk, loc, C, M, pc + 1) · f rs)) }

exec-instr Swap P t h stk loc C M pc f rs =
{ let v1 · v2 · stk′ = stk in (LM, (None, h, (v2 · v1 · stk′, loc, C, M, pc + 1) · f rs)) }

343

Appendix B. Formal definitions

exec-instr (BinOp bop) P t h stk loc C M pc f rs =
{ let v2 · v1 · stk′ = stk; bvac = binop bop v1 v2
in case va of Inl v⇒ (LM, (None, h, (v · stk′, loc, C, M, pc + 1) · f rs))

| Inr v⇒ (LM, (bac , h, (stk, loc, C, M, pc) · f rs)) }

exec-instr (New C′) P t h stk loc C M pc f rs =
{ let (h′, ao) = alloc h (ClassT C′)
in case ao of None⇒

(LM, (
⌊
addr-of-sys-xcpt OutOfMemory

⌋
, h′, (stk, loc, C, M, pc) · f rs))

| bac ⇒ (LNew-Obj a C′M, (None, h′, (Addr a · stk, loc, C, M, pc + 1) · f rs)) }

exec-instr (NewArray T) P t h stk loc C M pc f rs =
{ let Intg si · stk′ = stk; i = nat (sint si)
in if si <s 0 then

(LM, (
⌊
addr-of-sys-xcpt NegativeArraySize

⌋
, h, (stk, loc, C, M, pc) · f rs))

else let (h′, ao) = alloc h (ArrayT T i)
in case ao of None ⇒

(LM, (
⌊
addr-of-sys-xcpt OutOfMemory

⌋
, h′, (stk, loc, C, M, pc) · f rs))

| bac ⇒
(LNew-Arr a T iM, (None, h′, (Addr a · stk′, loc, C, M, pc + 1) · f rs)) }

exec-instr ALoad P t h stk loc C M pc f rs =
(let Intg i · v · stk′ = stk; Addr a = v; idx = nat (sint i);
bhTc = typeof-addr h a; len = array-length-of hT

in if v = Null then
{ (LM, (

⌊
addr-of-sys-xcpt NullPointer

⌋
, h, (stk, loc, C, M, pc) · f rs)) }

else if i <s 0∨ int len ≤ sint i then
{ (LM, (

⌊
addr-of-sys-xcpt ArrayIndexOutOfBounds

⌋
,

h, (stk, loc, C, M, pc) · f rs)) }
else { (LRead a (Cell idx) v′M, (None, h, (v′ · stk′, loc, C, M, pc + 1) · f rs)) | v′.

read h a (Cell idx) v′ })

344

B.7. Bytecode

exec-instr AStore P t h stk loc C M pc f rs =
(let v2 · Intg i · v1 · stk′ = stk; Addr a = v1; idx = nat (sint i);
bhTc = typeof-addr h a; len = array-length-of hT; T[] = ty-of hT;
bT′c = typeofh v2;

in if v1 = Null then
{ (LM, (

⌊
addr-of-sys-xcpt NullPointer

⌋
, h, (stk, loc, C, M, pc) · f rs)) }

else if i <s 0∨ int len ≤ sint i then
{ (LM, (

⌊
addr-of-sys-xcpt ArrayIndexOutOfBounds

⌋
,

h, (stk, loc, C, M, pc) · f rs)) }
else if P ` T′ ≤ T then
{ (LWrite a (Cell idx) v2M, (None, h′, (stk′, loc, C, M, pc + 1) · f rs)) | h′.
write h a (Cell idx) v2 h′ }

else { (LM, (
⌊
addr-of-sys-xcpt ArrayStore

⌋
, h, (stk, loc, C, M, pc) · f rs)) })

exec-instr ALength P t h stk loc C M pc f rs =
{ (LM, let v · stk′ = stk; Addr a = v; bhTc = typeof-addr a;

len = array-length-of hT
in if v = Null then

(
⌊
addr-of-sys-xcpt NullPointer

⌋
, h, (stk, loc, C, M, pc) · f rs)

else (None, h, (word-of-int (int len) · stk′, loc, C, M, pc + 1) · f rs)) }

exec-instr (Getfield F D) P t h stk loc C M pc f rs =
(let v · stk′ = stk; Addr a = v
in if v = Null then

{ (LM, (
⌊
addr-of-sys-xcpt NullPointer

⌋
, h, (stk, loc, C, M, pc) · f rs)) }

else
{ (LRead a (Field F D) v′M, (None, h, (v′ · stk′, loc, C, M, pc + 1) · f rs)) | v′.
read h a (Field F D) v′ })

exec-instr (Putfield F D) P t h stk loc C M pc f rs =
(let v · r · stk′ = stk; Addr a = r
in if r = Null then

{ (LM, (
⌊
addr-of-sys-xcpt NullPointer

⌋
, h, (stk, loc, C, M, pc) · f rs)) }

else
{ (LWrite a (Field F D) vM, (None, h′, (stk′, loc, C, M, pc + 1) · f rs)) | h′.
write h a (Field F D) v h′ })

exec-instr (Checkcast T) P t h stk loc C M pc f rs =
{ LM, let bT′c = typeofh (hd stk)

in if P ` T′ ≤ T then (None, h, (stk, loc, C, M, pc + 1) · f rs)
else (

⌊
addr-of-sys-xcpt ClassCast

⌋
, h, (stk, loc, C, M, pc) · f rs)) }

345

Appendix B. Formal definitions

exec-instr (Instanceof T) P t h stk loc C M pc f rs =
{ (LM, let v · stk′ = stk; bT′c = typeofh v

in (None, h, (Bool (v , Null∧ P ` T′ ≤ T) · stk′, loc, C, M, pc + 1) · f rs)) }

exec-instr (Invoke M′ n) P t h stk loc C M pc f rs =
(let ps = rev (take n stk); r = stk[n]; Addr a = r; bhTc = typeof-addr h a
in if r = Null then

{ (LM, (
⌊
addr-of-sys-xcpt NullPointer

⌋
, h, (stk, loc, C, M, pc) · f rs)) }

else let (D, Ts, Tr, m) = method P (class-of ′ hT) M′

in case m of Native⇒
{ (native-TA2jvm P ta, native-Ret2jvm n h′ stk loc C M pc f rs vx)
| ta vx h′. (ta, vx, h′) ∈ exec-native P t a M′ ps h }

|
⌊
(msl, mxl, ins, xt)

⌋
⇒

let f r′ = ([], r · ps @ replicate mxl undefined-Val, D, M′, 0)
in { (LM, (None, h, f r′ · (stk, loc, C, M, pc) · f rs)) })

exec-instr Return P t h stk loc C M pc f rs =
{ (LM, if f rs = [] then (None, h, [])

else let v = hd stk; (stk′, loc′, C′, M′, pc′) · f rs′ = f rs;
(_, Ts, _, _) = method P C M

in (None, h, (v · drop (|Ts|+ 1) stk′, loc′, C′, M′, pc′ + 1) · f rs′)) }

exec-instr (Goto i) P t h stk loc C M pc f rs =
{ (LM, (None, h, (stk, loc, C, M, nat (int pc + i)) · f rs)) }

exec-instr (IfFalse i) P t h stk loc C M pc f rs =
{ (LM, let pc′ = if hd stk = Bool False then nat (int pc + i) else pc + 1

in (None, h, (stk, loc, C, M, pc′) · f rs)) }

exec-instr ThrowExc P t h stk loc C M pc f rs =
{ (LM, let v · _ = stk; Addr a = v;

xp = if v = Null then
⌊
addr-of-sys-xcpt NullPointer

⌋
else bac

in (xp, h, (stk, loc, C, M, pc) · f rs)) }

exec-instr MEnter P t h stk loc C M f rs =
(let v · stk′ = stk; Addr a = v
in if v = Null then

{ (LM, (
⌊
addr-of-sys-xcpt NullPointer

⌋
, h, (stk, loc, C, M, pc) · f rs)) }

else { (LLock→a, SLock aM, (None, h, (stk′, loc, C, M, pc + 1) · f rs)) })

346

B.7. Bytecode

exec-instr MExit P t h stk loc C M f rs =
(let v · stk′ = stk; Addr a = v
in if v = Null then

{ (LM, (
⌊
addr-of-sys-xcpt NullPointer

⌋
, h, (stk, loc, C, M, pc) · f rs)) }

else *
{ (LUnlock→a, SUnlock aM, (None, h, (stk′, loc, C, M, pc + 1) · f rs)),
(LUnlockFail→aM, (

⌊
addr-of-sys-xcpt IllegalMonitorState

⌋
,

h, (stk, loc, C, M, pc) · f rs)) })

Exception handling

matches-ex-entry :: ′m prog⇒ cname⇒ pc⇒ ex-entry⇒ bool
matches-ex-entry P C pc (f , t, Co, pc′, d)←→

f ≤ pc∧ pc < t∧ (case Co of Any⇒ True | bC′c ⇒ P `C�∗ C′)

match-ex-table :: ′m prog⇒ cname⇒ pc⇒ ex-entry⇒ (pc× nat) option
match-ex-table P C pc [] = None
match-ex-table P C pc (ex · xt) =

(if matches-ex-entry P C pc ex then
⌊
snd (snd (snd ex))

⌋
else match-ex-table P C pc xt)

xcpt-step :: ′addr jvm-prog⇒ ′addr⇒ ′heap⇒ ′addr frame⇒ ′addr frame list
⇒(′addr, ′heap) jvm-state

xcpt-step P a h (stk, loc, C, M, pc) f rs =
(case match-ex-table P (cname-of h a) pc (ex-table-of P C M) of

None⇒ (bac , h, f rs)
|
⌊
(pc′, d)

⌋
⇒ (None, h, (Addr a · drop (|stk| − d) stk, loc, C, M, pc′) · f rs))

auxiliary functions:
cname-of h a = (let bhTc = typeof-addr h a; Class C = ty-of hT in C)

ex-table-of P C M =
(let (_, _, _, meth) = method P C M;

⌊
(_, _, _, xt)

⌋
= meth in xt)

instrs-of P C M =
(let (_, _, _, meth) = method P C M;

⌊
(_, _, ins, _)

⌋
= meth in ins)

Single-threaded semantics

exec P t (xcp, h, []) = ∅
exec P t (None, h, (stk, loc, C, M, pc) · f rs) =

exec-instr (instrs-of P C M)[pc] P t h stk loc C M pc f rs
exec P t(bac , h, f r · f rs) = { (LM, xcpt-step P a h f r f rs) }

347

Appendix B. Formal definitions

B.7.4 Observability
τ-instr :: ′m prog⇒ ′heap⇒ ′addr opstack⇒ ′addr instr⇒ bool
τ-instr P h stk (Load i) ←→ True
τ-instr P h stk (Store i) ←→ True
τ-instr P h stk (Push v) ←→ True
τ-instr P h stk Pop ←→ True
τ-instr P h stk Dup ←→ True
τ-instr P h stk Swap ←→ True
τ-instr P h stk (BinOp bop) ←→ True
τ-instr P h stk (New C) ←→ False
τ-instr P h stk (NewArray T)←→ False
τ-instr P h stk ALoad ←→ False
τ-instr P h stk AStore ←→ False
τ-instr P h stk ALength ←→ False
τ-instr P h stk (Getfield F D) ←→ False
τ-instr P h stk (Putfield F D) ←→ False
τ-instr P h stk (Checkcast T) ←→ True
τ-instr P h stk (Instanceof T) ←→ True
τ-instr P h stk (Invoke M n) ←→ n < |stk| ∧
(stk[n] = Null∨
(∀T Ts Tr D. typeof-addr h (the-Addr stk[n]) = bTc −→

P ` class-of ′ T sees M:Ts→Tr = Native in D −→ τnative D M))
τ-instr P h stk Return ←→ True
τ-instr P h stk (Goto i) ←→ True
τ-instr P h stk (IfFalse i) ←→ True
τ-instr P h stk ThrowExc ←→ True
τ-instr P h stk MEnter ←→ False
τ-instr P h stk MExit ←→ False

τjvm :: ′addr jvm-prog⇒ (′addr, ′heap) jvm-state⇒ bool
τjvm P (xcp, h, []) = False
τjvm P (xcp, h, (stk, loc, C, M, pc) · f rs) =

(let (_, _, _, meth) = method P C M;
⌊
(_, _, ins, xt)

⌋
= meth

in pc < |ins| ∧ (xcp = None −→ τ-instr P h stk stk[pc]))

jvm-τ-move P ((xcp, f rs), h) ta _←→ τjvm P (xcp, h, f rs)∧ ta = LM

auxiliary function: the-Addr (Addr a) = a

348

B.8. The Java memory model

B.8 The Java memory model
type_synonym JMM-event = nat
type_synonym (′addr, ′t) execution = (′t× (′addr, ′t) event sf) llist

A_ :: (′addr, ′t) execution⇒ JMM-event set
AE = {α. α < |E| }

is-write (Allocate a hT) is-write (Write a al v)

W_ :: (′addr, ′t) execution⇒ JMM-event set
WE =

{
α. α ∈ AE ∧ is-write (snd E[α])

}
R_ :: (′addr, ′t) execution⇒ JMM-event set
RE =

{
α. α ∈ AE ∧ (∃a al v. snd E[α] = Read a al v)

}
init_ :: (′addr, ′t) execution⇒ JMM-event⇒ bool
initE α←→ (∃a hT. snd E[α] = Allocate a hT)

Synchronisation events

is-volatile P al

sync-event P (Read a al v)

is-volatile P al

sync-event P (Write a al v)

sync-event P (Allocate a hT) sync-event P (TStart t)

sync-event P (TJoin t) sync-event P (SLock a)

sync-event P (SUnlock a) sync-event P (TIntr t)

sync-event P (TIntrd t) sync-event P TInit sync-event P TFinish

sync-events :: ′m prog⇒ (′addr, ′t) execution⇒ JMM-event set
sync-events P E =

{
α. α ∈ AE ∧ sync-event P (snd E[α])

}
Accessed locations

(a, al) ∈ locs′ P (Read a al v) (a, al) ∈ locs′ P (Write a al v)

P ` class-of ′ hT has F:T f (f m) in D

(a, Field F D) ∈ locs′ P (Allocate a hT)

n < n′

(a, Cell n) ∈ locs′ P (New-Arr a T n′)

349

Appendix B. Formal definitions

locs :: ′m prog⇒ (′addr, ′t) execution⇒ (′addr× loc) set
locs P E α = locs′ P (snd E[α])

loc-default :: ′m prog⇒ hty⇒ loc⇒ ′addr val
loc-default P (ClassT C) (Field F D) =

default-val (fst (the (map-of (fields P C) (F, D))))
loc-default P (ArrayT T n) (Field F D) =

default-val (fst (the (map-of (fields P Object) (F, Object))))
loc-default P (ArrayT T n) (Cell n′) = default-val T

value-written′ P (Allocate a hT) al = loc-default P hT al
value-written′ P (Write a al v) al′ = (if al = al′ then v else undefined)

value-written P E α (a, al) = value-written′ P (snd E[α]) al

Orders

release-acquire pairs:

(t, SUnlock a) sw (t′, SLock a) (t, Write a al v) sw (t′, Read a al v′)

(t, New-Obj a C) sw (t′, Read a al v) (t, TStart t′) sw (t′, TInit)

(t, TFinish) sw (t′, TJoin t) (t, Allocate a hT) sw (t′, TInit)

(t, TIntr t′′) sw (t′, TIntrd t′′)

induced total order: ≤
E=≤|AE

execution order:
α ≤E

eo α
′
←→ (if initE α then ¬initE α′ ∨ α ≤Eα′ else ¬initE α′ ∧ α ≤Eα′)

program order: α ≤E
po α

′
←→ α ≤E

eo α
′
∧ fst E[α] = fst E[α′]

synchronisation order:
α ≤P,E

so α′ ←→ α ≤E
eo α

′
∧ α ∈ sync-events P E∧ α′ ∈ sync-events P E

synchronises-with order: α ≤P,E
sw α′ ←→ α ≤P,E

so α′ ∧ E[α] sw E[α′]

happens-before order: ≤
P,E
hb = (λα α′. α ≤E

po α
′
∨ α ≤P,E

sw α′)∗∗

Well-formed and legal executions

ok-init E←→ (∀α ∈ AE. ¬ initE α −→ (∃β. β < α∧ E[β] = (fst E[α], TInit)))

350

B.8. The Java memory model

P ` (E, ws)
√
←→ ok-init E∧

(∀α ∈ RE. ∀a al v. snd E[α] = Read a al v −→
ws α ∈ WE ∧ (a, al) ∈ locs P E (ws α)∧
value-written P E (ws α) (a, al) = v∧
α 6≤P,E

hb ws α∧ (is-volatile P al −→ α 6≤P,E
so ws α)∧

(∀β ∈ WE. (a, al) ∈ locs P E β −→
(ws α ≤P,E

hb β∧ β ≤P,E
hb α∨ is-volatile P al∧ws α ≤P,E

so β∧ β ≤P,E
so α −→

β = ws α)))

most recent write:
α ∈ RE β ∈ WE (a, al) ∈ locs P E α (a, al) ∈ locs P E β
β ≤E

eo α ∀β′ ∈ WE. (a, al) ∈ locs P E β′ −→ β′ ≤E
eo β∨ α ≤

E
eo β

′

P, E ` α mrw β

sequentially-consistent P (E, ws)←→ (∀r ∈ RE. P, E ` r mrw ws r)

Allocate a hT 'Allocate a hT Read a al v'Read a al v′

Write a al v'Write a al v′ TStart t' TStart t TJoin t' TJoin t

SLock a' SLock a SUnlock a' SUnlock a

Extern a M vs v' Extern a M vs v TIntr t' TIntr t TIntrd t' TIntrd t

TInit' TInit TFinish' TFinish

P ` (E, ws) justified-by (Ei, wsi, Ci,ϕi)i ←→

(∀i. P ` (Ei, wsi)
√
)∧

(∀i. inj-on ϕi AEi ∧ (∀α ∈ Ci. Ei[α] ' E[ϕi α]
))∧ (∀i. Ci ⊆ AEi)∧

C0 = ∅ ∧ (∀i. ϕi ‘ Ci ⊆ ϕi+1 ‘ Ci+1)∧AE =
⋃

i ϕi ‘ Ci ∧

(∀i. ≤
P,Ei
hb

∣∣∣∣
Ci
=ϕ−1

i (≤P,E
hb)

∣∣∣
Ci
)∧ (∀i. ≤

P,Ei
so

∣∣∣∣
Ci
=ϕ−1

i (≤P,E
so)

∣∣∣
Ci
)∧

(∀i. ∀α ∈ WEi ∩Ci. ∀(a, al) ∈ locs P E (ϕi α).
value-written P Ei α (a, al) = value-written P E (ϕi α) (a, al))∧

(∀i. ∀α ∈ REi ∩Ci. ϕi+1 (wsi+1 (ϕ−1
i+1 (ϕi α))) = ws (ϕi α))∧

(∀i. ∀α ∈ REi+1 . ϕi+1 α ∈ ϕi ‘ Ci ∨wsi+1 α ≤
P,Ei+1
hb α)∧

(∀i. ∀α ∈ REi+1 ∩Ci+1.
ϕi+1 α ∈ ϕi ‘ Ci ∨ {ϕi+1 (wsi+1 α), ws (ϕi+1 α) } ⊆ ϕi ‘ Ci)∧

(∀i. ∀α ∈ AEi . ∀α
′
∈ Ci. ∀a M vs v.

