659 research outputs found

    Vector Disparity Sensor with Vergence Control for Active Vision Systems

    Get PDF
    This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system

    Automating Active Stereo Vision Calibration Process with Cobots

    Get PDF
    Collaborative robots help the academia and industry to accelerate the work by introducing a new concept of cooperation between human and robot. In this paper, a calibration process for an active stereo vision rig has been automated to accelerate the task and improve the quality of the calibration. As illustrated in this paper by using Baxter Robot, the calibration process has been done faster by three times in comparison to the manual calibration that depends on the human. The quality of the calibration was improved by 120% when the Baxter robot was used

    Object tracking with stereo vision

    Get PDF
    A real-time active stereo vision system incorporating gaze control and task directed vision is described. Emphasis is placed on object tracking and object size and shape determination. Techniques include motion-centroid tracking, depth tracking, and contour tracking

    The Active Stereo Probe: The Design and Implementation of an Active Videometrics System

    Get PDF
    This thesis describes research leading to the design and development of the Active Stereo Probe (ASP): an active vision based videometrics system. The ASP espouses both definitions of active vision by integrating structured illumination with a steerable binocular camera platform (or head). However, the primary function of the ASP is to recover quantitative 3D surface models of a scene from stereo images captured from the system's stereo pair of CCD video cameras. Stereo matching is performed using a development of Zhengping and Mowforth's Multiple Scale Signal Matcher (MSSM) stereo matcher. The performance of the original MSSM algorithm was dramatically improved, both in terms of speed of execution and dynamic range, by completely re-implementing it using an efficient scale space pyramid image representation. A range of quantitative performance tests for stereo matchers was developed, and these were applied to the newly developed MSSM stereo matcher to verify its suitability for use in the ASP. The performance of the stereo matcher is further improved by employing the ASP's structured illumination device to bathe the imaged scene in textured light. Few previously reported dynamic binocular camera heads have been able to perform any type of quantitative vision task. It is argued here that this failure has arisen mainly from the rudimentary nature of the design process applied to previous heads. Therefore, in order to address this problem, a new rigorous approach, suitable for the design of both dynamic and static stereo vision systems, was devised. This approach relies extensively upon system modelling as part of the design process. In order to support this new design approach, a general mathematical model of stereo imaging systems was developed and implemented within a software simulator. This simulator was then applied to the analysis of the requirements of the ASP and the MSSM stereo matcher. A specification for the imaging and actuation components of the ASP was hence obtained which was predicted to meet its performance requirements. This led directly to the fabrication of the completed ASP sensor head. The developed approach and model has subsequently been used successfully for the design of several other quantitative stereo vision systems. A vital requirement of any vision system that is intended to perform quantitative measurement is calibration. A novel calibration scheme was devised for the ASP by adopting advanced techniques from the field of photogrammetry and adapting them for use in the context of a dynamic computer vision system. The photogrammetric technique known as the Direct Linear Transform was used successfully in the implementation of the first, static stage of this calibration scheme. A significant aspect of the work reported in this thesis is the importance given to integrating the components developed for the ASP, i.e. the sensor head, the stereo matching software and the calibration software, into a complete videometric system. The success of this approach is demonstrated by the high quality of 3D surface models obtained using the integrated videometric system that was developed

    Real Time Tracking of Moving Objects with an Active Camera

    Get PDF
    This article is concerned with the design and implementation of a system for real time monocular tracking of a moving object using the two degrees of freedom of a camera platform. Figure-ground segregation is based on motion without making any a priori assumptions about the object form. Using only the first spatiotemporal image derivatives subtraction of the normal optical flow induced by camera motion yields the object image motion. Closed-loop control is achieved by combining a stationary Kalman estimator with an optimal Linear Quadratic Regulator. The implementation on a pipeline architecture enables a servo rate of 25 Hz. We study the effects of time-recursive filtering and fixed-point arithmetic in image processing and we test the performance of the control algorithm on controlled motion of objects

    Visually guided vergence in a new stereo camera system

    Get PDF
    People move their eyes several times each second, to selectivelyanalyze visual information from specific locations. This is impor-tant, because analyzing the whole scene in foveal detail would re-quire a beachball-sized brain and thousands of additional caloriesper day. As artificial vision becomes more sophisticated, it mayface analogous constraints. Anticipating this, we previously devel-oped a robotic head with biologically realistic oculomotor capabil-ities. Here we present a system for accurately orienting the cam-eras toward a three-dimensional point. The robot’s cameras con-verge when looking at something nearby, so each camera shouldideally centre the same visual feature. At the end of a saccade,we combine priors with cross-correlation of the images from eachcamera to iteratively fine-tune their alignment, and we use the ori-entations to set focus distance. This system allows the robot toaccurately view a visual target with both eyes
    corecore