
Subversion Over OpenNetInf and CCNx
Bengt Ahlgren

SICS
Email: bengta@sics.se

Börje Ohlman
Ericsson Research

Email: borje.ohlman@ericsson.com

Erik Axelsson
and Lars Brown

KTH
Email: {eaxe,lbrown}@kth.se

Abstract—We describe experiences and insights from adapt-
ing the Subversion version control system to use the network
service of two information-centric networking (ICN) prototypes:
OpenNetInf and CCNx. The evaluation is done using a local
collaboration scenario, common in our own project work where a
group of people meet and share documents through a Subversion
repository.

The measurements show a performance benefit already with
two clients in some of the studied scenarios, despite being done
on un-optimised research prototypes. The conclusion is that ICN
clearly is beneficial also for non mass-distribution applications.

It was straightforward to adapt Subversion to fetch updated
files from the repository using the ICN network service. The
adaptation however neglected access control which will need a
different approach in ICN than an authenticated SSL tunnel.
Another insight from the experiments is that care needs to be
taken when implementing the heavy ICN hash and signature
calculations. In the prototypes, these are done serially, but we
see an opportunity for parallelisation, making use of current
multi-core processors.

I. INTRODUCTION

In the early days of the Internet the goal of most users
was to explicitly establish connectivity between two nodes
in the network and then run an application which would
transfer some application-specific information. Today most
Internet users are interested in getting access to a certain
piece of information, not connecting to a specific node in
the network, or using a particular application. The principal
idea of information-centric networking (ICN) [3] is to create a
networking architecture that puts information in focus instead
of the interconnection of specific nodes. By focusing on the
information objects themselves we can build a networking
architecture that inherently can use a multitude of alternative
ways to retrieve the desired information objects. These alterna-
tive ways include, but are not limited to, locally cached copies
at nearby nodes, use of multiple access networks in parallel,
information retrieval from pure broadcast networks like FM or
TV broadcast networks as well as satellite networks. Also, net-
works with intermittent connectivity and data mule networks
fit into this information-centric paradigm.

It is easy to argue that the ICN approach is ideal for
large-scale information distribution. It is certainly true that
the largest efficiency gain is expected for this type of appli-
cation. In the work presented in this paper, we are instead
investigating the benefit for another type of application which
can take advantage of local ICN caching rather than always
interacting with a remote server, making the application less
dependent on good connectivity to that server. As the example

application scenario we are using our own project meetings. A
group of people in the same room or building is collaborating
and sharing documents using a Subversion1 version control
repository. The repository is typically located in a different
country and the available access network capacity is less than
the demand.

We modified a Subversion server and client to use the
communication service of the two ICN research prototypes
OpenNetInf2, from the 4WARD EU project, and CCNx3,
from the CCN project at PARC. We present experiences and
insights from experimenting with the modified Subversion
system, including evaluating the performance in the local
collaboration scenario. A master thesis report [5] provides a
more comprehensive description of the experiments. A shorter
version of this paper appeared at a local workshop [4].

The contributions of this paper are the experience from
the adaptation of Subversion, and the initial performance
measurements on the resulting prototypes. The measurements
show a performance benefit already with two clients for
common cases, despite the overhead of the non-optimised
prototypes. One experience is that it was very easy to adapt
the file fetching parts of Subversion to ICN.

The rest of the paper is organised as follows. In the next
section we provide a little background on the ICN approach to
networking, followed by Section III describing the application
scenario in more detail. Then follows a description of how
we adapted Subversion to the ICN prototypes. We present the
experimental measurement results in Section V. In Sections
VI and VII we discuss difficulties with evaluating the ICN
prototypes in a fair manner, and the benefits of ICN more
generally. Related work is covered in Section VIII and, finally,
Section IX concludes the paper.

II. BACKGROUND

There are a number of initiatives in the research field
of information-centric networking (ICN). They all have in
common a focus on the information objects (IOs) as the
key abstraction of the networking architecture, not the hosts
as in the traditional Internet. Some key issues are how to
name the IOs, how to resolve the IO names into locators
that can be used for forwarding or, alternatively, how to do
name based forwarding. In this background section we present
two approaches to ICN, Networking of Information (NetInf)

1http://subversion.apache.org/
2http://www.netinf.org/
3http://www.ccnx.org/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11435208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. NetInf IO with ID, security metadata and data (BO).

and Content Centric Networking (CCN) which are used in
the experiments presented later in this paper. For a more
comprehensive overview of the field we refer to the paper
A survey of information-centric networking [3].