Ei[α] = Extern a M vs v −→ α ≤
P,Ei
hb α′ −→ α ∈ Ci)

351

Appendix B. Formal definitions

P,E ` (E, ws) legal←→ E ∈ E∧ P ` (E, ws)
√
∧

(∃(Ei, wsi, Ci,ϕi)i. P ` (E, ws) justified-by (Ei, wsi, Ci,ϕi)i ∧ (∀i. Ei ∈ E))

B.9 The compiler
complete compiler

J2JVM = compP2 ◦ compP1

auxiliary functions

index [] y = 0
index (x · xs) y =

(if x = y then if y ∈ set xs then index xs y + 1 else 0 else index xs y + 1)

fresh-vname Vs = concat (′′V′′ ·Vs)

max x y = (if x ≤ y then y else x)

B.9.1 Program compilation
compilation of method declarations

compM :: (mname⇒ ty list⇒ ty⇒ ′m1⇒
′m2)

⇒
′m1 option mdecl⇒ ′m2 option mdecl

compM f (M, Ts, T, meth) = (M, Ts, T, Option.map (f M Ts T) meth)

compilation of class declarations

compC :: (cname⇒mname⇒ ty list⇒ ty⇒ ′m1⇒
′m2)

⇒
′m1 cdecl⇒ ′m2 cdecl

compC f (C, D, f s, ms) = (C, D, f s, map (compM (f C)) ms)

compilation of program declarations

compP :: (cname⇒mname⇒ ty list⇒ ty⇒ ′m1⇒
′m2)

⇒
′m1 prog⇒ ′m2 prog

compP f (Program P) = Program (map (compC f) P)

B.9.2 Compilation stage 1
compilation of expressions

compE1 :: vname list⇒ ′addr expr⇒ ′addr expr1
compE1 Vs (new C) = new C
compE1 Vs (new T[e]) = new T[compE1 Vs e]
compE1 Vs (Cast T e) = Cast T (compE1 Vs e)

352

B.9. The compiler

compE1 Vs (e instanceof T) = (compE1 Vs e) instanceof T
compE1 Vs (Val v) = Val v
compE1 Vs (e1 «bop» e2) = (compE1 Vs e1) «bop» (compE1 Vs e2)
compE1 Vs (Var V) = Var (index Vs V)
compE1 Vs (V B e) = (index Vs V) B (compE1 Vs e)
compE1 Vs (e1[e2]) = (compE1 Vs e1)[compE1 Vs e2]
compE1 Vs (e1[e2] B e3) =

(compE1 Vs e1)[compE1 Vs e2] B compE1 Vs e3
compE1 Vs (e.length) = (compE1 Vs e).length
compE1 Vs (e.F{D}) = (compE1 Vs e).F{D}
compE1 Vs (e1.F{D} B e2) = (compE1 Vs e1).F{D} B compE1 Vs e2
compE1 Vs (e.M(es)) = (compE1 Vs e).M(map (compE1 Vs) es)
compE1 Vs {V : T = vo; e} = {|Vs| : T = vo; compE1 (Vs @ [V]) e}
compE1 Vs (e1; ; e2) = compE1 Vs e1; ; compE1 Vs e2
compE1 Vs (if (e1) e2 else e3) =

if (compE1 Vs e1) compE1 Vs e2 else compE1 Vs e3
compE1 Vs (while (e1) e2) = while (compE1 Vs e1) (compE1 Vs e2)
compE1 Vs (throw e) = throw (compE1 Vs e)
compE1 Vs (try e1 catch(C V) e2) =

try compE1 Vs e1 catch(C |Vs|) (compE1 (Vs @ [V]) e2)
compE1 Vs (sync (e1) e2) =

sync|Vs| (compE1 Vs e1) (compE1 (Vs @ [fresh-vname Vs]) e2)
compE1 Vs (insync (a) e) =

insync|Vs| (a) (compE1 (Vs @ [fresh-vname Vs]) e)

compilation of programs

compP1 = compP (λC M Ts T (pns, body). compE1 (this · pns) body)

B.9.3 Compilation stage 2
compilation of expressions

compE2 :: ′addr expr1⇒
′addr instr list

compE2 (new C) = [New C]
compE2 (new T[e]) = compE2 e @ [NewArray T]
compE2 (Cast T e) = compE2 e @ [Checkcast T]
compE2 (e instanceof T) = compE2 e @ [Instanceof T]
compE2 (Val v) = [Push v]
compE2 (e1 «bop» e2) = compE2 e1 @ compE2 e2 @ [BinOp bop]
compE2 (Var i) = [Load i]
compE2 (i B e) = compE2 e @ [Store i, Push Unit]
compE2 (e1[e2]) = compE2 e1 @ compE2 e2 @ [ALoad]

353

Appendix B. Formal definitions

compE2 (e1[e2] B e3) =
compE2 e1 @ compE2 e2 @ compE2 e3 @ [AStore, Push Unit]

compE2 (e.length) = compE2 e @ [ALength]
compE2 (e.F{D}) = compE2 e @ [Getfield F D]
compE2 (e1.F{D} B e2) =

compE2 e1 @ compE2 e2 @ [Putfield F D, Push Unit]
compE2 (e.M(es)) = compE2 e @ compEs2 es @ [Invoke M |es|]
compE2 {i : T = vo; e} =

(case vo of None⇒ [] | bvc ⇒ [Push v, Store i]) @ compE2 e
compE2 (e1; ; e2) = compE2 e1 @ [Pop] @ compE2 e2
compE2 (if (e1) e2 else e3) =

(let cnd = compE2 e1; thn = compE2 e2; els = compE2 e3
in cnd @ [IfFalse (int (|thn|+ 2))] @ thn @ [Goto (int (|els|+ 1))] @ els)

compE2 (while (e1) e2) =
(let cnd = compE2 e1; bdy = compE2 e2;

loop = [Goto (−(int (|bdy|+ |cnd|+ 2)))]
in cnd @ [IfFalse (int (|bdy|+ 3))] @ bdy @ [Pop] @ loop @ [Push Unit])

compE2 (throw e) = compE2 e @ [ThrowExc]
compE2 (try e1 catch(C i) e2) =

(let catch = compE2 e2
in compE2 e1 @ [Goto (int |catch|+ 2), Store i] @ catch)

compE2 (synci (e1) e2) =
compE2 e1 @ [Dup, Store i, MEnter] @
compE2 e2 @ [Load i, MExit, Goto 4] @ [Load i, MExit, ThrowExc]

compE2 (insynci (a) e) = [Goto 1]64

compEs2 :: ′addr expr1 list⇒ ′addr instr list
compEs2 [] = []
compEs2 (e · es) = compE2 e @ compEs2 es

exception tables

compxE2 :: ′addr expr1⇒ pc⇒ nat⇒ ex-table
compxE2 (new C) pc d = []
compxE2 (new T[e]) pc d = compxE2 e pc d
compxE2 (Cast T e) pc d = compxE2 e pc d
compxE2 (e instanceof T) pc d = compxE2 e pc d
compxE2 (Val v) pc d = []
compxE2 (e1 «bop» e2) pc d =

compxE2 e1 pc d @ compxE2 e2 (pc + |compE2 e1|) (d + 1)
compxE2 (Var i) pc d = []
compxE2 (i B e) pc d = compxE2 e pc d

64Since insync (_) _ is not part of the input syntax, compE2 outputs a no-op.

354

B.9. The compiler

compxE2 (e1[e2]) pc d =
compxE2 e1 pc d @ compxE2 e2 (pc + |compE2 e1|) (d + 1)

compxE2 (e1[e2] B e3) pc d =
(let pc1 = pc + |compE2 e1|; pc2 = pc1 + |compE2 e2|

in compxE2 e1 pc d @ compxE2 e2 pc1 (d + 1) @ compxE2 e3 pc2 (d + 2))
compxE2 (e.length) pc d = compxE2 e pc d
compxE2 (e.F{D}) pc d = compxE2 e pc d
compxE2 (e1.F{D} B e2) pc d =

compxE2 e1 pc d @ compxE2 e2 (pc + |compE2 e1|) (d + 1)
compxE2 (e.M(es)) pc d =

compxE2 e pc d @ compxEs2 es (pc + |compE2 e|) (d + 1)
compxE2 ({i : T = vo; e}) pc d =

compxE2 e (case vo of None⇒ pc | bvc ⇒ pc + 2) d
compxE2 (e1; ; e2) pc d =

compxE2 e1 pc d @ compxE2 e2 (pc + |compE2 e1|+ 1) d
compxE2 (if (e1) e2 else e3) pc d =

(let pc1 = pc + |compE2 e1|+ 1; pc2 = pc1 + |compE2 e2|+ 1
in compxE2 e1 pc d @ compxE2 e2 pc1 d @ compxE2 e3 pc2 d)

compxE2 (while (e1) e2) pc d =
compxE2 e1 pc d @ compxE2 e2 (pc + |compE2 e1|+ 1) d

compxE2 (throw e) pc d = compxE2 e pc d
compxE2 (try e1 catch(C i) e2) pc d =

(let pc1 = pc + |compE2 e1|

in compxE2 e1 pc d @ compxE2 e2 (pc1 + 2) d @ [(pc, pc1, bCc , pc1 + 1, d)])
compxE2 (synci (e1) e2) pc d =

(let pc1 = pc + |compE2 e1|+ 3; pc2 = pc1 + |compE2 e2|

in compxE2 e1 pc d @ compxE2 e2 pc1 d @ [(pc1, pc2, Any, pc2 + 3, d)])
compxE2 (insynci (a) e) pc d = []

compxEs2 :: ′addr expr1 list⇒ ′addr instr list
compxEs2 [] pc d = []
compxEs2 (e · es) pc d =

compxE2 e pc d @ compxEs2 es (pc + |compE2 e|) (d + 1)

register size

max-vars :: ′addr expr1⇒ nat
max-vars (new C) = 0
max-vars (new T[e]) = max-vars e
max-vars (Cast T e) = max-vars e
max-vars (e instanceof T) = max-vars e
max-vars (Val v) = 0
max-vars (e1 «bop» e2) = max (max-vars e1) (max-vars e2)

355

Appendix B. Formal definitions

max-vars (Var i) = 0
max-vars (i B e) = max-vars e
max-vars (e1[e2]) = max (max-vars e1) (max-vars e2)
max-vars (e1[e2] B e3) =

max (max (max-vars e1) (max-vars e2)) (max-vars e3)
max-vars (e.length) = max-vars e
max-vars (e.F{D}) = max-vars e
max-vars (e1.F{D} B e2) = max (max-vars e1) (max-vars e2)
max-vars (e.M(es)) = max (max-vars e) (max-varss es)
max-vars ({i : T = vo; e}) = max-vars e + 1
max-vars (e1; ; e2) = max (max-vars e1) (max-vars e2)
max-vars (if (e1) e2 else e3) =

max (max-vars e1) (max (max-vars e2) (max-vars e3))
max-vars (while (e1) e2) = max (max-vars e1) (max-vars e2)
max-vars (throw e) = max-vars e
max-vars (try e1 catch(C i) e2) = max (max-vars e1) (max-vars e2 + 1)
max-vars (synci (e1) e2) = max (max-vars e1) (max-vars e2 + 1)
max-vars (insynci (a) e) = max-vars e + 1

max-varss :: ′addr expr1 list⇒ nat
max-varss [] = 0
max-varss (e · es) = max (max-vars e) (max-varss es)

maximum stack size

max-stack :: ′addr expr1⇒ nat
max-stack (new C) = 1
max-stack (new T[e]) = max-stack e
max-stack (Cast T e) = max-stack e
max-stack (e instanceof T) = max-stack e
max-stack (Val v) = 1
max-stack (e1 «bop» e2) = max (max-stack e1) (max-stack e2) + 1
max-stack (Var i) = 1
max-stack (i B e) = max-stack e
max-stack (e1[e2]) = max (max-stack e1) (max-stack e2 + 1)
max-stack (e1[e2] B e3) =

max (max (max-stack e1) (max-stack e2 + 1)) (max-stack e3 + 2)
max-stack (e.length) = max-stack e
max-stack (e.F{D}) = max-stack e
max-stack (e1.F{D} B e2) = max (max-stack e1) (max-stack e2) + 1
max-stack (e.M(es)) = max (max-stack e) (max-stacks es) + 1
max-stack ({i : T = vo; e}) = max-stack e
max-stack (e1; ; e2) = max (max-stack e1) (max-stack e2)

356

B.9. The compiler

max-stack (if (e1) e2 else e3) =
max (max-stack e1) (max (max-stack e2) (max-stack e3))

max-stack (while (e1) e2) = max (max-stack e1) (max-stack e2)
max-stack (throw e) = max-stack e
max-stack (try e1 catch(C i) e2) = max (max-stack e1) (max-stack e2)
max-stack (synci (e1) e2) = max (max-stack e1) (max (max-stack e2) 2)
max-stack (insynci (a) e2) = 1

max-stacks :: ′addr expr1 list⇒ nat
max-stacks [] = 0
max-stacks (e · es) = max (max-stack e) (max-stacks es)

program compilation

compMb2 C M Ts T body =
(let ins = compE2 body @ [Return]; xt = compxE2 body 0 0
in (max-stack body, max-vars body, ins, xt))

compP2 = compP compMb2

B.9.4 Preprocessor
Annotation rules

E V = None
V , super E this = bClass Cc P `C sees V:T (f m) in D

P, E ` Var V Var this.V{D}

E V = bTc V , super

P, E ` Var V Var V

E V = None V , super
E this = bClass Cc P `C sees V:T (f m) in D P, E ` e e′

P, E ` V B e Var this.V{D} B e′

E V = bTc V , super P, E ` e e′

P, E ` V B e V B e′

P, E ` e e′ P, E ` e′ :: T
class-of T = bCc P `C sees F:T f (f m) in D is-Array T −→ F , length

P, E ` e.F{} e′.F{D}

357

Appendix B. Formal definitions

P, E ` e e′ P, E ` e′ :: T[]

P, E ` e.length{} e′.length

E this = bClass Cc
C , Object class P C =

⌊
(D, f s, ms)

⌋
P `D sees F:T (f m) in D′

P, E ` Var super.F{} (Cast (Class D) (Var this)).F{D′}

P, E ` e1 e′1 P, E ` e2 e′2 P, E ` e′1 :: T
class-of T = bCc P `C sees F:T f (f m) in D is-Array T −→ F , length

P, E ` e1.F{} B e2 e′1.F{D} B e′2

E this = bClass Cc C , Object
class C =

⌊
(D, f s, ms)

⌋
P `D sees F:T (f m) in D′ P, E ` e e′

P, E ` Var super.F{} B e (Cast (Class D) (Var this)).F{D′} B e′

auxiliary function: is-Array T←→ (∃T′. T = T′[])

Copying rules

P, E ` new C new C
P, E ` e e′

P, E ` new T[e] new T[e′]

P, E ` e e′

P, E ` Cast T e Cast T e′
P, E ` e e′

P, E ` e instanceof T e′ instanceof T

P, E ` Val v Val v
P, E ` e1 e′1 P, E ` e2 e′2
P, E ` e1 «bop» e2 e′1 «bop» e′2

P, E ` e1 e′1 P, E ` e2 e′2
P, E ` e1[e2] e′1[e

′

2]

