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State/Event Net Equivalence 

M. Voorhoeve (email: wsinmarc@win.tue.nl ) 

Eindhoven University of Technology 
POB 513, 5600MB Eindhoven, the Netherlands 

Abstract 

The paper is concerned with P /T nets with labeled and unlabeled places and 
transitions. An equivalence relation is defined for such nets, which abstracts from 
unlabeled nodes, generalizes place bisimilarity, preserves their branching structure 
and is a congruence for merge, relabeling, synchronization and refinement. The 
relation becomes a state-oriented one when all transitions are unlabeled and an event
oriented one when places are unlabeled. 

Keywords: Petri nets, Concurrency, Bisimulation, Action Refinement. 

1 Introduction 

This paper addresses the analysis and verification of concurrent systems. A concurrent 
system consists of states and events. The system has an initial state and events cause it to 
move from state to state. 

The properties of systems are often either event or state based. A typical event based 
property is liveness, the fact that no event will ever become excluded from the system's 
possible future behavior. Opposed to liveness is deadlock, the fact that no event can occur. 
A typical state based property is boundedness, the fact that the set of reachable states of 
a system is finite. 

Many system formalisms are biased towards only one kind of properties; CCS [17J and ACP 
[3J concentrate on events whereas modal logics [16J and UNITY [6J concentrate on states. It 
has been shown in [7J that either one-sided approach has the same expressiveness. However, 
a one-sided approach enforces constructions that are often not very intuitive: states have 
to be modeled by future events or future events by states. 

We therefore believe that two-sided languages and formalisms for concurrency are needed 
for modeling, validating and verifying concurrent systems. Users should be able to abstract 
from any aspect of the system that is not important to them. The one-sided approaches 
should reappear by abstracting from either the state or the event aspects. 

Petri nets, e.g. P /T (Place/Transition) nets offer a framework for concurrent systems that 
allows such a two-sided approach. A P /T net is a graph having nodes that are state-related 
(places) or event-related (transitions). So it exhibits the state-event duality mentioned 
above. Petri-net models can be constructed directly, as advocated e.g. by Jensen [15J. 
Nets can also be defined indirectly as models for other formalisms, e.g. PBC (Petri Box 
Calculus [5]). 
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Figure 1: Similar nets 
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Figure 2: A net with unlabeled nodes 

Nets that model concurrent systems have labeled nodes. These labels link the places and 
transitions in the net to states and events in the modeled system. A token in a place x 
with label p in the net corresponds to a p object in the system and the firing of a transition 
t with label a in the net corresponds to an a action in the system. This is extended to 
states (several tokens) and events (concurrent actions). 

Different nodes may possess the same label. The event or state components corresponding 
to these nodes may be indistinguishable. The nets A and B in Figure 1 have states that look 
equivalent (two p objects). Their future behavior is however not the same: A allows two a 
actions whereas B allows only one. So the systems modeled by these nets are different. 

Nets C and D in this Figure 1 model one and the same concurrent system. (In the figure, 
nodes have both labels and identifiers; the identifiers appear in a bold font.) The initial 
state of both nets has label p and allows for two different events (labeled a and b) leading to 
a q-labeled state allowing for an infinite succession of c-labeled events. The fact that C has 
two q-labeled places (y and z) and two c-labeled transitions (v and w) does not matter. 
These places and transitions cannot be distinguished by observing the visible state and 
future behavior. 

One can abstract from certain nodes in the net by leaving them unlabeled. 1 Unlabeled 
places are excluded from the visible state of the modeled system, although tokens in these 
places can manifest themselves by directly or indirectly allowing visible events. Likewise, 
the firing of unlabeled transitions is not a visible event, but its occurrence may become 
manifest if it consumes or produces manifest tokens. 

In Figure 2 we have labeled (z,t) and unlabeled (x,y,u) nodes. Tokens in yare manifest 
since they allow a visible event (with label a). The event u is manifest since it produces a 
visible token (with label pl. Tokens in x are not manifest as they do not allow any event. 

In event-oriented approaches (ACP, CCS), states are abstracted from. Thus, nets that 
model ACP or CCS terms have unlabeled places. In PBC all places except "entry" and 

1 In many formalisms for concurrent systems the "silent" label T is used instead. 
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"exit" places are unlabeled. UNITY abstracts from events; thus corresponding nets have 
unlabeled transitions. 

When verifying properties of a concurrent system (modeled as a net), one usually abstracts 
from many actions and objects. After abstrflction, the net may be reduced to an equiva
lent smaller net, for which the desired properties become easier to verify. Of course, the 
equivalence relation should conserve the properties that are being verified. 

Modeling nets in a compositional way requires the use of operators that combine and 
modify nets. Nets that are equivalent should stay so when the same operator is applied to 
both. The equivalence is then said to be a congruence for such an operator. Congruence 
properties allow verification by composition, which is often the only viable way for large 
nets. 

In this paper we define state-event (SE) bisimilarity, an equivalence relation for labeled 
P /T nets that relates nets like C and D in Figure 1. We are aware of the fact that there 
exist many such relations with their respective merits and demerits (c.f. [9], [18]). However, 
SE bisimilarity substantially differs from other equivalences. We present the requirements 
for a true state-event equivalence relation. 

i) It should respect both state and event labels, while allowing to abstract from any 
number of places and/or transitions. By abstracting from all places, it should become 
an event-oriented equivalence and by abstracting from transitions it should become 
a state-oriented one. 

ii) It should preserve the branching structure of the system, i.e. the options for contin
uation in each state. 

iii) It should preserve its concurrency structure. If two transitions are in conflict in a net, 
and hence cannot fire concurrently, a similar conflict should be present in equivalent 
nets. 

iv) It should be a congruence for operators like merge and synchronization. 

v) It should allow reductions of a net modulo the equivalence relation by simple rules. 

To our knowledge, the equivalence relations partially satisfying the first requirement are 
place bisimilarity [2] and (forward) interface equivalence [21]. Weak place bisimilarity [1] 
allows abstraction from transitions, whereas interface equivalence allows abstraction from 
places. 

Event-oriented equivalences that satisfy the second requirement are the various bisimi
larities. ST bisimilarity [12], [19] also satisfies the third and fourth requirement. Place 
bisimilarity has a very appealing reduction algorithm. For bounded nets, "interleaving" 
bisimilarities share this property, but they require the costly construction of the whole 
state space of the net. 

SE bisimilarity does not allow preservation of the causal structure of nets, as shown in 
Figure 3. In this figure, net A has two unlabeled nodes and two labeled ones. When the 
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Figure 3: SE bisimilar nets with different causal structure 

b transition fires, this has been caused either by the a transition by or the unlabeled one. 
The same causal structure is present in C, but not in B. All three nets are SE equivalent. 

