2,295 research outputs found

    Verification of the Tree-Based Hierarchical Read-Copy Update in the Linux Kernel

    Full text link
    Read-Copy Update (RCU) is a scalable, high-performance Linux-kernel synchronization mechanism that runs low-overhead readers concurrently with updaters. Production-quality RCU implementations for multi-core systems are decidedly non-trivial. Giving the ubiquity of Linux, a rare "million-year" bug can occur several times per day across the installed base. Stringent validation of RCU's complex behaviors is thus critically important. Exhaustive testing is infeasible due to the exponential number of possible executions, which suggests use of formal verification. Previous verification efforts on RCU either focus on simple implementations or use modeling languages, the latter requiring error-prone manual translation that must be repeated frequently due to regular changes in the Linux kernel's RCU implementation. In this paper, we first describe the implementation of Tree RCU in the Linux kernel. We then discuss how to construct a model directly from Tree RCU's source code in C, and use the CBMC model checker to verify its safety and liveness properties. To our best knowledge, this is the first verification of a significant part of RCU's source code, and is an important step towards integration of formal verification into the Linux kernel's regression test suite.Comment: This is a long version of a conference paper published in the 2018 Design, Automation and Test in Europe Conference (DATE

    Tree-formed Verification Data for Trusted Platforms

    Full text link
    The establishment of trust relationships to a computing platform relies on validation processes. Validation allows an external entity to build trust in the expected behaviour of the platform based on provided evidence of the platform's configuration. In a process like remote attestation, the 'trusted' platform submits verification data created during a start up process. These data consist of hardware-protected values of platform configuration registers, containing nested measurement values, e.g., hash values, of loaded or started components. Commonly, the register values are created in linear order by a hardware-secured operation. Fine-grained diagnosis of components, based on the linear order of verification data and associated measurement logs, is not optimal. We propose a method to use tree-formed verification data to validate a platform. Component measurement values represent leaves, and protected registers represent roots of a hash tree. We describe the basic mechanism of validating a platform using tree-formed measurement logs and root registers and show an logarithmic speed-up for the search of faults. Secure creation of a tree is possible using a limited number of hardware-protected registers and a single protected operation. In this way, the security of tree-formed verification data is maintained.Comment: 15 pages, 11 figures, v3: Reference added, v4: Revised, accepted for publication in Computers and Securit

    Experiments with Subversion Over OpenNetInf and CCNx

    Get PDF
    We describe experiences and insights from adapting the Subversion version control system to use the network service of two information-centric networking (ICN) prototypes: OpenNetInf and CCNx. The evaluation is done using a local collaboration scenario, common in our own project work where a group of people meet and share documents through a Subversion repository. The measurements show a performance benefit already with two clients in some of the studied scenarios, despite being done on un-optimised research prototypes. The conclusion is that ICN clearly is beneficial also for non mass-distribution applications

    Subversion Over OpenNetInf and CCNx

    Get PDF
    We describe experiences and insights from adapting the Subversion version control system to use the network service of two information-centric networking (ICN) prototypes: OpenNetInf and CCNx. The evaluation is done using a local collaboration scenario, common in our own project work where a group of people meet and share documents through a Subversion repository. The measurements show a performance benefit already with two clients in some of the studied scenarios, despite being done on un-optimised research prototypes. The conclusion is that ICN clearly is beneficial also for non mass-distribution applications. It was straightforward to adapt Subversion to fetch updated files from the repository using the ICN network service. The adaptation however neglected access control which will need a different approach in ICN than an authenticated SSL tunnel. Another insight from the experiments is that care needs to be taken when implementing the heavy ICN hash and signature calculations. In the prototypes, these are done serially, but we see an opportunity for parallelisation, making use of current multi-core processors