P, E ` e1 e′1 P, E ` e2 e′2 P, E ` e3 e′3
P, E ` e1[e2] B e3 e′1[e

′

2] B e′3

P, E ` e e′

P, E ` e.length e′.length

P, E ` e e′ P, E ` es [] es′

P, E ` e.M(es) e′.M(es′)

P, E(V 7→ T) ` e e′

P, E ` {V : T = vo; e} {V : T = vo; e′}

P, E ` e1 e′1 P, E ` e2 e′2
P, E ` sync (e1) e2 sync (e′1) e′2

358

B.9. The compiler

P, E ` e1 e′1 P, E ` e2 e′2
P, E ` e1; ; e2 e′1; ; e′2

P, E ` e1 e′1 P, E ` e2 e′2 P, E ` e3 e′3
P, E ` if (e1) e2 else e3 if (e′1) e′2 else e′3

P, E ` e1 e′1 P, E ` e2 e′2
P, E ` while (e1) e2 while (e′1) e′2

P, E ` e e′

P, E ` throw e throw e′

P, E ` e1 e′1 P, E(V 7→Class C) ` e2 e′2
P, E ` try e1 catch(C V) e2 try e′1 catch(C V) e′2

P, E ` [] [] []

P, E ` e e′ P, E ` es [] es′

P, E ` e · es [] e′ · es′

Lifting to programs

annotate P E e = (if ∃!e′. P, E ` e e′ then ιe′. P, E ` e e′ else e)
annotate-Mb P C M Ts T (pns, e) = (pns, annotate P [this 7→Class C, pns [7→]Ts] e)
annotate-Prog P = compP (annotate-Mb P) P

359

List of Figures

1.1 Three Java threads with different deadlock possibilities . 4
1.2 Program with two threads and three of its sequentially

consistent schedules . 5
1.3 Synchronisation and publication of data through a volatile

field . 6
1.4 Structure of JinjaThreads in comparison with Jinja’s . . . 10
1.5 JinjaThreads stack of semantics 11
1.6 Example to illustrate the difference between inductive and

coinductive definitions . 20

2.1 JinjaThreads values and types 25
2.2 Abbreviations for common expressions 26
2.3 Type definitions for program declarations 27
2.4 Valid types of a program 30
2.5 The subtype relation . 30
2.6 Hasse diagram for the subtype relation 31
2.7 Selected typing rules for JinjaThreads source code 32
2.8 Typing rules for the binary operators /, ==, and & . . . 33
2.9 Generic well-formedness constraints 36
2.10 Well-formedness for JinjaThreads source code 36
2.11 Type definitions for the sequential state 37
2.12 Semantics of native method calls in the sequential part . 39
2.13 Evaluation for the binary operators /, ==, and & 40
2.14 Small-step semantics for reducing method calls 41
2.15 Method bodies in bytecode 44
2.16 Type definitions for the sequential VM state space 46
2.17 Single-step semantics of the Invoke instruction 47
2.18 Combining normal execution and exception handling in

the VM . 48
2.19 Defensive checks for the Invoke instruction 49
2.20 Applicability and effect for the Invoke instruction 51
2.21 Example of a method well-typing 53

List of Figures

3.1 Stack of semantics with interleaving 60
3.2 Implementation of lock operations 62
3.3 Wait sets, notification, and interruption 64
3.4 Two threads with locks, wait sets, and interrupts 65
3.5 Type definitions for basic thread actions 67
3.6 Update functions of the lock status for lock BTAs 69
3.7 Preconditions for lock BTAs 70
3.8 Update functions for temporarily released locks 70
3.9 Update functions for thread creation BTAs 71
3.10 Preconditions for thread creation BTAs 71
3.11 Predicates for condition actions 72
3.12 Update relation for wait sets 73
3.13 Update functions and predicates for interruption BTAs . 74
3.14 Reductions in the interleaving semantics 76
3.15 Definition of locale lifting-wf 79
3.16 Signatures of native methods for Java concurrency 83
3.17 Semantics of native methods of class Thread 86
3.18 Static native methods of Thread 87
3.19 Semantics of the native methods wait, notify, and notifyAll 88
3.20 Steps for t executing a call to wait on object a 89
3.21 Semantics of synchronized blocks 94
3.22 Adaptations to the single-step semantics for the VM . . . 97
3.23 Semantics of the instructions for monitors 98
3.24 Applicability and effect for MEnter and MExit 99
3.25 Three schedules that lead to deadlock 102
3.26 Thread t must wait for resource w indefinitely 103
3.27 Formal definition of deadlock 104
3.28 Coinductive definition of the set of threads in deadlock . 106
3.29 Example with deadlocked threads 107
3.30 Definition of locale preserve-deadlocked 109
3.31 Definition of locale progress 110
3.32 Run-time typing rules for synchronized blocks 114
3.33 Definition of ok-I . 118

4.1 Definition of locales heap-base and heap 134
4.2 Locales for heap conformance 135
4.3 The bootstrap process constructs the start heap 139
4.4 Semantics of field access and field assignment 139
4.5 Semantics of Getfield and Putfield 140

362

List of Figures

4.6 Happens-before provides a notion of time relative to a
given event . 144

4.7 Example program with data races and its JMM execution 145
4.8 Example of the value 42 appearing out of thin air 145
4.9 Program with an execution in which a read sees an initial-

isation which occurs later in the program text 147
4.10 Stack of semantics with the JMM 148
4.11 Dynamic dispatch requires type information that is not

yet available . 150
4.12 Type-unsafe program . 151
4.13 Implicit communication via type information 153
4.14 Thread spawn as an implicit communication channel . . 157
4.15 Java implementation for the example in Figure 4.7 159
4.16 Well-formed executions for the program in Figure 4.15 . 160
4.17 Release-acquire pairs . 162
4.18 Legality constraints . 164
4.19 Program and two well-formed complete interleavings . . 169
4.20 Assumptions of the DRF guarantee and their decomposi-

tion over the stack of semantics 170
4.21 Locales formalising the set of allocated addresses 172
4.22 Locale ka formalises that threads do not invent addresses 176
4.23 Locale ka-type combines known addresses with type in-

formation . 177
4.24 Two executions of complete interleavings 187
4.25 Justifying execution for the type-unsafe program 190
4.26 A program that the JMM allows to terminate with a raised,

but unallocated exception 192
4.27 Variation of Figure 4.25a 192
4.28 The race on Thread.start does not eliminate the data

race on y . 194
4.29 Incorrectly synchronised program due to spurious wake-ups196
4.30 An ill-formed program and its execution with a sequen-

tially consistent prefix followed by a read that cannot be
cut, updated, and completed sequentially consistently . . 199

5.1 Structure of the compiler and its verification 207
5.2 Simulation diagrams for delay bisimulations with explicit

divergence . 211
5.3 Definition of locales dbisim-div and dbisim-final 212

363

List of Figures

5.4 Example of a delay bisimulation with explicit divergence
that is not a well-founded delay bisimulation 212

5.5 Simulation diagrams for preservation of final states . . . 213
5.6 Simulation diagrams for well-founded delay bisimulations214
5.7 Non-transitivity of well-founded delay bisimulations . . 216
5.8 Executions as traces of observable moves 217
5.9 Locale τ-multithreaded enforces that τ-moves are unob-

servable . 220
5.10 Locale m-dbisim-div collects the necessary assumptions

for ≈m being a delay bisimulation with explicit divergence 221
5.11 Definition of call . 228
5.12 Definition of inline . 229
5.13 Single-threaded source code semantics with explicit call

stacks . 230
5.14 Definition of B . 238
5.15 Reduction rules for synchronized blocks in J1 240
5.16 Reduction rules for call stacks in J1 241
5.17 Register allocation for local variables, blocks, and synchro-

nisation . 242
5.18 Simulation theorems on the expression level for compila-

tion stage 1 . 246
5.19 Example introduction rules for the relation ≈ 254

6.1 Preorder traversal for binary trees in Isabelle/HOL and
the extracted code . 263

6.2 Program and data refinement for prefix 265
6.3 Original and alternative introduction rule of the small-step

semantics . 273
6.4 Tabulation for lookup functions and the subclass relation 276
6.5 Java2Jinja in the Eclipse IDE 283

7.1 Isar proof example . 298
7.2 Class initialisation example 303

364

List of Tables

2.1 Sequential JinjaThreads expressions 26
2.2 Instructions of the sequential virtual machine 45

3.1 Events record memory and synchronisation operations of
a thread . 84

3.2 Expressions for synchronized statements 93
3.3 Instructions for monitors 98

4.1 Distribution of lemmata, theorems, and corollaries from
§3.2, §3.3.4, and §3.3.5 over the locales from Figures 4.1
and 4.2 . 137

6.1 Timing for running the producer-consumer example in
the source code interpreter 278

6.2 Timing for running the producer-consumer example in
the virtual machine . 279

7.1 Formalisation size of JinjaThreads 292

Bibliography

[1] Luca Aceto, Rob J. van Glabbeek, Wan Fokkink, and Anna
Ingólfsdóttir. Axiomatizing prefix iteration with silent steps.
Information and Computation, 127(1):26–40, 1996.

[2] Sarita V. Adve and Hans-J. Boehm. Memory models: A case for
rethinking parallel languages and hardware. Communications of
the ACM, 53:90–101, 2010.

[3] Sarita V. Adve and Kourosh Gharachorloo. Shared memory
consistency models: A tutorial. Computer, 29(12):66–76, 1996.

[4] Sarita V. Adve and Mark D. Hill. Weak ordering — a new
definition. In Proceedings of the 17th Annual International Symposium
on Computer Architecture (ISCA 1990), pages 2–14. ACM, 1990.

[5] Klaus Aehlig, Florian Haftmann, and Tobias Nipkow. A compiled
implementation of normalization by evaluation. In Otmane
Mohamed, César Muñoz, and Sofiène Tahar, editors, Theorem
Proving in Higher Order Logics (TPHOLs 2008), volume 5170 of
Lecture Notes in Computer Science, pages 39–54. Springer, 2008.

[6] Klaus Aehlig, Florian Haftmann, and Tobias Nipkow. A compiled
implementation of normalization by evaluation. Journal of
Functional Programming, 2012. To appear.

[7] Jim Alves-Foss, editor. Formal Syntax and Semantics of Java, volume
1523 of Lecture Notes in Computer Science. Springer, 1999.

[8] David Aspinall and Jaroslav Ševčík. Formalising Java’s
data-race-free guarantee. In Klaus Schneider and Jens Brandt,
editors, Theorem Proving in Higher Order Logics (TPHOLs 2007),
volume 4732 of Lecture Notes in Computer Science, pages 22–37.
Springer, 2007.

[9] Robert Atkey. CoqJVM: An executable specification of the Java
virtual machine using dependent types. In Marino Miculan, Ivan

Bibliography

Scagnetto, and Furio Honsell, editors, Types for Proofs and Programs
(TYPES 2008), volume 4941 of Lecture Notes in Computer Science,
pages 18–32. Springer, 2008.

[10] Michael Backes, Alex Busenius, and Cătălin Hriţcu. On the
development and formalization of an extensible code generator
for real life security protocols. In NASA Formal Methods (NFM
2012), Lecture Notes in Computer Science. Springer, 2012. To
appear.

[11] Project Bali. http://isabelle.in.tum.de/bali/.

[12] Clemens Ballarin. Interpretation of locales in Isabelle: Theories
and proof contexts. In Jonathan M. Borwein and William M.
Farmer, editors, Mathematical Knowledge Management (MKM 2006),
volume 4108 of Lecture Notes in Artificial Intelligence, pages 31–43.
Springer, 2006.

[13] Gilles Barthe, Pierre Crégut, Benjamin Grégoire, Thomas Jensen,
and David Pichardie. The MOBIUS proof carrying code
infrastructure. In Frank de Boer, Marcello Bonsangue, Susanne
Graf, and Willem-Paul de Roever, editors, Formal Methods for
Components and Objects, volume 5382 of Lecture Notes in Computer
Science, pages 1–24. Springer, 2008.

[14] Gilles Barthe, Guillaume Dufay, Line Jakubiec, and Simão
de Sousa. A formal correspondence between offensive and
defensive JavaCard virtual machines. In Agostino Cortesi, editor,
Verification, Model Checking, and Abstract Interpretation (VMCAI
2002), volume 2294 of Lecture Notes in Computer Science, pages
325–328. Springer, 2002.

[15] Gilles Barthe, Guillaume Dufay, Line Jakubiec, Bernard Serpette,
and Simão de Sousa. A formal executable semantics of the
JavaCard platform. In David Sands, editor, Programming
Languages and Systems (ESOP 2001), volume 2028 of Lecture Notes
in Computer Science, pages 302–319. Springer, 2001.

[16] Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and
Peter Sewell. Clarifying and compiling C/C++ concurrency: From
C++11 to POWER. In Proceedings of the 39th Annual ACM

368

http://isabelle.in.tum.de/bali/

Bibliography

SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2012), pages 509–520. ACM, 2012.

[17] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark
Weber. Mathematizing C++ concurrency. In Proceedings of the 38th
annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL 2011), pages 55–66. ACM, 2011.

[18] Gertrud Bauer and Tobias Nipkow. Flyspeck I: Tame graphs. In
Gerwin Klein, Tobias Nipkow, and Lawrence C. Paulson, editors,
The Archive of Formal Proofs.
http://afp.sourceforge.net/entries/Flyspeck-Tame.shtml,
2006. Formal proof development.

[19] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors.
Verification of Object-Oriented Software: The KeY Approach, volume
4334 of Lecture Notes in Computer Science. Springer, 2007.

[20] Nadja Belblidia and Mourad Debbabi. A dynamic operational
semantics for JVML. Journal of Object Technology, 6(3):71–100, 2007.

[21] Stefan Berghofer, Lukas Bulwahn, and Florian Haftmann. Turning
inductive into equational specifications. In Stefan Berghofer,
Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors,
Theorem Proving in Higher Order Logics (TPHOLs 2009), volume
5674 of Lecture Notes in Computer Science, pages 131–146. Springer,
2009.

[22] Stefan Berghofer and Tobias Nipkow. Executing higher order
logic. In Paul Callaghan, Zhaohui Luo, James McKinna, Robert
Pollack, and Robert Pollack, editors, Types for Proofs and Programs
(TYPES 2000), volume 2277 of Lecture Notes in Computer Science,
pages 24–40. Springer, 2002.

[23] Stefan Berghofer and Tobias Nipkow. Random testing in
Isabelle/HOL. In Proceedings of the Second International Conference
on Software Engineering and Formal Methods (SEFM 2004), pages
230–239. IEEE Computer Society, 2004.

[24] Stefan Berghofer and Martin Strecker. Extracting a formally
verified, fully executable compiler from a proof assistant.

369

http://afp.sourceforge.net/entries/Flyspeck-Tame.shtml

Bibliography

Electronic Notes in Theoretical Computer Science, 82(2):377–394, 2003.
Compiler Optimization Meets Compiler Verification (COCV 2003).

[25] Stefan Berghofer and Makarius Wenzel. Logic-free reasoning in
Isabelle/Isar. In Serge Autexier, John Campbell, Julio Rubio, Volker
Sorge, Masakazu Suzuki, and Freek Wiedijk, editors, Intelligent
Computer Mathematics (AISC/MKM/Calculemus 2008), volume 5144
of Lecture Notes in Computer Science, pages 355–369. Springer, 2008.

[26] Stefan Berghofer and Markus Wenzel. Inductive datatypes in
HOL – lessons learned in formal-logic engineering. In Yves Bertot,
Gilles Dowek, Laurent Théry, André Hirschowitz, and Christine
Paulin, editors, Theorem Proving in Higher Order Logics (TPHOLs
1999), volume 1690 of Lecture Notes in Computer Science, pages
19–36. Springer, 1999.

[27] Jan A. Bergstra, Jan Willem Klop, and Ernst-Rüdiger Olderog.
Failures without chaos: A new process semantics for fair
abstraction. In Formal Description of Programming Concepts III (IFIP
1987), pages 77–103. Elsevier Science Publishing, 1987.

[28] Jasmin Christian Blanchette. Relational analysis of (co)inductive
predicates, (co)algebraic datatypes, and (co)recursive functions.
Software Quality Journal, 2011.

[29] Jasmin Christian Blanchette, Lukas Bulwahn, and Tobias Nipkow.
Automatic proof and disproof in Isabelle/HOL. In Cesare Tinelli
and Viorica Sofronie-Stokkermans, editors, Frontiers of Combining
Systems (FroCoS 2011), volume 6989 of Lecture Notes in Computer
Science, pages 12–27. Springer, 2011.

[30] Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A
counterexample generator for higher-order logic based on a
relational model finder. In Matt Kaufmann and Lawrence C.
Paulson, editors, Interactive Theorem Proving (ITP 2010), volume
6172 of Lecture Notes in Computer Science, pages 131–146. Springer,
2010.

[31] Jasmin Christian Blanchette, Tjark Weber, Mark Batty, Scott
Owens, and Susmit Sarkar. Nitpicking C++ concurrency. In
Proceedings of the 13th international ACM SIGPLAN symposium on

370

Bibliography

Principles and practices of declarative programming (PPDP 2011),
pages 113–124. ACM, 2011.

[32] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++
concurrency memory model. In Proceedings of the 2008 ACM
SIGPLAN conference on Programming language design and
implementation (PLDI 2008), pages 68–78. ACM, 2008.

