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September, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52940425?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Application of Deadbeat Controllers and Pole Placement Methodologies

for Friction Compensation in Mechanical Systems
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ABSTRACT

APPLICATION OF DEADBEAT CONTROLLERS AND
POLE PLACEMENT METHODOLOGIES FOR FRICTION

COMPENSATION IN MECHANICAL SYSTEMS

Çınar Yeşil Karahasanoğlu

M.S. in Electrical and Electronics Engineering

Advisor: Prof. Dr. Ömer Morgül

September, 2015

Friction is an almost unavoidable component of many mechanical systems. When

not taken into account in designing control systems, the effect of friction may re-

sult in the degradation of controlled system performance. This thesis deals with

the problem of designing a control system, for friction compensation in mechanical

systems, via pole placement and deadbeat methodologies. Pole placement design is

based on different performance measures and indices such as settling time, overshoot

and ITAE. Deadbeat controller design is based on parameterization of Diophantine

equations which depend on the reference signal to be tracked. System performance is

analyzed on simulation level by the application of the two methodologies in a hierar-

chical feedback system structure, which provides both position and velocity control

separately. Simulation results show that both methodologies provide acceptable per-

formance as compared to the existing compensation schemes in literature and control

performances are improved with respect to their accuracy of tracking. In addition,

deadbeat controller is observed to be more promising in terms of minimum settling

time.

Keywords: Friction, Coulomb Friction, Friction Compensation, Pole Placement,

Deadbeat Controller, Diophantine Equations.
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ÖZET

MEKANİK SİSTEMLERDE SÜRTÜNME GİDERİMİ İÇİN

DEADBEAT DENETLEYİCİ VE KUTUP YERLEŞTİRME

DENETİMİ UYGULAMASI

Çınar Yeşil Karahasanoğlu

Elektrik ve Elektronik Mühendisliği Bölümü , Yüksek Lisans

Tez Danışmanı: Prof. Dr. Ömer Morgül

Eylül, 2015

Sürtünme, mekanik sistemlerde kaçınılmaz bir şekilde oluşur. Kontrol sistem-

leri tasarlanırken sürtünmenin gözardı edilmesi, kontrol sisteminin performansını

düşürmektedir. Bu tezde, tasarlanan kontrol sistemlerinde kutup yerleştirme ve

deadbeat metodolojilerini kullanarak, mekanik sistemler için sürtünme giderme

yöntemleri sunulmaktadır. Kutup yerleştirme temelli tasarım ITAE, oturma zamanı

ve maksimum aşma gibi değişik performans kriterlerine göre yapılmıştır. Deadbeat

denetleyici temelli tasarım ise referans sinyaline bağlı olarak parametrize edilen Dio-

phantine denklemlerine göre yapılmıştır. Ayrı ayrı hem hız hem pozisyon kontrolü

sağlayan hiyerarşik kontrol yapısı kullanılarak, sistem performansı simülasyonlarla

analiz edilmiştir. Simülasyon sonuçları, iki yöntemin de, mevcut sürtünme gi-

derme yöntemlerine kıyasla, uygulandığı sistemin performansını kabul edilebilir

ölçüde geliştirdiğini ortaya koymuştur. Ayrıca, simülasyonlar, takip hassasiyeti

baz alındığında da kontrol performansının arttığını göstermiştir. Deadbeat denet-

leyicinin ise minimum oturma zamanı baz alındığında daha umut vaat eden bir kon-

trol yöntemi olduğu gözlenmiştir.

Anahtar sözcükler : Sürtünme, Coulomb Sürtünme, Sürtünme Giderimi, Kutup

Yerleştirme, Deadbeat Denetleyici, Diophantine Denklemleri.
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Chapter 1

Introduction

Friction plays an important role in the performance of high precision mechanical

systems as it is a highly nonlinear component that may give rise to poor performance

and cause undesirable effects such as steady state errors, tracking errors, time delays,

oscillations and limit cycling [1]. It is one of the main limiting factors for the precision

of positioning and pointing in the motion system, if it is not compensated. Therefore,

it is desirable to minimize the frictional effects by friction compensation, for the

design of motion control approach, as classical feedback laws may be insufficient for

the compensation of frictional effects [2].

An effective control strategy would achieve a good transient response and tracking

of any reference input with zero steady-state error. Tracking error should diminish as

fast as possible because the systems lose the most time at zero or near-zero velocities,

trying to overcome the dominant and discontinuous disturbance factor, which is the

friction.

1



1.1 Motivation

The goal of this study is to develop a control strategy that both compensates for

the frictional effects and achieves certain performance criteria, such as overshoot and

settling time optimization, etc. This goal is important especially for position and

speed control in critically-timed firing, shooting and weapon systems or mechanical

motion platforms with which these systems are integrated. These systems need to

satisfy high tracking accuracy demands in a short amount of time. To this end,

a deadbeat controller, employing the parameterization of Diophantine equations, is

utilized to a plant of motion system with nonlinear friction.

The study primarily focuses on position tracking of a plant that experiences high

number of velocity reversals or low magnitude demand, in which Viscous friction,

combined with Coulomb friction, is the most dominant disturbance factor. In these

systems, typical procedures for orienting the system to the given input as in linear

systems, are no longer valid because of the nonlinearity region and robustness issues.

Furthermore, suitable friction compensation methods may have additional perfor-

mance based drawbacks such as time delays, overshoots, bad disturbance rejection

and higher control effort. By the utilization of the deadbeat controller, output of the

system tracks the reference input from any initial state, with zero steady state error

and minimum settling time [3].

The design process of the deadbeat controller consists of 2 main steps. The first

step is feedback linearization, in which, the nonlinear system is linearized and stabi-

lized by using state and output feedbacks with integral and gain controller. Feedback

linearization is also related to the pole placement in the case of linear systems [4].

The second step includes polynomial approach, in which, the controller’s parameters

are obtained by solutions of the two independent Diophantine equations, constructed
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for the transfer function of the linearized and stabilized nonlinear plant [5]. The gen-

eral structure of the controlled mechanical system studied in this thesis is shown in

Figure 1.1:

Figure 1.1: Block diagram of overall feedback system

In Figure 1.1, P represents the plant, F (q̇) represents the friction force. The gains

K1 and K2 are are utilized for pole placement after linearization of the plant. Cp

and Cv blocks represent the controllers, one for stabilization of the position loop and

one for the stabilization of the velocity loop respectively. Moreover, the signals rp

and rv represent the command inputs for position and velocity respectively. Position

output is represented by q, whereas v = q̇ is the velocity output. Finally, d stands for

the disturbance acting on the plant and u is the control input applied to the plant.

Such structures have been investigated in various systems, see [6], [7] and [8]. The

proposed deadbeat controller will be added to the structure given in Figure 1.1 in

subsequent sections, see e.g. section 3.2.

For position control, velocity command input rv must be equal to zero (rv = 0).

For velocity control, position command input rp must be equal to zero (rp = 0) and

the position loop must be switched off by making Cp = 0.
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1.2 Background

Various control strategies have been developed, in order to eliminate frictional effects

and to deal with problems such as instabilities, steady state and tracking errors,

oscillations, time delays and limit cycles caused by friction. These strategies can be

categorized as model-based and non-model based friction compensation, according

to their control approach towards friction phenomena [9].

1.2.1 Non-model-based Friction Compensation

If the friction cannot be accurately modeled or it depends on varying and uncon-

trollable conditions in the system, non-model based friction compensation schemes

are suitable for overcoming problems caused by friction. These schemes compensate

not only for friction, but also other nonlinearities. The survey paper [10] overviewed

the important contributions on non-model based friction compensation and classified

available methods having different accuracy levels.

Most known compensation schemes are introducing Dither signal into the system

[11], [12], [13], [14], [15] and [16], Linear Feedback Controllers [17], [18], [19], [20],

[21], [22], [23], [24] and [25], Joint Torque Control [26], [27], [28], [29], [30], [31], [32],

[33], [34] and [35], Impulsive Control [36], [37] and [38], Dual Mode Controllers [39],

[40] and [41] and Disturbance Observers [42], [43], [44], [45], [46], [47] and [48].

Dither is a smoothing technique for the discontinuities, in which a high frequency

signal is introduced to the control signal such that the total applied force overcomes

the static friction force at velocity reversals [13]. Figure 1.2 shows addition of Dither

with unit feedback:
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Figure 1.2: Representation of dither method

Despite its simplicity and effectiveness, Dither is not suggested especially for di-

rect drive mechanical systems as more noise is introduced into the control process.

Controller output might no longer be the same as the plant input as one of the

natural frequencies of the plant might be excited with the addition of Dither [14].

Furthermore, hysteresis may appear due to wear problems caused by the vibrations

[16].

Linear Feedback Controllers include all types and combinations of Proportional

(P), Integral (I) and Derivative (D) controllers, which are widely used in control

applications. The PID algorithm is described by:

u(t) = Kpe(t) +Ki

t
∫

0

e(τ), dτ +Kd
de(t)

dt

where Kp , Ki and Kd are controller parameters, u(t) and e(t) are control signal and

error, respectively [21]. P -term is proportional to the error, I-term is proportional

to the integral of the error and D-term is proportional to the derivative of the error.
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The study in [24] shows the design and implementation of a nonlinear PID con-

troller including the application of time-varying and switching state feedback gains

as a function of system state and errors. Yet, this study focuses only on the stability

of the system under frictional disturbances and does not offer any methodology for

performance goals. The study in [22] exposes the fact that the stick-slip limit cycle is

inevitable in systems with Coulomb friction combined with static friction even if an-

other first-order linear compensator in the feedback loop is added for reduction of the

amplitude of the limit cycle. The work in [20] clarifies that no combinations of P, I

and D parameters can eliminate the stick-slip friction unless nonlinear modifications,

such as tuning of PID parameters, are made.

Rate varying and Reset-off integral controllers are studied in [19], especially for

reduction of steady-state errors. Although rate varying integrator eliminated the

steady state errors originating from stick friction, it couldn’t handle the tracking

errors originating from slip friction. The Reset-off integrator reduced the start-up

errors and oscillations, but couldn’t compensate for slip friction. Therefore; the

integral controllers were not successful and effective enough for compensation of

friction at low velocities and velocity reversals.

Position tracking with a PD controller in a steady, low velocity motion is explored

in [18]. The study indicates that velocity feedback, combined with position feedback

gains above a critical value, is crucial for friction compensation. Nevertheless, maxi-

mum gains of velocity and position feedback are limited by possible loop instabilities

and steady-state tracking errors.

Joint torque control includes the design of a joint torque sensor which is introduced

to the commanded torque, with a feedback loop between the actuator and the plant so

that applied torque follows the commanded torque [26]. Figure 1.3 shows addition of

torque controller with unit feedback. In the inner torque loop, friction compensation

and torque maintenance is made whereas in the outer loop, execution of the overall
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system is carried out.