    병렬 및 λΆ„μ‚° μž„λ² λ””λ“œ μ‹œμŠ€ν…œμ„ μœ„ν•œ λͺ¨λΈ 기반 μ½”λ“œ 생성 ν”„λ ˆμž„μ›Œν¬

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :κ³΅κ³ΌλŒ€ν•™ 컴퓨터곡학뢀,2020. 2. ν•˜μˆœνšŒ.μ†Œν”„νŠΈμ›¨μ–΄ 섀계 생산성 및 μœ μ§€λ³΄μˆ˜μ„±μ„ ν–₯μƒμ‹œν‚€κΈ° μœ„ν•΄ λ‹€μ–‘ν•œ μ†Œν”„νŠΈμ›¨μ–΄ 개발 방법둠이 μ œμ•ˆλ˜μ—ˆμ§€λ§Œ, λŒ€λΆ€λΆ„μ˜ μ—°κ΅¬λŠ” μ‘μš© μ†Œν”„νŠΈμ›¨μ–΄λ₯Ό ν•˜λ‚˜μ˜ ν”„λ‘œμ„Έμ„œμ—μ„œ λ™μž‘μ‹œν‚€λŠ” 데에 μ΄ˆμ μ„ λ§žμΆ”κ³  μžˆλ‹€. λ˜ν•œ, μž„λ² λ””λ“œ μ‹œμŠ€ν…œμ„ κ°œλ°œν•˜λŠ” 데에 ν•„μš”ν•œ μ§€μ—°μ΄λ‚˜ μžμ› μš”κ΅¬ 사항에 λŒ€ν•œ λΉ„κΈ°λŠ₯적 μš”κ΅¬ 사항을 κ³ λ €ν•˜μ§€ μ•Šκ³  있기 λ•Œλ¬Έμ— 일반적인 μ†Œν”„νŠΈμ›¨μ–΄ 개발 방법둠을 μž„λ² λ””λ“œ μ†Œν”„νŠΈμ›¨μ–΄λ₯Ό κ°œλ°œν•˜λŠ” 데에 μ μš©ν•˜λŠ” 것은 μ ν•©ν•˜μ§€ μ•Šλ‹€. 이 λ…Όλ¬Έμ—μ„œλŠ” 병렬 및 λΆ„μ‚° μž„λ² λ””λ“œ μ‹œμŠ€ν…œμ„ λŒ€μƒμœΌλ‘œ ν•˜λŠ” μ†Œν”„νŠΈμ›¨μ–΄λ₯Ό λͺ¨λΈλ‘œ ν‘œν˜„ν•˜κ³ , 이λ₯Ό μ†Œν”„νŠΈμ›¨μ–΄ λΆ„μ„μ΄λ‚˜ κ°œλ°œμ— ν™œμš©ν•˜λŠ” 개발 방법둠을 μ†Œκ°œν•œλ‹€. 우리의 λͺ¨λΈμ—μ„œ μ‘μš© μ†Œν”„νŠΈμ›¨μ–΄λŠ” κ³„μΈ΅μ μœΌλ‘œ ν‘œν˜„ν•  수 μžˆλŠ” μ—¬λŸ¬ 개의 νƒœμŠ€ν¬λ‘œ 이루어져 있으며, ν•˜λ“œμ›¨μ–΄ ν”Œλž«νΌκ³Ό λ…λ¦½μ μœΌλ‘œ λͺ…μ„Έν•œλ‹€. νƒœμŠ€ν¬ κ°„μ˜ 톡신 및 λ™κΈ°ν™”λŠ” λͺ¨λΈμ΄ μ •μ˜ν•œ κ·œμ•½μ΄ μ •ν•΄μ Έ 있고, μ΄λŸ¬ν•œ κ·œμ•½μ„ 톡해 μ‹€μ œ ν”„λ‘œκ·Έλž¨μ„ μ‹€ν–‰ν•˜κΈ° 전에 μ†Œν”„νŠΈμ›¨μ–΄ μ—λŸ¬λ₯Ό 정적 뢄석을 톡해 확인할 수 있고, μ΄λŠ” μ‘μš©μ˜ 검증 λ³΅μž‘λ„λ₯Ό μ€„μ΄λŠ” 데에 κΈ°μ—¬ν•œλ‹€. μ§€μ •ν•œ ν•˜λ“œμ›¨μ–΄ ν”Œλž«νΌμ—μ„œ λ™μž‘ν•˜λŠ” ν”„λ‘œκ·Έλž¨μ€ νƒœμŠ€ν¬λ“€μ„ ν”„λ‘œμ„Έμ„œμ— λ§€ν•‘ν•œ 이후에 μžλ™μ μœΌλ‘œ ν•©μ„±ν•  수 μžˆλ‹€. μœ„μ˜ λͺ¨λΈ 기반 μ†Œν”„νŠΈμ›¨μ–΄ 개발 λ°©λ²•λ‘ μ—μ„œ μ‚¬μš©ν•˜λŠ” ν”„λ‘œκ·Έλž¨ ν•©μ„±κΈ°λ₯Ό λ³Έ λ…Όλ¬Έμ—μ„œ μ œμ•ˆν•˜μ˜€λŠ”λ°, λͺ…μ„Έν•œ ν”Œλž«νΌ μš”κ΅¬ 사항을 λ°”νƒ•μœΌλ‘œ 병렬 및 λΆ„μ‚° μž„λ² λ””λ“œ μ‹œμŠ€ν…œμ„μ—μ„œ λ™μž‘ν•˜λŠ” μ½”λ“œλ₯Ό μƒμ„±ν•œλ‹€. μ—¬λŸ¬ 개의 μ •ν˜•μ  λͺ¨λΈλ“€μ„ κ³„μΈ΅μ μœΌλ‘œ ν‘œν˜„ν•˜μ—¬ μ‘μš©μ˜ 동적 ν–‰νƒœλ₯Ό λ‚˜νƒ€κ³ , ν•©μ„±κΈ°λŠ” μ—¬λŸ¬ λͺ¨λΈλ‘œ κ΅¬μ„±λœ 계측적인 λͺ¨λΈλ‘œλΆ€ν„° 병렬성을 κ³ λ €ν•˜μ—¬ νƒœμŠ€ν¬λ₯Ό μ‹€ν–‰ν•  수 μžˆλ‹€. λ˜ν•œ, ν”„λ‘œκ·Έλž¨ ν•©μ„±κΈ°μ—μ„œ λ‹€μ–‘ν•œ ν”Œλž«νΌμ΄λ‚˜ λ„€νŠΈμ›Œν¬λ₯Ό 지원할 수 μžˆλ„λ‘ μ½”λ“œλ₯Ό κ΄€λ¦¬ν•˜λŠ” 방법도 보여주고 μžˆλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œ μ œμ‹œν•˜λŠ” μ†Œν”„νŠΈμ›¨μ–΄ 개발 방법둠은 6개의 ν•˜λ“œμ›¨μ–΄ ν”Œλž«νΌκ³Ό 3 μ’…λ₯˜μ˜ λ„€νŠΈμ›Œν¬λ‘œ κ΅¬μ„±λ˜μ–΄ μžˆλŠ” μ‹€μ œ κ°μ‹œ μ†Œν”„νŠΈμ›¨μ–΄ μ‹œμŠ€ν…œ μ‘μš© μ˜ˆμ œμ™€ 이쒅 λ©€ν‹° ν”„λ‘œμ„Έμ„œλ₯Ό ν™œμš©ν•˜λŠ” 원격 λ”₯ λŸ¬λ‹ 예제λ₯Ό μˆ˜ν–‰ν•˜μ—¬ 개발 λ°©λ²•λ‘ μ˜ 적용 κ°€λŠ₯성을 μ‹œν—˜ν•˜μ˜€λ‹€. λ˜ν•œ, ν”„λ‘œκ·Έλž¨ ν•©μ„±κΈ°κ°€ μƒˆλ‘œμš΄ ν”Œλž«νΌμ΄λ‚˜ λ„€νŠΈμ›Œν¬λ₯Ό μ§€μ›ν•˜κΈ° μœ„ν•΄ ν•„μš”λ‘œ ν•˜λŠ” 개발 λΉ„μš©λ„ μ‹€μ œ μΈ‘μ • 및 μ˜ˆμΈ‘ν•˜μ—¬ μƒλŒ€μ μœΌλ‘œ 적은 λ…Έλ ₯으둜 μƒˆλ‘œμš΄ ν”Œλž«νΌμ„ 지원할 수 μžˆμŒμ„ ν™•μΈν•˜μ˜€λ‹€. λ§Žμ€ μž„λ² λ””λ“œ μ‹œμŠ€ν…œμ—μ„œ μ˜ˆμƒμΉ˜ λͺ»ν•œ ν•˜λ“œμ›¨μ–΄ μ—λŸ¬μ— λŒ€ν•΄ 결함을 κ°λ‚΄ν•˜λŠ” 것을 ν•„μš”λ‘œ ν•˜κΈ° λ•Œλ¬Έμ— 결함 감내에 λŒ€ν•œ μ½”λ“œλ₯Ό μžλ™μœΌλ‘œ μƒμ„±ν•˜λŠ” 연ꡬ도 μ§„ν–‰ν•˜μ˜€λ‹€. λ³Έ κΈ°λ²•μ—μ„œ 결함 감내 섀정에 따라 νƒœμŠ€ν¬ κ·Έλž˜ν”„λ₯Ό μˆ˜μ •ν•˜λŠ” 방식을 ν™œμš©ν•˜μ˜€μœΌλ©°, 결함 κ°λ‚΄μ˜ λΉ„κΈ°λŠ₯적 μš”κ΅¬ 사항을 μ‘μš© κ°œλ°œμžκ°€ μ‰½κ²Œ μ μš©ν•  수 μžˆλ„λ‘ ν•˜μ˜€λ‹€. λ˜ν•œ, 결함 감내 μ§€μ›ν•˜λŠ” 것과 κ΄€λ ¨ν•˜μ—¬ μ‹€μ œ μˆ˜λ™μœΌλ‘œ κ΅¬ν˜„ν–ˆμ„ κ²½μš°μ™€ λΉ„κ΅ν•˜μ˜€κ³ , 결함 μ£Όμž… 도ꡬλ₯Ό μ΄μš©ν•˜μ—¬ 결함 λ°œμƒ μ‹œλ‚˜λ¦¬μ˜€λ₯Ό μž¬ν˜„ν•˜κ±°λ‚˜, μž„μ˜λ‘œ 결함을 μ£Όμž…ν•˜λŠ” μ‹€ν—˜μ„ μˆ˜ν–‰ν•˜μ˜€λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ 결함 감내λ₯Ό μ‹€ν—˜ν•  λ•Œμ— ν™œμš©ν•œ 결함 μ£Όμž… λ„κ΅¬λŠ” λ³Έ λ…Όλ¬Έμ˜ 또 λ‹€λ₯Έ κΈ°μ—¬ 사항 쀑 ν•˜λ‚˜λ‘œ λ¦¬λˆ…μŠ€ ν™˜κ²½μœΌλ‘œ λŒ€μƒμœΌλ‘œ μ‘μš© μ˜μ—­ 및 컀널 μ˜μ—­μ— 결함을 μ£Όμž…ν•˜λŠ” 도ꡬλ₯Ό κ°œλ°œν•˜μ˜€λ‹€. μ‹œμŠ€ν…œμ˜ 견고성을 κ²€μ¦ν•˜κΈ° μœ„ν•΄ 결함을 μ£Όμž…ν•˜μ—¬ 결함 μ‹œλ‚˜λ¦¬μ˜€λ₯Ό μž¬ν˜„ν•˜λŠ” 것은 널리 μ‚¬μš©λ˜λŠ” λ°©λ²•μœΌλ‘œ, λ³Έ λ…Όλ¬Έμ—μ„œ 개발된 결함 μ£Όμž… λ„κ΅¬λŠ” μ‹œμŠ€ν…œμ΄ λ™μž‘ν•˜λŠ” 도쀑에 μž¬ν˜„ κ°€λŠ₯ν•œ 결함을 μ£Όμž…ν•  수 μžˆλŠ” 도ꡬ이닀. 컀널 μ˜μ—­μ—μ„œμ˜ 결함 μ£Όμž…μ„ μœ„ν•΄ 두 μ’…λ₯˜μ˜ 결함 μ£Όμž… 방법을 μ œκ³΅ν•˜λ©°, ν•˜λ‚˜λŠ” 컀널 GNU 디버거λ₯Ό μ΄μš©ν•œ 방법이고, λ‹€λ₯Έ ν•˜λ‚˜λŠ” ARM ν•˜λ“œμ›¨μ–΄ 브레이크포인트λ₯Ό ν™œμš©ν•œ 방법이닀. μ‘μš© μ˜μ—­μ—μ„œ 결함을 μ£Όμž…ν•˜κΈ° μœ„ν•΄ GDB 기반 결함 μ£Όμž… 방법을 μ΄μš©ν•˜μ—¬ 동일 μ‹œμŠ€ν…œ ν˜Ήμ€ 원격 μ‹œμŠ€ν…œμ˜ μ‘μš©μ— 결함을 μ£Όμž…ν•  수 μžˆλ‹€. 결함 μ£Όμž… 도ꡬ에 λŒ€ν•œ μ‹€ν—˜μ€ ODROID-XU4 λ³΄λ“œμ—μ„œ μ§„ν–‰ν•˜μ˜€λ‹€.While various software development methodologies have been proposed to increase the design productivity and maintainability of software, they usually focus on the development of application software running on a single processing element, without concern about the non-functional requirements of an embedded system such as latency and resource requirements. In this thesis, we present a model-based software development method for parallel and distributed embedded systems. An application is specified as a set of tasks that follow a set of given rules for communication and synchronization in a hierarchical fashion, independently of the hardware platform. Having such rules enables us to perform static analysis to check some software errors at compile time to reduce the verification difficulty. Platform-specific program is synthesized automatically after mapping of tasks onto processing elements is determined. The program synthesizer is also proposed to generate codes which satisfies platform requirements for parallel and distributed embedded systems. As multiple models which can