A. NetInf

In NetInf [2] the names of the information objects, the IO
IDs, are taken from a flat name space. The NetInf IO IDs are
thus not arranged in any hierarchical structure. When a NetInf
IO is published into the network it is registered with a Name
Resolution Service (NRS) together with the network locators
that can be used to retrieve copies of the published IO. When
a receiver wants to retrieve an IO, the request for the IO is
resolved by the NRS into a set of locators. These locators
are then used to retrieve a copy of the object from the ‘best’
available source(s).

The NetInf information model has two basic objects:
• The NetInf Bit-level Object (BO) is the basic data object

itself, or the digital representation of the object if the
object is not a digital object (this is the case for real
world objects for example). In other words, the BO stores
the data information of the object. NetInf treats this as
opaque data and does not derive any semantics from it.

• The NetInf Information Object (IO), illustrated in Fig-
ure 1 consists of three parts: the ID that gives the IO its
name, the Metadata which contains semantic information
associated with object, and the BO, as described above.

In addition to naming the IO, the ID has certain security
properties that enable NetInf to verify the integrity of the IO
(self-certification), and provide ownership information. The
Metadata field consists of a set of attributes that provides
semantic information about the IO. Metadata are also used
for security purposes and for search.

The NetInf architecture (Figure 2) consists of a resolution
service, a storage service, client applications and a number
of NetInf additional services. The NetInf Name Resolution
System (NRS) translates NetInf IDs into sets of locators.
Depending on different requirements in different parts of the
network it can be implemented in different ways. In parts of
the network where local broadcast is available, a broadcast
mechanism can be used. In other parts of the network, more
elaborate mechanisms like Multiple DHTs (MDHT) [7] or
Late Locator Construction (LLC) [9] can be used.

One central concept in the NetInf architecture is the concept
of opportunistic caching of BOs to avoid unnecessary retrans-

Fig. 2. The 4WARD NetInf node architecture.

missions of objects. The basic NetInf strategy for caching is
to cache all BOs that reach the node; BOs are expunged when
caches are full or their TTL expires.

Transport in NetInf deals with two kinds of messages.
Firstly, control messages associated with NetInf services and
Name Resolution that are communicated between the NetInf
nodes and secondly, the messages that transport the BOs. The
transmission of NetInf messages and BOs is performed by the
underlying transport network with the support of transport pro-
tocols such as legacy TCP/UDP or future transport protocols
custom-tailored to the needs of NetInf.

B. CCN

The main idea of CCN [11] is that a request, or interest,
for an information object is routed towards the location in
the network where that information object (IO) has been
published. The routing information announcing CCN name
prefixes, which is needed in the CCN nodes, are distributed
in a similar way as routing prefixes are distributed in today’s
IP networks. At the nodes traversed on the way towards the
source the caches of the nodes are checked for copies of the
requested IO. As soon as an instance of the IO is found (a
cached copy or the source IO) it is returned to the requester
along the path the request came from. All the nodes along that
path caches a copy of the IO in case they get more requests
for it.

A CCN face is a generalization of a network interface. It
describes a connection and how to communicate over this
connection. Messages that are received and sent are always
passed through a face. The operation of CCN nodes is similar
to the operation of IP nodes: A packet arrives, a longest-match
look-up is carried out on the name, and the corresponding
action is performed.

CCN has a hierarchical naming scheme for information
objects rooted in publisher prefixes, as illustrated in Figure 3.
The hierarchical names makes it possible to request individual
IOs or groups of IOs. It is also possible to algorithmically
construct and request names for IOs that do not yet exist.

In CCN each node is equipped with three main compo-
nents: a Content Store (buffer memory), a Pending Interest
Table (PIT) and a Forwarding Information Base (FIB). These
components are indexed in a way such that when receiving an
Interest packet, a Content Store match will be preferred over



Fig. 3. CCN naming scheme.