Figure 1.3: Representation of the joint torque control

The studies in [27] and [31] focus on sensing and compensating for nonlinear dy-

namics in robotics by the design of joint torque control. The studies in [28] and [29]

implement the control for compensation of actuator disturbances and transmission

flexibilities. The study in [30] uses a joint torque sensing technique that complying

harmonic-drive elasticity in a single joint arm. All of these studies address sin-

gle axis sensing for each joint whereas the study in [33] proposes using six axes of

force/torque sensing per joint. Despite the results showing that performance of the

system is increased with almost indistinguishable steady state tracking errors, the

main challenge of this method is non-collocated sensing, caused by the separation of

actuator and sensor by the compliance of the transducer.

Impulsive control proposes generation of the control signal as a sequence of pulses

to perform the desired motion [38]. The study in [37] proposes a state-dependent

impulsive feedback control scheme, for set-point stabilization in motion systems with

uncertain friction. The study in [16] extends the study in [37], by the addition of

a pulse sequence to the control signal. However, control is limited to the dynamics

of the system and limitations of the controller, as the system is at rest between the

impulsive actions [36]. Furthermore, pulses should be of great magnitude to overcome
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the friction at low velocities and the control method is challenged by estimating

velocity accurately.

Usage of different controllers due to different frictional disturbances in the same

system is known as variable structural control strategy [39]. A special case of this

strategy is Dual Mode Control [40], in which two different controllers are used de-

pending on the active stage of friction. Figure 1.4 depicts the control strategy:

Figure 1.4: Representation of dual mode control

If the friction dynamics are drastically different, i.e. dual dynamic modes, this

control strategy could be adapted by switching so that each controller is used for

each frictional behavior. However, this strategy requires repetitive initialization of

the state of each controller right after switching, which may be a challenging task.

In addition to this, switching decision could be a difficult task due to the problems

caused by identification of the friction [41].

Disturbance observers’ ability is to realize the unidentified disturbances such as

parameter variations and parametric uncertainties without use of any additional

sensor [43]. For friction compensation schemes, disturbance observers are used in

the control strategy widely in order to estimate friction. These schemes are observed
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to provide improved tracking and robustness [42]. As seen in Figure 1.5, if the

system dynamics are known, the disturbance observer estimates the disturbance

with the measurement of system output and applied torque [47]. Indeed, output of

the disturbance observer minimizes the frictional effects.

Figure 1.5: Representation of the disturbance observer structure

The study in [44] proposes an extended Kalman-Bucy filter relying on an accu-

rate system model to estimate friction. This approach treats friction as an unknown

state element whereas in [48], friction is treated as a load disturbance torque in a

tracking servo system. In addition to Kalman filter based approach, stability and

performance analysis of predictive filter based approach and local function estimation

approach are studied in [45]. Although the results show increased tracking perfor-

mance, decreased frictional uncertainties and stability for a wide range of frictional

behavior, disturbance observers have limited disturbance rejection bandwidths and

limited capability of friction compensation at velocity reversals [46].
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1.2.2 Model-based Friction Compensation

If friction can be modeled mathematically or the information of friction is available,

model-based friction compensation schemes are used to compensate for friction just

by applying an equivalent and opposite control force to the instantaneous friction

in the system [49]. Figure 1.6 illustrates the basic idea behind model-based friction

compensation:

Figure 1.6: Representation of model-based friction compensation

As knowledge and accuracy of the model increases, these schemes are more promis-

ing [9]. The papers [10] and [1] overviewed the important contributions on model-

based friction compensation and classified available methods having different accu-

racy levels.

Most known compensation schemes are Adding Fixed Friction Compensation

Term as in [50], [51], [52], [53], [54], [55] and [56], Compensation in Feedforward

[57], [58], [59], [60], [6] and [7], Compensation in Feedback [61], [62], [63], [64] and
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[65], Adaptive and Learning Controllers combined with Friction Estimators and Ob-

servers [6], [66], [67], [68], [69], [70], [71], [72], [73], [74] and [75].

Fixed Friction Compensation introduces a fixed compensation term to the real

friction in the system, with an equal and opposite control force composed of an

accurate off-line estimate of the friction force [76].

The study in [54] explores friction compensation by the use of kinematics and

dynamics of a three revolute joints robot. The friction parameters are estimated on

the basis of the assigned three-sigmoid function model. The study in [55] verifies the

performance of the proposed methodology in [54] by kinetic friction parameter esti-

mation experimentally in a servomechanism. For dynamic friction models in systems,

observers are inserted in the velocity loops of systems and the fixed compensation

term is introduced on the basis of the estimated dynamic friction as studied in [52]

and [53].

Feedforward and feedback schemes are the most widely used forms of model based

friction compensation. Feedforward is used for improvement of the tracking perfor-

mance, whereas feedback deals mostly with stability and disturbance rejection issues

[1]. A detailed comparison study, with the application of feedforward and feedback

approaches to a robotic gripper, is presented in [77]. This study makes a distinc-

tion between two approaches: feedback tries to reject frictional disturbances whereas

feedforward tries to provide accurate tracking. The block diagram of a feedforward

controller combined with a unit feedback is illustrated in Figure 1.7. The major

difference between feedforward and feedback approaches is the use of information

for compensation. Feedforward approach uses a precalculated friction depending on

the reference, whereas feedback approach makes use of the actual friction for the

calculation of compensation [1].
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Figure 1.7: Representation of unit feedback and feedforward

The study in [46] offers design of feedforward compensation for various friction

models such as Dahl, LuGre, Leuven and Generalized Maxwell-slip (GMS) [49]. The

approach in [46] is also used in [58] with Karnopp friction model and it’s been ob-

served that potential limit cycles are eliminated. In [57], Viscous damping added

Coulomb friction is compensated by an adaptive feedforward controller. A feed-

forward compensation is designed in [59], for a static model combined with GMS

friction model especially for compensating the tracking errors caused by the complex

nonlinear behavior of friction at velocity reversals. The study in [60] is an enhanced

version of the study in [59] in which the feedforward controller is combined with a

repetitive controller and a disturbance observer, thus resulting in an almost complete

elimination of the remaining frictional disturbances and effects of cutting forces.

Feedback compensation of friction usually uses velocity information as a feed-

back variable and uses actual values of the velocity state in the friction model [64].

However, in [62], an estimation algorithm for velocity is proposed and feedback is
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introduced with the estimated velocity instead of measured velocity. In [65], a feed-

back compensation structure is developed in order to overcome friction of a printer

system, in which feedback controller is combined with an Iterative Learning Con-

troller used for learning the repetitive error and identifying friction parameters in

the system up to a higher frequency.

Both feedforward and feedback compensation schemes depend on desired reference

friction model, accurate identification of friction parameters or measurement of actual

friction. Therefore; feedforward compensation is limited by the used reference friction

model especially at very low velocities whereas feedback compensation is limited by

the measurability of the internal friction state, especially for the dynamic friction

models.

Modeling and parameter identification, required for model-based compensation,

is challenging because friction varies with temperature, wear, contact material prop-

erties, velocity and position etc [72]. Adaptive and learning controllers try to lead

the system to adapt such changes by employing friction parameters and forward

corrections - obtained by online identification - to the system [69].

The studies in [66] and [67] propose a control scheme in which frictional effects

are compensated adaptively with the use of an observer to estimate static friction

models and parameters in servo systems. The performance benefited from the con-

trol strategy since the system spends a little amount of time around zero velocity.

Nonetheless, the approach is not suggested for systems with dynamic friction mod-

els. This problem is overcome in [68], in which an adaptive nonlinear model provides

a reconstruction method for the velocity reversals by the help of a linear observer

and in [51] in which a neural-network based online learning feedforward controller

for repetitive low-velocity motions. Furthermore, the study in [73] demonstrates an

adaptive sliding control scheme for the estimation of friction and force ripple dynam-

ics around zero velocity and velocity reversals and the study in [71] features a dual
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observer for the estimation of friction parameters. The studies in [74] and [75] deal

with dynamic friction models and propose stable adaptive compensators with low

tracking errors. However, the study in [70] proves that if the friction state is unmea-

sureable, it is difficult to adapt the friction dynamics and compensate for uncertain

friction throughout the mechanical system as adaptive compensators work only if the

plant and disturbance dynamics are available. Another drawback is the restrictive

assumptions made through the design process such as constant plant parameters

which may not work in practical case.

1.2.3 Deadbeat Control

Deadbeat Control strategy offers a solution to the steady-state optimal control prob-

lem with its fastest settling time feature. Although this feature is one of the principal

concepts in system control theory as it is crucial to reach the desired reference from

any initial condition in minimum time, it is not explored much and the strategy was

not studied frequently in literature [78].

The theory of Deadbeat Control problem was apparently first addressed in [3], in

which four different types of controller, using different columns of the controllability

matrix of a system for state space construction and state transfer in minimum time,

are proposed. The designs lack robustness with respect to possible system parameter

variations.

The study in [79] approaches the deadbeat control problem by the formulation of

an optimal control problem which is established to solve the associated eigenvalue

problem. Generalized eigenvalue technique is used to place the poles at the origin by

the obtained feedback gain. The resulting controller, which is constructed with the

internal model of the reference input, provides robust tracking. The study in [80]

extends the results of [79] and [78] to linear multivariable generalized state-space
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systems, by the use of properties of linear quadratic regulator theory to obtain the

deadbeat controller classes.

Solution of a singular Riccati equation associated with the optimization problem

for a linear time-invariant system, leads to the design of a time variable deadbeat

controller by the minimization of a quadratic cost function, in [81]. The study is

extended in [82], which proves that a time varying Kalman gain sequence, computed

by the solution of a singular Riccati equation, always leads to the design of a deadbeat

controller.

These studies do not deal with the intersample ripples that may appear in the

continuous-time output. Ripple is an undesirable feature of deadbeat controllers,

which appear between sampling instants after settling time as an error between

the reference and actual output. The study in [83] proposes a ripple-free deadbeat

controller, which also minimizes a quadratic cost function with the aid of H2 norm,

for minimization of tracking error and control signal.

Very large values of control signals are one of the main drawbacks of deadbeat

controllers in most of the studies that offer minimum settling time. This is because

of the fact that the main objective is to beat all of the states of the system to the

origin in minimum time. The study in [84] offers a solution to this problem by the

use of transfer function factorization approach, which presents characterization of all

stabilizing deadbeat controls in terms of control input. The approach is illustrated in

a system with two-degree-of-freedom controllers: a feedforward block minimizing the

control input and a feedback block guaranteeing robustness. A trade-off is clearly

observed between settling time and magnitude of the control signal.

Performance based design quantities such as settling time, overshoot, undershoot,

slew rate and l1, l2 , l
∞

norms are used for obtaining a matrix parameterization

of the deadbeat controller in [85]. This controller is used as an optimal ripple-free
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control problem with time delayed systems. The study is further extended by the

study in [86], in which the matrix parameterization is made for all causal output

periodic feedback controllers using polynomial methods. The controllers provide

ripple-free behavior of the output of a linear time-invariant plant with a general

multirate control scheme.

The study in [5] proposes a hybrid, two-degree-of-freedom and ripple-free deadbeat

controller, which is designed according to performance and robustness specifications.