express dynamic behaviors can be depicted hierarchically, the synthesizer supports to manage multiple task graphs with a different hierarchy to run tasks with parallelism. Also, the synthesizer shows methods of managing codes for heterogeneous platforms and generating various communication methods. The viability of the proposed software development method is verified with a real-life surveillance application that runs on six processing elements with three remote communication methods, and remote deep learning example is conducted to use heterogeneous multiprocessing components on distributed systems. Also, supporting a new platform and network requires a small effort by measuring and estimating development costs. Since tolerance to unexpected errors is a required feature of many embedded systems, we also support an automatic fault-tolerant code generation. Fault tolerance can be applied by modifying the task graph based on the selected fault tolerance configurations, so the non-functional requirement of fault tolerance can be easily adopted by an application developer. To compare the effort of supporting fault tolerance, manual implementation of fault tolerance is performed. Also, the fault tolerance method is tested with the fault injection tool to emulate fault scenarios and inject faults randomly. Our fault injection tool, which has used for testing our fault-tolerance method, is another work of this thesis. Emulating fault scenarios by intentionally injecting faults is commonly used to test and verify the robustness of a system. To emulate faults on an embedded system, we present a run-time fault injection framework that can inject a fault on both a kernel and application layer of Linux-based systems. For injecting faults on a kernel layer, two complementary fault injection techniques are used. One is based on Kernel GNU Debugger, and the other is using a hardware breakpoint supported by the ARM architecture. For application-level fault injection, the GDB-based fault injection method is used to inject a fault on a remote application. The viability of the proposed fault injection tool is proved by real-life experiments with an ODROID-XU4 system.