
ALGORITHMS FOR AUTOMATIC GENERATION

OF RELATIVE TIMING CONSTRAINTS

by

Yang Xu

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

The University of Utah

May 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276264131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© Yang Xu 2011

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF THESIS APPROVAL

This dissertation of Yang Xu

has been approved by the following supervisory committee members:

Kenneth S. Stevens , Chair 03/03/2011
Date Approved

Chris J. Myers , Member 03/03/2011
Date Approved

Ganesh Gopalakrishnan , Member 03/01/2011
Date Approved

Priyank Kalla , Member 03/03/2011
Date Approved

Marly Roncken , Member 02/23/2011
Date Approved

and by Gianluca Lazzi , Chair of

the Department of Electrical and Computer Engineering

and by Charles A. Wight, Dean of the Graduate School.

ABSTRACT

Asynchronous circuits exhibit impressive power and performance benefits over

its synchronous counterpart. Asynchronous system design, however, is not widely

adopted due to the fact that it lacks an equivalent support of CAD tools and requires

deep expertise in asynchronous circuit design. A relative timing (RT) based asyn-

chronous circuit design flow using traditional synchronous commercial CAD tools

was recently proposed. This design flow enables engineers who are proficient in

using synchronous design and CAD flow to more easily switch to asynchronous design

without asynchronous experience while retaining the asynchronous benefits of power

and performance. Relative timing constraints are the key step to this design flow,

and were generated manually by the designer based on his/her intuition and under-

standing of the circuit logic and structure. This process was quite time-consuming

and error-prone.

This dissertation presents an algorithm that automatically generates a set of

relative timing constraints to guarantee the correctness of a circuit with the aid of

a formal verification engine – Analyze. The algorithms have been implemented in a

tool called ARTIST (Automatic Relative Timing Identifier based on Signal Traces).

Automatic generation of relative timing constraints relies on manipulation, such as

searching and backtracking, of a trace status tableau that is built based on the counter

example signal trace returned from the formal verification engine. The underlying

mechanism of relative timing is to force signal ordering on the labeled transition

graph of the system to restrict its reachability to failure states such that the circuit

implementation conforms to the specification. Examples from a simple C-Element

to complex six-four GasP circuits are demonstrated to show how this technique is

applied to real problems.

The set of relative timing constraints generated by ARTIST is compared against

the set of hand generated constraints in terms of efficiency and quality. Over 100

four-phase handshake controller protocols have been verified through ARTIST and

Analyze. ARTSIT vastly reduces the design time as compared to hand generation

which may take days or even months to achieve a solution set of RT constraints.

The quality of ARTIST generated constraints is also shown to be as good as hand

generation.

iv

To my family.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . viii

LIST OF TABLES . xi

ACKNOWLEDGEMENTS . xii

CHAPTERS

1. INTRODUCTION . 1

1.1 Asynchronous Circuit . 2
1.1.1 Handshake Protocol . 3

1.2 Timing . 4
1.2.1 Synchronous Clock . 4
1.2.2 Delay Insensitivity . 5
1.2.3 Metric Timing . 6
1.2.4 Unit Delay . 6
1.2.5 Relative Timing . 7

1.3 Model Checking . 7
1.4 Contributions . 8
1.5 Dissertation Structure . 10

2. RELATIVE TIMING BASED DESIGN METHODOLOGY 13

2.1 Relative Timing . 13
2.2 Asynchronous Design Flow Using

Clocked CAD Tools . 15
2.2.1 Formal Verification of Asynchronous Templates 16
2.2.2 Template Characterization . 18
2.2.3 Mapping to Backend . 22
2.2.4 Postlayout Timing Validation . 22

2.3 Verifying Compositional Asynchronous Protocols 23

3. FORMAL VERIFICATION ENGINE . 33

3.1 Modeling Concurrent System Using CCS . 33
3.2 Labeled Transition System . 34
3.3 Semimodularity . 36
3.4 Logic Conformance . 36

4. AUTOMATING CONSTRAINT GENERATION 40

4.1 Past Work . 41
4.2 Formal Definitions . 43

4.2.1 Computation Interference . 43
4.2.2 Nonconformance . 45
4.2.3 Deadlock . 47

4.3 Common Feature of Hazards . 48
4.4 Generating Relative Timing Constraints . 50
4.5 Trace Status Tableau . 51

4.5.1 State . 52
4.5.2 Number of Transitions . 53
4.5.3 Enabling and Causal Relations . 54
4.5.4 Locating Failure . 55

4.6 Relative Ordering . 55
4.7 POD Backtracking . 57

5. CASE STUDY . 71

5.1 Simple C-element . 71
5.2 Six-Four GasP Circuit . 75

5.2.1 Introduction to GasP . 75
5.2.2 Converting Single Track to Double Track 76

6. RESULTS . 100

6.1 Efficiency . 100
6.2 Quality . 101

7. CONCLUSION AND FUTURE WORK . 110

7.1 Conclusion . 110
7.2 Future Work . 111

REFERENCES . 113

vii

LIST OF FIGURES

1.1 Four-phase handshaking protocol. 12

1.2 Two-phase handshaking protocol. 12

2.1 Relative timing application to clocked system. 25

2.2 Circuit diagram to demonstrate path-based relative timing constraint. . 25

2.3 Applying b+ ≺ a− to state transition graph. 26

2.4 Relative timing based asynchronous design flow. 26

2.5 Example design: a simple ASIC mathematical pipeline segment com-
puting out = x2 + 3x. 27

2.6 Top level Verilog for latch based implementation example. 28

2.7 LC circuit implementation. 28

2.8 Verilog implementation of linear controller. 29

2.9 CCS specification of linear controller. 29

2.10 Gate library to CCS specification mapping. 29

2.11 CCS implementation of linear controller. 29

2.12 Three deep pipeline of linear controller. 30

2.13 Minimized specification of linear controller. 30

2.14 An example of data check. 30

2.15 Timing report of constraint lr+ ⇒ rr+ ≺ y−. 31

3.1 State space difference between CCS and traditional model of a C-element. 39

3.2 Demonstration of labels and colabels of internal transition τ 39

3.3 Semimodular CCS specification of a 2-input NAND gate. 39

4.1 Partial state graph of GasP circuit. 60

4.2 Semi-modular state transition graph of 2-input NAND gate. 61

4.3 An example of flattened STG. 61

4.4 An illustration for deadlock. 62

4.5 Template graph for mapping failure points. 62

4.6 Top level algorithm of ARTIST. 63

4.7 Algorithm for constructing the cell of trace status tableau. 63

4.8 Algorithm for generating next state. 64

4.9 Timing graph of unrolling representation of signal transition for clocked
system. 64

4.10 Algorithm for generating transition count. 65

4.11 Algorithm for generating Enabled bit. 65

4.12 Algorithm for generating Failed bit. 65

4.13 A demonstration of failure transition. 66

4.14 An example to illustrate the strength of relative orderings. 66

4.15 Algorithm for generating failure transition. 66

4.16 Algorithm for generating current state. 66

4.17 Algorithm for generating previous state. 67

4.18 Algorithm for generating enabling transition. 67

4.19 Algorithm for generating dynamic set. 67

4.20 Algorithm for generating point-of-divergence. 67

4.21 Algorithm for generating full causal list of transitions. 68

4.22 Algorithm for matching POD. 69

5.1 C-element symbol. 86

5.2 C-element implemented with three 2-input and one 3-input NAND gates. 86

5.3 CCS implementation of C-element. 86

5.4 Partial state graph mapped from trace status tableau. 87

5.5 Tree of relative timing constraints. 87

5.6 Six-Four basic GasP circuit. 87

5.7 Repartition of 3 deep GasP pipeline. 88

5.8 Repartition of a simplified switch network composed by basic, branch
and merge GasP circuits. 89

5.9 Speed-independent model of repartitioned double track GasP basic circuit. 90

5.10 Delay-insensitive model of repartitioned double track GasP basic circuit. 90

5.11 Specification of double track GasP circuit. 90

5.12 Speed-independent implementation of double track GasP circuit. 91

5.13 GasP speed-independent verification RT0. 91

5.14 GasP speed-independent verification RT1. 92

5.15 GasP speed-independent verification RT2. 92

5.16 GasP speed-independent verification RT3. 93

5.17 GasP speed-independent verification RT4. 93

5.18 GasP speed-independent verification RT5. 94

ix

5.19 GasP speed-independent verification RT6. 94

5.20 GasP speed-independent verification RT7. 95

5.21 GasP speed-independent verification RT8. 95

5.22 GasP speed-independent verification RT9. 96

6.1 CCS definition of LCmax. 105

6.2 Synchronization between L and R channels. 105

6.3 State graph of LCmax. 106

6.4 State transition graph of C-element. 107

x

LIST OF TABLES

2.1 CCS specification functional descriptions. 32

2.2 RT constraints for linear controller. 32

2.3 Set data check constraints of linear controller. 32

2.4 Cycle cutting constraints. 32

4.1 An example of trace status table. 70

5.1 Truth table of C-element. 97

5.2 Signal transition mapping of CCS, logic level and unrolling count rep-
resentations. 97

5.3 An example tableau for an error trace in verification of C-element. 97

5.4 Full causal paths of relative ordering events. 97

5.5 Complete solution sets of RT constraints. 98

5.6 Speed-independent set of RT constraints for 6-4 basic GasP circuit. . . . 99

6.1 Four-phase protocol verification results . 108

6.2 Unoptimized RT constraints and corresponding traces versus hand-generated
constraints for C-Element. 109

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Ken Stevens who brought me into the

asynchronous world. With his trust, I can continue his favorite research topic on

relative timing. Relative timing is the key hub of all the other research in his group.

I feel so honored that my work can be applied to others’ research. I appreciate all he

has done for me, either for work or my family. During this research, I was experiencing

the most difficult period I have ever had in my life due to a family emergency. Without

his encouragement and care, I could not have made it. This work could not have been

done without his guidance, help and patience.

I also would like to thank Marly Roncken, who was the industrial liaison from Intel

on SRC project and now is the director of Asynchronous Research Center (ARC) of

Portland State University, for her support and help on this relative timing work and

instructing me regarding GasP circuit verification. Thank you to Anping He and

Professor Xiaoyu Song from Portland State University for the great idea and help in

the collaboration on GasP circuit verification.

Next I would like to thank Dr. Chris Myers, Ganesh Gopalakrishnan and Priyank

Kalla for their suggestions on related work, and background references. I also would

like to thanks Vikas Vij who provided his preliminary results for cycle cutting algo-

rithms to me. Thanks for the funding by grant 1424.001 from Semiconductor Research

Corporation (SRC).

Finally I would like to thank my parents, Liangui and Suhua, who have been

standing behind me and encouraging me, providing as much as they can do, and

especially taking care of my son during the period I am in difficulties. Thanks to my

wife, Jingwen, for bringing our son Oscar into this colorful world.

CHAPTER 1

INTRODUCTION

The modern integrated circuit (IC) industry continues to develop extraordinarily

fast as predicated by Moore’s Law. The number of transistors that can be placed on

an integrated circuit doubles approximately every two years. Billions of transistors

can be integrated into a single die. The transistors are no longer expensive, and are

now almost free.

This miracle depends largely on the use of flip-flops and a clocked synchronous

design and verification methodology. This methodology employs a single clock signal

as a global timing reference for all the components. Further, the industry standard

clocked CAD tools for automating design and verification greatly reduce the time to

market. Most engineers focus on register transfer level (RTL) design and verification

and are released from complex back-end jobs which are performed mainly by EDA

tools.

Design reuse allows heterogeneous IP cores to be integrated on a single system

on chip (SoC) to reduce design time. More recently multicore processors are suc-

cessfully designed and fabricated to increase the capability of parallel computing by

multithread programming.

However, there are many problems with today’s synchronous circuit design.

• Power consumption. The design consumes more power as the clock periodi-

cally switches. Even fine-grained clock gating may not be enough, especially

for handheld devices. Modern mobile handset chip manufacturers like Apple,

Qualcomm and Broadcom seek low power solutions and finally turn to use low

power ARM based architectures.

• Performance. The performance of SoC and multicore processors rely on how

efficiently the multiple cores are designed and communicate. The inefficient

2

design of a switch fabric may degrade the performance of the chip. As the

price of transistors goes down, wires become more expensive since they occupy

more space, consume more power, and become a major source of delay. This

motivates more research on interconnect fabrics and network-on-chip [1].

This dissertation proposes a design methodology targeting 3x improvement on

performance and power with asynchronous design over its synchronous counterpart.

Timing assumptions of a design usually result in simpler low power and high speed

circuits. In this research, relative timing is the key timing methodology employed in

an asynchronous design flow using traditional clocked CAD tools not only to guarantee

the correctness of the circuits but to drive timing driven synthesis, place and route and

postlayout timing validation. Hence generating a correct set of relative timing con-

straints becomes the key step of this design methodology. This dissertation formally

describes the algorithm for automatic generation of relative timing constraints as a

replacement of traditional hand generation, which may take an experienced designer

days or even months to figure out a complete set of constraints. This algorithm is

implemented in a tool called ARTIST (Automatic Relative Timing Identifier based

on Signal Traces) and applied to a bunch of asynchronous circuits. The results show

that ARTIST can automatically generate a complete set of relative timing constraints

in an extremely shorter time while retaining the same quality of constraints compared

to traditional hand generation.

1.1 Asynchronous Circuit

Asynchronous circuits are not a new technology, but a resurgence to the semi-

conductor industry. Asynchronous circuit design has a long history. The research in

asynchronous design can be traced back to the mid 1950s [2, 3]. Recently, industry

and academia show increased interest in asynchronous design due to power and

performance issues as design is getting more complex.

Asynchronous design has the following advantages over synchronous design [4]:

• Low power consumption. Asynchronous design consumes less power than syn-

chronous counterpart because of zero standby power consumption [5, 6].

3

• High performance. Synchronous design operates at a clock frequency that is

determined by the worst-case delay of combinational logic between flip-flops.

Asynchronous design, which employs handshaking, operates at actual delay. It

is reactive and does not need to wait for a clock edge to proceed.

• No clock distribution and clock skew problems. Asynchronous design employs

handshaking protocol for communication instead of the global clock signal.

However, there are drawbacks to asynchronous circuit design that vastly restrict

its wide adoption. Unlike synchronous design, asynchronous design lacks uniform

CAD tools. Some companies that have succeed in asynchronous circuit design have

their own design flow and tools as proprietary properties and not open to the public.

Without the aid of tools, asynchronous design still involves much manual work, such

as custom layout. This greatly increases the difficulties in asynchronous design.

Asynchronous design also requires designers to have experience and expertise in

asynchronous circuit design.

The International Technology Roadmap for Semiconductors predicted that 20%

of designs will be driven by handshake clocking in 2012, rising to 40% by 2020 [7].

To achieve this target, it is imperative to have some asynchronous design flow that

can implement handshake clocking using available clocked CAD tools while requiring

little experience of asynchronous design.

1.1.1 Handshake Protocol

Asynchronous design employs handshake protocols instead of using a global ref-

erence clock. Communication between asynchronous components is implemented by

sending request and receiving acknowledgment signals.

Handshaking protocols can be classified as two-phase and four-phase protocols

with respect to a handshake cycle. The four-phase handshaking protocol is imple-

mented by initiating data and asserting request signal. The receiver absorbs the data

and asserts acknowledge. The sender de-asserts request upon receiving acknowledge.

Finally the receiver de-asserts acknowledge. Another handshake may start if the

sender detects that acknowledge is de-asserted. Figure 1.1 shows the transition

4

relationships of request and acknowledge signals. The handshaking request and ac-

knowledge signals return to zero after one handshaking cycle is finished. The 4-phase

handshake protocol is also called return-to-zero (RTZ) signaling or level signaling.

The 2-phase handshake protocol shown in Figure 1.2 uses transition signaling instead.

The handshaking signals do not return to their initial value after one handshaking

cycle is finished. So 2-phase handshake protocol is also called non-return-to-zero

(NRZ) signaling or transition signaling.

The 4-phase return-to-zero handshake protocol takes extra transitions to finish a

handshake cycle but results in simpler logic implementation. The simple 4-phase cir-

cuits can be faster and lower power than 2-phase circuits due to their simplicity. The

2-phase non-return-to-zero handshake protocol theoretically leads to faster designs,

but the resulting circuits are more complex.

The handshaking protocol can be implemented completely independent of the

data path. This is called a bundled data protocol. The request and acknowledge

signals are one bit signals. On the other hand, the request signal can be encoded into

data signals. One simple example is the dual rail protocol where the request and one

data bit are encoded with two signal wires.

1.2 Timing

Timing is an inherent quality and correctness aspect of circuit and protocol design,

whether the designs are clocked or asynchronous. A circuit will not work correctly

without functionality and timing correctness. Modern digital circuit design relies

heavily on the timing methodology it employs. The following sections describes the

synchronous timing and four most often used asynchronous timing methodologies in

both industry and academia.

1.2.1 Synchronous Clock

Modern digital IC design favors a synchronous design methodology. In syn-

chronous design, all the components are synchronized by a global clock. It is normally

implemented by a employing banks of flip-flops with combinational logic between

5

them. Flip-flops are edge sensitive storage elements and on every positive or negative

edge of clock the flip-flop the input data is sampled.

The clock frequency is determined by the worst delay of the combinational logic

between flip-flops. The setup and hold time must be satisfied in order to ensure that

the data is correctly latched.

Global clock synchronization and industry standard CAD tools allow engineers

to design digital circuits at the behavior level. However, as the design becomes

more complex, power, performance and clock distribution become a big issue for

synchronous design.

1.2.2 Delay Insensitivity

Delay-insensitive (DI) circuits operate correctly independent of the delay of logic

gates and wires. The delay insensitive methodology is the most robust of all asyn-

chronous circuit timing methodologies. However, due to limitations, it is not practical

to create delay insensitive systems since it results in larger, slower and power hungry

circuits than similar timed circuits [9, 10].

As a practical alternative, quasi-delay-insensitive (QDI) circuits are invariant to

the delays of gates and wires, with the exception that certain wires are required to be

isochronic forks with identical delays. Of all useful asynchronous design styles, QDI

circuits make the fewest timing assumptions, as only the isochronic fork is assumed.

There are many successful QDI designs including TITAC from Tokyo Institute of

technology [11, 12], MiniMIPS from Caltech [13] and SPA from the University of

Manchester [14] among others.

Delay insensitive circuits integrate asynchronous handshaking control logic into

data path. All handshaking is implemented with data communication, which is

different from a bundled data protocol where the control logic path and data path

are separate. A change in sampled data may indicate a start of handshaking. This is

implemented by data encoding, normally in the format of a 1-of-n code [15]. Dual-rail

encoding is the simplest encoding for delay-insensitive design. It encodes the request

signal with the data and uses two wires per data bit for validity or empty.

6

1.2.3 Metric Timing

Although quasi-delay-insensitive design is tolerant to environmental variation, its

conservative timing results in high complexity circuits. Another approach utilizes

metric timing constraints to generate timed asynchronous circuits, which result in

less circuit complexity.

This approach unfolds the cyclic graph of the specification into an infinite acyclic

graph and uses metric timing assumptions to remove the redundancy in the specifi-

cation and thus results in a finite subgraph for a simpler implementation [16, 17].

The metric timing specifies upper and lower bounds on the delay between signal

events becoming enabled and firing [18, 19]. It requires the designer to estimate the

min-max delay in a reasonable range such that it meets the accurate delay extracted

from postlayout parameters. Further, the impact that a change to the delay of a single

component has on the correct behavior of a system as a whole cannot be known by an

engineer, making design changes (ECO: Engineering Change Orders) more difficult

to perform without re-running the verification.

1.2.4 Unit Delay

The timing of an asynchronous circuits can be analyzed by counting the number

of gate delays in a path based on the assumption that all logic gates have the same

uniform delay. This is a very straightforward and intuitive way to design and analyze

aggressive self-resetting asynchronous circuits such as GasP family circuits [20]. After

the circuit is logically verified, the transistors must be properly sized to yield unit

delays to meet the assumptions made for correct behavior of the circuit. The method

of calculating transistor widths with the aid of logical effort [21] analysis to generate

unit delay is presented in [22]. The unit delay model facilitates prelayout timing

validation, but the procedure of characterizing transistor sizes is relatively more

complex and requires back-end experience and a lot of manual work. However sizing

transistor to yield unit delay over-constrains the circuits and degrades their potential

performance and power.

7

1.2.5 Relative Timing

Relative timing is a timing methodology that constrains the firing order of two

events based on logic path delays. It fits perfectly into a state based formal verification

methodology such that by enforcing relative timing constraints, failure states are made

unreachable. Unlike other methods, necessary timing assumptions become explicit

when using relative timing. Designers can visualize, reason about, and manipulate

path based timing constraints. Enhanced path based relative timing constraints

restrict the overall delay of two paths from a common causal point of divergence

(POD) to a common point of convergence (POC) to have a specified order of arrival.

One of the advantages of relative timing over other timing methodologies is that

path based relative timing constraints can be supported by conventional clocked CAD

tools for timing driven synthesis, place and route and pre and postlayout timing

validation. A relative timing based design methodology enables synchronous design

engineers to switch to asynchronous circuit design using their familiar tools without

having too much knowledge of asynchronous circuits.

1.3 Model Checking

Simulation based validation methodologies have been the main stream for vali-

dating complex CMOS integrated circuits. However, as design is getting more and

more complicated, simulation based validation is not enough to cover all possible

scenarios. One cannot enumerate all the possible cases necessary for verification, and

some corner cases remain unevaluated. Such a situation is not acceptable, especially

for safety critical products. A design must be exhaustively verified. An example

of such a failure is the Ariane 5 rocket, which exploded less than 40 seconds after

launching.

Model checking is a technique for verifying finite state concurrent systems [23].

Model checking performs an exhaustive reachability analysis of the state space to find

any violations of specified properties. Whenever a property is not satisfied, a counter

example is returned.

To perform model checking, a design must be modeled in a formal representation

which is accepted by the model checker. The specification is a list of properties to be

8

checked against the design. The process of modeling checking is automatic. When

model checking fails, an error trace is returned. This helps the designer to locate and

debug the errors.

The properties are normally specified using temporal logics. CTL* formulas

describe the properties of computation trees and are composed of path quantifiers

and temporal operators. The path quantifiers can be A and E only where A means

for all computation paths and E means for some computation path. The temporal

operators can be X (next time), F (finally), G (globally), U (until) and R (release).

Temporal logics are often classified into two sublogics, one of which is linear time

logic that describes the properties along a single computation path and the other is

branching time logic that describes the properties over all the paths that are possible

from the current state. An example property specifying the mutual exclusion of two

events can be described by temporal logic G(¬e1 ∨ ¬e2).