Fig. 4. CCN node architecture.

a PIT match and a PIT match will be preferred over a FIB
match. Furthermore they all keep notion faces. These parts are
shown in Figure 4.

The Content Store is a buffer memory where the nodes
stores arriving ContentObjects in order to be able to share
these. The ContentObjects are stored as long as possible with
a LRU or LFU replacement policy. Hence if an Interest packet
arrives and the corresponding ContentObject already is in the
Content Store, the ContentObject will be sent out and the
Interest will be satisfied and discarded. This enables each node
in the network to provide caching functionality. To ensure
the cache does not contain duplicates, ContentObjects will be
discarded upon receipt if they match already existing entries
in the store.

The Pending Interest Table (PIT) is a table which consists
of Interest packets that the node has forwarded and not yet
received any reply on. The PIT entries acts as ‘bread crumbs’,
they leave a trail for the corresponding ContentObjects to
follow. Therefore only the Interest packets need to be routed,
since the corresponding ContentObjects will find their way
back to the requester via the bread crumbs. When an Interest
packet is received and there is no match in the Content
Store but there is an exact match in the PIT, the face of the
incoming packet will be recorded and added to the matching
PIT entry, thus the interest can be satisfied by sending out the
ContentObject on that face. This is exactly what is done when
a matching ContentObject is received.

The Forwarding Information Base is last component, the
FIB, is used to forward Interest packets towards possible data
sources. If there is a FIB entry which matches an Interest
packet then the Interest packet will be forwarded accordingly
and a new entry will be created in the PIT. However if
there is a FIB match for a ContentObject, it means that
there is no PIT matching, hence there is no interest recorded
for the ContentObject therefore it will be discarded. If there
is no match, the Interest will simply be discarded by the
receiving node since it does not know how to find the requested
information.

Fig. 5. Local collaboration using Subversion.

III. LOCAL COLLABORATION SCENARIO

The application scenario addressed in this paper stems from
our own work where a group of people is working together
in a project. They find it convenient to use a collaboration
environment that includes a common document repository
(e.g., Subversion) and a Wiki. As is common, both these
tools are located at remote network servers. The documents
are mostly papers and presentations in Word, PowerPoint,
OpenOffice and PDF file formats. The group often meets in a
meeting room using a WiFi network connected via an uplink to
the Internet as illustrated in Figure 5. They use these common
resources to access the same repository. This results in multiple
downloads of the same documents over the external link even
though the documents are available from the computers that
all are in the same room. The documents could instead thus
be shared locally within the group in the room. Getting the
same document from the same remote server multiple times
is wasteful and often leads to performance problems, e.g., if
the common uplink constitutes a bottleneck, which frequently
is the case in our own work.

In an information centric network based on dissemination
primitives, in contrast, the network would provide the users
with access to the nearest/best copy of a requested information
object rather than offering remote access only to a specific
copy located at a specific host at a remote site. In ICN, a
node in the room that already has a document stored can
make that document available also to the other nodes in the
room. The other nodes can use any type of access to retrieve
the document, e.g., WiFi, Bluetooth or infrared. This has the
additional benefit of making the document available also to
those users that currently lack direct connectivity to a global
transport network such as the Internet.

We are well aware of that this is not the typical use case
for Subversion, for instance, papers and presentations are
generally larger than source code and usually in some binary
format that cannot benefit from sending the (small) difference
between two versions. It is however what we actually use in
several of our research projects. You can argue that the point
is not really Subversion – any server-based file sharing tool
would serve the purpose for the work in this paper.



IV. ADAPTING SUBVERSION TO ICN

In this section we briefly introduce Subversion and the ICN
prototypes, and describe how we adapted Subversion to ICN.
It should be noted that we, in our scenario, are using SVN
as a document storage system for fairly large binary files, e.g.
Word and PowerPoint documents. We are aware that this is
defeating one of the key features of SVN, to be able to make
small incremental updates to files. Nether the less, it is not an
uncommon usage of SVN. Thus our results are only valid for
this type of usage of SVN.