[33] Sascha Böhme and Tobias Nipkow. Sledgehammer: Judgement
Day. In Jürgen Giesl and Reiner Hähnle, editors, Automated
Reasoning (IJCAR 2010), volume 6173 of Lecture Notes in Computer
Science, pages 107–121. Springer, 2010.

[34] John Boyland. An operational semantics including “volatile” for
safe concurrency. Journal of Object Technology, 8(4):33–53, 2009.
Formal Techniques for Java Programs 2008.

[35] Deadlock in class initialization specification, JLS 2nd ed. 12.4.2.
Java bug database, ID 4891511 http:
//bugs.sun.com/bugdatabase/view_bug.do?bug_id=4891511,
2008.

[36] Lukas Bulwahn. Smart test data generators via logic
programming. In John Gallagher and Michael Gelfond, editors,
Technical Communications of the 27th International Conference on
Logic Programming (ICLP 2011), volume 11 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 139–150. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2011.

[37] Alex Busenius. Mechanized formalization of a transformation
from an extensible Spi calculus to Java. Master’s thesis,
Information Security and Cryptography Group, Department of
Computer Science, Saarland University, 2011.

[38] Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio. The
Java memory model: Operationally, denotationally, axiomatically.
In Rocco De Nicola, editor, Programming Languages and Systems
(ESOP 2007), volume 4421 of Lecture Notes in Computer Science,
pages 331–346. Springer, 2007.

[39] Adam Chlipala. A verified compiler for an impure functional
language. In Proceedings of the 37th annual ACM

371

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4891511
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4891511

Bibliography

SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL 2010), pages 93–106. ACM, 2010.

[40] Jacek Chrząszcz. Implementing modules in the Coq system. In
David Basin and Burkhart Wolff, editors, Theorem Proving in
Higher Order Logics (TPHOLs 2003), volume 2758 of Lecture Notes
in Computer Science, pages 270–286. Springer, 2003.

[41] Connected limited device configuration (CLDC) specification 1.1.
http://jcp.org/aboutJava/communityprocess/final/
jsr139/index.html.

[42] Patryk Czarnik and Aleksy Schubert. Extending operational
semantics of the Java bytecode. In Gilles Barthe and Cédric
Fournet, editors, Trustworthy Global Computing (TGC), volume 4912
of Lecture Notes in Computer Science, pages 57–72. Springer, 2008.

[43] Marc Daumas, Laurence Rideau, and Laurent Théry. A generic
library for floating-point numbers and its application to exact
computing. In Richard Boulton and Paul Jackson, editors, Theorem
Proving in Higher Order Logics (TPHOLs 2001), volume 2152 of
Lecture Notes in Computer Science, pages 169–184. Springer, 2001.

[44] Maulik A. Dave. Compiler verification: a bibliography. SIGSOFT
Software Engineering Notes, 28(6):2–2, 2003.

[45] Benjamin Delaware, William R. Cook, and Don Batory. Product
lines of theorems. In Proceedings of the 2011 ACM international
conference on Object oriented programming systems languages and
applications (OOPSLA 2011), pages 595–608. ACM, 2011.

[46] Sophia Drossopoulou and Susan Eisenbach. Describing the
semantics of Java and proving type soundness. In Alves-Foss [7],
pages 542–542.

[47] Azadeh Farzan, Feng Chen, José Meseguer, and Grigore Roşu.
Formal analysis of Java programs in JavaFAN. In Rajeev Alur and
Doron Peled, editors, Computer Aided Verification (CAV 2004),
volume 3114 of Lecture Notes in Computer Science, pages 501–505.
Springer, 2004.

372

http://jcp.org/aboutJava/communityprocess/final/jsr139/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr139/index.html

Bibliography

[48] Azadeh Farzan, José Meseguer, and Grigore Roşu. Formal JVM
code analysis in JavaFAN. In Charles Rattray, Savitri Maharaj, and
Carron Shankland, editors, Algebraic Methodology and Software
Technology (AMAST 2004), volume 3116 of Lecture Notes in
Computer Science, pages 132–147. Springer, 2004.

[49] Cormac Flanagan and Martín Abadi. Object types against races.
In Jos C. M. Baeten and Sjouke Mauw, editors, Proceedings of the
10th International Conference on Concurrency Theory (CONCUR
1999), volume 1664 of Lecture Notes in Computer Science, pages
288–303. Springer, 1999.

[50] Cormac Flanagan and Stephen N. Freund. Type-based race
detection for Java. In Proceedings of the ACM SIGPLAN 2000
conference on Programming language design and implementation
(PLDI 2000), pages 219–232. ACM, 2000.

[51] Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and Shaz
Qadeer. Types for atomicity: Static checking and inference for
Java. ACM Transactions on Programming Languages and Systems,
30(4):1–53, 2008.

[52] Nate Foster and Dimitrios Vytiniotis. A theory of Featherweight
Java in Isabelle/HOL. In The Archive of Formal Proofs. http:
//afp.sourceforge.net/entries/FeatherweightJava.shtml,
2006. Formal proof development.

[53] Dennis Giffhorn. Slicing of Concurrent Programs and its Application
to Information Flow Control. PhD thesis, Fakultät für Informatik,
Karlsruher Institut für Technologie, 2012. To appear.

[54] Li Gong. Inside Java 2 Platform Security: Architecture, API Design,
and Implementation. The Java Series. Addison-Wesley, 2nd edition,
2003.

[55] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification, Second Edition. Addison-Wesley, 2000.

[56] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification, Third Edition. Addison-Wesley, 2005.

373

http://afp.sourceforge.net/entries/FeatherweightJava.shtml
http://afp.sourceforge.net/entries/FeatherweightJava.shtml

Bibliography

[57] Matthew Goto, Radha Jagadeesan, Corin Pitcher, and James Riely.
Types for relaxed memory models using correspondence
assertions. Submitted for publication.

[58] Dan Grossman. Type-safe multithreading in Cyclone. In
Proceedings of the 2003 ACM SIGPLAN international workshop on
Types in languages design and implementation (TLDI 2003), pages
13–25. ACM, 2003.

[59] Daniel Grunwald, Malte Lochau, Egon Börger, and Ursula Goltz.
An abstract state machine model for the generic Java type system.
Technical Report 2010-02, TU Braunschweig, 2010.

[60] Florian Haftmann. Data refinement (raffinement) in Isabelle/HOL.
This is a draft of an envisaged publication still to be elaborated
which, applying the usual rules of academic confidentiality, can be
inspected at http://www4.in.tum.de/~haftmann/pdf/data_
refinement_haftmann.pdf.

[61] Florian Haftmann and Lukas Bulwahn. Code generation from
Isabelle/HOL theories, 2011. Availabe at http://isabelle.in.tum.
de/dist/Isabelle2011-1/doc/codegen.pdf.

[62] Florian Haftmann and Tobias Nipkow. Code generation via
higher-order rewrite systems. In Matthias Blume, Naoki
Kobayashi, and Germán Vidal, editors, Functional and Logic
Programming (FLOPS 2010), volume 6009 of Lecture Notes in
Computer Science, pages 103–117. Springer, 2010.

[63] Florian Haftmann and Makarius Wenzel. Constructive type
classes in Isabelle. In Thorsten Altenkirch and Conor McBride,
editors, Types for Proofs and Programs (TYPES 2006), volume 4502
of Lecture Notes in Computer Science, pages 160–174. Springer, 2007.

[64] Christian Hammer. Information Flow Control for Java - A
Comprehensive Approach based on Path Conditions in Dependence
Graphs. PhD thesis, Universität Karlsruhe (TH), Fakultät für
Informatik, 2009.

[65] Christian Hammer and Gregor Snelting. Flow-sensitive,
context-sensitive, and object-sensitive information flow control

374

http://www4.in.tum.de/~haftmann/pdf/data_refinement_haftmann.pdf
http://www4.in.tum.de/~haftmann/pdf/data_refinement_haftmann.pdf
http://isabelle.in.tum.de/dist/Isabelle2011-1/doc/codegen.pdf
http://isabelle.in.tum.de/dist/Isabelle2011-1/doc/codegen.pdf

Bibliography

based on program dependence graphs. International Journal of
Information Security, 8(6):399–422, 2009.

[66] John Harrison. A machine-checked theory of floating point
arithmetic. In Yves Bertot, Gilles Dowek, André Hirschowitz,
Christine Paulin, and Laurent Théry, editors, Theorem Proving in
Higher Order Logics (TPHOLs 1999), volume 1690 of Lecture Notes
in Computer Science, pages 113–130. Springer, 1999.

[67] Pieter H. Hartel and Luc Moreau. Formalizing the safety of Java,
the Java virtual machine, and Java Card. ACM Computing Surveys,
33:517–558, 2001.

[68] Martin Hecker. Towards justification of program transformations
with regard to the Java memory model. Master’s thesis,
Westfälische Wilhelms-Universität Münster, Fachbereich
Mathematik und Informatik, Institut für Informatik, 2009.

[69] Marieke Huisman and Gustavo Petri. The Java Memory Model: a
formal explanation. In Verification and Analysis of Multi-threaded
Java-like Programs (VAMP 2007), technical report ICIS-R07021,
pages 81–96. University of Nijmegen, 2007.

[70] Marieke Huisman and Gustavo Petri. BicolanoMT: a
formalization of multi-threaded Java at bytecode level. In Bytecode
semantics, Verification, Analysis and Transformation (BYTECODE
2008), Electronic Notes in Theoretical Computer Science, 2008.

[71] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler.
Featherweight Java: a minimal core calculus for Java and GJ.
ACM Transactions on Programming Languages and Systems,
23:396–450, 2001.

[72] International standard ISO/IEC 14882:2011. programming
languages – C++. International Organization for Standardization,
2011.

[73] Futoshi Iwama and Naoki Kobayashi. A new type system for JVM
lock primitives. In Proceedings of the ASIAN symposium on Partial
evaluation and semantics-based program manipulation (ASIA-PEPM
2002), pages 71–82. ACM, 2002.

375

Bibliography

[74] Jacks is an automated compiler killing suite, 2005.
http://sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/
jacks/jacks.html?cvsroot=mauve.

[75] Radha Jagadeesan, Corin Pitcher, and James Riely. Generative
operational semantics for relaxed memory models. In Andrew D.
Gordon, editor, Programming Languages and Systems (ESOP 2010),
volume 6012 of Lecture Notes in Computer Science, pages 307–326.
Springer, 2010.

[76] Java platform, standard edition 6 API specification, 2011.
http://download.oracle.com/javase/6/docs/api/.

[77] Cezary Kaliszyk and Christian Urban. Quotients revisited for
Isabelle/HOL. In Proceedings of the 2011 ACM Symposium on
Applied Computing (SAC 2011), pages 1639–1644. ACM, 2011.

[78] Gary A. Kildall. A unified approach to global program
optimization. In Proceedings of the 1st annual ACM
SIGACT-SIGPLAN symposium on Principles of programming
languages (POPL 1973), pages 194–206. ACM, 1973.

[79] Gerwin Klein. Verified Java Bytecode Verification. PhD thesis,
Institut für Informatik, Technische Universität München, 2003.

[80] Gerwin Klein and Tobias Nipkow. Verified lightweight bytecode
verification. Concurrency and Computation: Practice and Experience,
13(13):1133–1151, 2001.

[81] Gerwin Klein and Tobias Nipkow. Verified bytecode verifiers.
Theoretical Computer Science, 298(3):583–626, 2002.

[82] Gerwin Klein and Tobias Nipkow. Jinja is not Java. In Gerwin
Klein, Tobias Nipkow, and Lawrence C. Paulson, editors, The
Archive of Formal Proofs.
http://afp.sf.net/entries/Jinja.shtml, 2005. Formal proof
development.

[83] Gerwin Klein and Tobias Nipkow. A machine-checked model for
a Java-like language, virtual machine and compiler. ACM
Transactions on Programming Languages and Systems, 28(4):619–695,
2006.

376

http://sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/jacks/jacks.html?cvsroot=mauve
http://sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/jacks/jacks.html?cvsroot=mauve
http://download.oracle.com/javase/6/docs/api/
http://afp.sf.net/entries/Jinja.shtml

Bibliography

[84] Gerwin Klein, Tobias Nipkow, David von Oheimb, Leonor Prensa
Nieto, Norbert Schirmer, and Martin Strecker. Java source and
bytecode formalizations in Isabelle: Bali. Isabelle sources in
Isabelle/HOL/Bali, 2002.

[85] Gerwin Klein, Tobias Nipkow, David von Oheimb, Cornelia
Pusch, and Martin Strecker. Java source and bytecode
formalizations in Isabelle: µJava. Isabelle sources in
Isabelle/HOL/MicroJava, 2002.

[86] Gerwin Klein and Martin Strecker. Verified bytecode verification
and type-certifying compilation. Journal of Logic and Algebraic
Programming, 58(1–2):27–60, 2004.

[87] Gerwin Klein and Martin Wildmoser. Verified bytecode
subroutines. Journal of Automated Reasoning, 30(3–4):363–398, 2003.

[88] Alexander Krauss. Partial and nested recursive function
definitions in higher-order logic. Journal of Automated Reasoning,
44:303–336, 2010.

[89] Alexander Krauss. Recursive definitions of monadic functions. In
Ana Bove, Ekaterina Komendantskaya, and Milad Niqui, editors,
Workshop on Partiality and Recursion in Interactive Theorem Proving
(PAR 2010), volume 43 of Electronic Proceedings in Theoretical
Computer Science, pages 1–13, 2010.

[90] Robbert Krebbers and Freek Wiedijk. A formalization of the C99
standard in HOL, Isabelle and Coq. In Intelligent Computer
Mathematics, volume 6824 of Lecture Notes in Computer Science,
pages 301–303. Springer, 2011.

[91] Peter Lammich. Collections framework. In Gerwin Klein, Tobias
Nipkow, and Lawrence C. Paulson, editors, The Archive of Formal
Proofs. http://afp.sf.net/entries/Collections.shtml, 2009.
Formal proof development.

[92] Peter Lammich and Andreas Lochbihler. The Isabelle collections
framework. In Matt Kaufmann and Lawrence C. Paulson, editors,
Interactive Theorem Proving (ITP 2010), volume 6172 of Lecture
Notes in Computer Science, pages 339–354. Springer, 2010.

377

http://afp.sf.net/entries/Collections.shtml

Bibliography

[93] Leslie Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Transactions on
Computers, 28(9):690–691, 1979.

[94] Cosimo Laneve. A type system for JVM threads. Theoretical
Computer Science, 290(1):741–778, 2003.

[95] Doug Lea. The JSR-133 cookbook for compiler writers.
http://gee.cs.oswego.edu/dl/jmm/cookbook.html.

[96] Dirk Carsten Leinenbach. Compiler Verification in the Context of
Pervasive System Verification. PhD thesis, Universität des
Saarlandes, 2008.

[97] Xavier Leroy. Formal certification of a compiler backend or:
Programming a compiler with a proof assistant. In Conference
record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages (POPL 2006), pages 42–54. ACM, 2006.

[98] Xavier Leroy. Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107–115, 2009.

[99] Xavier Leroy. A formally verified compiler back-end. Journal of
Automated Reasoning, 43(4):363–446, 2009.

[100] Xavier Leroy and Sandrine Blazy. Formal verification of a C-like
memory model and its uses for verifying program
transformations. Journal of Automated Reasoning, 41(1):1–31, 2008.

[101] Xavier Leroy and Hervé Grall. Coinductive big-step operational
semantics. Information and Computation, 207(2):284–304, 2009.

[102] Pierre Letouzey. Extraction in Coq: An overview. In Arnold
Beckmann, Costas Dimitracopoulos, and Benedikt Löwe, editors,
Logic and Theory of Algorithms (CiE 2008), volume 5028 of Lecture
Notes in Computer Science, pages 359–369. Springer, 2008.

[103] Tim Lindholm and Frank Yellin. The Java Virtual Machine
Specification, Second Edition. Addison-Wesley, 1999.

[104] Hanbing Liu and J Strother Moore. Executable JVM model for
analytical reasoning: A study. In Proceedings of the 2003 workshop
on Interpreters, Virtual Machines and Emulators (IVME 2003), pages
15–23. ACM, 2003.

378

http://gee.cs.oswego.edu/dl/jmm/cookbook.html

Bibliography

[105] Hanbing Liu and J Strother Moore. Java program verification via
a JVM deep embedding in ACL2. In Konrad Slind, Annette
Bunker, and Ganesh Gopalakrishnan, editors, Theorem Proving in
Higher Order Logics (TPHOLs 2004), volume 3223 of Lecture Notes
in Computer Science, pages 117–125. Springer, 2004.

[106] Andreas Lochbihler. Jinja with threads. In Gerwin Klein, Tobias
Nipkow, and Lawrence C. Paulson, editors, The Archive of Formal
Proofs. http://afp.sf.net/entries/JinjaThreads.shtml, 2007.
Formal proof development.

[107] Andreas Lochbihler. Type safe nondeterminism - a formal
semantics of Java threads. In Proceedings of the 2008 International
Workshop on Foundations of Object-Oriented Languages (FOOL 2008),
2008.

[108] Andreas Lochbihler. Code generation for functions as data. In
Gerwin Klein, Tobias Nipkow, and Lawrence C. Paulson, editors,
The Archive of Formal Proofs.
http://afp.sf.net/entries/FinFun.shtml, 2009. Formal
proof development.