The main challenge of model checking is state explosion, especially for verifying

concurrent systems with lots of concurrency. Symbolic representations for state

transition graphs helps mitigate the state explosion problem. Many symbolic rep-

resentations are based on ordered binary decision diagrams (OBDD) [24]. A BDD

represents a boolean formula where each node is a boolean variable and its two

outcoming edges denotes if the boolean variable evaluates to true or false. It consists

of two terminal nodes called the 0-terminal and 1-terminal. A path from the root to

the 1-terminal means that the boolean function is evaluated to be true. The basic

idea is from Shannon expansion. The size of a BDD is determined by the ordering

chosen for the variables. Finding an optimal ordering of variables is normally not

feasible. Hence heuristics are employed for finding a relatively good variable ordering

[25, 26]. How to apply formal verification to real world hardware design problems by

using PSL [27] or SystemVerilog [28] is described in [29].

1.4 Contributions

The key contributions of this research is automatic formal generation of a complete

set of path based relative timing constraints for correctness of circuits and enables

clocked CAD flow for asynchronous circuit design.

9

The algorithm for automatic generation of relative timing constraints vastly re-

duces design time, which may take days or even months for an experienced asyn-

chronous designer to figure out a complete set of relative timing constraints by hand

based on the designer’s intuition and expertise on circuit structure and knowledge on

asynchronous design. Our one push of button tool ARTIST simply returns a solution

set of relative timing constraints and does not require the user to know anything

specific to the design. This research may bring up large adoption of asynchronous

design by employing clocked CAD tools without expertise in asynchronous circuit

knowledge.

As the key step of the asynchronous design flow using conventional clocked CAD

tools, the efficiency of constraint generation directly affects the design time of this

flow. Without a complete set of relative timing constraints all the subsequent steps

by using clocked CAD tools such as timing driven synthesis, place and route and

postlayout timing validation cannot be performed.

This work also drives the correct cycle cutting. Inefficient cycle cutting where

the relative timing constraints related critical timing paths may be broken results in

unexpected power hungry circuits. Given a complete set of relative timing constraints

generated from this research work, the synthesis and place and route engines are

dictated to remain those relative timing constrained paths intact.

The research work described in this dissertation also has the ability to allow user to

specify the desired common timing reference to facilitate postlayout timing validation.

Postlayout timing validation is an important step in both clocked and asynchronous

design which checks if constrained timing holds with extracted parasitic parameters.

To perform timing validation, a virtual clock pin must be specified as a common

causal reference to evaluate the delays of two timing paths. This virtual clock pin

might be mapped to a primary input, invisible internal or primary output signal.

This dissertation supports flexible common causal points since it returns all possible

point of divergences. Normally the request signal as a primary input signal is mapped

into this virtual clock pin. However in case of repartition the circuit hierarchy to

facilitate verification such as verifying GasP, an internal signal may be required to

10

work as the virtual clock signal. User specified point of divergence allows the user to

specify desired signal as the common timing reference.

This work also supports unrolling count representation of signal transition where

the fall or rise behavior of a transition is modeled using transition counts instead

of logic levels. This representation is used for multicycle constraints and especially

useful when specifying any relative timing constraint related to clock.

1.5 Dissertation Structure

The dissertation is structured as follows.

Chapter 2 introduces a relative timing based asynchronous design and verification

methodology. The relative timing concept is formally defined in Section 2.1. This

design methodology allows designers to use traditional clocked CAD tools to design

asynchronous circuits. It is implemented by characterizing asynchronous control

templates and then mapping the relative timing constraints into sdc constraints

such that they are compatible with clocked tools for timing driven synthesis, place

and route and pre and postlayout timing validation. A scalable verification method

for verifying large compositional asynchronous handshaking protocol using industry

symbolic model checking engines is described in Section 2.3.

Chapter 3 describes the formal verification engine employed in this asynchronous

design methodology. The formal models for model checking uses the process language

Calculus of Communicating System (CCS). The fundamental structure this formal

verification relies on and how the formal verification detects internal glitches and

check conformance between the implementation and specification are described.

Chapter 4 presents the algorithms for automatic generation of relative timing

constraints which is the key work of this thesis. The past work and its weaknesses

are described. All types of errors returned from the formal verification engine are

formally defined and analyzed. Then the data structure employed for generating

relative timing constraints and the key algorithms are described.

Chapter 5 shows a simple C-Element example to demonstrate how the algorithms

work on a real example. Another example, 6-4 GasP circuit, demonstrates how

11

the single track signaling design can be converted to a formal verification engine

compatible double track signaling.

Chapter 6 compares the results generated by ARTIST against hand generation in

terms of efficiency and quality.

Chapter 7 concludes this dissertation work and addresses possible future work.

12

ack

data

req

Figure 1.1. Four-phase handshaking protocol.

ack

data

req

Figure 1.2. Two-phase handshaking protocol.

CHAPTER 2

RELATIVE TIMING BASED DESIGN

METHODOLOGY

2.1 Relative Timing

Relative timing is an innovative timing methodology that enables aggressive asyn-

chronous circuit design and verification. It constrains the design by enforcing the

firing ordering of two events such that timing failures are made unreachable. Relative

timing is applicable to clocked design as well. The setup time constraint of the flip-flop

that the data have to be stable at least setup time before the clock edge is triggered

is a relative timing constraint as shown in Figure 2.1.

Definition 2.1 A Relative Timing Constraint specifies a required signal ordering that

results from system timing that is imposed between two events that share a common

timing reference.

The behavior of a logic component generally depends on the combinational pattern

of input and output values. The state space may be exponential with respect to the

number of inputs and outputs. However, in the real operating scenario not all possible

sequences will happen. Thus the environment always restricts the behavior of logic

components to a subset of the whole. If one can figure out relative timing constraints

on inputs that models the environment, the resulting circuit after synthesis can be

much simpler than the one that implements the complete set of behaviors [30, 31].

For asynchronous handshake protocol design, relative timing assumptions result in

concurrency reduction since the assumption on relative ordering of inputs and outputs

makes the protocol more sequential.

14

Relative timing can be used as a timing constraint for verification. A set of relative

timing constraints can make a circuit implementation hazard-free and behave as the

specification requires.

When relative timing concept was first proposed, the format of a relative timing

consisted only of an ordering of two events such as a ≺ b, which specifies event

a occurs before event b. As a timing assumption that specifies the firing order of

primary inputs, this format is enough to represent the environment behavior. However

specifying the relative ordering of two events for verification is not enough because

this format cannot be supported by timing analysis engines for postlayout timing

validation. The enhanced format of relative timing adds a point-of-divergence (POD)

onto the relative ordering to form path-based timing constraints that are able to be

validated in postlayout static timing analysis engines. A path-based relative timing

constraint is represented as POD �→ POC0 ≺ POC1. Figure 2.2 interprets the

meaning of this representation - the delay of the path from POD to POC0 is less than

the delay of the path from POD to POC1, i.e., �POD−POC0 < �POD−POC1 . Block

POD and POC represents logic gates and block A and B represents either logic gates

or just wires.

Relative timing is more straightforward, especially when the system is modeled as

a state transition graph. Given a particular state that has concurrent transitions (have

two or more egress transitions whereas a state that has only one egress transition is

deterministically sequential), a relative timing constraint enforces a design to always

choose the path with a smaller delay. The subgraph directed from the longer path will

be never reachable. Figure 2.3 illustrates how the relative timing constraint impacts

the state transition graph. If the relative ordering b+ ≺ a− is applied to the partial

graph in Figure 2.3 and then the subgraph in dashed line is no longer reachable. Note

that the relative timing constraint is not truncating a graph but makes the partial

graph unreachable.

15

2.2 Asynchronous Design Flow Using

Clocked CAD Tools

Asynchronous circuits, albeit impressive in power and performance benefits com-

pared to clocked circuits, is not widely adopted mainly because of the lack of support-

ing CAD tools and requiring deep expertise in asynchronous circuit design knowledge.

Rather than compete in the CAD domain and develop distinctly independent de-

sign flows, a relative timing based design methodology is proposed that exploits tradi-

tional commercial CAD tools to facilitate asynchronous circuit design and verification

[32]. The design flow is shown in Figure 2.4. This design and verification methodology

allows the designer to apply commercial clocked CAD as much as possible. This

approach consists of two major procedures: asynchronous template characterization

and traditional system design that employs precharacterized templates.

Once the asynchronous templates are fully characterized, synchronous designers

can use them as library cells to build a system by following clocked design flow.

This enables designers who have been working on synchronous design to switch

to asynchronous circuit design smoothly with little expertise in the asynchronous

domain.

This design flow applies to all kinds of asynchronous circuit designs, including

desynchronization. Desynchronization is a process of converting synchronous circuit

into an asynchronous one [33, 34, 35]. To desynchronize a synchronous design, its

clock tree is replaced with handshake controllers, but the combinational logic between

registers in the data path remains untouched. This replacement perfectly fits the

bundled data protocol, which separates the control path and data path.

A simple example of desynchronization shown in Figure 2.5 will be used to demon-

strate the asynchronous design flow in detail. It is a pipelined design that implements

the function of x2 + 3x where a 16-bit wide data path forks x out to upper and lower

data paths performing multiplications concurrently and then joining the paths to

perform an addition operation. The control path is composed of linear controllers

(LC) and fork join (F/J) modules. This linear controller implements a four-cycle

return-to-zero handshake protocol. This is a timed protocol and follows the burst

mode assumption that assumes that the circuit stabilizes before any new inputs can

16

be accepted [36, 37]. The data path is composed of registers (R), either flip-flops or

latches. The oval boxes represent arithmetic operations. The top level Verilog code

for a latch based implementation is shown in Figure 2.6.

2.2.1 Formal Verification of Asynchronous Templates

Formal verification and relative timing constraint generation of asynchronous

templates are the key steps of the design flow. Templates refer to the local asyn-

chronous controllers that can be instantiated one or multiple times for building a

system. Formal verification is the process of creating a complete set of relative timing

constraints that guarantee the correctness of a template.

The asynchronous templates in the example are the linear controller and the

fork-join modules. The circuit diagram of the linear controller is shown in Figure 2.7

and its Verilog representation is shown in Figure 2.8.

The template is formally verified in an untimed manner that assumes unbounded

delay on both gates and wires by a bisimulation relation based formal verification

engine. Thus the circuit implementation and specification are required to be modeled

with formal representations which can be recognized by the formal verification engine.

The Calculus of Communicating System (CCS) [38] is selected as the process language

for the formal model because it formally supports verification of nondeterminism such

as arbiters and synchronizers by its distinct support for invisible internal τ transitions.

The CCS specification of the linear controller is shown in Figure 2.9. A Verilog netlist

can be converted into a formal CCS model automatically by a tool called verilog2ccs

which is the V2CCS block shown in Figure 2.4. This tool takes three input files and

outputs the CCS implementation of the circuit.

• A structural Verilog file that consists of primitive gates as the implementation

of the template. See Figure 2.8.

• A mapping file of Verilog gates to formal semi-modular description of each gate

in CCS. See Figure 2.10.

• A functional description of the gates in the target technology. See Table 2.1.

17

The converted CCS implementation of the linear controller is shown in Figure 2.11.

The tool also has the ability to calculate the initial semi-modular state of each gate,

i.e., the initial value of inputs and outputs of each gate. For example, A121O2I0bc01

defines initial values of lr, ra , y , la and la to be 0, 1, 1, 0 and 1 respectively.

Untimed model checking is then performed between the circuit implementation

and specification, which is the RT-FV block shown in Figure 2.4. The first run of

formal verification performs speed-independent verification that assumes unbounded

delay on gates and zero delay on wires. This generally results in numerous violations,

many of which are due to technology mapping. These violations may cause internal

glitches that may finally propagates to the primary outputs and result in failure of

the design. Relative timing constraints must be generated to remove these violations

by restricting the reachability of failure states with circuit timing. By applying the

relative timing constraints to the implementation recursively, the design conforms

to the specification. The set of relative timing constraints created during speed-

independent verification produces the key set of timing constraints for timing driven

sizing and place and route. The set of relative timing constraints for the speed-

independent run on this linear controller is shown in the SI rows of Table 2.2.

The second run of formal verification is verification of the timing properties of

the template protocol. Some protocols are timed protocols that may not accept all

signal behaviors of its environment. Protocol verification is performed to verify that

the interaction between local templates is correctly performed. For a linear pipeline,

three of the same templates can be composed in series as shown in Figure 2.12. For

other generic asynchronous systems, protocol verification at the system level requires

the templates to be composed as specified. Instead of using the plain specification

of templates, protocol verification requires minimized specification which can be

generated from Concurrency Work Bench (CWB) [39] with the min command. The

minimized specification of the linear controller is shown in Figure 2.13. The set

of relative timing constraints generated for the second run are key constraints for

timing driven sizing and place and route as well which is shown in the Protocol row

of Table 2.2.

18

A third verification run is performed to generate any timing constraints between

the handshake clocking and the datapath logic. Like clocked design, handshake

clocking follows the same setup constraint – data has to be stable at least some

setup time before the relevant handshaking signal is triggered, e.g., lr↑ �→ din ≺ la↑.
When a design that employs the bundled data protocol is synthesized, such constraints

create a matched delay between the datapath and control logic. This is guaranteed

by constraining that the minimum relative delay of the control path to be larger than

the maximum delay of data path. This set of relative timing constraints is key for

timing driven synthesis and place and route of creating matched delay in the pipeline.

The final verification run performs delay insensitive verification, which not only

assumes unbounded delay on gates but also wires. The wire fork is not isochronic

any more. It is modeled with an unbounded delay in an arbitrary order on the two

branching wires. Delay insensitive verification is necessary for some asynchronous

circuits that makes use of wire delays to achieve extremely aggressive timing to

maximize throughput, such as GasP family circuits. The set of relative timing

constraints for delay-insensitive verification is shown in the DI row of Figure 2.2.

A template is fully characterized with a complete set of relative timing constraints

generated by the above four rounds of verification runs. The process of generating

relative timing constraints can be manually done based on designer’s strong knowledge

of asynchronous circuits and his/her understanding of the circuit structure of the

design under test. It is quite time-consuming and prone to errors. Generating a

complete set of relative timing constraints for a design may take an experienced

designer hours or even days. The objective of this dissertation is to present a method

that can automatically generate relative timing constraints that are a key part of this

design flow.

2.2.2 Template Characterization

After a complete set of relative timing constraints is derived, the design enters RT

flow phase where template characterization and mapping relative timing constraints

to backend are performed.

19

The set of relative timing constraints for template characterization is required

to be mapped into compatible sdc constraints such that they can be supported by

conventional CAD tools for timing driven synthesis, place and route and postlayout

timing validation.

Synopsys tools support setup and hold constraint checking between two data sig-

nals where neither of them is a clock signal. This is implemented with set data check

command. But its fundamental principle is similar to clock based setup and hold

checks which assume one of the data signals is considered as a clock pin, called the

related pin, while the other is regarded as traditional data, called the constrained pin.

A data check example is shown in Figure 2.14. The related pin D2 is regarded as a

reference clock pin and the constrained data is checked for setup and hold violation

according to the reference. The set data check command takes a value that specifies

a setup or hold time for which D1 must be stable before or after D2 goes high. The

options of command set data check is shown below.

command set data check
race margin
-clock
-from | -rise from | -fall from related pin
-through traverse pin
-to | -rise to | -fall to constrained pin
-setup | -hold

Since CAD is designed for clocked design, a -clock argument is always an option

of this command as a common reference point. The -clock option in set data check

specifies the starting point to related and constrained pins such that the delays of the

two paths are qualified for comparison. Asynchronous design has no clock signal and

thus a virtual clock signal must be specified. The point-of-divergence of path based

relative timing constraints exactly fits the -clock option. In asynchronous design, this

virtual clock pin is normally mapped to a request signal. The related and constrained

timing paths can be specified using the -from and -to options. The shorter path of

a relative timing constraint uses the -from option, and longer path uses -to option

followed by the specific pin names. More concretely, the transition behaviors of

the two racing events of relative timing constraints can be modeled by -rise from,

20

-fall from, -rise to and -fall to options. Generally there is more than one path available

for evaluation, and the CAD tool may not report the exact one wanted. In such a

case the -through option is used to specify the pin points the desired path passes

through. The options -setup and -hold are mutually exclusive. Only one of them will

appear in the single sdc constraint. The command set data check is mostly used for

postlayout timing validation.

The sets of relative timing constraints in speed-independent, protocol and delay-

insensitive verifications are all mapped into set data check constraints, which is shown

in Table 2.3.

The storage elements in the data path, using either flip-flops or latches, still need

to obey setup and hold constraints. If combinational logic exists between pipeline

stages for data processing, the processed data normally takes more time to propagate

to the storage element of the next stage. On the other hand, in the control path

pipeline, handshaking is performed much faster than the data path and thus the

signal ordering and setup time cannot be guaranteed. Hence delay elements must be

added into the control path to match data path delay such that the data is guaranteed

to be available when handshake clocking arrives. This is implemented by a pair of

commands – set max delay and set min delay as shown below.

command set min/max delay
delay value
-from | -rise from | -fall from start pin
-to | -rise to | -fall to end pin

Set max delay command is used to constrain the data path while set min delay

command is used to constrain the control path. The delay from the output of previous

stage data storage element to the input of next stage storage element is constrained

by set max delay by a delay value such that the delay of combinational logic between

them must have a maximum delay of that value. Likewise the set min delay constrains

the control path to have the minimal given delay value. Since both commands specify

end-to-end delay, option -from and -to are enough to denote the starting and end pins.

The following example set min/max delay constraints constrain the maximum delay

from register bank R0 to R10 to be 1.7ns and the minimum delay from the linear

21

control associated with R0 to the linear control associated with R10 to be 1.7ns as

well. This guarantees that the data always arrive before the control signal.

set_max_delay 1.7 -from [get_pins R0_reg_latch*/Q] \

-to [get_pins R10_reg_latch*/D]

set_min_delay 1.7 -rise_from [get_clocks tk0/lr] \

-rise_to [get_pins tk10_lc1/A0]

The synthesis and place and route tools may automatically optimize circuits,

such as merging back-to-back inverters, combining multiple simple primitive gates

into a complex gate or vice versa. This modification breaks the original structure

and characteristics of the asynchronous templates and introduces unexpected timing

hazards. The command set size only prevents the logic structure of the templates

from being modified by the CAD tools, and only allows the tools to optimize the

drive strength of the gates to gain better power and performance. Another command,

set dont touch, disallows the tool from modifying the design in any manner. The

hierarchical components of templates should be constrained by one of these two

commands. The following constraint disallows any structural modification on the

AOI gate of linear controller.

set_size_only -all_instances { */lc3 }

Clocked CAD tools operate on directed acyclic graphs (DAGs) for timing driven

optimization. Once a cycle is found in timing graphs, the CAD tools will invoke

built-in algorithms to break the cycle. The users can also define how and where

to break the cycle using set disable timing by themselves. Asynchronous sequential

circuits inherently have cycles in the design due to its sequential characteristics. The

handshake protocols themselves also produce cycles. These cycles must be cut to be

compatible with the CAD tools. The built-in cycle cutting algorithm of clocked CAD

tools may be good enough for clocked design. However, the timing driven synthesis

and place and route require the relative timing constraints to be successfully applied

to the design and need all relative timing constraints related timing paths to remain

unbroken. This requires that the paths from point-of-divergence to point-of-converge

22

of the relative timing constraints are forbidden to being cut. Hence custom cycle

cutting algorithms are necessary. An algorithm for automatic cycle cutting, as part of

this asynchronous design flow, is being developed. The set disable timing constraint

is applied to primitive gates and the timing arc is removed from the specified input

pin (-from option) to the specified output pin (-to option). In this example, both

local cycles and handshake cycles are cut as shown in Table 2.4.

The set of relative timing constraints from the speed-independent run and min/max

constraints are key constraints for timing driven sizing and place and route. The set

of constraints for protocol verification do not usually need to be included in synthesis

and place and route because of the magnitude of slack between the two race paths.

The set of relative timing constraints from the delay-insensitive run is not used for

synthesis but used for postlayout timing validation.

2.2.3 Mapping to Backend

The relative timing constraints must be mapped to backend format of constraints

with full hierarchical path names.

An enhanced format of sdc constraint allows the mixed use of module names and

instance names in defining hierarchical port names [40]. Variables are also supported

to be specified in hierarchical port names to reduce tediously duplicating constraints

for each instantiated templates. This is used to map timing constraints generated for

an asynchronous design template into its instances used in a design.

2.2.4 Postlayout Timing Validation

Timing validation using standard static timing analysis engines is employed to

guarantee that the constrained timing holds with extracted parasitic parameters. All

the relative timing constraints that are either applied to timing driven synthesis and

place and route as well as the delay-insensitive constraints are required for performing

postlayout timing. The report timing command is used to return a detailed timing

report for each constraint by listing all the nodes the path passes through and

their corresponding delays. The necessary constraint settings for the relative timing

constraint lr+ ⇒ rr+ ≺ y− are shown below. Figure 2.15 shows the related timing

23

report. The timing report lists details the delay information of the two paths from

the point-of-divergence to the point-of-convergence and compares the total delay to

see if constrained timing holds.

create_clock [list [get_pins tk0_lc1/A0]

[get_pins tk0_lc1/B0]

[get_pins tk0_lc3/A1]]

-name tk0/lr -period 1.7 -waveform {0 0.85}

set_data_check -clock [get_clocks tk0/lr]

-fall_from [get_pins tk0_lc3/A2]

-rise_to [get_pins tk0_lc3/B1]

-setup 0.05

2.3 Verifying Compositional Asynchronous Protocols

This system level design methodology incorporates the composition of multiple

precharacterized asynchronous handshake protocols. System level verification is em-

ployed to check any violations in the communication of these protocols. Each protocol

may be a timed protocol, which must be constrained to be compatible with its

adjacent environmental behavior. The timing required to specify environmentally

friendly behaviors is implemented by relative timing constraints.

System level formal verification is perform to guarantee the correct interactions

of local protocols. The state explosion problem has been a primary challenge of

formal model checking specially for asynchronous circuits and protocols where much

concurrency exists. The explicit state based formal verification engine such as Analyze

may not be applicable to relatively large and complex design.

A scalable verification methodology for compositional asynchronous hardware

protocols uses mature symbolic model checking engines [41] to mitigate the state

explosion issue during verification [42]. First, the a state graph based representation of

the protocols is upgraded to an extended state graph with their timed relative timing

property constraint information. The relative timing constraints are represented by

making use of a relative timing variable where the variable is set when the point-of

divergence fires and reset when the shorter path point-of-convergence signal transition

24

fires. The longer path point-of-convergence signal transition can fire only after the

variable is reset. Hence the formal model of protocol and corresponding relative

timing constraint is derived from this extended state graph. Second, properties such as

safety, liveness, and semimodularity are generated. Finally symbolic model checking

is performed by the industry symbolic engine NuSMV. If the properties specified

are satisfied, the composed protocols can interact correctly. If this fails, a counter

example is reported and further investigation must be performed to guarantee if

missing relative timing constraints exist.

This methodology allows us to verify larger designs that are composed of hetero-

geneous timed asynchronous handshake protocols using relative timing and symbolic

model checking techniques more efficiently.