A. Subversion

The Subversion [6] version control system uses a centralised
approach for sharing information. At the core of the system
is the repository. It is a data storage which is structured in
the same way as a file system tree, that is, a hierarchy of
directories and files. Clients can add content to the repository
so it becomes available to other clients, and clients can check
out files from the repository in order to read them. The above
description would fit to describe any regular file server. What
makes a version control system different from a file server is
that it keeps information about its own state and the changes
to that state. This makes it possible for clients to request data
from any given state, current or in the past. Providing this
functionality in an efficient way is a prime objective of every
version control system.

The basic client operations in Subversion are:
• checkout: Create a local copy of a certain version of a

repository.
• commit: Upload changes in the local copy to the repos-

itory, creating a new version in the repository.
• add: Schedule to add a new local file or directory to the

repository at the next commit.
• update: Update the local copy to the latest version in the

repository.

B. Subversion over ICN implementation

This section describes the components used and the mod-
ifications made in order to adapt Subversion to run over
the OpenNetInf and CCNx prototypes. In short, the Sub-
version commands which include downloading of informa-
tion from the repository were adapted to be able to use
OpenNetInf and CCNx for the content transfer. All other
commands were left unmodified. Two Subversion protocol
types, icn+netinf:// and icn+ccn://, were added to
be able to choose the ICN transports. Note that the ICN
transports were unaware of versions. A new version of a file
in Subversion is simply a different file.

1) Server side: SVNJ: SVNJ4 is a Java-EE servlet im-
plementing server-side access to the Subversion repository,
similar to mod_dav_svn for the Apache web server. SVNJ
was run in a Jetty web server.

SVNJ was modified in two ways. First, the data transfer
commands, for example the above mentioned checkout and

4http://code.google.com/p/svnj/

update commands, were modified to return the OpenNetInf
or CCNx object names to the client instead of the files. Second,
functionality was added to make the files available through
OpenNetInf and CCNx. Which ICN that SVNJ should use
is determined by the request it receives from the client. The
non-data-transfer commands were handled by an unmodified
Apache-based Subversion server.

2) Client side: SVNKit: SVNKit5 is an open-source Java
toolkit that implements all Subversion client functionality,
including a command line client program.

We extended SVNKit to support file transfer with Open-
NetInf and CCNx. The user decides which transport to use
by specifying one of the new protocol types described above.
For the checkout and update commands, SVNKit first
communicates with the SVNJ server to get the OpenNetInf or
CCNx object names for the the desired versions of the files,
and then retrieves the files using OpenNetInf or CCNx. This
means that the Subversion server always supplies the client
with the object name list for the desired version, guaranteeing
that the client can get the latest (HEAD) version. All other
commands are sent to the Apache-based Subversion server.

C. OpenNetInf prototype

OpenNetInf uses a flat namespace for information ob-
jects [8]. The names have three fields: type, authenticator and
label, where the authenticator is the hash of a public publisher
key, and the label is chosen to be unique by the publisher,
similar to names in DONA [13]. The names and locations
of the information objects are registered in the NetInf name
resolution service (NRS). To retrieve an object, a client first
resolves its name using the NRS, and then retrieves a copy
from one or more of the registered locations.

We implemented two extensions to the OpenNetInf proto-
type to support our scenario well. A parallel name resolution
controller and a multicast-based resolution service have been
implemented for the client side. The controller makes it
possible to query multiple resolution services in parallel and
return the answer from the fastest. The multicast-based service
makes it possible to query nearby OpenNetInf nodes without
any previous configuration or service discovery. When a node
receives a multicast message the request is run through its
local resolution service to see if the node itself has a copy of
the object. If it is available, the node responds with an answer
including itself in the list of locators.

The developed system uses NetInf names as follows. The
name consists of three parts. The first part is the hash type
where a SHA1 hash is used. The second part is the SHA1
hash of the Subversion server’s public key and the last part is
the repository and directory location of the file that this name
belongs to.

D. CCNx prototype

CCNx uses hierarchical names, somewhat similar to URLs,
that are rooted in publisher prefixes. A client request, or

5http://svnkit.com/



Fig. 6. Experimental setup.

interest, for an object is routed by the network towards the
publisher using the object name. Each node on the path
towards the publisher checks its cache for copies of the
requested object. As soon as a match is found, the object is
returned on the reverse path of the request. All the nodes along
that path caches a copy of the object in case they get more
requests for it.