Causality respecting notions, like history preserving bisimilarity [11] thus are stronger than 
SE bisimilarity in this respect. However, it is possible to retain causality by not abstracting 
from causes, i.e. by labeling the places that embody the causal relations that one wants 
to preserve. By abstracting from a cause, one must accept that causal relations may get 
lost modulo SE bisimilarity. 

In the remainder of the paper we start with a motivating example, indicating the kind 
of reductions that SE bisimilarity should allow. A short section introduces some general 
notations about relations and bags. vVe then define our equivalence relation and establish 
its properties. We conclude by discussing some possibilities of SE bisimilarity for modeling 
and verification of concurrent systems. 

2 Example 

In this section we present a toy example inspired by automated manufacturing. In the 
left-hand net in Figure 4, the processing and serving of food at a burger restaurant is 
depicted. Customers can order a meal (transition order), which is noted on two pieces of 
paper. One note (place ao for administrative order) is transferred to the cashier, where the 
meal can be paid (transition pay). The copy (place po for production order) is transferred 
to the kitchen. In the kitchen, upon receiving an order, raw meat (rm) is fried and the 
fried meat (fm) is assembled with two slices of tomato (ts) and the two halves of a bun 
(ub,lb). The output is a burger meal (place burger). Raw meat, tomatoes and buns are 
replenished (transitions repm, rept, repb); tomatoes are sliced in eight and buns are cut. 

The customer protocol of the net is obtained by abstracting from all non-customer nodes, 
retaining only the labels order ,pay, burger. The net thus relabeled can be reduced mod
ulo SE bisimilarity to the net in the upper right quarter. Note that paying and the burger 
becoming available are concurrent events, so that e.g. a parent can pay while a child is 
being served. 

The lower right quarter is the reduction w.r.t. the logistics protocol. The reduction clearly 
shows how the number of burgers manufactured depends on the number of orders and the 
amount of meat, tomatoes and bread replenished. In subsection 4.1 we establish directly 
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Figure 4: Example Net: Burger restaurant 

the equivalences of the nets and in subsection 4.5 we do so indirectly by applying reduction 
rules. 

One could re-engineer the process, for instance by allowing to fry a limited amount of meat 
in advance, i.e. without order. Re-engineering should not affect the customer and logistics 
protocol, which can be verified by reducing the re-engineered processes after abstraction 
modulo SE bisimilarity and obtaining the same reduced nets. 

3 Bags and relations 

We assume the usual notation about sets and functions, which are considered a subclass 
of the binary relations defined below. Unless mentioned otherwise, A, B . .. are sets and 
a, b . .. elements of these sets. We use the minus sign for set difference. We can write A - a 
instead of A - {a} if there is no confusion possible. 

A relation between A and B is a subset of Ax B. These relations are partially ordered 
by means of set inclusion. An element of a relation is denoted with brackets, e.g. (a, b). 
Table 1 shows some operators for relations. We have adopted the semicolon notation for 
relation composition to avoid problems with function composition. In the table, n is a 
positive natural number, R, S are arbitrary relations and A an arbitrary set. 

We write aRb instead of (a, b) E R. A relation R is a function iff V(a, b), (c,d) E R : 
a = c '* b = d. Functions are defined as sets of pairs. For a function f, (a, b) E f, a f b 
and f(a) = b mean the same thing. Note that for functions f,g, (f; g)(x) = g(f(x)), 
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Expression 
R;S 
Rn 
R+ 
R-I 

VA 
dom(R) 
ran(R) 

Meaning 
{(a, b) l:Jx: (a,x) E R 1\ (x, b) E S} 
R; ... ;R 
U{Ri Ii> O} 
{(a,b) I (b,a) E R} 
{ ( a, a) I a E A} 
{a I :Jx : (a, x) E R} 
{a l:Jx: (x,a) E R} 

Remarks 
Composition 
Relation to n-th power 
Transitive closure 
Inverse 
Diagonal 
Domain 
Range (Codomain) 

Table 1: Operators for relations 

which is an awkward consequence of tradition. A -t B denotes the set of total functions 
f with dom(J) = A and ran(J) <;;; B and A '-t B the set of partial functions. A function 
f E A -t B such that f- I E B -t A is called an injection. 

Sequences are noted between () signs. AD-sequence (D stands for difference) is a sequence 
of which any consecutive elements are different. The operator. combines two D-sequences 
to a new D-sequence: (at, ... ,an). (bI , ... ,bm ) equals (at, ... ,an,bI, ... bm ) if an oj bI 

and (aI, ... ,an-I, bI , ... bm ) otherwise. (Note that an-I oj an = bI in this case.) The set 
D(A) is the set of D-sequences with elements from A. 

We will use sequences to trace states of a dynamic system. The sequences (a, a) and (a) are 
equivalent. Instead of D-sequences and the. operator we could also have used equivalence 
classes of ordinary sequences and sequence composition, for which the equivalence relation 
is a congruence. 

Bags are functions with range IN. For the sake of convenience, we assume the existence of 
a universe U that contains all the domains of bags to be treated here. Bags then can be 
considered to be elements of U -t IN. The set B(C) of bags with carrier C <;;; U is defined 
as {a E U -t IN: \/x E (U - C): a(x) = a}. If a bag A has a finite carrier C, it has a finite 
size IAI defined as E((a,n) E A 1\ a E C: n). 
Operators for bags are defined in Table 2, where A, BE B(U); a E U; n E IN; I is an index 
set; Ai E B(U) for i E I. The E bag element operator overrides the standard set element 
operator (a bag is a set of pairs). 

As usual, we denote the inverse of :s:: by 2:. We sometimes write EQx instead of E(Q : x). 
The priority rules for addition, division and multiplication are assumed. We may omit 
the + sign when writing down bag examples. Also we may write a instead of a l when 
the ambiguity between element and singleton bag is clear from the context. So the bag 
a2 + bI + c3 may be represented as a2bc3

• 

We conclude this section with a theorem on bags and relations which is a consequence of P. 
Hall's marriage theorem ([14], page 48). We first state Hall's theorem. It gives a necessary 
and sufficient condition for a set of sets {Si liE I} to have a distinct element 7jJ( i) in each 
member set Si. 

Theorem 1 Let I be a finite index set and Si be a set for each i E I. Then there exists 
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Expression Condition Meaning Remarks 
0 {(x,D) I x E U} empty bag 
an {(x,D) I x E (U - a)} U {(a, n)} one-point bag 
aE A A(a) > ° bag element 
A+B {(x, A(x) + B(x)) I x E U} bag sum 
E(i E I: Ai) {(x, E(i E I: Ai(X))) I x E U} bag sum 
A-B {(x, max(O, A(x) - B(x))) I x E U} bag difference 
AnB {(x,min(A(x),B(x))) I x E U} bag intersection 
AUB {(x,max(A(x),B(x))) I x E U} bag union 
A~B "Ix E U : A(x) ~ B(x) bag inclusion 

Table 2: Bag operators 

an injection,p with domain I such that ,p(i) E Si iffVJ ~ I: I U{Si liE J}I ;:::: IJI. 