The design is based on the internal model principle and the solution of two Diophan-

tine equations: one equation for determining the performance property, another

equation for determining the robustness property. This design process is treated as

a solution for the fixed-order constrained optimization problem. Approaching this

problem with a given performance and robustness program, one has to minimize per-

formance and robustness cost functions subject to controller constraints. Figure 1.8

illustrates the configuration for the realization of the proposed deadbeat controller,

[5]:

Figure 1.8: Implementation of the deadbeat controller

The controller polynomials N1 , N2 and Dc are obtained by the solution of two

Diophantine equations:
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Np(q)N1(q) +Dr(q)Q1(q) = 1 (1.1)

Np(q)N2(q) +Dp(q)Dc(q) = 1 (1.2)

where Q1 is also a polynomial like N1, N2 and Dc, Np is the numerator of the plant,

Dp is the denominator of the plant and Dr is the denominator of the reference input

R(q) = Nr(q)
Dr(q)

, P (q) = Np(q)
Dp(q)

. The plant and reference inputs are polynomials in

Q-domain, which corresponds to rational functions in Z-domain. The results of this

study, validated with examples throughout the paper, show a good performance with

small settling times but high control signals.

The studies listed above, which gives a much better understanding of the capa-

bilities and limitations of minimum-time and deadbeat controllability, treats linear

systems only [87]. The insight of this control strategy for linear systems raises a big

question in mind: whether a deadbeat controller can be designed also for nonlinear

systems or not. This problem is apparently worth investigating.

The first attempt for deadbeat control of nonlinear systems is made in the study

[87], in which a system with one zero at infinity is one step output deadbeat con-

trolled. This study shows that, if the system’s zero dynamics are stable, the deadbeat

controller beats all states of the system to the origin. The study in [88] proposes a

contribution to the investigation, with an input-output approach given for stability of

one dimensional explicit zero dynamics. The study in [89] offers the best generalized

solutions especially for minimum phase nonlinear polynomial systems.

As observed from literature, there has been no work on design and application of

a deadbeat controller to the nonlinear friction compensation in mechanical motion

systems.
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1.2.4 Contributions of the Thesis

This thesis presents a pole placement methodology and design of a deadbeat con-

troller to solve the tracking, disturbance rejection and friction compensation prob-

lems in a mechanical system with nonlinear friction. Presented scheme is based on a

hierarchical closed loop feedback structure proposed in [6] and [7] whereas the dead-

beat controller formulation is based on [5]. Thus, the presented controller combines

two different types of controllers: one for internally stabilizing the system and one

for providing fast settling time and robustness.

1.2.5 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, structure of the plant and the

controller are defined, the design of the controller is presented. In Chapter 3, analysis

of the proposed control scheme is given. Performance of the designed controller is

investigated under different scenarios and compared with the performance of a high

gain feedback controller in terms of friction compensation. Concluding remarks are

made in Chapter 4.
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Chapter 2

Control Design of Mechanical

Systems with Friction

2.1 Plant Structure

A typical motion system is characterized by the following general equation:

Jq̈ + F (q̇) = u (2.1)

where J is the moment of inertia, q is the position, u is the applied force and F (q̇)

is the friction force. Equation 2.1 will be used in the next part to derive state space

of linearized model of the plant.

In this system, output is position or velocity whereas input is the force applied.

The acceleration of the system as produced by the acceleration force is directly

proportional to the magnitude of the net force, in the same direction as the net
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force and inversely proportional to the moment of inertia of the system according to

Newton’s second law of motion [90]. When there is no friction force, acceleration is

proportional to the applied force.

The following block diagram depicts the motion dynamics of a typical motion

system, with the representation of nonlinear friction force.

Figure 2.1: Block diagram of the mechanical system

Forward path includes an integrator from applied force to velocity as it is ob-

vious from Newton’s Law. Velocity is integrated into position. In addition to the

integrator, there is a gain inversely proportional to the moment of inertia.

Friction is introduced to the system in the velocity loop. It acts against the

applied force as characterized by the subtraction in the block diagram. The difference

between the applied force and the friction force is applied to the plant dynamics. This

difference is used for acceleration. Therefore; performance of the system degrades.

In order to overcome the friction force, a proper model of friction is essential.

A useful and simple model capturing the essential properties of friction is Coulomb

friction, where the friction force depends on the sign of the velocity, and a linear

viscous friction [49].
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Let us assume that the plant contains Coulomb friction and linear viscous damp-

ing, which describe a static relationship between the friction force and velocity as

given below:

F (q̇) = Fcsgn(q̇) + Fv q̇ (2.2)

Here, Fc is the magnitude of Coulomb friction which is proportional to the normal

force, i.e. Fc = µF , and µ < 1 is the coefficient of friction. Fv is the magnitude of

Viscous friction. The friction force contains a discontinuity at zero relative velocity as

observed from the presence of signum function in the equation [91]. This discontinuity

may possibly be alleviated by replacing the model by a smoothing function such as

tanh(λq̇). Hyperbolic tangent is an approximation of signum function without being

discontinuous. As λ approaches infinity, it reduces to signum function [92]. Thus,

the friction model will be approximated as:

F (q̇) = Fc tanh(λq̇) + Fv q̇ (2.3)

The motion of equation depends on the type of friction model. Throughout the

thesis, simulations will be carried out with the original Coulomb friction model,

which includes signum function, whereas the design of the controller will be based on

three different friction models. Table 2.1 shows the friction models and the resultant

equations of motion:
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Table 2.1: Equation of Motions for Friction Models

Friction Model Friction Force Equation of Motion

Viscous F (q̇) = Fv q̇ q̈ = 1
J
(u− (Fv q̇))

Viscous+Coulomb

(based on sgn(x))
F (q̇) = Fcsgn(q̇) + Fv q̇ q̈ = 1

J
(u− (Fcsgn(q̇) + Fv q̇))

Viscous+Coulomb

(based on tanh(x))
F (q̇) = Fc tanh(λq̇) + Fv q̇ q̈ = 1

J
(u− (Fc tanh(λq̇) + Fv q̇))

2.2 Deadbeat Controller Structure

In this section, design methodology for deadbeat controller is given. The theory is

illustrated for position control of a motion system as an example.

2.2.1 Feedback Linearization

The goal of feedback linearization approach is to produce a linear model of the

dynamics by canceling the nonlinearities in the system, with the use of nonlinear

state feedback design. State feedback design relies on pole placement such that the

closed loop nonlinear system dynamics is algebraically transformed into a linear form

[4].

For the first step of state feedback design, full-state feedback control law is utilized

for the state space representation of the system - the mathematical model of the

system including the set of input, output and state variables - which is derived after

linearization around operating point [93]. Figure 2.2 illustrates the block diagram of

full-state feedback:
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Figure 2.2: Block diagram of full-state feedback

In order to obtain state space representation of the system, let us define variable

transformation:

x1 = q (2.4)

x2 = q̇ (2.5)

Substituting (2.4) and (2.5) into equation 2.1, we obtain:

ẋ1 = x2 (2.6)

ẋ2 = − 1

J
F (x2) +

1

J
u (2.7)

Equations (2.6) and (2.7) are first order state equations in the form:

ẋ1 = f1(x1, x2) (2.8)

ẋ2 = f2(x1, x2) +
1

J
u
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Here, f1(x1, x2) = x2 and f2(x1, x2) = − 1
J
F (x2)

Using the state variable expression in (2.8), linearization around equilibrium point

is given by [4]:

ẋ1 =
∂f1
∂x1

∣

∣

∣

∣x1=x10

x2=x20

x1 +
∂f1
∂x2

∣

∣

∣

∣x1=x10

x2=x20

x2 (2.9)

ẋ2 =
∂f2
∂x1

∣

∣

∣

∣x1=x10

x2=x20

x1 +
∂f2
∂x2

∣

∣

∣

∣x1=x10

x2=x20

x2 +
1

J
u (2.10)

Here (x10, x20) is the equilibrium point of the system. At equilibrium, the system

is fixed at position x1, then velocity is equal to zero; i.e. we have:

x1 = x10

x2 = 0

Equations (2.9) and (2.10) could be put into the following matrix form:

[

ẋ1

ẋ2

]

= A

[

x1

x2

]

+Bu

y = C

[

x1

x2

]

+Du

Where A =

[

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
∣

∣

∣

∣

∣x1=x10

x2=0

, B =

[

0
1
j

]

, C =
[

1 0
]

and D = 0
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By using the friction model in (2.3) and related equation of motion in Table 2.1,

state space representation of the linearized system can be derived as:

ẋ1 = x2

ẋ2 =
1

J
u− 1

J
(Fcλ+ Fv)x2

Where we use the fact that d
dx2

(tanh(λx2))
∣

∣

x2=0
= λ

Each friction model yields a different linear approximation. Table 2.2 shows the

friction models and the resultant state space representation of linearized system:
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Table 2.2: State Space Matrices for Friction Models

Friction Force State Space Representation State Space Matrix

F (q̇) = Fv q̇
ẋ1 = x2

ẋ2 =
1
J
u− 1

J
(Fv)x2

A =

[

0 1

0 − 1
J
Fv

]

B =

[

0
1
J

]

C =
[

1 0
]

D = 0

F (q̇) = Fcsgn(q̇) + Fv q̇
ẋ1 = x2

ẋ2 =
1
J
u− 1

J
Fvx2

A =

[

0 1

0 − 1
J
Fv

]

B =

[

0
1
J

]

C =
[

1 0
]

D = 0

F (q̇) = Fc tanh(λq̇) + Fv q̇
ẋ1 = x2

ẋ2 =
1
J
u− 1

J
(Fcλ+ Fv)x2

A =

[

0 1

0 − 1
J
Fcλ− 1

J
Fv

]

B =

[

0
1
J

]

C =
[

1 0
]

D = 0

REMARK 2.1

We note that the second row in Table 2.2 does not correspond to an exact lin-

earization since the signum function sgn(q̇) is not differentiable at q̇ = 0. Here we

basically omit the effect of Coulomb friction hence, in essence, we consider the system

given by (2.1) without a Coulomb friction term in controller design. As a result, the

linear models in the first 2 rows of Table 2.2 are exactly the same. For this reason,

26



we will consider only the linear systems given in last 2 rows in our controller designs.

However, note that Coulomb friction is always used in our simulations.

The block diagram of state space representation of the linearized system is shown

in figure 2.3:

Figure 2.3: Block diagram representation of state space

The transfer function associated with the block diagram in Figure 2.3 is given as:

T (s) = C(sI −A)−1B +D (2.11)

Here, T (s) is the transfer function of the linearized system. By using the friction

model in (2.3) and related state space matrices A, B and C from Table 2.2, we obtain:

T (s) =
I
J

s2 +
(

1
J
Fcλ+ 1

J
Fv

)

s
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2.2.2 Controllability and Observability

In state variable format, poles of the closed-loop system are the eigenvalues of the

system. The ability to place the poles precisely at the desired locations, in order to

meet the performance specifications, depends only on the controllability and observ-

ability of the system.

Before the design of feedback linearization controller, Controllability and Observ-

ability tests must be carried out to figure out if it is possible to construct a state

vector, get a feedback from states and drive the state vector to its final state by

assigning the system eigenvalues [5].