We made no modifications to the CCNx prototype. CCNx
names are used as follows. The Subversion URL for a file
is directly mapped to a corresponding CCNx name with the
revision number added as a suffix. Every client node had two
remote routes in its routing table, one for multicast communi-
cation and one for communication with the Subversion server.

E. Security

We have neglected access control in the just described
experimental adaptation of Subversion over ICN. A legacy
Subversion system uses an authenticated SSL tunnel to the
server which enables per-user access control checks by the
server in a secure fashion. With ICN, where any node can
deliver the desired data files, another approach is needed. For
the server to be able to control access, the distributed data
files need to be encrypted. Access control is then achieved by
sharing the decryption key with the authorised clients.

V. EXPERIMENTAL RESULTS

In this section we present some measurements from the
experiments we made with the two prototypes. The results
show that the prototypes work as intended, most importantly,
that local copies of data are retrieved automatically by the ICN
network service without application involvement. The absolute
performance numbers should however not be taken too seri-
ously – these research prototypes are far from optimised.

The experimental setup is shown in Figure 6. The Sub-
version server and the two client nodes are connected to the
same gigabit Ethernet switch. The WAN link to the server is
simulated using the Linux kernel traffic control (tc) mechanism
together with the Netem queuing discipline. Three settings
were used: 100 Mbit/s with 5 ms delay, 5 Mbit/s with 50 ms
delay, and 1 Mbit/s with 100 ms delay. For the second case,
the commands were:

Fig. 7. OpenNetInf CPU and network utilisation.

tc qdisc add dev eth0 root handle 1: tbf rate 5mbit \
buffer 16000 limit 3000

tc qdisc add dev eth0 parent 1: handle 10: netem \
delay 50ms

All nodes are Lenovo Thinkpad X100e with 1.6 GHz AMD
Athlon NEO MV-40 CPUs running the Ubuntu 10.10 Linux
distribution. The Subversion repository contained six 10 MB
large files, representing the fairly large documents in the
studied scenario. We furthermore used CCNx version 0.3.0
and OpenNetInf from ca September 2010.

Figure 7 shows the CPU and network utilisation at the
server when the first client checks a repository out using the
OpenNetInf communication service and unlimited WAN link.
During the first 20 seconds, the server makes the requested
files available through the OpenNetInf service, resulting in
close to 100% CPU utilisation. This includes calculation of
cryptographic hashes and signatures of each file, and regis-
tration in the OpenNetInf name resolution system. This is a
one-time cost per version of a file that in the prototype is
taken at the first request, but should of course be done in
advance. During seconds 20-50 six files are transferred with
good throughput to the client with short delays in between
each. These delays are mostly due to signature verification at
the client. The graphs clearly show the serial nature of the
implementation.

Similarly, Figure 8 shows the CPU and network utilisation
for CCNx. We only see the first two files being transferred
in the 60 second interval, because the transfer takes much
longer compared to OpenNetInf due to lower speed, about 1.5-
2 MiB/s, whereas OpenNetInf gets around 10 MiB/s. CCNx
thus seems to have a higher overhead overall. More investiga-
tion is however needed to find the reason.

Table I shows the measured performance of a checkout
operation using Subversion over HTTP (legacy), over Open-
NetInf, and over CCNx for the three setting of the WAN link.



Fig. 8. CCNx CPU and network utilisation.

Legacy OpenNetInf CCN
mean stdev mean stdev mean stdev

100 Mbit/s, 5 ms delay
1st client 19.8 0.53 49.6 0.81 103 1.14
2nd client = = 53.0 2.08 267 9.8
5 Mbit/s, 50 ms delay
1st client 147 0.24 191 2.15 366 7.69
2nd client = = 53.8 1.11 262 3.72
1 Mbit/s, 100 ms delay
1st client 726 0.45 770 2.61 871 1.54
2nd client = = 56.1 2.69 269 3.96

TABLE I
MEASURED PERFORMANCE OF CHECKOUT IN SECONDS.

The first client fetches from the server, and, for the two ICN
prototypes, the second client fetches from the first client. The
values are the means for five runs. As expected, the second
client is in practise unaffected by the setting of the WAN link.
Unexpected, however, is the low performance of the second
client for CCNx, lower than the first client for the best WAN
link setting. One reason is that requests are multicast resulting
in that both the server and the other client replies.