The necessity is trivial, since the restriction of ,p to J must have domain and range of the 
same size. We apply this theorem to bags, giving some auxiliary notions first. 

Definition 1 Let R ~ U X U be a relation. The relation R between bags is defined as 
follows. ARB iff A, B can be written in the form EiE1a;, EiE1b; respectively, where I is 
an index set, such that Vi E I : ai R bi. 

The R relation is the "natural" lifting of R to bags. Two bags are R related iff each one 
can be split up into singletons that are R-related. For example, if R = {(a, b), (a, e), (d, c)}, 
then a 2d R be2, since we can take I = {I, 2, 3}, a, = a2 = a, a3 = d, b, = b, b2 = b3 = c. On 
the other hand, (ad\ b2c) ~ R. We will apply Hall's theorem by giving a condition that 
allows one to deduce that bags are R-related. 

Corollary 1 Let R ~ U X U be a finite relation. Let p be a relation between bags satisfying 
A p B '* (Va E A: .3b E B : a R b) /I Vb E B: .3e E A : (A - e) p (B - b). Then p ~ R. 

Proof: Let A, B be bags such that A p B. We shall prove that ARB. 

Since R is finite, the carrier of A is finite. We can thus write A in the form EkEKak, for 
some index set K. Clearly, IKI = IAI, so K is finite. Write B as EiElb). Using induction 
on IKI and the conditions on p we have IKI = III- For i E I we set Si = {k E K I ak R b;}. 
Let J ~ I. Let B' = EiEJbi. By the second condition on p, there exists an A' ~ A such 
that A' p B'. So there exists an L ~ K such that A' = EkELal. Again, IJI = ILl. On 
the other hand, by the first condition on p, L ~ U{Si liE J}, so the condition for Hall's 
theorem holds. 

Hence, there exists an injection ,p as in Hall's theorem. As ,p( i) E Si we have that ,p( i) is 
equal to some k with ak Rbi. Set ai = a",(i). We have A = EiEla) so ARB. 0 
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4 Labeled PIT nets 

We presuppose a set £ of labels and an infinite set N of nodes. A labeled place-transition 
net (LPT net) is a bipartite directed graph (multiple edges allowed) with labeled and 
unlabeled nodes. For notational simplicity, we introduce the "silent" label T tj £ to make 
the labeling total. We abbreviate £ U {T} by £7' 

Definition 2 An LPT net L is a five-tuple (P, T,I, 0, e), where P, T <;; N are finite 
disjoint sets; I,O E T -t 13(P) and £ E (T U P) -t £7' representing the respective places, 
transitions, input function, output function and labeling function. 

A process is a pair (L, E) where L = (P, T, I, 0,£) is an LPT net and E E 13(P) its initial 
(entry) state. 

In the remainder of the paper, "net" will mean "LPT net". The components of a net are 
denoted by subscripting them, so e.g. PL is the set of places of net L. If the net is clear 
from the context, these subscripts may be omitted. The set PUT can be abbreviated by 
N (nodes). The nodes n with £(n) # T are called the labeled nodes, as T is not a true 
label. 

There exists a relation called isomorphism between LPT nets. An isomorphism is a bijec
tion between the nodes of two nets that preserves labeling (£) and structure (1,0). 
Nets are represented by directed graphs like in the preceding figures. Transitions are 
represented by squares and places by circles. If e.g. I(t)(p) = n > 0 for a certain transition 
t and place p, then an arc is drawn with weight n from p to t. For 0, the arcs are inverted. 
Weights one are omitted for clarity. 

4.1 SE bisimilarity 

Let L be a net. For convenience, we omit subscripts L. The concept of SE bisimilarity stems 
from the notion about the dynamic behavior of nets, where actions have a duration, as in 
[12J. Each action can be started and then committed. Between these events, the action is 
executed. The fact that actions are not atomic allows one to model concurrency without 
causality: two actions are concurrent in a given state if one can be started immediately after 
starting the other, so that both are executed simultaneously. We include the possibility 
that actions that are being executed can be revoked. Actions cannot be revoked once they 
are committed. 

A state of the net is an element of 13(N), which can be written as a sum x + y where 
x E 13(P) and y E 13(T). The x component contains the passive objects in the state and y 
represents the actions that are concurrently being executed. An action consumes certain 
objects and produces new objects, as specified by the I and 0 functions. The state can be 
altered by starting an action, which is the s relation defined below. The consumed objects 
are removed from the state and the action is added. The relation S-1 embodies the rollback 
relation. The commit relation c removes an action from the state and adds the produced 
objects. 
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Figure 5: Testing LPT nets 

The::?> relation removes a visible object or action from the state. This relation plays a 
vital part in the definition of SE bisimilarity. 

In Figure 5, we show a hypothetical LPT net testing device that illustrates some concepts 
sketched above. The device has two roWS ("object" and "action") of displayed numbers, 
with labeled buttons on top of each display. These buttons are supposed to contain all 
possible place labels for the "object" row and all possible transition labels for the "action" 
row. It also contains five larger buttons ("go", "stop", "commit", "rollback" and "undo"). 

A user of the testing device can insert a process into it. Its state will then be displayed 
in the "object" row: the number below an a-labeled button will equal the total number of 
initial tokens in the places with label a. 

After inserting a process, a session can start. A session alternates between dynamic and 
static modes. Initially, the device is in a s'tatic mode. By pressing "go", "commit" or 
"rollback", the mode becomes dynamic and state changes are possible. Each new state 
reached is displayed in both the "object" and "actions" row: the object labels and the 
labels of the pending (started bu not yet committed) actions. So in the state displayed in 
Figure 5, two a-labeled and one c-Iabeled objects are present and three b-Iabeled transitions 
are pending. By pressing "stop", the state (both objects and actions) is frozen and a static 
mode is reached. 

The difference between "go", "commit" and "rollback" is that "go" allows both the starting 
and committing of transitions, "commit" only allows the committing of pending transitions 
and "rollback" allows the revoking of pending transitions. 

The "undo" and small labeled buttons can be pressed in static mode and leave the system 
in static mode. A stack of states in static mode is kept, with the initial state at the bottom 
and the last reached state on top. Pressing "go", "commit" or "rollback" and then "stop" 
will push a new state onto the stack. Pressing "undo" will pop the top state off the stack. 
Pressing a labeled button above a display is possible when the displayed number is nonzero. 
This will cause the removal of one object with the corresponding label. This new state is 
pushed onto the stack. 