25

FFi FFi+1

data

clk

i i+1

clk

data

m

clki �→ data ≺ clki+1 + m

Figure 2.1. Relative timing application to clocked system.

POD POC
A

B
POD

POC0

POC1

�POD−POC0 < �POD−POC1

Figure 2.2. Circuit diagram to demonstrate path-based relative timing constraint.

26

b+ a-

S2 S3

S4

d-

S1

c+

Figure 2.3. Applying b+ ≺ a− to state transition graph.

Templates
TEMPLATES

SYNTHESIS

P & R

STA

DESIGN

RT
FLOW

TIMING
DRIVEN SDC

POST-LAYOUT
SDC

CCS IMPL

CCS SPEC

ARTIST

RT-FV

V2CCS

RT
CONSTR

Figure 2.4. Relative timing based asynchronous design flow.

27

LC
10

LC
11

R 1
0

R 1
1

x2 3x
LC

2

R 2

F/
J 1+

F/
J 0

LC
0

R 0
x

di
n lr la

ck
0

r 0 a 0R 0
_q

ck
10

ck
11

r 0
0

r 0
1

a 0
0

a 0
1

R 1
0_

q

R 1
1_

q

r 1
0

a 1
0

r 1 a 1

ck
2

rr rado
ut

16
32 32

F
ig

u
re

2
.5

.
E

x
am

p
le

d
es

ig
n
:

a
si

m
p
le

A
S
IC

m
at

h
em

at
ic

al
p
ip

el
in

e
se

gm
en

t
co

m
p
u
ti

n
g

ou
t

=
x

2
+

3x
.

28

module apipeline (din, dout, lr, la, rr, ra, rst);
input lr, ra, rst;
output la, rr;
input [15:0] din;
output [31:0] dout;
reg [31:0] R0, R10, R11, R2;
...
assign dout = R2 q;

always @(*) R0 = din;
linear control lc0 (.ck(ck0), .lr(lr), .la(la), .rr(r0), .ra(a0), .rst(rst));
latch active high R0 reg (.d(R0), .clk(ck0), .q(R0 q));
bcast fork bcf0 (.bi(r0),.bo0(r00),.bo1(r01),.ji0(a00),.ji1(a0 1),.jo(a0));
always @(*) R10 = R0 q * R0 q;
linear control lc10 (.ck(ck10), .lr(r00),.la(a00),.rr(r10),.ra(a10),.rst(rst));
latch active high R10 reg (.d(R10), .clk(ck10), .q(R10 q));
always @(*) R11 = R0 q * 3;
linear control lc11 (.ck(ck11), .lr(r01),.la(a01),.rr(r11),.ra(a11),.rst(rst));
latch active high R11 reg (.d(R11), .clk(ck11), .q(R11 q));
bcast fork bcm0 (.bi(a1),.bo0(a10),.bo1(a11),.ji0(r10),.ji1(r1 1),.jo(r1));
always @(*) R2 = R10 q + R11 q;
linear control lc2 (.ck(ck2), .lr(r1), .la(a1), .rr(rr), .ra(ra), .rst(rst));
latch active high R2 reg (.d(R2), .clk(ck2), .q(R2 q));

endmodule // apipeline

Figure 2.6. Top level Verilog for latch based implementation example.

�
�

�
�

�
�

�
�

�

�

�
C

�
��

���
��� �

���
��� �

���
��� �

lr � �

ra
ra � �

rst

rr�� �

la�� �

�

la

rr

�
ck�

Figure 2.7. LC circuit implementation.

29

module linear control (lr, la, rr, ra, ck, rst);
input lr, ra, rst;
output la, rr, ck;
AOI32X2A12TH lc0 (.A1(lr), .A2(ra), .A3(y), .B1(lr), .B2(la), .Y(la));
AOI32X2A12TH lc1 (.A1(lr), .A2(ra), .A3(y), .B1(ra), .B2(rr), .Y(rr));
NOR2X2A12TH lc2 (.A1(la), .A2(rr), .Y(y));
INVX2A12TH lc3 (.A1(la), .Y(la));
INVX2A12TH lc4 (.A1(la), .Y(ck));
NOR2X2A12TH lc5 (.A1(rst), .A2(rr), .Y(rr));
INVX2A12TH lc6 (.I(ra), .Y(ra));

endmodule // linear control

Figure 2.8. Verilog implementation of linear controller.

L = lr.c1.’la. c2.lr.’la. L

R = ’c1.’rr.’c2.ra.’rr.ra.R

SPEC = (L | R) \ {c1, c2}

Figure 2.9. CCS specification of linear controller.

module artisan65nm2ccs ();
NAND3X2A12TH NAND0001 (.A(a), .B(b), .C(c) , .Y(d));
NOR2X2A12TH NOR001 (.A(a), .B(b), .Y(c));
AOI2XB1X2A12TH A2B1O2I0001 (.A0(b), .A1N(a), .B 0(c), .Y(d));
OAI21X2A12TH O12A2I0001 (.A0(b), .A1(c), .B0 (a), .Y(d));

endmodule // artisan65nm2ccs

Figure 2.10. Gate library to CCS specification mapping.

LC-IMPL =

(A121O2I0bc01[lr/a, ra_/b, y_/c, la/d, la_/e] \

| INV[la_/a, la/b] \

| A121O2Ia0c01[ra_/a, lr/b, y_/c, rr/d, rr_/e] \

| INV[rr_/a, rr/b] \

| NOR001[la/a, rr/b, y_/c] \

| INV[ra/a, ra_/b] \

) \ { y_, la_, rr_, ra_ }

Figure 2.11. CCS implementation of linear controller.

30

LC LC LC

lr

la

rr

ra

r0

a0 a1

r1

Figure 2.12. Three deep pipeline of linear controller.

SPEC*P0M0M0 = lr.SPEC*P0M0M1
SPEC*P0M0M1 = ’rr.SPEC*P0M0M2 + ’la.SPEC*P0M0M3
SPEC*P0M0M3 = ’rr.SPEC*P0M0M4
SPEC*P0M0M4 = lr.SPEC*P0M0M5 + ra.SPEC*P0M0M6
SPEC*P0M0M6 = ’rr.SPEC*P0M0M10 + lr.SPEC*P0M0M13
SPEC*P0M0M13 = ’rr.SPEC*P0M0M14 + ’la.SPEC*P0M0M12
SPEC*P0M0M12 = ’rr.SPEC*P0M0M11 + lr.SPEC*P0M0M17
SPEC*P0M0M17 = ’rr.SPEC*P0M0M8
SPEC*P0M0M8 = ra.SPEC*P0M0M1
SPEC*P0M0M11 = lr.SPEC*P0M0M8 + ra.SPEC*P0M0M0
SPEC*P0M0M14 = ’la.SPEC*P0M0M11 + ra.SPEC*P0M0M16
SPEC*P0M0M16 = ’la.SPEC*P0M0M0
SPEC*P0M0M10 = lr.SPEC*P0M0M14 + ra.SPEC*P0M0M15
SPEC*P0M0M15 = lr.SPEC*P0M0M16
SPEC*P0M0M5 = ’la.SPEC*P0M0M9 + ra.SPEC*P0M0M13
SPEC*P0M0M9 = lr.SPEC*P0M0M7 + ra.SPEC*P0M0M12
SPEC*P0M0M7 = ra.SPEC*P0M0M17
SPEC*P0M0M2 = ’la.SPEC*P0M0M4

Figure 2.13. Minimized specification of linear controller.

Constrained pin

Related pin

D1

D2

D1

D2
Setup Hold

Figure 2.14. An example of data check.

31

Startpoint: tk0_lc3/A1 (clock source ’tk0/lr’)

Endpoint: tk0_lc3 (falling edge-triggered data to data check

clocked by tk0/lr)

Path Group: tk0/lr

Path Type: max

Point Incr Path

clock tk0/lr (rise edge) 0.00 0.00

clock source latency 0.00 0.00

tk0_lc3/A1 (AOI32X1A12TH) 0.00 0.00 r

tk0_lc3/Y (AOI32X1A12TH) 0.27 * 0.27 f

tk0_lc4/Y (NOR2X8A12TH) 0.11 * 0.38 r

U243/ECK (FRICGX0P5BA12TH) 0.15 * 0.53 r

U244/Y (BUFHX1P4A12TH) 0.07 * 0.60 r

U245/Y (DLY2X0P5A12TH) 0.14 * 0.74 r

U246/Y (DLY4X0P5A12TH) 0.58 * 1.32 r

tk0_lc3/B1 (AOI32X1A12TH) 0.00 * 1.32 r

data arrival time 1.32

clock tk0/lr (rise edge) 0.00 0.00

clock source latency 0.00 0.00

tk0_lc3/A1 (AOI32X1A12TH) 0.00 0.00 r

tk0_lc3/Y (AOI32X1A12TH) 0.26 * 0.26 f

tk0_lc4/Y (NOR2X8A12TH) 0.11 * 0.37 r

U243/ECK (FRICGX0P5BA12TH) 0.15 * 0.52 r

U244/Y (BUFHX1P4A12TH) 0.07 * 0.60 r

U245/Y (DLY2X0P5A12TH) 0.14 * 0.74 r

U246/Y (DLY4X0P5A12TH) 0.58 * 1.31 r

tk0_lc5_c_element2/Y (NAND2X1A12TH) 0.13 * 1.44 f

tk0_lc5_c_element3/Y (NAND3X1A12TH) 0.10 * 1.54 r

U1130/Y (INVX2A12TH) 0.05 * 1.59 f

tk0_lc3/A2 (AOI32X1A12TH) 0.00 * 1.59 f

data check setup time -0.05 1.54

data required time 1.54

data required time 1.54

data arrival time -1.32

slack (MET) 0.22

Figure 2.15. Timing report of constraint lr+ ⇒ rr+ ≺ y−.

32

Table 2.1. CCS specification functional descriptions.

CCS Cell Name SigIndex Output Function
function NAND0001 4 d not(a * b * c)
function NOR001 3 c not (a + b)
function A2B1O2I0001 7 d not((not(a)*b) + c)
function O12A2I0001 6 d not(a * (b + c))

Table 2.2. RT constraints for linear controller.

Category RT Constraints

SI lr+ ⇒ y − ≺ la−
lr+ ⇒ y − ≺ rr−

Protocol

lr+ ⇒ ra − ≺ la+
lr+ ⇒ lr− ≺ rr+
lr+ ⇒ la− ≺ y −
lr+ ⇒ rr− ≺ y −

DI
lr+ ⇒ y + ≺ lr−
lr+ ⇒ y + ≺ ra −
lr+ ⇒ rr − ≺ rr−

Table 2.3. Set data check constraints of linear controller.

Category RT Constraints

SI set data check -fall from */lc1/A2 -fall to */lc1/B1 -setup $race margin
set data check -fall from */lc3/A2 -fall to */lc3/B1 -setup $race margin

Protocol

set data check -fall from */lc1/A1 -rise to */lc1/B1 -setup 0
set data check -fall from */lc3/A1 -rise to */lc3/B1 -setup 0
set data check -fall from */lc5/A -rise to */lc5/Y -setup 0
set data check -fall from */lc5/B -rise to */lc5/Y -setup 0

DI
set data check -rise from */lc3/A2 -fall to */lc3/A1 -setup 0
set data check -rise from */lc1/A2 -fall to */lc1/A1 -setup 0
set data check -fall from */lc4/A -fall to */lc4/Y -setup 0

Table 2.4. Cycle cutting constraints.

Category Constraints

Local

set disable timing -from A2 -to Y [find -hier cell *lc1]
set disable timing -from B1 -to Y [find -hier cell *lc1]
set disable timing -from A2 -to Y [find -hier cell *lc3]
set disable timing -from B1 -to Y [find -hier cell *lc3]

Handshake
set disable timing -from A1 -to Y [find -hier cell *lc1]
set disable timing -from A1 -to Y [find -hier cell *lc3]
set disable timing -from B0 -to Y [find -hier cell *lc3]

CHAPTER 3

FORMAL VERIFICATION ENGINE

The formal verification engine employed in this design flow is an explicit state

verification engine [43]. It is an untimed verification engine that does reachability

analysis using all possible delay scenarios. The verification engine takes an imple-

mentation I, optionally a specification S, and a set of relative timing constraints

C which is initially empty and outputs an error trace when there is a violation of

a semimodular constraint or nonconformance between the implementation and the

specification.

3.1 Modeling Concurrent System Using CCS

To use formal tools, both the specification and circuit implementation need to be

modeled in a modeling language specific to the formal tool. There are many good

modeling languages that are widely used today such as CSP [44, 45] and Petri-net [46].

The formal verification engine used for this research uses Calculus of Communication

System (CCS) as the modeling language.

CCS is powerful for modeling concurrent systems. CCS can model very complex

parallel systems only using five constructions and six transition rules. CCS syntax

does not distinguish logic levels of signal transitions. Thus the state space used for

modeling a system can be less than a traditional one where logic levels are specified.

Figure 3.1 shows a comparison between a CCS model and a traditional model of a

C-element. The CCS model in Figure 3.1(a) has four states, whereas the traditional

model in Figure 3.1(b) has eight states. Therefore CCS modeling always results in

half the state space as a traditional formal model for this design. In addition, CCS has

the ability to model hierarchy. Local blocks can be modeled separately as CCS agents

that are composed into a higher level design. It also supports silent internal actions

34

that make autonomous communications between agents. CCS is rich in equational

reasoning as well.

CCS syntax contains five constructions.

• Prefix specifies sequential behavior between two events, or an event followed

by a process, using the prefix operation “.”. For example, α.β means that if

event α occurs it must be followed by the event β. α.P means that once event

α occurs then process P is true.

• Summation implements nondeterministic choice with the “+” operator. For

example, α.P + β.Q represents that if α occurs process P is true whereas if β

occurs process Q is true. The firing of α and β is completely non-deterministic.

• Parallel Composition allows the composition of local agents with the “|”
operator. The composed agents evolve concurrently. For example, if transition

τ is an output of agent P and input of agent Q, then the system evolves as

P |Q τ→ P ′|Q′.

• Restriction limits the scope of a signal to be local to the current agent. This

construction is composed of the “\” operator followed by a list of internal signals

in curly braces.

• Relabeling renames the signals in an agent with the format of

“NewName/OldName” using the “/” operator.

3.2 Labeled Transition System

The verification engine used in this thesis is an explicit state verification engine

built on a labeled transition system. The labeled transition system and related

notations are defined as follows:

Definition 3.1 A labeled transition system, (S, T , { t−→ : t ∈ T }) consists of

• a set S of states

• a set T of transition labels

35

• a transition relation
t−→⊆ S × S for each t ∈ T

Definition 3.2 The labels (or actions) in labeled transition systems are defined as

follows:

• Input action set names a ∈ A (the set of names A are inputs I).

• Output action set conames a ∈ A (the set of conames A are outputs O).

• The set of labels L = A ∪A.

• The invisible internal action τ (tau). τ /∈ L.

• The actions of a system are: Act = L ∪ {τ}.

• The sort(P) of an agent P is its complete set of observable input and output

actions.

The set of labels L consists of the set of primary inputs A and the set of primary

outputs A of a system. The communications within a system are performed by

internal silent transitions τ . If the system only contains a primitive gate where τ is

empty, the Act only contains inputs A and outputs A. Within a hierarchical system,

the output signals of one element and its receiving elements follow the convention

that names represent input signals and conames represent output signals (labels

and colabels are the alternative names). These signals become internally abstracted

as the invisible internal action τ . To distinguish the difference between the internal

interactions of different signals, the labels and colabels of each internal transition

τ can be denoted specifically as τ(α) and τ(α). Figure 3.2 demonstrates how the

internal transition τ(a) interacts between two agents P and Q.

Definition 3.3 If s ∈ Act∗ is an action sequence of an agent, then ŝ is defined to

be the projection of s on L∗, i.e. ŝ is the sequence obtained from s by deleting all

occurrences of τ .

The transition relation symbol ⇒ is used to represent an action sequence where

invisible internal τ transitions can be concatenated with an action α or sequence s.

36

It is generally used together with ŝ to model an external observable transition trace

as
bs⇒.

3.3 Semimodularity

Semimodular [47] definitions are employed to define the behavior of local agents

of a system in our formal verification engine in order to remove glitches in a design

and enable us to locally constrain signal orderings. Figure 3.3 shows the semimodular

definition of a two-input NAND gate.

A system is semimodular if and only if for all transitions, once enabled, they

are not allowed to be disabled [3]. The violation of semimodular constraints on an

output signal could result in a runt pulse or internal glitch in a circuit that may cause

incorrect or unexpected behavior. One class of errors from the formal verification

engine – computation interference – is created based on the semimodular constraints

used in the specification of agents.

An extension of the original semi-modular definition is used to detect short circuit

failures of dynamic gates by specifying that no transitions are valid that will result

in both a p-stack and n-stack being simultaneously turned on.

This extension to support short circuit failure detection of dynamic gates is

recognized by default. However, if a transient short circuit is allowed, a special

state for short circuit status may be used in a formal agent definition. An example of

such design is a GasP circuit that makes use of wire delays and may allow a transient

short circuit.

3.4 Logic Conformance

Conformance was proposed to check if an implementation is a safe substitution of

a specification in the trace theory by Dill [48]. Trace theory describes the behavior

of circuit by a sequence of signal transitions which corresponds a partial history of

signals. Dill developed the trace theory into a verifier and applied it a number of

speed-independent asynchronous circuits [49, 50]. However, the trace conformance is

too weak and cannot detect deadlock and other hazards.

37

Gopalakrishnan improved Dill’s work and proposed strong conformance relation

[51]. The strong conformance relation is capable of detecting deadlock. An implemen-

tation I strongly conforms to the specification S, denoted as I S, if implementation

may offer to accept excess inputs that specification cannot accept but must be able

to generate all the outputs that specification is capable of producing.

However, the trace conformance cannot distinguish nondeterminism and equate

too many branching structures of agents even though strong conformance has the

ability to detect deadlocks. Hence the formal verification engine used in this research

employs bisimulation semantics [52, 53, 54] and is applied to the conformance relation

shown in the following definition [43].

Definition 3.4 A binary relation LC ⊆ P×P over agents is a logic conformation

between implementation I and specification S if (I, S) ∈ LC then ∀ α ∈ Act and

∀ β ∈ A ∪ {τ} (outputs and τ) and ∀ γ ∈ A (inputs)

1. Whenever S
α→S ′ then ∃ I ′ such that I

bα⇒I ′ and (I ′, S ′) ∈ LC

2. Whenever I
β→I ′ then ∃ S ′ such that S

bβ⇒S ′ and (I ′, S ′) ∈ LC

3. Whenever I
γ→I ′ and S

γ⇒ then ∃ S ′ such that S
γ⇒S ′ and (I ′, S ′) ∈ LC

Logic conformance is a partial order between the implementation and specification

that allows multiple implementations to be conformant to the specification. They are

conformant only if the implementation is a safe substitute for the implementation.

Logic conformance is similar to trace conformance but still performs back and forth

bisimilar relation checking between the implementation and the specification. If any

of the above clauses are not satisfied, nonconformance errors are reported by the

formal verification engine.

Clause 1 of Definition 3.4 specifies that if the specification can do a transition,

the implementation must do the same transition. Clause 2 of Definition 3.4 says

that when the implementation generates internal τ or primary output transitions,

the specification must be capable of producing the same transition. Clause 3 of

Definition 3.4 allows the implementation to be capable of accepting more input

38

transitions than the specification. In case both implementation and specification

can do the same input transition, however, the specification must do the matching

transition.

39

S0
b a

S1 S2

S3

a b

c

S0
b+ a+

S1 S2

S3

a+ b+

c-

b- a-

S5 S6

S7

a- b-

S4

c+

(a) CCS Model (b) Traditional Model

Figure 3.1. State space difference between CCS and traditional model of a
C-element.

�	

�

�	

�

�P Q
a a

Figure 3.2. Demonstration of labels and colabels of internal transition τ .

**

*** 2-INPUT NAND GATE ***

**

1: agent NAND001 = a.NANDa01 + b.NAND0b1;

2: agent NANDa01 = a.NAND001 + b.NANDab1;

3: agent NAND0b1 = a.NANDab1 + b.NAND001;

4: agent NANDab1 = ’c.NANDab0;

5: agent NANDab0 = a.NAND0b0 + b.NANDa00;

6: agent NAND0b0 = b.NAND000 + ’c.NAND0b1;

7: agent NANDa00 = a.NAND000 + ’c.NANDa01;

8: agent NAND000 = a.NANDa00 + b.NAND0b0 + ’c.NAND001;

Figure 3.3. Semimodular CCS specification of a 2-input NAND gate.

CHAPTER 4

AUTOMATING CONSTRAINT

GENERATION

Relative timing constraints are used throughout the asynchronous circuit design

flow described in the previous chapters. Asynchronous template characterization

needs a key set of relative timing constraints for correct behavior of the template

circuit. The set of relative timing constraints for protocol verification ensures correct

interaction among multiple local asynchronous templates. The setup constraints

between a control path and data path guarantee that the data are properly latched.

These relative timing constraints are used for timing-driven synthesis and place and

route. Finally they are used for static timing analysis with postlayout extracted

parasitic parameters.

In this design flow, there are two steps that synchronous design engineers have

not been involved in before – running formal verification and generating relative

timing constraints. Previously generating relative timing constraints was performed

manually and requires deep expertise on asynchronous circuit itself. This is absolutely

an impediment for the wide adoption of this design methodology. In this chapter, an

automatic method for generating relative timing constraints will be described. The

designers do not need to know any details about the circuit. One push of a button can

return a complete set of relative timing constraints which guarantees the correctness

of the system.

This chapter first describes past related work and its weaknesses. Then the failures

reported from the formal verification engine and their formal definitions are analyzed

to find their common characteristics. Then a solution to generating relative timing

constraints and the proper data structure are proposed. Finally the algorithms for

implementing the solution are described.

41

4.1 Past Work

An algorithm for the automatic generating relative timing constraints was pro-

posed in 2002 by Kim et al. [55]. The constraints generated are point-of-convergence

(POC) constraints where no point-of-divergence (POD) is specified. This algorithm

explores the whole state space of circuit implementation and creates state sets, called

Q-sets, where failure transitions are enabled and ready to fire. Transitions which exit

the state set are required to fire before the transition that produces the error, thus

avoiding the timing violation. Figure 4.1 is the partial state transition graph of the

GasP circuit. The symbol ⊥ in the figure denotes failure states. The transitions

directed to ⊥ are failure transitions. In state s21 and s22, if out− fires before x−,

a failure occurs. The constraint x− ≺ out− , if applied, will remove the failure

and makes the failure state unreachable. The algorithm of Kim et al. is efficient in

producing POC constraints. However, it has a few weaknesses.

1. The transition set is generated from the flat transition graph of the whole

implementation. This results in exponential states and loss of any hierarchical

and modular information.