Controllability concerns with whether the system could be forced into a particular

state by the design of an appropriate control input. The controllability of a system

can be determined by the algebraic condition:

rank
[

B AB A2B . . . An−1B
]

= n (2.12)

Here, A is a n× n matrix, B is a n× 1 matrix, PC =
[

B AB A2B . . . An−1
]

is the n× n controllability matrix and n is the number of states.

Controllability Theorem states that if the determinant of PC is nonzero; i.e PC

has full rank, the system is controllable [93].

Observability concerns with whether the state variables of a system could be

determineqd in order to apply feedback linearization. The observability of a system

can be determined by the algebraic condition:
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rank















C

CA
...

CAn−1















= n (2.13)

Here, C is a 1×n row vector,PO =















C

CA
...

CAn−1















= n is the n×n observability matrix

and n is the number of states.

Observability Theorem states that if the determinant of PO is nonzero; i.e PO has

full rank, the system is observable [93].

Substituting state space matrices found in Table 2.2 into (2.12) and (2.13), con-

trollability and observability tests are carried out. By using the friction model in

(2.3) and related state space matrices in Table 2.2, controllability and observability

matrices of the linearized system can be calculated as:

PC =
[

B AB
]

=

[

0 1
J

1
J

− 1
J2Fv

]

PO =

[

C

CA

]

=

[

1 0

0 1

]

Since PC and PO have full rank, system is controllable and observable. Therefore;

state feedback and pole placement are possible.
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2.2.3 Pole Placement

Eigenvalues of a system, which control the characteristics of the system response, cor-

respond to location of the system poles. Pole placement provides a control, in which

state variables are fed back to the system through a state-feedback gain matrix K,

for placing the system poles to a desired location [94], Block diagram representation

is seen in Figure 2.4 with the calculated state space after linearization:

Figure 2.4: Block diagram representation of pole placement

The state space representation of the system after pole placement is:

[

ẋ1

ẋ2

]

= (A− BK)

[

x1

x2

]

+Bu (2.14)

y = C

[

x1

x2

]

Transfer function after pole placement, Tnew(s), is found by the use of equations
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(2.11) and (2.14):

Tnew(s) = C(sI − (A− BK))−1B (2.15)

By using the friction model in (2.3) and substituting related state space matrices

A, B and C from Table 2.2 into (2.15), we obtain:

Tnew(s) =
1
J

s2 + s( 1
J
Fcλ+ 1

J
Fv +

1
J
K1) +

1
J
K2

(2.16)

Here, K is a 2× 1 matrix, i.e. K =

[

K1

K2

]

.

The state-feedback gain matrix is computed according to a specified transfer func-

tion, which is obtained by performance measures that are defined in terms of the step

response such as settling time and overshoot or performance indices such as ITAE

(Integral of the Time Multiplied by Absolute Error) [95]. The comparison between

the actual output and reference step input is usually measured by the percent over-

shoot P.O. and settling time Ts.

Throughout this thesis, we will treat settling time as the time required for the

system to settle within a 2% of the unit step input. Therefore;

Ts =
4

ζωn
(2.17)

Here, ζ is the damping ratio and ωn is the normalized frequency.

Maximum Overshoot for a step input is defined as the maximum amount of the

output response, proceeding above the reference input. It is expressed by a percent-

age, called Percent Overshoot, as:
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P.O. = 100e−ζπ/
√

1−ζ2 (2.18)

In addition to the step response properties, performance indices such as ITAE are

used to reduce the tracking error by measuring and trying to minimize it over time

range [96]. ITAE index is used to reduce the effect of initial error to the value of the

performance integral and to stress errors occurring later in the response [97].

ITAE =

∫ T

0

t|e(t)|dt (2.19)

As seen from equation (2.19), ITAE integrates an additional time multiplier and

the absolute error over time. This results in heavy weighted errors existing after a

long time, whereas light weighted errors at the start of the response. It provides the

best selectivity than the other performance indices as it provides much more quick

settled systems, but with lazy initial response [98].

The transfer function of a closed-loop second order system is:

Y (s)

U(s)
=

ω2
n

s2 + ζωns+ ω2
n

(2.20)

In order to obtain a specified function, percent overshoot and settling time is used

to find the damping ratio and natural frequency as:

ζ =

√

ln(P.O.)2

ln(P.O.)2 + π2
(2.21)

ωn = − ln(P.O.
√

1− ζ2)

ζTs
(2.22)
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Throughout the thesis, we choose Ts = 0.01 seconds and P.O. = 5%, unless

stated otherwise. Integrating these values in equations (2.21) and (2.22), damping

ratio is calculated as ζ = 0.6901 and natural frequency is calculated as ωn = 480.95.

Substituting these values into equation (2.20), the specified transfer function is found

as:

Y (s)

U(s)
=

2.313× 105

s2 + 663.8s+ 2.313× 105
(2.23)

Roots of characteristic equation give desired pole locations: −331.91±348.07j. In

order to place the poles to the desired pole locations and obtain state-feedback gain

matrix K, characteristic equation found in (2.16) must be equal to the characteristic

equation found in (2.23). By equating the characteristic equations, we can solve for

K:

1

J
Fcλ +

1

J
Fv +

1

J
K1 = 663.8

1

J
K2 = 2.313× 105

State-feedback gain matrix K changes with the friction model. Table 2.3 shows

the friction models and the equations used to solve for K:
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Table 2.3: Pole placement design for friction models based on settling time and

overshoot
Friction Force State Space Matrix Pole Placement Design

F (q̇) = Fv q̇

A =

[

0 1

0 − 1
J
Fv

]

B =

[

0
1
J

]

C =
[

1 0
]

1
J
Fv +

1
J
K1 = 663.8

1
J
K2 = 2.313× 105

F (q̇) = Fcsgn(q̇) + Fv q̇

A =

[

0 1

0 − 1
J
Fv

]

B =

[

0
1
J

]

C =
[

1 0
]

1
J
Fv +

1
J
K1 = 663.8

1
J
K2 = 2.313× 105

F (q̇) = Fc tanh(λq̇) + Fv q̇

A =

[

0 1

0 − 1
J
Fcλ− 1

J
Fv

]

B =

[

0
1
J

]

C =
[

1 0
]

1
J
Fcλ+ 1

J
Fv +

1
J
K1 = 663.8

1
J
K2 = 2.313× 105

REMARK 2.2

Note that as stated in Remark 2.1, the calculations given in first two rows of Table

2.3 are exactly the same. Hence as a result, we will consider only the calculations

given in the last two rows of Table 2.3.

Pole placement design based on ITAE criterion for a Step Input uses a table of

optimum coefficients of a transfer function that minimizes the ITAE performance and

the step response of a normalized transfer function using these optimum coefficients

[93]. According to the table in [93], the characteristic equation for a second order
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system is:

∆(s) = s2 + 1.4wns+ w2
n (2.24)

In addition to this, examining the step response of a normalized transfer function

for n = 2, the settling time is estimated to be approximately 8 seconds in normalized

time:

wnTs = 8

As Ts = 0.01, wn is found to be 800 rad/s. From equation (2.17), ζ = 0.5.

Substituting wn into (2.24), the characteristic equation is obtained. The same process

is carried out by equating the characteristic equations in (2.16) and (2.24), to solve

for K.

The transfer function of the closed loop system after pole placement is obtained

as:

Y (s)

U(s)
=

1
J

s2 + 2ζωns+ ω2
n

(2.25)

2.2.4 Integral Controller and Root Locus Control Design

An integral controller, combined with a unit feedback from the output, is added as a

feedforward controller in the velocity loop to the system after pole placement. The

aim of the feedback path is to form the error whereas integrator is added in order to

reduce the error and increase system type [94]. Figure 2.5 depicts the block diagram

of the closed loop system, from velocity command input to output.
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Figure 2.5: Block diagram of added integral controller and feedback path

In order to examine how the roots of the system change with the variation of a

gain, P , root locus analysis is carried out. The value of P is determined so that step

response should not have any overshoot, by observing how the poles of the closed

loop transfer function of the overall system are located as a function of P . The block

diagram of root locus method is given in Figure 2.6:

Figure 2.6: Block diagram of the closed loop system with P controller

In Figure 2.6, G(s) represents the plant from velocity command input to output

depicted in Figure 2.5. The block diagram of the overall control design discussed so
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far is given in Figure 2.7:

Figure 2.7: Block diagram of the overall closed loop system

The transfer function of the overall closed loop system is obtained as:

Tf(s)
P 1

J

s2 + 2ζωns2 + ω2
ns+ P 1

J

(2.26)

2.2.5 Application of Diophantine Equations

The Diophantine Control methodology is a transfer function based control scheme,

providing a simple parameterization of all controllers that stabilize a given plant in

terms of a factorized transfer function [99].

The transfer function of the linearized and stabilized nonlinear plant structure,

given in Figure 2.1, is obtained in (2.26). The design procedure of the deadbeat

controller operates on this transfer function as depicted in figure 2.8:
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Figure 2.8: Block diagram of the deadbeat controller

Discrete time model of (2.26) is obtained with a sampling period of T :

P (q) =

{

1− e−sT

s
Tf(s)

}
∣

∣

∣

∣

q=z−1

(2.27)

The discretized transfer function can be factorized as:

P (q) =
Np(q)

Dp(q)
(2.28)

Here, Np is the numerator and Dp is the denominator of the plant in Q-domain.

The reference input R(s) is also discretized and factorized as:

R(q) =

{

1− e−sT

s

}
∣

∣

∣

∣

q=z−1

=
Nr(q)

Dr(q)
(2.29)

The design is based on finding the controller polynomials N1, N2 and Dc by

the solution of two independent Diophantine equations constructed for the transfer

function in (2.28) and the given arbitrary reference input in (2.29) [5]:
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Np(q)N1(q) +Dr(q)Q1(q) = 1 (2.30)

Np(q)N2(q) +Dp(q)Dc(q) = 1 (2.31)

Note that, Np(q) and Dr(q) must be co-prime in discrete-time to ensure that there

is no pole zero cancellation [5].

Let us define:

Np(q) = Np(4)q
3 +Np(3)q

2 +Np(2)q +Np(1) (2.32)

Dp(q) = Dp(4)q
3 +Dp(3)q

2 +Dp(2)q +Dp(1)

Nr(q) = Nr(3)q
2 +Nr(2)q +Nr(1)

Dr(q) = Dr(3)q
2 +Dr(2)q +Dr(1)

Minimum order of N1 and Q1 is one less than the maximum of orders of Np(q)

and Dr(q): max(order(Np(q))|order(Dr(q)))− 1 = 2.

Minimum order of N2 and Dc is one less than the maximum of orders of Np(q)

and Dp(q): max(order(Np(q))|order(Dp(q)))− 1 = 2.

Let:

N1(q) = aq2 + bq + c (2.33)

Q1(q) = dq2 + eq + f
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N2(q) = gq2 + hq + i

Dc(q) = jq2 + kq + l

where a, b, c, d, e, f, g, h, i, j, k and l are unknowns.