The next two figures, 9 and 10, show the same data as
Table I for Subversion over OpenNetInf, and over CCNx,
respectively, relative to the performance of legacy Subversion
over HTTP. The data for the third client and above are
extrapolated as explained in the next section. Values below
one (1) on the y-axis mean lower performance than legacy
Subversion, and above mean higher. As the 100 Mbit/s 5 ms
curves shows, there is no benefit to run SVN over ICN in a
high (unlimited) bandwidth environment as the ICN overhead
then is greater than the transmission savings. The three curves
show the performance for different connection bit-rate and
delay to the server, simulating different WAN characteristics
for the path to the server.

Fig. 9. Subversion/OpenNetInf performance relative Subversion/HTTP.

Fig. 10. Subversion/CCNx performance relative Subversion/HTTP.

For Subversion/OpenNetInf, there is a clear performance
gain for the 1 and 5 Mbit/s cases already when there are two
local clients. For Subversion/CCNx there is only a gain for the
1 Mbit/s case due to the higher base overhead of the prototype.

VI. EVALUATION ISSUES

In this section we discuss some issues with the experimen-
tal evaluation. Especially the performance measurements are
severely affected by a number of factors, both positively and
negatively, making it difficult to draw clear general conclu-
sions.

A. Extrapolation to many clients

The experimental setup only includes two clients. The
measurements can thus only be done for the first and second
client. The results for three and more clients are instead
extrapolated using a simple formula for the time t it takes
for n clients, where t1 and t2 are the measured values for the
first and second client, respectively:

tn = t1 + (n− 1)× t2 (1)



This formula for instance neglects parallelism. For the legacy
(non-ICN) case with a single server there is a limited amount
of parallelism that can be exploited before the server or the
communication path becomes saturated. For the ICN case, on
the other hand, there is much more parallelism possible, since
the more clients, the more sources that can provide the data.
So the conclusion is that the formula is conservative, that is, is
underestimating the expected performance of the ICN cases.

B. Signature and hash value calculation

A good part of the overhead of both ICN prototypes come
from the calculation and verification of cryptographic hashes
and signatures. We have some indication of that overhead
from the CPU utilization measurements, but the exact extent
and differences between OpenNetInf and CCNx remains to be
investigated in more detail.

For both Subversion over ICN prototypes, the first client
requesting a particular file from the repository pays the cost
of entering that file in OpenNetInf and CCNx respectively,
including signature calculation. In a real implementation, this
should be done already when that file is entered into the
repository.

There are more opportunities for increasing the perfor-
mance. On the client side, the prototypes perform reception,
hash calculation and signature verification serially for each file
retrieved. The hashes can be calculated while receiving, in an
integrated layer fashion [1], and the signatures computed in
parallel with the reception of the next file, making good use
of today’s multi-core CPUs.

C. Automatic selection of ‘best’ source

As caching the same information in multiple locations in
the network is one of the key ICN features, source selection
becomes a critical issue. In ICN, source selection can either
be done by the network or by the receiver. If done by the
network, a strategy function is needed that can perform the
selection procedure. Alternatively, the network can deliver a
list of possible source alternatives, including characteristics
that can be used for selection, that the receiver makes its
choice(s) from.

In OpenNetInf, this translates to selecting a locator (IP ad-
dress), and in CCNx it translates to routing the interest packet.
As both prototypes only have rudimentary such functions at
best, the experiments were made with fixed priorities between
the known sources.

D. Comparing apples with oranges

We found that the experimental evaluation of ICN compared
with legacy host-centric networking is difficult for several
reasons. Some of the overhead that ICN introduces only
applies to when objects are stored or accessed the first time.
How shall that performance loss be taken into account in a fair
way when comparing with traditional host centric networking?

The result is very dependent on the scenario and its network
topology. The traffic pattern is different for the ICN and non-
ICN case. For our local collaboration scenario, few clients

and a well connected server means no gain with ICN. But
with many clients and a badly connected server the gains can
be huge. So it is hard to make general statements about the
technologies as such, it all depends on what assumptions you
make on how they will be used. It is often not possible to
make a direct comparison – we end up comparing apples with
oranges.