[109] Andreas Lochbihler. Formalising FinFuns - generating code for
functions as data from Isabelle/HOL. In Stefan Berghofer, Tobias
Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem
Proving in Higher Order Logics (TPHOLs 2009), volume 5674 of
Lecture Notes in Computer Science, pages 310–326. Springer, 2009.

[110] Andreas Lochbihler. Coinductive. In Gerwin Klein, Tobias
Nipkow, and Lawrence C. Paulson, editors, The Archive of Formal
Proofs. http://afp.sf.net/entries/Coinductive.shtml, 2010.
Formal proof development.

[111] Andreas Lochbihler. Verifying a compiler for Java threads. In
Andrew D. Gordon, editor, Programming Languages and Systems
(ESOP 2010), volume 6012 of Lecture Notes in Computer Science,
pages 427–447. Springer, 2010.

[112] Andreas Lochbihler. Java and the Java memory model – a unified,
machine-checked formalisation. In Helmut Seidl, editor,
Programming Languages and Systems (ESOP 2012), volume 7211 of
Lecture Notes in Computer Science, pages 497–517. Springer, 2012.

379

http://afp.sf.net/entries/JinjaThreads.shtml
http://afp.sf.net/entries/FinFun.shtml
http://afp.sf.net/entries/Coinductive.shtml

Bibliography

[113] Andreas Lochbihler and Lukas Bulwahn. Animating the
formalised semantics of a Java-like language. In Marko van
Eekelen, Herman Geuvers, Julien Schmalz, and Freek Wiedijk,
editors, Interactive Theorem Proving (ITP 2011), volume 6898 of
Lecture Notes in Computer Science, pages 216–232. Springer, 2011.

[114] Jeremy Manson. The proof of DRF guarantee and initialization.
Java memory model mailing list, post 62, 2007.

[115] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java
memory model. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL 2005),
pages 378–391. ACM, 2005.

[116] Filip Marić. Formal verification of a modern SAT solver by
shallow embedding into Isabelle/HOL. Theoretical Computer
Science, 411(50):4333–4356, 2010.

[117] Paul E. McKenney and Raul Silvera. Example POWER
implementation for C/C++ memory model.
http://www.rdrop.com/users/paulmck/scalability/paper/
N2745r.2011.03.04a.html.

[118] John McLean. A general theory of composition for a class of
“possibilistic” properties. IEEE Transactions on Software Engineering,
22(1):53–67, 1996.

[119] Robin Milner. A modal characterisation of observable
machine-behaviour. In Egidio Astesiano and Corrado Böhm,
editors, CAAP’81, volume 112 of Lecture Notes in Computer Science,
pages 25–34. Springer, 1981.

[120] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[121] Mobius consortium. Deliverable D3.1. Byte code level
specification language and program logic, 2006.

[122] J Strother Moore and George Porter. The apprentice challenge.
ACM Transactions on Programming Languages and Systems,
24(3):193–216, 2002.

380

http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html

Bibliography

[123] Andrew C. Myers. JFlow: practical mostly-static information flow
control. In Proceedings of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL 1999),
pages 228–241. ACM, 1999.

[124] Keiko Nakata and Tarmo Uustalu. Trace-based coinductive
operational semantics for While. In Stefan Berghofer, Tobias
Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem
Proving in Higher Order Logics (TPHOLs 2009), volume 5674 of
Lecture Notes in Computer Science, pages 375–390. Springer, 2009.

[125] Keiko Nakata and Tarmo Uustalu. Resumptions, weak
bisimilarity and big-step semantics for While with interactive I/O:
An exercise in mixed induction-coinduction. In Luca Aceto and
Pawel Sobocinski, editors, Proceedings Seventh Workshop on
Structural Operational Semantics (SOS 2010), volume 32 of Electronic
Proceedings in Theoretical Computer Science, pages 57–75, 2010.

[126] Tobias Nipkow. Verified bytecode verifiers. In Furio Honsell and
Marino Miculan, editors, Foundations of Software Science and
Computation Structures (FOSSACS 2001), volume 2030 of Lecture
Notes in Computer Science, pages 347–363. Springer, 2001.

[127] Tobias Nipkow. Verified efficient enumeration of plane graphs
modulo isomorphism. In Marko van Eekelen, Herman Geuvers,
Julien Schmaltz, and Freek Wiedijk, editors, Interactive Theorem
Proving (ITP 2011), volume 6898 of Lecture Notes in Computer
Science, pages 281–296. Springer, 2011.

[128] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel.
Isabelle/HOL — A Proof Assistant for Higher-Order Logic, volume
2283 of Lecture Notes in Computer Science. Springer, 2002.

[129] Tobias Nipkow and David von Oheimb. Java`ight is type-safe —
definitely. In Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL 1998),
pages 161–170. ACM, 1998.

[130] Tobias Nipkow, David von Oheimb, and Cornelia Pusch. µJava:
Embedding a programming language in a theorem prover. In
Friedrich L. Bauer and Ralf Steinbrüggen, editors, Foundations of

381

Bibliography

Secure Computation, volume 175 of NATO Science Series F: Computer
and Systems Sciences, pages 117–144. IOS Press, 2000.

[131] Michael Norrish. C formalised in HOL. PhD thesis, University of
Cambridge, 1998.

[132] Michael Norrish. Deterministic expressions in C. In S. Swierstra,
editor, Programming Languages and Systems (ESOP 1999), volume
1576 of Lecture Notes in Computer Science, pages 147–161. Springer,
1999.

[133] Michael Norrish. A formal semantics for C++. Technical report,
NICTA, 2008. Available from
http://nicta.com.au/people/norrishm/attachments/
bibliographies_and_papers/C-TR.pdf.

[134] Gary Nutt. Operating Systems. Addison-Wesley, 3rd edition, 2003.

[135] David von Oheimb. Analyzing Java in Isabelle/HOL. Formalization,
Type Safety and Hoare Logic. PhD thesis, Fakultät für Informatik,
Technische Universität München, 2000.

[136] David von Oheimb. Hoare logic for Java in Isabelle/HOL.
Concurrency and Computation: Practice and Experience,
13(13):1173–1214, 2001.

[137] David von Oheimb and Tobias Nipkow. Machine-checking the
Java specification: Proving type-safety. In Alves-Foss [7], pages
119–156.

[138] David von Oheimb and Tobias Nipkow. Hoare logic for NanoJava:
Auxiliary variables, side effects and virtual methods revisited. In
Lars-Henrik Eriksson and Peter Lindsay, editors, Formal Methods –
Getting IT Right (FME 2002), volume 2391 of Lecture Notes in
Computer Science, pages 89–105. Springer, 2002.

[139] OpenJDK 6. http://openjdk.java.net/.

[140] Scott Owens. Reasoning about the implementation of concurrency
abstractions on x86-TSO. In Theo D’Hondt, editor, Proceedings of
the 24th European conference on Object-oriented programming
(ECOOP 2010), volume 6183 of Lecture Notes in Computer Science,
pages 478–503. Springer, 2010.

382

http://nicta.com.au/people/norrishm/attachments/bibliographies_and_papers/C-TR.pdf
http://nicta.com.au/people/norrishm/attachments/bibliographies_and_papers/C-TR.pdf
http://openjdk.java.net/

Bibliography

[141] Sam Owre and Natarajan Shankar. Theory interpretation in PVS.
Technical Report SRI-CSL-01-01, Computer Science Laboratory,
SRI International, 2001.

[142] Lawrence C. Paulson. Mechanizing coinduction and corecursion
in higher-order logic. Journal of Logic and Computation,
7(2):175–204, 1997.

[143] Benjamin C. Pierce. Types and Programming Languages. The MIT
Press, 2002.

[144] Causality test cases for the Java memory model. http://www.cs.
umd.edu/~pugh/java/memoryModel/CausalityTestCases.html.

[145] William Pugh. The Java memory model is fatally flawed.
Concurrency: Practice and Experience, 12:445–455, 2000.

[146] Cornelia Pusch. Proving the soundness of a Java bytecode verifier
specification in Isabelle/HOL. In Rance Cleaveland, editor, Tools
and Algorithms for Construction and Analysis of Systems (TACAS
1999), volume 1579 of Lecture Notes in Computer Science, pages
89–103. Springer, 1999.

[147] Quis custodiet – machine-checked software security analyses.
http://pp.info.uni-karlsruhe.de/project.php?id=31.

[148] Tahina Ramananandro, Gabriel Dos Reis, and Xavier Leroy.
Formal verification of object layout for C++ multiple inheritance.
In Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL 2011),
pages 67–80. ACM, 2011.

[149] Tahina Ramananandro, Gabriel Dos Reis, and Xavier Leroy. A
mechanized semantics for C++ object construction and
destruction, with applications to resource management. In
Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages (POPL 2012), pages 521–532.
ACM, 2012.

[150] Mikael Rittri. Proving the correctness of a virtual machine by a
bisimulation. Licentiate thesis, Göteborg University, 1988.

383

http://www.cs.umd.edu/~pugh/java/memoryModel/CausalityTestCases.html
http://www.cs.umd.edu/~pugh/java/memoryModel/CausalityTestCases.html
http://pp.info.uni-karlsruhe.de/project.php?id=31

Bibliography

[151] Marcel Ruegenberg. Semi-automatic proof refactoring for Isabelle.
Bachelor’s thesis, Technische Universität München, Fakultät für
Informatik, 2011.

[152] John Rushby. Formal methods and the certification of critical
systems. Technical Report SRI-CSL-93-7, Computer Science
Laboratory, SRI International, 1993.

[153] David M. Russinoff. A mechanically checked proof of correctness
of the AMD K5 floating point square root microcode. Formal
Methods in System Design, 14:75–125, 1999.

[154] Susmit Sarkar, Mark Batty, Scott Owens, Kayvan Memarian, Peter
Sewell, Luc Maranget, Jade Alglave, and Derek Williams.
Synchronising C/C++ and POWER. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2012). ACM, 2012. To appear.

[155] Ralf Sasse. Taclets vs. rewriting logic - relating semantics of Java.
Technical Report 2005-16, Fakultät für Informatik, Universität
Karlsruhe, 2005.

[156] Norbert Schirmer. Java definite assignment in Isabelle/HOL. In
Proceedings of ECOOP Workshop on Formal Techniques for Java-like
Programs. Technical Report 408, ETH Zurich, 2003.

[157] Norbert Schirmer. Analysing the Java package/access concepts in
Isabelle/HOL. Concurrency and Computation: Practice & Experience -
Formal Techniques for Java-like Programs, 16:689–706, 2004.

[158] Norbert Schirmer. A verification environment for sequential
imperative programs in Isabelle/HOL. In Franz Baader and
Andrej Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR 2004), volume 3452 of Lecture
Notes in Artificial Intelligence, pages 398–414. Springer, 2005.

[159] Norbert Schirmer. Verification of Sequential Imperative Programs in
Isabelle/HOL. PhD thesis, Technische Universität München, 2006.

[160] Jaroslav Ševčík. Program Transformations in Weak Memory Models.
PhD thesis, Laboratory for Foundations of Computer Science,
School of Informatics, University of Edinburgh, 2008.

384

Bibliography

[161] Jaroslav Ševčík. Safe optimisations for shared-memory concurrent
programs. In Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation (PLDI 2011), pages
306–316. ACM, 2011.

[162] Jaroslav Ševčík and David Aspinall. On validity of program
transformations in the Java memory model. In Jan Vitek, editor,
Proceedings of the 22nd European Conference on Object-Oriented
Programming (ECOOP 2008), volume 5142 of Lecture Notes in
Computer Science, pages 27–51. Springer, 2008.

[163] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Nardelli, Suresh
Jagannathan, and Peter Sewell. Relaxed-memory concurrency and
verified compilation. In Proceedings of the 38th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL 2011), pages 43–54. ACM, 2011.

[164] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa
Nardelli, and Magnus O. Myreen. x86-TSO: a rigorous and usable
programmer’s model for x86 multiprocessors. Communications of
the ACM, 53:89–97, 2010.

[165] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on
Memory Consistency and Cache Coherence. Morgan & Claypool,
2011.

[166] Robert Stärk, Joachim Schmid, and Egon Börger. Java and the Java
Virtual Machine. Springer, 2001.

[167] Martin Strecker. Formal verification of a Java compiler in Isabelle.
In Proceedings of the 18th International Conference on Automated
Deduction (CADE 2002), volume 2392 of Lecture Notes in Computer
Science, pages 63–77. Springer, 2002.

[168] Martin Strecker. Investigating type-certifying compilation with
Isabelle. In Matthias Baaz and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR 2002),
volume 2514 of Lecture Notes in Computer Science, pages 403–417.
Springer, 2002.

[169] Kohei Suenaga and Naoki Kobayashi. Type-based analysis of
deadlock for a concurrent calculus with interrupts. In Rocco

385

Bibliography

De Nicola, editor, Programming Languages and Systems (ESOP
2007), volume 4421 of Lecture Notes in Computer Science, pages
490–504. Springer, 2007.

[170] René Thiemann and Christian Sternagel. Certification of
termination proofs using CeTA. In Stefan Berghofer, Tobias
Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem
Proving in Higher Order Logics (TPHOLs 2009), volume 5674 of
Lecture Notes in Computer Science, pages 452–468. Springer, 2009.

[171] Emina Torlak, Mandana Vaziri, and Julian Dolby. MemSAT:
checking axiomatic specifications of memory models. In
Proceedings of the 2010 ACM SIGPLAN conference on Programming
language design and implementation (PLDI 2010), pages 341–350.
ACM, 2010.

[172] Kerry Trentelman. Proving correctness of JavaCard DL taclets
using Bali. In Bernhard K. Aichernig and Bernhard Beckert,
editors, Proceedings of the Third IEEE International Conference on
Software Engineering and Formal Methods (SEFM 2005), pages
160–169. IEEE Computer Society, 2005.

[173] VALSOFT/Joana – information flow control in program
dependence graphs.
http://pp.info.uni-karlsruhe.de/project.php?id=30.

[174] Mitchell Wand. Compiler correctness for parallel languages. In
Proceedings of the seventh international conference on Functional
Programming Languages and Computer Architecture (FPCA 1995),
pages 120–134. ACM, 1995.

[175] Daniel Wasserrab. From Formal Semantics to Verified Slicing – A
Modular Framework with Applications in Language Based Security.
PhD thesis, Karlsruher Institut für Technologie, Fakultät für
Informatik, 2010.

[176] Daniel Wasserrab and Denis Lohner. Proving information flow
noninterference by reusing a machine-checked correctness proof
for slicing. In 6th International Verification Workshop (VERIFY 2010),
2010.

386

http://pp.info.uni-karlsruhe.de/project.php?id=30

Bibliography

[177] Daniel Wasserrab, Denis Lohner, and Gregor Snelting. On
PDG-based noninterference and its modular proof. In Stephen
Chong and David A. Naumann, editors, Proceedings of the 4th
Workshop on Programming Languages and Analysis for Security
(PLAS 2009), pages 31–44. ACM, 2009.

[178] Daniel Wasserrab, Tobias Nipkow, Gregor Snelting, and Frank Tip.
An operational semantics and type safety proof for multiple
inheritance in C++. In 21th Annual ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2006), pages 345–362. ACM, 2006.

[179] Markus Wenzel. Isar – a generic interpretative approach to
readable formal proof documents. In Yves Bertot, Gilles Dowek,
Laurent Théry, André Hirschowitz, and Christine Paulin, editors,
Theorem Proving in Higher Order Logics (TPHOLs 1999), volume
1690 of Lecture Notes in Computer Science, pages 167–183. Springer,
1999.

[180] Andrew K. Wright and Matthias Felleisen. A Syntactic Approach
to Type Soundness. Information and Computation, 115(1):38–94,
1994.

[181] Francesco Zappa Nardelli, Peter Sewell, Jaroslav Ševčík, Susmit
Sarkar, Scott Owens, Luc Maranget, Mark Batty, and Jade Alglave.
Relaxed memory models must be rigorous. In Exploiting
Concurrency Efficiently and Correctly ((EC)2 2009), 2009.