Substituting (2.32) and (2.33) into (2.30) and (2.31), we can solve for the un-

knowns:























































a

b

c

d

e

f

g

h

i

j

k

l























































=























































Np(4) 0 0 0 0 0 0 0 0 0 0 0

Np(3) Np(4) 0 Dr(3) 0 0 0 0 0 0 0 0

Np(2) Np(3) Np(4) Dr(2) Dr(3) 0 0 0 0 0 0 0

Np(1) Np(2) Np(3) Dr(1) Dr(2) Dr(3) 0 0 0 0 0 0

0 Np(1) Np(2) 0 Dr(1) Dr(2) 0 0 0 0 0 0

0 0 Np(1) 0 0 Dr(1) 0 0 0 0 0 0

0 0 0 0 0 0 Np(4) 0 0 Dp(4) 0 0

0 0 0 0 0 0 Np(3) Np(4) 0 Dp(3) Dp(4) 0

0 0 0 0 0 0 Np(2) Np(3) Np(4) Dp(2) Dp(3) Dp(4)

0 0 0 0 0 0 Np(1) Np(2) Np(3) Dp(1) Dp(2) Dp(3)

0 0 0 0 0 0 0 Np(1) Np(2) 0 Dp(1) Dp(2)

0 0 0 0 0 0 0 0 Np(1) 0 0 Dp(1)























































−1 





















































0

0

0

0

0

1

0

0

0

0

0

1























































(2.34)

Thus, controller polynomials N1, N2 and Dc are obtained by the solution of (2.34).

2.3 Deadbeat Controller Based Velocity Control

In this section, the design methodology given in section 2.2 is applied for velocity

control.

In order to obtain state space representation of the system, let us define variable
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transformation:

x1 = q̇ (2.35)

Substituting (2.35) into equation 2.1, we obtain:

ẋ1 = − 1

J
F (x1) +

1

J
u (2.36)

Equation (2.36) is a first order state equation in the form:

ẋ1 = f1(x1) +
1

J
u (2.37)

Here, f1(x1) = − 1
J
F (x1).

Using the state variable expression in (2.37 ), linearization around equilibrium

point is given by [4]:

ẋ1 =
∂f1
∂x1

∣

∣

∣

∣

x1=x10

x1 (2.38)

Equations (2.9) and (2.10) could be put into the following matrix form:

ẋ1 = Ax1 +Bu

y = Cx1 +Du

Where A = ∂f1
∂x1

∣

∣

∣

∣

x1=0

, B = 1
J
, C = 1, D = 0.

By using the friction model in (2.3) and related equation of motion in Table 1.1,

state space representation of the linearized system can be derived as:
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ẋ1 =
1

J
u− 1

J
(Fv)x1

Where we use the fact that d
dx1

(tanh(λx1))
∣

∣ = λ.

Each friction model yields a different linear approximation. Table 2.4 shows the

friction models and the resultant state space representation of linearized system:

Table 2.4: State Space Matrices for Friction Models

Friction Force State Space Representation State Space Matrix

F (q̇) = Fv q̇ ẋ1 =
1
J
u− 1

J
(Fv)x1

A = − 1
J
Fv

B = 1
J

C = 1

D = 0

F (q̇) = Fcsgn(q̇) + Fv q̇ ẋ1 =
1
J
u− 1

J
(Fv)x1

A = − 1
J
Fv

B = 1
J

C = 1

D = 0

F (q̇) = Fc tanh(λq̇) + Fv q̇ ẋ1 =
1
J
u− 1

J
(Fvλ+ Fv)x1

A = − 1
J
Fcλ− 1

J
Fv

B = 1
J

C = 1

D = 0

See Remark 2.1

By using the friction model in (2.3) and related state space matrices A, B and C

from Table 2.4, we obtain:

T (s) =
1
J

s+ ( 1
J
Fcλ) +

1
J
Fv
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Substituting state space matrices found in Table 2.4 into (2.12) and (2.13), con-

trollability and observability tests are carried out. By using the friction model in

(2.3) and related state space matrices in Table 2.4, controllability and observability

matrices of the linearized system can be calculated as:

PC =
[

B
]

=
[

1
J

]

PO =
[

C
]

=
[

1
]

Since PC and PO have full rank, system is controllable and observable. Therefore;

state feedback and pole placement are possible.

By using the friction model in (2.3) and substituting related state space matrices

A, B and C from Table 2.4 into (2.15), we obtain:

Tnew(s) =
1
J

s + ( 1
J
Fcλ+ 1

J
Fv +

1
J
K)

(2.39)

Here, K is a 1× 1 matrix.

The transfer function of the closed loop system after pole placement is obtained

as:

Y (s)

U(s)
=

1
J

s+ ωn
(2.40)

The transfer function of the overall closed loop system after addition of the integral

controller and root locus design is obtained as:

Tf (s) =
P 1

J

s2 + ωns+ P 1
J

(2.41)
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By substituting (2.41) into equation (2.27), the transfer function is discretized and

factorized as in (2.28). The reference input R(s) is also discretized and factorized as

in (2.29):

Let us define:

Np(q) = Np(3)q
2 +Np(2)q +Np(1) (2.42)

Dp(q) = Dp(3)q
2 +Dp(2)q +Dp(1)

Nr(q) = Nr(3)q
2 +Nr(2)q +Nr(1)

Dr(q) = Dr(3)q
2 +Dr(2)q +Dr(1)

Minimum order of N1 and Q1 is one less than the maximum of orders of Np(q)

and Dr(q): max(order(Np(q))|order(Dr(q)))− 1 = 1.

Minimum order of N2 and Dc is one less than the maximum of orders of Np(q)

and Dp(q): max(order(Np(q))|order(Dp(q)))− 1 = 1.

Let:

N1(q) = aq + b (2.43)

Q1(q) = cq + d

N2(q) = eq + f

Dc(q) = gq + h
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Where a, b, c, d, e, f, g and h are unknowns.

Substituting (2.42) and (2.43) into (2.30) and (2.31), we can solve for the un-

knowns:



































a

b

c

d

e

f

g

h



































=



































Np(3) 0 Dr(3) 0 0 0 0 0

Np(2) Np(3) Dr(2) Dr(3) 0 0 0 0

Np(1) Np(2) Dr(1) Dr(2) 0 0 0 0

0 Np(1) 0 Dp(1) 0 0 0 0

0 0 0 0 Np(3) 0 Dp(3) 0

0 0 0 0 Np(2) Np(3) Dp(2) Dp(3)

0 0 0 0 Np(1) Np(2) Dp(1) Dp(2)

0 0 0 0 0 Np(1) 0 Dp(1)



































−1 

































0

0

0

1

0

0

0

1



































(2.44)

Thus, controller polynomials N1, N2 and Dc are obtained by the solution of (2.44).
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Chapter 3

Simulations and Results

In this section, system performance of the hierarchical feedback system structure, by

the applications of pole placement and deadbeat methodologies is analyzed. Simula-

tions are made using simple plant model in Equation (2.1), with the friction models

in Table 2.1. For our simulations, let us choose the values given below:

J = 0.0023Nm2

Fc = 0.28Nm

Fv = 0.0176Nms/rad

(3.1)

The performance is criticized in terms of reference input tracking and disturbance

rejection. For both velocity and position control, step and sinusoidal input tracking

with and without disturbance cases are analyzed.

We note that during the design process, Coulomb friction is either omit-

ted or approximated by tanh(λq̇) function, whereas in all our simulations, we

46



use Coulomb+Viscous friction model based on sgn(q̇) function. Since we ap-

ply pole placement and deadbeat controller design methodologies, for each refer-

ence/disturbance input, we consider the following cases:

• Case 1 - Coulomb friction is omitted and the design is based on pole placement

• Case 2 - Coulomb friction is approximated by tanh(λq̇) function and the design

is based on pole placement

• Case 3 - Coulomb friction is omitted and the design is based on pole placement

+ deadbeat Controller

• Case 4 - Coulomb friction is approximated by tanh(λq̇) function and the design

is based on pole placement + deadbeat Controller

As for the reference input to be tracked, we choose a step input r(t) = u(t) and

a sinusoidal signal r(t) = Asin(wt), where we choose A = 3 and w = 2 rad/sec for

simplicity. The reference input is discretized and factorized as in (2.29). Throughout

the thesis, sampling time is taken as 0.01 seconds. Table 3.1 shows the reference

inputs and related transforms in s-domain and q-domain:

Table 3.1: Laplace and Q Transforms for Reference Inputs

Reference Input Laplace Transform Q Transform

r(t) = u(t) R(s) = 1
s

R(q) = 1
1−q

r(t) = 3 sin(2t) R(s) = 6
s2+4

R(q) = 0.0003q2+0.0003q
q2−2q+1
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3.1 Pole Placement Based Velocity Control: Step

Input without disturbance

After linearization around operating point, pole of the first order system is placed

based on settling time and ITAE index. The characteristic equation of a first order

system with optimum coefficients based on ITAE index is ∆(s) = s+wn. As Ts = 0.01

seconds, wn is chosen to be 400 rad/s. The transfer function of the closed loop system

using (2.40) is obtained as:

T (s) =
434.8

s+ 400
(3.2)

With the addition of an integral controller, root locus analysis is carried out.

By using SISO Design Tool in MATLAB, the value of P is determined from the

Root Locus Diagram. Note that by the addition of the integral controller, poles of

the closed loop system are moved towards right in the complex plane. Therefore;

settling time criterion might no longer be satisfied with the addition of a new pole

at s = 0.

Figure 3.1 depicts the root locus diagram of the system. The design requirements

are indicated in terms of percent overshoot and settling time, i.e P.O. = 5% and

minimum settling time that could be achieved after design is 0.03 seconds. In addi-

tion, the locations of the new poles are also shown in the diagram. The value of P ,

satisfying the percent overshoot and minimum settling time criteria, is found to be

50.975.
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Figure 3.1: Root Locus Diagram for Pole Placement Based Velocity Control

The transfer function of the overall system, after Root Locus Design, is obtained

by the equation (2.45). This transfer function changes according to the friction

models used. It should be noted that, when designing a controller based on the

friction model in (2.3), the value of λ has also an effect on the transfer function.