All the above reactions to pressing buttons are nondeterministic: any possible reaction 
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that meets the specifications may occur. The device has even a "fairness warranty": by 
pressing "undo" and repeating the same sequence of actions sufficiently often, all possible 
reactions that meet the specification will occur. 

Definition 3 We define the following relations between bags of nodes. 

s = {(X+l(t),X+t)ltETIIXEB(N)} 

c = {(X+t,X+O(t))ltETIIXEB(N)} 

~ = {(X+n,X)lnENIIR(n)#TIIXEB(N)} 

The relations /, p between bags of nodes are the reflexive-transitive closures of c, s-' respec
tively. (The reflexive-transitive closure of a relation R between bags of nodes is DS(N)UR+ ). 

We derivefromthefunctionR E N -; £ thefunctionl inB(N) -; (B(£)xB(£)) as follows. 
lCExEPxnx + EXETXnx) = (E(x E P II {(x) of T : C(x)nx), E(x E Til R(x) of T: R(x)nx)). 

For (f E D(B(£)), we define the relation [>" as the smallest relation satisfying A [>(i(A)) A 
and A [>pou B iff there exist C, D with C (s U c) D and A [>P C and D [>" B. We define 
the reachability relation [> as U" [>", so X [> X' iff there exists a (f such that X [>" X'. 

We illustrate the notions in the definition that we did not introduce earlier by means of the 
device in Figure 5. By pressing "go", observing the display and then hitting "stop", the user 
can observe the [>" relations. The (f corresponds to the sequence of observed states between 
the first and the last state reached. Likewise, pressing "commit" and "rollback" reflects 
the respective / and p relations. Hitting the display buttons reveals the ~ relation. If the 
displayed label belongs to a transition, this relation corresponds to aborting: terminating 
without releasing its input or output objects. 

As an example, taking C in Figure 1 and using the identifiers to describe elements of 
B(Nc), we have x't' c x'y" x't' s e, x't' ~ x, and x 2 [>«p'.O)) x 2 s xt [>«p,o» xt, so 
x 2 [>«(p2,0),(p,a)) xt. Continuing like this we obtain x 2 [>«(p2,0),(p,a),(0,a

2
)) t 2 In Figure 2, 

we have y2 [>({O,O),(O,a),(p,a),(p,O)) xz and also y2 [>«(O,O),(O,a),(O,O),(p,O)) xz. 

A place-only state is a subset of B(P). We have B(N) -dom( s-') = B(P), so the place-only 
states are those states that cannot be revoked. Every state can reach a place-only state by 
either committing or revoking its pending transitions. We give a lemma that reflects the 
"diamond property" of nets. Any state reachable by starting a number of actions and then 
committing all of them can also be reached by starting and then committing one action at 
the time. 

Lemma 1 The following inclusions hold: s;s;c<:;; s;c;s andforn > 0, sn;cn <:;; (s;c)n. 

Proof: We first prove that s; s; c <:;; s; c; s. Let A s; s; c B, so there are C E B(N) 
and t,u,v E T such that l(t) + l(u) ::; A, C = A - l(t) - l(u) + t + u, v' ::; C and 
B = C + O(v) - v. We may assume that v' ::; C - u (otherwise, swap t and u). Then 
A s (A - l(t) + t) c (A - l(t) + O(v) + t - v) = (C + l(u) + O(v) - u - v) s B. 
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Next, we define rO = 7)B(N) for any relation r and prove by induction that s; (s; c)n ~ 
(s;c)n;s for n ~ O. The case n = 0 is dear, whereas for n > 0, s; (s;c)n = s; (s;c)n-I;s;c ~ 
(s' c)n-l. s' s' C C (s' c)n-l. s' C" S - (s' c)n. S 

, '" _, '" - 1 ,. 

Again with induction, we prove the lemma: sn; cn = s; sn-I; cn-I; C ~ s; (s; c)n-I; C C 
(S; c)n-l; s; C = (8; c)n. D 

We now define state/event (SE) bisimilarity. Suppose that a user obtains a process X 
modeled as a net and another process Y inside the device in Figure 5. By experimenting 
with the device, he can try to detect whether Y can behave in a way that X cannot 
behave, e.g. by starting a transition with a label that does not occur in X. By undoing 
and repeating the same experiment sufficiently often, the user can detect whether X can 
behave in a way that Y cannot behave. If the user cannot detect any differences between 
X and Y, the two processes are SE bisimilar. We give the formal definition below. 

Note that (R-I;A) ~ (B;R- I ) amounts to stating that to every x,y,x' such that x R y 
and x A x' (so y (R- ' ; A) x', thus y (B; R- I

) x'), there must exist a y' such that y B y' and 
x' R y'. As the definition involves two nets, the relations I>u, ;}> and so on are subscripted 
wi th the proper net. 

Definition 4 An SE simulation from net L to M is a relation R E P(B(NL ) x B(NM )) 

such that for all cr E D(B(.c)), 

(trace) 
(commit) 

R-' ; 1>£ C I>M; R- I
, 

R-';iL C iM;R-I
, 

( abort) 
(rollback) 

C ;}>M; R- I , 

C PM;R- I
. 

An SE bisimulation between L, M is an SE simulation from L to M, the inverse of which is 
an SE simulation from M to L. The nets Land M are structurally SE bisimilar (notation 
L ~ M) iff there exists a total surjective SE bisimulation between Land M. The processes 
(L, E) and (M, F) are SE bisimilar (notation (L, E) ~ (M, F)) iff there exists an SE 
bisimulation R such that E R F. 

Observe that if X and Yare related by an SE bisimulation, I(X) = l(Y) (since X I>i(x) X). 
The relation R between B(Nc) and B(ND ) in Figure 1 defined by X R Y {o} £c(X) = 

£D(Y) is a total and surjective SE bisimulation, so these nets are structurally SE bisimilar. 
Likewise for the nets in Figure 3. 

We give bisimulations for our running example in Figure 4. We use conditions (predicates 
w.r.t. pairs of states) to describe the bisimulations; states are related iff they satisfy all 
the conditions. The conditions all have the form that linear combination of weights of the 
nodes of one net must be equal to another linear combination of weights of the nodes in 
the other net. 

In the diagrams the conditions are depicted by dashed lines: if short dashed lines are drawn 
between nodes, say, a, b, c of one net to a common point and this point is connected to a 
node d of the other net, this signifies that the weight of d must be equal to the sum of the 
weights of a, band c. The short lines may have multipliers attached to them. For instance 
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order 

Figure 6: Burger example: client protocol 

Figure 7: Burger example: logistics protocol 

Figure 7 contains a condition saying that twice the weight of c equals the sum of eight 
times the weight of a, eight times the weight of p and the weight of b. In the figures, the 
conditions that equally labeled nodes have the same weight are omitted. 