387

Index

Symbols
& strict and operator, 25, 317
&& shortcut and operator, 25
−1()

inverse function, 163
inverse image on relations, 163

∞
→ divergence, 216
/ division operator, 25, 317
«_» binary operator, 26, 328
∈∈ hyperset membership, 330
∈ set membership, 15
@ list append, 15
% remainder operator, 25, 317
ˆ bitwise xor operator, 25, 317
‘ image operator, 15
| strict or operator, 25, 317
| restrict binary relation, 161
_ `i _ well-formedness of maps to

invariant data, 80
u intersection of hypersets, 330
t union of hypersets, 330
] disjoint union, 15
|| shortcut or operator, 25
() element of type unit, 236
LM empty thread action, 68
[] empty list, 15
[]_ empty terminated list, 216
b_c Some, 15
[] list element by index, 15
_[] array type, 24
[] array cell access, 26, 328
[] B _ array cell assignment, 26,

328
{ _ | _. _ } set comprehension, 15
{_ : _; _}

uninitialised variable block, 26

{_ : _ = _; _}
local variable block, 26, 328

〈_〉c projection to condition BTAs, 68
〈_〉i projection to interruption BTAs,

68
〈_〉l projection to lock BTAs, 68
〈_〉o projection to events, 68
〈_〉t projection to thread creation

BTAs, 68
〈_〉w projection to wait set BTAs, 68
_(_B _) function update, 16
(:=f _) FinFun update, 16
_ B _ local variable assignment, 26,

328
_[_B _] list update by index, 15
(7→ _) map update, 16
_ (_ [7→] _) list of map updates, 16
_ (_ 7→f _) FinFun map update, 16
[_ [7→] _] list of updates of empty, 16
[_ 7→ _] update of empty, 16
[_ 7→f _] update of Kf None, 16
[_← _. _] list filtering, 15
(_) extension with invariant

data, 80
([] _) extension with invariant

data, 80
_, _ ` _ _ annotation rule for

preprocessor, 357–359
_, _ ` _ [] _ list extension of _, _ `

_ _, 359
_ sw _

release-acquire pair, 162, 350
_, _ ` _ mrw _

most recent write, 351
−→ implication, 14
⇀ partial function, map, 16
←→ biimplication, 14

Index

_ _B _ transition, 210
_ τB _ unobservable transition, 210
_ τB∗ _ possibly empty sequence of

τ-moves, 210
_ τB+ _ non-empty sequence of

τ-moves, 210
_ τB∞ divergence, 210
_ _I _ visible move, 210
−:_→ _ interleaving semantics, 76
−→∗ _ reflexive transitive closure

of interleaving semantics, 77
_ ` _−_→ _

single-threaded semantics, 76
_ ` _−_→sf _ single-threaded seman-

tics with start and finish events,
155

_ ` _−_:_→ _ source code interleav-
ing semantics, 95

_ ` _→jvm _
sequential aggressive VM, 48

_, _ ` _ −_→jvm _ single-threaded
aggressive VM, 97

_ ` _ −_:_→jvm _ multithreaded
aggressive VM, 100

_ ` _ −_→∗jvm _ multithreaded ag-
gressive VM, 100

_ ` _→jvmd _
sequential defensive VM, 49

_, _ ` _ −_→jvmd _ single-threaded
defensive VM, 97

_ ` _ −_:_→jvmd _ multithreaded
defensive VM, 100

_ ` _ −_→∗jvmd _ multithreaded
defensive VM, 100

_ ` 〈_, _〉 → 〈_, _〉 sequential source
code semantics, 40

_ ` 〈_, _〉 [→] 〈_, _〉 list extension of
_ ` 〈_, _〉 → 〈_, _〉, 40

_, _ ` 〈_, _〉−_→〈_, _〉 single-threaded
source code semantics, 91, 332–
338

_, _ ` 〈_, _〉 −_→e
0 〈_, _〉

J0 expression semantics, 230
_, _ ` 〈_, _〉 −_→t

0 〈_, _〉
J0 call stack semantics, 230

_, _, _ ` 〈_, _〉 −_→e
1 〈_, _〉

J1 expression semantics, 239
_, _, _ ` 〈_, _〉 −_→t

1 〈_, _〉
J1 call stack semantics, 239

_ ` 〈_._(_), _〉 →nc 〈_, _〉 sequential
semantics of native methods, 39

_, _ ` 〈_._(_), _〉 −_→nc 〈_, _〉
semantics of native methods, 84,

324–325
_, _, _, _, _ ` 〈_, _〉 −_→e

jvm 〈_, _〉
method-level VM, 252

⇒ function space, 14
⇒f type constructor for FinFuns, 16
=⇒ meta-implication, 14
_ ` _ =_⇒ _

update wait sets with BTA, 72,
73

_ ` _ [=_⇒] _
update wait sets with BTAs, 73

� restrict map, 234
↑D↑ definite assignment for multi-

threaded states, 115
↑ok-I↑ lifts ok-I to multithreaded

states, 118
↑_↑ lifting for thread-local predi-

cates, 78
⇑_⇑ lifting for thread-local predi-

cates with invariant data, 80
_ ↓ _ run interleaving semantics

until stuck, 157
_ ⇓ _ complete interleaving, 157
_ � _ execution starts in a state, 217
_ �′ _ execution with intermediate

states, 218
�diverge, 217
�step, 217
�terminate, 217
|_| list length, 15

390

Index

_ ` _
√

heap conformance, 42
well-formed JMM execution, 162,

351
_, _ ` _

√

conformance of states, 42, 319
sequential bytecode confor-

mance, 54
_, _, _ ` _, _

√
typability and confor-

mance, 115
_, _ ` _:_

√
single-threaded bytecode

conformance, 124
_ ` _:_

√
single-threaded bytecode

conformance, 138
_, _ ` (_, _) ↑

√
↑ multithreaded byte-

code conformance, 124
_, _ ` _, _ ⇑

√
⇑ typability and confor-

mance of multithreaded states,
115

_, _ ` _
√

ns non-speculative event list,
174

_, _ ` _
√

sc sequential consistency
coinductively, 172

_, _ ` _
√

t thread conformance, 114
_ `jmm _

√
JMM heap conformance,

321
_, _, _ `sc _

√
field table conformance,

321
_ `sc _

√
sequentially consistent

heap conformance, 142, 320
_, _ `sc _

√
object conformance, 320

_
√

preservation invariant for
lock-conf1, 249

< less than operator, 25, 317
<< left shift operator, 25, 317
<= less than or equal operator, 25,

317
≤

_ induced total order, 161, 350
≤Array, 30
≤Object, 30
≤

_
eo execution order, 161, 350

≤
,
hb happens-before order, 144, 162,

350
≤null, 30
≤null[], 30
≤

_
po program order, 144, 162, 350
≤refl, 30
≤

,
so synchronisation order, 162, 350
≤subcls, 30
≤

,
sw synchronises-with order, 162

_ ` _≺1 _ direct subclass relation, 28,
316

_ ` _�∗ _ subclass relation, 29, 316
_ ` _ ≤ _ subtype relation, 30
_ ` _ ≤′ _

subtyping on state types, 52
_ ` _ [≤] _ extension of _ ` _ ≤ _ to

lists, 30
_, _ ` _ :≤ _

conformance of values, 42, 319
_, _ ` _ (:≤) _

conformance of stores, 42, 319
_, _ ` _ [:≤] _ conformance of lists of

values, 42, 319
_, _ `sc _ :≤ _ conformance under

sequential consistency, 142
_ ` _ ::≤ _ conformance of heap

record, 178
!= inequality operator, 25, 317
⊆m order on maps, 16
E heap extension, 115, 134
> greather than operator, 25, 317
>= greather than or equal operator,

25, 317
>> signed right shift operator, 25,

317
>>> unsigned right shift operator,

25, 317
== equality operator, 25, 317
∼0 label relation between J and J0,

233
J∼jvm label relation between source

code and bytecode, 255

391

Index

` _ ∼ _ bisimulation relation on
thread actions, 220

_ ` _ o non-stuck thread, 104
_ ` _ _ o thread requires resources, 104
' same event except for values read

or written, 163, 351
_ ` _ ≈ _ single-threaded bisimula-

tion relation, 219
_, _ ` _ ≈ _ equal up to the first

SC-inconsistency, 180
_ ` _ ≈sf _ single-thread bisimula-

tion with start and finish events,
226

_ ` (_, _) ≈ (_, _) central relation for
bisimulation between J0 and J#

1,
245

[≈, ∼] extension of (≈,∼) to execu-
tions, 217

_, _, _ ` _≈ _ relation between J1 and
bytecode call frames, 253

0
e
≈1 bisimulation for expressions

between J1 and J#
1, 248

0
m
≈1 multithreaded bisimulation

between J1 and J#
1, 248

0
t
≈1 bisimulation for call stacks be-

tween J0 and J#
1, 248

0
w
≈1 relation for threads in wait sets

between J0 and J#
1, 248

m
≈0 multithreaded bisimulation be-

tween J and J0, 233
t
≈0 single-threaded bisimulation

between J and J0, 232

1
m
≈1 bisimulation relation between J#

1
and J′1, 249

1
e
≈jvm bisimulation between J′1 and

bytecode call frames, 254

1
t
≈jvm single-threaded bisimulation

between J′1 and bytecode, 255

J≈jvm bisimulation between source
code and bytecode, 255

≈m bisimulation relation for multi-
threaded states, 219

w
≈ relation for threads in wait sets,

219
w
≈sf threads in wait sets with start

and finish events, 226
· list consing, 15
.(_) method call, 26, 328
.{_} field access, 26, 328

semantics, 139
.{_} B _ field assignment, 26, 328

semantics, 139
_, _, _ ` _ : _ runtime type system, 42
_, _ ` _·_ : _ type of a location, 135
:: has HOL type, 14
; ; sequential composition, 26, 328
_, _ ` _ :: _ type judgement, 32,

328–330
_, _ ` _ [::] _ list extension of _, _ `

_ :: _, 32
.(_) :: _ signature of native method,

34, 322
_ ` _ «_» _ :: _ signature of binary

operator, 32, 317–318
_, _ `1 _ :: _ type system for J1, 237
∗ multiplication operator, 25, 317
_∗∗ reflexive transitive closure, 19
_∗∗∗ reflexive transitive closure for

ternary relations, 72
+

addition operator, 25, 317
sum type, 15

++ map overwriting, 234
– subtraction operator, 25, 317
	 removal from hyperset, 330
� relational composition, 213
�B composition of bisimulations,

213
∅ empty set, 15
_ ` _ has _ has method, 49

392

Index

_ ` _ has _:_ (_) in _
field lookup, 28, 317

_ ` _ has-fields _
compute field table, 317

_ ` _ justified-by _ justification se-
quence, 164, 351

_, _ ` _ legal
legal JMM execution, 164, 352

_.length array length, 26, 328
_ ` lub (_, _) = _

least upper bound, 33
_ ` _ sees _:_ (_) in _ field lookup

with visibility, 28, 317
_ ` _ sees _:_→_ = _ in _

method lookup, 28, 316
_ ` _ sees-methods _

compute method table, 316

A
A definitely assigned variables,

330–331
A_ set of events of a complete inter-

leaving, 161, 349
a2t conversion from address to

thread ID, 84, 133, 134
Abs-prog wrap program declaration

and tabulation, 276
abstract syntax

bytecode, 44–45
source code, 25, 93

acc ascending chain condition, 270
access location, 161
acq-events events for reacquiring

temporarily released locks, 76,
154

Acquire, 76
acquire-lock acquire lock multiple

times, 61, 62
acquire-TRL re-acquire temporarily

released locks, 77
acyclic-hierarchy

acyclic class hierarchy, 269

Addr address value, 24, 315
addr

address as expression, 26
type of addresses, 24, 319, 321

JMM implementation 2, 151
Address address constructor for

JMM’, 151, 321
address

allocated, 170
invent, 175
known, 175

addr-of-sys-xcpt address of preallo-
cated system exception, 38, 139

ALength push array length, 45, 339
all-final-except

all threads final except, 104
alloc allocation operation, 133
Allocate allocation event, 84, 143
allocated

assumptions about allocated
addresses, 172

set of allocated addresses, 170
allocated addresses, 170
allocated-base locale for allocated

addresses, 172
ALoad fetch array cell, 45, 339
annotate annotate expression, 359
annotate-Mb annotate method dec-

laration, 359
annotate-Prog preprocessor to anno-

tate program declarations, 359
Any catch all exceptions, 44
app applicability, 51, 343
append list concatenation, 15
appi applicability of instruction, 51,

342–343
MEnter, 99
MExit, 99

applicability, 51
ArithmeticException, 28
Arr array on the SC heap, 37, 38, 319
Array array type, 24, 315

393

Index

ArrayIndexOutOfBounds array in-
dex out of bounds exception, 28

array-length-of extract array length
from dynamic type information,
38, 315

ArrayStore array store exception, 28
ArrayT dynamic type information

for arrays, 38, 315
As list extension ofA, 331
ascending chaing condition, 270
AStore set into array cell, 45, 339

B
B correct block numbering, 238
B1, 254
B2, 254
B3, 254
B4, 254
base type, 29
base-type strips off Array, 29, 316
basic thread action, 66

semantics, 69
biimplication, 14
BinOp instruction for binary opera-

tors, 45, 339
binop semantics of binary operators,

39, 40, 318–319
binop-relevant-class possibly raised

exceptions by binary operator,
341

(_, _) bisim type of bisimulation
relations, 212

bisimilar
delay with explicit divergence,

211
bisimulation

delay with explicit divergence,
210

strong, 211
weak, 224
well-founded delay, 214

blank object with default values in
fields, 320

blocks surround expression with
initialised local variable blocks,
41, 338

blocks1 surround expression with
uninitialised local variable blocks,
241

Bool boolean value, 24, 315
bool type of truth values, 14
Boolean type for booleans, 24, 315
bop type of binary operators, 25,

317
bop-ret type of binary operator re-

sults, 39
Bs list extension of B, 238

C
C&U cut-and-update property, 180
call called method, 228
call frame, 46
call stack

normalised, 233
call1 called method in J1, 239
calls list extension of call, 228
case _ of _⇒ _ | _⇒ _

case distinction, 16
Cast checked type cast, 26, 328
_ cdecl type of class declarations, 27,

315
Cell array cell member, 134
cells type of array cells, 37, 319
check checks of the defensive VM,

49
Checkcast checked type cast, 45, 339
check-instr instruction-specific de-

fensive check, 49
Class class type, 24, 315
class, 27
class retrieve class declaration, 28,

315
_ class type of classes, 27, 315

394

Index

class declaration, 27
well-formedness, 35

ClassCast class cast exception, 28
classes extract class declarations, 35,

315
class-of

class at which lookup starts, 33
class-of ′

class at which lookup starts, 42
ClassT class name as dynamic type

information, 38, 315
ClearIntr BTA to clear interrupt sta-

tus, 67, 74
Clone, 39
clone method clone

semantics, 39, 139, 323
signature, 34

CloneF, 39
closed

expression, 232
under functional, 21

cname type of class names, 24
cname-of class name of object, 347
cnt-IB count initialised local vari-

able blocks, 247
codatatype, 22
code extraction

guidelines, 280
locales, 267

code generator, 263
coinduction rule

strengthened, 21
coinductive definition, 19–22

monotonicity, 20
collapse collapse call stack by inlin-

ing, 232
committed events, 163
compC generic compiler for classes,

352
compE1 compiler stage 1 for expres-

sions, 242, 352–353

compE2 compiler from expressions
to instructions, 250, 353–354

compEs2 compiler from expression
lists to instructions, 354

complete interleaving, 157
example, 158–160
non-speculative, 175
set of events, 161
well-formedness, 163

completion
sequentially consistent, 179

compM generic compiler for meth-
ods, 352

compMb2 compiler stage 2 for me-
thod bodies, 250, 357

compP generic program compiler,
243, 352

compP′ generic compiler for tabu-
lated programs, 276

compP1 first compiler stage, 207,
243, 353

compP2 second compiler stage, 207,
250, 357

compP-impl generic compiler with
tabulation, 276

compxE2 compiler from expressions
to excepion tables, 250, 354–355

compxEs2 compiler from expression
lists to excepion tables, 355

concat list flattening, 15
condition action

semantics, 71–72
syntax, 67

_ condition-act
type of a condition BTA, 67

conf heap conformance assump-
tions, 135

conf-base heap module with heap
conformance, 135

conflict, 165
conformance, 42, 319

bytecode, 54

395

Index

heap record, 178
lock, 117
properties of heap, 135
thread, 114

conf-progress progress assumptions
on heap module, 135

conf-read locale for reading confor-
mant values, 135

consistency, 52
Java memory model, 185
under functional, 21

copy-mem
copy one heap location, 323

copy-mems
copy heap locations, 139, 323

correctly synchronised, 165
currentThread

method currentThread
semantics, 87
signature, 83

CurrTh, 87
cut-and-update property, 180

generalised, 182

D
D definite assignment check, 37, 331
Dacquire, 106
Dactive, 106
data race, 165
data race free, 165
data refinement, 264
datatype, 22
dbisim-base

locale for bisimulations, 212
dbisim-div assumptions of delay

bisimulations with explicit diver-
gence, 212

dbisim-final assumptions for preser-
vation of final states, 212

deadlock
example, 101, 106

state, 104
thread, 105

deadlock state in deadlock, 104
deadlock′

all threads in deadlock, 107
deadlocked thread in deadlock, 106
declaration, 27
default value, 161, 319
default-val default value, 319
definite description operator, 15
delay bisimilar

with explicit divergence, 211
delay bisimulation

well-founded, 214
with explicit divergence, 210

example, 211
disjoint sum, 15
distinct

distinctness of list elements, 15
divergence, 210
dom domain, 16
DRF guarantee, 166, 184
drop suffix of list, 15
dropWhile drop list elements, 273
Ds list extension ofD, 331
Dup duplicate top stack element, 45,

339
Dwait, 106

E
E set of complete interleavings, 158
ε_. _ indefinite description operator,

15
code extraction, 280

eff effect, 51, 342
effi effect of instruction, 51, 340–341

MEnter, 99
MExit, 99

empty
everywhere undefined map, 16

empty-heap empty heap, 133

396

Index

env type of environments, 32
environment, 32
Err error type, 50, 339
_ err type of the error type, 339
Event coercion into type _ sf, 155
event, 143

committed, 163
conflicting, 165
non-speculative list of, 174
renaming, 163
synchronisation, 162, 349
thread finish, 155
thread start, 155

event type of events, 83
events extract and pair events with

thread ID, 157
events’ extract events, 177
exception flag, 46
exception handler, 44
exception table, 44
exception table entry, 44
exec single-threaded aggressive VM,