We note that for higher λ values, tanh(λq̇) function approximates sgn(q̇) with

better accuracy [92]. However, as can be seen from Figure 3.2, for some smaller λ

values we obtain better tracking performance for unit step input. Same behavior is

also observed for the tracking of other inputs as well. For this reason, we choose

λ = 2 throughout our simulations.
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Figure 3.2: Unit Step Response of the closed loop system for different λ values

Unit Step Responses and corresponding errors for pole placement based control

designs are shown in Figure 3.3 and Figure 3.4 respectively. Settling time is slightly

decreased when Coulomb friction is approximated by tanh(λq̇) (Case 2). The reason

for this situation is that the friction model in which Coulomb friction is approximated

by tanh(λq̇), captures the Coulomb force component and properties of friction at low

velocities better.
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Figure 3.3: Unit Step Response of Velocity Control without disturbance based on

Pole Placement Methodology
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Figure 3.4: Error Signal of Velocity Control for a unit step without disturbance based

on Pole Placement Methodology
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3.2 Deadbeat Controller Based Velocity Control:

Step input without disturbance

The deadbeat controller is added to the overall system designed in Section 3.1 as

shown in Figure 2.8. The transfer function of the closed loop system, before applying

the deadbeat controller is obtained using (2.41):

Tf(s) =
221.6× 102

s2 + 400s+ 221.6× 102

By choosing the related reference input from Table 3.1 and the discretized transfer

function P (q) obtained using (2.27), Diophantine Equations are constructed:

(0.1019q2 + 0.3663q)(aq + b) + (1− q)(cq + d) = 1

(0.1019q2 + 0.3663q)(eq + f) + (0.01832q2 − 0.5502q)(gq + h) = 1

(3.3)

Thus, controller polynomials N1, N2 and Dc are obtained by the solution of (2.44).

These controllers are utilized to the overall system as seen in Figure 2.8.

Figure 3.5 and Figure 3.6 show Unit Step Responses and corresponding errors for

deadbeat controller based designs, respectively. It might seem that deadbeat con-

troller does not have an acceptable superiority compared to pole placement Method-

ology. However, as it can be observed from Figure 3.6, steady-state error is zero

without any distortion and smoother compared to Figure 3.4.
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Figure 3.5: Unit Step Response of Velocity Control without disturbance based on

Deadbeat Controller

With the design based on pole placement, in which Coulomb friction is approx-

imated by tanh(λq̇) function (Case 1), settling time is found to be approximately

0.060 seconds, whereas with the design based on Pole Placement + deadbeat con-

troller (Case 3), it is reduced to approximately 0.035 seconds. We conclude that,

deadbeat controller provides shorter settling time.
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Figure 3.6: Error Signal of Velocity Control for a unit step without disturbance based

on Deadbeat Controller

3.3 Pole Placement Based Velocity Control: Si-

nusoidal input without disturbance

The overall control system designed in Section 3.1 is also used for the tracking of the

sinusoidal input, as pole placement method does not require any additional design

step for hierarchical closed loop feedback structure and does not depend on the

reference input to be tracked. Sinusoidal Responses and corresponding errors for pole

placement based control designs are shown in Figure 3.7 and Figure 3.8 respectively.

In Figure 3.7, velocity output is observed to be tracking the reference input, with a

delay of approximately 0.02 seconds, which results in an apparent steady-state error

in Figure 3.8, similar for both friction models (Case 1 and Case 2). Furthermore,
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there occurs a large tracking error especially around low velocities and when the

direction of velocity changes. Therefore, the system needs extra time to track the

reference input in a new direction. This might be caused by the integrator, which

becomes insufficient when needed the most at velocity reversals to overcome stiction

[10].

Integral control is almost always introduced to a mechanical system in forward

path in order to minimize the steady-state errors [19], as in Section 3.1 for a unit

step input. However, it is observed to be less effective for the sinusoidal input, in

which repetitive velocity reversals occur in the reference input, compared to the

unit step input. This situation is called “integral windup” and can be prevented by

either resetting the integrator when the direction of velocity changes or limiting the

accumulation of the integrator by setting upper and lower bounds [100]. In addition

to this, a different control strategy based on sinusoidal reference tracking could have

been adapted instead of an integral control.
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Figure 3.7: Sinusoidal Response of Velocity Control without disturbance based on

Pole Placement Methodology
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As it is clearly observed from Figure 3.8, the case of approximation of Coulomb

friction by tanh(λq̇) (Case 2) yields a better response to sinusoidal input, compared to

the case in which Coulomb friction is omitted (Case 1). Moreover, the system needs

less time to track the reference input in a new direction after direction reversals, in

Case 2. This situation may be caused by modeling errors of the Coulomb+Viscous

friction at low velocities in MATLAB. Therefore; approximation of Coulomb friction

by tanh(λq̇) represents the original friction model much more realistically. This is

because this model takes Coulomb force into account for control design.
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Figure 3.8: Error Signal of Velocity Control for a sinusoid without disturbance based

on Pole Placement Methodology
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3.4 Deadbeat Controller Based Velocity Control:

Sinusoidal input without disturbance

The deadbeat controller is added to the overall system designed in Section 3.3 as

shown in Figure 2.8. The transfer function of the closed loop system, before applying

the deadbeat controller is obtained using (2.41). By choosing the related reference

input from Table 3.1 and the discretized transfer function P (q) obtained using (2.27),

Diophantine Equations are constructed:

(0.1019q2 + 0.3663q)(aq + b) + (0.0003q2 + 0.0003q)(cq + d) = 1

(0.1019q2 + 0.3663q)(eq + f) + (0.01832q2 − 0.5502q)(gq + h) = 1

(3.4)

Thus, controller polynomials N1, N2 and Dc are obtained by the solution of (2.44).

These controllers are utilized to the overall system as seen in Figure 2.8.
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Figure 3.9: Sinusoidal Response of Velocity Control without disturbance based on

Deadbeat Controller

In Figure 3.9, velocity output is observed to be following the reference input,

without any delay and with zero steady-state error, except near-zero velocities and

velocity reversals, similar for both friction models (Case 1 and Case 2).

In Figure 3.10, peaks are observed similar to the ones in Figure 3.8. How-

ever, deadbeat controller is apparently more successful in compensating for friction

throughout the overall design, as errors occur only when the direction of velocity

changes. This might also be caused by the integrator, which becomes insufficient to

compensate for Coulomb friction.
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Figure 3.10: Error Signal of Velocity Control for a sinusoid without disturbance

based on Deadbeat Controller

3.5 Pole Placement Based Velocity Control: Step

input with disturbance

The overall control system designed in Section 3.1 is also used for disturbance rejec-

tion. The disturbance input is added to the overall system designed in Section 3.1,

as shown in Figure 1.1. For the disturbance input, we apply a step input d(t) = u(t)

and a sinusoidal signal d(t) = Asin(2πft), where we choose A = 0.5 and f = 0.5

rad/sec for simplicity.
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3.5.1 Step Disturbance

Unit Step Responses and corresponding errors for pole placement based control de-

signs, for a Unit Step Disturbance, are shown in Figure 3.11 and Figure 3.12 respec-

tively.
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Figure 3.11: Unit Step Response of Velocity Control with unit step disturbance based

on Pole Placement Methodology

From Figure 3.11, velocity output is observed to be tracking the reference input,

both for Case 1 and 2. However, disturbance leads to an increase of approximately

0.02 seconds in terms of settling time also for both cases. In addition, as it is previ-

ously observed in Section 3.1, settling time is also slightly decreased when Coulomb

friction is approximated by tanh(λq̇) (Case 2).
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Figure 3.12: Error Signal of Velocity Control for a unit step with unit step distur-

bance based on Pole Placement Methodology

3.5.2 Sinusoidal Disturbance

Unit Step Responses and corresponding errors for pole placement based control de-

signs, for a Sinusoidal Disturbance, are shown in Figure 3.13 and Figure 3.14 respec-

tively.
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Figure 3.13: Unit Step Response of Velocity Control with Sinusoidal disturbance

based on Pole Placement Methodology

From Figure 3.13, velocity output is not accepted to be settled and tracking the

reference input, as the response does not remain within the 2% of the unit step

input, both for Case 1 and 2. This is because the disturbance leads to a distinct

oscillation and the proposed controller cannot reject the disturbance and there occurs

a large tracking error as observed in Figure 3.14. This might also be caused by the

integrator, which becomes insufficient to reject the sinusoidal disturbance.
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Figure 3.14: Error Signal of Velocity Control for a unit step with Sinusoidal distur-

bance based on Pole Placement Methodology

3.6 Deadbeat Controller Based Velocity Control:

Step input with disturbance

The overall control system designed in Section 3.2, is also used for disturbance rejec-

tion. The disturbance input is added to the overall system designed in Section 3.2,

as shown in Figure 1.1. For the disturbance input, we apply a step input d(t)=u(t)

and a sinusoidal signal d(t) = Asin(2πft), where we choose A = 0.5 and f = 0.5

rad/sec for simplicity.
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3.6.1 Step Disturbance

Unit Step Responses and corresponding errors for pole placement + Deadbeat con-

troller based control designs, for a Unit Step Disturbance, are shown in Figure 3.15

and Figure 3.16 respectively.

It is clearly observed in Figure 3.15 that deadbeat controller has a better distur-

bance rejection performance, compared to Figure 3.11. Settling time is apparently

shorter compared to Section 3.5.1.
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Figure 3.15: Unit Step Response of Velocity Control with unit step disturbance based

on Deadbeat Controller

Comparing Figure 3.12 and Figure 3.16, a similar conclusion can be drawn as in

Section 3.2 concerning steady-state errors. Especially for the case where Coulomb

friction is omitted, steady-state error is less for pole placement + deadbeat controller

based control design.
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Figure 3.16: Error Signal of Velocity Control for a unit step with unit step distur-

bance based on Deadbeat Controller

3.6.2 Sinusoidal Disturbance

Unit Step Responses and corresponding errors for pole placement + Deadbeat con-

troller based control designs, for a Sinusoidal Disturbance, are shown in Figure 3.17

and Figure 3.18 respectively.
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Figure 3.17: Unit Step Response of Velocity Control with Sinusoidal disturbance

based on Deadbeat Controller

From Figure 3.17, velocity output is accepted to be settled and tracking the ref-

erence input, as the response remains within the 2% of the unit step input, both for

Case 1 and 2. Therefore; we can conclude that deadbeat controller based design is

more effective in terms of sinusoidal disturbance rejection. Yet, the disturbance leads

to a distinct oscillation with a large tracking error, similar to the result in Figure

3.13.

Comparing Figure 3.14 and Figure 3.18, we can conclude that for the sinusoidal

disturbances, the design based on pole placement + deadbeat controller has a better

disturbance rejection property for both cases, i.e. when Coulomb friction is approx-

imated by tanh(λq̇) function and when it is omitted.
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Figure 3.18: Error Signal of Velocity Control for a unit step with Sinusoidal distur-

bance based on Deadbeat Controller

3.7 Pole Placement Based Velocity Control: Si-

nusoidal input with disturbance

The overall control system designed in Section 3.3 is also used for disturbance rejec-

tion. The disturbance input is added to the overall system designed in Section 3.3,

as shown in Figure 1.1. For the disturbance input, we choose a step input d(t) = u(t)

and a sinusoidal signal d(t) = Asin(2πft), where we choose A = 0.5 and f = 0.5

rad/sec for simplicity.
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3.7.1 Step Disturbance

Sinusoidal Responses and corresponding errors for pole placement based control de-

signs, for a Unit Step Disturbance, are shown in Figure 3.19 and Figure 3.20 respec-

tively.
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Figure 3.19: Sinusoidal Response of Velocity Control with unit step disturbance

based on Pole Placement Methodology
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Figure 3.20: Error Signal of Velocity Control for a Sinusoid with unit step disturbance

based on Pole Placement Methodology

When the amplitude of the error signals in Figure 3.20 and Figure 3.8 are com-

pared, disturbance rejection performance of the control design based on Pole Place-

ment, for a step input seems successful. However, the unit step disturbance is ob-

served to introduce a delay of approximately 0.01 seconds to the settling time when

compared to Section 3.3.

