1,461 research outputs found

    Becoming Human with Humanoid

    Get PDF
    Nowadays, our expectations of robots have been significantly increases. The robot, which was initially only doing simple jobs, is now expected to be smarter and more dynamic. People want a robot that resembles a human (humanoid) has and has emotional intelligence that can perform action-reaction interactions. This book consists of two sections. The first section focuses on emotional intelligence, while the second section discusses the control of robotics. The contents of the book reveal the outcomes of research conducted by scholars in robotics fields to accommodate needs of society and industry

    Aerospace Medicine and Biology: A continuing bibliography (supplement 221)

    Get PDF
    This bibliography lists 127 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1981

    Multi-Sensor Methods for Mobile Radar Motion Capture and Compensation.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Application of deadbeat controllers and pole placement methodologies for friction compensation in mechanical systems

    Get PDF
    Cataloged from PDF version of article.Friction is an almost unavoidable component of many mechanical systems. When not taken into account in designing control systems, the effect of friction may result in the degradation of controlled system performance. This thesis deals with the problem of designing a control system, for friction compensation in mechanical systems, via pole placement and deadbeat methodologies. Pole placement design is based on different performance measures and indices such as settling time, overshoot and ITAE. Deadbeat controller design is based on parameterization of Diophantine equations which depend on the reference signal to be tracked. System performance is analyzed on simulation level by the application of the two methodologies in a hierarchical feedback system structure, which provides both position and velocity control separately. Simulation results show that both methodologies provide acceptable performance as compared to the existing compensation schemes in literature and control performances are improved with respect to their accuracy of tracking. In addition, deadbeat controller is observed to be more promising in terms of minimum settling time.Karahasanoğlu, Çınar YeşilM.S

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 182, July 1978

    Get PDF
    This bibliography lists 165 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1978

    Soft pneumatic devices for blood circulation improvement

    Get PDF
    The research activity I am presenting in this thesis lies within the framework of a cooperation between the University of Cagliari (Applied Mechanics and Robotics lab, headed by professor Andrea Manuello Bertetto, and the research group of physicians referencing to professor Alberto Concu at the Laboratory of Sports Physiology, Department of Medical Sciences), and the Polytechnic of Turin (professor Carlo Ferraresi and his equipe at the Group of Automation and Robotics, Department of Mechanical and Aerospace Engineering) This research was also funded by the Italian Ministry of Research (MIUR – PRIN 2009). My activity has been mainly carried on at the Department of Mechanics, Robotics lab under the supervision of prof. Manuello; I have also spent one year at the Control Lab of the School of Electrical Engineering at Aalto University (Helsinki, Finland). The tests on the patients were taken at the Laboratory of Sports Physiology, Cagliari. I will be describing the design, development and testing of some soft pneumatic flexible devices meant to apply an intermittent massage and to restore blood circulation in lower limbs in order to improve cardiac output and wellness in general. The choice of the actuators, as well as the pneumatic circuits and air distribution system and PLC control patterns will be outlined. The trial run of the devices have been field--‐tested as soon a prototype was ready, so as to tune its features step--‐by--‐ step. I am also giving a characterization of a commercial thin force sensor after briefly reviewing some other type of thin pressure transducer. It has been used to gauge the contact pressure between the actuator and the subject’s skin in order to correlate the level of discomfort to the supply pressure, and to feed this value back to regulate the supply air flow. In order for the massage to be still effective without causing pain or distress or any cutoff to the blood flow, some control objective have been set, consisting in the regulation of the contact force so that it comes to the constant set point smoothly and its value holds constant until unloading occurs. The targets of such mechatronic devices range from paraplegic patients lacking of muscle tone because of their spinal cord damage, to elite endurance athletes needing a circulation booster when resting from practicing after serious injuries leading to bed rest. Encouraging results have been attained for both these two categories, based on the monitored hemodynamic variables

    Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions

    Get PDF
    Welcome to ROBOTICA 2009. This is the 9th edition of the conference on Autonomous Robot Systems and Competitions, the third time with IEEE‐Robotics and Automation Society Technical Co‐Sponsorship. Previous editions were held since 2001 in Guimarães, Aveiro, Porto, Lisboa, Coimbra and Algarve. ROBOTICA 2009 is held on the 7th May, 2009, in Castelo Branco , Portugal. ROBOTICA has received 32 paper submissions, from 10 countries, in South America, Asia and Europe. To evaluate each submission, three reviews by paper were performed by the international program committee. 23 papers were published in the proceedings and presented at the conference. Of these, 14 papers were selected for oral presentation and 9 papers were selected for poster presentation. The global acceptance ratio was 72%. After the conference, eighth papers will be published in the Portuguese journal Robótica, and the best student paper will be published in IEEE Multidisciplinary Engineering Education Magazine. Three prizes will be awarded in the conference for: the best conference paper, the best student paper and the best presentation. The last two, sponsored by the IEEE Education Society ‐ Student Activities Committee. We would like to express our thanks to all participants. First of all to the authors, whose quality work is the essence of this conference. Next, to all the members of the international program committee and reviewers, who helped us with their expertise and valuable time. We would also like to deeply thank the invited speaker, Jean Paul Laumond, LAAS‐CNRS France, for their excellent contribution in the field of humanoid robots. Finally, a word of appreciation for the hard work of the secretariat and volunteers. Our deep gratitude goes to the Scientific Organisations that kindly agreed to sponsor the Conference, and made it come true. We look forward to seeing more results of R&D work on Robotics at ROBOTICA 2010, somewhere in Portugal

    Lewis Structures Technology, 1988. Volume 1: Structural Dynamics

    Get PDF
    The specific purpose of the symposium was to familiarize the engineering structures community with the depth and range of research performed by the Structures Division of the Lewis Research Center and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive testing, dynamical systems, fatigue and damage, wind turbines, hot section technology, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics

    Recurrent neural networks and adaptive motor control

    Get PDF
    This thesis is concerned with the use of neural networks for motor control tasks. The main goal of the thesis is to investigate ways in which the biological notions of motor programs and Central Pattern Generators (CPGs) may be implemented in a neural network framework. Biological CPGs can be seen as components within a larger control scheme, which is basically modular in design. In this thesis, these ideas are investigated through the use of modular recurrent networks, which are used in a variety of control tasks. The first experimental chapter deals with learning in recurrent networks, and it is shown that CPGs may be easily implemented using the machinery of backpropagation. The use of these CPGs can aid the learning of pattern generation tasks; they can also mean that the other components in the system can be reduced in complexity, say, to a purely feedforward network. It is also shown that incremental learning, or 'shaping' is an effective method for building CPGs. Genetic algorithms are also used to build CPGs; although computational effort prevents this from being a practical method, it does show that GAs are capable of optimising systems that operate in the context of a larger scheme. One interesting result from the GA is that optimal CPGs tend to have unstable dynamics, which may have implications for building modular neural controllers. The next chapter applies these ideas to some simple control tasks involving a highly redundant simulated robot arm. It was shown that it is relatively straightforward to build CPGs that represent elements of pattern generation, constraint satisfaction. and local feedback. This is indirect control, in which errors are backpropagated through a plant model, as well as the ePG itself, to give errors for the controller. Finally, the third experimental chapter takes an alternative approach, and uses direct control methods, such as reinforcement learning. In reinforcement learning, controller outputs have unmodelled effects; this allows us to build complex control systems, where outputs modulate the couplings between sets of dynamic systems. This was shown for a simple case, involving a system of coupled oscillators. A second set of experiments investigates the use of simplified models of behaviour; this is a reduced form of supervised learning, and the use of such models in control is discussed
    corecore