After relabeling, the relation between states of the left-hand and upper right-hand processes 
of Figure 4, given by the conditions in Figure 6 is an SE bisimulation. Figure 7 defines an 
SE bisimulation for the logistics protocol in the same way. The initial states are empty in 
both processes of both figures. 

Process A is not bisimilar to B, because there exists no relation satisfying the trace con
dition. From the initial (empty) state, states can be reached with label pI in both nets. 
In A, in such a state both band c labeled transitions can start, but in B only one of them 
can start. 

In Figure 8 process pairs are given that are not SE bisimilar. The processes C and D 
are not SE bisimilar because the rollback condition cannot be satisfied. In D, a state is 
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Figure 8: Non SE bisimilar process pairs 

reachable where a b-labeled transition is firing and by undoing an a event becomes possible. 
A similar state does not exist in C. 
No relations between processes E and F comply with the abort condition. In E, an a

labeled object can be removed resulting in an ab/O cycle. This is not possible in F. 

We have not found examples like the ones above for the commit condition. It seems that 
the existence of a relation between net states satisfying the three other conditions implies 
the existence of an SE bisimulation with the same domain and range. 

Theorem 2 5E bisimilarity of processes and structural 5E bisimilarity of nets are equiv
alence relations. 

Proof: The identity relation Ds(N) is an SE bisimulation for any given net, proving reflex
ivity. If Q is an SE bisimulation, then Q-l is an SE bisimulation too, proving symmetry. 
Let K, Land M be nets. Let Q, R be SE bisimulations between K and L, Land M re
spectively. Then Q; R is an SE bisimulation between K and M. The simulation properties 
are straightforward by formula manipulation, e.g.: 
(Q; R)-l; t>'K= R-1 ; (Q-l; t>'K) <;; R-1 ; t>'L; Q-l <;; (t>'M; R-1 ); Q-l = t>'M; (Q; Rtl. So 
SE bisimilarity is transitive. 0 

A net isomorphism defines a total and surjective SE bisimulation, so isomorphic nets are 
structurally SE bisimilar. 

4.2 Connection with place bisimilarity 

In this part, we prove that SE bisimilarity generalizes the idea of place bisimilarity [2], in 
which individual places have to be related to one another. In [20], this idea has been ex
tended to transitions as well. We shall use the term "node bisimilarity" for this equivalence 
relation. We give a series of definitions to show how these ideas are related. 

Definition 5 Let L be an LPT net. For any a E £T) the relation ~ <;; B(PL) x B(PL) 
is defined by X ~ Y iff there exists atE TL with R(t) = a such that I(t) ::; X and 
Y = X - I(t) + ott). (50 X s X - I(t) + t c Y). 
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A 

Figure 9: Place bisimilar nets 

Definition 6 Let Land M be LPT nets. A node bisimulation between Land M is a 
relation r S;; N L X N M such that r is an SE bisimulation. 

A strong bisimulation between Land M is a relation R S;; B(PL) X B(PM) such that for 
any a E LT , R-1

; --'!....,L S;; --'!....,M;R-1 and R; --'!....,M S;; --'!....,L;R. 

A place bisimulation between Land M is a relation r S;; PL X PM such that r is a strong 
bisimulation. 

Land M are structurally node/strongly/place bisimilar iff there exists a total and sur
jective node/strong/place bisimulation between them. Processes (L, E) and (M, F) are 
node/strongly/place bisimilar iff there exists a node/strong/place bisimulation R between 
Land M such that E R F. 

Lemma 2 Let L, M be LPT nets without T-labeled transitions. Then a node bisimulation 
between Land M is a place bisimulation between them. 

Proof: Let r be the node bisimulation and let R = r. We shall prove that R-1 ; --'!...., L S;; 
--'!...., M; R-1

• The other condition follows by symmetry. Suppose X, X' E B(PL); Y E B(PM) 
such that X R Y and X --'!...., X'. Then there exists a X" E B(NL ) such that X c> X" c> X' 
and P(X"), P(X) and P(X') have the form (~,O), ('1,a) and ((,0) respectively. Since R 
is an SE bisimulation we can find Y' Y" such that X' R Y' X" R Y" Y c> Y" c> Y" , , " 
and P(Y"), P(Y) and P(Y') have the form (~, 0), ('I, a) and ((,0) respectively. This yields 
Y --'!...., Y' since M has no r-labeled transitions. 0 

Figure 9 shows nets that are structurally place bisimilar, but not node bisimilar. In net 
A a conflict is possible between a and b actions, which has disappeared in net B. Place 
bisimilarity does not preserve the concurrency structure. 

We shall prove that an SE bisimulation R defines a relation r between the labeled nodes of 
the nets involved such that R = r when restricted to labeled nodes only. So totally labeled 
nets (no r labels) are node bisimilar, and thus place bisimilar. 

In [1], another generalization ("weak" place bisimilarity) is given that also deals with the 
special nature of unlabeled (or r-labeled) nodes. The main difference with SE bisimilarity 
is that in weak place bisimilarity individual places still have to be related to one another. 

Let L be a net with nodes N and labeled nodes N'. We define the projection 7r : B(N) -t 

B(N') by 7r(X) = ExEN'XX(x). We recollect the definition of the bar operator in Definition l. 

Lemma 3 Let L, M be nets and R an SE bisimulation between them. Then there exists a 
relation r between the labeled nodes N£, N~f of Land M respectively such that ARB =? 

7r(A) r 7r(B). 
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Proof: Let L, M, R be given. Set Q = Jr-1; R; Jr. Define r by letting arb iff a' Q b' . We 
shall show that Q satisfies the condition in Theorem 1, so Q ~ r, proving the lemma. 

The abort condition states that ::;9; R ~ R;::;9. So Jr-l;::;9; R; Jr ~ Jr-'; R; ::;9; Jr. Since 
::;9; Jr = Jr;::;9 and ::;9; Jr-1 = Jr- ' ;::;9, we conclude that ::;9; Q ~ Q;::;9. Choose A, B such 
that A Q B. Note that A and B contain labeled nodes only. Let a E A. From the abort 
condition above, by repeatedly removing al) nodes but a, we find a' :::; A, Y :::; B such that 
a' R Y. By the trace condition, since a' I>e(~') a" Y == b' for some b E B with f(a) == f(b), 
and thus arb. Again from the abort condition, there must exist an A' :::; A such that 
A' Q (B - b). By the trace condition, this implies the existence of acE A such that 
A' == A-c. So we can indeed apply Corollary 1. This completes our proof. 0 

4.3 Congruence properties 

In this part, we prove that SE bisimilarity is a congruence for several operators. We 
define the free merge, relabeling, synchronization and split (decompose) operators. Other 
operators (like action prefixing) can be treated too. SE bisimilarity is not a congruence 
for the event-oriented (ACP,CCS) choice operators; a strengthening (root condition) is 
required to achieve this. 