48, 96, 97, 347
execd single-threaded defensive

VM, 49
exec-instr semantics of instructions,

47, 96, 97, 343–347
exec-meth semi-aggressive method-

level VM, 207, 252
exec-methd

defensive method-level VM, 252
exec-native aggressive implemen-

tation of native methods, 47, 96,
326–327

execution
Java memory model, 162
justifying, 146
legal, 163, 352
sequence of justifying, 146, 163
well-formedness, 162

(_, _) execution
type of a JMM execution, 349

type of executions, 216
execution order, 161
ex-entry type of exception table

entries, 44, 339
(_, _, _) exp

type of expressions, 236, 328
_ expr type of source code expres-

sions, 25, 236, 328
_ expr1 type of J1 expressions, 237
ex-table

type of exception tables, 44, 339
ex-table-of lookup exception table

for method, 44, 347
extension

heap, 115, 134
map, 16
with invariant data, 80

Extern externally observable event,
84, 143

F
_f _ FinFun application, 16
false False as expression, 26
fdecl type of field declarations, 27,

315
Field field member, 134
field functional field lookup, 317
field declaration, 27
field modifier, 27
field table, 38
fields

functional field table lookup, 317
type of field tables, 37, 319

filter list filtering, 15
final

intermediate language, 241
J0, 231
multithreaded state, 77
preservation of states, 213
thread, 77
virtual machine, 46, 99

397

Index

final final expression, 40, 72, 76
final0 final J0 state, 231
final-thread

locale for parameter final, 72
final-threads set of final threads, 77
FinFun almost everywhere constant

function, 16, 266
Finished terminal thread status, 155
finite finiteness of sets, 15
fit to, 175
fmod type of field modifiers, 27, 315
foldl left fold on lists, 15
foldr right fold on lists, 15
frame type of a call frame, 46
free variable, 232
free-thread-id free thread ID, 71
fresh-vname

fresh variable name, 243, 352
fst first projection, 15
fv set of free variables, 232

G
gC&U generalised cut-and-update

property, 182
generalised cut-and-update property,

182
gen-new-Addr search algorithm for

fresh addresses, 273
Getfield load field, 45, 339

semantics, 140
gfp greatest fixed point, 20
Goto jump instruction, 45, 339

H
happens-before order, 144, 162
hash-addr hash function on ad-

dresses, 39, 320, 322
hashcode method hashcode, 138

semantics, 39
signature, 34

has-I holds some lock, 117

has-Is list extension of has-I, 117
has-lock

test whether lock is held, 61
has-locks number of times a lock is

held, 61, 62
hconf heap conformance, 135
hd head of list, 15
heap

type of heaps, 37, 319
type-level assumptions of heap

module, 134
heap conformance

JMM implementation 1, 149
JMM implementation 2, 152
properties, 135
sequential consistency, 142

heap extension, 115, 134
heap module, 133–136

design considerations, 140–141
JMM implementation 1, 148
JMM implementation 2, 151
operations, 133
sequential consistency, 141

heap record, 174
conformance, 178

heap-clone clone object or array, 323
heap-base

locale of heap operations, 134
heap-entry type of object and array

representations, 37, 319
Hilbert’s ε-operator, 15
hp project J state to heap, 38
hty type of dynamic type informa-

tion, 38, 315
_ hyperset type of hypersets, 330

I
I number of times a lock is held,

117
ι_. _ definite description operator,

15

398

Index

if (_) _ else _ conditional, 26, 328
IfFalse conditional jump instruction,

45, 339
IllegalMonitorState illegal monitor

state exception, 83
IllegalThreadState illegal thread

state exception, 83
impl-of unpack program declara-

tion with tabulation, 276
indefinite description operator, 15
index list index of last occurrence,

243, 352
induced total order, 161
inductive definition, 19–21

monotonicity, 20
infinite stuttering, 211
inheritance

locale, 18
init_ predicate for initialisation

events, 161, 349
init-fields initialise field table with

default values, 320
initialisation

of location, 146
inj-on injective on, 163
Inl left injection, 15
inline inline call, 227, 229
inlines list extension of inline, 229
Inr right injection, 15
Instanceof subtype test, 45, 339
instanceof subtype test, 26, 328
instr type of instructions, 44, 339
instrs-of lookup instructions for

method, 44, 347
instruction set, 44
insync (_) _ synchronized block

under execution, 93, 328
intermediate language, 237
semantics, 94
syntax, 93

int integers, 14
Integer type for integers, 24, 315

intermediate output, 153
interpretation

locale, 17
interrupt, 64
interrupt method interrupt, 64

semantics, 86
signature, 83

interrupted method interrupted
semantics, 87
signature, 83

InterruptedException, 83
interruption

BTA semantics, 73–74
BTA syntax, 67
interaction with wait-notify, 90–

91
semantics, 86

Intg integer value, 24, 315
Intr BTA to set interrupt status, 67,

74
Intr, 86
_ intr-act type of an interrupt BTA,

67
IntrdF, 87
IntrdT, 87
IntrInex, 86
intrs projection to pending inter-

rupts, 65
_ intrs

type of pending interrupts, 64
intr-waits interrupts that a thread

action waits for, 102
invariant closedness under a rela-

tion, 81
invent address, 175
Invoke method call instruction, 45,

339
semantics, 97

InWS wait set status “in wait set”,
63

Isabelle Collections Framework, 267
is-addr is of the form addr _, 227

399

Index

is-class predicate for declared class
names, 28, 315

is-htype valid dynamic type infor-
mation, 134, 316

isInterrupted method isInterrupted
semantics, 86
signature, 83

IsIntrd BTA to query interrupt sta-
tus, 67, 74

isIntrdF, 86
isIntrdT, 86
is-Ref

reference value or null pointer,
49

is-refT
predicate for reference types, 24

is-relevant-class possibly raised
exceptions, 51, 341

is-relevant-entry possibly matching
exception table entry, 341

is-Throw thrown exception, 339
is-Throws thrown exception in

method parameters, 273
is-type valid type, 29, 30, 316
is-Val is a value, 117
is-Vals is a list of values, 227
is-volatile volatile member, 161, 317

J
J JinjaThreads source code, 23
J. prefix for source code instantia-

tion, 95
J.ka addresses a source code thread

knows, 178
J.redT source code interleaving se-

mantics, 95
J0 source code semantics with ex-

plicit call stack, 227
J0.redT multithreaded J0 semantics,

231
J0-red J0 call stack semantics, 230
J0-start J0 start state, 231

J0-τ-move unobservable transition
in J0, 231

J1 intermediate language, 236
J′1 J1 with unlocking possibly failing,

241
J′1.redT

multithreaded J′1 semantics, 241
J#
1 J1 with unlocking never failing,

241
J#
1.redT

multithreaded J#
1 semantics, 241

J1-final final J1 state, 241
_ J1-prog intermediate language

program, 237
J1-red J1 call stack semantics, 239
J1-start J1 start state, 241
J1-τ-move unobservable transition

in J1, 242
J2JVM compiler, 207, 255, 352
Java memory model

informal, 143
Java2Jinja, 282
J-final final J state, 95
J-mb type of J method bodies, 27,

328
jmm prefix for JMM heap imple-

mentation 1, 149
JMM heap implementation 1, 148
JMM heap implementation 2, 151
jmm′ prefix for JMM heap imple-

mentation 2, 152
jmm′-a2t conversion from address

to thread ID, 322
jmm′-allocate

JMM’ allocation operation, 322
jmm′-empty-heap

empty JMM’ heap, 322
jmm’-hconf JMM’ heap confor-

mance, 322
jmm′-heap

type of JMM’ heap, 152, 321
jmm′-read JMM’ read operation, 322

400

Index

jmm′-t2a conversion from thread ID
to address, 322

jmm′-typeof-addr dynamic type
information under JMM’, 322

jmm′-write
JMM’ write operation, 322

jmm-a2t conversion from address to
thread ID, 321

jmm-allocate
JMM allocation operation, 321

jmm-empty-heap
empty JMM heap, 321

JMM-event type of identifiers of a
JMM event, 349

_ jmm-heap type of JMM heap, 321
jmm-new-Addr JMM operation for

fresh addresses, 321
jmm-read

JMM read operation, 149, 321
jmm-t2a conversion from thread ID

to address, 321
jmm-typeof-addr dynamic type in-

formation under JMM, 149, 321
jmm-write

JMM write operation, 321
Join BTA to join on a thread, 67, 72
Join, 86
join method join

semantics, 86
signature, 83

JoinIntr, 86
J-prog type of J program declara-

tions, 27, 328
J-red source code single-threaded

semantics, 95
J-start initial J state, 95, 96
J-state type of sequential source

code states, 37
J-τ-move

unobservable transition in J, 231
justifying execution, 146

example, 188

sequence of, 146
justifying sequence

example, 186
jvm. prefix for aggressive VM in-

stantiation, 100
jvm.ka addresses a bytecode thread

knows, 178
jvm.redT multithreaded aggressive

VM, 100
jvmd. prefix for defensive VM in-

stantiation, 100
jvmd.redT

multithreaded defensive VM,
100

jvm-exec single-threaded aggressive
VM, 99

jvm-execd single-threaded defen-
sive VM, 99

jvm-final final VM state, 99
jvm-method type of bytecode me-

thod bodies, 44, 339
jvm-prog type of bytecode program

declarations, 44, 339
jvm-start initial VM state, 100
jvm-state type of single-threaded

VM states, 46
jvm-τ-move unobservable JVM tran-

sition, 348
jvm-wf-states well-formed JVM

states for type safety, 124
J-wf-states well-formed J states for

type safety, 120

K
ka

addresses a thread knows, 175
assumptions about ka, 176

ka-base locale for operation known
addresses, 176

kas addresses known in a state, 176

401

Index

ka-type locale connecting allocation,
known addresses and confor-
mance, 177, 178

Kf _ constant FinFun, 16
known addresses, 175

multithreaded state, 176

L
labelled transistion system, 210
Lazy lazy list constructor, 265
lcl project J state to local store, 38
Leaf leaf of a binary tree, 263
learn

address, 175
learns learnt addresses, 175
least upper bound, 33

computation, 271
legal execution, 352
legality, 163
lfp least fixed point, 20
lifting-inv assumptions for lifting

thread-local predicates with in-
variant data, 81

lifting-wf assumptions for lifting
thread-local predicates, 79

list, 15
_ list type constructor for lists, 15, 22
_ llist type of possibly infinite lists,

157
llist-corec corecursion operator for

lazy lists, 22
Load load from register, 45, 339
loc type of a member, 134
locale

code extraction, 267
declaration, 17
inheritance, 18
interpretation, 17

locals type of local store, 37
location, 134
loc-default default value for loca-

tion, 350

Lock BTA to acquire a lock once, 66,
67, 69, 70

lock, 61
temporarily released, 62

_ lock type of a lock, 61
lock conformance, 117
lock-act type of a lock BTA, 67
_ lock-acts type of lock BTAs, 68
lock-conf lock conformance, 117
lock-conf1 lock conformance for J1,

249
locking

BTA semantics, 69–70
BTA syntax, 66

lock-lock acquire lock once, 61, 62
locks projection to locks, 65
(_, _) locks type of a lock state, 62
locs set of accessed locations, 161,

350
locs′ locations accessed by an event,

349
(_, _) lts type of labelled transition

systems, 212
lub least upper bound, 33

computation, 271

M
m-allocated assumptions about allo-

cated addresses, 170, 172
map, 16
map list-element-wise application,

15
map to invariant data, 80
map-of

conversion from list to map, 16
matches-ex-entry matching excep-

tion table entry, 347
match-ex-table find matching han-

dler in exception table, 347
max maximum operation, 352
max-stack maximum stack size, 250,

356–357

402

Index

max-stacks
list extension of max-stack, 357

max-vars maximum nesting depth
of local variables, 241, 355–356

max-varss
list extension of max-vars, 356

may-acquire-TRL precondition
for re-acquiring temporarily
released locks, 77

may-lock test whether lock may be
acquired, 61, 62

m-dbisim-div locale for lifting bi-
simulations, 221

_ mdecl type of method declara-
tions, 27, 315

MEnter instruction monitorenter,
98, 339
applicability, 99
effect, 99
semantics, 98

method
functional method lookup, 48

method body, 27
bytecode, 44
source code, 27

method declaration, 27
native, 27
well-formedness, 35

method type, 50
method well-typing, 50
mexception

extract exception flags, 257
MExit instruction monitorexit, 98,

339
applicability, 99
effect, 99
semantics, 98

mfinal final multithreaded state, 77
mname type of method names, 24
mode, 265, 281
mode annotation, 265

monotonicity
(co)inductive definition, 20

move, 210
mrw update snapshot heap, 172
mrws list fold of mrw, 172
mτ-move silent reduction of the

interleaving semantics, 218
multithreaded well-formedness as-

sumptions about single-threaded
semantics, 78

multithreaded-base locale for inter-
leaving semantics, 76

must-wait wait for resource indefi-
nitely, 103

mutually exclusive, 61
MWintr, 103
MWjoin, 103
MWlock, 103

N
nat natural numbers, 14
Native body of native method, 27
native method

semantics, 39, 84, 138, 153, 324–
327

signatures, 34, 82, 153, 322
native-BTA2J convert thread cre-

ation BTA to J, 92
native-BTA2jvm convert thread cre-

ation BTA to JVM, 97
native-Ret2J convert native method

result to J, 41, 92
native-Ret2jvm convert native me-

thod result to JVM, 47, 96
native-TA2J

convert thread action to J, 92
native-TA2J0

convert thread action to J0, 230
native-TA2J1

convert thread action to J1, 239
native-TA2jvm convert thread ac-

tion to JVM, 97

403

Index

NChashc, 39
NegativeArraySize negative array

size exception, 28
New object allocation, 45, 339
new object allocation, 26, 328
new _[_] array allocation, 26, 328
new-Addr

fresh address, 39, 273, 320
New-Arr abbreviation for

Allocate _ (ArrayT _ _), 84, 143
NewArray array allocation, 45, 339
New-Obj abbreviation for

Allocate _ (ClassT _), 84, 143
(_, _, _) new-thread-act type of a

thread creation BTA, 67
no-call

no non-native method call, 228
Node inner node of a binary tree,

263
non-speculative

complete interleaving, 175
event list, 174

None, 15
Normal normal state of the defen-

sive VM, 49
Normal, 76
normalised call stack, 233
norm-eff

effect of normal execution, 342
not-final-thread

existing, non-final thread, 103
Notified BTA to process notification,

67, 73
Notify BTA to notify thread in wait

set, 67, 73
notify method notify

semantics, 88
signature, 83

NotifyAll BTA to notify all threads
in wait set, 67, 73

notifyAll method notifyAll
semantics, 88

signature, 83
NT type for null, 24, 315
Ntf, 88
NtfAll, 88
NtfAllFail, 88
NtfFail, 88
Null null reference, 24, 315
null null expression, 26
NullPointer

null pointer exception, 28

O
Obj object on the SC heap, 37, 38,

319
Object root of class hierarchy, 28
observable behaviour

bytecode, 252
intermediate language, 242
Java memory model, 153
source code, 231

OK usable register, 50, 339
ok-cond precondition of condition

BTA, 72
ok-conds precondition of condition

BTAs, 72
ok-I insync (_) _ only in reducing

branch, 117, 118
ok-init _ thread start events precede

other events, 162, 350
ok-intr precondition of interruption

BTA, 73, 74
ok-intrs precondition of interrup-

tion BTAs, 73, 74
ok-Is list extension of ok-I, 118
ok-L precondition of lock BTA, 69,

70
ok-locks precondition of FinFun of

lock BTAs, 69, 70
ok-locks-thr only existing threads

hold locks, 110
ok-Ls precondition of lock BTAs, 69,

70

404

Index

ok-Suspend constraint on threads in
wait sets, 120

ok-ta precondition of a thread ac-
tion, 74

ok-ta′ precondition of thread action
except missing resources, 111

ok-thr precondition of thread cre-
ation BTA, 70, 71

ok-thrs precondition of thread cre-
ation BTAs, 70, 71

ok-val inverse of OK, 339
ok-wset-final waiting threads exist

and are not final, 110
ok-wsets precondition for wait set

BTAs, 73
_ opstack

type of the operand stack, 46
_ option, 15
Option.map

map operator for _ option, 316
out-of-thin-air

guarantee, 189
value, 146

OutOfMemory
out of memory error, 28

P
pair, 15
pair-Pre-Start

thread action transformer for
start and finish events, 155

pause at a call, 227
pc type of the program counter, 46
Pop pop from stack, 45, 339
predicate compiler, 265
prefix prefix relation on lists, 265
preorder pre-order traversal of bi-

nary tree, 263
preservation, 42

of final states, 213
semantics, 208

stage 1, 244

stage 2, 252
under heap changes, 220
well-formedness

compiler stage 1, 243
compiler stage 2, 251

preserve-deadlocked locale for
deadlock preservation, 109

Pre-Start initial thread status, 155
primitive type, 24
print method print, 153
_ prog type of program declarations,