2. Only POC constraints are generated. The constraints specify only the relative

ordering of two events. These two events may have no clue of their relationship

and may not be intuitive to the designers in explaining the root cause of the

failure. Without a POD, path based constraints will not be generated. As a

result, the generated constraints cannot be supported for pre and postlayout

timing validation using industry standard STA tools.

3. The algorithm does not support multicycle constraints or other more compli-

cated dependencies between signal sets. Signal dependencies with logic levels

specified is normally enough for a small design. As a design gets more compli-

cated where cross cycle dependencies exists, transitions using logic levels may

not be enough to represent the true intent. This dissertation proposes unrolling

the behavior of an implementation to solve the multicycle problem which will

be described in later chapters.

42

The algorithms for automatic generation of relative timing constraints that will

be described in this dissertation overcome all the above weaknesses.

1. The algorithm presented in this thesis is based on signal error traces instead

of the whole state graph of the implementation. It also follows the hierarchical

behavior of local processes and signal sets inherited from the formal verification

engine.

2. The common causal POD will be generated by backtracking the causal rela-

tionships of two relative events. The option of selecting a user-defined POD is

supported as well to facilitate pre- and postlayout timing validation.

3. The signal transitions in relative timing constraints use an unrolled repre-

sentation. This unrolling representation unambiguously presents cross cycle

dependencies between signal events.

Another similar work was proposed by Yoneda et al. [56, 57]. This work employs

metric timing and a formal verification tool VINAS-P [59], which is based on a

timed version of trace theory verification [58] by using partial order reduction based

on Dill’s work [48]. Timed Petri nets are used to model both specification and

circuit implementation. Initially the min-max bounds of delay of a gate is set to

be sufficiently large and safety properties are checked within VINAS-P tool for any

hazard, hold time violation and short circuits. If it detects a failure, an error trace is

returned. Based on the error trace, some form of delay bound relationship is derived

to avoid the failure. ILP (Integer Linear Programming) solver is used to generate

tightened min-max bounds of gate from the delay bound relationship. Then the

min-max delay is updated with tightened one and run formal verification recursively

until no errors are reported.

The process of generating delay bound relationship implicitly specifies a relative

timing constraints by finding two events and enforcing firing order of them to avoid

failure. It also backtracks the common causal transition of those two events. Thus

the firing order of two events forms the delay bound relationship. This relationship

is used to generate tightened bound by ILP. However, the tightened delay bounds of

gates may over constrain the gates along the path from their common causal point

43

to failure events. Relative timing, on the other hand, constrains the whole path from

point of divergence to point of convergence. The specific delays of gates and wires

along the path are left, manipulated and optimized by synthesis and place and route

engines without any concern about any particular delay bound on a gate.

4.2 Formal Definitions

The functionality of a relative timing constraint is to enforce precedence over two

events such that the failure state directed by the preceded event is not reachable.

Hence generation of relative timing constraints is directly related to how the failure

is generated and where the failure states are located.

The formal verification engine Analyze reports three major classes of errors –

computation interference, nonconformance and deadlock. The following sections

formally define each class of errors. This helps better understanding of the underlying

failure mechanisms.

4.2.1 Computation Interference

Computation interference is implemented based on the CCS parallel composition

operator which is denoted as “|”. A design is generally modeled as a set of processes

connected with parallel composition operators. A process represents the state of an

agent which is either a primitive gate or protocol. The composition of processes

guarantees that parallel agents can evolve concurrently.

Communication among connected parallel agents within the design is an au-

tonomous transition denoted as the internal transition τ . When the output of a

predecessor element fires, denoted as colabel α ∈ sort(Ppred) the corresponding labels,

denoted as β ∈ sort(Psucc) , which are inputs of the receiving elements connected with

the colabel evolve simultaneously. A successful internal transition between parallel

agents is formally described as α = β ∧ (P0 | P1 | . . . | Pn)
τ→(P ′

0 | P ′
1 | . . . | P ′

n) where

• for agent whose colabel is α, Pi
α→P ′

i

• ∀Pj : β ∈ sort(Pj), Pj must be in a state where Pj
β→P ′

j

• for all other processes Pk = P ′
k

44

Computation interference violates the above formula. It results from an unaccept-

able signal transition or label to a process. Agents are modeled as either terminal

semimodular specifications or as a minimized specification of a protocol. Figure 3.3

shows a semimodular specification of a 2-input NAND gate with inputs a and b and

output c. For those agent states where an input transition is not specified, they

are unacceptable in the current state. When some element outputs and initiates

an internal transition, if the receiving element does not specify the corresponding

input transition at current state, a computation interference error is reported. Agent

NANDab1 on line 4 of Figure 3.3 does not specify transitions for input signals a and

b, which means that computation interference occurs whenever there is such an input

transition at state NANDab1. At state NANDab1 the only transition the agent can

make is firing output c.

Perhaps the state transition graph of the two-input NAND gate specification

shown in Figure 4.2 is more intuitive. The signal transitions directed to the horizontal

bars are unacceptable transitions. The horizontal bars represent failure states which

should be avoided.

The dynamic set defines all the enabled and ready-to-fire signal transitions of

the circuit in a given state (I ′, S ′) after a trace is executed. For each signal transition

in the trace, there is a corresponding dynamic set specifying the signal transitions

the circuit can make. The signal transitions in the trace and their corresponding

dynamic set forms a partial directed acyclic state transition graph. It is called

partial because all the other branches other than the trace signal transitions are

omitted. Figure 4.3 shows such a graph where s = abc. This graph is actually a

flattened state transition graph of the top level system. Starting from state S0, the

trace a, b, c, c is executed to reach a failure state. At state S0, the dynamic set

consists of a, b, c. At state S3, the dynamic set consists of c, d. It is different from

the state transition graph of the local element shown in Figure 4.2. The dynamic

set is formally defined as follows.

Definition 4.1 dynamic(I ′, S ′) is the action sequence of inputs and outputs α ∪ β

possible from the current implementation state I ′ = (P ′
0 | P ′

1 | . . . | P ′
n) after a trace

s is executed where I
s→I ′, and if S exists, S

bs⇒S ′ such that

45

• ∀P ′
i

α→ ∧ α ∈ A ∪ τ

• If ∃S ′, ∀S ′ bβ⇒ ∧ β ∈ A

Computation interference is formally defined as follows.

Definition 4.2 Computation Interference occurs when an agent Pi in implementa-

tion I ′ = (P ′
0 | P ′

1 | . . . | P ′
n) and its associated specification S ′, if it exists, cannot

accept input α:

• α ∈ dynamic(I ′, S ′) ∧ α ∈ sort(P ′
i) ∧ P ′

i � α→

The relative timing constraints can be generated from either a local or global

state transition graph. Intuitively to avoid reaching the failure state, some enabled

event should occur before the event which causes the failure. This enforced ordering

is allowed in that Analyze performs untimed verification which assumes unbounded

gate delay for speed-independent verification plus unbounded wire delay for delay-

insensitive verification. Thus the circuit model contains huge concurrency. Two

concurrent signal transitions can fire in either order [61]. Relative timing is the

constraint that forces the firing order of two events such that the reachability of the

failure state is avoided. In Figure 4.3 the second transition of c causes a failure.

Always firing the first transition of d before the second transition of c guarantees the

failure state is never reachable.

There are two main sources of computation interference in a logic gate.

1. An input transition is trying to disable an output transition.

2. A short circuit failure in a dynamic gate by turning on both pull-up and pull-

down networks at the same time.

4.2.2 Nonconformance

Nonconformance is applied only when the conformance between circuit implemen-

tation and specification is checked. The verification engine employs the bisimulation

conformance relation shown in Definition 3.4 for observable input and output signals.

46

Nonconformance has two subtypes of errors. One is reporting an illegal output.

This is to say that the circuit implementation can generate an output but the spec-

ification is not able to do this output transition. It violates the second statement in

Definition 3.4 (Whenever I
β→I ′ then ∃ S ′ such that S

bβ⇒S ′ and (I ′, S ′) ∈ LC).

Definition 4.3 An illegal output occurs at (I ′, S ′) where I
s→I ′ and S

bs⇒S ′ after trace

s is executed if ∃α ∈ dynamic(I ′, S ′) ∧ α ∈ A, such that I ′ α→I ′′ and S ′ � α⇒.

When the circuit implementation generates an output that the specification cannot

perform, there are three possibilities from both implementation and specification as

follows.

• The current state of the specification allows only an input transition to occur.

This input transition is in the dynamic set.

• Another output is desired by the current state of the specification. Since the

output is generated from a logic gate, there must be some controlling signal in

the dynamic set that is causal to the desired output.

• Some internal transition, if it fires, can disable the illegal output from occurring

at all.

All the above three possibilities can be solved by firing dynamic set signals before

any hazard transitions.

The second subtype of nonconformance error is that a primary input/output

transition is required by the specification but is not possibly generated by the imple-

mentation.

Definition 4.4 A primary input/output transition α is required by the specification

but it is not possible for implementation to generate the same transition at (I ′, S ′)

where S ′ bα⇒∧ I ′ � α→.

This type of error belongs to the category of the unsolvable set of problems. One

possible conclusion is that the implementation cannot be made conformant to the

specification by adding timing constraints. Another conclusion is that if such an

47

error occurs when applying relative timing constraints, relative timing constraints

could be the cause of error if they are so strong that states which should be reachable

are made unreachable. If such error occurs without any interference of relative timing

constraints, it must be a defective design.

4.2.3 Deadlock

Deadlock occurs when two or more processes in a loop wait for each other’s triggers

to proceed. The system gets stuck at a particular state and no legal transition

available can make the design proceed. Deadlock can be checked by tool Murphi

[60]. Deadlock in our formal verification engine indicates that all the enabled and

ready-to-fire signals are blocked by their receiving agents, thus no available transitions

can make the system proceed.

Definition 4.5 Deadlock occurs at (I ′, S ′) where I
s→I ′ and S

bs⇒S ′ after trace s is

executed iff ∀α ∈ dynamic(I ′, S ′)

• if α ∈ A (output), then S ′ � α⇒

• if α ∈ A (input) ∧ α ∈ sort(P ′
i), then P ′

i � α→

• if α ∈ τ ∧ τ(α) ∈ sort(P ′
j) : τ(α) ∈ sort(P ′

k) ∧ P ′
j

α→P ′′
j ∧ P ′

k � α→

At a particular state (I ′, S ′) where I ′ = (P ′
1 | P ′

2 . . . | P ′
n), if all the enabled signal

transitions in the dynamic set cannot fire due to being blocked by its subsequence

agents, a deadlock error will be reported. In the dynamic set, if one action is a

primary output signal, it must be blocked by the current state of the specification; if

it is a primary input signal or an invisible internal signal, it must be blocked by its

receiving agents. Hence no other signal can make the system proceed, i.e. (I ′, S ′) � α→
and the system is in an awkward interlock state. Figure 4.4 shows an illustration of

deadlock. The three state graph in square is a simplified state graph to represent

the specification. Below the dashed line, is a simplified partial implementation

that contains only related agents. Transition α is the primary output blocked by

specification. Transition β is the primary input blocked by P ′
i . Transition τ is the

internal transition blocked by P ′
j .

48

The deadlock error appears together with computation interference and illegal

output errors. If the enabled signal in the dynamic set is a primary output, its firing

creates an illegal output because the circuit implementation generates an output

that the specification cannot perform. On the other hand, if the enabled signal in

the dynamic set is a primary input or an internal transition, the receiving agent’s

blocking behavior is actually a computation interference.

Therefore the handling of deadlock errors is summarized as follows:

1. If deadlock errors appear with computation interference or nonconformance

errors, solve computation interference or nonconformance errors.

2. If deadlock errors appear without computation interference or nonconformance

errors when some relative timing constraints have already been enforced on the

design, the problem is unsolvable because the interference of relative timing

constraints may over constrain the design and causes errors. This set of relative

timing constraints should be discarded.

3. If deadlock errors appear without computation interference or nonconformance

errors and there is no interference of relative timing constraints, it is a defective

design.

4.3 Common Feature of Hazards

The solvable set of hazards consists of computation interference and illegal output

of nonconformance errors. If neither of them appears in the error report, the design

is either defective or over-constrained by relative timing constraints.

Computation interference occurs when tokens hit an unacceptable failure state

of a local element of the implementation. The illegal output is generated by the

implementation but forbidden by the specification, thus the egress arc of illegal

output transition points to a virtual failure state. Both computation interference

and illegal output errors can be mapped by a template state transition graph of the

implementation shown in Figure 4.5.

• The horizontal bar indicates a failure state that is reached from transition αfail

at the current state I ′.

49

• Transition αfail is the failure transition. In the case of computation interference,

αfail is the signal transition that is not acceptable by the process. In the case

of an illegal output, αfail is the illegal output itself.

• I ′ is the implementation process where the failure transition becomes enabled.

• Signal αen is the transition that moves process from I to I ′ where I = (P1 | P2 |
. . . | Pn) and I ′ = (P ′

1 | P ′
2 | . . . | P ′

n) since I
αen→ I ′.

• dynamic(I, S) = ∪i=1...mαm−1 ∪ αen.

• dynamic(I ′, S ′) = ∪i=1...nβn−1 ∪ αfail.

The fundamental idea is to avoid reaching the failure state from the perspective

of this partial transition graph to prevent the failure transition from occurring by

firing another concurrently enabled transition. This is exactly what the relative

timing constraint intends to do. The dynamic set contains all the enabled signal

transitions at a particular state of the implementation. Any signal transition in the

dynamic set can be forced to occur prior to the failure transition. Hence a single

error from the formal verification engine may return one or more candidate relative

timing constraints.

The path based relative timing constraint is represented as POD/POC pair. The

point-of-divergence (POD) indicates a starting point that initiates the race condition.

The point-of-convergence (POC), which is composed of a relative ordering normally

converges to a single gate to indicate where and how the race condition occurs. How-

ever, the relative ordering of two race events is not necessarily converged to a single

gate as long as it is supported by postlayout timing validation. Strict POD/POC

constraints are more friendly to the designer because the designer can easily figure

out the location and cause of the racing condition. Strict POC constraints can be

achieved by constraining the signal transitions in the dynamic set to be in the sort

set of the element where the failure occurs, i.e., α ∈ dynamic(I ′, S ′)∧ α ∈ sort(Pi).

Figure 4.5 also adds a second level state that is directed by transition αen. The

dynamic set at state I can also fire before transition αen. This set of constraints

is stronger than the one derived at state I ′ since it makes state I ′ unreachable.

50

Stronger relative timing constraints remove more subgraphs and can result in a more

compact set of constraints to make the implementation conform to the specification.

A stronger constraint, however, may over-constrain a design and cause unexpected

errors. Weaker constraints, on the other hand, always removes the state graph closest

to the failure state and guarantees the correctness of the design under RT constraints,

but the cardinality of the final set of relative timing constraints may be bigger, which

may increase the burden of pre- and postlayout timing validation. Choosing an

optimal set of relative timing constraints is future work.

4.4 Generating Relative Timing Constraints

Path based relative timing constraints are composed of the relative ordering

of two racing events and their common causal point POD. Relative ordering can

be created by finding the key signal transition that has to be preceded and its

corresponding dynamic set. The POD can be found by backtracking based on the

causal relationship of race events.

Figure 4.6 is the top level algorithm for automatic relative timing constraint

generation. TST stands for Trace Status Tableau, which is the internal data structure

that contains all necessary information inherited from the formal verification engine

Analyze. The trace status tableau is built along the trace. Once it is constructed,

all the key information corresponding to Figure 4.5 such as αfail, αen, I, I ′, and the

dynamic sets for I and I ′ can be found to construct relative orderings. The structure

of trace status tableau will be described in the next section. The point-of-divergence

can be backtracked by tracing causalities in the trace status tableau. A user-defined

POD is supported during POD backtracking to facilitate postlayout timing validation.

The controlling signals in the dynamic set determine the destination container

that stores the relative timing constraints. This depends on the value of the input

parameter POCConstrOption of the algorithm. If it is true, the algorithm only returns

the relative timing constraints whose relative ordering converges to a single gate.

Otherwise, the algorithm returns all possible candidate relative timing constraints.

51

4.5 Trace Status Tableau

A trace status tableau contains all necessary information for generating relative

timing constraints. Each verification error corresponds to one tableau. A trace status

tableau is constructed based on the counter example trace returned from the formal

verification engine. Along the trace, each wire node updates its status. Wire nodes

can be regarded as state holding elements. The tableau can be regarded as a two-

dimensional array with signal transitions of the trace as x-axis index, and all wire

nodes as y-axis index.

Each cell in tableau contains the necessary information that associates with the

x-axis and y-axis indices. It contains the current status of the wire nodes including

signal state, number of transitions this signal has already made, whether this signal

has been enabled and is ready to fire, and whether a failure occurs. Table 4.1 shows

a simplified example trace status tableau of the trace (a, b, c, d, a) for illustration

purpose only.

The y-axis lists all wire node signals in the design trace. The wire node signals

can be classified into three categories.

• Primary input signals. All primary input signals shares a single state transition

graph derived from the specification.

• Primary output signals. The status of an output signal can be tracked by the

action of the agent that drives the output. Note that when an output fires,

the tokens of the state transition graph of the specification changes as well.

This may affect the state of primary inputs in case of conformance verification

between a specification and implementation.

• Internal signals. An internal signal connects the output of one element to the

input of another or the same element. The element whose output is the internal

wire is called predecessor whereas the elements the internal wire feeds into are

called successors. For self-loop where the output of an element feeds back into

its own input, the predecessor and successor are the same element. When an

internal signal changes, both predecessor and successor update their states.

52

In a trace status tableau, each cell associates the x-axis signal transition of the

trace and the y-axis wire node signal. The information contained in the cell which is

shown below records the current status of wire node signal.

• State: current state of corresponding wire node signal.

• Number of transitions: the number of transitions the wire node signal has

already made.

• Enabled flag: a bool indicating whether the wire node signal is enabled.

• Failed flag: a bool indicating whether a failure occurs at the current element

associated with the corresponding wire node signal.

Figure 4.7 shows the algorithm for generating the information of a cell of the trace

status tableau. Generating a cell relies mostly on the status of its previous cell. First

the previous cell information is inherited. Then each type of information of the new

cell is generated by its specific functions. The details of these functions are described

in the following subsections.

For the same design, the size of trace status tableau depends on the length of error

trace. Analyze uses a breadth-first algorithm to find errors. Thus it always returns

the shortest error trace. As a result, there is no concern about the trace status tableau

size.

4.5.1 State

Each wire node signal is associated with a semimodular state transition graph for

generating its state. All the primary input signals share the state transition graph

of the specification. The tokens move whenever an input or output signal fires. The

states of the primary outputs or internal signals are based on the status of the logic

elements they associate with. The state transition graph of each element is mapped

from its semimodular definition modeled in CCS. Figure 3.3 is the semimodular

definition of a two-input NAND gate and Figure 4.2 is its state graph representation

with explicit failure states specified.

The state of a wire node is updated along the trace. If the wire node signal is not

related to the current trace signal transition, it remains its previous state. Figure 4.8

53

describes how to find the next state of a wire node signal based on its previous state

and signal transition of trace. TraceSig denotes the current signal transition of the

trace. WireSig denotes the wire node signal. PrevState is previous state of WireSig

when executing previous TraceSig. Generating next states is performed based on the

categories TraceSig belongs to. If TraceSig is an internal signal and also belongs to the

sort of WireSig, the next state of WireSig can be found by calculating the behavior

of corresponding WireSig with its PrevState and the transition TraceSig. If the trace

signal transition is a primary input, the local elements who are connected to this input

transition update their states. In the meanwhile, it updates all the primary input

wire node signals since they share the common behavior of the specification. Finally

if the trace signal is a primary output signal, all the primary input and output wire

node signals update their states. The primary output wire signal is updated based on

the behavior of the local element that is its source. The primary input wire signals

are updated based on the behavior of the specification.

4.5.2 Number of Transitions

The number of transitions records how many transitions the wire signal has made

along the trace. This number is used to generate the unrolling count of signal

transitions to support multicycle constraints. One of the advantages of using unrolling

counts compared to logic levels is that unrolling counts which are specified after the

signal name clearly indicates the history of signal transitions. Given a logic level,

on the other hand, one cannot guarantee if this transition occurs the first time or

multiple times. For example, suppose the initial logic level of signal a is low. The

unrolling representation a 0 and a 2 indicate the first and the third transition of signal

a but a 0 and a 2 both represent the same logic level a+. Therefore the unrolling

representation of signal transition has implicit timing relations in it.

The design methodology described in this thesis is not restricted to asynchronous

design but supports clocked design. The unrolling representation of signal transitions

is more powerful when verifying a clocked design where cycle accurate transitions

are required. Figure 4.9 illustrates the usage of the unrolling representation for a

signal transition in a clocked design. If one wants to specify a timing constraint

54

as data+ ≺ clk+, it might be a misleading representation because data+ ≺ clk+

indicates that data is high before every positive edge of clk. Hence the timing of the

example in Figure 4.9 cannot be accurately represented by such logic level format.

The unrolling representation, as an alternative, uses data 0 ≺ clk 2 to represent the

timing assumption in Figure 4.9. It is to say that signal data first goes high before

the second transition of signal clk. It is exactly the second transition of clk but not

the fourth or the sixth etc..

Figure 4.10 shows the algorithm for generating transition counts in the trace status

tableau. The transition count increments only when the trace signal matches the wire

node signal.

4.5.3 Enabling and Causal Relations

The so called “enabled” bit is defined as enabled but not yet fired. The primary

outputs and invisible internal transitions τ that are output ports of local gates are

enabled by a particular pattern of its input logic value. The primary inputs are enabled

as the environment requires.

Figure 4.11 shows the algorithm for generating the Enabled flag. Every signal

transition in the trace resets the enabled flag of its corresponding wire node signal in

the y-axis to be false because the occurrence of the signal in the trace means that

the signal has fired. If the trace signal is the input port of a local gate whose output

port is a wire node signal and its current input port value is in such a pattern that its

output is enabled, the Enable should be flagged to be true. This is implemented by

searching the wire node signal in the action set of the current state. The action set

consists of enabled signals of a single process which is inherited from Analyze. Since

the Enabled flag is generated based on its current state instead of previous state, it

has to be performed after the current state is generated.

The Enabled flag is the key information to finding causal relationship of events.

If a cell in the tableau has its Enabled flag true and its previous cell has its Enabled

flag false, the wire signal is said to be enabled by the current cell associated with the

x-axis trace signal transition. This helps find the point-of-divergence which will be

described in the section of POD backtracking.

55

4.5.4 Locating Failure

The Failed flag in a cell, if true, indicates that a failure occurs at the local gate

whose output is its corresponding wire node signal. This local gate is the point-of-

convergence gate. If strict POC constraints are required, the sort of the POC agent

is used to filter candidate relative timing constraints.

The formal verification engine returns an error trace where the last signal tran-

sition in the trace is always the transition that causes the failure. It could be

an unacceptable transition to a gate or an illegal output against the specification.

Therefore only the last status cells of wire node signals may have the Failed bit

flagged. The generation of the Failed flag does not depend on its previous cell

information.