Merging two nets or processes is nothing but juxtaposing them, resulting in disjoint compo
nents. By synchronizing between these compbnents they can become connected. Relabeling 
a net means replacing every true label a byits function value </>( a) for a given relabeling 
function </>. By relabeling with T ("unlabeliqg"), one achieves abstraction. Synchronizing 
a net means the fusion of transitions with prescribed true labels. Splitting means decom
posing transitions with certain labels into a sequence of two transitions, giving three nodes 
with new labels. In the formal definitions below, note that different nets can always be 
made disjoint modulo isomorphism. 

Definition 7 Let L == (P, T,I, O,f) and M == (P', T',I', O',f') be nets with disjoint nodes. 
Let E E B(h);F E B(PM ). 

Free Merge The free merge LIIM of Land M is the net (PUP',TUT',Iu/',OUO',fU 
£'). The free merge (L, E) II (M, F) of the processes (L, E) and (M, F) is defined by 
(L, E)II(M, F) == (LIIM, E U F). 

Relabeling Let </> E £7 ----> £7' with </>(r) == T. The </> place (transition) relabeling L~ (L1,) 
of L is obtained by replacing every true place (transition) label x by </>(x). 

Synchronization Let X E £2 '--> £7 such that x(a, b) == x(b,a) The x-synchronization 
L~(L) of L is obtained by fusion of any two transitions t, s with (£(t),£(s)) E dom(x) 
and labeling the fusion result f(t,s) with X(f(t),£(s)). 

Decomposition Let 1j; E £ '--> £;. The 1j;-decomposition L~(L) of L is obtained by 
replacing any transition t with £(t) E dom(1j;) by two transitions i(t), o(t) connected 
via a place s(t). The input arcs oft are connected to i(t) and its output arcs to o(t). 
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L L'¢ L' "x L~ 
P P P P U rants) 
T T (T - dom(f)) U ran(f) (T - dom(i) U ran(i) U rant 0) 
I(x) I(x) I(x) if x E T I(x) if x E T 

I(y) + I(z) if x = fry, z) I(y)) if x = i(y) 
sty) if x = o(y) 

O(x) O(x) O(x)ifxET O(x)ifxET 
O(y) + O(z) if x = fry, z) O(y) if x = o(y) 

sty) if x = i(y) 
R(x) ¢(R(x)) R(x) if x E PUT R(x)ifxEPUT 

x(R(y),R(z)) if x = f(y,z) 1/Ji(€(X)) if x E ran(i) 
1/J,(R(x)) if x E rants) 
1/Jo(R(x)) if x E ran(o) 

Table 3: Definition of operators on nets 

Let <1> be a relabeling/synchronization/decomposition operator for nets. The same operator 
for processes is then defined by <1>(L, E) = (<1>(L), E). 
The formal constructions are given in Table 3. In that table, the following auxiliary defini
tions have been introduced. The function f E T2 '-t N is chosen such that (t, s) E dom(f) 
iff (R(t),R(s)) E dom(x) andran(f)nN = 0 andf(t,s) = f(t',s') {o? {t,s} = {t',s'}. 
The injections i,s,o in T '-t N are chosen such that dom(i) = dom(s) = dom(o) = {t E 
T I R(t) E dom(1/Jn and ran(i),ran(s),ran(o),P,T are mutually disjoint. The functions 
1/Ji,1/J,,1/Jo are such that 1/J(x) = (1/Ji(X),1/J,(x),1/Jo(x)) for all x E dom(1/J). The 1,0 and R 
functions are defined pointwise; their domains have been defined higher in the table. Note 
that the choice of nodes for f, i, sand 0 is irrelevant modulo isomorphism. 

In Figure 10, the net in the middle is L, the net on the right is L~, where X = {((a, b), en 
and the net on the left is L~, where 1/J = {(a, (c, T, d))}. 
The split and synchronization operators are event-oriented. State-oriented place split and 
fusion operators can be defined as well. SE bisimilarity is not a congruence w.r.t. place 
fusion; some additional conditions are needed. We now proceed to show that (structural) 
SE bisimilarity is a congruence for the defined operators. 

Theorem 3 Let <1> be a given relabeling, synchronization or split operator. Let L, L' and M 
be nets such that L ~ L'. Then LIIM ~ L'IIM and <1>(L) ~ <1>(L'). Let (L,E),(L',E') and 
(M, F) be processes such that (L, E) ~ (L', E'). Then ((L, E)II(M, F)) ~ ((L', E')II(M, F)) 
and <P(L, E) ~ <P(L', E'). 

Proof: Let R be a SE bisimulation between Land L'. Let r be the relation between the 
labeled nodes of Land L' from Lemma 3. 

The elements of B(NLIIM) can be written uniquely as a sum X + Y, where X E B(NL) 
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split 
~ 
a to c,d 

sync 
~ 

a,b to c 

Figure 10: Synchronization and split examples 

and Y E B(NM) and likewise for B(NuIIM ). We define RI E P(B(NLIIM) X B(NuIIM)) by 
X + Y RI X' + Y' iff X R X' and Y = Y'. 
If <I> is a relabeling operator, then we define R2 E P(B(N'Ii(L)) X B(N'Ii(u))) by R2 = R. 
If <I> is a synchronization operator, the elements of B(N'Ii(L)) can be written uniquely as a 
sum X + Y + Z, where X is a place bag, Y a bag of unsynchronized transitions and Z a 
bag of synchronized transitions. So X E B(h), Y E B(TL) and Z E B(Tran(f))' Note that 
Z stems from pairs of transitions labeled in L. We do likewise for <I>(L'), with f replaced 
by f'. We define R3 E P(B(N'Ii(L)) X B(N'Ii(u))) by X + Y + Z R3 X' + Y' + Z' iff X R X' 
and Y R Y' and Z s ZI, where f(x,y) s f/(Z,W) iff x r z and y r w. 

If <I> is a split operator, the elements of B(N"(L)) can be written uniquely as a sum X + 
Y + Z + W + V, where X is a bag of old places, Y of unsplit transitions, Z of start 
transitions, W of new places and V of finish transitions. So X E B(PL), Y E B(TL), 
Z E B({i(x) I x E Td), W E B({s(x) I x E Td) and V E B({o(x) I x E Td)· Note that 
Z, Wand V stem from transitions labeled in L. We do likewise for <I>(L' ). We define 
R4 E P(B(N'Ii(L)) X B(N'Ii(L'))) by X + Y + Z + W + V R4 X' + Y' + Z' + W' + V' iff 
X R X' and Y R yl, Z S Z', W I W' and V it V', where x s y iff i-I (x) r i-I(y), x t y iff 
S-I(X) r S-I(y), x u y iff O-I(X) r O-I(y). 