VII. DISCUSSION OF ICN BENEFITS

A. Performance/efficiency benefits with ICN

Traditional client server applications are connected via a
point-to-point connection over which downloads and/or trans-
actions are performed serially. When an application is ICN
enabled one thing that comes with it is parallelization. An ICN
application is not making requests towards a specific server in
the network but it is making its requests to the ‘network’. One
way to model these ‘network requests’ are as anycasts.

After that an ICN application has sent a series of requests
to the network the application is out of control. To which
extent requests are handled in parallel is determined by the
name resolution and routing mechanisms in the network. ICN
requests are about retrieving or connecting to information
objects. From the application’s perspective it is irrelevant if
the requests are satisfied by one or many hosts/caches/routers.

B. Advantages with the information-centric security model

In ICN security is based on cryptographically binding the
name of an information object to the very content of that
information object. Once you have an ICN identifier that you
know represents the information you want you can retrieve a
copy of that object from any source without having any trust
relation to that source.

This is very different from traditional host-centric network-
ing where you need to trust the source host that is sending you
the information object. In addition to trusting and verifying the
authenticity of the source you need to secure the transmission
channel between the source and the sink. This has several
drawbacks. One is that it limits the number of possible sources
to the set of hosts that you have built a trust relationship
with. Another is that if someone, e.g., a trojan in the source
host, have manipulated the information that the source host is
sending to the sink it is difficult for the sink to detect this.

C. DTN/adhoc features

ICN has good potential for supporting disruption-tolerant
networking (DTN) and adhoc scenarios, since caching of
information objects is a basic ICN function. For DTN, local
caches means that a disconnected part of a network can still
function and deliver the data that are present in those caches
(and servers) still available in the partitioned network. It is
necessary that some local NRS is present in the partitioned
part of the network. Simple broadcast resolution can be used in
small partitions. For larger network partitions reconfiguration
of NRSes and potentially election mechanisms are needed.

Adhoc scenarios are well supported as ICN hosts can
support P2P delivery. The minimum network configuration is



two nodes. Each host can have a local NRS which it uses to
keep track of locally cached copies as well for caching results
of previous remote NRS requests.

D. ICN and multihoming

Hosts can have multiple interfaces (e.g., WiFi, Infrared,
Bluetooth). Requests for information objects can be sent over
all interfaces in parallel or in sequence in accordance with
policies. How to make requests is a strategy decision that
depends on user/network policies. ICN technology as such
puts few limitations on how multiple interfaces can be used.
Registrations of information objects and responses to NRS
requests might differ for different objects as not all objects
might be possible to deliver over all interfaces (e.g., live
streaming HD video can not be supported by a low bitrate
interface).

VIII. RELATED WORK

ICN is a new area of research, related work has been/is
being done in EU projects 4WARD6, SAIL7, PSIRP8, PUR-
SUIT9, COMET10 and in the US projects DONA [13],
CCN [11] and NDN11. A general overview of the ICN area
initiatives is available in the ICN overview paper [3].

Some applications have already been developed that imple-
ments ICN architectures. On the NetInf side Extensions to
Mozilla Firefox and Mozilla Thunderbird called InFox and
InBird have been developed with the OpenNetInf platform as
their base [2]. On the CCN side applications include a simple
chat (CCNChat), a file proxy (CCNFileProxy) application and
voice-over-ccn (VoCCN) [10]. The PSIRP/PURSUIT proto-
typing have primarily focused on evaluating performance of a
pure publish/subscribe architecture [12].

To our knowledge this work is the first where the same
application has been implemented on two ICN platforms and
a comparative study between the two approaches has been
made.

IX. CONCLUSIONS

We have adapted a Subversion server and client to use
the network service of the ICN prototypes OpenNetInf and
CCNx. Experiments were done in a local collaboration sce-
nario to evaluate the benefit of ICN for applications that can
take advantage of local caching to lessen the need for good
connectivity to a server.