Figure 4.12 shows the algorithm for generating the Failed flag of a cell. When

Failed is flagged is directly related to the definitions of computation interference and

illegal output errors. For a computation interference error, the trace signal transition

is not accepted by a process and thus is not contained in the action set where legal

enabled transitions are specified. The illegal output itself is the failure transition,

thus the status cell of its corresponding wire node signal should set the Failed flag

to be true.

4.6 Relative Ordering

The relative ordering specifies a safety property that one of the events always

occurs before the other. It is a key part of path based relative timing constraints. The

generation of relative ordering described in this thesis is similar to hand generation –

firing of another enabled transition before the failure transition, thus failure state is

never reachable.

Note that the relative ordering is not disabling the occurrence of failure transition

themselves but disables the ability to reach failure state. The failure transition, once

enabled, has to fire and fires after the controlling signal transition if this constraint

is applied to the design. Figure 4.13 clearly shows an example of relative ordering

b+ ≺ a−. Transition a− leads to the failure state. Firing b+ and then a− prevents

56

reaching a failure state and leads to the good state S4. The failure transition a− at

state S1 is not disabled.

Relative orderings can be compared in terms of their relative strength. The relative

strength of relative orderings is defined based on the flattened state transition graph

of the system where the root node is the initial state of the implementation and

the children nodes are consequent states directed by legal transitions as arcs. For

relative ordering A to be stronger than relative ordering B it must satisfy the following

conditions.

• Relative ordering B, if applied to the state transition graph, removes a failure.

• Relative ordering A, if applied to the state transition graph, is able to remove

the same failure.

• The subgraph that A removes contains the branch at which B is applied.

Figure 4.14 shows an example of relative ordering strength. Relative ordering a− ≺
b+ is stronger than c− ≺ d+ because a− ≺ b+ removes the subgraph that already

covers the relative ordering c− ≺ d+ and makes c− ≺ d+ be a redundant constraint.

Stronger constraints can cover weaker constraints and will result in a more com-

pact set of final relative timing constraints. Compared to the weaker constraint, a

stronger constraint cuts the state graph at a higher level which is closer to the root

node, and thus may over-constrain the design and cause unexpected errors. Weaker

constraints, on the other hand, guarantee the correctness while not over-constraining

the design, but results in more constraints. The number of relative timing constraints

directly determines the burden of pre- and postlayout timing validation.

The algorithms for generating relative timing constraints returns weaker con-

straints. Relative timing constraints are always generated near the failure point. In

the real scenario the behavior of a component is restricted by its adjacent environment.

Only a partial behavior will be passed through and others are not possible upon the

restriction of environment. Although weaker constraints resolve the errors, a large

amount of states are still not reachable. A better relative timing constraint could be

a constraint that not only removes the error but also happens to remove unreachable

states without over-constraining the design. This problem will be demonstrated in

57

the example section. Choosing the best relative timing constraint is left for future

work.

According to the top level algorithm in Figure 4.6, a bunch of information such

as αfail, αen, current state, previous state, and the dynamic set at the current and

previous states needs to be generated to construct relative ordering.

The failure transition αfail is normally the last signal transition in the error trace

because the verification engine halts when an error occurs. Since CCS does not

distinguish the logic levels of transitions, only a list of signal names in sequence are

returned from the formal verification engine. Hence the trace is processed and a

transition count is added to each corresponding signal transition of the trace.

As the trace status tableau is a two-dimensional array, indexing is used to locate

a cell for finding any necessary information. Figures 4.15, 4.16, 4.17, 4.18 and 4.19

show how to generate the failure transition, current state, previous state, enabling

transition and the dynamic set respectively. The failure transition is just the last

element of the trace. The current state of the POC can be located as the cell where

the Failed flag is true. The previous state of the POC can be traversed backward

horizontally to find any change of state. The enabling transition that changes the

POC state from the previous to the current one can simply be derived from the

x-index of previous state. By traversing all the wire node signals at the index of

state, the enabled signals are all added to the dynamic set.

The transition αfail is associated with dynamic(curState) while transition αen is

associated with dynamic(prevState). The relative constraints constructed at αen are

stronger than the ones at αfail. The constraints at αen must be considered in case

that there is no controlling signals at αfail, i.e. dynamic(curState) is an empty set.

4.7 POD Backtracking

Pre- and postlayout timing validation must be performed to validate that the

constrained timing holds with extracted parasitic parameters. Static timing analysis

using commercial CAD tool such as Primetime employs clocked algorithms which

requires a clock signal as a global reference.

58

To validate the relative timing constraints of asynchronous circuits using command

set data check, a virtual clock must be specified with the -clock option. The POD

of path based relative timing constraints is used as the virtual clock. Generally this

virtual clock is mapped to the input port of a module, e.g., the request signal of

handshake controller.

The algorithms described in this thesis for the automatic generation of relative

timing constraints supports user defined point-of-divergence. By default, the algo-

rithms returns the first or the closest matching causal signal as point-of-divergence.

Figure 4.20 presents the algorithm for finding the point-of-divergence. It takes

the x-axis and y-axis indices of the two transitions in relative ordering, trace status

tableau and the user defined POD and returns a desired POD. The full causal list

of each event is generated by the GenCausal subroutine and then the MatchPOD

subroutine finds the point-of-divergence either by default with nothing specified for

UserDefPOD or by matching against the user specified POD.

Normally all the traces of a reactive system start with its first receiving transition

from the environment. For an asynchronous handshake controller, a request is always

the first transition. Hence any signal transition in the trace can be backtracked down

to the first transition as a causal relationship.

Backtracking to find the POD employs logical causal relationships which is differ-

ent from the concept of enabling transitions described for relative ordering generation.

The enabling transition moves from one agent to another. It is incorporated as the

state change of an agent but does not necessarily enable an output to fire. Logical

causal relationships, on the other hand, refers to when a signal enters an unstable state

by some transition and becomes ready to fire. Figure 4.21 describes the algorithm

for generating a full list of causal signals given a transition. It takes the index of a

signal transition that one wants to backtrack and the trace status tableau and returns

an array of signal transitions that sequentially lists all causal events from the end to

the very beginning. This is a process that recursively traces causal signal transitions

backward. The causal signal transition just found is fed back into the algorithm itself

to find its parent causal transition recursively until it hits the beginning of the trace.

59

The full causal path of transitions is reversely stored where the original relative

ordering event is stored in the last position of array, its direct causal event is stored

in the second to the last position and the very first causal one is stored in the first

position. The length of the full causal path may be different for the two events of

the relative ordering. The reverse storage guarantees the perfect alignment of causal

events. Figure 4.22 shows the algorithm for matching POD events from two causal

lists of transitions. First all the common causal transitions from the beginning are

recorded in an array. It is normal to have a couple of common causal points of

divergence for two racing events. If the user does not define his/her desired POD, the

closest POD is returned. Otherwise it either returns the user defined POD or reports

that an error and exits if no matched user defined POD is found.

Each computation interference or nonconformant illegal output error may have

more than one candidate solution relative timing constraint depending on concurrency

at the failure point. Since the formal verification engine performs untimed verification,

all the enabled and ready-to-fire signals can fire in arbitrary orders. The candidate

relative timing constraints for removing a single error are mutual exclusive. Thus only

one of them is fed back into the formal verification engine. While all the possibilities

need to be evaluated, the solution set of relative timing constraints grows like a tree.

60

Figure 4.1. Partial state graph of GasP circuit.

61

001

ab1

ab0

000

a01 0b1

a00 0b0

a
a

b
b

b a

c c

b a

b
b

a
a

c c

b a

b a

Figure 4.2. Semi-modular state transition graph of 2-input NAND gate.

S0

S1

S2

S3

a

b

b c

c

c

d c

Figure 4.3. An example of flattened STG.

62

Pi’ Pj’

SPEC
IMPL

S’

τ α β

Figure 4.4. An illustration for deadlock.

��
��

��
���

I, S

I ′, S′

�
�

�
��

�
�

�
��

���������

���������

																

																
 � � � � � �

� � � � � �

βn−1

αm−1

β2

α2

β1

α1

αfail

αen

Figure 4.5. Template graph for mapping failure points.

63

Procedure RTGen (POCConstrOption, UserDefPOD, Analyze);
1: TST ← GenTST(Analyze);
2: αfail ← GenFailTrans(Analyze::Trace);
3: curState ← GenCurState(TST, αfail);
4: prevState ← GenPrevState(TST, curState);
5: αen ← GenEnTrans(prevState);
6: curDynamicSet ← GenDynamic(curState, TST, Analyze::WireSigSet);
7: prevDynamicSet ← GenDynamic(prevState, TST, Analyze::WireSigSet);
8: for all α ∈ curDynamicSet ∧ α �= αfail do
9: pod ← GenPOD(α, αfail, TST, UserDefPOD);

10: if α ∈ sort(curState) then
11: push (POCRT, pod �→ α ≺ αfail);
12: else
13: push (nonPOCRT, pod �→ α ≺ αfail);
14: end if
15: end for
16: for all α ∈ prevDynamicSet ∧ α �= αen do
17: pod ← GenPOD(α, αen, TST, UserDefPOD);
18: if α ∈ sort(prevState) then
19: push (POCRT, pod �→ α ≺ αen);
20: else
21: push (nonPOCRT, pod �→ α ≺ αen);
22: end if
23: end for
24: return (POCConstrOption) ? POCRT : (POCRT ∪ nonPOCRT);

Figure 4.6. Top level algorithm of ARTIST.

Procedure GenCell (WireSig, TraceSig, PrevCell, ErrType);
1: PrevState ← PrevCell.state;
2: PrevNumOfTrans ← PrevCell.numOfTrans;
3: PrevEnabled ← PrevCell.enabled;
4:
5: NxtState ← GenNxtState (WireSig, TraceSig, PrevState);
6: NxtNumOfTrans ← GenNxtNumOfTrans (WireSig, TraceSig,

PrevNumOfTrans);
7: NxtEnabled ← GenNxtEnabled (WireSig, TraceSig, PrevEnabled, NxtState);
8: Failed ← GenFailed (WireSig, TraceSig, NxtState, ErrType);
9: return {NxtState, NxtNumOfTrans, NxtEnabled, Failed};

Figure 4.7. Algorithm for constructing the cell of trace status tableau.

64

Procedure GenNxtState (WireSig, TraceSig, PrevState);
1: NxtState ← PrevState;
2: if TraceSig ∈ InternalSigSet then
3: if TraceSig ∈ sort(PrevState) then
4: NxtState ← WireSigSTG(PrevState, TraceSig);
5: end if
6: else if TraceSig ∈ PrimaryInputSet then
7: if WireSig ∈ PrimaryInputSet then
8: NxtState ← SpecSTG(PrevState, TraceSig);
9: else if TraceSig ∈ sort(PrevState) then

10: NxtState ← WireSigSTG(PrevState, TraceSig);
11: end if
12: else if TraceSig ∈ PrimaryOutputSet then
13: if WireSig ∈ PrimaryInputSet then
14: NxtState ← SpecSTG(PrevState, TraceSig);
15: else if TraceSig ∈ sort(PrevState) then
16: NxtState ← WireSigSTG(PrevState, TraceSig);
17: end if
18: end if
19: return NxtState;

Figure 4.8. Algorithm for generating next state.

0 2

clk

data

1 3 4

0 1

data 0 ≺ clk 2

Figure 4.9. Timing graph of unrolling representation of signal transition for clocked
system.

65

Procedure GenNxtNumOfTrans (WireSig, TraceSig,
PrevNumOfTrans);

1: NxtNumOfTrans ← PrevNumOfTrans;
2: if WireSig eq TraceSig then
3: NxtNumOfTrans ← PrevNumOfTrans + 1;
4: end if
5: return NxtNumOfTrans;

Figure 4.10. Algorithm for generating transition count.

Procedure GenNxtEnabled (WireSig, TraceSig, PrevEnabled,
CurState);

1: NxtEnabled ← PrevEnabled;
2: if PrevEnabled then
3: if WireSig eq TraceSig then
4: NxtEnabled ← false;
5: end if
6: else
7: if TraceSig ∈ sort(CurState) ∧ WireSig ∈ ActionSet(CurState) then
8: NxtEnabled ← true;
9: end if

10: end if
11: return NxtEnabled;

Figure 4.11. Algorithm for generating Enabled bit.

Procedure GenFailed (WireSig, TraceSig, CurState, ErrType);
1: Failed ← false;
2: if ErrType eq COMPUTATION INTERFERENCE then
3: if TraceSig ∈ sort(CurState) ∧ TraceSig /∈ ActionSet(CurState) then
4: Failed ← true;
5: end if
6: else if ErrType eq ILLEGAL OUTPUT then
7: if WireSig eq TraceSig then
8: Failed ← true;
9: end if

10: end if
11: return Failed;

Figure 4.12. Algorithm for generating Failed bit.

66

b+ a-

S2 Fail

S4

S1

c+

a-

Figure 4.13. A demonstration of failure transition.

b+ a-

S2 S3

S5

S1

c-

S4

S7

d+

S6

Figure 4.14. An example to illustrate the strength of relative orderings.

Procedure GenFailTransIndex (Trace);
return sizeof (Trace) - 1;

Figure 4.15. Algorithm for generating failure transition.

Procedure GenCurState (TST, FailTransIndex);
1: curStateIndex.x ← FailTransIndex;
2: curStateIndex.y ← 0;
3: if TST[FailTransIndex][yIndex].FailedFlag == true then
4: curStateIndex.y ← yIndex
5: end if
6: return curStateIndex;

Figure 4.16. Algorithm for generating current state.

67

Procedure GenPrevState (TST, curStateIndex);
1: prevStateIndex.x ← curStateIndex.x;
2: prevStateIndex.y ← curStateIndex.y;
3: if TST[xIndex][curStateIndex.y].state !=

TST[curStateIndex.x][curStateIndex.y].state then
4: prevStateIndex.x ← xIndex;
5: end if
6: return prevStateIndex;

Figure 4.17. Algorithm for generating previous state.

Procedure GenEnTrans (prevStateIndex);
return prevStateIndex.x + 1;

Figure 4.18. Algorithm for generating enabling transition.

Procedure GenDynamic (stateIndex, TST, WireSigSet);
1: for yIndex = 0 to sizeof (WireSigSet) do
2: if TST[stateIndex.x][yIndex].EnabledFlag == true then
3: push (dynamicSet, WireSigSet[yIndex]);
4: end if
5: end for
6: return dynamicSet;

Figure 4.19. Algorithm for generating dynamic set.

Procedure GenPOD (befIndex, aftIndex, TST, UserDefPOD);
1: befCausalArray ← GenCausal (TST, befIndex);
2: aftCausalArray ← GenCausal (TST, aftIndex);
3: POD ← MatchPOD (befCausalArray, aftCausalArray, UserDefPOD);
4: return POD;

Figure 4.20. Algorithm for generating point-of-divergence.

68

Procedure GenCausal (TST, TransIndex);
1: for xIndex = TransIndex.x to 0 do
2: if TST[xIndex][TransIndex.y].Enabled == true then
3: if xIndex == 0 then
4: break;
5: else
6: continue;
7: end if
8: else
9: newIndex.x ← xIndex;

10: newIndex.y ← findYIndex (xIndex + 1);
11: push front (CausalArray, newIndex);
12: GenCausal (TST, newIndex);
13: end if
14: end for
15: return CausalArray;

Figure 4.21. Algorithm for generating full causal list of transitions.

69

Procedure MatchPOD (befCausalArrary, aftCausalArray,
UserDefPOD);

1: for index = 0 to min(sizeof(befCausalArray), sizeof(aftCausalArray)) do
2: if befCausalArrary[index] == aftCausalArray[index] then
3: push front(commonArray, befCausalArray[index]);
4: else
5: break;
6: end if
7: end for
8: if UserDefPOD is empty then
9: POD ← commonArray.last();

10: else
11: if UserDefPOD ∈ commonArray then
12: POD ← UserDefPOD;
13: else
14: report error();
15: exit();
16: end if
17: end if

Figure 4.22. Algorithm for matching POD.

70

Table 4.1. An example of trace status table.

W 0 1 2 3 4 5
0 a A00,0,T,F A01,1,F,F A02,1,F,F A02,1,F,F A00,1,T,F A01,2,F,F
1 b B00,0,T,F B01,0,T,F B02,1,F,F B02,1,F,F B00,1,T,F B01,1,T,F
2 c C00,0,F,F C05,0,F,F C01,0,T,F C06,1,F,F C06,1,F,F C02,1,F,F
3 d D00,0,F,F D05,0,F,F D05,0,F,F D05,0,F,F D01,0,T,F D01,0,T,T
4 e E00,0,F,F E02,0,F,F E05,0,F,F E05,0,F,F E01,0,T,F E01,0,T,F
5 d F00,0,F,F F03,0,F,F F03,0,F,F F01,0,T,F F12,1,F,F F12,1,F,F

T init a b c d a

CHAPTER 5

CASE STUDY

This chapter studies some real examples ranging from a simple C-element, to

linear controller and then to a relatively complex six-four GasP circuit to demonstrate

how the algorithms described in Chapter 4 work for computation interference and

nonconformant illegal output errors and the design flow described in Chapter 2.

5.1 Simple C-element

A C-element is a commonly used element in asynchronous circuit design. It

outputs goes low if its two inputs are both low whereas the output goes high if

its two inputs are both high. For other combinations of input values, the output

retains its previous value. Figure 5.1 and Table 5.1 are the symbol and truth table of

the C-element, respectively.

Figure 5.2 is a C-element implemented with three 2-input and one 3-input NAND

gates. This is a simple enough example to demonstrate how the algorithms work on a

computation interference error. Based on the observable input and output behavior

of C-element, its specification in CCS can be modeled as

CSPEC = a.b.c.CSPEC + b.a.c.CSPEC

and its CCS circuit specification is shown in Figure 5.3.

The CCS specification of the C-element design is composed of four elements using

the parallel composition operator “|” such that each agent evolves concurrently. Lines

2 to 5 define the four primitive NAND gates with their initial state and the input

and output port mappings. As an example, line 2 represents the NAND gate whose

output is signal ab. NAND001 is its initial state where the first 0 denotes the input

port a to be logically low, the second 0 denotes the input port b to be logically low as

well, and the last 1 denotes the output port c is initially high. The naming convention

72

of initial values of input and output ports follows the rule by which output ports use

0 and 1 to represent logical low and high while input ports uses 0 and port names

to represent logical low and high. NANDabc0 means that the initial values of input

ports are all 1s and output port is low. The input and output port names of local

components are relabeled by the real connection wire names using relabeling operator

“/”, e.g. ab/a means port a is relabeled with wire name ab. Line 6 uses restriction

operation “\” to abstract away the internal signals.

Let us take an error trace as an example to demonstrate how to solve a compu-

tation interference error. The trace returned by the formal verification engine is as a

b ab c a and its logic level and unrolling count mapping is shown in Table 5.2. The

mapping from CCS to logic levels depends on the initial values of the signals. For the

C-element shown in Figure 5.2 the initial value of a, b, c is 0 whereas the initial value

of internal signal ab, ac and bc is 1. The unrolling count representation of signal

transition just counts the number of times a signal has changed. Note that the first

transition is denoted as unrolling count 0 instead of 1.

The trace status tableau is then constructed as in Table 5.3. The bottom row

is the error trace, the second leftmost column lists the complete set of wire node

signals. Signals a and b are primary inputs, signal c is the primary output, and ab,

bc, ac are internal signals. The horizontal and vertical indices are explicitly specified

for illustration purpose. The states in the cells of trace status tableau are simplified

states due to width limitations of the paper. The primary inputs a and b share one

state graph of the specification denoted as S. The internal signals and the primary

output have their own state graphs associated with each gate.

In this computation interference example, a 1 (a−) is the failure transition. The

Failed flag is true in the cell of TST[5][3] indicating that the POC is ac and the error

occurs at gate B. The current state is B01, which is actually the state NANDab1 in

line 4 of Figure 3.3. The only transition signal gate B can make is to fire its output

ac. The failure transition a 1 is trying to disable the output transition and causes

computation interference. The information used for generating relative ordering is

summarized as follows.

• αfail: a 1 (a−)

73

• Current state: I ′ = (A06|B01|C01|D12), S ′ = S00

• Previous state: I = (A06|B05|C05|D01), S = S02

• αen: c 0 (c+)

• dynamic(I ′): b 1 (b−), ac 0 (ac−), bc 0 (bc−)

• dynamic(I): c 0 (c+)

The state of POC changes from B05 to B01 by transition c 0 (c+). The dynamic

sets at C01 and C05 can be generated by traversing column 5 and 3 respectively to

find if the Enabled flag is true. All of the information is mapped to a state transition

graph shown in Figure 5.4.

There is no available candidate relative ordering from state B05 since the only

enabled and ready-to-fire transition is c+. At state B01, three enabled transitions of

the system can fire before αfail.

1. b 1 ≺ a 1; (b− ≺ a−)

2. ac 0 ≺ a 1; (ac− ≺ a−)

3. bc 0 ≺ a 1; (bc− ≺ a−)

The above set of relative timing constraints contains nonPOC signals since b and ac

do not belong to the sort set of the POC gate B. If the option of POC constraint is

enabled, only bc 0 ≺ a 1 will be returned.

The algorithms are able to remove the failures but do not evaluate if the candidate

relative timing constraints generated may lead to other errors. For example, the

candidate relative ordering b− ≺ a− is a bad constraint because the b− transition

in Figure 5.4 actually leads to a failure state as well.

Let us take relative ordering bc 0 ≺ a 1 as an example to demonstrate how to

generate the point-of-divergence. Transition bc 0 is enabled by transition c 0 by

backtracking Enabled flag of row 4. c 0 is enabled by transition ab 0 by backtracking

Enabled flag of row 5. Finally ab 0 is enabled by b 0 by backtracking Enabled flag

of row 2. Likewise, the full causal path of transition a 1 can be backtracked in the

74

same way. The full causal paths of both events are listed in Table 5.4. Transition b

0, ab 0, c 0 can all be points-of-divergence. By default c 0 is returned. If the user

specifies b as his/her desired POD, b 0 is returned.

There are a total of 25 sets of relative timing constraints shown in Table 5.5 that

can be applied to the circuit implementation such that the circuit conforms to the

specification to become hazard-free. The solution sets of constraints are unoptimized

constraints and the number varies from 4 to 6. The difference in the number of

constraints is affected by the strength of a constraint which will be presented in

Section 6.2. Non-POC constraints are normally stronger than strict POC constraints.

The constraints of 200 – 203 are all non-POC constraints and result in the most

compact set.

A single error may have one or more relative timing solution constraints. Since

the solution constraints for a single error are mutually exclusive, each time only one

of them is added to the current available set of constraints and triggers another run of

formal verification. To guarantee the completeness of analysis, all the relative timing

constraint combinations are evaluated. Thus the relative timing constraints grow like

a tree. Every node of the constraint tree represents an error type whereas every arc

represents a relative timing constraint. More intuitively, at a node where a computa-

tion interference occurs, its egress arcs represent the relative timing constraints that

solve this error. If it is an unsolvable error such as deadlock or some input/output

transition is required but not possible to be generated by the circuit implementation,

this node is marked as bad. If no error occurs after a set of constraints is applied,

the node is marked as good. Every path from root node to a good node is a solution

set of relative timing constraints.

