933 research outputs found

    Verification of the Tree-Based Hierarchical Read-Copy Update in the Linux Kernel

    Full text link
    Read-Copy Update (RCU) is a scalable, high-performance Linux-kernel synchronization mechanism that runs low-overhead readers concurrently with updaters. Production-quality RCU implementations for multi-core systems are decidedly non-trivial. Giving the ubiquity of Linux, a rare "million-year" bug can occur several times per day across the installed base. Stringent validation of RCU's complex behaviors is thus critically important. Exhaustive testing is infeasible due to the exponential number of possible executions, which suggests use of formal verification. Previous verification efforts on RCU either focus on simple implementations or use modeling languages, the latter requiring error-prone manual translation that must be repeated frequently due to regular changes in the Linux kernel's RCU implementation. In this paper, we first describe the implementation of Tree RCU in the Linux kernel. We then discuss how to construct a model directly from Tree RCU's source code in C, and use the CBMC model checker to verify its safety and liveness properties. To our best knowledge, this is the first verification of a significant part of RCU's source code, and is an important step towards integration of formal verification into the Linux kernel's regression test suite.Comment: This is a long version of a conference paper published in the 2018 Design, Automation and Test in Europe Conference (DATE

    An oasis of fertility on a barren island: Earthworms at Papadil, Isle of Rum

    Get PDF
    The Isle of Rum, Inner Hebrides, has an impoverished earthworm fauna as the soils are generally acidic and nutrient-poor. Species associated with human habitation are found around deserted crofting settlements subjected to “clearances” in the mid-19th century and at Kinloch, where a large volume of fertile soil was imported from the mainland around 1900. Earthworms, and the dew worm Lumbricus terrestris L. in particular, were investigated at Papadil, an abandoned settlement and one of the few locations on Rum where a naturally developed brown earth soil is present. The small (1.5 ha), fertile location is isolated, so was also suitable for field experimentation. Visits over six years allowed dew worm distribution to be assessed within low lying grassland and woodland and also within an adjacent sloping broadleaved woodland. The factors limiting dew worm distribution at the site were investigated with associated translocation to adjacent uninhabited areas. Small scale spatial dynamics were studied with density manipulation and containment experiments where Visual Implant Elastomer marking of individuals was utilised. Translocations from streamside woodland to adjacent grassland was successful over a short period (5 months), but the colonies did not persist over a longer term (5-6 years). Field trials with earthworm tagging were successful, but highest tag recovery rate was 25%. Where adults/sub-adults were removed, recruitment of juveniles was notable. Exceptionally large (>12 g live mass) individuals were found in soils of terraces on wooded slopes, suggesting that dew worms may be long lived at this location, where food is abundant and relatively few terrestrial predators are present

    The Relationship of Previous Training and Experience of Journal Peer Reviewers to Subsequent Review Quality

    Get PDF
    BACKGROUND: Peer review is considered crucial to the selection and publication of quality science, but very little is known about the previous experiences and training that might identify high-quality peer reviewers. The reviewer selection processes of most journals, and thus the qualifications of their reviewers, are ill defined. More objective selection of peer reviewers might improve the journal peer review process and thus the quality of published science. METHODS AND FINDINGS: 306 experienced reviewers (71% of all those associated with a specialty journal) completed a survey of past training and experiences postulated to improve peer review skills. Reviewers performed 2,856 reviews of 1,484 separate manuscripts during a four-year study period, all prospectively rated on a standardized quality scale by editors. Multivariable analysis revealed that most variables, including academic rank, formal training in critical appraisal or statistics, or status as principal investigator of a grant, failed to predict performance of higher-quality reviews. The only significant predictors of quality were working in a university-operated hospital versus other teaching environment and relative youth (under ten years of experience after finishing training). Being on an editorial board and doing formal grant (study section) review were each predictors for only one of our two comparisons. However, the predictive power of all variables was weak. CONCLUSIONS: Our study confirms that there are no easily identifiable types of formal training or experience that predict reviewer performance. Skill in scientific peer review may be as ill defined and hard to impart as is “common sense.” Without a better understanding of those skills, it seems unlikely journals and editors will be successful in systematically improving their selection of reviewers. This inability to predict performance makes it imperative that all but the smallest journals implement routine review ratings systems to routinely monitor the quality of their reviews (and thus the quality of the science they publish)

    Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents.

    Full text link

    An empirical mean-field model of symmetry-breaking in a turbulent wake

    Get PDF
    Improved turbulence modeling remains a major open problem in mathematical physics. Turbulence is notoriously challenging, in part due to its multiscale nature and the fact that large-scale coherent structures cannot be disentangled from small-scale fluctuations. This closure problem is emblematic of a greater challenge in complex systems, where coarse-graining and statistical mechanics descriptions break down. This work demonstrates an alternative data-driven modeling approach to learn nonlinear models of the coherent structures, approximating turbulent fluctuations as state-dependent stochastic forcing. We demonstrate this approach on a high-Reynolds number turbulent wake experiment, showing that our model reproduces empirical power spectra and probability distributions. The model is interpretable, providing insights into the physical mechanisms underlying the symmetry-breaking behavior in the wake. This work suggests a path toward low-dimensional models of globally unstable turbulent flows from experimental measurements, with broad implications for other multiscale systems
    • 

    corecore