The relations Ri are SE bisimulations for the new nets. Its proof is tedious, but straightfor
ward. If R is total and surjective, the same holds for the Ri. If E RE' then also E Ri E' 
for all i. D 

The above theorem depends upon the abort condition, as the relation r from Lemma 3 is 
essential in the construction of the new bisimulations. 

4.4 Preservation of branching structure 

We now prove that SE bisimilarity is stronger than (interleaved) branching bisimilarity. In 
[10], branching bisimilarity is characterized as the coarsest equivalence relation that fully 
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preserves the branching structure of a process. Branching bisimilarity is event-oriented, so 
we disregard places in nets. We adopt the definition from [4], which is an improvement 
over earlier versions. The definition in [13] is closely related. These definitions (and older 
ones) have different notions of branching bisimulation, but the same notion of branching 
bisimilarity [4]. 

We recall the definitions of ~ for a E {. and -..:::.... for place bags from Definition 5 and 
add some related notions. 

Definition 8 Let L be a net, a E {.T and X, Y E B(P). 
We set X ~ Y iff there exists atE T with £(t) = a and Z E B(P) such that X s (t + Z) 
and (t+ Z) c Y. 
Let ==} be the reflexive-transitive closure (zero or more silent steps) of -..:::.... defined by 

==} = DB(p) U ( -..:::.... )+. We set J.':2. = ~ and k!., = DB(p) U ( -..:::....) (zero or one silent 
step). 

The set B(P) and the relations constitute the process space related to the net L. 

Definition 9 An 'I-simulation between nets Land M is a relation R E P(B(h) x B(PM )) 

such that for each x, x', y with x R y and x ~ x' (with a E {.T) there exist yff, y' such that 

y ==} yff ~ y' and x R yff and x' R y'. 

A branching bisimulation is an 'I-simulation the inverse of which is also an 'I-simulation. 
Processes (L, E) and (M, F) are branching bisimilar iff there exists a branching bisimula
tion R between Land M such that E R F. 

We shall prove that an SE bisimulation is a branching bisimulation. The proof is rather 
technical, so we sketch its idea. An illustration can be found in Figure 11. Supposing an SE 
bisimulation R between Land M, we let x, y, x' be place-only states such that x R y and 
x ~ x'. From Definition 8, we find a state Xt between x and x'. By the trace condition of 
SE bisimilarity, we find a state A + U of M, where A is a place bag and U a transition bag. 
From A + U we can reach A + I(U) via p and A + O(U) via ,. By the rollback and commit 
conditions of SE bisimilarity, we can deduce that x R (A + I(U)) and x' R (A + O(U)). 
We then prove that there must be one transition u in U that performs the essential step 
from a state related to x to a state related to x'. From it, we derive yff and y' satisfying 
the 'I-simulation requirements. 

Before proving the theorem, we'll have some lemma's. 

Lemma 4 Let x be a place-only state of a net L and let y be a state such that x (s U c)k y. 
Then there exists a place-only state y' and numbers I, m such that y (s; c)1 y' and y' sm y. 

Proof: We use induction w.r.t. k. If k = 0, we take y' = y and I = m = o. So let k > o. 
Then there exists a z such that x (s U c)k-l Z (s U c) y. By the induction hypothesis, there 
exists a z' and numbers I', m' such that x (s; c)I' z' and z' sm' z. If z s y, then we can take 
I = I', y' = z' and m = m' + 1. If z c y, then m' > 0, since z' is place-only. We use induc
tion on m' - 1 and the inclusion s; s; c <:;; s; c; s of Lemma 1 to prove that z' (s; c; sm'-l) y. 
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Figure 11: Proof of Theorem 4 

So there exists a y' such that z (s; c) y' sm'-l ys and we can take I = l' + 1 and m = m' -1. 0 

Another lemma gives a property of SE bisimilarity w.r.t. place-only states. For any state 
A + T of a net L, where A is a place bag and T a transition bag, we define p(A + T) = 
A + I(T) and 'i'(A + T) = A + O(T). Here I, 0 are lifted to transition bags by setting 
I(EiEJt}) = EiEJI(ti) and O(EiEJt)) = EiEJO(t;). p(X) is the state reached from X by 
revoking all transitions pending in X and 'i'(X) is the state reached from X by committing 
them. 

Lemma 5 Let L, M be nets and R an SE bisimulation between them. Then X R Y implies 
p(X) R pry) and'i'(X) R'i'(Y). 

Proof: Let X = A + T and Y = B + U where A, B are place bags and T, U transition 
bags. We have that X p p(X) = A + I(T), so by the rollback condition, there exists a 
Z such that Y p Z and P(X) R Z. Now Z p p(Z), so again there exists a W such that 
p(X) p Wand W R p(Z). Since p(X) is place-only, W = p(X). Also P(Z) = p(y). This 
proves the p part. The 'i' part is analogous, using the commit condition. 0 

Theorem 4 Let L,M be nets and E,F initial states such that (L,E) ~ (M,F). Then 
(L, E) and (M, F) are branching bisimilar. 

Proof: We may assume wlog that L, M have unlabeled places. If not, we relabel all 
places with T. The new processes are still SE bisimilar, whereas the definition of branching 
bisimilarity does not depend upon the place labels. 

Let R be an SE bisimulation between Land M such that E R F. We shall show that R 
and its inverse satisfy the conditions in Definition 9, when restricted to place-only states. 
By symmetry, we only need to prove it for R. 
Now suppose that x, x' are place-only states of Land y of M such that x R y and x ~ x'. 
We shall prove that there exist states y", y' such that x R y" and x' R y' such that y ===? y" 

and y" ~y'. 
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Since x ---=:... x', there exist a transition t with £(t) = Q such that x' = x - 1(t) + O(t) 
and x s Xt e x', where Xt = x - 1(t) + t. Since places are unlabeled, we have x l>'I x" 
where a = (0) if Q = T and (0, Q) otherwise. By the trace condition, there must exist a 
state A + U, where A is a place bag and U a transition bag, such that y l>M A + U and 
Xt R A + U. We may assume that U is the smallest bag with this property. 

By the structure of a, all transi tions in U have label T except at most one, which has label 
Q. All other transitions that are started and committed in the sequence between y and 
A + U have label T too. By Lemma 4, we can find yi's and rearrange the events between 
y and A + U such that y (s; e)l A + 1(U) = Yo s ... S Yn = A + U. From Definition 8 and 
the fact that y and A + 1(U) are place-only states we conclude that y ===} A + 1(U). Since 
U was the smallest bag, we either have that n = 0 or not Xt R Yn-l. 