Options can be specified by the user to deliver his/her preference on how the tool

generates relative timing constraints. A set of solution constraints can be quickly

generated by employing a depth first method. This method always chooses one

constraint path and continues running verification until there exist no errors. The

set of constraints generated by this option may have more constraints but uses less

time and resources. Another option employs breadth first search method where every

possible constraint must be evaluated before the next level run starts. This always

75

results in the most compact set of solution constraints but consumes more resources

because every auxiliary paths in the tree must be stored. The user can also specify an

option to return all the possible solution sets of relative timing constraints. Figure 5.5

shows a tree of relative timing constraints. The black nodes are bad nodes while pure

white nodes are good nodes. The nodes with “ci” means that it is a computation

interference error. {rt0, rt01}, {rt0, rt03}, {rt2, rt20} and {rt2, rt21} are solution

sets of relative timing constraints.

5.2 Six-Four GasP Circuit

5.2.1 Introduction to GasP

The GasP family of asynchronous circuits shows ultra high speed by transporting

data either in linear pipeline or switch fabric. The 4-2 GasP circuit operates at the

speed of a three-inverter ring oscillator, and a test chip in 0.35μ technology exhibits

throughput of 1.5 giga data items per second (GDI/s) [20]. The GasP family circuits,

including basic, branch and merge modules, are used in an experimental test chip

FLEETzero [62]. This work employs a completely different architecture than tradi-

tional op code based designs and emphasizes a communication centric paradigm. Data

transforming is performed at local ship elements and data transporting is performed

by the only instruction move through a switch fabric which is built with GasP family

circuits.

GasP circuits employ single-track handshake signaling [63, 64, 65]. Namely a single

wire functions as both request and acknowledge of handshake protocol. Figure 5.6

shows the circuit diagram of a 6-4 basic GasP circuit [66]. The pred and succ signals

represent state wires of predecessor and successor pipeline stages. The logical low and

high levels of pred and succ indicate their corresponding predecessor and successor

stages are full and empty respectively. The fire signal makes the data path latch

transparent if the predecessor is detected full and the successor is detected empty.

The fire signal then resets the predecessor to be empty and sets the successor to

be full. It takes six gate delays of forward latency from the predecessor stage being

full to successor stage being full and four gate delays of backward latency from a

successor stage being empty to its predecessor stage being empty. This is the reason

76

why it is called a 6-4 GasP circuit. Likewise, the 4-2 and 4-4 GasP circuits follow the

same naming rule with different forward and backward latencies.

The relative timing constraints of 6-4 GasP circuit has been validated with postlay-

out extracted parasitics using clocked static timing analysis engine in [67]. However,

these relative timing constraints are generated by hand from the intuition only and

may not be a full set of relative timing constraints.

5.2.2 Converting Single Track to Double Track

Single track signaling was first proposed by van Berkel to combine the advantages

of two-phase and four-phase handshaking protocols by employing a single wire for

both request and acknowledge signaling [63]. It requires only one wire and two

transitions to complete a handshake cycle. The state wire also returns to its initial

logic level when a handshaking is done.

The formal verification engine employed in this thesis does not directly support

single track signaling. Fortunately, the symmetry of the GasP family circuit structure

allows us to re-partition a pipelined GasP circuits into a double track handshake

protocol. Figure 5.7 shows a 3 deep GasP pipeline with the new partition. This is a

linear pipeline composed of three 6-4 basic GasP circuits that is delimited by dashed

lines and named by lower case letters. The partitioned double track GasP circuits

are delimited by double dotted lines and named by capital letters.

This repartitioning process changes only the hierarchy of the pipeline and the

logic remains unchanged. The GasP family also includes branch and merge modules

upon which switch fabrics can be built. The branch and merge modules follow the

same structure as the basic module by resetting predecessors with stand-alone n-mos

transistor and setting the successor with stand-alone p-mos transistors. This makes

it a perfectly seamless partition. Figure 5.8 is a simplified switch network that is

composed of basic, branch and merge modules. Whenever there is a request from

a previous stage, the branch module chooses the destination path from paralleled

pipelines based on the direction bit. The merge module simply receives one request

one time from two paths and passes it to the next stage. Due to the page margin,

only one pipe stage that uses a basic GasP module is drawn.

77

The repartitioned GasP module “splits” the single track handshaking into separate

request and acknowledge signals (shown in Figure 5.9) which fit the formal verification

engine very well. This hierarchy cut requires that a single diffusion connected network

(DCN) to be split across the protocol channels. To allow correct modeling of the

gate, the complementary dynamic gates connected to the same wire must be modeled

as a single function. Thus the single p-mos pull-up and single n-mos pull-down

logic, together with two serial p-mos pull-up and two serial n-mos pull-down keepers,

can be modeled as a diffusion connected network (DCN) gate for speed-independent

verification since wire delay is not considered in this case.

The repartition moves the long state wire between original GasP pipeline inside

the new hierarchical module. This long wire plays an important role of performance of

GasP pipelines [68]. The wire delay must be taken into account and delay insensitive

verification is imperative.

To perform delay insensitive verification, all the wire forks must be modeled into

gates such that the unbounded delay is assumed. There are two ways to model wire

forks.

• Add one-to-two fork module at each node where a wire fork exists.

• Add buffers to all the branching out paths.

The CCS definition of a one-to-two fork module is defined as

FORK = a.(’b.’c.FORK + ’c.’b.FORK)

If there exists a one-to-multiple fork node, two or more one-to-two fork modules will

be used. The buffers can be added to all the branches to model arbitrary ordering

of occurrences as well. Normally when a wire fork has only two branches and is

branching to the same gate, one-to-two fork modules will be used. When it is a

one-to-multiple fork and some of the branches already have single input single output

elements such as buffers and inverters, adding buffers to those branches that directly

outputs to a multi-input gates is preferred. In other cases, the designer can use

either method based on his/her preference. Figure 5.10 shows the double track GasP

basic module with fork module or buffers added. The squares represent one-to-2 fork

modules while triangles without bubbles represent buffers.

78

The node lo in Figure 5.9 is actually pulled up by predecessor and pulled down by

successor. Putting both pull-up and pull-down logic in a single module may mislead

the reader. If the node lo is pulled up, the transition lo+ will pass through the long

wire to reach the successor lo 1 and lo 0 while lo 2 belongs to the predecessor and

can see the pull-up immediately. Likewise lo 1 and lo 0 will see the pull-down sooner

than lo 2. Hence pull-up and pull-down directions both need buffers to model the

long wire delay. Since an inverter of lo 0 is already there, a buffer is added to the

output of lo.

Now that the double track new GasP architecture satisfies the requirements of the

formal verification engine, model checking and relative timing constraint generation

by ARTIST can be performed. Figure 5.11 is the CCS specification of the behavior of

6-4 basic GasP and Figure 5.12 is the CCS specification of the circuit implementation

for speed-independent verification where FC0Iabc00 is the DCN gate. This is a

relatively loose specification with less concurrency. The GasP family circuits make

use of wire delays to allow transient short circuits and achieve as much concurrency

as possible. However the DCN gate is modeled to be able to detect and report short

circuit failures which restricts the use of a more concurrency specification.

Table 5.6 lists one candidate set of relative timing constraints. This set has a total

of 11 relative timing constraints that have been optimized such that redundant con-

straints have been removed. The set of constraints is generated by a fully automatic

verification run that sets the depth first option.

Each relative timing constraint in Table 5.6 is explained in detail as follows. The

error trace is listed both with CCS and logic level formats. The causal paths from

point-of-divergence to point-of-convergence are listed as well. The unit gate delay

for each path is listed to show the number of signals that switch in the race paths

to determine if the constrained timing seems reasonable. (The early path should be

shorter than the late arriving path.) Each relative timing constraint is associated

with a circuit diagram figure with racing paths specified where blue arrow represents

shorter path and red arrow represents longer path. Finally the errors and their

corresponding constraints are analyzed from the perspective of the formal verification

engine and ARTIST as well as the logic view of the GasP circuit.

79

• rtc = rt0 : lo 0 ⇒ lo 2 0 ≺ li 1; (rtc = rt0 : lo+ ⇒ lo 2- ≺ li+;)

– Error Trace (CCS): li ’lo li ’lo 1

– Error Trace (+/-): li- lo+ li+ lo 1-

– PATHpod-poc0: lo+ lo 2-

– PATHpod-poc1: lo+ li+

– Unit Gate Delay: pod-poc0: 1; pod-poc1: 4

– Description: Short circuit failure on pull-up and pull-down keepers. The

second transition of li (li+) makes pull-down keeper enabled. lo 1− will

enable pull-up keeper and cause short circuit. One of the solutions is to

force lo 2− to disable the pull-down keeper before signal li is reset. It is

more straightforward to enforce the ordering lo 2−≺ lo 10 to disable pull-

down keeper and then enable pull-up keeper (this fits the long state wire

delay in reality). But constraint rt0 is relatively stronger. The constraint

satisfies the unit delay gate counts. See Figure 5.13.

• rtc = rt1 : lo 0 ⇒ li 1 ≺ fire 0;

– Error Trace (CCS): li ’lo ’lo 0 ’chk ’chk ’fire

– Error Trace (+/-): li- lo+ lo 0- chk+ chk - fire+

– PATHpod-poc0: lo+ li+

– PATHpod-poc1: lo+ lo 0- chk+ chk - fire+

– Unit Gate Delay: pod-poc0: 4; pod-poc1: 4

– Description: This is a short circuit failure on functional p-mos and n-

mos transistors. Transition fire+, which makes the latch transparent,

also sets the predecessor to be empty by enabling pull-down p transistor.

Thus disabling pull-up by li− before triggering pull-down by fire+ is

reasonable solution. Note that both paths from point-of-divergence to

point-of-convergence have the same gate delays as 4. However, the path

to fire+ passes through the long wire between GasP pipeline. Hence

the relative timing constraint still satisfies unit gate delay paradigm in the

80

real circuit although wire delay is not considered in this speed independent

verification. See Figure 5.14.

• rtc = rt2 : lo 0 ⇒ lo 1 0 ≺ lo 1;

– Error Trace (CCS): li ’lo ’lo 2 li ’lo 0 ’chk ’chk ’fire ’lo

– Error Trace (+/-): li- lo+ lo 2- li+ lo 0- chk+ chk - fire+ lo-

– PATHpod-poc0: lo+ lo 1-

– PATHpod-poc1: lo+ lo 0- chk+ chk - fire+ lo-

– Unit Gate Delay: pod-poc0: 1; pod-poc1: 5

– Description: This is a typical computation interference error where the

input is trying to disable an output transition. The output of inverter

lo 1− does not fire even when a new input transition lo− comes in. From

the function view of the circuit, lo 1− should occur such that the pull-up

keeper is enabled. From the unit delay view, it is obvious that lo 1−
should occur before lo−. See Figure 5.15.

• rtc = rt3 : fire 0 ⇒ lo 1 ≺ fire 1;

– Error Trace (CCS): li ’lo ’lo 2 li ’lo 0 ’chk ’chk ’fire ’ro ri ’chk ’chk ’fire

– Error Trace (+/-): li- lo+ lo 2- li+ lo 0- chk+ chk - fire+ ro- ri+ chk-

chk + fire-

– PATHpod-poc0: fire+ lo-

– PATHpod-poc1: fire+ ro- ri+ chk- chk + fire-

– Unit Gate Delay: pod-poc0: 1; pod-poc1: 5

– Description: This is the same with rt2 as a computation interference

error. The transition fire+ is supposed to reset predecessor to be by

pulling down lo. However, before lo− fires, fire+ sets the successor to

be full and then fire is reset to be low and trying to disable lo−. Firing

lo− anyway before fire− solves the error. Apparently the constraint

satisfies unit gate delay counts. See Figure 5.16. This is the same with

81

rt2 as a computation interference error. The transition fire+ is supposed

to reset predecessor to be by pulling down lo. However, before lo− fires,

fire+ sets the successor to be full and then fire is reset to be low and

trying to disable lo−. Firing lo− anyway before fire− solves the error.

Apparently the constraint satisfies unit gate delay counts. See Figure 5.16.

• rtc = rt4: lo 1 ⇒ lo 2 1 ≺ lo 2;

– Error Trace (CCS): li ’lo ’lo 2 li ’lo 1 ’lo 0 ’chk ’chk ’fire ’ro ri ’lo ’lo 1

’lo 0 ’chk ’chk ’fire li ’lo

– Error Trace (+/-): li- lo+ lo 2- li+ lo 1- lo 0- chk+ chk - fire+ ro- ri+

lo- lo 1+ lo 0+ chk- chk + fire- li- lo+

– PATHpod-poc0: lo- lo 2+

– PATHpod-poc1: lo- li- lo+

– Unit Gate Delay: pod-poc0: 1; pod-poc1: 5

– Description: This is a computation interference failure which is similar to

rt3. However, this time it is pull-down operation. Transition lo− should

turn on the pull-down keeper by lo 2+ but before it fires, empty status is

issued and another new request comes in and consequently tries to disable

lo 2+. Firing lo 2+ anyway solves the error. The constraint holds based

on unit gate delay counts. See Figure 5.17.

• rtc = rt5 : lo 1 ⇒ lo 1 1 ≺ fire 1;

– Error Trace (CCS): li ’lo ’lo 2 li ’lo 1 ’lo 0 ’chk ’chk ’fire ’ro ri ’lo ’lo 2

’chk ’chk ’fire

– Error Trace (+/-): li- lo+ lo 2- li+ lo 1- lo 0- chk+ chk - fire+ ro- ri+

lo- lo 2+ chk- chk + fire-

– PATHpod-poc0: lo- lo 1+

– PATHpod-poc1: lo- lo 0+ chk- chk + fire-

– Unit Gate Delay: pod-poc0: 1; pod-poc1: 4

82

– Description: Short circuit failure occurs in keeper pull-up and pull-down

stacks. It is similar with rt0. The firing of fire− enables pull-up keeper

and causes short circuit failure. One of the solutions is to force lo 1+ to

disable pull-up keeper before fire is reset. It is more straightforward to

enforce the ordering lo 1+ ≺ lo 2+ to disable pull-up keeper and then

enable pull-down keeper (this fits the long wire delay in reality as well).

But constraint rt5 is relatively stronger. This is a perfect symmetry with

rt0. See Figure 5.18.

• rtc = rt6 : fire 0 ⇒ ro 0 ≺ fire 1;

– Error Trace (CCS): li ’lo ’lo 2 li ’lo 1 ’lo 0 ’chk ’chk ’fire ’lo ’lo 1 ’lo 0

’chk ’chk ’fire

– Error Trace (+/-): li- lo+ lo 2- li+ lo 1- lo 0- chk+ chk - fire+ lo- lo 1+

lo 0+ chk- chk + fire-

– PATHpod-poc0: fire+ ro-

– PATHpod-poc1: fire+ lo- lo 0+ chk- chk + fire-

– Unit Gate Delay: pod-poc0: 1; pod-poc1: 5

– Description: The is the same with rt2 as a computation interference error.

Transition fire+ is supposed to set the successor to be full. However,

before ro− fires, fire+ resets the predecessor state wire to be empty and

then resets itself, thus trying to disable ro−. Firing ro− anyway before

fire− solves the error. The constraint matches the unit gate delay counts.

See Figure 5.19.

• rtc = rt7 : fire 0 ⇒ ri 0 ≺ ro 1;

– Error Trace (CCS): li ’lo ’lo 2 li ’lo 1 ’lo 0 ’chk ’chk ’fire ’ro ’lo ’lo 1

’lo 0 ’chk ’chk ’fire ’ro

– Error Trace (+/-): li- lo+ lo 2- li+ lo 1- lo 0- chk+ chk - fire+ ro- lo-

lo 1+ lo 0+ chk- chk + fire- ro+

– PATHpod-poc0: fire+ ro- ri+

83

– PATHpod-poc1: fire+ lo- lo 0+ chk- chk + fire- ro+

– Unit Gate Delay: pod-poc0: 2; pod-poc1: 6

– Description: This is a nonconformance error. An illegal output ro+ is

encountered. Simply force ri+ to occur before ro+ as indicated in the

specification to avoid the failure. This is actually caused by the fact that

fire+ resets predecessor to be empty and then resets itself in a faster

way than other path that sets successor to be full. This failure is a

polymorphism of rt6 with additional firing ro−. This constraint is not

strict POC constraint where the two events are not converged to a single

point. A much stronger strict POC constraint is fire+ ⇒ ri+ ≺ lo 0+.

The constraint satisfies the unit gate delay counts. See Figure 5.20.

• rtc = rt8 : lo 1 ⇒ lo 0 1 ≺ lo 2;

– Error Trace (CCS): li ’lo ’lo 2 li ’lo 1 ’lo 0 ’chk ’chk ’fire ’ro ri ’lo ’lo 2

’lo 1 ’chk ’chk ’fire li ’lo

– Error Trace (+/-): li- lo+ lo 2- li+ lo 1- lo 0- chk+ chk - fire+ ro- ri+

lo- lo 2+ lo 1+ chk- chk + fire- li- lo+

– PATHpod-poc0: lo- lo 0+

– PATHpod-poc1: lo- li- lo+

– Unit Gate Delay: pod-poc0: 1; pod-poc1: 5

– Description: The is the same with rt2 as a computation interference

error. After the predecessor is reset to be empty, it is filled with a new

data. But the reset path of fire still does not proceed (in this case, it is

reset by another path through ro− and ri+). Transition lo+ is trying to

disable lo 0+. It is obvious that the constraint satisfies unit gate delay

counts. See Figure 5.21.

• rtc = rt9 : fire 0 ⇒ lo 0 1 ≺ ri 1;

– Error Trace (CCS): li ’lo ’lo 2 li ’lo 1 ’lo 0 ’chk ’chk ’fire ’ro ri ’lo ’lo 1

’chk ’chk ’fire ’ro ri ’lo 0

84

– Error Trace (+/-): li- lo+ lo 2- li+ lo 1- lo 0- chk+ chk - fire+ ro- ri+

lo- lo 1+ chk- chk + fire- ro+ ri- lo 0+

– PATHpod-poc0: fire+ lo- lo 0+

– PATHpod-poc1: fire+ ro- ri+ chk- chk + fire- ro+ ri-

– Unit Gate Delay: pod-poc0: 2; pod-poc1: 7

– Description: Transition fire+ should reset predecessor to be empty and

successor to be full. Signal ri goes high and then low means that the

data element in successor has already been sent out to its next stage.

However, when the NOR gate detects the state wires of predecessor and

successor at the moment ri−, it finds out that the predecessor is still

full since lo 0+ does not fire yet. This incorrect detection will enable

fire again. Fortunately this error embodies a computation interference

in this case where lo 0+ is trying to disable NOR gate which is enabled

by ri−. Moreover the unit gate delay counts indicate that the delay of

path from fire+ to lo 0+ is less than the time the successor consumes

and sends out the data. Hence firing lo 0+ before ri+ correctly updates

the predecessor’s status and solves the error. See Figure 5.22.

• rtc = rt10: lo 2 ⇒ lo 2 2 ≺ li 3; (rtc = rt10: lo+ ⇒ lo 2- ≺ li+;)

– Error Trace (CCS): li ’lo ’lo 2 li ’lo 1 ’lo 0 ’chk ’chk ’fire ’ro ri ’lo ’lo 2

’lo 1 ’lo 0 ’chk ’chk ’fire li ’lo li ’lo

– Error Trace (+/-): li- lo+ lo 2- li+ lo 1- lo 0- chk+ chk - fire+ ro- ri+

lo- lo 2+ lo 1+ lo 0+ chk- chk + fire- li- lo+ li+ lo-

– PATHpod-poc0: lo+(2) lo 2-(2)

– PATHpod-poc1: lo+(2) li+(3)

– Unit Gate Delay: pod-poc0: 1; pod-poc1: 4

– Description: This is a nonconformance error with illegal output lo. In

this case the pull-down keeper performs the functional pull-down with li+

and lo 2+. The constraint fires lo 2− to disable pull-down keeper. The

85

logic level representation of rt10 is the same with rt0. This is a multicycle

constraint. See Figure 5.13.

86

Ca
b

c

Figure 5.1. C-element symbol.

�

�

�

�

a �

b �

ab�A

bc�C

ac�B

c�D �

�

Figure 5.2. C-element implemented with three 2-input and one 3-input NAND
gates.

1: C-ELEMENT =

2: (NAND001[a/a, b/b, ab/c]

3: | NAND001[a/a, c/b, ac/c]

4: | NAND001[b/a, c/b, bc/c]

5: | NANDabc0[ab/a, ac/b, bc/c, c/d]

6:) \{ ab, ac, bc } ;

Figure 5.3. CCS implementation of C-element.

87

I,S

I’,S’

c+

b- a-ac-bc-

Figure 5.4. Partial state graph mapped from trace status tableau.

rt0 rt2

rt03

rt1

rt02 rt20rt01 rt21

ci

ci

ci

Figure 5.5. Tree of relative timing constraints.

pred succ

fire

Figure 5.6. Six-Four basic GasP circuit.

88

BA
SI

C
BA

SI
C

ba
si

c
ba

si
c

ba
si

c

F
ig

u
re

5
.7

.
R

ep
ar

ti
ti

on
of

3
d
ee

p
G

as
P

p
ip

el
in

e.

89

di
re

ct
io

n

br
an

ch
ba

si
c

m
er

ge
ba

si
c

ba
si

c

BR
AN

CH
BA

SI
C

M
ER

G
E

BA
SI

C

F
ig

u
re

5
.8

.
R

ep
ar

ti
ti

on
of

a
si

m
p
li
fi
ed

sw
it

ch
n
et

w
or

k
co

m
p
os

ed
b
y

b
as

ic
,
b
ra

n
ch

an
d

m
er

ge
G

as
P

ci
rc

u
it

s.

90

li/1 ro/1

lo/0 ri/0

fire/0

lo_2/1

lo_1/1

lo_0/1

chk/0

chk_/1

Figure 5.9. Speed-independent model of repartitioned double track GasP basic
circuit.

li/1 ro/1

lo/0 ri/0

fire/0

lo_2/1

lo_1/1

lo_0/1

chk/0

chk_/1

lo_t/0

li0/1

li1/1

fire_b/0

fire1/0

fire0/0

Figure 5.10. Delay-insensitive model of repartitioned double track GasP basic
circuit.

L = li.’lo.lo.x.’lo. x. L

R = ’x.’ro.ri.’x.’ro.ri.R

SPEC = (L | R) \ {x}

Figure 5.11. Specification of double track GasP circuit.