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Contribution 6 1.3 Dissertation Organization 8 Chapter 2 Background 9 2.1 HOPES: Hope of Parallel Embedded Software 9 2.1.1 Software Development Procedure 9 2.1.2 Components of HOPES 12 2.2 Universal Execution Model 13 2.2.1 Task Graph Specification 13 2.2.2 Dataflow specification of an Application 15 2.2.3 Task Code Specification and Generic APIs 21 2.2.4 Meta-data Specification 23 Chapter 3 Program Synthesis for Parallel and Distributed Embedded Systems 24 3.1 Motivational Example 24 3.2 Program Synthesis Overview 26 3.3 Program Synthesis from Hierarchically-mixed Models 30 3.4 Platform Code Synthesis 33 3.5 Communication Code Synthesis 36 3.6 Experiments 40 3.6.1 Development Cost of Supporting New Platforms and Networks 40 3.6.2 Program Synthesis for the Surveillance System Example 44 3.6.3 Remote GPU-accelerated Deep Learning Example 46 3.7 Document Generation 48 3.8 Related Works 49 Chapter 4 Model Transformation for Fault-tolerant Code Synthesis 56 4.1 Fault-tolerant Code Synthesis Techniques 56 4.2 Applying Fault Tolerance Techniques in HOPES 61 4.3 Experiments 62 4.3.1 Development Cost of Applying Fault Tolerance 62 4.3.2 Fault Tolerance Experiments 62 4.4 Random Fault Injection Experiments 65 4.5 Related Works 68 Chapter 5 Fault Injection Framework for Linux-based Embedded Systems 70 5.1 Background 70 5.1.1 Fault Injection Techniques 70 5.1.2 Kernel GNU Debugger 71 5.1.3 ARM Hardware Breakpoint 72 5.2 Fault Injection Framework 74 5.2.1 Overview 74 5.2.2 Architecture 75 5.2.3 Fault Injection Techniques 79 5.2.4 Implementation 83 5.3 Experiments 90 5.3.1 Experiment Setup 90 5.3.2 Performance Comparison of Two Fault Injection Methods 90 5.3.3 Bit-flip Fault Experiments 92 5.3.4 eMMC Controller Fault Experiments 94 Chapter 6 Conclusion 97 Bibliography 99 μš” μ•½ 108Docto

    Frightening Small Children and Disconcerting Grown-ups: Concurrency in the Linux Kernel

    Get PDF
    International audienceConcurrency in the Linux kernel can be a contentious topic. The Linux kernel mailing list features numerous discussions related to consistency models, including those of the more than 30 CPU architectures supported by the kernel and that of the kernel itself. How are Linux programs supposed to behave? Do they behave correctly on exotic hardware? A formal model can help address such questions. Better yet, an executable model allows programmers to experiment with the model to develop their intuition. Thus we offer a model written in the cat language, making it not only formal, but also executable by the herd simulator. We tested our model against hardware and refined it in consultation with maintainers. Finally, we formalised the fundamental law of the Read-Copy-Update synchronisation mechanism, and proved that one of its implementations satisfies this law
    • …
    corecore