We described experiences and insights from the experi-
ments. It was straightforward to adapt the file transfer parts of
Subversion to use ICN. It is clear that ICN has a higher base
overhead than current network protocols, but the experiments
revealed that the gain quickly offsets the costs. The measure-
ments show a performance advantage for ICN already with

6http://www.4ward-project.eu/
7http://www.sail-project.eu/
8http://www.psirp.org/
9http://www.fp7-pursuit.eu
10http://www.comet-project.org
11http://www.named-data.net/

two clients for realistic simulations of the WAN connection to
the server, despite the systems being non-optimised research
prototypes. The experiments also revealed that there are good
opportunities for optimising the prototypes by parallelising the
computation of the hashes and signatures, lessening the impact
of these overheads. Automatic selection of the ‘best’ source is
crucial for good ICN performance, a function the prototypes
currently lack.

While ICN can make communication more efficient for
the same content distribution scenarios that motivate the use
of CDNs, the local collaboration scenario of this paper and
similar scenarios that approach disruption-tolerant networking
(DTN) provide additional motivation for ICN.

REFERENCES

[1] B. Ahlgren, M. Björkman, and P. Gunningberg, “The applicability
of integrated layer processing,” IEEE Journal on Selected Areas in
Communications, vol. 16, no. 3, pp. 317–331, Apr. 1998. [Online].
Available: http://www.sics.se/ bengta/ilpapplic.ps.gz

[2] B. Ahlgren, M. D’Ambrosio, C. Dannewitz, A. Eriksson, J. Golić,
B. Grönvall, D. Horne, A. Lindgren, O. Mämmelä, M. Marchisio,
J. Mäkelä, S. Nechifor, B. Ohlman, S. Randriamasy, T. Rautio, E. Re-
nault, P. Seittenranta, O. Strandberg, B. Tarnauca, V. Vercellone, and
D. Zeghlache, “Netinf evaluation,” 4WARD EU FP7 Project, De-
liverable D-6.3, Jun. 2010, fP7-ICT-2007-1-216041-4WARD / D-6.3,
http://www.4ward-project.eu/.

[3] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and
B. Ohlman, “A survey of information-centric networking (draft),”
in Information-Centric Networking, ser. Dagstuhl Seminar Proceedings,
no. 10492. Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany, 2011. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2011/2941

[4] B. Ahlgren, B. Ohlman, E. Axelsson, and L. Brown, “Experiments with
subversion over opennetinf and ccnx,” in 7th Swedish National Computer
Networking Workshop (SNCNW), Linköping, Sweden, Jun. 13-14, 2011.

[5] L. Brown and E. Axelsson, “Use of information-centric networks in
revision control systems,” Master’s thesis, Royal Institute of Technology
(KTH), Jan. 2011.

[6] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato, Version Control
with Subversion. O’Reilly Media, 2004.

[7] M. D’Ambrosio, C. Dannewitz, H. Karl, and V. Vercellone, “MDHT: A
hierarchical name resolution service for information-centric networks,”
in ACM SIGCOMM Workshop on Information-Centric Networking (ICN-
2011), Toronto, Canada, Aug. 19, 2011, in conjunction with ACM
SIGCOMM 2011.

[8] C. Dannewitz, J. Golić, B. Ohlman, and B. Ahlgren, “Secure naming
for a network of information,” in 13th IEEE Global Internet Symposium,
San Diego, CA, USA, Mar. 19, 2010, in conjunction with IEEE Infocom
2010.

[9] A. Eriksson and B. Ohlman, “Scalable object-to-object communication
over a dynamic global network,” in Future Network and MobileSummit,
Florence, Italy, Jun. 16-18, 2010.

[10] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stewart,
J. D. Thornton, and R. L. Braynard, “VoCCN: Voice-over content-centric
networks,” in Re-Architecting the Internet (ReArch’09), Rome, Italy,
Dec. 1, 2009, a CoNEXT 2009 workshop.

[11] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. 5th ACM
International Conference on emerging Networking EXperiments and
Technologies (ACM CoNEXT 2009), Rome, Italy, Dec. 1-4, 2009.

[12] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar,
and P. Nikander, “LIPSIN: Line speed publish/subscribe
inter-networking,” in Proceedings of the ACM SIGCOMM
2009 conference on Data communication. Barcelona, Spain:
ACM, Aug. 17-21, 2009, pp. 195–206. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1592568.1592592

[13] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” in Proc. ACM SIGCOMM, Kyoto, Japan, Aug. 27-31,
2007.