91

GASPIMPL =

(FC0Iabc00[li/a, lo_2/b, lo_1/c, fire/d, lo/e] \

| INV01[lo/a, lo_0/b] \

| INV01[lo/a, lo_1/b] \

| INV01[lo/a, lo_2/b] \

| NORa00[lo_0/a, ri/b, chk/c] \

| INV01[chk/a, chk_/b] \

| INVa0[chk_/a, fire/b] \

| INV01[fire/a, ro/b] \

) \{ lo_0, lo_1, lo_2, chk, chk_, fire }

Figure 5.12. Speed-independent implementation of double track GasP circuit.

Figure 5.13. GasP speed-independent verification RT0.

92

Figure 5.14. GasP speed-independent verification RT1.

Figure 5.15. GasP speed-independent verification RT2.

93

Figure 5.16. GasP speed-independent verification RT3.

li/1 ro/1

lo/0 ri/0

fire/0

lo_2/1

lo_1/1

lo_0/1

chk/0

chk_/1

Figure 5.17. GasP speed-independent verification RT4.

94

Figure 5.18. GasP speed-independent verification RT5.

Figure 5.19. GasP speed-independent verification RT6.

95

Figure 5.20. GasP speed-independent verification RT7.

Figure 5.21. GasP speed-independent verification RT8.

96

Figure 5.22. GasP speed-independent verification RT9.

97

Table 5.1. Truth table of C-element.

a b c

0 0 0
0 1 cn−1

1 0 cn−1

1 1 1

Table 5.2. Signal transition mapping of CCS, logic level and unrolling count
representations.

CCS a b ab c a
Logic Level a+ b+ ab- c+ a-
Unrolling a 0 b 0 ab 0 c 0 a 1

Table 5.3. An example tableau for an error trace in verification of C-element.

TST W 0 1 2 3 4 5
0 a S00,0,T,F S01,1,F,F S02,1,F,F S02,1,F,F S00,1,T,F S01,2,F,F
1 b S00,0,T,F S01,0,T,F S02,1,F,F S02,1,F,F S00,1,T,F S01,1,T,F
2 ab A00,0,F,F A05,0,F,F A01,0,T,F A06,1,F,F A06,1,F,F A02,1,T,F
3 ac B00,0,F,F B05,0,F,F B05,0,F,F B05,0,F,F B01,0,T,F B02,0,F,T
4 bc C00,0,F,F C02,0,F,F C05,0,F,F C05,0,F,F C01,0,T,F C01,0,T,F
5 c D00,0,F,F D03,0,F,F D03,0,F,F D01,0,T,F D12,1,F,F D12,1,F,F

T init a 0 b 0 ab 0 c 0 a 1

Table 5.4. Full causal paths of relative ordering events.

Index 0 1 2 3

Shorter path b 0 ab 0 c 0 bc 0
Longer path b 0 ab 0 c 0 a 1

98

T
a
b
le

5
.5

.
C

om
p
le

te
so

lu
ti

on
se

ts
of

R
T

co
n
st

ra
in

ts
.

R
T

C
on

st
ra

in
ts

R
T

C
on

st
ra

in
ts

R
T

C
on

st
ra

in
ts

R
T

C
on

st
ra

in
ts

R
T

C
on

st
ra

in
ts

rt
00

0:
c

0
⇒

ac
0
≺

a
1;

rt
01

0:
c

0
⇒

ac
0
≺

a
1;

rt
02

0:
c

0
⇒

ac
0
≺

a
1;

rt
03

0:
c

0
⇒

ac
0
≺

a
1;

rt
04

0:
c

0
⇒

ac
0
≺

a
1;

rt
00

1:
c

0
⇒

ac
0
≺

b
1;

rt
01

1:
c

0
⇒

ac
0
≺

b
1;

rt
02

1:
c

0
⇒

ac
0
≺

b
1;

rt
03

1:
c

0
⇒

ac
0
≺

b
1;

rt
04

1:
c

0
⇒

bc
0
≺

b
1;

rt
00

2:
c

0
⇒

bc
0
≺

b
1;

rt
01

2:
c

0
⇒

bc
0
≺

b
1;

rt
02

2:
c

0
⇒

bc
0
≺

b
1;

rt
03

2:
c

0
⇒

bc
0
≺

b
1;

rt
04

2:
c

0
⇒

b
1
≺

c
1;

rt
00

3:
c

0
⇒

b
1
≺

c
1;

rt
01

3:
c

0
⇒

b
1
≺

c
1;

rt
02

3:
c

0
⇒

bc
0
≺

c
1;

rt
03

3:
c

0
⇒

bc
0
≺

c
1;

rt
04

3:
c

0
⇒

b
1
≺

ab
1;

rt
00

4:
c

0
⇒

b
1
≺

ab
1;

rt
01

4:
c

0
⇒

bc
0
≺

ab
1;

rt
02

4:
c

0
⇒

b
1
≺

ab
1;

rt
03

4:
c

0
⇒

bc
0
≺

ab
1;

rt
04

4:
c

0
⇒

a
1
≺

c
1;

rt
04

5:
c

0
⇒

a
1
≺

ab
1;

rt
05

0:
c

0
⇒

ac
0
≺

a
1;

rt
06

0:
c

0
⇒

ac
0
≺

a
1;

rt
07

0:
c

0
⇒

ac
0
≺

a
1;

rt
08

0:
c

0
⇒

ac
0
≺

a
1;

rt
09

0:
c

0
⇒

ac
0
≺

a
1;

rt
05

1:
c

0
⇒

bc
0
≺

b
1;

rt
06

1:
c

0
⇒

bc
0
≺

b
1;

rt
07

1:
c

0
⇒

bc
0
≺

b
1;

rt
08

1:
c

0
⇒

bc
0
≺

b
1;

rt
09

1:
c

0
⇒

bc
0
≺

b
1;

rt
05

2:
c

0
⇒

b
1
≺

c
1;

rt
06

2:
c

0
⇒

b
1
≺

c
1;

rt
07

2:
c

0
⇒

b
1
≺

c
1;

rt
08

2:
c

0
⇒

b
1
≺

c
1;

rt
09

2:
c

0
⇒

b
1
≺

c
1;

rt
05

3:
c

0
⇒

b
1
≺

ab
1;

rt
06

3:
c

0
⇒

b
1
≺

ab
1;

rt
07

3:
c

0
⇒

b
1
≺

ab
1;

rt
08

3:
c

0
⇒

bc
0
≺

ab
1;

rt
09

3:
c

0
⇒

bc
0
≺

ab
1;

rt
05

4:
c

0
⇒

a
1
≺

c
1;

rt
06

4:
c

0
⇒

ac
0
≺

c
1;

rt
07

4:
c

0
⇒

ac
0
≺

c
1;

rt
08

4:
c

0
⇒

a
1
≺

c
1;

rt
09

4:
c

0
⇒

a
1
≺

c
1;

rt
05

5:
c

0
⇒

ac
0
≺

ab
1;

rt
06

5:
c

0
⇒

a
1
≺

ab
1;

rt
07

5:
c

0
⇒

ac
0
≺

ab
1;

rt
08

5:
c

0
⇒

a
1
≺

ab
1;

rt
09

5:
c

0
⇒

ac
0
≺

ab
1;

rt
10

0:
c

0
⇒

ac
0
≺

a
1;

rt
11

0:
c

0
⇒

ac
0
≺

a
1;

rt
12

0:
c

0
⇒

ac
0
≺

a
1;

rt
13

0:
c

0
⇒

ac
0
≺

a
1;

rt
14

0:
c

0
⇒

ac
0
≺

a
1;

rt
10

1:
c

0
⇒

bc
0
≺

b
1;

rt
11

1:
c

0
⇒

bc
0
≺

b
1;

rt
12

1:
c

0
⇒

bc
0
≺

b
1;

rt
13

1:
c

0
⇒

bc
0
≺

b
1;

rt
14

1:
c

0
⇒

bc
0
≺

b
1;

rt
10

2:
c

0
⇒

b
1
≺

c
1;

rt
11

2:
c

0
⇒

b
1
≺

c
1;

rt
12

2:
c

0
⇒

bc
0
≺

c
1;

rt
13

2:
c

0
⇒

bc
0
≺

c
1;

rt
14

2:
c

0
⇒

bc
0
≺

c
1;

rt
10

3:
c

0
⇒

bc
0
≺

ab
1;

rt
11

3:
c

0
⇒

bc
0
≺

ab
1;

rt
12

3:
c

0
⇒

b
1
≺

ab
1;

rt
13

3:
c

0
⇒

b
1
≺

ab
1;

rt
14

3:
c

0
⇒

b
1
≺

ab
1;

rt
10

4:
c

0
⇒

ac
0
≺

c
1;

rt
11

4:
c

0
⇒

ac
0
≺

c
1;

rt
12

4:
c

0
⇒

a
1
≺

c
1;

rt
13

4:
c

0
⇒

a
1
≺

c
1;

rt
14

4:
c

0
⇒

ac
0
≺

c
1;

rt
10

5:
c

0
⇒

a
1
≺

ab
1;

rt
11

5:
c

0
⇒

ac
0
≺

ab
1;

rt
12

5:
c

0
⇒

a
1
≺

ab
1;

rt
13

5:
c

0
⇒

ac
0
≺

ab
1;

rt
14

5:
c

0
⇒

a
1
≺

ab
1;

rt
15

0:
c

0
⇒

ac
0
≺

a
1;

rt
16

0:
c

0
⇒

ac
0
≺

a
1;

rt
17

0:
c

0
⇒

ac
0
≺

a
1;

rt
18

0:
c

0
⇒

ac
0
≺

a
1;

rt
19

0:
c

0
⇒

ac
0
≺

a
1;

rt
15

1:
c

0
⇒

bc
0
≺

b
1;

rt
16

1:
c

0
⇒

bc
0
≺

b
1;

rt
17

1:
c

0
⇒

bc
0
≺

b
1;

rt
18

1:
c

0
⇒

bc
0
≺

b
1;

rt
19

1:
c

0
⇒

bc
0
≺

b
1;

rt
15

2:
c

0
⇒

bc
0
≺

c
1;

rt
16

2:
c

0
⇒

bc
0
≺

c
1;

rt
17

2:
c

0
⇒

bc
0
≺

c
1;

rt
18

2:
c

0
⇒

bc
0
≺

c
1;

rt
19

2:
c

0
⇒

bc
0
≺

c
1;

rt
15

3:
c

0
⇒

b
1
≺

ab
1;

rt
16

3:
c

0
⇒

bc
0
≺

ab
1;

rt
17

3:
c

0
⇒

bc
0
≺

ab
1;

rt
18

3:
c

0
⇒

bc
0
≺

ab
1;

rt
19

3:
c

0
⇒

bc
0
≺

ab
1;

rt
15

4:
c

0
⇒

ac
0
≺

c
1;

rt
16

4:
c

0
⇒

a
1
≺

c
1;

rt
17

4:
c

0
⇒

a
1
≺

c
1;

rt
18

4:
c

0
⇒

ac
0
≺

c
1;

rt
19

4:
c

0
⇒

ac
0
≺

c
1;

rt
15

5:
c

0
⇒

ac
0
≺

ab
1;

rt
16

5:
c

0
⇒

a
1
≺

ab
1;

rt
17

5:
c

0
⇒

ac
0
≺

ab
1;

rt
18

5:
c

0
⇒

a
1
≺

ab
1;

rt
19

5:
c

0
⇒

ac
0
≺

ab
1;

rt
20

0:
c

0
⇒

bc
0
≺

a
1;

rt
21

0:
c

0
⇒

bc
0
≺

a
1;

rt
22

0:
c

0
⇒

bc
0
≺

a
1;

rt
23

0:
c

0
⇒

bc
0
≺

a
1;

rt
24

0:
c

0
⇒

bc
0
≺

a
1;

rt
20

1:
c

0
⇒

ac
0
≺

b
1;

rt
21

1:
c

0
⇒

bc
0
≺

b
1;

rt
22

1:
c

0
⇒

bc
0
≺

b
1;

rt
23

1:
c

0
⇒

bc
0
≺

b
1;

rt
24

1:
c

0
⇒

bc
0
≺

b
1;

rt
20

2:
c

0
⇒

ac
0
≺

a
1;

rt
21

2:
c

0
⇒

ac
0
≺

a
1;

rt
22

2:
c

0
⇒

ac
0
≺

a
1;

rt
23

2:
c

0
⇒

ac
0
≺

a
1;

rt
24

2:
c

0
⇒

ac
0
≺

a
1;

rt
20

3:
c

0
⇒

bc
0
≺

b
1;

rt
21

3:
c

0
⇒

a
1
≺

c
1;

rt
22

3:
c

0
⇒

a
1
≺

c
1;

rt
23

3:
c

0
⇒

ac
0
≺

c
1;

rt
24

3:
c

0
⇒

ac
0
≺

c
1;

rt
21

4:
c

0
⇒

a
1
≺

ab
1;

rt
22

4:
c

0
⇒

ac
0
≺

ab
1;

rt
23

4:
c

0
⇒

a
1
≺

ab
1;

rt
24

4:
c

0
⇒

ac
0
≺

ab
1;

99

Table 5.6. Speed-independent set of RT constraints for 6-4 basic GasP circuit.

RT Constraints
rtc = rt0 : lo 0 ⇒ lo 2 0 ≺ li 1
rtc = rt1 : lo 0 ⇒ li 1 ≺ fire 0
rtc = rt2 : lo 0 ⇒ lo 1 0 ≺ lo 1
rtc = rt3 : fire 0 ⇒ lo 1 ≺ fire 1
rtc = rt4 : lo 1 ⇒ lo 2 1 ≺ lo 2
rtc = rt5 : lo 1 ⇒ lo 1 1 ≺ fire 1
rtc = rt6 : fire 0 ⇒ ro 0 ≺ fire 1
rtc = rt7 : fire 0 ⇒ ri 0 ≺ ro 1
rtc = rt8 : lo 1 ⇒ lo 0 1 ≺ lo 2
rtc = rt9 : fire 0 ⇒ lo 0 1 ≺ ri 1
rtc = rt10 : lo 2 ⇒ lo 2 2 ≺ li 3

CHAPTER 6

RESULTS

This chapter compares the relative timing constraints generated by ARTIST against

hand generation in terms of efficiency and quality. The objective of automation is to

reduce design time and avoid any error that may be introduced by human interference.

It is obvious that one push of a button of ARTIST is much faster than hand generation

which would have taken days or even months for a set of designs. The results of

verification also indicate that the relative timing constraints generated by ARTIST

have the same quality as the hand generation.

6.1 Efficiency

The proof of efficiency and correct functionality of ARTIST demands a large

set of example circuits. Recent research on a family of 4-phase latch protocols

provides sufficient examples that can be run through the formal verification engine

and ARTIST [69].

Birtwistle and Stevens define work that formally and exhaustively investigates all

the possible four-phase handshake latch controller protocols in a protocol family. It

starts from the most paralleled four-phase latch protocol LCmax whose CCS definition

is shown in Figure 6.1 and synchronization relationships between L and R channels

is shown in Figure 6.2. The Concurrency Workbench (CWB) converts the CCS

definition of LCmax into a minimized state graph which is shown in Figure 6.3. Then

concurrency reduction rules are applied to this minimized state graph which contains

32 states, thus the states are cut away which results in a new protocol with less

concurrency than LCmax. The exhaustive cut-aways results in 137 related four-phase

latch protocols.

The so called shape is used to represent cut-away notions. The initial state is

denoted as ‘+’, reachable states are denoted as ‘o’ and unreachable states are denoted

101

as ‘.’. Every shape represents a distinct 4-phase handshake protocol.

R1: o o o + o o o o o
R2: o o o o o
R3: o o o o o o o o o
R4: o o o o o o o o o

The cut-away is represented by the notation Labcd Refgh where Labcd cuts away left

side states while Refgh cuts away right side states. Labcd cuts the leftmost a reachable

states from R1, the leftmost b reachable states from R2, the leftmost c reachable states

from R3 and the leftmost d reachable states from R4 of LCmax. Refgh, on the other

hand, cuts the rightmost e reachable states from R1, the rightmost f reachable states

from R2, the rightmost g reachable states from R3 and the rightmost h reachable

states from R4 of LCmax. An example of shape by cut-away L2112 R2222 is shown

below.
R1: . . o + o o o . .
R2: . o o . .
R3: . o o o o o o . .
R4: . . o o o o o . .

The verification of 137 4-phase handshake protocols is performed through the

formal verification engine and ARTIST and selected verification results are listed in

Table 6.1. The program was run on a workstation configured with Intel r© XeonTM

3.20GHz CPU and 2GB memory. The average number of RT constraints for a protocol

generated by ARTIST is 10 and the average ARTIST runtime is 0.15 seconds.

6.2 Quality

The quality of relative timing constraints is measured by the number of constraints

that makes the circuit implementation conform to the specification compared to hand

generation. The number of relative timing constraints directly determines the working

load of pre and postlayout timing validation.

The objective of automating relative timing constraint generation is to largely

reduce the design time and maintain the fidelity without any interference of human

factors while still retain the quality of the constraints such that the number of RT

constraints generated are no more than that of hand-generation.

The set of relative timing constraints generated by hand is listed in the right

column of Table 6.2. This set exactly matches the set of {rt200, rt201, rt202, rt203}

102

in Table 5.5 not only in number but in content. Since the number of timing constraints

is the same, one can conclude that there exists a set of relative timing constraints

generated by ARTIST such that it has the same quality as the set generated by hand.

However, from the C-Element example described in Section 5.1, there are a total

of 25 solution sets of relative timing constraints, 1 of which has 4 constraints, 8 of

which have 5 constraints and 16 of which have 6 constraints. The difference in the

number of relative timing constraints is caused by the strength of the constraints.

Stronger constrains can result in a compact solution set but may over-constrain the

design and causes unexpected errors. Weaker constraints are conservative enough to

guarantee that they remove the errors while not over-constraining the design. The

size of weaker constraints is normally larger than that of stronger constraints.

The hand generation of relative timing constraints are always stronger constraints.

Hand design relies on a designer’s intuition and familiarity of the circuit structure,

plus the experience of asynchronous circuit designer to quickly locate the root cause of

the failure. Thus the hand generated constraints by experienced designer are usually

optimal constraints.

The set of relative timing constraints generated by ARTIST can be optimized

into a smaller size by removing redundant constraints. Remember that there are

still 24 solution sets of relative timing constraints for the C-Element that are larger

than hand generated set of constraints. By evaluating the strength of relative timing

constraints, some weaker constraints can be merged by stronger constraints and result

in the same compact size as hand generation.

Here a comparison is demonstrated between an unoptimized set of strict POC

constraints {rt190, rt191, rt192, rt193, rt194, rt195} in Table 5.5 and the set of

hand generated constraints. The ARTIST generated relative timing constraints with

corresponding error traces are shown in the left column of Table 6.2 while hand

generated constraints are shown in the right column of the table. The number of

hand-generated relative timing constraints is two fewer than this strict POC set of

constraints generated by ARTIST.

It can be proven that constraints rt192 and rt194 are redundant and can be covered

by constraints rt193 and rt195 by traversing the state transition graph of C-Element

103

shown in Figure 6.4. By observing the error traces, constraint rt192 is used to remove

the failure caused by transition c+ at state 80 while constraint rt193 removes the

failure caused by transition bc− at state 70 as well. Although the errors occur at the

same level, the failure associated by rt193 is stronger and it removes the subgraph

that contains rt192, making rt192 redundant. Notice that all the transitions leaving

state 80 are failure transitions. Therefore constraint rt193 is a more appropriate

constraint from the perspective of the state graph of the system. Likewise, constraint

rt194 can be merged by rt195 in the same way. Now the set of relative timing

constraints by ARTIST has 4 constraints {rt190, rt191, rt193, rt195}. But they are

still difference from the set of hand generated relative timing constraints. Let up take

a close look at constraint rt193 and H3. Constraint H3 removes the whole subgraph

down to transition a− at state 50. It is a much stronger constraint compared to rt193.

Therefore there may exist multiple sets of relative timing constraints that makes the

implementation conform to the specification. The differences between them are just

the strength of the constraints employed.

The complete set of relative timing constraints generated by ARTIST must be

optimized into a minimized set since redundant constraints increase the working load

of pre- and postlayout timing validation. Constraint rt192 and rt194 seem to be

suspicious because both of them lead to other failure points as they remove the

current failures. When removing the failure directed by c− at state 80, ARTIST is

blind and only focuses on the specific error trace returned by the formal verification

engine. Hence transitions {b−, bc−} at state 80 and transitions {b−, bc−} at state

70 are all regarded as solution transitions although transition b− at both state 80 and

70 and bc− at state 80 lead to other hazard states. This either results in deadlocks

where failure transitions are used as controlling signal transitions by each other such

as c+ ⇒ c− ≺ bc−, or uses a stronger relative timing constraint that makes the

circuit completely error-free.

The current method for removing redundant relative timing constraints is that

after a complete set of RT constraints is generated, each constraint is removed and

the formal verification is performed. If verification returns no errors, this temporarily

removed constraint is redundant. Otherwise it is a good constraint. This procedure is

104

not the best way to validate redundant constraints and hence motivates a future work

on developing an algorithm that can automatically optimize the set of relative timing

constraints to be the minimal one. This work is tied to another investigation on

whether choosing different relative timing constraints may have significant difference

for timing driven synthesis and place and route since weak and strong aspects of

relative timing constraints determines the slack margins of timing.

105

L = lr ↑ .gS.pV.la ↑ .lr ↓ .la ↓ .L
R = gV.rr ↑ .ra ↑ .pS.rr ↓ .ra ↓ .R
S = gS.pS.S
V = pV .gV .V

LCmax = (L|S|V |R)\{gV, pV, gS, pS}

Figure 6.1. CCS definition of LCmax.

L:

R:

lr↑

gS pV

la↑ lr↓ la↓�
�

�

• � � �

SYNCHRONISATIONS
gV

rr↑ ra↑ rr↓ ra↓�• � � � �

�

•

pS

Figure 6.2. Synchronization between L and R channels.

106

•
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �

lr
↑

la
↓

lr
↓

la
↑

lr
↑

la
↓

lr
↓

la
↑

lr
↑

la
↓

lr
↓

la
↑

lr
↑

la
↓

lr
↓

la
↑

lr
↑

la
↓

lr
↓

la
↑

lr
↑

la
↓

lr
↓

la
↑

lr
↑

la
↓

lr
↓

la
↑

rr
↑

rr
↑

rr
↑

rr
↑

rr
↑

ra
↑

ra
↑

ra
↑

ra
↑

ra
↑

rr
↓

rr
↓

rr
↓

rr
↓

rr
↓

rr
↓

rr
↓

rr
↓

rr
↓

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�
��

� �

�
��

� �

�
��

� �

�
��

� �

�
��

� �

�
��

� �

�
��

� �

�
��

� �

�
��

� �
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

F
ig

u
re

6
.3

.
S
ta

te
gr

ap
h

of
L
C

m
a
x
.