3.7.2 Sinusoidal Disturbance

Sinusoidal Responses and corresponding errors for pole placement based control de-

signs, for a Sinusoidal Disturbance, are shown in Figure 3.21 and Figure 3.22 respec-

tively.
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Figure 3.21: Sinusoidal Response of Velocity Control with Sinusoidal disturbance

based on Pole Placement Methodology
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Figure 3.22: Error Signal of Velocity Control for a Sinusoid with Sinusoidal distur-

bance based on Pole Placement Methodology
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When the amplitude of the error signals in Figure 3.22 and Figure 3.8 are com-

pared, adding a sinusoidal disturbance does not change the performance of the con-

trol design based on pole placement. Yet, the problem of compensating the Coulomb

friction at velocity reversals remains the same.

3.8 Deadbeat Controller Based Velocity Control:

Sinusoidal input with disturbance

The overall control system designed in Section 3.4, is also used for disturbance rejec-

tion. The disturbance input is added to the overall system designed in Section 3.4,

as shown in Figure 1.1. For the disturbance input, we choose a step input d(t) = u(t)

and a sinusoidal signal d(t) = Asin(2πft), where we choose A = 0.5 and f = 0.5

rad/sec for simplicity.

3.8.1 Step Disturbance

Sinusoidal Responses and corresponding errors for pole placement + Deadbeat Con-

troller based control designs, for a Unit Step Disturbance, are shown in Figure 3.23

and Figure 3.24 respectively.
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Figure 3.23: Sinusoidal Response of Velocity Control with unit step disturbance

based on Deadbeat Controller
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Figure 3.24: Error Signal of Velocity Control for a Sinusoid with unit step disturbance

based on Deadbeat Controller
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When the amplitude of the error signals in Figure 3.24 and Figure 3.10 are com-

pared, disturbance rejection performance of the control design based on deadbeat

controller, for a step input, is observed to be successful.

3.8.2 Sinusoidal Disturbance

Sinusoidal Responses and corresponding errors for pole placement + Deadbeat Con-

troller based control designs, for a Sinusoidal Disturbance, are shown in Figure 3.25

and Figure 3.26 respectively.

0 0.5 1 1.5 2 2.5 3 3.5
−3

−2

−1

0

1

2

3

A
m

pl
itu

de

Time (sec)

Velocity Output

 

 
Coulomb+Viscous
Hyperbolic Tangent
Reference Input

Figure 3.25: Sinusoidal Response of Velocity Control with Sinusoidal disturbance

based on Deadbeat Controller
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Figure 3.26: Error Signal of Velocity Control for a Sinusoid with Sinusoidal distur-

bance based on Deadbeat Controller

When the amplitude of the error signals in Figure 3.26 and Figure 3.10 are com-

pared, deadbeat controller is observed to be insufficient for sinusoidal disturbance

rejection. In addition, the problem of compensating the Coulomb friction at velocity

reversals remains the same, similar to the result in Section 3.7.2. Yet, when the errors

in Figure 3.26 and Figure 3.22 are compared, it is clearly observed that Deadbeat

methodology gives a better disturbance rejection performance.
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3.9 Pole Placement Based Position Control: Step

input without disturbance

3.9.1 Pole Placement based on settling time and overshoot

After linearization around operating point, poles of the second order system are

placed based on settling time and overshoot. The transfer function of the closed

loop system using (2.26) is obtained as:

T (s) =
434.8

s2 + 663.8s+ 231.3× 105

As integral controller is added in the velocity loop, we do not introduce an addi-

tional integrator for the position loop. Root locus analysis is carried out. By using

SISO Design Tool in MATLAB, the value of P is determined from the Root Locus

Diagram.

Figure 3.27 depicts the root locus diagram of the system. The design require-

ments are indicated in terms of percent overshoot and settling time, i.e P.O. = 5%

and minimum settling time that could be achieved after design is 0.03 seconds. In

addition, the locations of the new poles are also shown in the diagram. The value of

P , satisfying the percent overshoot and minimum settling time criteria, is found to

be 1500.
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Figure 3.27: Root Locus Diagram for Pole Placement Based Position Control in

terms of settling time and overshoot

Unit Step Responses and corresponding errors for pole placement based control

designs are shown in Figure 3.28 and Figure 3.29 respectively.

76



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
m

pl
itu

de

Time (sec)

Position Output

 

 
Coulomb+Viscous
Hyperbolic Tangent
Reference Input

Figure 3.28: Unit Step Response of Position Control without disturbance based on

Pole Placement Methodology in terms of settling time and overshoot
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Figure 3.29: Error Signal of Position Control for a unit step without disturbance

based on Pole Placement Methodology in terms of settling time and overshoot
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3.9.2 Pole Placement based on ITAE

After linearization around operating point, poles of the second order system are

placed based on settling time and ITAE index. The transfer function of the closed

loop system using (2.26) is obtained as:

T (s) =
434.8

s2 + 1120s+ 231.3× 105

As integral controller is added in the velocity loop, we do not introduce an addi-

tional integrator for the position loop. Root locus analysis is carried out. By using

SISO Design Tool in MATLAB, the value of P is determined from the Root Locus

Diagram.

Figure 3.30 depicts the root locus diagram of the system. The design require-

ments are indicated in terms of percent overshoot and settling time, i.e P.O. = 5%

and minimum settling time that could be achieved after design is 0.01 seconds. In

addition, the locations of the new poles are also shown in the diagram. The value of

P , satisfying the percent overshoot and minimum settling time criteria, is found to

be 5000.
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Figure 3.30: Root Locus Diagram for Pole Placement Based Position Control in

terms of ITAE index

Unit Step Responses and corresponding errors for pole placement based control

designs are shown in Figure 3.31 and Figure 3.32 respectively.
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Figure 3.31: Unit Step Response of Position Control without disturbance based on

Pole Placement Methodology in terms of ITAE index
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Figure 3.32: Error Signal of Position Control for a unit step without disturbance

based on Pole Placement Methodology in terms of ITAE index
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3.10 Deadbeat Controller Based Position Control:

Step input without disturbance

The deadbeat controller is added to the overall system designed in Section 3.9.1 as

shown in Figure 2.8. The transfer function of the closed loop system, before applying

the deadbeat controller is obtained using (2.26):

Tf(s) =
332.4× 105

s3 + 420.3s2 + 253.5× 103s+ 332.4× 105

By choosing the related reference input from Table 3.1 and the discretized transfer

function P (q) obtained using (2.27), Diophantine Equations are constructed:

(0.08342q3 + 0.03057q2 + 0.8587q)(aq + b)

+(1− q)(cq + d) = 1

(0.08342q3 + 0.03057q2 + 0.8587q)(eq + f)+

(−0.01494q3 + 0.03872q2 − 0.0511q + 1)(gq + h) = 1

Thus, controller polynomials N1, N2 and Dc are obtained by the solution of (2.34).

These controllers are utilized to the overall system as seen in Figure 2.8.

Figure 3.33 and Figure 3.34 show Unit Step Responses and corresponding errors

for deadbeat controller based designs, respectively.
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Figure 3.33: Unit Step Response of Position Control without disturbance based on

Deadbeat Controller
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Figure 3.34: Error Signal of Position Control for a unit step without disturbance

based on Deadbeat Controller
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3.11 Pole Placement Based Position Control: Si-

nusoidal input without disturbance

The overall control system designed in Section 3.9 is also used for the tracking of the

sinusoidal input, as pole placement method does not require any additional design

step for hierarchical closed loop feedback structure and does not depend on the

reference input to be tracked.

3.11.1 Pole Placement based on settling time and overshoot

Sinusoidal Responses and corresponding errors for pole placement based control de-

signs are shown in Figure 3.35 and Figure 3.36 respectively.
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Figure 3.35: Sinusoidal Response of Position Control without disturbance based on

Pole Placement Methodology in terms of settling time and overshoot
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Figure 3.36: Error Signal of Position Control for a sinusoid without disturbance

based on Pole Placement Methodology in terms of settling time and overshoot

3.11.2 Pole Placement based on ITAE

Sinusoidal Responses and corresponding errors for pole placement based control de-

signs are shown in Figure 3.37 and Figure 3.38 respectively.
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Figure 3.37: Sinusoidal Response of Position Control without disturbance based on

Pole Placement Methodology in terms of ITAE index
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Figure 3.38: Error Signal of Position Control for a sinusoid without disturbance

based on Pole Placement Methodology in terms of ITAE index
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3.12 Deadbeat Controller Based Position Control:

Sinusoidal input without disturbance

The deadbeat controller is added to the overall system designed in Section 3.11.1 as

shown in Figure 2.8. The transfer function of the closed loop system, before applying

the deadbeat controller is obtained using (2.41). By choosing the related reference

input from Table 3.1 and the discretized transfer function P (q) obtained using (2.27),

Diophantine Equations are constructed:

(0.08342q3 + 0.03057q2 + 0.8587q)(aq + b)+

(0.0003q2 + 0.0003q)(cq + d) = 1

(0.08342q3 + 0.03057q2 + 0.8587q)(eq + f)+

(−0.01494q3 + 0.03872q2 − 0.0511q + 1)(gq + h) = 1

Thus, controller polynomials N1, N2 and Dc are obtained by the solution of (2.34).

These controllers are utilized to the overall system as seen in Figure 2.8.

Sinusoidal Responses and corresponding errors for pole placement + Deadbeat

Controller based control designs are shown in Figure 3.39 and Figure 3.40 respec-

tively.
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Figure 3.39: Sinusoidal Response of Position Control without disturbance based on

Deadbeat Controller
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Figure 3.40: Error Signal of Position Control for a sinusoid without disturbance

based on Deadbeat Controller
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3.13 Pole Placement Based Position Control:

Step input with disturbance

The overall control system designed in Section 3.9 is also used for disturbance rejec-

tion. The disturbance input is added to the overall system designed in Section 3.9,

as shown in Figure 1.1. For the disturbance input, we choose a step input d(t) = u(t)

and a sinusoidal signal d(t) = Asin(2πft), where we choose A = 0.5 and f = 0.5

rad/sec for simplicity.