27, 315
ProgDecl extract declaration from

tabulation, 276
_ prog-impl type of tabulated pro-

gram declarations, 276
prog-impl-invar

invariant for tabulation, 276
Program constructor for program

declarations, 27, 315
program declaration, 27
program order, 144, 162
program refinement, 264
program typing, 50
progress, 42
progress locale for progress up to

deadlock, 110
Push push value onto stack, 45, 339
Putfield store into field, 45, 339

semantics, 140

R
R_ set of read events, 161, 349
r single-threaded semantics, 76
R0call, 230
R0red, 230
R0ret, 230
R1call, 241
R1lock, 240
R1red, 241
R1ret, 241

405

Index

R1sync1, 240
R1sync2, 240
R1syncN, 240
R1syncX, 240
R1unlck, 240
R1unlckF, 240
R1unlckN, 240
R1unlckX, 240
R1unlckXF, 240
R1unlckXN, 240
ran map range, 16
random scheduler, 275
range range of a function, 15
Rcall, 41
RcallN, 41, 92
Read read event, 84, 143
read heap read operation, 134
read event, 161

set of, 161
read from location, 161
record, 15
Red0, 230
red0 J0 expression semantics, 230
red1 J1 expression semantics, 239
redT interleaving semantics, 76
re-entrant, 61
reference type, 24
refinement

data, 264
program, 264

reflexive transitive closure, 19
registers, 46

layout, 237
registers type of the registers, 46
Release BTA to temporarily release

a lock, 66, 67, 69, 70
release-acquire pair, 162
release-lock

completely release lock, 61, 62
relevant-entries filter exception ta-

ble for relevant entries, 341
replicate repetition as list, 15

resource, 101
restriction of a map, 16
Ret-sys-xcpt system exception raised

by native method, 39
Ret-Unchanged

call native method again, 88
Return return from method, 45, 339
return type, 27
Ret-Val

return value of native method,
39

Ret-Xcp exception raised by native
method, 39

rev list reversal, 15
Rfacc, 139
Rfass, 139
Rlock, 94
Rnative, 41, 92
Robj, 41, 92
RobjX, 41
round-robin scheduler, 275
Rparam, 41
RparamX, 41, 273
RparamX2, 273
Rsync1, 94
Rsync2, 94
RsyncN, 94
RsyncX, 94
run method run

signature, 84
run-time type system, 42

synchronized, 114
Runlck, 94
RunlckX, 94
Running thread status running, 155

S
S no access to monitor registers, 238
SC sequential consistency, 165
sc prefix for sequential consistency,

142

406

Index

SC’ sequential consistency coinduc-
tively, 172

sc-a2t conversion from address to
thread ID, 319

sc-allocate allocation operation for
SC heap, 320

scc sequentially consistent comple-
tion, 180

sc-empty-heap empty heap, 320
sc-heap sequentially consistent

heap, 142
schedule scheduling function, 275
scheduler, 275

random, 275
round-robin, 275

sc-read sequentially consistent read
operation, 142, 320

sc-t2a conversion from thread ID to
address, 319

sc-typeof-addr sequentially consis-
tent dynamic type information,
142, 320

sc-write sequentially consistent
write operation, 142, 320

semantic preservation, 208
(_, _, _, _, _, _) semantics type of

single-threaded semantics, 76
sequence of justifying executions, 163
sequential consistency

coinductively, 172
heap module, 141
Java memory model, 165

sequentially consistent completion,
179

set, 15
set conversion from lists to sets, 15
_ set type constructor for sets, 15
_ sf type of start and finish events,

155
sf. prefix for single-threaded seman-

tics with start and finish events,
156

sf.acq-events coerced events for
reacquiring temporarily released
locks, 155

sf.final final state in transformed
semantics, 156

sf.r single-threaded semantics with
start and finish events, 155

sf.τ-move silent transition with start
and finish events, 226

SFfinish, 155
SFinit, 155
SFrun, 155
shr projection to shared memory, 65
silent transition, 210
SLock lock acquisition event, 84, 143
snapshot heap, 172

initial, 180
snd second projection, 15
Some, 15
Spawn BTA to spawn new thread,

67, 71
Start, 86
start method start

semantics, 86
signature, 83

start snapshot heap, 180
start state

bytecode, 100
intermediate language, 241
J0, 231
source code, 95
well-formedness, 96, 138

start-addrs addresses of preallo-
cated objects, 138

start-data constructs the start heap,
138, 139

start-ETs initial map to invariant
data for type safety, 113

start-events events for bootstrap-
ping, 158

StartFail, 86
start-H start snapshot heap, 180

407

Index

start-heap
initial heap, 38, 96, 138, 139

start-ok successful preallocation of
objects, 138

start-tID thread ID of initial thread,
138, 139

state
multithreaded, 61, 64
source code, 37, 94
terminal, 216
virtual machine, 46

(_, _, _, _, _) state type of multi-
threaded states, 65

state type, 50
state well-typing, 50
status type of thread status, 155
Store store into register, 45, 339
strong bisimulation, 211
subclass relation, 29
subtype relation, 30
subtype-measure

measure on subtyping, 270
succs successor instructions under

normal execution, 339–340
SUnlock lock release event, 84, 143
Suspend

BTA to suspend to wait set, 67
Swap swap top stack elements, 45,

339
sync (_) _ synchronized block, 328

exception table, 251
instructions, 250
intermediate language, 237
semantics, 94
syntax, 93
typing rule, 93

sync-event
synchronisation event, 349

sync-events synchronisation events
of an execution, 349

synchronisation
correct, 165

synchronisation event, 162, 349
synchronisation order, 162
synchronises-with order, 162
synchronized block

semantics, 93–94
syntax, 93
typing rule, 93

system class, 28
system classes

well-formedness, 35
system exceptions, 28, 83
sys-xcpts

system exceptions, 28, 83, 327

T
t2a conversion from thread ID to

address, 84, 133, 134
tab-class tabulate class lookup, 276
tab-subcls

tabulate subclass relation, 276
tabulate

tabulate lookup functions, 276
take prefix of list, 15
terminal state, 216
TFinish thread termination event,

143, 155
the inverse of Some, 16
the-Addr inverse of Addr, 348
the-Array inverse of Array, 339
this reference to the current object,

24
thr projection to thread pool, 65
Thread thread class, 84
thread action, 66

design considerations, 75
semantics, 74–75
syntax, 66–68

thread conformance, 114
thread creation

BTA semantics, 70–71
BTA syntax, 66

408

Index

semantics, 85
thread finish event, 155
thread pool, 62
thread start event, 155
thread-local state

intermediate language, 239
J0, 227
source code, 94
virtual machine, 99

(_, _, _, _, _, _) thread-action
type of a thread action, 68

ThreadEx BTA to test whether thread
exists, 67, 71

thread-id type of thread IDs, 84, 319,
321

THROW
thrown system exception, 41

Throw thrown exception, 26
throw exception throwing, 26, 328
Throwable root class in exception

hierarchy, 28
ThrowExc throw exception, 45, 339
TInit initial thread event, 143, 155
τ-instr unobservable instructions,

348
TIntr interruption event, 84, 143
TIntrd event for observed interrup-

tion, 84, 143
TJoin join event, 84, 143
τjvm unobservable single-threaded

JVM state, 348
tl tail of list, 15
(_, _) tllist type of terminated possi-

bly infinite lists, 216
tmap map operator on (_, _) tllist,

297
τ-move, 210
τ-move

unobservability of transition, 210
unobservable transition in J, 231,

338

τ-move1 unobservable transition in
J1, 242

τ-moves
list extension of τ-move, 339

(_, _, _, _, _, _) τ-moves
type of τ-move predicates, 220

τ-multithreaded
locale for τ-moves, 220

τnative unobservable native method
call, 327

transition, 210
tree type of binary trees, 263
true True as expression, 26
try _ catch(_ _) _

exception handling, 26, 328
TStart thread spawn event, 84, 143
ty type of JinjaThreads types, 24,

315
tyi instruction typing, 339
ty-of extract type from dynamic

type information, 38, 315
type, 24

primitive, 24
reference, 24
valid, 29

type checking, 271
type inference, 271
type judgement, 32
type safety

bytecode, 122
source code, 112

type system
run-time, 42
synchronized, 114

TypeError type error in the defen-
sive VM, 49

_ type-error
adds a type error state, 49

typeof_ dynamic type of a value, 38
typeof type of a value, 24
typeof-addr dynamic type informa-

tion of an address, 38, 133

409

Index

types, 14
types set of valid types, 29, 316
typesafe type safety assumptions on

heap module, 135

U
uhr update heap record, 174
uhrs list fold of uhr, 174
undefined-Val undefined value, 48
Unit dummy value, 24, 315
unit dummy expression, 26
unit type with one element (), 236
UNIV set of all elements, 15
Unlock BTA to unlock a lock once,

66, 67, 69, 70
UnlockFail BTA to test for not hav-

ing locked a lock, 66, 67, 69, 70
unlock-lock release lock once, 61, 62
unobservable transition, 210
upd-acq update state when re-ac-

quiring temporarily released
locks, 77

upd-int update interrupt status
with BTA, 73, 74

upd-ints update interrupt status
with BTAs, 73, 74

upd-L semantics of lock BTA, 69
upd-locks semantics of FinFun of

lock BTAs, 69
upd-Ls semantics of lock BTAs, 69
upd-ta execute thread action, 75
upd-thr update thread pool with

thread creation BTA, 70, 71
upd-thrs update thread pool with

thread creation BTAs, 70, 71
upd-trl update single temporarily

released lock, 70
upd-TRL update FinFun of tem-

porarily released locks, 70
upd-trl update single temporarily

released lock, 70

V
Val literal value, 26, 328
val type of values, 24, 315
valid type, 29
value, 24

default, 161
value-written value written by an

event of an execution, 161, 350
value-written′

value written by an event, 350
Var local variable, 26, 328
virtual machine

aggressive, 48
defensive, 49

visible move, 210
vname type of variable and field

names, 24
Void type for Unit, 24, 315
volatile

event, 161
member, 161

volatile volatile modifier, 27, 315

W
W_ set of write events, 161, 349
Wait, 88
wait method wait

semantics, 88
signature, 83

wait set, 63
BTA semantics, 72–73
BTA syntax, 67

wait set status, 63
wait-notify

interaction with interruption,
90–91

semantics, 87–90
WaitFail, 88
waiting wait set status InWS _, 63
WaitIntrd1, 88
WaitIntrd2, 88

410

Index

WaitNtfd, 88
waits resources that a thread action

waits for, 102
(_, _) wait-set-act

type of a wait set BTA, 67
(_, _) wait-sets type of wait sets, 63
_ wait-set-status

type of a wait set status, 63
WakeUp BTA to remove thread

from wait set, 67, 73
wakeup

pick thread to be notified, 275
weak bisimulation, 224
well-formedness

bytecode, 54
class, 35
complete interelaving, 163
execution, 162
intermediate language, 238
J0 call stack, 232
map to invariant data, 80
method, 35
method overriding, 35
preservation for stage 1, 243
preservation for stage 2, 251
program, 35
single-threaded semantics, 78
start state, 96, 138
system classes, 35

well-founded delay bisimulation, 214
well-typing, 50, 54

method declaration, 53
wf0 well-formed J0 call stack, 232
wf-cdecl well-formed class declara-

tion, 35, 36, 83, 327
wf-cdecl′ well-formed class declara-

tion except for acyclicity check,
269

wf-fdecl well-formed field declara-
tion, 35, 36, 327

wf-J1-mdecl well-formed J1 method
declaration, 239

wf-J1-prog
well-formed J1 program, 239

wf-J-mdecl well-formed source code
method declaration, 36, 37, 332

wf-J-prog well-formed source code
program, 36, 37, 332

wf-jvm-prog well-formedness for
bytecode, 54

wf-mdecl well-formed method dec-
laration, 35, 36, 328

_ wf-mdecl-test type of well-formed-
ness tests for method declara-
tions, 35

wf-overriding well-formed method
overriding, 35, 36, 327

wf-prog generic well-formedness,
36, 327
code extraction, 269

wf-start
well-formed start state, 96, 139

wf-states well-formed multithreaded
states, 108

wf-syscls well-formedness of sys-
tem classes, 35, 36, 83, 327

while (_) _ while loop, 26, 328
WokenUp

BTA to process wake-up, 67, 73
word32 32-bit machine words, 14
Write write event, 84, 143
write heap write operation, 134
write event, 161

set of, 161
write to location, 161
write-seen function, 162
wset projection to wait sets, 65
WS-Notified

wait set status “notified”, 63
WS-WokenUp

wait set status “woken-up”, 63
WT1sync, 237
WTaass, 32
WTbinop, 32

411

Index

WTcall, 32
WTcond, 32
WTrtInsync, 114
WTrtSync, 114
WTsync, 93
WTthrow, 32
WTtry, 32

X
xcpt-app applicability for raised

exceptions, 51, 343
xcpt-class convert exception handler

class restriction to type, 342
xcpt-eff effect of exception handling,

51, 342
xcpt-step exception handling for the

VM, 48, 347

Y
Yield scheduler BTA to prefer other

threads, 67, 72
Yield, 87
yield method yield

semantics, 87
signature, 83

Z
zip combines lists elementwise, 15

412

The Java programming language provides safety and security guarantees such as

type safety and its security architecture. They distinguish it from other mainstream

programming languages like C and C++. In this work, we develop a machine-checked

model of concurrent Java and the Java memory model in the proof assistant Isa-

belle/HOL and investigate the impact of concurrency on these guarantees. From

the formal model, we show how to automatically obtain an executable, verified

compiler to bytecode and a validated virtual machine. Modularisation is the key to

get a tractable and usable model; we carefully partition the definitions and proofs

into modules that capture the interactions between sequential parts, concurrency,

and the memory model.

9 783866 448858

ISBN 978-3-86644-885-8

Andreas Lochbihler
A MACHINE-CHECKED, TYPE-SAFE MODEL OF JAVA CONCURRENCY

A
 M

A
C

H
IN

E-
C

H
EC

K
ED

, T
Y

PE
-S

A
FE

 M
O

D
EL

 O
F

JA
V

A
 C

O
N

C
U

R
R

EN
C

Y
A

. L
o

ch
b

ih
le

r

Andreas Lochbihler

A MACHINE-CHECKED, TYPE-SAFE MODEL
OF JAVA CONCURRENCY

Language, Virtual Machine, Memory Model,
and Verified Compiler

	Introduction
	Java concurrency
	Historical overview
	Contributions
	Isabelle/HOL
	Notation
	Locales
	Induction and coinduction

	Sequential JinjaThreads
	Source code
	Abstract syntax
	Type system
	Native methods
	Well-formedness
	Dynamic semantics
	Type safety

	The JinjaThreads virtual machine
	The bytecode language
	Semantics
	Well-typings
	Type safety

	Comparison with Jinja, Bali, and muJava

	Interleaving semantics
	Framework for interleaving semantics
	The multithreaded state
	Thread actions
	Interleaving semantics
	Infrastructure for well-formedness constraints

	Multithreading in JinjaThreads
	Native methods for synchronisation
	Source code
	Bytecode

	Deadlock and type safety
	Deadlock as a state property
	Deadlock for threads
	Progress up to deadlock
	Type safety for source code
	Type safety for bytecode

	Related work
	Formalisations of Java and Java bytecode
	Type safety proofs and deadlocks
	Large-scale programming language formalisations

	Memory models
	The heap as a module
	Abstract operations and their properties
	Adaptations to semantics and proofs
	Design considerations

	Sequential consistency
	Java memory model
	Informal explanation
	Formal definition
	The data race freedom guarantee
	Consistency
	Type safety
	Discussion

	Related work
	Memory models and data race freedom
	Abstract heap modules
	Modular formalisations

	Compiler
	Semantic preservation via bisimulation
	Semantic preservation
	Simulation properties
	Lifting simulations in the interleaving framework
	Semantic preservation for the Java memory model

	Explicit call stacks for source code
	State and semantics
	Semantic equivalence

	Register allocation
	Intermediate language J1
	Compilation stage 1
	Preservation of well-formedness
	Semantic preservation

	Code generation
	Compilation stage 2
	Preservation of well-formedness
	Semantic preservation

	Complete compiler
	Discussion
	Related work

	JinjaThreads as a Java interpreter
	Isabelle code extraction facilities
	The code generator
	The predicate compiler
	Data structures
	Locales and code extraction

	Static semantics
	Generic well-formedness
	The bytecode verifier
	Type inference for source code

	Interpreter and virtual machine
	The single-threaded semantics
	Schedulers
	Tabulation
	Efficiency of the interpreter

	Guidelines for executable formalisations
	The translator Java2Jinja
	The translation
	Validation

	Related Work

	Discussion and Future Work
	Efforts and rewards of a machine-checked formalisation
	Experience: Working with Isabelle/HOL
	From Java light to JinjaThreads
	Comparison between Java and JinjaThreads
	Future work

	Conclusion
	Producer-consumer example
	Formal definitions
	Declarations and lookup functions
	Binary operators
	Heap module implementations
	Sequential consistency
	The Java memory model

	Native methods
	Signatures
	Semantics of method clone
	Semantics of native methods
	Observability

	Generic well-formedness
	Source code
	Syntax
	Typing rules for expressions
	Definite Assignment
	Well-formedness
	Small-step semantics
	Observability

	Bytecode
	Syntax
	Applicability and effect
	The virtual machine
	Observability

	The Java memory model
	The compiler
	Program compilation
	Compilation stage 1
	Compilation stage 2
	Preprocessor

	List of Figures
	List of Tables
	Bibliography
	Index