107

bc+ab+
ac+

ac+

ac+

bc+

bc+

a-b-

a- b-

ac- bc-

bc- ac-

a-,b-

b- a-a-

bc-ab+ac+

ab+
ac+

72

b-

ab+ab+

b-

b-

ac+ab+

bc-
ab+

ac+

b-b-

b-

b-

51

bc+
ab+ac-

bc+
ab+

73

ac-

a-

a- ab+

bc+

a-

ab+

bc+
a- a-

a-

c-

b0

c0

c+

a+b+

a+ b+

0

10 11

ab-

20

30

40

50

61 6260

75

86

74

85

94

8483

93

a1

92

70 71

80 81 82

90 91

a0

ac-

75

85

bc-
70

81

60 62

70

b- bc-c-

80

ac- c- a-

86

74 75

Figure 6.4. State transition graph of C-element.

108

Table 6.1. Four-phase protocol verification results

No. Name #Constraints RuntimeARTIST RuntimeFV #SpecStates #ImplStates
1 L2112 R2222 9 0.128 0.850 19 113
2 L3223 R0020 2 0.061 0.527 21 104
3 L2112 R2022 7 0.071 56.658 21 395
4 L3223 R2044 16 0.221 1.644 13 95
5 L2222 R2242 26 0.438 1.492 15 124
6 L1111 R0044 12 0.165 1.699 21 335
7 L2222 R0020 10 0.116 0.959 23 145
8 L2112 R2264 2 0.007 0.063 13 26
9 L2002 R2262 3 0.037 0.187 17 49
10 L1001 R2262 13 0.177 4.422 19 114
11 L3333 R0042 16 0.185 1.393 15 136
12 L3333 R0020 24 0.344 2.526 19 177
13 L3333 R0000 29 0.609 4.816 21 326
14 L3223 R2042 15 0.243 1.042 15 143
15 L3223 R2022 9 0.124 0.506 17 106
16 L3223 R0042 16 0.197 2.325 17 210
17 L3223 R0022 14 0.188 1.424 19 150
18 L3223 R0000 12 0.201 3.475 23 275
19 L3113 R2242 4 0.034 0.199 15 52
20 L3113 R2222 4 0.046 0.233 17 70
21 L3113 R2042 8 0.107 0.723 9 158
22 L3113 R0040 6 0.096 4.079 21 261
23 L3113 R0022 6 0.119 2.979 11 318
24 L3003 R2042 19 0.314 13.952 19 390
25 L3003 R0022 15 0.268 17.619 23 352
26 L2222 R2022 10 0.137 1.136 19 106
27 L2222 R0040 9 0.106 0.633 21 131
28 L2222 R0022 6 0.050 0.319 21 80
29 L2112 R2042 12 0.209 1.822 19 344
30 L2112 R0042 22 0.349 15.833 21 1251
31 L2112 R0020 21 0.227 18.869 25 426
32 L2002 R2022 12 0.158 3.119 23 351
33 L1111 R2042 9 0.131 2.993 21 280
34 L1111 R0022 4 0.060 0.583 25 136
35 L1001 R2042 4 0.048 0.452 23 291
36 L3333 R0044 2 0.015 0.138 13 52
37 L3113 R2044 3 0.028 0.289 15 68
38 L3113 R0044 1 0.010 0.112 17 65
39 L2002 R2222 4 0.070 0.464 21 85
40 L2222 R2222 5 0.032 0.223 17 106
41 L3113 R2022 10 0.126 1.667 19 220
42 L3113 R0042 7 0.100 4.465 19 272
43 L0000 R2242 25 0.931 44.525 23 1152
44 L0000 R2244 6 0.088 0.454 21 125
45 L0000 R2262 12 0.197 2.359 21 340
46 L0000 R4044 4 0.049 7.069 21 515
47 L0000 R4264 18 0.226 1.061 17 173
48 L1001 R2242 6 0.090 0.851 21 203
49 L1001 R2244 12 0.210 1.363 19 200
50 L1001 R4264 7 0.043 0.378 15 127
51 L1111 R2044 11 0.090 0.773 19 130
52 L1111 R2222 7 0.111 0.644 21 135
53 L1111 R2242 4 0.042 0.341 19 91
54 L1111 R2262 5 0.048 0.427 17 79
55 L1111 R2264 4 0.057 0.289 15 56
56 L2002 R2244 4 0.036 0.171 9 49
57 L2002 R2264 4 0.038 0.168 15 45
58 L2002 R4244 4 0.042 0.171 15 50
59 L2112 R2244 4 0.034 0.173 15 52
60 L2112 R2262 16 0.216 2.301 15 137

Average 10 0.150 3.930 18 207

109

Table 6.2. Unoptimized RT constraints and corresponding traces versus
hand-generated constraints for C-Element.

ARTIST Generated Hand Generated
rt190 a b ab c a c+ �→ ac- ≺ a- H1 c+ �→ ac- ≺ a-
rt191 a b ab c b c+ �→ bc- ≺ b- H2 c+ �→ bc- ≺ b-
rt192 a b ab c ac a ac ab c c+ �→ bc- ≺ c- H3 c+ �→ bc- ≺ a-
rt193 a b ab c ac a ac ab bc c+ �→ bc- ≺ ab+ H4 c+ �→ ac- ≺ b-
rt194 a b ab c bc b bc ab c c+ �→ ac- ≺ c-
rt195 a b ab c bc b bc ab ac c+ �→ ac- ≺ ab+

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Asynchronous circuits have power and performance benefits over its synchronous

counterpart. However asynchronous design is not widely adopted in industry due to

a lack of CAD tools, and requiring deep expertise in asynchronous circuit design. A

relative timing based asynchronous design methodology allows synchronous design

engineers to design asynchronous circuits using conventional clocked CAD tools with

little asynchronous circuit knowledge by making use of precharacterized asynchronous

templates.

The core of this design methodology is the asynchronous template characterization

that employs formal model checking and a set of relative timing constraints. These

were previously manually generated such that the circuit implementation conforms to

the specification. This manual generation of relative timing constraints is very time

consuming and prone to errors. It may take hours or even days for an experienced

design engineer to generate a complete set of relative timing constraints that guarantee

the correctness of design.

This thesis presents algorithms for automatically generating relative timing con-

straints with the aid of a bisimulation semantic based formal verification engine.

Path based relative timing constraints restrict the relative delays between two paths

from a common point of divergence to the point of convergence by incorporating

different relative arrival times of the two racing events. These algorithms remove any

possibility of internal glitches and nonconformance between the implementation and

the specification.

The algorithms are implemented in the tool ARTIST as an embedded function

call of the formal verification engine Analyze. The fundamental principle for resolving

errors is to enforce other concurrent transitions to occur before a failure transition

111

such that the failure states are made unreachable. All the necessary information

required for building a trace status tableau is collected from Analyze. The generation

of relative ordering and the common point of divergence is created by searching and

backtracking the trace status tableau.

The set of relative timing constraints generated by ARTIST is compared against

hand generated constraints in terms of efficiency and quality. It is obvious that

one push of the button of ARTIST is much more efficient than hand generation. The

verification result on over 100 4-phase latch controllers through concurrency reduction

shows the average number of relative timing constraints for a protocol generated by

ARTIST is 10 and the average runtime is 0.15 seconds per design. The quality of

relative timing constraints refer to the number of relative timing constraints because

the number of constraints are directly related to the working load of postlayout timing

validation. Since ARTIST generates weaker constraints, the solution sets of relative

timing constraints are equal or more than hand generated constraints. Those sets

that have more constraints may be optimized into a smaller size equal to the hand

generation. Therefore the sets of relative timing constraints generated by ARTIST is

much more efficient while retaining the same quality as hand generation.

The algorithms also support user-specified input signals as the point of divergence

of relative timing constraint such that it can be mapped to the reference virtual clock

pin to facilitate pre- and postlayout timing validation.

7.2 Future Work

The algorithms described in this thesis generate all the possible sets of relative

timing constraints that can make the implementation conform to the specification.

Some of them are composed of more constraints which are relatively weak and some

of them are composed of fewer constraints which are relatively strong. The most com-

pact set of relative timing constraints can be generated by specifying the breadth first

option, but this takes more time and consumes more memory since every constraint

node at each level must be evaluated by the formal verification engine and can then

move to next level. A designer may choose the depth first option to return a quick

set of relative timing constraints which may not be the most compact set. To release

112

the burden of pre- and postlayout timing validation, it is imperative to have some

algorithm that can optimize such a noncompact set of relative timing constraints

into an minimized one by removing redundant constraints. This algorithm may be

implemented by observing the traces of solution relative timing constraints. One

relative timing constraint can be regarded as redundant if the state node it applied

to has already been unreachable by enforcing other constraints.

Other future work is to investigate the impact of the different margins of relative

timing constraints on timing driven synthesis and place and route in terms of area,

power and performance. A single error can be resolved by multiple candidate relative

timing constraints. The weak and strong aspects of a relative timing constraint

determines the relative timing margin. The impact of choosing different margins of

relative timing constraints on the design has not been explored. If a loose margin

and an aggressive margin do have a difference in area, performance and power, the

relative timing constraints may be carefully chosen and traded off for timing driven

synthesis and place and route to gain the optimal results. The current algorithms

generate relative timing constraints to be specific to a single error trace returned from

formal verification engine. ARTIST only focuses on resolving current failure instead

of considering other failures a controlling event may potential lead to. This results

in many redundant relative timing constraints. Therefore choosing a proper relative

timing constraint becomes important in achieving an optimal design.

Although the incompatibility of single track of GasP family asynchronous circuits

with formal verification engine is resolved by re-partitioning the pipelined GasP into

a double track structure, the branch and merge modules of GasP family remain

unexplored. The major difficulty is the inability of analyzing the non-determinism

of GasP merge module with respect to tracking causalities. An alternative modeling

may be needed. Once the individual GasP modules are thoroughly verified, a system

level integration for large GasP application can be performed.

REFERENCES

[1] J. You, Y. Xu, H. Han, and K. S. Stevens. “Performance Evaluation of Elastic
GALS Interfaces and Network Fabric.” In Elsevier Electronic Notes in Theoret-
ical Computer Science, Vol. 200, No. 1, pages 17-32, February 2008.

[2] D. E. Muller. “Asynchronous logics and application to information processing. ”
In H. Aiken and W. F. Main, editors, Proc. Symp. on Application of Switching
Theory in Space Technology, pages 289-297. Stanford University Press, 1963.

[3] D. E. Muller and W. S. Bartky, “A theory of asynchronous circuits,” in Pro-
ceedings of an International Symposium on the Theory of Switching. Harvard
University Press, Apr. 1959, pp. 204–243.

[4] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design – A Systems
Perspective. Kluwer Academic Publishers, 2001.

[5] K. S. Stevens, P. Golani, and P. A. Beerel. “Energy and Performance Models
for Synchronous and Asynchronous Communication.” In IEEE Transactions on
Very Large Scale Integration, 2010.

[6] K. S. Stevens. “Energy and Performance Models for Clocked and Asynchronous
Communication.” In 9th International Symposium on Asynchronous Circuits and
Systems, May 2003, pp. 56-66.

[7] Semiconductor Industry Association. The International Technology Roadmap for
Semiconductors, 2005 edition.
http://www.itrs.net/links/2005itrs/design2005.pdf

[8] L. S. Nielsen. “Low-power Asynchronous VLSI Design.” PhD thesis, Department
of Information Technology, Technical University of Denmark, 1997.

[9] A. J. Martin. “The Limitations to Delay-Insensitivity in Asynchronous Circuits
”, Sixth MIT Conference on Advanced Research in VLSI, 1990.

[10] K. S. Stevens, D. Gebhardt, J. You, Y. Xu, V. Vij, S. Das, and K. Desai. “ The
Future of Formal Methods and GALS Design.” In Electronic Notes in Theoretical
Computer Science, Vol. 245, No.1, pages 115-134, August 2009.

[11] T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A. Takamjura, “TITAC:
Design of a quasi-delay-insensitive microprocessor,” IEEE Design Test Comput.,
vol. 11, pp.50-63, Feb. 1994.

[12] A. Takamura, M. Kuwako, M. Imai, T. Fujii, M. Ozawa, I. Fukasaku, Y. Ueno,
and T. Nanya, “TITAC-2: An asynchronous 32-bit microprocessor based on
scalable delay insensitive model,” in Proc. ICCD’97, pp.288-294.

114

[13] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth,
U. Cummings and T. K. Lee, “The Design of an Asynchronous MIPS R3000
Microprocessor”, Proc. 17th Conference on Advanced Research in VLSI, 164-181,
IEEE Computer Society Press, 1997.

[14] L. A. Plana, P. A. Riocreux, W. J. Bainbridge, A. Bardsley, J. D. Garside,
and S. Temple, “SPA - A synthesisable amulet core for smartcard applications,”
in Proc. International Symposium on Asynchronous Circuits and Systems, Apr.
2002, pp.201-210.

[15] T. Verhoeff, “Delay-insensitive codes: An overview,” Distrib. Comput. 3 (1988),
pp. 1-8.

[16] C. J. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous circuits,” in
Proceedings of the International Conference on Computer Design (ICCD), Oct.
1992, pp. 279–282.

[17] C. J. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous circuits,” in
IEEE Transactions on VLSI Systems, 1(2), June, 1993.

[18] C. J. Myers, “Computer-aided synthesis and verification of gate-level timed
circuits,” Ph.D. dissertation, Dept. of Elec. Eng., Stanford University, Oct. 1995.

[19] C. J. Myers, Asynchronous Circuit Design John Wiley & Sons, July 2001.

[20] I. Sutherland and S. Fairbanks, “GasP: A Minimalist FIFO Control,” Proc. of
the Seventh International Symposium on Advanced Research in Asynchronous
Circuits and Systems, 2001.

[21] I. E. Sutherland, R. F. Sproull, and D. F. Harris. Logical Effort: Designing Fast
CMOS Circuits. Morgan Kaufmann, 1999.

[22] I. E. Sutherland and J. K. Lexau, “Designing fast asynchronous circuits,” in 7th
International Symposium on Asynchronous Circuits and Systems, Mar. 2001, pp.
184–193.

[23] E. M. Clarke, O. Grumberg and D. A. Peled. Model Checking. MIT Press, 1999.

[24] R. E. Bryant. “Graph-based algorithms for boolean function manipulation.”
IEEE Transactions on Computers, 1986.

[25] M. Fujita, H. Fujisawa, and N. Kawato. “Evaluation and improvement of boolean
comparison method based on binary decision diagrams.” In Proceedings of IEEE
International Conference on Computer Aided Design, IEEE Computer Society
Press, 1988.

[26] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni-Vincenteli. “Logic veri-
fication using binary decision diagrams in a logic synthesis environment.” In
International Conference on Computer-Aided Design, pp. 6-9, 1988.

[27] Accellera. PSL Reference Manual. http://www.eda.org/vfv/docs/PSL-v1.1.pdf

115

[28] B. Cohen, S. Venkataramanan, and A. Kumari. SystemVerilog Assertions
Handbook VhdlCohen Publishing, 1st edition, 2005.

[29] D. L. Perry and H. D. Foster. Applied Formal Verification Electronic Engineer-
ing, McGraw-Hill, 2005.

[30] K. S. Stevens, R. Ginosar, and S. Rotem, “Relative Timing,” in Proceedings of the
5th International Symposium on Advanced Research in Asynchronous Circuits
and Systems, pp. 208–218, April 1999.

[31] K. S. Stevens, R. Ginosar, and S. Rotem, “Relative Timing,” in IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 11(1), Feb. 2003, pp.
129–140.

[32] K. S. Stevens, Y. Xu, and V. Vij, “Characterization of Asynchronous Templates
for Integration into Clocked CAD Flows,” 15th International Symposium on
Asynchronous Circuits and Systems, pp. 151-161, May 2009.

[33] N. Andrikos, L. Lavagono, D. Pandini, and C. P. Sotiriou, “A Fully-Automated
Desynchronization Flow for Synchronous Circuits,” In Design Automation Con-
ference, pages 982-985. ACM/IEEE, June 2007.

[34] J. Cortadella, A. Kondratyev, L. Lavagno, and C. P. Sotiriou, “ Desynchroniza-
tion: Synthesis of asynchronous circuits from synchronous specifications. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
25(10):1904-1921, Oct 2006.

[35] I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou,
“Handshake protocols for de-synchronization. In International Symposium on
Asynchronous Circuits and Systems, pages 149-158. IEEE, Apr 2004.

[36] K. Y. Yun and D. L. Dill, “Automatic Synthesis of Extended Burst-Mode
Circuits: Part I (Specification and Hazard-Free Implementation),” IEEE Trans-
actions on Computer-Aided Design, vol. 18, no. 2, pp. 101–117, Feb. 1999.

[37] S. M. Nowick, “Automatic synthesis of burst-mode asynchronous controllers,”
Ph.D. dissertation, Stanford University, Department of Computer Science, 1993.

[38] Robin Milner. Communication and Concurrency. Computer Science. Prentice
Hall International, London, 1989.

[39] P. Stevens, “Concurrency Work Bench,”
http://homepages.inf.ed.ac.uk/perdita/cwb/.

[40] E. Quist, P. Beerel, and K. S. Stevens, “Enhanced SDC Support for Relative
Timing Designs,” In Digital Automation Conference, User Track Poster, July
2009.

[41] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivettie, M. Pistore,
M. Roveri, and A. Tchaltsev, “Nusmv 2.4 user manual”. http://nusmv.irst.itc.it.

116

[42] K. Desai, and K. S. Stevens, “Scalable Asynchronous Hardware Protocol Ver-
ification for Compositions with Relative Timing,” In the TAU 2010 Worshop,
March, 2010.

[43] K. S. Stevens, “Practical Verification and Synthesis of Low Latency Asyn-
chronous Systems,” Ph.D. dissertation, University of Calgary, Calgary, Alberta,
Canada, September 1994.

[44] C. A. R. Hoare, Communicating Sequential Processes. London: Prentice Hall
International, 1985.

[45] ——, “Communicating sequential processes,” Communications of the ACM,
vol. 21, no. 8, pp. 666–677, August 1978.

[46] J. Peterson, Petri Net Theory and Modeling of Systems. Prentice Hall, 1981.

[47] A. Yakovlev, L. Lavagno, and A. Sangiovanni-Vincentelli, “A unified signal tran-
sition graph model for asynchronous control circuit synthesis,” in International
Conference on Computer-Aided Design(ICCD). IEEE Computer Society Press,
Nov. 1992, pp. 104-111.

[48] D. L. Dill, “Trace theory for automatic hierarchical verification of speed-
independent circuits,” An ACM Distinguished Dissertation, MIT Press, 1989.

[49] D. L. Dill, S. M. Nowick, and R. F. Sproull, “Specification and automatic
verification of self-timed queues.” Formal Methods in System Design, vol. 1, no.
1, July 1992.

[50] S. M. Nowick and D. L. Dill, “Practicality of state-machine verification of
speed-independent circuits,” in Proc. IEEE Int. Conf. Computer-Aided Design
(ICCAD), Nov. 1989, pp. 266-269.

[51] G. Gopalakrishnan, E. Brunvand, N. Michell, and S. M. Nowick, “A corretness
criterion for asynchronous circuit validation and optimization,” IEEE Transac-
tions on Computer-aided Design of Integrated Circuits and Systems, vol.13, no.
11, Nov 1994.

[52] R. Paige and R. Tarjan, “Three partition refinement algorithms,” SIAM Journal
of Computation, vol, 16, no. 6, pp.973-989, 1987.

[53] J, -C. Fernandez, “An implementation of an efficient algorithm for bisimulation
equivalence,” Science of Computer Programming, vol. 13, pp. 219-236, 1990.

[54] J. -C. Fernandez, ““On the fly” Verification of Behavioral Equivalences and
Preorders,” in Prceedings of CAV’91, ser. LNCS, K. G, Larsen and A. Skou,
Eds., no. 575, 1991, pp.181-191.

[55] H. Kim, P. A. Beerel, and K. S. Stevens, “Relative timing based verification of
timed circuits and systems,” in 8th International Symposium on Asynchronous
Circuits and Systems, Apr. 2002, pp. 115–126.

117

[56] T. Yoneda, T. Kitai, and C. Myers, “Automatic derivation of timing constraints
by failure analysis,” in Computer Aided Verification (CAV’02), pages 195-208,
July 2002.

[57] T. Kitai, T. Yoneda, and C. J. Myers, “Failure trace analysis of timed circuits
for automatic timing constraints derivation”, in IEICE Transactions on Inf. and
Syst., vol. E88-D, no. 11, Nov 2005.

[58] T. Yoneda and H. Ryu. “Timed trace theoretic verification using partial order
reduction. Proc. of Fifth International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 108-121, 1999.

[59] T. Yoneda. “VINAS-P: A tool for trace theoretic verification of timed asyn-
chronous circuits. LNCS 1855 Computer Aided Verification, pages 572-575, 2000.

[60] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. “Protocol verification as
a hardware design aid”. In 1992 IEEE International Conference on Computer
Design: VLSI in Computers and Processors, pages 522-525, Cambridge, MA,
October 1992. IEEE Computer Society.

[61] Y. Xu, and K. S. Stevens. “Automatic Synthesis of Computation Interference
Constraints for Relative Timing Verification.” In 26th International Conference
on Computer Design, pp. 16-22, October, 2009.

[62] W. S. Coates, J. K. Lexau, I. W. Jones, S. M. Fairbanks, and I. Sutherland,
“FLEETzero: An Asynchronous Switching Experiment,” Proc. of the Seventh
International Symposium on Advanced Research in Asynchronous Circuits and
Systems, 2001.

[63] K. van Berkel and A. Bink, “Single-Track Handshaking Signaling with Appli-
cation to Micropipelines and Handshake Circiuts,” Proc. of the Second Interna-
tional Symposium on Advanced Research in Asynchronous Circuits and Systems,
1996.

[64] M. Ferretti and P. Beerel. “High Performance Asynchronous Design Using
Single-Track Full-Buffer Standard Cells.” IEEE Journal of Solid-State Circuits,
41(6):1444-1454, 2006

[65] M. Nystrőm, E. Ou, and A. Martin. “An Eight-Bit Divider Implemented with
Asynchronous Pulse Logic.” In Proc. IEEE International Symposium on Asyn-
chronous Circuits and Systems, pages 229-239, 2004.

[66] I. Sutherland, “A Six Four GasP Tutorial.” Technical Report, UCIES2007-is49
at http://research.cs.berkeley.edu/class/fleet/docs/, 2007.

[67] P. Joshi. “Static Timing Analysis of Gasp.” Master of Science Thesis, Electrical
Engineering, Faculty of the USC Viterbi School of Engineering, University of
Southern California, Dec. 2008.

[68] S. M. Gilla, M. Roncken, and I. Sutherland. “Long-Range GasP with Charge
Relaxation”. In Proceeding Sixteenth IEEE International Symposium on Asyn-
chronous Circuits and Systems, 2010

118

[69] G. Birtwistle and K. S. Stevens, “The family of 4-phase latch protocols,” in 14th
International Symposium on Asynchronous Circuits and Systems. IEEE, April
2008, pp. 71–82.