3.13.1 Pole Placement based on settling time and overshoot

3.13.1.1 Step Disturbance
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Figure 3.41: Unit Step Response of Position Control with Unit Step disturbance

based on Pole Placement Methodology in terms of settling time and overshoot
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Figure 3.42: Error Signal of Position Control for a Unit Step with Unit Step distur-

bance based on Pole Placement Methodology in terms of settling time and overshoot

89



3.13.1.2 Sinusoidal Disturbance
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Figure 3.43: Unit Step Response of Position Control with Sinusoidal disturbance

based on Pole Placement Methodology in terms of settling time and overshoot
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Figure 3.44: Error Signal of Position Control for a Unit Step with Sinusoidal distur-

bance based on Pole Placement Methodology in terms of settling time and overshoot
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3.13.2 Pole Placement based on ITAE

3.13.2.1 Step Disturbance
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Figure 3.45: Unit Step Response of Position Control with Unit Step disturbance

based on Pole Placement Methodology in terms of ITAE index
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Figure 3.46: Error Signal of Position Control for a Unit Step with Unit Step distur-

bance based on Pole Placement Methodology in terms of ITAE index
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3.13.2.2 Sinusoidal Disturbance
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Figure 3.47: Unit Step Response of Position Control with Sinusoidal disturbance

based on Pole Placement Methodology in terms of ITAE index
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Figure 3.48: Error Signal of Position Control for a Unit Step with Sinusoidal distur-

bance based on Pole Placement Methodology in terms of ITAE index

3.14 Deadbeat Controller Based Position Control:

Step input with disturbance

The overall control system designed in Section 3.10, is also used for disturbance

rejection. The disturbance input is added to the overall system designed in Section

3.10, as shown in Figure 1.1. For the disturbance input, we choose a step input

d(t) = u(t) and a sinusoidal signal d(t) = Asin(2πft), where we choose A = 0.5 and

f = 0.5 rad/sec for simplicity.
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3.14.1 Step Disturbance

Unit Step Responses and corresponding errors for pole placement + Deadbeat con-

troller based control designs, for a Unit Step Disturbance, are shown in Figure 3.49

and Figure 3.50 respectively.
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Figure 3.49: Unit Step Response of Position Control with Unit Step disturbance

based on Deadbeat Controller in terms of settling time and overshoot
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Figure 3.50: Error Signal of Position Control for a Unit Step with Unit Step distur-

bance based on Deadbeat Controller in terms of settling time and overshoot

3.14.2 Sinusoidal Disturbance

Unit Step Responses and corresponding errors for pole placement + Deadbeat con-

troller based control designs, for a Sinusoidal Disturbance, are shown in Figure 3.51

and Figure 3.52 respectively.
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Figure 3.51: Unit Step Response of Position Control with Sinusoidal disturbance

based on Deadbeat Controller in terms of settling time and overshoot
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Figure 3.52: Error Signal of Position Control for a Unit Step with Sinusoidal distur-

bance based on Deadbeat Controller in terms of settling time and overshoot
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3.15 Pole Placement Based Position Control: Si-

nusoidal input with disturbance

3.15.1 Pole Placement based on settling time and overshoot

3.15.1.1 Step Disturbance
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Figure 3.53: Sinusoidal Response of Position Control with Unit Step disturbance

based on Pole Placement Methodology in terms of settling time and overshoot
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Figure 3.54: Error Signal of Position Control for a sinusoid with Unit Step distur-

bance based on Pole Placement Methodology in terms of settling time and overshoot
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3.15.1.2 Sinusoidal Disturbance
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Figure 3.55: Sinusoidal Response of Position Control with Sinusoidal disturbance

based on Pole Placement Methodology in terms of settling time and overshoot
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Figure 3.56: Error Signal of Position Control for a sinusoid with Sinusoidal distur-

bance based on Pole Placement Methodology in terms of settling time and overshoot
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3.15.2 Pole Placement based on ITAE

3.15.2.1 Step Disturbance
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Figure 3.57: Sinusoidal Response of Position Control with Unit Step disturbance

based on Pole Placement Methodology in terms of ITAE index
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Figure 3.58: Error Signal of Position Control for a sinusoid with Unit Step distur-

bance based on Pole Placement Methodology in terms of ITAE index
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3.15.2.2 Sinusoidal Disturbance
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Figure 3.59: Sinusoidal Response of Position Control with Sinusoidal disturbance

based on Pole Placement Methodology in terms of ITAE index
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Figure 3.60: Error Signal of Position Control for a sinusoid with Sinusoidal distur-

bance based on Pole Placement Methodology in terms of ITAE index

3.16 Deadbeat Controller Based Position Control:

Sinusoidal input with disturbance

The overall control system designed in Section 3.12, is also used for disturbance

rejection. The disturbance input is added to the overall system designed in Section

3.12, as shown in Figure 1.1. For the disturbance input, we choose a step input

d(t) = u(t) and a sinusoidal signal d(t) = Asin(2πft), where we choose A = 0.5 and

f = 0.5 rad/sec for simplicity.
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3.16.1 Step Disturbance

Sinusoidal Responses and corresponding errors for pole placement + Deadbeat con-

troller based control designs, for a Unit Step Disturbance, are shown in Figure 3.61

and Figure 3.62 respectively.
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Figure 3.61: Sinusoidal Response of Position Control with Unit Step disturbance

based on Deadbeat Controller in terms of settling time and overshoot
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Figure 3.62: Error Signal of Position Control for a sinusoid with Unit Step distur-

bance based on Deadbeat Controller in terms of settling time and overshoot

3.16.2 Sinusoidal Disturbance

Sinusoidal Responses and corresponding errors for pole placement + Deadbeat con-

troller based control designs, for a Sinusoidal Disturbance, are shown in Figure 3.63

and Figure 3.64 respectively.
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Figure 3.63: Sinusoidal Response of Position Control with Sinusoidal disturbance

based on Deadbeat Controller in terms of settling time and overshoot
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Figure 3.64: Error Signal of Position Control for a sinusoid with Sinusoidal distur-

bance based on Deadbeat Controller in terms of settling time and overshoot
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Chapter 4

CONCLUSIONS

In this thesis, design of control systems based on Pole Placement and Deadbeat

methodologies, in order to handle a mechanical system under the effect of friction,

is studied. Pole Placement Methodology is based on different performance measures

and indices such as settling time, overshoot and ITAE. Deadbeat Methodology is

based on parameterization of Diophantine equations which depend on the reference

signal to be tracked.

The first step of the pole placement methodology is to linearize and internally sta-

bilize the system by feedback linearization. Next, pole placement method is applied

by using state and output feedbacks, right after controllability and observability tests

are carried out to check whether pole placement can be applied or not. As a third

step, an integrator, combined with a unit feedback from the output, is added as a

feedforward controller in order to form and reduce the error signal. As a last step,

Root Locus Diagram of the overall system is analyzed to find a suitable gain in order

to yield some predefined performance criteria such as settling time, overshoot etc.

A new deadbeat controller, to be utilized in addition to the overall control system
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based on pole placement methodology, is proposed. The controller’s parameters are

obtained by solutions of the two independent Diophantine equations, constructed by

the use of reference signal to be tracked and the transfer function of the linearized

and stabilized control system.

Control system performance, depending on the applications of pole placement

and deadbeat methodologies, is analyzed using a hierarchical closed loop feedback

structure. Although this structure provides control for both position and velocity

loops separately, the control system for the position loop depends on the closed

loop transfer function of the control system for the velocity loop. Therefore; control

system design is extended for the position loop right after the design of the control

system for the velocity loop. The performance is criticized in terms of reference input

tracking and disturbance rejection. For both velocity and position control, step and

sinusoidal input tracking with and without disturbance cases are analyzed.

The plant contains Coulomb friction and linear viscous damping. As Coulomb

friction contains a discontinuity at zero relative velocity, we cannot obtain an exact

linearization. Therefore; during the design process, Coulomb friction is either omit-

ted or approximated by tangent hyperbolic function. However, Coulomb friction is

always used in our simulations. Ignoring Coulomb friction during control design is

observed to be disadvantageous. Although Coulomb friction has a more accurate ap-

proximation for higher values in tangent hyperbolic function, tracking performances

for unit step and sinusoidal inputs are improved with lower values. Indeed, tangent

hyperbolic function with lower values seems to capture nonlinear and discontinuous

properties of friction, such as at rest situation, better.

Pole placement methodology is observed to provide internally stable closed loop

systems and served snugness in design according to various performance measures

and indices. However, some of the results show that both velocity and position

outputs track the reference inputs with some minimal delays and steady-state errors.
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By the utilization of the deadbeat controller, both velocity and position outputs of

the system are observed to be tracking the reference input from any initial state,

with almost zero steady-state error and minimum settling time, compared to the

pole placement methodology.

Some simulation results indicate initial overshoots, leading to a degradation in

the start-up tracking response. A low-pass filter might be used to overcome this

problem. In addition, for sinusoidal references/disturbances, both methodologies are

observed to be open to improvement. The integral controller might be insufficient to

completely compensate for Coulomb friction at velocity reversals. Instead of using

an integral controller, different control strategies could be adapted in order to track

a sinusoidal input. Disturbance rejection performance of the deadbeat controller

is also better, compared to the pole placement methodology. However, this also

remains to be an open research problem and both controllers might be improved

for better disturbance rejection, such as trying to minimize the magnitude of the

transfer function between disturbance and output, especially at the frequencies where

disturbance is dominant.

A future work might be improvement and application of pole placement and dead-

beat methodologies for more advanced friction models, especially dynamic friction

models, such as Dahl, LuGre, Leuven and Generalized Maxwell-slip frictions.
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[7] U. Taşdelen, “Smith predictor based controller design for a flexible robot arm,”

Master’s thesis, Bilkent University, 2013.

[8] M. Tomizuka, “On the compensation of friction forces in precision motion

control,” in Motion Control Proceedings, 1993., Asia-Pacific Workshop on Ad-

vances in, pp. 69–74, Jul 1993.

113



[9] H. Olsson, Control Systems with Friction. PhD thesis, Department of Auto-

matic Control, Lund Institute of Technology, 1996.

[10] B. Armstrong-Hélouvry, P. Dupont, and C. C. D. Wit, “A survey of models,

analysis tools and compensation methods for the control of machines with

friction,” Automatica, vol. 30, no. 7, pp. 1083 – 1138, 1994.

[11] S. Lee and S. M. Meerkov, “Generalized dither,” International Journal of Con-

trol, vol. 53, no. 3, pp. 741–747, 1991.

[12] I. Horowitz, S. Oldak, and A. Shapiro, “Extensions of dithered feedback sys-

tems,” International Journal of Control, vol. 54, no. 1, pp. 83–109, 1991.

[13] N. Leonard and P. Krishnaprasad, “Adaptive friction compensation for bi-

directional low-velocity position tracking,” in Decision and Control, 1992.,

Proceedings of the 31st IEEE Conference on, pp. 267–273 vol.1, 1992.

[14] Y. Yoshida and M. Tanaka, “Position control of a flexible arm using a dither

signal,” JSME international journal. Ser. C, Dynamics, control, robotics, de-

sign and manufacturing, vol. 36, no. 1, pp. 93–99, 1993.

[15] A. A. Pervozvanski and C. C. de Wit, “Asymptotic analysis of the dither effect

in systems with friction,” Automatica, vol. 38, no. 1, pp. 105 – 113, 2002.
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[99] V. Kučera, “Diophantine equations in control—a survey,” Automatica, vol. 29,

no. 6, pp. 1361 – 1375, 1993.

[100] A. Hansson, P. Gruber, and J. Tödtli, “Fuzzy anti-reset windup for PID con-

trollers,” Control Engineering Practice, vol. 2, no. 3, pp. 389 – 396, 1994.

124