If n = 0, we have that Q = T, U = 0, Xt R A, so by Lemma 5 since (!(Xt) = x, -)-(x,) = x' 
and (!(A) = -)-(A) = A, x R A and x' R A. We take y" = y' = A and observe that y ===} y" 

and y" (al, V'. 

SO let n > o. There exists a transition u E U such that Yn = Yn-l - 1( u) + u1 and £( u) = Q. 

Since Yn P Yn-l, there must exist a ~ such that Xt P ~ and ~ R Yn-l· Since Xt R Yn-l 
was false, we conclude that ~ = x. Now let y" = -)-(Yn-l) and y' = ·Y(Yn). We have that 
y" s y" - 1(u) + u1 

C V', so y"---=:"'y'. By Lemma 5, y" R -)-(x) = x and y' R -)-(Xt) = x'. 
This concludes our proof. 0 

The proof uses the trace, commit and rollback conditions. Of course the trace condition 
is essential. The nets C and D in Figure 8 show that the rollback condition is necessary, 
since these nets are not branching bisimilar. 

4.5 Reduction of LPT nets 

In this paper we do not intend to formally define rules that allow us to transform nets 
modulo SE bisimilarity. We just give a few examples of such rules. Reduction rules that 
are local are preferred. They take into consideration only a small portion of the net and 
simplify the net by diminishing the number of nodes and/or edges. 

From [8] one may deduce that it is unlikely that processes can be algorithmically reduced 
to a normal from modulo SE bisimilarity. However it seems possible to develop algorithms 
that reduce nets to a normal form modulo structural SE bisimilarity. 

In this paper we give examples of a few local reduction rules that allow us to verify our 
burger example. We treat the merge, removal and shori-circuit rules. 

The merge rule is the same as for place bisimilarity. Places and transitions having the 
same effect can be merged, like the nets C, D in Figure 1. In most cases, it can be decided 
locally whether this merge is possible. A global algorithm as in [2] exists for computing 
the "maximal" merge. The special nature of unlabeled places or transitions is not taken 
into account by this rule. 

The removal rule removes redundant T-labeled nodes. A place is redundant if adding 
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Figure 12: Short circuit / weight recalculation examples 

tokens to it will not allow new future events. A transition is redundant iff it is connected 
to redundant places. The reduction removes the node and edges leading to and from it. 
Again, redundancy is a global property that can be decided locally in most cases. An 
illustration is given by the nets in Figure 3. The place in net A is redundant, since it can 
become filled with tokens without any visible witness of the fact. Adding tokens would not 
influence the process. Hence the unlabeled transition is redundant too. Another redundant 
place occurs in net C; although it enables a visible transition, the existence of the other 
b-labeled transition makes it redundant. 

The short-circuit rule applies to r-labeled transitions without labeled pre- and post places. 
If this does not affect the branching structure of the process, the pre-and post places can 
be merged, removing the node in between. In doing so, arc weights can be recalculated. 
This is illustrated in Figure 12, which contains also a pure weight recalculation rule. In 
this figure, n, k, m are positive integers representing arc weights and d is a common divisor 
of m and n. a and b are transition labels that may be absent. Dashed arrows indicate 
possible other input and output arcs. 

We apply the above rules to our burger example. In the leftmost net all labels are different, 
so we use them to identify the nodes. If all nodes except order, pay and burger are 
abstracted from, the places to the left of fry/assemble become redundant, so we apply 
the removal rule. The transitions in between are removed too, by the same rule. This 
leaves us with a chain that can be short-circuited, giving the net in the upper right. 

For the other verification, note that ao, pay and either one of the places ub, lb are redun
dant and can be removed (the other one then ceases to be redundant!). We can use the 
rules in Figure 12 to obtain the net in the lower right. 

The fact that SE bisimilarity is a congruence for decomposition and synchronization makes 
it a congruence for action refinement of any kind. An example is given in Figure 13. On 
the left, we have a net containing the action pay. We may wish to refine this action as 
a choice between cash (pea) and credit care! (pee) payment. In case of cash payment a 
certain amount of change (rch) is received back. The figure shows how this can be achieved 
by the split, merge, synchronize and rename operators and then reducing the result. 

From the fact the SE bisimilarity is a congruence for these operators, we conclude that it 
is a congruence for this refinement of the pay action. One need not redo the verification 
of the customer protocol in Figure 4 if this refinement is applied to both specification and 
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Figure 13: An example refinement 

5 Conclusions and further work 

This paper introduces an equivalence relation for nets that supports both state-based and 
event-based modeling and verification and is a congruence for action refinement. It is thus 
possible to specify and implement a system on a high level, verify that the implementation is 
correct and then refine transitions and repeat the process on lower levels. It is not necessary 
to "flatten" the hierarchy. One does not need to adhere to the "durational" interpretation 
of events. Even when events can be considered atomic, the possibility of hierarchical 
verification can be appreciated. A hierarchical approach w.r.t. places is supported in the 
same way. 

SE bisimilarity features four bisimulation conditions, trace, abort, commit and rollback. 
We shall discuss in what extent these conditions are necessary. Removal, weakening and 
strenghtening of the conditions all seem possible. This will result in different equivalence 
relations. There is no clear reason to prefer one over the other. 
The trace condition is the most important one for preserving the branching structure of 
processes. One may argue that this condition is too restrictive. In [9], various weakenings 
are given that may be translated to the present framework. On the other hand, one may 
wish to detect divergence, the possibily of an infinite 7-loop. The [>" relation can be 
refined to include the possible divergences in the trace a. The trace condition with this 
new relation then gives rise to a divergence-sensitive SE bisimilarity. 

The abort condition is vital for the hierarchical approach based on refinement. In Figure 14, 
we see a refinement that introduces a "deadlock" within an action a. This example makes 
it plausible that if two states containing a actions are related, there must also exist related 
states with one a action less, which is essentially the abort condition. 

By the rollback condition, SE bisimilarity is a congruence for operators that revoke pending 
actions. This fact makes SE bisimilarity suitable for verifying workflow procedures. There 
exist many workflow engines using models that have a Petri net semantics. Tasks are 
modeled by transitions. In the workflow context, tasks do have a duration and may be 
revoked when started. 
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Figure 14: A deadlock refinement 

As indicated earlier, the commit condition is probably redundant. A "weaker" variant of 
SE bisimilarity without the rollback and commit conditions seems well possible and may 
be related to weak (or delay) bisimilarity [13]. 

Research on SE bisimilarity should continue. Possible issues are the removal of the commit 
condition and the definition and properties of operators that are based on place labels. 
Most important is the development of algorithms to reduce a net to some normal form 
modulo structural SE bisimilarity. Such an algorithm, with additional reduction rules for 
processes, can be built in tools, allowing for improved verification of concurrent systems. 
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